
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Toward Unified Shader Programming

Permalink
https://escholarship.org/uc/item/7fb2535j

Author
Seitz, Kerry Allen

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7fb2535j
https://escholarship.org
http://www.cdlib.org/

Toward Unified Shader Programming

By

KERRY A. SEITZ, JR.
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

John D. Owens, Chair

Nina Amenta

Theresa Foley

Committee in Charge

2021

i

Copyright © 2021 by

Kerry A. Seitz, Jr.

All rights reserved.

To my parents, Sue and Kerry; and to my sister, Andrea.

iii

CONTENTS

Title Page i

Contents iv

List of Figures viii

List of Tables ix

List of Code Listings x

Abstract xi

Acknowledgments xii

1 Introduction 1

1.1 Contributions . 5

2 Background 7

2.1 Terminology and Key Concepts . 7

2.2 Shader Programming . 9

2.2.1 GPU Shader Code . 9

2.2.2 Host Shader Code (in Unreal Engine 4) 12

2.2.3 Issues in a Non-Unified Environment 13

2.3 Modern Shader System Implementations . 14

2.3.1 Plain C++ and HLSL . 15

2.3.2 A Layered DSL with Embedded HLSL 17

2.3.3 A DSL That Manipulates and Generates HLSL 18

2.3.4 Modifying HLSL . 19

2.3.5 Summary . 20

iv

3 Unified Shader Programming in C++ 22

3.1 Goals, Constraints, and Non-Goals . 23

3.2 Design Decisions . 25

3.2.1 C++ for Both Host and GPU Code . 26

3.2.2 Use C++ Attributes to Express Declarations Specific to Shader Pro-

gramming . 27

3.2.3 Modularize Host and GPU Shader Code Using Classes 29

3.2.4 Implement Specialization by Co-opting Virtual Function Calls 30

3.2.5 Limitations . 36

3.3 Translation Tool Implementation . 37

3.4 Evaluation . 39

3.4.1 ShaderClass Modularity . 39

3.4.2 Lines of Code . 42

3.4.3 Performance . 43

3.5 Chapter Conclusion . 45

4 Staged Metaprogramming for Shader System Development 46

4.1 Design Goals . 47

4.2 Staged Metaprogramming . 49

4.2.1 Definition . 49

4.2.2 Example Shader . 50

4.2.3 Lua-Terra: A Research Substrate for Staged Metaprogramming 52

4.2.4 Limitations of Staged Metaprogramming 53

4.3 Other Key Design Decisions . 54

4.3.1 Represent Shaders as Compile-time Lua Objects 55

4.3.2 Write Shader Definitions Using a DSL 56

4.3.3 Write Shader Logic and Application Code in the Same Language . . . 60

4.3.4 Generate Runtime Data Structures for Shaders 61

4.3.5 Implement Complex Specialization Options Using Staged Metapro-

gramming Constructs Directly . 63

v

4.4 Exploring the Specialization Design Space . 64

4.4.1 Background and Motivation . 64

4.4.2 Experimental Setup . 65

4.4.3 Performance Results . 68

4.5 The Future of Metaprogramming in C++ . 69

4.6 Chapter Conclusion . 70

5 Discussion 72

5.1 Analysis of Co-opting Existing Features . 73

5.2 Analysis of Staged Metaprogramming . 78

5.3 Future Work . 81

5.3.1 Supporting Additional Shader Types 81

5.3.2 Static, Dynamic, and Hybrid Dispatch Strategies 82

5.3.3 Real-time Ray Tracing . 84

5.3.4 Co-opting the Features of Rust . 84

5.3.5 Adding Staged Metaprogramming to Another Language 85

5.3.6 Future Opportunities Enabled by Unified Programming 85

6 Related Work 87

6.1 Shader Programming in GPU-based Graphics APIs 87

6.2 Extended Shader Programming Models . 88

6.3 Multi-Stage Programming and Syntax Extension 90

6.4 Shader Metaprogramming . 90

6.5 Single-Language Shader Programming . 92

7 Conclusion 95

A The Implementation of Selos’s Specialization Framework 97

A.1 Introduction . 97

A.2 Deferred Pass Shader . 97

A.2.1 Light Types . 99

vi

A.2.2 Material Types . 101

A.3 Specialization of Light Types . 102

A.4 Specialization of Material Types . 103

A.5 Generated HLSL and GLSL code . 105

References 106

vii

LIST OF FIGURES

3.1 A screenshot from the Infiltrator Demo used for our performance evaluation . . 44

4.1 An overview of the Selos Shader System . 55

4.2 The test scene used for evaluating different sets of shader variants 66

4.3 GPU and CPU performance for the deferred pass 67

viii

LIST OF TABLES

3.1 Lines of code for Unreal Engine 4 shader vs. unified C++ shader 43

3.2 GPU performance of Unreal Engine 4 shader vs. unified C++ shader 44

4.1 Lines of code for Selos, Unity’s ShaderLab, and the Slang compiler 60

ix

LIST OF CODE LISTINGS

2.1 An example GPU shader program written in HLSL 10

2.2 Host shader code corresponding to the GPU shader program in Listing 2.1 . . . 11

3.1 An example shader using our unified C++ shader system 28

3.2 Example ShaderClasses with virtual [[gpu]] methods 31

3.3 A mockup of a design that uses C++ templates for specialization 34

3.4 Downside of using C++ templates for specialization 35

3.5 A simplified selection of HLSL GPU shader code from a UE4 shader 40

3.6 The unified C++ shader code ported from the code in Listing 3.5 41

4.1 A simple shader in our Selos DSL syntax . 57

4.2 Lua code to construct the same shader as Listing 4.1 58

A.1 The Selos deferred shader used in our design space exploration framework . . . 98

A.2 An example light type implementation in Selos 100

A.3 An example material type implementation in Selos 101

A.4 The implementation of TiledLightListEnv in Selos 102

A.5 The implementation of TiledDeferredMaterialType in Selos 104

x

ABSTRACT

Toward Unified Shader Programming

Real-time graphics programming is more complex due to the strict separation of programming

languages and environments between host (CPU) code and GPU code. In contrast, popular

general-purpose GPU (GPGPU) programming models provide unified programming environ-

ments, in which both host and GPU code are written in the same language, can be in the same

file, and share lexical scopes. Such unified systems avoid code duplication, subtle compatibility

bugs, and additional development and maintenance costs that arise from manually coordinat-

ing between host code and GPU code. While real-time graphics predates—and, in many ways,

inspired—GPGPU programming, it has yet to incorporate the advantages of unified program-

ming that helped to propel the popular GPGPU systems to success.

In this dissertation, we propose two overarching implementation methodologies for creating

unified programming environments for real-time graphics. These methods have complementary

trade-offs, with one motivated by practical applicability in existing systems today and the other

providing a principled approach for new systems utilizing future programming language evolu-

tions. The first method is to co-opt existing features of a programming language and implement

them with alternate semantics to express the host-GPU interface requirements and code opti-

mization techniques ubiquitous in real-time rendering. Using this strategy, we integrate GPU

shader code into C++ by co-opting annotations, inheritance, and virtual functions to express the

shader specialization optimization. Our compiler-based tool transforms host and GPU shader

code into efficient implementations by generating specialized shader variants in place of virtual

function calls. The second method is a general-purpose language feature called staged metapro-

gramming. Using this technique, we create a unified shader system entirely in user-space code,

without the need for a compiler-based implementation. Our use of staged metaprogramming

enables exploration of the shader specialization design space, resulting in improved perfor-

mance relative to the complete, static specialization baseline. Along with presenting these two

implementation strategies, we also compare their strengths and shortcomings to better inform

graphics programmers seeking to create unified environments today and in the future.

xi

ACKNOWLEDGMENTS

Something I learned very early in my graduate student career—and that was continually rein-

forced throughout—is that my advisor, John D. Owens, genuinely cares about his students. He

goes above and beyond to act in their best interests and to help them succeed, and I am sure that

all of his students agree. I am so very grateful to him for pushing me to grow, both as a student

and as a person, and to have more confidence in myself. I have benefitted immensely from his

technical insights, research acumen, admirable patience, and constant support, and I hope to

one day pay it forward. I have a hard time imagining my success as a graduate student without

him. John, thank you for all that you have done for me, and thank you for being the awesome

person that you are.

For practically my entire time in graduate school, Tess Foley has been a collaborator and

mentor that I have valued beyond measure. She has contributed to and guided my dissertation

research from the start, and her expertise in the field has shaped my understanding of real-time

graphics and shader programming. Tess’s mentorship has not only strengthened my technical

knowledge but also has helped me to be more confident about my understanding of complex

topics. Among other things, I look up to her ability to clearly communicate subtle and challeng-

ing points both to domain experts and to those less experienced in the field, and I appreciate

that she does not shy away from having difficult conversations when they are warranted. I want

to thank Tess for all of the time, experience, and advice she has shared with me over the years.

Thank you to Nina Amenta for serving on my dissertation committee, as well as for being

a fantastic teacher. I appreciate her enthusiasm and insights that have helped to strengthen my

work. Her Parallel Algorithms course is my favorite of all the courses I took during my time as

a graduate student! Nina finds a way to explain the complex course material in an approachable

manner, while simultaneously fostering deep understanding for her students.

Serban D. Porumbescu has been another wonderful source of guidance over the past several

years, both on technical questions as well as on topics related to personal and professional

growth. I’m grateful that he always managed to find time to have impromptu conversation with

me, and I valued having a go-to person in the lab with whom to discuss day-to-day research

challenges. When he joined the staged metaprogramming project, he brought a new perspective

xii

that not only influenced and improved the research itself, but also enabled us to communicate

our ideas more effectively. It was Serban’s idea to use the term “research substrate” to describe

our use of Lua-Terra in the staged metaprogramming work, and I credit this suggestion with

providing much-needed clarity not just for readers, but for my own views on the work as well.

Throughout my time at UC Davis, I have been fortunate to connect with many industry

experts that have influenced both my research work and my career aspirations. I would like to

thank Chuck Lingle for facilitating conversations at and financial support from Intel, Brian Karis

for project and technical advice and for connections within Epic Games, and Dave Shreiner for

feedback on my work and for professional advice. I also wish to thank the many people who

provided guidance and feedback for my work, including Andrew Lauritzen, Angelo Pesce, Aras

Pranckevičius, Brett Lajzer, Charlie Birtwistle, Hugues Labbe, Joe Forte, Michael Vance, Ola

Olsson, Padraic Hennessy, Paul Lalonde, Wade Brainerd, Yong He, Yuriy O’Donnell, Zachary

DeVito, and the anonymous reviewers. Thank you to Francois Demoullin for early code contri-

butions on the staged metaprogramming work.

I am grateful for the financial support I have received throughout my graduate student career.

Thank you to Intel Corporation and the National Science Foundation Graduate Student Fellow-

ship Program (NSF GRFP) for financial support. Also, thanks to Intel Corporation and NVIDIA

Corporation for hardware donations. This material is based upon work supported by the Na-

tional Science Foundation Graduate Research Fellowship under Grant No. DGE-1148897. Any

opinion, findings, and conclusions or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the National Science Foundation.

I also want to thank the fantastic people in the Department of Computer Science and the De-

partment of Electrical and Computer Engineering at UC Davis. The staff has provided excellent

support throughout my time as a graduate student, and I have enjoyed learning from the great

faculty members in these departments. I especially want to thank Jessica Stoller and Alyssa

Bates. Whenever I had a question about anything related to the graduate program, they always

responded quickly and with exactly the information I needed! Their hard work and extensive

knowledge meant that I never had to worry about questions and issues related to the program,

which relieved a great deal of stress that I might have otherwise had.

xiii

Over the years, I have had the immense pleasure of watching John’s research group grow,

and I am glad to have had the opportunity to work and interact with so many wonderful peo-

ple! I was fortunate to begin my time in the group by working with Anjul Patney and Stanley

Tzeng, who were—and continue to be—great sources of knowledge and support. Thank you

to everyone who has made my grad school experience fulfilling, memorable, and fun, includ-

ing Pınar Muyan-Özçelik, Andrew Davidson, Yangzihao Wang, Saman Ashkiani, Afton Geil,

Jason Mak, Calina Copos, Edmund Yan, Leyuan Wang, Yuechao Pan, Carl Yang, Vehbi Eşref

Bayraktar, Collin McCarthy, Andy Riffel, Muhammad Osama, Chenshan Shari Yuan, Weitang

Liu, Yuduo Wu, Ahmed H. Mahmoud, Muhammad Awad, Yuxin Chen, Zhongyi Lin, Matthew

Yih, Jonathan Wapman, Agnieszka Łupińska, Radoyeh Shojaei, Chuck Rozhon, Toluwanimi

Odemuyiwa, and Teja Aluru. You all are the best!

I could not have had a successful graduate student career without my amazing and caring

friends. I met Alex Kennedy during computer science graduate student orientation when he

overhead me talking about StarCraft, and I’m so thankful that he joined in on that conversation.

From the very start, Alex has been a great friend, providing interesting technical discussions,

constant support, and a myriad of great times (and so much ARAM)! It was through Alex that

I met another great friend, Brennan Beam. Brennan’s open and caring nature had led to him

becoming a much-needed confidant for me. My friendships with Alex and Brennan have helped

me to relish the good times and to stay afloat during the difficult ones. I also want to thank

Mike and Emily Bedwell and Jake and Katy Feldman. Though there are many miles between

us, they continue to be the best of friends. Also, thank you to the many people I met through

swing dancing and Lindy Hop, both for their friendships and for challenging me to constantly

improve my skills. Joining the Davis Swing Dancers and the larger Sacramento swing dance

community was one of the best decisions I made in Davis!

Finally, thank you to my family. Throughout my life, my parents, Sue and Kerry, have

always loved and supported me, and my success would not be possible otherwise. My sister,

Andrea, has also been an immense source of love and support. Despite having known her

practically all my life, she still manages to find new and creative ways to make me laugh. I am

so fortunate to have wonderful and loving grandparents, aunts, uncles, cousins, and other family

xiv

members who always make me feel at home, no matter where we are or the distances between

us.

Thank you to everyone who has had a positive impact on my life for leading me to a reward-

ing graduate school experience and beyond!

xv

Chapter 1

Introduction

From video games large and small, to 3D visualization applications, to generating training

data for self-driving cars, the field of real-time computer graphics impacts many aspects of our

modern technological experience. In the pursuit of ever-increasing visual fidelity, graphics pro-

grammers develop massive systems to manage the complexities inherent in real-time rendering.

A major aspect of this complexity arises from the need to utilize multiple types of processing

resources with different architectural and performance characteristics. Exploring such hetero-

geneous systems in the context of real-time rendering can help to improve the field of computer

graphics, while also teaching us lessons transferrable to other domains wishing to take advan-

tage of the performance and energy-efficiency benefits of heterogeneous computing.

The high-level task of a modern real-time graphics application is to produce images to

display on-screen based on underlying data that represents the scene being drawn. This data

consists of a set of objects and their properties (such their shapes/geometries, materials, and

positions within the scene), as well as lighting information. A renderer produces an image by

calculating how illumination from each light interacts with the materials and shapes of the ob-

jects in the scene, which ultimately produces a color to display for each pixel on the screen. In

order to maintain a fluid, real-time experience, the renderer must produce each image quickly.

For example, a typical target is to generate 60 images per second (which translates to a time bud-

get of ~16 milliseconds per image), but some applications, such as those using head-mounted

virtual reality displays, require even faster image generation. Modern scenes often contain

thousands of objects and hundreds of lights which are used to calculate colors for millions of

1

pixels, meaning that runtime performance of these applications is of utmost importance in or-

der to generate a high-quality image within the limited time budget necessary for a real-time

experience.

Because of this high-performance requirement, real-time graphics applications utilize spe-

cialized hardware, namely Graphics Processing Units (GPUs), to perform the vast majority of

rendering calculations. GPU hardware is highly parallel, and programming models for this

hardware are designed to make efficient use of this parallelism. Because GPUs are coproces-

sors, a host processor (i.e., a CPU) is ultimately responsible for orchestrating the code that runs

on the GPU. Therefore, graphics programming consists of both GPU code that performs the

highly parallel rendering calculations, as well as host (CPU) code that coordinates and invokes

rendering work that uses this GPU code.

Unfortunately, real-time graphics programming is made more complicated by the use of

distinct languages and programming environments for host code and GPU code. While host

code is typically written in a general-purpose systems language (such as C++), GPU code is

authored in a special-purpose shading language (e.g., HLSL [52], GLSL [37], or Metal Shad-

ing Language [4]). When using a shading language and its corresponding graphics API (e.g.,

Direct3D [56], Vulkan/OpenGL [39, 67], or Metal [3]), programmers issue API calls to migrate

data between host and GPU memory and to set up and invoke GPU code that uses this data.

They must ensure not only that data is transferred efficiently, but also that data availability and

layout in GPU memory match what the GPU code expects. Because host and GPU code exist in

two separate programming environments, programmers are ultimately responsible for ensuring

compatibility between host and GPU code, with little help from the graphics APIs.

In contrast, heterogeneous programming is simpler in a unified environment, where both

host and GPU code are written in the same language, can be in the same file, and share lex-

ical scopes. For example, in CUDA [57], developers write both host and GPU code in C++,

and passing parameters and invoking GPU code looks essentially like a regular function call.

Similarly, programmers using C++ AMP [29] author GPU code as C++ lambda expressions and

invoke them using API functions, allowing both host and GPU code to coexist within a single

C++ function. In these unified systems, host and GPU code can use the same types and func-

2

tions and reference the same declarations. Thus, these unified systems—by definition—avoid

an entire class of compatibility issues that must be handled manually in graphics programming.

Enabling unified programming for real-time graphics would allow graphics programers to uti-

lize the inherent code reuse, compatibility, and ease-of-use benefits that such environments

provide.

While CUDA and C++ AMP provide powerful unified programming models for General-

Purpose GPU (GPGPU) computing, graphics programming has additional challenges that com-

plicate development of a unified model. At its core, rendering attempts to solve the problem of

simulating light. Thus, the complexity of graphics programming comes from reality—light in-

teracts with the environment in a variety of ways that result in myriad visual phenomena. These

interactions are complex and costly to simulate, so graphics programmers use many different

approximations to render visual effects. A given scene may use any number of these effects in

various combinations, so graphics programming systems need to enable composition of these

approximations. Additionally, such systems should also be extensible so that programmers can

implement and integrate new techniques as our understanding of rendering continues to evolve.

Moreover, because performance is crucial in real-time graphics applications, programmers

strive to utilize the underlying hardware as efficiently as possible. This task entails not only

using specialized hardware (like GPUs) but also tailoring code to the specific performance

characteristics of that hardware. One important performance characteristic of modern GPUs

is that unused code paths in GPU code can lead to reduced performance by increasing register

pressure and precluding potential compiler optimizations. Thus, compositions of various ren-

dering effects should result in code that is specialized to the exact set of features used at runtime,

thereby removing any code not needed in a particular invocation. Specialization is a pervasive

and critically important optimization in real-time graphics—it can have a significant impact on

runtime performance [15, 32, 68], major game engines create mechanisms specifically to sup-

port it [24, 76], and game developers go to great lengths to enable it even in scenarios where it

may not initially seem feasible [17]—but it is not nearly as common in GPGPU applications.

Therefore, typical GPGPU programming environments like CUDA do not provide the support

for specialization that graphics applications need. Furthermore, programmers using CUDA

3

generally target code to only a limited set of hardware (namely, NVIDIA GPUs), whereas de-

velopers using real-time graphics for 3D games often target a wide range of hardware platforms,

from low-end mobile devices, to various gaming consoles, to high-end PCs.

Rather than using any single graphics API directly, 3D games are typically built on top of

abstractions that handle differences in hardware platforms under the hood. We call these ab-

stractions shader systems, and they constitute a major component of real-time 3D game engines

like Unity,1 Unreal Engine,2 and other in-house engines.3 To deal with the aforementioned

challenges in real-time graphics programming, shader systems provide mechanisms for mod-

ularizing code, composing these modules together, generating specialized GPU code for these

compositions, and invoking the correct specialization at run time. In addition, because these

game engines must support a wide range of users (from expert graphics programmers to non-

technical artists), a shader system must provide different interfaces to different clients of the

system. As a result, engine developers spend a lot of effort designing shader systems that both

result in highly optimized final code while simultaneously providing the appropriate interfaces

for each type of person involved in development.

The programming interfaces in graphics APIs do not directly help with building these shader

systems because they only focus on issues that affect loading and execution of GPU code.

