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SYNOPSIS

Flow cytometry is commonly used in cell-based diagnostic evaluation for blood-borne 

malignancies including leukemia and lymphoma. The current practice for cytometry data analysis 

relies on “manual gating” to identify cell subsets in complex mixtures, which is subjective, labor-

intensive, and poorly reproducible. Here we review recent efforts to develop, validate, and 

disseminate automated computational methods and pipeline for cytometry data analysis that could 

help overcome the limitations of manual analysis and provide for efficient and data-driven 

diagnostic applications. We demonstrate the performance of an optimized computational pipeline 

in a pilot study of chronic lymphocytic leukemia data from our clinical diagnostic laboratory.
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Background

Cells of the peripheral blood can serve as sentinels of the physiological and pathological 

state of an organism. Normal vascular recirculation and extravascular migration allows these 

cells to touch every part of the body. The number and phenotype of blood cells are also 

constantly influenced by the sea of cytokines, growth factors, hormones and other small 

molecules they are bathed in, such that the cellular constituents of blood also reflect its 

molecular constituents. Thus, a detailed, accurate and consistent representation of the 

qualitative and quantitative properties of blood cells can be used to understand the 

mechanistic underpinnings of disease and to identify potential biomarkers of disease 

diagnosis, prognosis and therapeutic response.

In the 1960’s, Alexander Vastem recognized that the enumeration of blood cell types 

(Complete Blood Count, CBC) could be used diagnostically as evidence for certain kinds of 

infections and malignancies. Although the CBC has emerged as a critical laboratory assay, it 

cannot detect, with any detail, the phenotypes of the enumerated blood cells. Flow cytometry 

(FCM) represents an advancement in the analysis and characterization of blood cells, 

enabling researchers and clinicians to identify the surface antigen expression of blood cells 

using fluorochrome-conjugated antibodies, multiple lasers to provide specific excitation of 

fluorochromes, and several detectors to quantitate the emitted fluorescent signal. Indeed, 

using a simple cocktail of antibodies each conjugated to defined fluorochromes with known 

emission ranges, an investigator can identify specific lymphoid and myeloid populations in 

peripheral blood, as well as the expression of antigenic determinants, some of which can be 

diagnostic or prognostic.

In 2007, Davis et al. published recommendations from an expert panel regarding the medical 

indications for performing FCM-based diagnostic testing, including cytopenias, elevated 

leukocyte counts, atypical cells in bodily fluids, plasmacytosis or monoclocal gammopathy, 

and organomegaly.1 Based on the individual indications, specific staining panels are selected 

to target the likely cell suspects. For example, at the University of California, San Diego 

(UCSD) Center for Advanced Laboratory Medicine (CALM), 10 different tube/panels are in 

routine use to aid in the diagnosis of acute and chronic leukemia. Table 1 shows an example 

of three such tubes, the fluorescent channels used, and the antigens detected.

Although the use of these panels has demonstrated accurate and clinically actionable 

diagnosis and classification of hematolymphoid neoplasms, there is room for improvement, 

given the genetic and phenotypic diversity of blood cell diseases. For example, while flow 

cytometry can accurate diagnose acute promyelocytic leukemia (APL) based on multiple 

surface antigens, molecular subclassification of APL using cytogenetic detection of the 

t(15;17) translocation is diagnostic for a subtype that responds to all transretinoic acid. The 

fact that this leukemia appears to be derived from a distinct population of immature 

granulocytes suggests that this important subclassification could potentially be achieved 

using more complex staining panels alone without the need for cytogenetics. However, 

despite the routine use of complex, i.e. > 8-color, staining panels in research laboratories in 

recent years, high complexity flow cytometry panels have not been incorporated into routine 
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use in the clinical flow cytometry laboratory. In part, the lack of consensus of diagnostically 

relevant antigens and the inability to standardize analysis templates have hindered progress 

in clinical laboratories.