Modern graphics APIs are designed to facilitate robust, high-performance implementations on

a wide range of hardware, and therefore, their programming interfaces focus on minimal, low-

level abstractions (as evidenced by the shift from high-level languages as the standard interface

to lower-level intermediate representations like DXIL [55] and SPIR-V [38]). Thus, developers

are left to create layered shader system implementations on top of these graphics APIs.

Engine developers must balance the cost to implement functionality against the benefits in

improved features or robustness of the shader system. Features are typically built in an incre-

mental, ad hoc fashion, with increasing complexity as the system evolves. The initial version

of a shader system might read and write code as strings of text, performing pattern matching,

substitution, etc. To add further functionality, an engine might wrap an underlying shading lan-

1https://unity3d.com/
2https://www.unrealengine.com/
3e.g., https://www.frostbite.com/ and https://www.cryengine.com/

4

https://unity3d.com/
https://www.unrealengine.com/
https://www.frostbite.com/
https://www.cryengine.com/

guage with a custom domain-specific language (DSL). Finally, making more invasive changes

to a shading language requires building or modifying a compiler. While modern shader systems

help to navigate the boundary between host code and GPU code, they currently do not present

a unified environment for writing these two disparate portions of graphics code. Because en-

gines require different design choices, it is difficult to amortize this work by developing a single

shader system that can be used in multiple engines. Therefore, at present, it is unclear how to

create and maintain a unified shader programming system without prohibitively expensive time

and resource costs. Given the size and complexity of graphics code in modern games, a unified

shader system has the potential to significantly improve application robustness and engine user

productivity.

1.1 Contributions
Thesis Statement To better enable developers of real-time graphics applications to create

powerful shader systems, we propose the following thesis:

A unified shader programming system that integrates GPU code into the same envi-

ronment as the host code is advantageous for real-time graphics programming and

can be achieved with modest effort.

In support of this thesis, this dissertation makes the following contributions:

• Chapter 3: We show that a unified programming environment for real-time graphics can

be achieve in an existing, widely used programming language (C++) by co-opting existing

language features and implementing them with alternate semantics. Using this technique,

we implement a unified environment that provides first-class support for specialization

by co-opting C++’s attribute and virtual function features. Our implementation uses a

Clang-based tool that translates code using our modified semantics to standard C++ and

HLSL, compatible with Unreal Engine 4.

• Chapter 4: Exploring opportunities in newer programming languages, we present staged

metaprogramming as an underlying implementation methodology for building unified

shader systems. Staged metaprogramming is a family of language features that enables

5

us to build a unified shader system entirely in user-space code, without modifying the

language or its compiler. Additionally, we demonstrate how staged metaprogramming can

open opportunities for optimizations by creating a design-space exploration framework

within our system that results in performance improvements.

While the two implementation techniques described above achieve the same high-level goal of

enabling unified shader system development, they have significantly different benefits and trade-

offs. In Chapter 5, we contrast these two methods in terms of what they provide to users, as

well as what they require of the underlying programming language, to better inform developers

seeking to create their own unified systems. By exploring multiple methods, we hope that this

work will facilitate the creation of such unified systems within real-time graphics engines today,

while also providing guidance for the future as programming languages continue to evolve.

6

Chapter 2

Background

Having described the high-level task of graphics applications in Chapter 1, we now provide ad-

ditional details on real-time graphics programming. We focus specifically on the shader system

interfaces presented by modern game engines to highlight the necessary components of these

interfaces, the techniques used to create them today, and the shortcomings of these current sys-

tems and techniques.

2.1 Terminology and Key Concepts
Often, graphics programmers use the term “shader” to refer to the code they write. The meaning

of this term differs based on context, so we begin by defining how we use it and other related

terminology in this work.

We define a shader as consisting of both GPU shader code that performs highly parallel

rendering calculations and host shader code that provides an interface between GPU shader

code and the rest of the application.4 Since GPUs are coprocessors, invocation of GPU code

must be initiated from host code running on a CPU. A shader program is an invocable unit of

GPU code consisting of parameters, functions, and one or more entry points (further described

in Section 2.2.1). While compute shader programs are manually invoked by user-written host

code, most types of shader programs (e.g., vertex shaders, geometry shaders, fragment/pixel

shaders, etc.) are invoked implicitly by the underlying graphics API at the appropriate times

4Many graphics programmers think of a “shader” as just the GPU code, but we believe it is useful to include
the corresponding host code in the definition as well.

7

during execution of the hardware graphics pipeline.

A crucial optimization in real-time graphics is shader specialization. Shader specializa-

tion involves generating multiple compiled versions of a particular GPU shader program, with

different compile-time configuration options controlling code generation. We call these con-

figuration options specialization parameters, and compiling the shader program with different

values for these options generates multiple shader variants of the original code. As an example

(further explored in Section 2.3), consider a shader used to control the appearance of an object’s

material. This shader might have large portions of code that are common to all types of mate-

rials, as well as portions of code specific to each bidirectional reflectance distribution function

(BRDF) implemented in the rendering system. In order to achieve the best performance, a dif-

ferent shader variant will be generated for each of the BRDFs. A BRDF’s corresponding shader

variant will contain only the code necessary for that BRDF implementation—stripping away

code specific to other BRDFs—so that more computationally expensive BRDFs do not impact

the performance of cheaper ones. Shaders often have multiple specialization parameters that

drive specialization, resulting in many compiled shader variants for each original GPU shader

program.

A GPU shader program’s corresponding host shader code is responsible for selecting which

shader variant to invoke based on dynamic data available at application runtime, such as infor-

mation about the scene, the underlying hardware platform, and user settings. The data necessary

to decide which shader variant to invoke is typically not available until runtime, but graphics

developers usually need to generate the specialized variants ahead of time because just-in-time

compilation can increase game load times, can hurt performance during gameplay, and is dis-

allowed on some platforms. We make the key observation that expressing and implementing

specialization requires coordination between specialization parameters that are compile-time

parameters for GPU code but runtime parameters for host code. Along with variant selec-

tion, host shader code also coordinates data transfer between host and GPU memory to provide

a shader program with its runtime parameters. A unified environment for real-time graphics

programming needs to support both the host- and GPU-related aspects of shader programming.

8

2.2 Shader Programming
In this section, we discuss GPU shader code and host shader code in more detail. We describe

GPU shader code using HLSL and its programming model, but other shading languages like

GLSL and Metal Shading Language are similar. We describe host shader code in the context

of Unreal Engine 4 (UE4). While the graphics APIs provide underlying functionality necessary

to interface between host and GPU code, most major game engines implement systems layered

on top of these APIs to provide additional features aimed at making this task easier for their

users. UE4’s shader programming system puts significant emphasis on imposing structure on

host shader code, which allows users to benefit from additional type checking and other static

tools (e.g., the shader variant mechanism discussed in Section 2.2.2). We choose to focus on

UE4 for this discussion because this structure helps to clearly illustrate the host-related aspects

of shader programming and, in many ways, represents the limits of what these systems can

accomplish in a non-unified environment. Nevertheless, the tasks that UE4 host shader code

must accomplish, as well as the issues it faces, are also applicable to other game engines and to

the underlying graphics APIs.

2.2.1 GPU Shader Code

Listing 2.1 shows an example of a typical shader program written in HLSL. Common practice is

to modularize each GPU shader program as its own HLSL source file.5 When invoked from host

code, multiple instances of this program are executed in parallel, with each instance operating

mostly independently.6

The shader program in Listing 2.1 has an entry point function (MainCS() on line 19),

which is where GPU code execution begins for each instance. Because this particular shader

program is a compute shader, the entry point is annotated with information about how many

threads to invoke per thread group (line 18).7 This example also includes other GPU functions

(e.g., the doFiltering() functions) that can be called from GPU code. In HLSL, an en-

5However, other files can be #included to allow for reuse of HLSL code.
6The HLSL programming model provides some inter-instance synchronization and communication capabilities,

but we will not discuss them here.
7For information about the HLSL compute shader programming model, as well as other types of shaders, we

refer interested readers to the HLSL documentation [52].

9

1 #define LOW 0
2 #define MEDIUM 1
3 #define HIGH 2
4
5 Texture2D ColorTexture;
6 SamplerState ColorSampler;
7 RWTexture2D<float4> Output;
8
9 #if QUALITY == LOW

10 float4 doFiltering(float2 pos) { /* Low Quality Method */ }
11 #elif QUALITY == MEDIUM
12 float4 doFiltering(float2 pos) { /* Medium Quality Method */ }
13 #elif QUALITY == HIGH
14 int ExtraParameter;
15 float4 doFiltering(float2 pos) { /* High Quality Method */ }
16 #endif
17
18 [numthreads(8, 8, 1)]
19 void MainCS(uint2 DispatchThreadID : SV_DispatchThreadID) {
20 float2 pixelPos = /* ... */;
21 float4 outColor = ColorTexture.Sample(ColorSampler, pixelPos);
22
23 for(int i = 0; i < ITERATION_COUNT; ++i) {
24 outColor *= doFiltering(pixelPos);
25 }
26
27 Output[DispatchThreadID] = outColor;
28 }

Listing 2.1: An example GPU shader program written in HLSL.

try point may declare varying parameters, whose values can differ for each instance within

an invocation. For example, each instance in a given invocation has a unique ID, and the

DispatchThreadID varying parameter (line 19) provides an instance with its ID value.

The value for this parameter is provided implicitly by the HLSL programming model; the code

attaches the user-defined function parameter to the system-defined value using the HLSL “se-

mantic” named SV_DispatchThreadID.

This shader program also has several uniform parameters (lines 5–7). Unlike varying pa-

rameters, the value of a uniform parameter is the same for all instances in a given invocation.

For example, ColorTexture is a uniform parameter that represents a 2D image containing

color information, and all instances within an invocation access the same 2D image when using

this parameter.

10

1 enum class QualityEnumType : int {
2 Low,
3 Medium,
4 High
5 };
6
7 class FilterShaderCS : public FGlobalShader {
8 public:
9 DECLARE_SHADER_TYPE(FilterShaderCS, Global);

10
11 BEGIN_SHADER_PARAMETER_STRUCT(FParameters,)
12 SHADER_PARAMETER_RDG_TEXTURE(Texture2D, ColorTexture)
13 SHADER_PARAMETER_SAMPLER(SamplerState, ColorSampler)
14 SHADER_PARAMETER_RDG_TEXTURE_UAV(RWTexture2D<float4>, Output)
15 SHADER_PARAMETER(int, ExtraParameter)
16 END_SHADER_PARAMETER_STRUCT()
17
18 class QualityDimension :
19 SHADER_PERMUTATION_ENUM_CLASS("QUALITY", QualityEnumType);
20
21 class IterationCountDimension :
22 SHADER_PERMUTATION_SPARSE_INT("ITERATION_COUNT", 2, 4, 8, 16);
23
24 using FPermutationDomain = TShaderPermutationDomain<
25 QualityDimension, IterationCountDimension>;
26 };
27
28 IMPLEMENT_GLOBAL_SHADER(FilterShaderCS,
29 "/path/to/HLSL/file.usf", "MainCS", SF_Compute);

Listing 2.2: Host shader code corresponding to the GPU shader program in Listing 2.1. This
code is written in C++ and uses features provided by UE4.

The example in Listing 2.1 also uses two specialization parameters: QUALITY and

ITERATION_COUNT. Specialization parameters express the different compile-time options

that are used to generate multiple shader variants of this shader program (as mentioned above).

Notice that these parameters are not declared explicitly in the GPU code, but their values are

implicitly required for the shader program to compile properly. When compiling this program,

the value for each parameter is passed in as a macro (i.e., a #define) for the C-style prepro-

cessor that HLSL supports. As a result, the value for each specialization parameter is constant

at compile-time in GPU code, which allows the compiler to better optimize the code (e.g., by

unrolling the loop on line 23). Specialization parameters can also be used to define additional

GPU functions and uniform parameters (e.g., the ExtraParameter uniform on line 14 is

11

only defined when QUALITY == HIGH). Note that the possible values for QUALITY are also

defined using the preprocessor (lines 1–3).

2.2.2 Host Shader Code (in Unreal Engine 4)

Listing 2.2 shows the UE4 host shader code corresponding to the example shader program in

Listing 2.1. In UE4, each shader program is accompanied by a C++ class (line 7) that provides

the host-side interface to the GPU code. The host code class is associated with a GPU shader

program using a UE4 macro to indicate the filename of the HLSL code and name of the entry

point function (lines 28–29).

The host code class includes declarations of the shader’s uniform parameters using UE4’s

SHADER_PARAMETER macros (lines 11–16). These macros define a struct, which implements

a strongly typed interface for passing parameters from host code to GPU code:

FilterShaderCS::FParameters* Parameters =
/* allocate parameter struct */;

Parameters->ColorTexture = colorTexture;
Parameters->ColorSampler = colorSampler;
Parameters->Output = outputTexture;

Unlike in GPU shader code, host shader code in UE4 includes explicit declarations for spe-

cialization parameters (lines 18–22). Using the SHADER_PERMUTATION macros, program-

mers provide the system with a static set of options for each parameter (e.g., all values of an

enum type or individual integer values). Then, these parameter declarations are used to create

an FPermutationDomain for this shader (lines 24–25). This construct serves two purposes.

First, at shader program compile time, it enables the UE4 system to statically generate all shader

variants of the GPU shader program by using the statically specified set of options for each spe-

cialization parameter. Second, at game runtime, it enables host shader code to easily select

which variant to invoke, based on runtime information:

FilterShaderCS::FPermutationDomain PermutationVector;
PermutationVector.Set<FilterShaderCS::QualityDimension>(quality);
PermutationVector.Set<FilterShaderCS::IterationCountDimension>(

iterCount);

12

2.2.3 Issues in a Non-Unified Environment

At this point, we can identify several issues that arise as a result of a non-unified shader pro-

gramming environment. These issues apply to both UE4 and other game engines, as well as to

applications using the graphics APIs directly.

As shown in the example above, GPU and host code must both declare the uniform parame-

ters that the shader needs (e.g., Listing 2.1 lines 5–7 and Listing 2.2 lines 11–16, respectively).

Programmers must ensure that they use the same types and variable names in both declarations,

and they must also keep these duplicate declarations consistent as the code changes. Similarly,

host and GPU code cannot share types and functions in non-unified environments, leading to

additional code duplication (e.g., the enum values in Listing 2.2 lines 1–5 are redeclared in

Listing 2.1 lines 1–3). Failing to properly maintain consistency between host and GPU code

can lead to runtime errors and bugs that are potentially difficult to track down and fix.

Additionally, note that in GPU code, specialization parameters are not explicitly defined.

Instead, GPU code references these parameters and expects that they will be available at com-

pile time. As a result, there is little verification—at either compile-time or runtime—that these

parameters are referenced correctly (e.g., a typo in GPU code may result in a difficult-to-debug

logic error). A programmer could easily #include GPU code that uses an implicit special-

ization parameter but omit the corresponding declaration in the host code class, leaving future

readers to wonder whether the omission is a mistake or if the default value is always correct for

that particular shader.8

In contrast, in a unified system where host and GPU code share parameters, types, and

functions, these kinds of issues do not exist. Unified systems can therefore reduce program-

mer burden and increase code robustness. However, the best way to support specialization

in a unified shader programming environment is unclear. The difficulty arises from the need

to compile-time specialize GPU shader code but then select which specializations to invoke

based on information only available at runtime. After presenting our solution to this problem

in a C++-based environment (Chapter 3), we explore design alternatives in Section 3.2.4.3 that

8We found ourselves in this exact scenario when looking through the UE4 codebase. A later commit
added the parameter to the host code, confirming that the omission was a mistake: https://github.com/
EpicGames/UnrealEngine/commit/2a2cebffe6a5a7164dbe2401ba2d5dd1901b649e
(Note: access to this page requires permission to access the UE4 source code on GitHub)

13

https://github.com/EpicGames/UnrealEngine/commit/2a2cebffe6a5a7164dbe2401ba2d5dd1901b649e
https://github.com/EpicGames/UnrealEngine/commit/2a2cebffe6a5a7164dbe2401ba2d5dd1901b649e

demonstrate why the typical compile-time metaprogramming methods familiar to graphics pro-

grammers today (preprocessor-based methods and template metaprogramming) are insufficient

for implementing specialization in a unified environment.

2.3 Modern Shader System Implementations
As mentioned above, modern game engines provide shader systems that aid in writing, con-

figuring, and executing shader code. Along with managing compilation of GPU shader source

code to executable kernels, a major task of a shader system is to enable a wide variety of users

to control different aspects of the rendering process. There are expert graphics programmers

who typically write GPU shader code using a shading language like HLSL or GLSL, as well

as host shader code in a systems language like C++. Technical artists also write some shader

code; however, unlike graphics programmers, technical artists are typically not experts in shader

optimization techniques. Finally, (non-technical) artists do not write shader code directly. In-

stead, they create different appearances and effects by using pre-written shaders and assigning

different values to the parameters of the underlying code.

The services provided by a shader system are designed to present the appropriate interfaces

for these different categories of users while also ensuring that the final runtime code is highly

efficient in order to achieve a smooth gameplay experience. For example, rather than requir-

ing artists to write host code to set the parameters of GPU shader programs, shader systems

instead provide graphical user interfaces (GUIs) that artists can use to configure shaders. Since

the productivity of artists and technical artists is highly important, these systems usually have

mechanisms for exposing shader parameters to these GUIs with minimal boilerplate. Similarly,

setting shader program parameters and invoking GPU shader code is tedious and error-prone

when using the underlying graphics APIs directly. Thus, shader systems often have some fa-

cilities to aid in navigating the boundary between host code and GPU code, with varying levels

of robustness (as discussed further below). Lastly, like in many complex applications across a

variety of domains, rendering effects often consist of multiple composable and interchangeable

components. However, more unique to graphics is the need for the final, compiled compositions

of these components to result in highly optimized code, where fractions of a millisecond might

14

determine whether or not an effect is usable in a shipping application. Shader specialization is

therefore a crucial service of a shader system.

❧

In the remainder of this section, we briefly discuss existing ways to implement these aspects

of a shader system, ordered by increasing levels of complexity.9 Since we cannot survey every

possible solution, we have chosen a few representative examples to illustrate the need for a

better overall approach. Note that when we refer to HLSL below, we could substitute any

modern shading language like GLSL or Metal Shading Language. While some of these systems

provide better features than others, none of them present a unified environment for authoring

both host and GPU code.

2.3.1 Plain C++ and HLSL

Simple graphics applications might rely on the facilities provided by C++, HLSL, and the Di-

rect3D (D3D) API directly. Consider this (abridged) example shader program written in HLSL:

1 cbuffer LightData : register(b0) {
2 float3 lightDirection;
3 };
4 ...
5 float4 surfaceShader(...) {
6 ...
7 #if defined(STANDARD)
8 color = evalStandardMaterial(shadingData);
9 #elif defined(SUBSURFACE)

10 color = evalSubsurfaceMaterial(shadingData);
11 #elif defined(CLOTH)
12 color = evalClothMaterial(shadingData);
13 #endif
14 return color * max(0, dot(shadingData.normal, lightDirection));
15 }

This shader program has one parameter (lightDirection) and expresses three special-

ization options (STANDARD, SUBSURFACE, and CLOTH) that each use a different bidirectional

reflectance distribution function (BRDF). The only way we know about these specialization op-

9The below discussion of existing shader systems is adapted from Section 3 of our paper “Staged Metapro-
gramming for Shader System Development” [68].

15

tions is by examining the HLSL code directly; therefore, to generate specialized shader variants,

a shader author must manually specify the appropriate #defines to the shader compiler.

Shading languages and their corresponding graphics APIs are only concerned with provid-

ing an interface to programmers. Thus, a programmer would need to separately prepare a list of

parameters (e.g., using XML) to expose them to a GUI-based tool for artists. Similarly, coordi-

nating the interaction between host and GPU code is left to the programmer. Hence, setting the

value of parameters from C++ host code is a manual process as well:

dxContext->PSSetConstantBuffers(0, 1, &lightDataBuf)

where the first argument refers to the register binding slot written in the shader program

(register(b0)). Neither HLSL nor the D3D API perform any checks to ensure that the

correct register was used or that the layout of the host-side lightDataBuf data structure

matches the layout of the GPU-side LightData constant buffer.

To work around these issues, one could write a shared header that declares a common data

structure for the constant buffer, using C preprocessor #defines to handle the differences

between HLSL and C++. Each time a programmer authors such a shared struct, they need to

manually account for the packing rules of the underlying API so that the layout of the host-

side struct matches what the GPU shader program expects. Furthermore, a developer can write

additional infrastructure for each shader to better interface with C++ code. Unreal Engine uses

this approach, where each HLSL shader program has a corresponding C++ class written by the

shader writer (as shown in Section 2.2) [24]. Though these classes provide a clean interface for

other parts of the engine to use the shaders, the programmer is responsible for ensuring that,

e.g., the parameter names and types match those specified in the separately written HLSL code.

The user-written class implementations make heavy use of preprocessor macros defined by

Unreal Engine. By using the macro mechanisms built into C++ and HLSL, the Unreal Engine

developers do not need to invest resources in developing their own mechanisms. However, C

preprocessor facilities are limited in what they can express, resulting in extra effort for users of

the engine.

16

2.3.2 A Layered DSL with Embedded HLSL

To provide further functionality, some engines implement a custom layered DSL on top of an

underlying shading language. Shader programs in Unity are written in ShaderLab [76]:

1 Shader "SurfaceShader" {
2 Properties {
3 lightDirection {"Light Direction", Vector} = (0,0,0)
4 }
5 ...
6 CGPROGRAM
7 #pragma multi_compile STANDARD SUBSURFACE CLOTH
8
9 float3 lightDirection;

10
11 float4 surfaceShader(...) {
12 ...
13 #if defined(STANDARD)
14 color = evalStandardMaterial(shadingData);
15 #elif defined(SUBSURFACE)
16 color = evalSubsurfaceMaterial(shadingData);
17 #elif defined(CLOTH)
18 color = evalClothMaterial(shadingData);
19 #endif
20 return color * max(0, dot(shadingData.normal, lightDirection));
21 }
22 ENDCG
23 }

The code between CGPROGRAM and ENDCG is HLSL. Shader variants are again expressed

using preprocessor #if commands. However, ShaderLab uses a custom preprocessor to im-

plement the #pragma multi_compile syntax, which exposes the variant options to the

system and allows the engine to generate the set of compiled variants automatically. After

textual preprocessing, ShaderLab treats HLSL code as a black box.

Because the ShaderLab compiler has no understanding of the embedded HLSL code, shader

authors must repeat themselves by declaring each artist-configurable parameter twice—once in

the HLSL code and again in the “Properties” listing—which is more error-prone and can lead to

issues with refactoring tools. Analogous to the D3D API, programmers use a “stringly-typed”

interface to set shader parameters, which is also error-prone:

17

shader.SetVector("lightDirection", Vector4(1.0, 1.0, 1.0, 1.0));
// bug: lightDirection is a float3 in the shader, not a float4

If a programmer specifies the wrong parameter name, the system may generate a runtime error.

However, if the wrong type is used (as above), no error is reported and instead they are left with

a bug.

By using a mix of preprocessor features and a simple DSL compiler, the effort required to

implement Unity’s ShaderLab is relatively modest. However, the system precludes early error

detection and results in shader authors repeating themselves, thereby hindering user productiv-

ity.

2.3.3 A DSL That Manipulates and Generates HLSL

Bungie’s TFX language [74] features better integration with HLSL at the cost of greater imple-

mentation effort for the engine developers. The surface shader program written in TFX might

look (roughly) like:

1 import "MaterialComponents.tfx"
2
3 c_materialType:* material @default(none);
4 float3 lightDirection @default(float3(0,0,0)) @UI(Slider);
5 ...
6 #hlsl
7 float4 surfaceShader(...) {
8 ...
9 color = material.apply(shadingData);

10 return color * max(0, dot(shadingData.normal, lightDirection));
11 }
12 #end

In this example, the different material BRDFs are written as “components” (imported

from a separate file). The parameter named material will be exposed to a GUI, where

an artist can select a specific implementation of the c_materialType interface (e.g.,

c_materialType:standard, c_materialType:cloth) in order to generate a spe-

cialized shader variant for the required BRDF.

While the TFX compiler does not understand all of HLSL, it does know enough

to manipulate it. For example, it can translate DSL features like components

18

(material.apply(shadingData)) into plain HLSL. TFX also has a custom metadata

system that allows one to express information (e.g., default values, GUI controls) directly along-

side the parameter declaration, thus avoiding the double-declaration problem in ShaderLab.

This feature is possible because TFX generates HLSL from these parameters, rather than just

treating HLSL code as a black box.

TFX provides multiple mechanisms for communicating runtime data from host code to

shader programs. “Object channels” and “global channels” allow scripts and artist-authored

content to bind data to shaders. Because this data comes from content (not code), it is loaded

dynamically (and, thus, cannot be validated at compile time). In contrast, “externs” communi-

cate engine-provided data to shaders. This data is tightly bound to the C++ engine code, so any

changes require recompilation of the engine and rebaking of the affected shaders, which could

be significantly time-consuming operations given the large scale of modern game engines.

The TFX system provides a better way to encapsulate shader variants and does not require

shader authors to repeat themselves. However, such features require tighter integration with

HLSL, resulting in higher implementation effort.

2.3.4 Modifying HLSL

Rather than creating a DSL that embeds HLSL, one could instead extend the shading language

itself. The Slang shading language [32] extends HLSL by adding some general-purpose lan-

guage features from other popular programming languages. Here is the surface shader program

in Slang:

1 include "MaterialComponents.slang"
2
3 float3 lightDirection;
4 ...
5 float4 surfaceShader<M : IMaterial>(ParameterBlock<M> material) {
6 ...
7 color = material.eval(shadingData);
8 return color * max(0, dot(shadingData.normal, lightDirection));
9 }

Similar to TFX, the material BRDFs are again written as components that implement a

common interface (IMaterial). Slang uses generics, constrained by these interfaces, to ex-

19

press specialization options (<M : IMaterial>). Programmers use the Slang runtime API

to generate specialized shader variants:

Module* module = loadModule(/* path */);
EntryPoint* entry = findEntryPoint(module, "surfaceShader");
Type* clothType = findType(module, "ClothMaterial");
Kernel* clothShader = specializeEntryPoint(entry, &clothType, 1);

This introspection API provides runtime validation to ensure that the final types are compatible

with the interface constraints. The API also includes the ability to query type layout information

(not shown here), which the renderer can use to properly set up and populate parameter blocks

by accounting for GPU data packing rules. However, since the API uses strings to identify entry

points, types, etc., it cannot perform validation at application compile time.

Slang is a shader compiler, not a shader system. Therefore, it does not directly provide the

various interfaces needed by such a system, instead requiring that users (e.g.) implement artist

tools and facilitate setting parameters across the host-GPU boundary.

Creating a new language and compiler to implement missing shader system features is cost

prohibitive for the vast majority of development teams. Similarly, forking an existing compiler

(such as Slang or Microsoft’s DirectX Shader Compiler [55]) brings along maintenance costs

as both the fork and the main project continue to evolve. In contrast, the previous approaches

discussed in this section could reuse an existing compiler without modification, thereby limiting

the resource investments needed to use them.

2.3.5 Summary

The shader code in modern, real-time graphics applications represents a significant time and re-

source investment. Some games ship with tens of thousands of programmer- and artist-authored

shader code components, compiled to hundreds of thousands of GPU kernels [33]. Thus, de-

ficiencies in a shader programming system significantly impact user productivity, code robust-

ness, and application performance.

While each subsequent example presented above improves upon some deficiencies of the

previous examples, this improvement comes at the cost of greater implementation effort. More-

over, none of these examples provide a unified system for authoring both host and GPU code.

20

They each use one language for host code (C++ or C#) and another for GPU code (HLSL or

Slang), require host and GPU code to be in separate files, and do not allow host and GPU

code to reference the same parameters. Using the above implementation methods, the costs

of developing a unified system outweigh the potential benefits provided to users. Ideally, we

believe developers should be able to create unified systems that improve upon the results of

the more complex solutions discussed above, while only requiring effort similar to the simpler

implementation methods.

21

Chapter 3

Unified Shader Programming in C++

To be practically useful today, the goal of creating a unified shader programming system must

be achievable in the languages commonly used in real-time graphics programming. The ef-

fort required to create such a system must be reasonable for a game/engine developer to use in

practice, because the industry cannot depend on popular, general-purpose languages to evolve

around its needs, especially in the near term. Any unified environment for shader program-

ming must provide support for specialization because of the importance of this optimization

(as discussed above), but unfortunately, the popular programming languages used in graphics

cannot express parameters that are part compile-time and part runtime, which is a necessary

requirement for specialization parameters. Moreover, existing unified GPU programming envi-

ronments like CUDA are insufficient as well because they do not provide a mechanism to drive

GPU code specialization from host data/logic.

In this chapter, we show that a unified programming environment for real-time graphics

can be achieved in an existing, widely used programming language (C++) by co-opting exist-

ing language features and implementing them with alternate semantics to provide the services

required. Using this key insight, we present the following contributions:

• The design of a unified programming environment for real-time graphics in C++ that pro-

vides first-class support for specialization by co-opting C++ attributes and virtual func-

tions

• A Clang-based tool that translates code using our modified C++ semantics to standard

22

C++ and HLSL code, compatible with Unreal Engine 4

We present the design of our unified environment and the implementation of our translation

tool in Sections 3.2 and 3.3, respectively. In Section 2.2, we briefly introduce modern real-time

graphics programming and identify some issues that result from using a non-unified environ-

ment. This discussion helps to motivate our goals, constraints, and non-goals, which we present

in Section 3.1.

3.1 Goals, Constraints, and Non-Goals
Our overarching goal is to enable development of unified shader programming systems that

are practically useful for large-scale real-time graphics applications. Motivated by the benefits

that such unified systems can provide along with the barriers to creating them, we establish the

following high-level design goals:

• Write the host and GPU portions of shader code in the same language, file, and

lexical scope

This goal comes directly from our definition of a unified environment and, thus, is a

necessary condition that unified shader programming systems must achieve. However, it

alone is not sufficient to define a practically useful system.

• First-class support for GPU shader code specialization

GPU code specialization is a ubiquitous optimization in modern real-time graphics, but

the popular methods currently used to express and implement specialization do not trans-

late to a unified system. We would like to bring this optimization to the forefront by

providing it first-class support.

• Declare each shader parameter only once

One benefit of a unified system is that host and GPU code can share various declarations,

like types and functions, so that programmers do not need to manually maintain disparate

definitions across the host-GPU boundary. We wish to extend this benefit to shader pa-

rameters, allowing both host and GPU code to reference the same parameter declarations.

23

• Ease of integration into current real-time graphics applications

To promote adoption of unified shader programming, we would like to provide a path for

ease of integration of our ideas into existing systems.

• Encourage better software engineering practices in shader development

Because typical shading languages are feature-poor compared to modern systems lan-

guages, GPU shader code often relies on features that can lead to additional development

and maintenance effort (e.g., preprocessor #if and #define). Instead, we wish to

leverage other language features in shader development to enable better software engi-

neering practices.

Along with these design goals, we also aim to satisfy some design constraints:

• Use a programming language that is widely used in real-time computer graphics

Related to our ease-of-integration goal, we want to explore unified shader programming

in a language that is commonly used for real-time graphics today. We want the code in

our system to look and feel familiar to programmers using this language, and so we strive

to modify this language a little as possible to achieve our goals.

• Minimize internal developer costs

Also related to ease-of-integration, we would like to limit the developmental costs of our

implementation so that engine developers could conceivably build and maintain such a

unified system themselves. This precludes building a compiler, for example, since the

effort required is not tractable for most design teams.

• Equivalent performance compared to current implementations

In order for unified shader systems to be viable, they should introduce little to no perfor-

mance overheads compared to current systems.

Finally, we want to be explicit about our non-goals:

• Compiling arbitrary host language code to GPU-compatible code is out of scope for

this work

24

While this task is important and necessary for unified shader systems, other efforts are al-

ready attempting to accomplish this task—both for C++ and for Rust—which we discuss

in Section 6.5. Instead, we focus on the next layer: once a language can generate both

host- and GPU-compatible code, what else is required to achieve useful unified shader

programming?

• Executing GPU-side shader code on the host (and vice versa) is a non-goal of this

work

Modern shader programming has a clear distinction between the host- and GPU-related

aspects of shader programming from which we do not attempt to deviate. However, indi-

vidual functions may be callable from both host and GPU code, provided these functions

are compatible with both the host and GPU processors.

• Our work specifically targets only CPU hosts and modern GPUs

Targeting other types of processors might be an interesting area of future work.

3.2 Design Decisions
The key insight of this work is that we can develop a unified model for shader programming by

co-opting existing features of a programming language and implementing them with alternate

semantics to provide the services required by real-time graphics. This insight represents the

overarching design philosophy for our system and influences the other design decisions that

allow us to achieve our high-level goals. In contrast to this approach, we could instead either

develop an entirely new language or add new features to an existing language to provide the

missing services. However, neither of these alternatives align with our objectives, especially

given our constraint of minimizing internal developer costs.

Creating a new programming language complicates integrating unified shader programming

into existing large-scale graphics applications. Such a new language would need to interface

with the language currently used in an existing system, not only to allow programmers to rewrite

shader code incrementally but also to enable other subsystems (such as the physics and anima-

tion subsystems) to communicate with the rewritten code. That latter aspect would increase

development costs, since programmers would need to write and maintain additional code to

25

usher data between the two languages (whereas today, most graphics applications use the same

host language for all subsystems). The alternative of rewriting the entire application using the

new language is also not ideal because a new language designed specifically for unified shader

programming might not be a good fit for the other subsystems. Therefore, we have chosen to

base our work on an existing language that is widely used in real-time graphics today.

Similarly, modifying an existing language to add new language features for unified shader

programming also violates our ease-of-integration goal but for different reasons. Adding a new

feature to a language requires understanding how that feature interacts with every other feature

in the language, including future features as a language continues to evolve. This approach

could be viable if a language chooses to formally adopt these new features; however, there is

no guarantee that a general-purpose language will incorporate graphics-specific features. We

instead wish to maintain compatibility both with existing code and with future language ver-

sions, so we have decided to repurpose existing language features to express the requirements

of unified shader programming.

In the remainder of this section, we discuss the other major design decisions that enable

our system to provide a unified shader programming environment that achieves our high-level

goals. While some aspects of these decisions might be specific to our language of choice (Sec-

tion 3.2.1), we believe that many of the ideas presented below are transferable to other lan-

guages as well. Different languages provide different features, so the choice of which features

to co-opt for shader programming might depend on the specifics of the language. Nevertheless,

we believe that our key insight will enable integrating unified shader programming into other

languages beyond what our implementation demonstrates.

3.2.1 C++ for Both Host and GPU Code

C++ is a natural choice for exploring unified shader programming. It is one of the most widely

used languages in real-time graphics, as evidenced by its use in many in-house and 3rd party

game engines (e.g., UE4 [24], Godot Engine [45], Frostbite [18], and Lumberyard [1]). While

it is mostly used for host code today, there are indications that it may become more prevalent

for GPU code in the future. For example, the Metal Shading Language is based on C++ [4], a

presentation from SIGGRAPH 2016 suggests that the game development industry could move

26

toward C++ for GPU shader code [26], and efforts are already underway to generate SPIR-

V [38] and DXIL [55] from C++ (see Section 6.5). Thus, using C++ for our work helps us to

meet our goals and constraints related to ease-of-integration.

For similar reasons, we could have instead chosen HLSL as our unified shader programming

language. However, C++ provides many additional features compared to HLSL. Rather than

converting host code to HLSL, we feel that the long-term goal for shader programming should

be to support more language features in GPU code. Therefore, we believe that our choice to

unify host and GPU code into C++ is more representative of the future of shader programming.

As mentioned above, while some of the results of our investigation are likely specific to C++,

we hope that the broader ideas are useful to programmers using other languages as well.

❧

Listing 3.1 shows the example shader from Section 2.2 rewritten using our unified C++-

based shader programming environment. We explain the various parts of it in the next three

sections.

3.2.2 Use C++ Attributes to Express Declarations Specific to Shader Pro-
gramming

In our system, programmers use C++ attributes to annotate declarations related to shader-

programming-specific constructs. The attributes feature was introduced in C++11 to provide

a standardized syntax for implementation-defined language extensions, rather than different

compilers continuing to use custom syntaxes (e.g., GNU’s __attribute__((...)) or

Microsoft’s __declspec()). Our implementation supports the following shader-specific at-

tributes:

• Uniform parameters are annotated using the [[uniform]] attribute (lines 3–5).

• Specialization parameters are indicated using the [[specialization]] set of at-

tributes (lines 7–11). We defer discussion of specialization to Section 3.2.4.

• The [[entry]] set of attributes declares a function as the entry point to use when

invoking GPU code execution. For compute shaders, this attribute requires arguments for

27

1 class [[ShaderClass]] FilterShader {
2 public:
3 [[uniform]] Texture2D ColorTexture;
4 [[uniform]] SamplerState ColorSampler;
5 [[uniform]] RWTexture2D<float4> Output;
6
7 [[specialization-ShaderClass]]
8 FilterMethod* filterMethod;
9

10 [[specialization-SparseInt(2, 4, 8, 16)]]
11 int IterationCount;
12
13 [[entry-ComputeShader(8, 8, 1)]]
14 void MainCS(
15 [[SV_DispatchThreadID]] uint2 DispatchThreadID) const
16 {
17 float2 pixelPos = /* ... */;
18 float4 outColor = ColorTexture.Sample(ColorSampler, pixelPos);
19
20 for (int i = 0; i < IterationCount; ++i) {
21 outColor *= filterMethod->doFiltering(pixelPos);
22 }
23
24 Output[DispatchThreadID] = outColor;
25 }
26 };

Listing 3.1: An example shader using our unified C++ shader system. A ShaderClass can
contain both host and GPU code, written using standard C++11 syntax. Special C++ attributes
are used to express various shader-specific constructs (e.g., uniform parameters, specialization
parameters, and entry point functions).

the thread group size (line 13), similar to the numthreads attribute in HLSL.

• System-defined varying parameters are attached to entry point function parameters

using corresponding attributes, which are named following HLSL’s convention (e.g.,

[[SV_DispatchThreadID]] on line 15).

• Because our system unifies host and GPU code into the same file, all non-entry-point GPU

functions must be annotated with the [[gpu]] attribute.10 By manually annotating GPU

functions, we can disallow or reinterpret certain language features in GPU code when

appropriate, while continuing to allow host functions to freely use any language feature

10CUDA uses a similar approach, where GPU-only functions are annotated with __device__ and functions
that are callable from both host and GPU code with __host__ __device__.

28

(see Section 3.2.4 for further discussion).

Our use of C++ attributes to express elements specific to shader programming represents a

departure from the intent of this language feature. In general, non-standard attributes can be

ignored by the compiler and, thus, should not change the semantics of a program. However,

our attributes are integral to correctly defining the semantics of shader code; ignoring these

attributes will result in an incorrect program. Nevertheless, attributes provide a clean and con-

cise method for expressing the above concepts, so our system co-opts this language feature for

unified shader programming.

3.2.3 Modularize Host and GPU Shader Code Using Classes

To promote more maintainable coding practices, our design uses C++ classes to mod-

ularize shader code. Programmers declare that a class contains shader code using the

[[ShaderClass]] attribute (line 1). Our ShaderClass design has similarities with UE4’s

use of C++ classes in that both declare uniform and specialization parameters. However, a major

difference is that our ShaderClasses can contain both host and GPU code.

Because of this unified design, host and GPU code reference the same shader parameter

declaration. Thus, these declarations are—by construction—always kept consistent in both

host and GPU code, avoiding the need to maintain separate definitions. Host code provides data

to GPU code by assigning values to these parameters, for example:

FilterShader shader;

shader.ColorTexture = colorTexture;
shader.ColorSampler = colorSampler;
shader.Output = outputTexture;

Host code can also set shader parameters using methods defined within a ShaderClass (e.g., the

class’s constructor).

GPU methods within a ShaderClass must be declared const (line 15). In general, GPU

shader code cannot modify uniform and specialization parameters, so requiring that these

methods be const imposes this restriction. However, some uniform parameter types (e.g.,

RWTexture2D) allow modification from GPU code using specific operations, and our system

29

does provide support for these operations accordingly (e.g., writing to the Output texture on

line 24).

A ShaderClass may or may not be a complete, invocable shader program. If a ShaderClass

contains an entry point method, then it can be used as an invocable shader program. However,

programmers can also write a ShaderClass without an entry point method, allowing for encap-

sulation of functionality that can then be reused across different shader programs by using the

ShaderClass as a member variable (as shown on line 8). Member variables of a ShaderClass

type must be declared as specialization parameters, for reasons we discuss next.

3.2.4 Implement Specialization by Co-opting Virtual Function Calls
3.2.4.1 Basic Specialization Parameters

Like uniform parameters, ShaderClasses also express specialization parameters as member vari-

ables that both host and GPU code can reference, providing explicit declarations of these pa-

rameters for both halves of shader code. Therefore, our system can catch more errors at compile

time than other systems where specialization parameters are implicit in GPU code.