The current approach for identification of diagnostic cell populations from cytometry data is 

based on manual gating analysis, which is subjective, labor-intensive, and poorly 

reproducible, especially when dealing with higher-dimensional complex datasets. Over the 

last several years, our group and others have developed a suite of computational tools for the 

processing and analysis of cytometry data (reviewed previously).2,3 These include 

computational tools and informatics resources for: i) data pre-processing to manipulate file 

formats, identify outlier events and samples, and adjust for batch effects; ii) automated 

gating for supervised and unsupervised cell population identification; iii) post-processing for 

cell-based biomarker identification, feature extraction, and data visualization; iv) data 

standards and database resources for cytometry data dissemination. The majority of the 

computational tools are made available as open source software with unrestrictive licensing, 

and the majority of resources are publicly available.

In order to assess the performance of different computational approaches for cytometry data 

analysis and to provide guidance to end-users on their use, an international consortium - 

FlowCAP (Flow Cytometry Critical Assessment of Population Identification Methods, 

http://flowcap.flowsite.org) - was assembled to assess and compare computational methods 

through a series of analysis challenges. FlowCAP-I tested whether automated algorithms 

could reproduce expert manual gating; FlowCAP-II focused on sample classification.4 

FlowCAP-I results showed that several algorithms were able to achieve similar results to 

expert manual analysis for five testing datasets from GvHD (graft-versus-host disease), 

DLBCL (diffuse large B-cell lymphoma), HSCT (hematopoietic stem cell transplant), WNV 

(symptomatic West Nile virus infection), and normal donors (ND). As an example of their 

performance, multiple methods achieved F-measure scores for event-level classification 

accuracy of >0.9 in comparison with expert manual gating for DLBCL in human peripheral 

blood mononuclear cell (PBMC) samples. In FlowCAP-II, several classification algorithms 

were able to effectively classify acute myeloid leukemia (AML) from non-AML samples 

with 100% accuracy. These computational methods have now been found to effectively 

identify novel cell-based biomarkers in a variety of research settings.

A small number of studies have now begun to evaluate the use of these methods in 

diagnostic settings. In 2012, Bashashati et al. used the flowClust method to identify a 

subtype of diffuse large B-cell lymphoma DLBCL) in which the lymphoma cells showed a 

unique high side scatter pattern reflecting internal cellular complexity.5 Importantly, the 

subset of patients carrying this DLBCL subtype showed signfifcantly inferior overall and 

progression-free survival, suggesting that this lymphoma phenotype might serve as a useful 

biomarker to identify DLBCL patients at high risk for relapse. Zare et al. used the 

SamSPECTRAL and FeaLect methods to identify features in flow cytometry data that are 

useful in distinguishing between mantle cell lymphoma (MCL) and small lymphocytic 

lymphoma (SLL), and showed that the classification accuracy increased, for MCL from 64% 

to 100% and for SLL from 69% to 97%, in comparison with standard of care manual 

analysis of the diagnostic flow cytometry data.6 Craig et al. used the flowType and 
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RchyOptimyx methods and found that a CD10+CD38− B cell population showed 

significantly different proportions in germinal center B-cell lymphoma versus germinal 

center hyperplasia, however the absolute proportion in any given patient was not considered 

specific enough to be used in a diagnostic setting.7 Dorfman et al. used the FLOCK methods 

to identify discete mast cell populations in the majority of patients with systemic 

mastocytosis, with a sensitivity of 75% and a specificity of 86%.8 Dorfman et al. also used 

FLOCK to identify discrete plasma cell populations in the bone marrow of patients with 

plasma cell neoplasms with a sensitivity of 97%, compared with only 81% for standard flow 

cytometric analysis.9 Finally, Levine et al. used the PhenoGraph method, which 

algorithmically defines phenotypes in high-dimensional single-cell data, to stratify acute 

myeloid leukemia (AML) patients into subtypes with prognostic differences based on the 

activation of signaling pathways derived using mass cytometry data.10 These examples 

clearly indicate the promise of using computational approaches of flow cytometry data in a 

clinical diagnostics setting.

As the complexity of cytometry data has increased in recent years, it has been recognized by 

the translational research community that computational support is becoming essential for 

accurate single cell phenotyping. With the advent of clinical genomics applications, the 

diagnostic lab environment will need to become familiar with the validation and use of 

computational pipelines in their diagnostic workflows. In the case of cytometry, the 

integration of computational methods into the laboratory workflow would allow for the use 

of more complex staining panels for traditional diagnostic tests (i.e. leukemia and 

lymphomas) where objective analysis methods could provide for more consistent disease 

characterization and subtype identification with therapeutic and prognostic implications. In 

addition, the ability to consistently manage and interpret data from complex staining panels 

would also allow for the validation of diagnostic tests for other diseases, including the 

monitoring of circulating tumors cells for solid tumors and the diagnosis and monitoring of 

other immune-mediated diseases (e.g. allergy, asthma and autoimmune disease). And while 

diagnostic flow analysis has historically focused on the identification of neoplastic cells 

within the patient sample, a comprehensive elucidation of both the neoplastic and normal 

cellular components may also help identify candidates for cancer immunotherapy and 

contribute to the goals of precision medicine.

Illustration

In order to illustrate the potential use of these computational methods in a clinical diagnostic 

setting, we present the results of our preliminary attempts to optimize the application of a 

selected set of computational methods for the automated identification of chronic 

lymphocytic leukemia (CLL) cells stained with a newly implemented 10 marker panel. The 

goal is to illustrate the process of computational pipeline optimization, to highlight the 

promise that these methods bring for more objective identification of CLL cells in patient 

samples, and to explore their potential utility for monitoring of minimal residual disease 

(MRD).

The computational data processing and analysis workflow we have implemented for the 

CLL FCM data analysis (Figure 1A) consists of the following steps:
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Data preparation

20 FCS 3.0 files from peripheral blood samples of 20 subjects were received from UCSD 

clinical labs for CLL diagnostic evaluation. 11 subjects received a diagnosis of CLL; 5 

subjects were reported as having no evidence of CLL (no-CLL); 4 subjects were evaluated 

for the presence of MRD following therapy. Protected health information (PHI) was 

scrubbed from the file headers and pseudo file names are used in the data analysis. Except 

for the corresponding subject disease status (CLL, non-CLL, MRD), no other clinical data 

about the subjects is disclosed. The reagents used in the 10 color CLL panel are: CD45-

FITC, CD22-PE, CD5-PerCP55, CD19-PECy7, CD79b-APC, CD23-APC-R700, CD81-

APC-H7, CD10-BV421, CD43-BV510, CD3-BV605. Cells were stained according to our 

standard protocol, acquisition was performed on a BD FACSCanto 10-color instrument, and 

manual analysis was done using FCS Express software (DeNovo).

Logicle Transformation

The second step in our workflow is to apply FCSTrans11 to convert the binary FCS files, 

compensate them using the compensation matrices in the file headers, and transform the 

cellular marker expression values for optimizing the segregation of cell populations for both 

visualization and data analysis purposes. FCSTrans reproduces the logicle transformation 

procedure used in the FlowJo™ software (TreeStar, Inc.) and generates consistent displays 

and transformed values.11 The output of FCSTrans for each FCS file is a data matrix with 

each column a parameter measured in the FCM experiment and each row a cellular event.

Prefiltering

While unsupervised data clustering methods can be applied to the whole data file for 

identification of cell populations, they usually generate a large number of data clusters as the 

number of parameters measured in an FCM experiment keeps increasing. Interpreting and 

annotating these data clusters is labor intensive. Some of the data clusters were found in 

debris, dead cells, and doublets. Including a data prefiltering step before the cluster analysis 

step allows the computational pipeline to focus on the cells of interest. Depending on the 

data clustering method used in the pipeline, the prefiltering step also helps the identification 

of small cell subsets, reduces the run time of the pipeline, as well as allows the population 

summary statistics (e.g., proportions) to be calculated based on the correct parent 

populations.