Host code can set these parameters based on runtime information using the same mecha-

nisms that apply to uniform parameters, e.g.:

FilterShader shader;
shader.IterationCount = settings.getIterationCount();

While these parameters are runtime-assignable in host code, they must instead be compile-

time-constant in GPU code to allow the underlying GPU code compiler to perform the optimiza-

tions that programmers expect when they use specialization. Thus, to support specialization, the

set of possible values for all specialization parameters must be statically available at compile

time. For some types (e.g., enums and bools), our system can determine these values automat-

ically; for other types (e.g., ints), we follow UE4’s approach by requiring that programmers

manually enumerate the possible values (line 10). Using these options, our translator (Sec-

tion 3.3) can then statically generate all GPU shader variants of a ShaderClass at compile time,

while still allowing host code to easily select which variant to invoke at runtime by assigning

30

1 class [[ShaderClass]] FilterMethod {
2 public:
3 [[gpu]] virtual float4 doFiltering(float2 pos) const = 0;
4 };
5
6 class [[ShaderClass]] LowQualityFilter : public FilterMethod {
7 public:
8 [[gpu]] virtual float4 doFiltering(float2 pos) const override
9 {

10 /* Low Quality Method */
11 }
12 };
13
14 class [[ShaderClass]] MedQualityFilter : public FilterMethod {
15 public:
16 [[gpu]] virtual float4 doFiltering(float2 pos) const override
17 {
18 /* Medium Quality Method */
19 }
20 };
21
22 class [[ShaderClass]] HighQualityFilter : public FilterMethod {
23 public:
24 [[uniform]] int ExtraParameter;
25 [[gpu]] virtual float4 doFiltering(float2 pos) const override
26 {
27 /* High Quality Method */
28 }
29 };

Listing 3.2: ShaderClasses can contain virtual [[gpu]] methods. In GPU code, virtual
function calls are converted from dynamic dispatch to static dispatch, generating multiple shader
variants accordingly.

values to the specialization parameters based on runtime information.11

This approach provides a simple mechanism that cleanly handles the runtime-for-host-code

vs. compile-time-for-GPU-code requirements of specialization parameters. However, by using

class member variables for specialization parameters, it is not obvious how to conditionally

declare uniforms and functions based on these parameters (e.g., the ExtraParameter uni-

form and the doFiltering() functions in Listing 2.1). We solve this issue by allowing a

ShaderClass to use another ShaderClass as a specialization parameter.

11To provide better error checking during development, our translator generates asserts to ensure that a special-
ization parameter’s runtime value is one of the statically enumerated options. UE4 has similar error checking, but
some other systems do not.

31

3.2.4.2 ShaderClass Specialization Parameters

As shown in Listing 3.1 on line 21, the doFiltering() function is provided by a member

variable of type FilterMethod (line 8). FilterMethod is itself a ShaderClass, and it also

has ShaderClass subtypes. Listing 3.2 shows the implementations of these types.

The doFiltering() method is declared as a virtual method in the base

FilterMethod class (line 3). Then, each subclass overrides this method to provide their

own implementations (lines 8, 16, and 25). Based on runtime information, the host shader code

can select which implementation to use in the FilterShader:

FilterShader shader;
QualityEnumType quality = settings.getQuality()
if (quality == QualityEnumType::Low)

shader.filterMethod = new LowQualityFilter();
else if (quality == QualityEnumType::Medium)

shader.filterMethod = new MedQualityFilter();
else if (quality == QualityEnumType::High)

shader.filterMethod = new HighQualityFilter();

In C++, virtual methods normally use dynamic dispatch—at runtime, the method implemen-

tation that gets invoked depends on the runtime type of the variable. However, in GPU shader

code, static dispatch—where the method that gets invokes is known statically at compile time—

results in significant performance benefits. This difference creates a conflict between host code

and GPU code: host code needs to select which type to use based on runtime information, but

GPU code should use static dispatch (which requires this type information at compile time) for

optimal performance.

Therefore, when a ShaderClass uses another ShaderClass as a member variable, our system

requires that variable to be a specialization parameter, which allows us to avoid dynamic dis-

patch in the generated GPU code. Our translator generates different shader variants for each

possible subclass of a ShaderClass-type specialization parameter in order to convert the virtual

method calls into static function calls, thereby replacing dynamic dispatches with static dis-

patches. At runtime, the correct shader variant is selected by using the runtime type of the spe-

32

cialization parameter.12 By co-opting virtual functions and implementing them with alternate

semantics for shader code, we are able to provide first-class support for GPU code specialization

in our unified shader programming environment.

As an added benefit, this design also encourages more robust software engineering practices.

In Listing 2.1, the ExtraParameter uniform is only declared when QUALITY == HIGH.

If other parts of the HLSL code need to access that parameter, programmers can (and often

do) write additional #if checks before using the parameter. This practice leads to difficult-

to-maintain code, since these various dependencies can be scattered throughout a large HLSL

file. In contrast, our design promotes encapsulation of these dependencies by allow program-

mers to organize uniform parameters, specialization parameters, and (host and GPU) func-

tions into C++ classes. In Listing 3.2, the ExtraParameter uniform is only declared in the

HighQualityFilter class (line 24), ensuring that programmers cannot use it elsewhere by

mistake.

3.2.4.3 Design Alternatives

Before arriving at the decision to co-opt C++ virtual functions, we considered two other methods

for implementing specialization: preprocessor techniques and C++ templates. However, neither

meets our needs in a unified environment.

As noted in Section 2.2.3, many systems implement GPU shader code specialization us-

ing preprocessor-based methods. These methods include C-style preprocessor facilities (e.g.,

macros, #defines, #ifs), as well as composing together small strings of GPU code to form

a complete shader program. Both of these techniques fail to translate into a unified shader

programming environment. C-preprocessor directives are evaluated in the first step of the com-

pilation process. In non-unified systems, this compile-time-only technique can be used for

GPU code because the host and GPU code exist in separate files and separate programming

environments. However, it does not work in host code because of the need to dynamically

control shader variant selection based on runtime information. Therefore, in a unified environ-

ment, where we desire a unified representation for specialization parameters, we cannot use

C-preprocessor-based methods to implement specialization for either portion of shader code.

12Rather than using the built-in C++ runtime type information feature, we use our own, simplified mechanism
to minimize performance overheads.

33

1 template<QUALITY, ITERATION_COUNT>
2 class FilterShader {
3 public:
4 /* Uniform parameter declarations */
5
6 /* GPU function */
7 void MainCS(uint2 DispatchThreadId) {
8 float2 pixelPos = /* ... */;
9 float4 outColor = ColorTexture.Sample(ColorSampler, pixelPos);

10
11 for (int i = 0; i < ITERATION_COUNT; ++i) {
12 if (QUALITY == QualityEnumType::Low)
13 /* Low Quality Method */
14 else if (QUALITY == QualityEnumType::Medium)
15 /* Medium Quality Method */
16 else if (QUALITY == QualityEnumType::High)
17 /* High Quality Method */
18 }
19
20 Output[DispatchThreadID] = outColor;
21 }
22 };

Listing 3.3: A mockup of a unified shader design that uses C++ templates for specialization.
Templates are insufficient for implementing and expressing specialization in a unified
environment, as demonstrated in Section 3.2.4.3.

String-based methods are also inadequate in a unified environment because host and GPU code

are necessarily not unified—host code is written in a programming language, while GPU code

is represented as just strings.

Along with the preprocessor, C++ has an additional mechanism for static specialization

of code: templates. However, using templates has the same basic issue mentioned above—

they are insufficient for expressing runtime decisions in host code. Consider the mockup in

Listing 3.3, which attempts to use templates to express specialization parameters. This design

does adequately enable specialization of GPU shader code in the MainCS() function, since

both ITERATION_COUNT and QUALITY are compile-time-constant parameters. However,

the complications with this design are readily apparent when considering how to select the

correct specialization in host code based on runtime parameter values, as shown in Listing 3.4.

Template parameter values must be statically available at compile time, so the only way

to set specialization parameters based on runtime values is to manually enumerate all possible

34

1 if (quality == QualityEnumType::Low) {
2 if (iterCount == 2)
3 FilterShader<QualityEnumType::Low, 2> shader;
4 else if (iterCount == 4)
5 FilterShader<QualityEnumType::Low, 4> shader;
6 else if (iterCount == 8)
7 FilterShader<QualityEnumType::Low, 8> shader;
8 else if (iterCount == 16)
9 FilterShader<QualityEnumType::Low, 16> shader;

10 }
11 else if (quality == QualityEnumType::Medium) {
12 /* repeat ifs for iterCount */
13 }
14 else if (quality == QualityEnumType::High) {
15 /* repeat ifs for iterCount */
16 }

Listing 3.4: Using dynamic runtime data to control template-based specialization leads to
greater development effort and maintenance costs, even for this simple example corresponding
to Listing 3.3.

combinations with corresponding if statements to select the right combination at runtime.13

This design requires significantly greater programmer effort even for this simple example with

only two specialization parameters, and modifying the set of options for these parameters is also

extremely cumbersome. Therefore, using C++ templates as-is for specialization is not a viable

option. We also considered co-opting templates for specialization, but this design would require

changing template semantics for host code. By co-opting virtual functions instead, we could

leave host code semantics intact and only change semantics for GPU code, ensuring backward

compatibility with existing C++ code.

Other programming languages might have other features that are suitable for expressing

and implementing specialization (e.g., generics). However, preprocessor- and template-based

methods are the main ones available and familiar to graphics programmers using the popular

HLSL and C++ languages. An interesting area of future work is to explore unified shader

development in other languages with different sets of features.

13In fact, the UE4 codebase has code very similar to this example in various places. Prior to introducing the
FPermutationDomain feature, UE4 used templates on host-code shader classes to express integer and boolean
specialization parameters. The code to invoke these shaders uses multiple nested if and switch statements to
select which template specialization to use based on runtime values of these parameters, resulting in verbose,
complex, and unwieldy code. Eventually, this code may be rewritten to use the FPermutationDomain system,
but this feature does not extend to a unified environment.

35

3.2.5 Limitations

Graphics programmers sometimes use specialization parameters to modify struct definitions

in HLSL code by using #ifs to include or exclude certain data member declarations. They

then write corresponding #ifs throughout the HLSL file whenever they need to access those

conditionally defined members.14 While our current system does not support conditional struct

definitions, we believe that our idea to co-opt virtual functions for specialization of ShaderClass

types can also be applied to specialization of GPU-only struct types. The key difference is that

the data members in a ShaderClass (i.e., uniform and specialization parameters) have the same

values for all invocations of a shader program, whereas a GPU-only struct might contain differ-

ent values per invocation (e.g., if the struct is used as a local variable within a GPU function).

However, as long as all invocations use the same runtime type for the struct (which is equivalent

to the HLSL case described above), then the same basic principles can be applied.

In our implementation, we have chosen to focus on shaders that align with UE4’s Global

Shaders concept, which are shaders that do not need to interface with the material or mesh sys-

tems. These Global Shaders are sufficient to demonstrate the issues that arise in a non-unified

environment and the challenges to developing unified shader programming, as well as how our

solutions address these issues and challenges. Therefore, we leave exploration of UE4’s Mate-

rial and MeshMaterial shaders as future work (see Section 5.3.1 for a discussion on supporting

additional shader types). While we think that the basic ShaderClass design can extend to sup-

port them, these other shader types do pose additional challenges. Many modern game engines

provide a graphical user interface (GUI) for creating materials models. Material shaders need

to access the parameters of these materials (e.g., diffuse color, specular color, roughness), but

different materials might have different sets of parameters. Determining the best way to inter-

face these GUI-defined materials with a unified shader requires balancing complexity trade-offs

between the GUI tools and the programming system. Supporting shaders that interact with

meshes has the added challenge of coordinating varying parameter declarations between differ-

ent shader types. For example, a vertex shader outputs varying parameters that a pixel shader

then consumes. Ideally, a unified system would provide a robust mechanism for coordinating

14This technique is similar to how they conditionally declare uniform parameters based on specialization param-
eters and, thus, has similar code maintainability downsides.

36

this information between different shader types. Nevertheless, shaders that fall into the Global

Shader category make up an increasingly large portion of a modern game’s shader code, so we

feel that our choice to focus on them for this work is justifiable.

3.3 Translation Tool Implementation
To implement our unified shader programming environment design, we built a source-to-source

translator based on Clang. The translator uses Clang’s LibTooling API,15 which provides a high

degree of flexibility and power without requiring modifications to Clang. Because our imple-

mentation is external from the Clang codebase, we can more easily update to newer Clang ver-

sions in the future to remain compatible with future C++ features. In addition, we use HLSL++16

to provide definitions of HLSL-specific types and intrinsics in C++.

The main task of the translator tool is to convert unified C++ shader code that uses our

co-opted features into standard C++ and HLSL code that implements the alternate semantics

for these features. This transformation lets our system use existing C++ and HLSL compil-

ers and toolchains for final executable code generations, rather than requiring a full compiler

implementation. By using this translation strategy, we better facilitate ease of integration into

existing applications, since these applications do not need to replace their existing toolchains to

use our designs. Our translator tool is separated into three major components: the frontend, the

host backend, and the GPU backend.

The translator’s frontend traverses the Clang Abstract Syntax Tree (AST) to retrieve rel-

evant information from user-written source code. Rather than operating on arbitrary re-

gions of the AST, the frontend only inspects C++ declarations that are annotated with the

[[ShaderClass]] or [[gpu]] attributes. An internal representation is created for each

ShaderClass that contains information about its shader-specific elements (Section 3.2.2), in-

cluding its uniform parameters, specialization parameters, entry point method, and GPU shader

code methods. Our translator operates on each C++ translation unit individually, creating inter-

nal representations for all ShaderClasses and GPU functions within. Then, our host and GPU

backends use these internal representations to generate UE4-compatible C++ and HLSL code,

15https://clang.llvm.org/docs/LibTooling.html
16https://github.com/redorav/hlslpp

37

https://clang.llvm.org/docs/LibTooling.html
https://github.com/redorav/hlslpp

respectively.

The host backend generates one or more UE4 Global Shader class implementations (here-

after referred to as an ImplClass) for each ShaderClass. These generated ImplClasses use UE4’s

macro system to implement the host-side representation of a ShaderClass’s uniform parameters,

as well as its boolean-, integer-, and enum-type specialization parameters. If a ShaderClass has

no ShaderClass-type specialization parameters, then only one ImplClass is generated. To sup-

port ShaderClass-type specialization parameters, the translator generates multiple ImplClasses

based on all possible combinations of runtime types for each such parameter. For example, the

shader in Listing 3.1 would result in three ImplClasses, one for each FilterMethod subtype.

In addition, the translator also generates code to interface user-written ShaderClasses with their

underlying ImplClass implementations. This task includes selecting which ImplClass to use

based on the runtime types for each ShaderClass-type specialization parameter (if applicable),

as well as communicating uniform and basic-type specialization parameters to their underlying

UE4-based implementations. Thus, while our system uses UE4’s under the hood, programmers

do not need to interact with this underlying implementation directly. Instead, they can simply

use the features provided by our unified system.

Our translator’s GPU backend outputs an HLSL file for each ShaderClass with an entry

point function.17 A ShaderClass’s generated HLSL file contains all of the GPU shader code

needed for every ImplClass of that ShaderClass. This includes all uniform parameters and

GPU functions from both the main ShaderClass as well as all ShaderClasses that it uses as

specialization parameters (and their subtypes). Any code that is specific to an ImplClass (e.g.,

the code specifically for each FilterMethod mentioned above) is output under a distinct

#if for that ImplClass. When generating executable kernel code from these HLSL files, each

ImplClass supplies the proper #define option to the underlying HLSL compiler, ensuring

that the generated shader variant is specialized to only the code it needs.

Our implementation also supports writing hardcoded HLSL directly within ShaderClasses

and GPU functions. This code is copied to the output HLSL files as-is. This feature serves

two practical purposes. Primarily, it lowers the barrier to porting shader code to use this system

17ShaderClasses without entry point functions are not invocable shader programs, so outputting HLSL files for
them is unnecessary.

38

by allowing programmers to rewrite existing HLSL code incrementally, which better enables

existing systems to adopt a unified shader design. Secondarily, as mentioned in Section 3.1,

full C++-to-HLSL translation is a non-goal of our work. While our backend does convert some

C++ code to HLSL, not all HLSL features are supported, nor do all C++ features translate to

HLSL code properly. By supporting hardcoded HLSL in our current implementation, we are

able to explore unified shader programming without first implementing every HLSL feature in

C++, and vice versa, as a prerequisite.

Currently, our implementation only supports compute shaders, but we believe it can easily

be extended to support other types of Global Shaders. We expect the biggest challenge will

be coordinating inputs and outputs between different shader types (e.g., vertex shader outputs

are used as pixel shader inputs). We can address this challenge by using the pipeline shader

design [64]. Programmers would write ShaderClasses with both a vertex shader entry point

and a pixel shader entry point. Then, within the ShaderClass, they would provide a singular

definition for the data that is passed between these two shader types. We present an expanded

discussion on supporting additional shader types in Section 5.3.1.

3.4 Evaluation
To evaluate whether our unified design enables better software engineering practices in

shader development, while still maintaining the high performance necessary for real-time graph-

ics, we ported shaders from UE4 to use our system. Because feature-complete C++-to-HLSL

translation is out of scope for this work, we use hardcoded HLSL code (Section 3.3) in some

parts of our ported code. All results were obtained using UE4 version 4.25.4 built from source.18

Since the unified shaders contain both host and GPU code, we rebuilt the modified files accord-

ingly prior to benchmarking the ported code. We review our findings in the sections below.

3.4.1 ShaderClass Modularity

Listing 3.5 shows a simplified segment of GPU code from UE4’s temporal anti-aliasing (AA)

shader, and Listing 3.6 shows the same segment rewritten in our system. This code implements

three different methods for caching texture reads, and the decision about which method to use

18We used the release branch at commit b1e746725e8e540afe7ac586496b4ee4c081a10e

39

1 Texture2D SceneDepth;
2 SamplerState SceneDepthSampler;
3 Texture2D SceneColor;
4 SamplerState SceneColorSampler;
5
6 #if CACHE_METHOD == REGISTER_CACHING
7 #define PRECACHE_COLOR
8
9 void PrecacheColor(inout InputParams Input)

10 { /* Sample from SceneColor; cache in Input */ }
11
12 float4 SampleCachedColor(InputParams Input)
13 { /* Return color from cache in Input*/ }
14
15 #elif CACHE_METHOD == GROUPSHARED_CACHING
16 #define PRECACHE_DEPTH
17 #define PRECACHE_COLOR
18
19 void PrecacheDepth(InputParams Input)
20 { /* Sample from SceneDepth; cache in groupshared memory */ }
21
22 float SampleCachedDepth(InputParams Input)
23 { /* Return depth from groupshared cache */ }
24
25 void PrecacheColor(InputParams Input)
26 { /* Sample from SceneColor; cache in groupshared memory */ }
27
28 float4 SampleCachedColor(InputParams Input)
29 { /* Return color from groupshared cache */ }
30 #endif
31
32 #if !defined(PRECACHE_DEPTH)
33 void PrecacheDepth(InputParams Input)
34 { }
35
36 float SampleCachedDepth(InputParams Input)
37 { /* Return depth sampled from SceneDepth */ }
38 #endif
39
40 #if !defined(PRECACHE_COLOR)
41 void PrecacheColor(InputParams Input)
42 { }
43
44 float4 SampleCachedColor(InputParams Input)
45 { /* Return color sampled from SceneColor */ }
46 #endif

Listing 3.5: A simplified selection of HLSL GPU shader code taken from UE4’s temporal
anti-aliasing shader. The corresponding host code for this GPU code is not shown.