A data pre-filtering method we recently developed, called DAFi (Directed Automated 

Filtering and Identification of Cell Populations), is applied to identify the CLL cells from the 

input FCS files. The steps of DAFi are illustrated in the Figure 1B. In the first step of DAFi, 

the unsupervised FLOCK clustering method12 is applied to partition the data into many 

small data clusters. Compared with unsupervised learning methods, one of the major 

features of DAFi is that it requires a manual gating strategy from the user. For the 

identification of the CLL cells, the 2D coordinates in user manual gating based on FSC/SSC, 

CD45, CD3, CD5, and CD19, are combined into a hyper-rectangle for the computational 

identification of the CLL cells in the high-dimensional space, through merging the FLOCK-

identified data clusters with centroids located within the hyper-rectangle. Finally, the filtered 

data are visualized in 2D plots for visual examination. Unlike supervised approaches, this 
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way preserves the data-driven characteristics of unsupervised learning, which identifies data 

clusters using all data dimensions simultaneously without presumptions. On the other hand, 

through the use of a manual gating definition and plotting high-dimensional data clusters on 

2D plots, DAFi facilitates the interpretation of the data analysis results in a way that the user 

predefines.

Unsupervised identification of CLL subsets using FLOCK

The FLOCK-based computational pipeline12 was applied to identify subsets in the CLL cells 

through unsupervised cluster analysis. In order to map the FLOCK-identified data clusters 

across the 20 files, we first normalized the CLL data across the files with the 0–1 min-max 

normalization method, and then merged the data together into a single file for FLOCK 

analysis. FLOCK returned a cluster membership file for each event in the merged data. We 

implemented a script to separate the events back into each original file together with their 

cluster membership. Thus, the same set of cluster IDs is used across the 20 files to indicate 

the mapping of these data clusters.

The FLOCK pipeline also outputs summary statistics tables with each row a data file 

(corresponding to one experiment sample) and each column a cell population identified in 

the sample. The contents of these tables include percentage values of cell subsets, mean 

fluorescence intensities (MFI) on each marker, cell phenotype profiles, and other predefined 

statistical analysis results. Then p-values based on statistical hypothesis testing can be 

calculated (e.g., through a non-parametric Wilcoxon rank sum test) to indicate if there is a 

significant difference between the subject groups.

Results

The goal of this study was to determine if a computational pipeline could be developed for 

the identification of diagnostic cell populations in CLL patient samples using FCM data. We 

chose to use a new method we recently developed for directed unsupervised population 

identification called DAFi (unpublished). The DAFi approach uses “direction” from prior 

knowledge about the cell populations of interest that it typically used to drive manual gating 

analysis. Figure 2 shows a typical manual gating hierarchy used in the CALM diagnostic lab 

to identify CLL cells from FCM data with their new 10-color panel. A plot of Time vs SSC-

A is used to determine if there are any instrument anomalies occurring during data 

acquisition; a plot of FSC-A vs FSC-H is used to gate on singlet cells with FSC-A = FSC-H; 

SSC-H vs CD45 is used to gate on leukocytes; FSC-A vs SSC-A is used to gate on 

lymphocytes; CD5 vs CD19 is used to gate on putative CLL cells (CD5+CD19+), normal B 

cells (CD5−CD19+), and normal T cells (CD5+CD19−). DAFi was initially configured to 

produce a hyper-rectangle to recapitulate this manual gating hierarchy.

Cell events retained by these initial DAFi filters for a single CLL blood sample are shown in 

Figure 3A, and for a composite of all 20 samples in the data set following unsupervised 

clustering using the FLOCK method in Figure 3B. The results from individual samples show 

that all three cell populations show natural distributions with the expected marker expression 

levels. The composite results show that although the general expected marker expression 

levels are observed for all samples, there also appears to be some heterogeneity in their 
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absolute fluorescence levels, especially in terms of CD5 expression in normal T cells 

(bottom middle) and both CD5 and CD19 expression in CLL cells (bottom right). The 

heterogeneity in CD5 expression can also be seen in plots from individual samples (Figure 

4), with some samples showing relatively high levels of CD5 expression (bright - br), some 

showing intermediate levels (dim - di), and some showing a mixture of both (di/br).

In order to verify that the initial DAFi filters was specifically isolating CLL cells, we 

compared cells retained by the initial DAFi filters from both CLL and non-CLL patients. 

Unfortunately, cell retained by these initial DAFi filters were observed in three of the five 

non-CLL samples evaluated in the CD5 vs CD19 dot plots (Figure 5A). To investigate this 

discrepancy further, we examined the expression pattern of other cell surface markers that 

could be useful for improving the specificity of DAFi filtering and found that the majority of 

putative CLL cells from CLL patients were CD10− and CD79b dim, whereas the seemingly 

“CLL” cells retained by the initial DAFi filters in non-CLL patients were CD79b bright and 

CD10+ or −.

Based on these finding, we adjusted the configuration of DAFi to include additional filters 

for CD79b dim and CD10−. While the use of these additional filtering criteria had little 

effect on CLL cell population identification in CLL samples (Figure 6A), this revised 

definition eliminated the spurious retention of cell events in non-CLL samples (Figure 6B).

Finally, we examined the ability of the revised DAFi filtering to detect CLL cells in the 

setting of MRD, where distinguishing between CLL cells and normal B cells can be 

challenging. By including the CD10− and CD79b dim phenotypes in the revised CLL 

definition and DAFi filtering configuration, CLL cells could be clearly identified in two of 

the four MRD samples (Figure 7).

Discussion and Conclusions

In this illustration, we examined the ability of an automated computational pipeline based on 

the DAFi method to identify CLL cells in multidimensional FCM data. Using an initial 

definition based solely on the co-expression of CD5 and CD19, we found that the cell 

populations identified were not specific to CLL patients, but that the populations identified 

in CLL versus non-CLL patients differed in their expression of CD10 and CD79b. Indeed, 

this pattern of CD10 and CD79b expression in CLL cells has been reported previously.7,13 

By changing the cell population definition and configuration of DAFi to retain cells that are 

CD5+CD19+CD10−CD79bdim, cells that are specific to the CLL patient cohort could be 

automatically identified without manual gating.

By identifying CLL cells in multidimensional space simultaneously, DAFi filtering was 

robust to slight changes in marker expression. This robustness was especially important for 

CD5 expression, which showed considerable variability between CLL patients, ranging from 

bright to dim. In addition, the use of a precise multidimensional definition allowed for the 

sensitive identification of CLL cells in the setting of MRD.

We also identified considerable heterogeneity in CD5 expression in normal T cells (Figure 

3B). It should be noted that this population of normal T cells is not typically the focus of 

Scheuermann et al. Page 7

Clin Lab Med. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



manual analysis and is considered “irrelevant” in the current diagnosis of CLL; however, the 

T cell phenotype of CLL patients could stratify responses to immune therapy and could find 

utility in the future. We postulate that an unbiased, automated analysis platform, as we have 

described herein, could be used to capture all of the populations in peripheral blood, thereby 

realizing the vision that peripheral blood samples could indeed reflect the physiology of the 

patient. We argue that as flow cytometry platforms become more complex and 

multidimensional, it becomes impossible to examine and interpret all of the data manually.