40

1 class [[ShaderClass]] NoCaching {
2 public:
3 [[uniform]] Texture2D SceneDepth;
4 [[uniform]] SamplerState SceneDepthSampler;
5 [[uniform]] Texture2D SceneColor;
6 [[uniform]] SamplerState SceneColorSampler;
7
8 [[gpu]] virtual void PrecacheDepth(InputParams Input) const {}
9

10 [[gpu]] virtual float SampleCachedDepth(InputParams Input) const
11 {/* Return depth sampled from SceneDepth */}
12
13 [[gpu]] virtual void PrecacheColor(InputParams Input) const {}
14
15 [[gpu]] virtual float4 SampleCachedColor(InputParams Input) const
16 {/* Return color sampled from SceneColor */}
17 };
18
19 class [[ShaderClass]] RegisterCaching : public NoCaching {
20 public:
21 [[gpu]] virtual void
22 PrecacheColor([[inout]] InputParams Input) const override
23 {/* Sample from SceneColor; cache in Input */ }
24
25 [[gpu]] virtual float4
26 SampleCachedColor(InputParams Input) const override
27 {/* Return color from cache in Input*/}
28 };
29
30 class [[ShaderClass]] GroupsharedCaching : public NoCaching {
31 public:
32 [[gpu]] virtual void
33 PrecacheDepth(InputParams Input) const override
34 {/* Sample from SceneDepth; cache in groupshared memory */}
35
36 [[gpu]] virtual float
37 SampleCachedDepth(InputParams Input) const override
38 {/* Return depth from groupshared cache */}
39
40 [[gpu]] virtual void
41 PrecacheColor(InputParams Input) const override
42 {/* Sample from SceneColor; cache in groupshared memory */}
43
44 [[gpu]] virtual float4
45 SampleCachedColor(InputParams Input) const override
46 {/* Return color from groupshared cache */}
47 };

Listing 3.6: The unified C++ shader code ported from the code in Listing 3.5. Because the
uniform declarations are shared between host and GPU code, this selection shows both halves
of shader code.

41

is controlled by a specialization parameter. While Listing 3.5 only presents the original GPU

code, our rewritten version in Listing 3.6 necessarily shows both host and GPU code because

of the unified design.

From this simplified example, we can observe several ways in which our design leads to

clearer, more maintainable code. First, the uniform definitions in the original GPU code (List-

ing 3.5 lines 1–4) are expressed as global variables, and each must have a corresponding defini-

tion in the original UE4 host code (not shown here). In contrast, in our implementation, uniform

parameters are declared once for both host and GPU code (Listing 3.6 lines 3–6), and the uni-

forms are encapsulated within a ShaderClass. This encapsulation makes clear which uniform

parameters are required when using this segment code. In the original UE4 HLSL file, these

global uniforms parameters are declared alongside many others, even though they are only used

within the segment shown here.

Similarly, our ShaderClass design clearly shows the code reuse relationship between the dif-

ferent caching implementations. NoCaching declares and provides implementations for four

virtual member functions, and GroupsharedCaching overrides all four of them to provide

its own implementations. RegisterCaching, however, only overrides two of these func-

tions and uses the default implementations from NoCaching for the other two. With careful

examination, one can observe the same pattern in the HLSL code in Listing 3.5. However, when

looking at the original UE4 HLSL file, programmers must track down the PRECACHE_DEPTH

and PRECACHE_COLOR dependencies across ~500 lines of code in order to discover the over-

all code structure that our design instead makes readily apparent. In total, our unified design

provides clear modularity that spans both the host and GPU portions of shader code, whereas

in non-unified systems such as UE4’s, programmers must carefully manage component depen-

dencies across the boundary between host and GPU code.

3.4.2 Lines of Code

Since our system design utilities various abstractions for shader programming, we want to verify

that these abstractions do not lead to excess code bloat. Table 3.1 compares the lines of code

(LOC) for our rewritten shaders against the corresponding original UE4 code. In UE4, an HLSL

19https://github.com/AlDanial/cloc

42

https://github.com/AlDanial/cloc

Table 3.1: Lines of code (LOC) comparisons for original UE4 shader code vs. the versions
ported to our unified system. We report only non-commented, non-empty lines, as reported by
CLOC.19 The UE4 LOC number for each shader includes both the C++ file (host code) and the
corresponding HLSL file (GPU code), while the unified code uses a single file for both host and
GPU code.
*The unified C++ file includes some hardcoded HLSL code, since full C++-to-HLSL translation
is out of scope for this work. This embedded HLSL code is included in the LOC counts.

Shader Original UE4 Code Unified Code
C++ file & HLSL file C++ file*

Lines of Code Lines of Code

Motion Blur Filter 902 920

Temporal AA 2,138 2,251

file can contain code for multiple shader programs; however, we have not necessarily ported all

shader programs within an HLSL file to use our system. To present a fair comparison, we only

count lines of HLSL code related to the shader programs we have ported.

As shown, the LOC counts for the unified shader code are comparable to the original code.

The additional lines in the unified code come primarily from stylistic choices (e.g., putting

the [[gpu]] function attribute on its own line). However, some additional lines come from

temporary code duplication. Because we have not ported all UE4 HLSL files to our system,

some code in our unified files is duplicated from HLSL header files that were #included in

the original shader code (and, thus, this code is not counted in the UE4 LOC numbers). While

this duplication is ideally temporary, programmers still need to manage this code as a necessary

overhead when incrementally porting large systems. We believe the benefits of a unified system

outweigh this extra temporary overhead, especially given that unified programming can reduce

code duplication by allowing host and GPU code to share types, functions, and parameters.

3.4.3 Performance

Lastly, we evaluate the impact of our unified design on the runtime performance of GPU code

generated by our translator. We run the Infiltrator Demo [22] (Figure 3.1) using both the original

UE4 shader code and our rewritten versions and compare the GPU performance in Table 3.2.

These results were produced using a resolution of 2560×1440 on a machine with an Intel Core

43

Table 3.2: GPU performance comparisons for original UE4 shader code vs. the versions ported
to our unified system. The table shows the minimum, average, and maximum per-frame exe-
cution time in milliseconds for these shaders when running the Infiltrator Demo [22]. These
numbers were obtained using benchmarking tools provided by UE4.

Shader Original UE4 Code Unified Code
(time in ms) (time in ms)

Min Avg Max Min Avg Max

Motion Blur Filter 0.06 0.18 0.70 0.06 0.18 0.70

Temporal AA 0.23 0.28 0.74 0.24 0.28 0.75

i7-6700K CPU and an NVIDIA Titan RTX GPU. As shown in the table, the performance of

the shaders ported to our unified environment is comparable to the performance of the original

code.

Figure 3.1: A screenshot from the Infiltrator Demo [22]. We use this demo for our performance
evaluation.

44

3.5 Chapter Conclusion
In this chapter, we have presented the design of a unified programming environment for real-

time graphics in C++. By co-opting existing features of the language and implementing them

with alternate semantics, we are able to express the necessary shader-programming-specific

features, including first-class support for GPU code specialization. Our system allows pro-

grammers to write host and GPU shader code using familiar modularity constructs in C++, and

our source-to-source translator transforms this code into efficient standard C++ and HLSL.

A major focus of this work is specialization—a crucial optimization in real-time graphics—

because the current techniques used to express and implement specialization do not work when

GPU and host code share a unified, C++-based environment. The underlying issue is that spe-

cialization parameters should be runtime in host code but compile-time in GPU code. This

observation is easy to overlook when using two separate environments with distinct parameter

definitions and compiler toolchains, but it creates a fundamental tension in a unified system.

Given specialization’s importance in real-time graphics, any future unified system will need a

solution to support specialization. By keeping our system as close to standard C++ as possible,

we hope that our ideas can provide a foundation for supporting unified shader programming,

thereby enabling future work to focus on other challenges in graphics programming.

45

Chapter 4

Staged Metaprogramming for Shader
System Development

By removing the constraint of using a popular real-time graphics programming language, we

can expand the scope of potential implementation strategies for building a unified shader pro-

gramming environment. Like any modern discipline, the field of programming languages is

continually evolving, with new languages exploring novel programming techniques and older

languages incorporating the lessons from these newer methods over time. Investigating oppor-

tunities outside of the popular languages of today can provide insights that help developers of

current and future languages decide which features to adopt, as well as provide guidance for

using these features if and when they are adopted.

When examining the disparate techniques used to implement shader systems (Section 2.3),

we observe that they largely fall under the umbrella of metaprogramming. We broadly de-

fine metaprogramming as writing code that manipulates other code, which includes reading,

analyzing, transforming, or generating code. Textual-based processing tools, custom DSL im-

plementations, and shading language compiler modifications all fit this definition. However, the

metaprogramming methods currently employed by modern shader systems are on an unfavor-

able continuum—methods with greater capabilities require greater effort for implementors of

the shader systems. Therefore, we hypothesize that the effort required to implement a robust

shader system can be reduced by making metaprogramming a fundamental design principle and

This chapter is largely taken from our paper “Staged Metaprogramming for Shader System Development” [68].

46

utilizing a metaprogramming technique that sidesteps this apparent trade-off between capability

and complexity.

Using the key insight that these techniques are all examples of metaprogramming, we

present the following contributions:

• We identify staged metaprogramming as a unifying methodology that sidesteps the trade-

off between capabilities and implementation complexity.

• We present the design of Selos,20 a shader system built using staged metaprogramming,

to demonstrate the efficacy of this technique.

• We demonstrate how staged metaprogramming can open opportunities for optimizations

by creating a design space exploration framework in our system. This framework investi-

gates static versus dynamic composition of features in order to balance between execution

efficiency and the number of compiled shader variants.

We present the design of Selos in Section 4.3. Prior to that, we introduce staged metapro-

gramming, the underlying methodology on which it is built (Section 4.2). To motivate our

decision to use staged metaprogramming, we examine other methods of creating shader sys-

tems (Section 2.3), which also inform our design goals (Section 4.1). We then use Selos to

explore static versus dynamic composition of shader features in Section 4.4.

4.1 Design Goals
Motivated by issues in other modern systems, we built a shader system guided by the following

goals:

• Minimize implementation effort and maintenance costs

Each engine requires a unique shader system, customized to the engine’s design and the

needs of its users. Developers must often balance between the effort required to add fea-

tures versus the benefits those features provide to users. To better enable the development

of robust and feature-rich shader systems, we must minimize the resource investments

required to build them.
20https://github.com/kseitz/selos

47

https://github.com/kseitz/selos

• Early error detection

Underlying graphics APIs, as well as many shader systems, expose shader parameters to

host code through “stringly-typed” runtime interfaces, which provide poor validation. In

contrast, our goal is to detect errors as early as possible.

• Don’t Repeat Yourself (DRY)21

Programmers should not need to declare the same shader parameter, uniform buffer, etc.

in more than one place.

• Performance

In real-time graphics applications, performance is paramount, so a shader system must

not decrease game runtime performance. The system must strive to minimize overheads

to GPU shader code and CPU engine code, as well as enable developers to explore op-

portunities to improve performance.

• Productivity for artists and technical artists

While engine and graphics developers often prioritize performance over programming

conveniences, shader systems are also used by artists for whom productivity is key. There-

fore, a shader system must provide artists with familiar workflows.

• Support options for static and dynamic composition

Game engines generate specialized shader variants to achieve maximum performance.

However, complete static specialization can lead to additional overheads that decrease

performance. Thus, exploring the trade-offs between static and dynamic composition is

important for future shader systems.

Given the landscape of existing solutions (Section 2.3), our first design goal (“Minimize

implementation effort and maintenance costs”) seems at odds with some of our other goals.

While this observation is true in many languages, we will demonstrate that certain program-

ming techniques alleviate this concern. Specifically, our system meets these goals using staged

metaprogramming (Section 4.2).
21https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

48

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Our set of design goals cannot be readily realized in current versions of the languages com-

monly used by game engines today (e.g., C++, HLSL, GLSL) because they lack more modern

programming techniques. As such, we do not restrict ourselves to using these languages. There-

fore, while ease of adoption is an important practical consideration, it is largely orthogonal to

the core contributions of this work. While we explore opportunities presented by other lan-

guages and programming techniques, we discuss the potential for these techniques to be used

in future versions of C++ in Section 4.5.

4.2 Staged Metaprogramming
The principal design decision for our system, underlying the core of its implementation, is

to use a technique called staged metaprogramming. Unlike the metaprogramming techniques

commonly used by shader systems today (discussed in Section 2.3), staged metaprogramming

provides a more favorable balance between the effort required to use it and the capabilities it

provides, which better enables us to achieve our design goals. In this section, we will present

staged metaprogramming and motivate our decision to use it as a basis for our system.

4.2.1 Definition

Our definition of staged metaprogramming aligns with the description of a multi-level language

in Taha’s dissertation [72]. In staged metaprogramming, code running in an earlier stage of

execution can construct and manipulate code that will run in a later stage using explicit staging

annotations (e.g., quasi-quote and unquote). Staged metaprogramming also includes multi-

stage languages, which extend multi-level languages by allowing explicit invocation of next-

stage code (e.g., by eval in Lisp [48]).

The key features of staged metaprogramming are:

• Code is a first-class citizen, meaning programs can operate on code in the same ways that

they can operate on other entities (including passing code as arguments, returning code

from functions, and storing code in data structures).

• Code is constructed (metaprogrammed) using regular language syntax by enclosing the

code to generate in a quasi-quote construct. Code within quasi-quotes is syntax- and

49

type-checked at application compile time.

• Generated code created with quasi-quote is inserted into the runtime application using

unquote.

• To prevent variable capture issues, quasi-quoted code is hygienic and lexically scoped by

default [5]. However, there are mechanisms to intentionally violate lexical scoping when

needed.

• Quasi-quotes can be specialized to generate different versions of the code as needed.

• Current-stage code can execute quasi-quoted code using an eval mechanism.

As we will discuss in Section 6.4, some previous shader systems have employed a staged

metaprogramming approach, albeit not by name. These works are examples of runtime staged

metaprogramming, focusing on generating code at application runtime. While runtime staged

metaprogramming is indeed useful for shader development, real-time graphics applications

must be high performance, and excess code generation at runtime will degrade performance.

Therefore, our work focuses on compile-time staged metaprogramming (while supporting run-

time staged metaprogramming as well) in order to prevent code-generation overhead from af-

fecting runtime performance.

Staged metaprogramming allows programmers to run arbitrary code at compile time, writ-

ten in a fully featured language. Engine developers can create libraries that get invoked during

the compilation processes to analyze and generate both application and shader code. This func-

tionality gives them a level of control over compilation that would otherwise only be possible

by creating a custom language and compiler. By providing a feature-rich environment in which

to create, modify, and transform code, staged metaprogramming allows developers to express

powerful code generation and manipulation implementations using semantic information, with

effort only slightly greater than ad hoc approaches based on textual preprocessing.

4.2.2 Example Shader

Returning to the surface shader example from Section 2.3, here is how this shader looks in our

staged metaprogramming-based system:

50

1 local MaterialSystem = require("MaterialSystem")
2 ...
3 shader SurfaceShader {
4 ConfigurationOptions {
5 MaterialType = MaterialSystem.MaterialTypeOption.new()
6 }
7 ...
8 uniform LightData {
9 @UIType(Slider3) lightDirection : vec3

10 }
11 ...
12 fragment code
13 ...
14 color = [MaterialType:eval()](shadingData)
15 return color * max(0, dot(shadingData.normal, lightDirection))
16 end
17 }

In our system, specialization is expressed and controlled through

ConfigurationOptions. Different shader variants are generated by changing the

configuration:

local Cloth = require("MaterialTypes").Cloth
local config = SurfaceShader:getDefaultConfiguration()
config.MaterialType:setMaterial(Cloth)
SurfaceShader:setConfiguration(config)
local src = SurfaceShader:generateShaderSourceCode()

In this case, the code to evaluate the Cloth BRDF (imported from the “MaterialTypes” file) will

replace the call to [MaterialType:eval()], and src will contain the HLSL/GLSL of

the specialized shader variant.

Beyond manually specifying a single specialization, our system can generate all specialized

variants automatically because the ConfigurationOptions contain information about all

specialization options. ShaderLab’s #pragma multi_compile feature enables Unity’s

shader system to generate all variants as well. However, because ShaderLab relies on pre-

processor #if directives to express the specialization options, they are limited to generating

variants that either statically include or statically exclude each option. In contrast, we will

show in Section 4.4 that staged metaprogramming provides greater flexibility when generating

variants, allowing our system to explore additional specialization decisions.

51

Because our system is better able to understand and manipulate the code of a shader, shader

writers can express metadata for artist GUIs directly alongside the parameter declaration. There-

fore, shader writers do not have to repeat themselves when declaring such parameters, in con-

trast to ShaderLab’s separate “Properties” listing. Furthermore, our system can readily generate

a statically checked interface for host-side code to set shader parameters, in order to detect

errors at compile time:

var myShader = SurfaceShader.new()
var lightData = myShader.LightData:map(...)
lightData.lightDirection = vec4(1.0f, 1.0f, 1.0f, 1.0f)
-- compile-time error: lightDirection is of type vec3

Notice that the example shader above looks similar to a shader written in GLSL or HLSL,

and it does not exhibit aspects of staged metaprogramming directly. This design is intentional.

While staged metaprogramming underlies our shader system, technical artists should not be

confronted with foreign metaprogramming constructs, as these constructs may interfere with

their productivity. Therefore, we present a DSL to these artists so that they can work with a

familiar interface. The example shader above is written in this DSL. In Section 4.3.2, we show

how staged metaprogramming enables our shader DSL implementation, and we also present a

description of this syntax with a more complex example.

4.2.3 Lua-Terra: A Research Substrate for Staged Metaprogramming

Because C++, HLSL, and GLSL do not have the features required of a staged metaprogramming

environment (as listed in Section 4.2.1), we must use a different language to demonstrate why

these features are useful for shader systems. We want to model the programming environments

of typical game engines as closely as possible, meaning that our runtime engine should be

implemented in a low-level systems programming language similar to C++. Therefore, we built

our shader system using the Lua-Terra programming language [16].

Lua-Terra is a multi-stage language that uses Lua [35] code (a commonly used scripting

language in games today) in the first stage to manipulate next-stage code in Terra (a low-level,

statically typed, C-like language). Lua-Terra extends the syntax of Lua to allow Terra expres-

sions and statements to be quasi-quoted (`(expr) or quote stmts end). Lua expressions that

52

evaluate to Terra code can be spliced into a quasi-quote using the unquote operator ([expr]).

Lua-Terra also provides a mechanism for writing syntax extensions to Lua, allowing for rapid

DSL implementation.

Lua-Terra is primarily designed for runtime multi-stage metaprogramming: a running Lua

program generates and executes Terra code on demand. Our focus here is instead on compile-

time metaprogramming, in which the Lua code runs entirely ahead of time, yielding a final Terra

program for deployment, free of metaprogramming or dynamic features. During development,

however, there are many cases where more flexible multi-stage programming is valuable. For

example, development builds of an engine may implement hot reload (reloading shaders while

the application is running) by invoking the compiler (Lua code) from runtime (Terra) code.

Lua and Terra are significantly different languages, since Lua is a dynamic scripting lan-

guage whereas Terra is a static systems language. In our implementation, runtime application

code, runtime engine code, and shader code are all authored in Terra (and, thus, can share types

and subroutines), while Lua code performs all metaprogramming tasks. We conjecture that an

ideal metaprogramming system for graphics would use the same language for both metapro-

gramming and for final application code; however, to our knowledge, a staged metaprogram-

ming C++-like systems language does not currently exist.

Newer languages like Rust [65], as well as future versions of C++, are trending toward

supporting staged metaprogramming facilities, as we discuss in Section 4.5. However, from

our investigations, they do not yet have all of the features we need. While Lua-Terra is less

practical for building a production game engine, it does have the features necessary for us to

investigate our design ideas today, which will hopefully guide future designs as more popular

systems languages continue to evolve.

4.2.4 Limitations of Staged Metaprogramming

Debugging programs with significant metaprogramming can be challenging, and staging can

compound the issue. Programs might have nested metaprogramming components, requiring

developers to track down issues through multiple levels of code generation. However, pro-

grammers already cope with debugging metaprogrammed code (e.g., C++ template metapro-

gramming issues, which traditionally have convoluted error messages), and the additional code

53

manipulation facilities of staged metaprogramming allow developers to generate more descrip-

tive error messages. Furthermore, developers can perform most of the metaprogramming in

library code, thereby hiding metaprogramming concerns from artists and technical artists (see

Section 4.3.2). Nevertheless, both engine developers and application/shader code authors can

encounter difficulty debugging metaprogramming issues, so exploring how to more easily de-

bug such issues is an interesting area for future research.

Excessive and undisciplined use of metaprogramming may transform user-written shader

code in ways that obfuscate final shader code generation. Such obfuscation can negatively

impact a developer’s ability to predict how changes in shader code will affect final shader per-

formance. Often, game developers will forgo using certain programming techniques if they

reduce the ability to understand how authored code is compiled to final executed code because

performance tuning is critical to the application. Still, engines already use metaprogramming

techniques successfully, so employing a new, more structured metaprogramming method like

staged metaprogramming can provide significant value.

4.3 Other Key Design Decisions
Having presented our decision to use staged metaprogramming as the underlying implementa-

tion technique, we now discuss the design of our shader system, called Selos. Figure 4.1 shows

an overview.

In Selos, programmers write shader code in Terra (Section 4.3.3), with custom syntax exten-

sions for shader-specific features (e.g., Listing 4.1). Our shader DSL (Section 4.3.2) implemen-

tation parses the shader-specific features and generates a Shader Intermediate Representation,

or SIR, object (Section 4.3.1). The rest of the system interfaces with the SIR to extract informa-

tion about the shaders, as well as to manipulate the shaders prior to final code generation. The

Material Editor pulls data from the SIR to display artist-editable parameters in a GUI. Shader

variants are generated by manipulating the SIR to express each required variant (Section 4.3.5)

and then sending the SIR to our backend code generators to emit HLSL or GLSL code. Finally,

the Selos game runtime, also written in Terra, creates a statically checked runtime shader rep-

resentation (Section 4.3.4) from the SIR to allow engine and application code to control shader

54

Parse Into

SIR

Create Runtime

Representation

Shader
Metadata

Shader
Metadata

Variant
Configuration

Specialized Final
Shader Code

Configured Materials

Game
Runtime

HLSL/GLSL
Backend

Shader Intermediate
Representation

Shader Code
(written in Terra)

Variant Generation /
Design Space Exploration

Material Editor

Figure 4.1: An overview of the Selos Shader System, as discussed in Section 4.3.

parameters and to set up graphics state appropriately prior to shader execution.

In the rest of this section, we discuss the major design decisions of our shader system. Many

parts of our system are similar to other modern shader systems (e.g., similar syntax, artist tool

chain). Therefore, we focus on the differences and how staged metaprogramming, specifically,

enables our design and leads to inherent benefits.

4.3.1 Represent Shaders as Compile-time Lua Objects

The biggest implementation difference between Selos and other modern shader systems is our

use of a unified shader intermediate representation (SIR) throughout the system. The compo-

nents of Selos all interface with the same SIR, which is in contrast to, e.g., Unity, where the

representation of a shader is different for different system components. This key structural dif-

ference in our design is a direct consequence of staged metaprogramming because we are able

to store code directly in a data structure.

The SIR encodes shaders in terms of Lua objects that exist at compile time only. SIR is

a high-level typed representation with detailed semantic information, similar to an Abstract

Syntax Tree (AST) representation (as opposed to a low-level assembly-like format).

Since code is first-class in staged metaprogramming, we can store type- and syntax-checked

55

shader code directly in the SIR data structure using quasi-quotes. The SIR Lua object contains

a set of members that represent each construct in the shader. Shader inputs, outputs, uniform

blocks, etc. are all stored as members in an SIR shader. Along with storing names and type

information, an SIR shader also stores metadata about each member, such as bindings/locations

for inputs, outputs, uniforms, and textures, as well as which graphical element to display for

each artist-editable parameter. All components of Selos operate on the same SIR, as described

above.

Because the SIR exists only at compile time, the overhead of operating on it does not af-

fect the performance of the final game executable. This property is guaranteed in our system

because Lua code can only be executed at compile time. The ability to act on a unified repre-

sentation of a shader at compile time differentiates our system from previous work on shader

metaprogramming.

4.3.2 Write Shader Definitions Using a DSL

As Section 4.2.4 notes, unconstrained use of metaprogramming could lead to code that is

more difficult to write, read, maintain, and debug. Therefore, we minimize direct metapro-

gramming where possible. While staged metaprogramming is the underlying technology of our

shader system, the actual metaprogramming code is primarily written by engine developers, not

shader writers.

To preserve technical artist and shader writer productivity, Selos provides a custom shader

DSL that allows them to author shaders in a familiar style, similar to HLSL and GLSL code.

Shader authors write the core logic of a shader in plain Terra code (discussed in Section 4.3.3)

and use the DSL syntax to express shader-specific features that are not inherent in Terra, such

as declaring uniforms, inputs, outputs, and textures. Listing 4.1 shows a simple shader in our

DSL syntax.

Along with hiding metaprogramming concerns from shader writers, other elements of this

DSL are also designed in the interest of productivity. In our shaders, artist GUI information is

expressed directly alongside uniform parameters (e.g., Listing 4.1 line 9), avoiding the double-

declaration issue in ShaderLab. By including both vertex program and fragment program code

in the same shader, varying parameters and shared uniform buffers are declared only once as

56

1 shader SimpleShader {
2 textureSampler diffuseMap : sampler2D
3
4 param model : mat4
5 param view : mat4
6 param proj : mat4
7
8 uniform PerFrame {
9 @UIType(Slider3) lightDirection : vec3

10 }
11
12 uniform PerObject {
13 modelViewProj : mat4 = proj*view*model
14 modelViewIT : mat4 = inverse(transpose(view*model))
15 }
16
17 input position : vec3
18 input normal : vec3
19 input uv : vec2
20
21 varying vNormal : vec3
22 varying vUV : vec2
23
24 output outColor : vec4
25
26 vertex code
27 Position = modelViewProj * make_vec4(position, 1)
28 vNormal = (modelViewIT * make_vec4(normal, 0)).xyz
29 vUV = uv
30 end
31
32 fragment code
33 var diffuse = texture(diffuseMap, vUV)
34 outColor = diffuse * max(0, dot(vNormal, lightDirection))
35 end
36 }

Listing 4.1: A simple shader in our Selos DSL syntax. This shader, which a technical artist
might write, computes directional lighting (line 34), modulated by a diffuse texture map (line
33). The DSL syntax allows vertex inputs and fragment outputs to be declared, along
with blocks of uniform parameters. Shaders also contain explicit params, which can then be
used to set uniforms from within host shader code (lines 13–14). Uniforms without initializers
automatically become explicit parameters (line 9). Parameters can also contain information
about how they should be exposed to artist GUI applications (line 9). Ordinary Terra statements
inside code blocks are attached to the vertex or fragment kernel, with intermediate values
carried by varying parameters. Position (line 27) is a built-in variable for specifying
vertex position (equivalent to GLSL’s gl_Position).

57

1 local SimpleShader = ShaderBuilder.new("SimpleShader")
2 local diffuseMap = SimpleShader:declareTextureSampler(sampler2D)
3
4 local model = SimpleShader:declareParam(mat4)
5 local view = SimpleShader:declareParam(mat4)
6 local proj = SimpleShader:declareParam(mat4)
7
8 local PerFrame = SimpleShader:declareUniformBlock()
9 local lightDirection = PerFrame:declareUniform(vec3, nil, Slider3)

10
11 local PerObject = SimpleShader:declareUniformBlock()
12 local modelViewProj = PerObject:declareUniform(mat4,
13 quote proj*view*model end)
14 local modelViewIT = PerObject:declareUniform(mat4,
15 quote inverse(transpose(view*model)) end)
16
17 local position = SimpleShader:declareInput(vec3)
18 local normal = SimpleShader:declareInput(vec3)
19 local uv = SimpleShader:declareInput(vec2)
20
21 local vNormal = SimpleShader:declareVarying(vec3)
22 local vUV = SimpleShader:declareVarying(vec2)
23
24 local outColor = SimpleShader:declareOutput(vec4)
25
26 SimpleShader:addVertexCode(quote
27 Position = modelViewProj * make_vec4(position, 1)
28 vNormal = (modelViewIT * make_vec4(normal, 0)).xyz
29 vUV = uv
30 end)
31
32 SimpleShader:addFragmentCode(quote
33 var diffuse = texture(diffuseMap, vUV)
34 outColor = diffuse * max(0, dot(vNormal, lightDirection))
35 end)
36
37 SimpleShader:finalize()

Listing 4.2: By using our Lua shader builder API, the shader in Listing 4.1 can also be
constructed programmatically, without custom syntax. Other system components, like Variant
Generation and the HLSL/GLSL Backends, use this API to construct and modify shaders.

58

well. Furthermore, our DSL’s method of expressing specialization options is akin to that of TFX

and Slang (as described in Sections 2.3.3 and 2.3.4, respectively). Our method provides greater

flexibility than the simple preprocessor-based methods of Unity (Section 2.3.2). We discuss this

method further in Section 4.3.5.

The implementation of our DSL is driven by staged metaprogramming. Our parser con-

structs an SIR shader from DSL code by calling into an underlying shader builder API, written

in (compile-time) Lua code.22 Other Selos components can use this API to programmatically

construct and modify shaders, which does require writing some metaprogramming code di-

rectly. Listing 4.2 shows how the shader from Listing 4.1 can be constructed using the builder

API. Note the explicit use of key staged metaprogramming features (listed in Section 4.2.1)—

the quote keyword specifies the creation of a Terra quasi-quote, the code inside the quote is

written as “just plain code,” and the quoted code is added directly to the builder data structure.

❧

Because staged metaprogramming provides a favorable balance between code manipulation

capabilities and the effort required to use them, we implemented the features of our DSL with

only a modest development effort. Table 4.1 compares lines of code for the Selos implemen-

tation against the ShaderLab and Slang implementations. The ShaderLab and Slang compilers

most closely relate to our SIR, DSL, and Builder API implementations.

ShaderLab and Selos require a comparable amount of code (but Selos provides additional

benefits as discussed above), while Slang consists of a significantly larger codebase because it

required building/modifying an HLSL compiler. For Selos, we also have to implement HLSL

and GLSL backends to support writing shader code in Terra (Section 4.3.3). We believe these

backends are not engine-specific and can be shared between multiple shader systems as an

open-source component, similar to hlsl2glslfork [62].

While lines-of-code metrics are not standalone proof of the effort required to use a pro-

gramming technique, Table 4.1 suggests that staged metaprogramming is similar in complexity

to using textual-based preprocessing methods like in ShaderLab (given that Terra is C-like and

22We implement the actual parsing functionality using Terra’s syntax extension mechanisms: http://
terralang.org/api.html#the-language-and-lexer-api

59

http://terralang.org/api.html#the-language-and-lexer-api
http://terralang.org/api.html#the-language-and-lexer-api

Table 4.1: Lines of code for various Selos components, as well as for Unity’s ShaderLab DSL
implementation and the Slang compiler (v0.12.6). We report only non-commented, non-empty
lines for Selos and Slang, as reported by CLOC.23 *The Unity count was obtained via personal
communication and is estimated to include 10–15% blank lines and comments [63].

System Component Language(s) Lines of Code

Unity ShaderLab DSL Flex/Bison/other ~2000*

Slang Compiler C++ ~67,000

Selos
SIR/DSL/Builder Lua-Terra ~2300
HLSL/GLSL Backend Lua-Terra ~2200

Lua is an imperative language commonly used in games). Furthermore, modifying Slang to

implement additional features requires understanding how those changes interact with every

existing language feature in a complex compiler with a large codebase, whereas adding features

to ShaderLab or Selos requires understanding significantly fewer interactions in a much smaller

body of code.

4.3.3 Write Shader Logic and Application Code in the Same Language

As GPU shader cores continue to evolve to support more general-purpose code, the distinction

between general purpose systems languages and special purpose shading languages becomes

less relevant. Therefore, in Selos, we use the same language for both the game runtime appli-

cation and for host and GPU shader code. Both are written in Terra and can use the same types

and functions, both system- and user-defined, which increases programmer productivity. The

only exception is that GPU shader code cannot use Terra constructs that are unsupported in the

target shading languages (e.g., pointers).

In addition, Selos provides implementations of special types (and functions) commonly

found in shading languages, such as vector, matrix, and texture types. We implement these types

as Terra structs, meaning that they are usable in application code as well.24 Other shader systems

23http://cloc.sourceforge.net/
24We heavily utilized metaprogramming when implementing the host-side versions of the HLSL/GLSL built-in

types and functions, which greatly reduced the effort required. For examples, see https://github.com/
kseitz/selos/blob/master/src/builtin.t

60

http://cloc.sourceforge.net/
https://github.com/kseitz/selos/blob/master/src/builtin.t
https://github.com/kseitz/selos/blob/master/src/builtin.t

typically provide a host-side vector and matrix library that is distinct from (but compatible with)

the shader’s equivalent types. In contrast, because Selos’s vector and matrix types are used

exactly the same in both host and GPU code, programmers need not worry about any differences

between the host and GPU types. When used in GPU shader code, however, our backend code

generators replace these structs with the built-in equivalents in the target language to ensure no

overhead is added by our abstraction. Sharing types and functions between host and GPU code

allows programmers to debug shader code by running it on the CPU. Furthermore, it is easier

to migrate compute-intensive host code to GPU compute shader programs.

Our decision to write shader logic in Terra was motivated not only by the benefits of using

the same language for both host and GPU code, but also by the ease of implementing cross-

compilation to HLSL and GLSL using staged metaprogramming. Since we could encapsulate

shader logic in quasi-quotes, we did not need to implement a frontend to parse and separate

out GPU shader code. Instead, Terra’s language frontend parses and syntax-checks the quotes,

which are then stored in the SIR. Our backend code generators convert these quotes into human-

readable HLSL and GLSL (which helps facilitate debugging). Staged metaprogramming allows

us to directly reuse Terra’s frontend and AST for the statements, expressions, and types used

within shader code, minimizing the development effort needed to add shader support to Terra.

Thus, our backends required only a modest amount of code (Table 4.1).

Most importantly, we were able to implement all of this functionality in user-space code,

without modifying the Lua-Terra compiler. In contrast, attempting to create something similar

in C++ today would require a custom compiler implementation.

4.3.4 Generate Runtime Data Structures for Shaders

Given that shader and application code are both written in Terra, we can easily extract parameter

information from the SIR to generate a Terra struct for each shader. Our system generates these

structs at application compile time to provide a static, type-checked interface for the runtime

application to set shader parameters. This interface accounts for shader packing rules, so that

users do not have to manually navigate data across the CPU-GPU boundary. Furthermore, it

allows us to catch more errors at application compile time (like the example in Section 4.2.2).

The effort to implement this functionality was minimized because we could utilize semantic

61

information provided directly by the staged metaprogramming features and because all types are

the same in both host and GPU code by default (Section 4.3.3). In contrast, other systems may

similarly generate C++ structs from constant buffers, but doing so requires parsing underlying

HLSL/GLSL code and accounting for type differences between the host and shading languages,

which requires greater implementation effort.

In addition, these generated structs contain host-side setup logic that is expressed with

shader code (e.g., lines 13–14 in Listing 4.1). These code expressions are stored as quasi-

quotes in the SIR and are later inserted into the game application code using unquote. This

feature allows shader writers to expose one set of parameters to artists, and then use the artist-

configured values to precompute data on the CPU prior to sending the data to the GPU. Both

TFX, as well as the renderer used in Far Cry 5 [47], provide similar functionality.

The TFX compiler implements this functionality using an HLSL interpreter. The CPU logic

is extracted from the TFX shader file and interpreted at application runtime to set the shader

parameters appropriately. In the Far Cry 5 system, a programmer writes a Lua script to calculate

shader parameters from artist inputs. This script is loaded and executed at game runtime. Both

of these implementations required extra infrastructure to provide this additional functionality. In

contrast, our system utilizes staged metaprogramming’s quasi-quote and unquote, thus requiring

minimal effort to implement.

However, one downside to our approach is that changes to a shader’s interface or the host-

side logic requires recompiling the game executable.25 TFX and Far Cry 5 do not have this

downside, since they support loading shaders dynamically at runtime. Lua-Terra supports just-

in-time (JIT) compilation of Terra code, so we could use this functionality to support dynami-

cally loading shaders if desired. Also, if JIT compilation is disallowed (e.g., on consoles), then

a system like ours could fall back to an interpreter, as is used by TFX and Far Cry 5.

Dynamic loading allows for more rapid iteration; however, the added validation of a static,

type-checked interface to shaders reduces the likelihood of errors caused by out-of-sync shader

and application code. An interesting area of future work is to combine these approaches using

a system that dynamically recompiles changes to source files. Users could make runtime mod-

25If only the core GPU logic of a shader changes, then we need not recompile the application. Selos can also
hot reload shaders when only the GPU logic changes.

62

ification to shaders that would be type-checked and recompiled into the application behind the

scenes.

4.3.5 Implement Complex Specialization Options Using Staged Metapro-
gramming Constructs Directly

While our previous design decisions emphasize hiding much of the metaprogramming from

shader writers, direct use of staged metaprogramming constructs like quasi-quotation enables

greater flexibility when expressing specialization options. Therefore, we encourage engine de-

velopers and shader writers with a more technical background to use these constructs directly

when creating parts of the shader library that have interesting specialization decisions. As we

will show in Section 4.4, this decision enables us to explore both static and dynamic composi-

tion of features, which has performance implications.

However, using components with complex specialization options should still be straight-

forward for end users. Therefore, Selos exposes these components to shaders and con-

trols their specializations through ConfigurationOptions. We showed an example

of this functionality in Section 4.2.2, so we omit such a discussion here. By using the

ConfigurationOptions, our system allows experienced developers to use direct staged

metaprogramming to implement complex specialization options, while hiding the intricacies

from end users.

To explore a design alternative, we also implemented functionality similar to Unity’s

#pragma system. Shader writers express shader features using syntax similar to Unity’s

#pragma multi_compile and preprocessor #ifdefs, and compilation is controlled pro-

grammatically through the SIR. Unlike in Unity, our version has the ability to syntax- and type-

check each feature in isolation (rather than having to compile all possible variants). In addition,

because our version does not treat shader code as a black box (whereas Unity does), it is able

to make more interesting choices when generating specializations (such as those presented in

Section 4.4).

However, using direct staged metaprogramming with ConfigurationOptions pro-

vides greater flexibility and results in simpler shaders. In the #pragma-like design, all shader

features must be written within the same shader, resulting in complicated and bloated shaders

63

(as they would be in Unity as well). Nevertheless, C preprocessor-like mechanisms can some-

times be useful for expressing straightforward specialization decisions, and we can use such

mechanisms alongside our recommended design.

4.4 Exploring the Specialization Design Space
4.4.1 Background and Motivation

Through staged metaprogramming, Selos allows us to target challenging problems faced by de-

signers and users of modern shader systems. One major technique for increasing performance

is shader specialization, which takes an input shader (or shaders) that may express rendering

code for many different options (e.g., various material types, light types, and platform-specific

optimizations) and generates final GPU kernel code by outputting a subset of those options,

based on some compile-time parameters. We refer to a specialized kernel as a variant of the

original input shader. The goal of specialization is to increase the performance of final ker-

nel code by optimizing away unused code paths, which eliminates unnecessary computation,

reduces register pressure, and allows for more backend compiler optimization opportunities.

Sometimes, however, complete static specialization is not feasible. For example, when

performing shading in a deferred renderer, different pixels might require different material or

lighting features; shader programs must use dynamic branches to enable or disable features

per-pixel.

When complete specialization may be unfeasible, some specialization can still be beneficial.

The renderer used in Naughty Dog’s Uncharted 4 specializes shader programs to the features

needed on a per-tile basis (where a tile is a 16×16 group of pixels) [17]. For example, if no

pixels in a given tile contain fabric, then the renderer uses a shader variant that removes fabric-

related code when rendering that tile. Additionally, if all pixels in a tile use the exact same set

of features, then a “branchless” variant is used, which removes the runtime ifs around each

feature.

This approach can be extended to include specialization based on light types. Some games

implement light culling by generating a per-tile list of lights that are known to affect that tile.

When shading a tile in the deferred pass, the shader will use the tile’s light list, rather than

64

computing lighting for all lights in the scene. Similar to Uncharted 4’s material specialization,

if a given tile’s list has no lights of a given type, then we can use a shader variant that omits the

code for that light type when shading that tile.

However, overspecialization can lead to negative consequences. Generating the full set

of shader variants for all combinations of material and light types results in a combinatorial

explosion of variants. Instead, we may wish to statically specialize only a subset of the features

in order to decrease the number of shader variants (which would decrease game load time,

shader switching overhead, dispatch overhead, etc.). We, thus, would like to explore the trade-

offs between compile-time and runtime specialization in order to achieve the best performance;

however, the variant design space is large, so automatically exploring this trade-off is essential.

While implementing such an exploration using the C preprocessor is challenging and re-

quires shader writers to explicitly plan for it, we can implement this technique in Selos com-

pletely in engine library code without manual changes to shaders.

4.4.2 Experimental Setup

To demonstrate the benefits of this approach, we implemented a tiled deferred renderer and

used it to render the ORCA Sun Temple scene [23]. However, this scene does not specify what

type of BRDF to use for each material in the scene (nor do other widely available test scenes).

In order to be representative of modern games, which use a variety of material and light types

throughout, we render the scene as follows:

• Most objects use our StandardMaterial, based on Falcor’s [8] diffuse and specular BRDFs

(using the Frostbite diffuse term).

• Since many objects have a clear coat layer on them, the pedestals use a StandardMa-

terialWithClearCoat type, which adds Filament’s [30] clear coat model on top of our

StandardMaterial.