The work presented here was a pilot study to demonstrate the feasibility of applying 

automated computational pipelines to diagnostic data using a relatively small number of 

samples and a subjective evaluation of the results. Based on the positive findings from this 

pilot, a prospective study is underway to expand the sample size and apply objective 

evaluation criteria to quantitative assess the sensitivity, specificity and predictive value of 

this approach for CLL diagnosis in comparison with standard of care practices. The protocol 

being used will allow us to follow up on any discrepancies to examine any addition 

diagnostic testing results and patient outcome information to try and determine the correct 

result. By also examining the outcome of patients evaluated in the setting of MRD, we will 

also be able to determine if monitoring CLL cell population levels using automated 

computational pipelines would have prognostic utility. In the pilot study, we also obtain 

some evidence that distinct sub-types of CLL might exist based on the expression of the 

other markers (e.g. CD22 and CD81) in the 10-color staining panel used (data not shown). 

However, the small sample size made it difficult to draw any definitive conclusions. The 

prospective study should allow us to determine if the detection of distinct subtypes is 

reproducible and if show different response to therapy and prognostic outcome.

The ultimate goal of these efforts is to achieve adoption of automated computational 

pipelines for routine use in the clinical diagnostic laboratory. This goal presents a challenge 

in determining how best to validate computational pipelines for FCM data analysis for 

patient management use in a CLIA environment. Emerging experience with the application 

of computational methods for the processing and interpretation of next generation 

sequencing data for diagnostic use14 could be used to establish the necessary computational 

method validation plan for FCM data.

Flow cytometry analysis of patient samples has become an indispensable component of the 

modern diagnostic toolkit for a variety of different hematopoietic diseases, especially 

leukemias, lymphomas, and myeloproliferative disorders. Advancements in cytometry 

instrumentation and the availability of more complex staining panel collections promise to 

allow for more accurate identification and monitoring of disease for improved diagnosis and 

prognosis of patients. However, these advances result in an increase in the complexity of 

data that feed into the diagnostic process. The validation and use of computational pipelines 

to assist in the processing and interpretation of these data will be essential to realize their 

true potential in the clinical laboratory.
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KEY POINTS

• Traditional manual gating analysis of cytometry data cannot effectively 

address the scale and complexity of data generation from modern cytometry 

instrumentation.

• Bioinformatics investigators have developed a collection of computational 

methods for automated identification of cell populations from high-

dimensinal flow cytometry data; a small subset of these methods have been 

evaluated for their use in diagnostics applications of leukemia and lymphoma 

with promising results.

• By applying computational pipelines to classify CLL samples from healthy 

controls, the pilot study reported in this article illustrates the use of these 

methods to determine that traditional CLL definition based on CD5 and CD19 

alone can be improved by also examining the expression levels of CD10 and 

CD79b in an automated fashion.

• Clincial validation of these computational approaches is ongoing and essential 

to realize the true potential of these methods for use in the clinical diagnostic 

laboratory.
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Figure 1. Computational workflow for FCM data analysis
A) The computational workflow used to analyze the CLL study data. Initial data 

transformation uses FCS file format as input to the FCSTrans algorithm11, which applies a 

logicle transformation15 to the fluorescence intensity values in order to obtain more normal 

distributions. The cell events are then filtered based on intensity values of selected 

parameters (e.g. FSC and SSC to capture lymphocyte events based on size and complexity) 

using the DAFi-filtering method (unpublished). Filtered events from all individual sample 

files are merged into a single file and cell populations identified using the FLOCK method12 

for unsupervised, density-based clustering. Cell events are then segregated back into sample 

specific files while retaining cell population membership annotations to facilitate cross-

sample comparison. B) Details of DAFi filtering step. The DAFi filtering method begins by 

clustering cells into population in high dimensional space using FLOCK. A hyper-rectangle 

is defined by the user to define the spatial regions that contain the cell populations of 

interest. The cell events of cell populations with centroids located within the hyper-rectangle 
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of interest are then merged into a single base population for further downstream analysis 

using a cell population identification method, e.g. FLOCK.
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Figure 2. Manual analysis for CLL
A) Manual filtering of the lymphocyte base population. The singlet viable lymphocyte base 

population is captured using as FSC-H=FSC-A, CD45+, SSC-H low, SSC-A low, and FSC-