• We render the angel statues as if they were made of marble by using a SubsurfaceScatter-

ing type, based on Filament’s subsurface model but using our diffuse and specular terms.

• We drape instances of a cloth model (based on the model provided with Filament) on top

of the angel statues and render them with a ClothMaterial type, also based on Filament’s.

65

Figure 4.2: The test scene used for evaluating different sets of shader variants. This scene is a
modified version of the ORCA Sun Temple, in which we added red cloth to the angel statues.

We use the lights as specified in the Falcor scene file: one DirectionalLight and thirteen

PointLights. We replace two of the point lights with ShadowedPointLights, since games typi-

cally render shadows for only a subset of point lights. Our implementation of these light types

are based on Falcor’s. Figure 4.2 shows an image of our scene.

In order to find the optimal trade-off between reduced register pressure from specialization

versus decreased shader switching overhead from using fewer, more general shaders, we must

determine which material and light types are the most important to specialize. Therefore, we

generate all combinations of specializations where only k features are specialized, for all values

of k where 0 ≤ k ≤ n and n = 6 (number of material types + number of cullable light types).

This generation results in
(
n
k

)
variant sets for each k.

Generating these variant sets was straightforward in Selos, due to staged metapro-

gramming. We authored two ConfigurationOptions that control how specializa-

tion options compile into shader variants: TiledDeferredMaterialType for mate-

rial types and TiledLightListEnv for light types. The system specifies which type(s)

to include in a given variant, and these implementations modify the SIR of the deferred

66

85%

90%

95%

100%

105%

110%

115%

120%

125%

130%

H (1) 0 (1) 1 (2) 2 (4) 3 (8) 4 (16) 5 (32) 6 (60)

G
P

U
 P

er
fo

rm
an

ce
 R

el
at

iv
e

to
 N

o
 S

p
ec

ia
liz

at
io

n

Number of Specialized Features (Number of Variants)

1 x Lighting 2 x Lighting 5 x Lighting 10 x Lighting

Average GPU Time (ms / frame)

1x 0.761 0.760 0.743 0.732 0.725 0.726 0.730 0.756

2x 1.337 1.336 1.146 1.086 1.053 1.054 1.058 1.089

5x 2.698 2.696 2.286 2.195 2.101 2.101 2.106 2.156

10x 5.017 5.001 4.212 4.103 3.918 3.918 3.924 4.004

(a) GPU Performance

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

H (1) 0 (1) 1 (2) 2 (4) 3 (8) 4 (16) 5 (32) 6 (60)

C
P

U
 P

er
fo

rm
an

ce
 R

el
at

iv
e

to
 N

o
 S

p
ec

ia
liz

at
io

n

Number of Specialized Features (Number of Variants)

1 x Lighting 2 x Lighting 5 x Lighting 10 x Lighting

Average CPU Time (µs / frame)

1x 13.7 14.7 19.4 23.3 33.9 35.2 39.7 56.7

2x 13.1 14.6 19.3 28.5 33.7 35.3 39.0 55.7

5x 13.6 14.3 18.8 28.2 32.9 34.7 37.8 54.6

10x 14.3 14.4 19.0 27.9 33.7 35.2 38.3 54.9

(b) CPU Performance

Figure 4.3: GPU and CPU performance for the deferred pass, relative to using no specializa-
tion (higher is better). Also shown in the tables are the absolute GPU and CPU times (lower
is better). This data was gathered using our Direct3D 11 implementation and the test scene
described in Section 4.4 (Figure 4.2). While each number of specialized features has multi-
ple possible combinations of shader variants, we display results for the best performing variant
set, based on GPU time. We also compare against a handwritten HLSL shader with no spe-
cialization (presented as H in the graphs), which is representative of a typical deferred shader
implementation. We repeat lighting calculations within the shaders 1, 2, 5, or 10 times to em-
ulate increasing shader complexity and because games often have many more lights than in
our scene. As complexity increases, specialization has a greater positive impact on GPU per-
formance. For this particular scene and set of specialization options, the best performance is
achieved using a partially specialized variant set, and most of the benefits of specialization can
be achieved by specializing only one or two features. More specialization results in worse CPU
performance, because the average number of compute shader dispatches per frame increases
(thus causing more CPU overhead). The design of our shader system, and specifically our use
of staged metaprogramming, made this exploration possible.

shader accordingly to express that specialization. This functionality is possible because the

ConfigurationOptions know what material and light types are available, have access to

the code for these types via quasi-quote, and can splice together the correct combination of

quotes into the shader program (with runtime branches inserted to select which code to run on

a per-pixel basis). We present and explain further details of our specialization implementation

in Appendix A.

67

4.4.3 Performance Results

We run our deferred renderer on the modified Sun Temple scene for each variant set and present

the results in Figure 4.3 for the best performing set for each value of k.26 We also hand authored

an HLSL shader program equivalent to the fully general case (as is the default for deferred ren-

dering) and compare its performance in Figure 4.3 as well. Because the complexity of shaders

used in games can vary widely, we emulate increasing shader complexity by (redundantly) com-

puting lighting within a shader 1, 2, 5, and 10 times [12]. Furthermore, games often use many

more lights than the 14 in our test scene. In some scenes, Battlefield 4 has up to 40 lights per

tile [2], Detroit: Become Human has 124 lights [46], and Doom has ~300 light sources [69].

For this particular combination of scene, material types, light types, hardware, etc., the best

GPU performance was achieved by specializing either three or four features (Figure 4.3a). In

addition, most of the benefits of specialization can be achieved by specializing only one or two

features (resulting in 2 or 4 total variants). The ClothMaterial type was in the best performing

variant set in all cases, but the second feature differed based on shader complexity. Furthermore,

the impact of specialization increases with shader complexity.

Beyond improving GPU performance, using fewer variants has additional benefits. When-

ever shader code changes, all affected variants must be recompiled, so using fewer variants

saves build time. Game load times are improved too, because fewer variants need to be loaded.

In addition, as shown in Figure 4.3b, runtime CPU overhead increases as the number of variants

increase. Thus, developers may wish to trade off GPU performance to save CPU cycles, or vice

versa.

Finally, the performance of the fully general handwritten HLSL shader program is compa-

rable to that of the fully general shader variant generated by our system. Therefore, the code

generation and manipulation that Selos performs does not negatively impact the performance of

final GPU shader code.

Staged metaprogramming allowed us to easily build a tool to explore compile-time and

runtime specialization in a principled and straightforward way. Because the performance trade-

26These results were produced using a resolution of 1920×1080 pixels with a tile size of 16×16, on a com-
puter running Windows 10 with an Intel Core i7-6700K CPU and an NVIDIA GeForce GTX 1080 GPU. We
benchmarked every 100th frame (30 frames total over the 50 second camera path).

68

offs in the specialization design space depend on the game, shader features, scene, platform

(including D3D11 vs. OpenGL, operating system, drivers, CPU, GPU, etc.), and other variables,

exploiting automation is essential to achieve the best performance across various configurations.

Using staged metaprogramming, we are able to rapidly explore the specialization design space,

without requiring shader writers to explicitly include code for each case in the shaders.

While we have demonstrated one potential method for investigating the shader permutation

problem, exploring this issue more fully is an interesting area of future work. We believe staged

metaprogramming provides the proper abstraction for solving this and other types of issues

faced by game engine developers.

4.5 The Future of Metaprogramming in C++
As mentioned in Section 4.2.3, the common programming languages used in real-time graphics

programming do not have the features required of staged metaprogramming, hence our decision

to study this technique using Lua-Terra. However, we are optimistic that these languages will

adopt more interesting metaprogramming capabilities in the future.

For example, some recent proposals to the C++ Standards Committee seek to add more

robust and powerful metaprogramming facilities to the language. P0194 [11] proposes adding

support for compile-time reflection to C++ by having the compiler generate meta-object types

that represent certain program declarations. These meta-object types can be used at compile

time to obtain information about the program being compiled. This functionality is akin to the

introspection abilities of staged metaprogramming.

The authors of P0633 [77] explore the design space for metaprogramming in C++, looking

at aspects of reflection, code synthesis, and control flow constructs. For example, they discuss

supporting raw string injection, where arbitrary strings could be consumed by the compiler to

generate code. They presume that the compiler would provide local scoping when translating

these string to avoid variable capture issues. Since strings are first-class citizens in C++, this

functionality could mimic a quasi-quote construct (albeit without the syntax-checking guaran-

tees, since the underlying representation would still be just strings).

Metaclasses [71] would allow programmers to write new class features as “just code,” with-

69

out requiring compiler modifications for these features. A programmer could write compiler-

enforced patterns, requiring that all instances of the metaclass adhere to certain constraints. We

are interested to see if we could create a metaclass for shaders using this functionality.

The Circle compiler [6] extends C++17 by including new introspection, reflection, and

compile-time execution features. For example, one can introspect a struct, extract the param-

eters from it, and then generate new code based on these parameters, all using regular C++

syntax. We believe that some parts of Selos could be implemented using Circle, given that

it meets some of the criteria for staged metaprogramming. However, it lacks a quasi-quote

construct at present and, thus, is not a full staged metaprogramming environment.

These projects represent an increasing interest in evolving C++ toward better metaprogram-

ming features. While they do not yet enable staged metaprogramming in C++, they are a step

in the right direction. In the future, we hope that staged metaprogramming becomes a staple in

modern systems programming languages.

4.6 Chapter Conclusion
In this chapter, we have demonstrated how staged metaprogramming provides the proper facil-

ities with which to build an expressive, unified shader system, complete with a unifying shader

intermediate representation, the ability to express both host and GPU code within a shader, and

cross compilers for HLSL and GLSL. We also showed an example of using staged metapro-

gramming to explore the shader variant design space, which increased performance for our test

scene by determining which features were most important to specialize, thus preventing over-

specialization. Implementing these system components required only a modest effort, thanks to

staged metaprogramming.

Beyond the components presented here, staged metaprogramming provides the flexibility

to implement many more types of designs, such as graphical node-based material editors (e.g.,

Unreal Engine’s Material Editor). Furthermore, the shader permutation problem is far from

solved, so using staged metaprogramming to implement new solution ideas is an interesting

area for future work. We therefore wish to encourage future programming languages, as well as

future versions of today’s popular languages, to include support for staged metaprogramming

70

so that developers—both in real-time graphics and in other domains—can take advantage of

this powerful, flexible, and general-purpose set of language features.

71

Chapter 5

Discussion

In the previous two chapters, we have presented two methods for building unified shader pro-

gramming environments: co-opting existing features of a programming language and imple-

mented them with alternate semantics (Chapter 3) and staged metaprogramming (Chapter 4).

While both methods enable us to achieve our high-level goal, they have significantly different

trade-offs, both in the resulting user-facing systems and in terms of what they provide to system

builders. We now turn our attention to discussing these trade-offs to aid future shader system

builders in choosing an implementation strategy that best suits their needs. We begin by pre-

senting the high-level takeaways, followed by an in-depth analysis of each method in the two

sections that follow.

Co-opting Existing Features Real-time graphics developers with large investments in an ex-

isting language, or those looking to create unified shader programing systems in the near term,

should use the co-opting method. In principle, one can co-opt the features of any language,

allowing developers to add graphics programming to their languages of choice. This strategy

lowers the barrier to entry for shader programming by enabling users to utilize familiar lan-

guage features when writing shader code. However, because code using co-opted features looks

like ordinary code but operates with alternate semantics, users must contend with behaviors

that might contradict their understanding of a programming language’s rules. Moreover, system

creators can only co-opt features already present in a language, which limits the extent to which

a language can be customized to the graphics domain. A related downside is that implementing

72

alternate semantics for co-opted features requires creating and maintaining a compiler-based

tool, which increases shader system development costs. Nonetheless, a unified programming

environment provides substantial benefits to end users, so we think that these additional costs

are acceptable for existing large-scale systems.

Staged Metaprogramming While not practically useful today, we believe that staged

metaprogramming is the better long-term approach for creating unified shader systems. Because

developers can build unified environments entirely in user-space code, staged metaprogramming

results in reduced development and maintenance costs relative to compiler-based implementa-

tions. Staged metaprogramming’s key features provide system builders with the flexibility to

create customized, layered implementations of graphics-specific features, which better enables

them to adapt their systems to the needs of graphic programming. This flexibility comes with

the cost of additional programming complexity—developers must reason about multiple stages

of code execution, including understanding which portions of code run in which stage of execu-

tion, what code is generated, and how that generated code is used. Therefore, we advocate that

end users should not write staged metaprogramming code directly. Rather, expert programmers

should use it as an underlying implementation technique to provide appropriate higher-level in-

terfaces to the various users of the system. The biggest downside of staged metaprogramming

is that it can only be used in languages that support its required features, which excludes the

popular languages used in real-time graphics today. We encourage the maintainers of current

languages and future language designers to build staged metaprogramming into their languages

both for graphics developers and for developers in other domains who will benefit from this

general-purpose programming technique.

5.1 Analysis of Co-opting Existing Features
Perhaps the most prominent difference between the two implementation techniques is the re-

quirements they impose on the underlying programming language. An advantage of the co-

opting approach is that one could theoretically co-opt the features of any language in order

to add support for different semantics and optimizations. The specific features to co-opt will

depend on the specifics of the language, and some languages may be more amenable to modifi-

73

cation than others. Nevertheless, the underlying idea is, to a first approximation, transferable to

many different kinds of languages. In contrast, utilizing staged metaprogramming very clearly

requires using a language that supports its key features as defined in Section 4.2.1. Unfortu-

nately, the languages most commonly used in real-time graphics programming today do not

support staged metaprogramming. These languages are unlikely to add staged metaprogram-

ming features in the near future, and switching to a new language is typically cost-prohibitive

for existing, large-scale game engines. Therefore, the benefits of this technique are difficult to

employ in modern shader systems today, whereas the co-opting method provides an avenue for

existing systems to integrate unified shader programming in the near term.

Because our use of the co-opting technique emphasizes minimizing changes to the underly-

ing language by repurposing existing features, the resulting system presents users with a famil-

iar programming environment. Programmers can utilize C++’s modularity features (classes and

virtual functions) for shader programming, much like they would for other parts of the applica-

tion. As a result, shader code looks and feels much like regular C++ code, but the translation

tool compiles this code into implementations that are more efficient on the underlying target

hardware. This familiarity and consistency of feature usage is an advantage of this approach

because it limits the scope of engine-specific programming paradigms with which shader pro-

grammers must contend, while still enabling efficient final executable code. Newcomers to

an engine can more easily read, understand, and begin writing shader code without requiring

that they first learn new shader-specific programming aspects imposed—whether explicitly or

implicitly—by the shader system. However, this benefit comes with a significant detriment:

when choosing how best to express elements of shader programming, system builders are lim-

ited to using only the features available in their chosen language. The available features (either

as is or co-opted) may or may not be well suited to the needs of shader programming, so en-

gine developers may have to make compromises in expressibility, flexibility, or performance.

Moreover, code using co-opted features with alternate semantics looks identical to code using

those same features but with standard semantics, which could cause confusion for users when

the co-opted code behaves counter to their expectations. We believe these trade-offs are the

right choice for most existing systems, not only due to the reasons discussed above, but also

74

because minimizing changes to C++ helps to ensure that user-written code remains compatible

with newer versions of C++ as the language continues to evolve.

From a system builder’s perspective, a significant downside of employing the co-opting

method is the need to build and maintain a compiler-based tool. Creating a compiler from

scratch requires a massive investment in time and effort and is likely cost-prohibitive for all but

the largest development teams. Thus, building a compiler-based tool is, in practice, tractable

only if there exists some existing framework that one can extend or build upon. Many languages

have open-source compilers, so creating a custom fork of a compiler is one option. However,

compiler codebases tend to be large and complex, so determining what code to modify and

how in order to compile certain features with alternative semantics is non-trivial. Furthermore,

modifying a compiler directly can lead to integration challenges when pulling in changes from

the upstream source, resulting in significant additional maintenance costs.

A better approach—if available—is to build on top of a compiler framework that provides

explicit mechanisms for custom extensions and tools, which can help to alleviate both of the

challenges mentioned above. Our decision to use Clang for our translation tool in Section 3.3

was motivated by this reasoning. Clang has multiple APIs to enable custom extensions, provid-

ing different trade-offs for different use cases.27 We chose the LibTooling API for two reasons:

1) our tool only needs to be run on files containing shader code, rather than on every file in

the build process and 2) this API allows our tool to live external to the Clang codebase, which

streamlines the process of updating to newer versions of Clang in the future. However, our im-

plementations is a research prototype, so the evaluation of Clang’s APIs may differ for system

builders aiming to create a production-quality implementation. For example, a Clang Plugin

might be a better fit if the system already uses Clang for compilation, as it would more easily

integrate with the existing build process. No matter which API one chooses, switching to a

newer version of Clang can still result in additional maintenance costs, especially if the APIs

themselves change between versions. Nonetheless, Clang provides a mature and well-supported

platform on which to build a compiler-based tool for C++ (and the other languages that Clang

supports). Other compiler frameworks, especially newer ones, might not have as robust ex-

27A summary of these APIs and their pros and cons is available here: https://clang.llvm.org/docs/
Tooling.html

75

https://clang.llvm.org/docs/Tooling.html
https://clang.llvm.org/docs/Tooling.html

tension and tooling systems, so developers seeking to integrate unified shader programming

into other languages may need to invest additional effort to achieve their goals when using the

co-opting technique.

The need for an additional compiler-based tool can also lead to increased compilation times

for shaders (which is a downside shared with staged metaprogramming, further discussed be-

low). Our implementation parses each unified C++ file into an Abstract Syntax Tree (AST),

performs analysis using information from the AST, and then generates two files: one contain-

ing GPU code in HLSL and the other containing host code in standard C++. These two files

must then be compiled by downstream HLSL and C++ compilers, respectively. While the uni-

fied C++ source files for our examples are reasonably sized (Table 3.1), these files #include

multiple core UE4 header files, which in turn include other header files (which might include

more headers, and so on). As a result, a large amount of code must be parsed into an AST,

which takes a significant amount of time.28 Once the AST is created, our implementation’s

analysis and code generation steps run very quickly in comparison, but since our tool outputs

source HLSL and C++ files, the same code must effectively be parsed again by the downstream

compilers. Compiling the same code twice is the largest contributing factor to the increase in

compilation times in our system. Using precompiled headers or C++20’s modules feature could

help to mitigate this issue. Additionally, integrating the analysis and code transformation passes

directly into the main compiler (e.g., by creating a Clang plugin instead of a standalone tool)

would improve compilation times. To be effective, this type of implementation would need to

transform the internal representation of the host code directly during the standard compilation

process, rather than perform source-to-source translation. The GPU code would still need to be

separated out and recompiled by a downstream GPU compiler, but overall, this approach should

lead to better compilation times compared to our current implementation.

A related issue, both in our systems specifically and in unified programming in general, is

28This downside disproportionally affects our ability to debug our compiler tool implementation, since Clang
runs substantially slower when using the debug mode build compared to the release mode build. To work around
the slow run times of the debug Clang build, we instead compiled Clang using the “RelWithDebInfo” build option,
which performs more compiler optimizations on the Clang codebase than the “Debug” build option, while still
generating debug symbols. The debug build of our translation tool links with this RelWithDebInfo Clang build. As
a result, our tool’s debug build runs much faster than if it were linked with a Debug build of Clang, but the tool’s
release build (which links with a “Release” build of Clang) runs faster still.

76

the need to recompile host code and GPU code more often compared to non-unified systems.

This issue affects both our co-opting-based system and our staged-metaprogramming-based

system. Since both host and GPU code share definitions of various programming constructs in

a unified environment, modifying these constructs requires recompilation of both portions of

code. If a code change only affects either the host code or the GPU code, then recompiling

both is unnecessary. A simple diffing tool can greatly reduce the impact of this downside—

if the generated HLSL or C++ code is equivalent to the version previously generated by the

translation tool, then recompilation can be skipped. However, some changes to the unified

code might lead to semantically equivalent but syntactically different generated code, resulting

in additional unnecessary recompilations. In contrast, in a non-unified system, programmers

always knows whether they are modifying only host code or only GPU code since these two

portions of code are in different files. More important, however, is the fact that recompilation of

both host code and GPU code oftentimes is necessary. For example, if a programmer changes

a shared struct or a shader parameter, this change must be propagated to both host and GPU

code. In non-unified systems, the programmer needs to manually change both the host-side

representation and the GPU-side representation of this struct or parameter. Omitting the change

on one side or the other—or otherwise failing to make the change consistently on both portions

of code—could result in a bug. In contrast, this type of issue cannot occur in a unified system,

by definition. Because of this benefit and the other advantages associated with programming

in a unified environment, we believe that the additional compilation time costs of using the

co-opting method are acceptable.