A intermediate. B) CLL gate. CLL cells (red) are classically distinguished from normal B 

lymphocytes (CD19+, CD3−, CD5−; green) and T lymphocytes (CD19−, CD3+, CD5+; 

maroon) as being uniquely CD19+, CD3− and CD5+.
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Figure 3. DAFi filtering and FLOCK clustering of CLL FCM data
The DAFi algorithm was configured to recapitulate the manual gating strategy for capturing 

normal B cells (upper left), normal T cells (upper middle) and CLL cells (upper right) as 

depicted in Figure 2, with the cell events obtained colored in red and cell events excluded 

colored in yellow, from a single CLL peripheral blood sample. The cell events for each of 

these three cell types from all samples were then merged and sub-population clusters 

identified using FLOCK-based unsupervised clustering, with cell events from each sub-

population colored in a different color. Considerable heterogeneity between individual 

samples can be observed.
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Figure 4. Initial CLL candidate cell populations from CCL and non-CLL patients based on CD5 
and CD19 expression only
DAFi filtering of CD5+CD19+ cells (putative CLL cells) from peripheral blood samples of 

eleven different CLL patients are shown. The putative CLL population was further 

subdivided into sub-population clusters using FLOCK-based unsupervised clustering, with 

cell events from each putative CLL sub-population colored in a different color. Considerable 

variability in absolute CD5 expression between patients can be observed, with some patients 

carrying putative CLL cells with relatively dim (5di) and some with relatively bright (5br) 

expression of CD5.
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Figure 5. Initial CLL candidate subset from non-CCL patients based on CD5 and CD19 
expression only
DAFi filtering of CD5+CD19+ cells (putative CLL cells) from peripheral blood samples of 

five different patients with (CLL, lower rows) and without (non-CLL, upper rows) a 

definitive diagnosis of CLL from a combination of clinical, cellular and molecular 

diagnostic tests are shown. The putative CLL population was further subdivided into sub-

population clusters using FLOCK-based unsupervised clustering, with cell events from each 

putative CLL sub-population colored in a different color. A) CD5 versus CD19 dot plots. 

Based on the CD5+CD19+ CLL definition, cell events captured using DAFi filtering in non-

CLL patients can be observed (upper row). B) CD10 versus CD79b dot plots. However, and 

examination of the expression of the expression of CD10 and CD79b in the CD5+CD19+ 

population reveals that these cells in CLL patients generally lack expression of CD10 and 

exhibit dim expression of CD79b (lower row). Whereas in non-CLL patients the 

CD5+CD19+ cell express high levels of CD79b with or without CD10 expression (upper 

row). These results suggest that a revised CLL definition of CD5+CD19+CD10−CD79dim 

could be more specific for the identification of authentic CLL cells.
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Figure 6. Detection of CLL cells based on the revised CD5+CD19+CD10−CD79bdim CLL 
definition
The analysis presented in Figure 5 was repeated with the addition of additional DAFi 

filtering criteria to further filter based on the lack of CD10 expression and dim CD79b 

expression. Each of the top rows in A and B show the results using the previous definition 

based on CD5+CD19+ only. The bottom two rows in each section show the DAFi filtering 

results using the revised definition with the putative CLL cells colored in red. A) Samples 

from five different CLL patients. B) Samples from five different non-CLL patients.
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Figure 7. Detection of CLL cells based on the revised CD5+CD19+CD10−CD79bdim definition in 
the setting of minimal residual disease
Peripheral blood samples from four different CLL patients in clinical remission following 

treatment were analyzed using DAFi filtering based on the revised CD5+CD19+CD10-

CD79bdim CLL definition, with the CLL cells colored in red. Minimal residual disease is 

evident in two of the four patient peripheral blood samples.
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