Overall, the approach of co-opting existing features and implementing them with alternate

semantics is a good fit for developers of existing systems seeking to integrate shader program-

ming into the host-side programming languages they are using today. The languages commonly

used in real-time graphics do not inherently support the necessary features for unified shader

programming as is, nor do they provide a sufficient set of features for adding shader program-

ming without language modifications. Therefore, adding unified shader programming to these

languages requires compiler modifications or a compiler-based tool, and the co-opting method

is a way to help manage some of the costs associated with these types of implementations. We

77

believe that the additional development costs are worthwhile for engine developers, because the

resulting unified system would have the ability to greatly improve the engine user experience.

5.2 Analysis of Staged Metaprogramming
The greatest strength of staged metaprogramming is that it allowed us to create a unified shader

system entirely in user-space code. In Section 5.1, we presented the biggest downside of staged

metaprogramming today—that popular languages used in real-time rendering do not support

its required features—but we now wish to reframe this idea. Based on our exploration, the

features of staged metaprogramming are sufficient to add unified shader programming to a sys-

tems language. Thus, if a language adds this general-purpose mechanism in the future, then

this language also automatically enables construction of unified shader programming environ-

ments, without needing to add any graphics-specific features to the language. We did not need

to build a compiler-based tool or otherwise modify a compiler for the Selos implementation,

thus avoiding a significant drawback of the co-opting approach. This property is an advantage

not only for real-time rendering but also for other domains that could benefit from improved

metaprogramming functionality.

From user-space code, staged metaprogramming provides a substantial amount of flexibility

in the kinds of features programmers can build and express using it. System builders can cre-

ate interfaces similar to those in existing systems but with improved properties (such as those

discussed in Section 4.3), which has the advantage of presenting familiar constructs to users of

the system (similar to our use of the co-opting method, as discussed above). Alternatively, they

could design and implement drastically different systems to potentially provide users with sig-

nificantly improved experiences (e.g., the design-space exploration framework in Section 4.4).

Either way, staged metaprogramming enables engine developers to experiment with different

shader programming features and interfaces in order to create expressive, powerful, and robust

systems best suited to the needs of their users. Programmers can be confident that their uni-

fied shader system features will not conflict with future versions of the language because their

implementations can be built entirely in user-space code when using staged metaprogramming.

As discussed in Section 4.2.4, debugging metaprogrammed code is a challenging problem

78

in general, and staged metaprogramming suffers from this limitation. Nested code generation

steps across multiple stages of metaprogramming can sometimes lead to cryptic error messages,

requiring programmers (and possibly technical artists) to trace errors through various code lo-

cations and files. While the staged metaprogramming environment in Lua-Terra provides better

error messages than those arising from typical C-preprocessor-based metaprogramming and

template metaprogramming (but, of course, different languages will vary in this regard), con-

fusing error messages can still permeate to end users, who might not be well versed in the

metaprogramming constructs on which a shader system feature is built. In contrast, because the

co-opting method requires building a compiler-based tool, developers can provide better error

messages when parsing user-written code that uses the features of a unified shader system. In

the future, we expect the debugging situation to improve through a combination of research and

better tooling implementations. For example, in Lua-Terra, programmers can manually insert

function calls to print quasi-quotes and functions from Lua code, which allows them to see the

results of any code generation that happened prior. A future debugging tool could insert these

printing calls automatically at various points in the program and display the results hierarchi-

cally, allowing programmers to visualize the results of metaprogrammed code across multiple

stages of code execution.

With any metaprogramming code comes a potential for increased compilation times (and,

as mentioned above, the co-opting method has this downside as well). Each time a file is

compiled, all of the metaprogramming code must be evaluated. Since programmers can execute

arbitrary code at compile time in a staged metaprogramming environment, this compile-time

evaluation can become arbitrarily complex and time-consuming. An intelligent build system can

help to mitigate this issue during incremental builds, but the impacts of increased compilation

times might still be evident compared to systems with less metaprogramming.29 Our use of

staged metaprogramming emphasizes compile-time metaprogrammed so that code generation

cannot impact runtime game performance; however, using runtime code generation can help to

reduce compile times during the development process. Rather than statically executing all code

generation at compile time, a system could evaluate only the metaprogrammed code that is used

29Readers might be familiar with a similar issue in C++: applications and libraries that make heavy use of
template metaprogramming result in significantly longer compile times compared to those that do not.

79

in a particular invocation by using runtime code generation via a Just-In-Time (JIT) compiler.

This setup would improve iteration time, which is often more important during development

than in-game run times. Also, as discussed at the end of the previous section, our shader system

based on staged metaprogramming results in additional host and GPU code recompilations

compared to non-unified systems (an issue that will affect any unified system, regardless of

implementation methodology). However, the same JIT-based solution could also help to lessen

the impact of these recompilations. Runtime GPU code compilation is already common during

the development process (e.g., to support hot reload of GPU kernels), so extending this idea to

host code would be useful as well.

Extensive use of metaprogramming leads to increasingly complex code. Programmers must

understand the code performing metaprogramming, the resulting generated code, and the inter-

actions between multiple stages of code execution. This extra layer in the programming mental

model can become arbitrarily complicated, which motivated our decision to hide most of the

metaprogramming code behind the Selos shader DSL (Section 4.3.2). End users should not be

exposed to the complexities of staged metaprogramming. Instead, it should be used as an under-

lying implementation technique for shader systems, utilized by expert programmers to create

familiar interfaces for artists and technical artists and to explore optimization opportunities.

Staged metaprogramming provides a solid foundation upon which unified shader systems

can be built. This methodology is not available in modern popular programming languages,

but we hope that current languages will add support over time and that future languages will

consider incorporating staged metaprogramming functionality from the outset. While the co-

opting technique is more readily useful today, we believe that staged metaprogramming is a

better long-term approach because it enables the creation of unified shader programming envi-

ronments entirely in user-space code. Not needing to maintain a compiler-based implementa-

tion, while still providing powerful shader systems that remain compatible with future language

versions, is a major advantage of staged metaprogramming.

80

5.3 Future Work
Our work has lead us to several ideas for future directions, both for near-term improvements

and forwarding-looking advancements.

5.3.1 Supporting Additional Shader Types

On the practical side, we can improve the implementations of both of our systems by adding

support for more shader types. Neither of our current implementations support all of the shader

types available in modern graphics APIs. The Selos shader system supports vertex, frag-

ment/pixel, and compute shaders, while the C++-based system supports only compute shaders.

Compute shaders are an increasingly significant portion of a modern game’s shader code, and

they are sufficient for demonstrating the shader specialization issues that arise in a unified sys-

tem. Thus, we chose to use compute shaders to show how our C++-based design solves these

issues. Nevertheless, in order to be viable for modern, large-scale game development, support-

ing the other shader types is important too.

As mentioned in Section 3.3, the pipeline shader design [64] is a possible fit for supporting

other shader types. A major challenge in utilizing multiple shader types is coordinating inputs

and outputs between them (e.g., a fragment shader’s inputs most often come from a vertex

shader’s outputs). In a unified environment, we believe this coordination should be enforced by

the system. By authoring both a vertex shader entry point and a fragment shader entry point

within the same encapsulation construct (e.g., a ShaderClass in the C++-based system or the

Selos DSL’s shader type), these entry points can share definitions of the data members that

flow between them (e.g., the varying parameters in Listing 4.1 for the Selos shader system).

Selos already supports this design for vertex and fragment shaders, and extending the C++

ShaderClass design similarly is relatively straightforward. Since vertex, fragment, and compute

shaders make up the majority of a game’s shader code, we have not yet attempted to incorporate

geometry or tesselation shaders into either of our systems. We think our use of the pipeline

shader design can extend to these shader types too; however, we are uncertain of the possible

challenges that might arise in practice.

An alternative to pipeline shaders is to write the code for different shader types as indepen-

dent ShaderClasses (or shader types in Selos’s DSL) and then use earlier-stage ShaderClasses

81

as class members in later-stage ShaderClasses. For example, a fragment ShaderClass could in-

clude a vertex ShaderClass as a class member and reference its parameters directly (similar to

how ShaderClass specialization members are used). This design would lead to better modularity

and reuse compared to authoring the code for both shader types directly within the same Shader-

Class, which may also be preferable when expanding support beyond the vertex/fragment case

to include geometry, tesselation, and mesh shaders too. The best approach is likely a hybrid of

the two designs, allowing users to utilize the pipeline shader style while also supporting com-

position of separately written shader types. While these kinds of designs have been explored

before, seeing how a unified system changes their benefits and pitfalls will be interesting.

5.3.2 Static, Dynamic, and Hybrid Dispatch Strategies

Further exploration of static specialization, dynamic dispatch, and hybrid combinations of the

two (where the system statically specializes some features while using dynamic dispatch for

others) is another open area for future work. For example, given user-written shader code for

Standard, Subsurface, Hair, and Cloth material types, we would like the option to generate four

statically specialized variants (one for each material type), as well as one shader variant that

uses dynamic dispatch within GPU shader code to select between all four material types. In

addition, we would like to generate shader variants that are partially specialized to a subset of

material types, which then use dynamic dispatch to select between the types in their respec-

tive subsets (e.g., one variant for Standard plus Subsurface, and a second variant for Hair plus

Cloth). Selos already supports a version of each of these (described in Section 4.4), and we are

interested in expanding the C++ ShaderClass design similarly. Our decision to co-opt virtual

functions intentionally leaves open the possibility of compiling shader variants that use dynamic

dispatch—or a hybrid of static and dynamic dispatch—in the future. Given the importance of

specialization, supporting it in our system took priority, but we believe that in the future, dy-

namic dispatch will serve an increasingly important role in modern game rendering systems.

By expanding our ShaderClass implementation to support both static and dynamic dispatch,

programmers could better modularize various aspects of their shader code, and the underly-

ing system could then generate either fully specialized, partially specialized, or fully dynamic

shader variants to improve overall performance without manual changes to user-written code.

82

Expanding support for dynamic and hybrid dispatch strategies beyond the limited cases cov-

ered by the Selos implementation presents further interesting research challenges. The current

system only handles cases where different options at a dispatch point use a same underlying

representation for the data they need. For example, to dynamically dispatch between different

material types, these material types must all either use the same data or be authored to map

their data to a common underlying representation (e.g., a Geometry Buffer—or GBuffer—in a

deferred renderer). A more useful setup would automatically determine how to map heteroge-

neous data from different shader code options into a homogeneous representation when using

dynamic dispatch for this code, but creating this automatic mapping is non-trivial. Concatenat-

ing the data for each option into a single datatype would lead to bloated data transfers that would

negatively impact performance. Thus, the system should attempt to de-duplicate and pack data

into a compact representation, while also ensuring that the combined datatype can efficiently

interface with its separate-datatype counterparts used elsewhere in the application. Even with

a best-effort mapping, the resulting combined data representation will likely still be larger than

the separated representations, adding another axis that affects overall performance.

Another major question is how to decide when to use static versus dynamic dispatch. The

exploration in Section 4.4 used an exhaustive search to find the optimal performance, but the

specific results will differ based on end-user machine configurations. It might not be feasible

to run this kind of analysis on an end-user’s machine at game runtime without interrupting the

gameplay experience, so performing a simpler runtime analysis would be more viable. Another

option is to use static analysis of the code to make static specialization / dynamic dispatch

decisions ahead of time. Our explorations lead us to believe that differences in register pressure

are a major contributing factor in determining which options are most important to specialize.

Along with the above, other design decisions will inevitably arise while investigating more

complex dispatch scenarios. For example: At runtime, how should the system communicate

to the GPU code which option to invoke when using dynamic dispatch? How does this added

communication affect memory bandwidth usage and performance for host, GPU, and host-to-

GPU memory transfers? If graphics APIs support function pointers and virtual functions in the

future, can and should the system be adapted to utilize these features? All of these questions

83

will lead to interesting design decisions, both for the underlying implementation and for the

developer-facing programming model.

5.3.3 Real-time Ray Tracing

Given its growing relevance in real-time graphics applications, supporting hardware-accelerated

ray tracing using both the co-opting method and staged metaprogramming is an important future

direction. We think automatic generation of static, dynamic, and hybrid dispatch strategies (as

described above) is crucial to flexible and efficient ray tracing support in unified systems. When

a ray intersects with an object, the hardware invokes a compiled shader kernel associated with

that object. Ideally, the hardware should group together invocations of the same kernel into

batches for efficient execution. If there are too many different compiled kernels within a scene,

then the hardware may be unable to completely fill each batch. Instead, we can group together

shader code into fewer overall compiled kernels by using dynamic dispatching within each

kernel to execute different portions of code appropriately. A system that compiles user-written

shaders into a variable number of executable kernels would allow programmers to experiment

with the trade-offs between batch size versus the cost of using dynamic dispatch within the

kernels. While we believe that both of our shader system designs can be extended to support

real-time ray tracing by utilizing their respective underlying implementation methodologies, we

cannot be certain that the decisions we made for rasterization and compute shaders will translate

cleanly to ray tracing.

5.3.4 Co-opting the Features of Rust

Beyond C++, we are interested in utilizing the co-opting approach to bring unified shader pro-

gramming to other languages. Given the ongoing work on Rust GPU [20], Rust is a potential

next choice, and Rust’s generics seem like a viable feature to co-opt to express shader special-

ization decisions. The current Rust compiler uses monomorphization30 to implement generics,

which is analogous to static, compile-time specialization. This behavior is desirable for GPU

code, but we instead want runtime dispatch in host shader code. Since generics in general do

not require a compile-time specialization implementation (unlike templates in C++), we could

30https://rustc-dev-guide.rust-lang.org/backend/monomorph.html

84

https://rustc-dev-guide.rust-lang.org/backend/monomorph.html

change the implementation for the host code to achieve the desired results. However, generics

are just one option. Other Rust features might prove equally or more beneficial to co-opt, so

more investigation is necessary to determine the best unified shader system design for Rust.

5.3.5 Adding Staged Metaprogramming to Another Language

Rather than modifying additional languages for shader programming specifically, an alternative

is to add staged metaprogramming features instead. By adding staged metaprogramming to

a language, programmers would benefit from the general-purpose usefulness of its features

both in their shader systems and in other parts of their applications. Along with the technical

challenges of adding staged metaprogramming, designing the user-facing programming model

will raise interesting questions. Metaprogramming Terra code is straightforward because it is

a relatively simple language. Creating a staged metaprogramming model for more complex

languages like C++ could prove to be challenging. This task would be made easier by omitting

some of the features we discussed in Section 4.2.1. While these features are sufficient for

implementing unified shader programming, they may not all be necessary. Attempting to create

a unified shader programming system using only a subset of staged metaprogramming could

provide insights that help language developers decide which features are most important.

5.3.6 Future Opportunities Enabled by Unified Programming

Programming in a unified environment not only comes with inherent advantages as previously

discussed, but it also opens opportunities to tackle other challenging issues in shader program-

ming. While allowing host and GPU code to reference the same parameters avoids mismatches

between these two halves of shader code, a remaining open question is how best to express and

handle memory allocation, memory transfers to and from the GPU, and sharing of resources be-

tween different shaders and shader instances. Additionally, synchronization between host and

device, as well as between different rendering passes, is another area with potential for improve-

ments. By combining host and GPU shader code together into one environment, a shader system

tool (whether compiler-based or otherwise) has a more cohesive view of the entire application.

A potentially impactful future direction is to take advantage of this cross-device information

to investigate optimization opportunities that would otherwise not be possible in a non-unified

85

system.

Additionally, by having all pieces of rendering code in the same environment, we can begin

to explore programming models beyond writing individual, separate shaders. Rather than au-

thoring independent shaders for each rendering pass, programmers could instead write render-

ing code as one integrated unit. Then, the underlying programming system could split up work

into different executable shader kernels automatically, similar to the ideas in Bulk-Synchronous

GPU Programming (BSGP) [34]. Some analysis and kernel generation could happen purely

at compile time (like in BSGP). However, greater optimization opportunities would be avail-

able by performing runtime analysis as well. Modern games and game engines are increasingly

utilizing render graph systems (e.g., Frostbite’s FrameGraph [59], Unreal Engine’s Rendering

Dependency Graph,31 and Unity’s RenderGraph API32). At runtime, these systems create a

graph of the rendering operations needed for each frame, which (for example) allows them to

optimize memory allocations by tracking dependencies between multiple rendering passes. Hy-

pothetically, by examining the sequence of rendering steps—and the associated host and GPU

code—for a given frame at runtime, a system could generate a set of shader kernels optimized

for that frame. During development, the system could JIT-compile these kernels per frame and

cache the results for subsequent frame that generate the same render graph. Then, when ship-

ping a finished application, the system could bake out all of the required shaders to avoid the

costs of runtime code generation.

Utilizing both compile-time and runtime information when deciding how to divide oper-

ations into individual executable kernels has the potential to greatly improve runtime perfor-

mance of both host and GPU code. Which decisions are best suited for compile time versus run

time is an interesting question that these future systems will need to investigate. A prerequisite

for these systems is having all code together in one programming environment, including both

host code and GPU code. Thus, unified shader programming sets the stage to explore these

types of programming and optimization improvements in the future.

31https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/
Rendering/RenderDependencyGraph/

32https://docs.unity3d.com/Packages/com.unity.render-pipelines.core@13.1/
manual/render-graph-system.html

86

https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Rendering/RenderDependencyGraph/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Rendering/RenderDependencyGraph/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.core@13.1/manual/render-graph-system.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.core@13.1/manual/render-graph-system.html

Chapter 6

Related Work

6.1 Shader Programming in GPU-based Graphics APIs
While the earliest programmable shader environments for GPUs exposed assembly-level lan-

guages [44], most current graphics APIs that target modern GPUs, such as Direct3D, OpenGL,

and Metal, provide only high-level language interfaces (for HLSL, GLSL, and an extended

subset of C++, respectively). While Direct3D and Metal allow shader programs to be com-

piled offline, the resulting binary formats are not officially documented. Despite the detailed

differences, all of these platforms provide a broadly similar C-like programming model.

The recently introduced Vulkan API [39] consumes a documented binary GPU shader code

format, SPIR-V [38], instead of text. The SPIR-V instruction set is similar to the LLVM IR [42]

and is intended to allow alternative front-end languages to be developed. However, neither

SPIR-V nor LLVM provides assistance with the higher levels of a shader compilation system:

parsing, type checking, etc. The primary benefit of LLVM is for lower-level optimizations and

code generation, which are still performed by GPU drivers that consume SPIR-V. While the

introduction of a documented intermediate language is an important architectural decision, it

does not greatly simplify the task of developing engine-specific shader systems.

In contrast to earlier APIs, newer APIs include features aimed at providing direct support for

some aspects of shader specialization. Vulkan’s “specialization constants” [75] allow host code

to modify the values of constants in GPU code at application runtime, and Metal has a similar

Sections 6.2, 6.3, and 6.4 have largely been taken from our paper “Staged Metaprogramming for Shader
System Development” [68].

87

feature. These features could be used to implement basic-type specialization parameters with-

out requiring programmers to statically enumerate all possible value options. However, they are

insufficient for expressing and generating specializations that include different uniform param-

eters and GPU functions, which is the purpose of ShaderClass-type specialization parameters

in Chapter 3 and of the ConfigurationOptions feature in Chapter 4.

These graphics APIs form the foundation on which modern graphics applications are built.

Our work focuses on the next layer up the software stack: what engine-specific systems should

be built on top of these APIs?

6.2 Extended Shader Programming Models
A wide range of alternative programming models have been developed on top of the baseline

interfaces provided by graphics APIs. Often, the primary goal of these systems is to improve the

software-development productivity of shader programmers while simultaneously maintaining

high performance.

The Real-Time Shading Language (RTSL) system [64] shows that a high-level shading lan-

guage, inspired by the RenderMan Shading Language (RSL) [31], can be compiled with good

efficiency for early programmable hardware. Abstract shade trees [50] build upon the idea of

Shade Trees [13] to enable composition of real-time shader programs from separately developed

pieces. Spark [27] extends the approach of RTSL to modern rasterization pipelines, improving

support for modular software development.

Spire [33] demonstrates that a suitable high-level shader IR can allow complex rate-

placement optimizations to be applied automatically. Our exploration of specialization deci-

sions (Section 4.4) is conceptually similar, where one of the rates involved is “constant.” We

believe that this kind of exploration is important, and is just one example of the kinds of shader

optimizations tools developers can build with staged metaprogramming.

The Slang shading language [32] is a variant of HLSL that adds a number of features that are

common in other modern programming languages. In GPU shader code, Slang enables users

to express specialization options primarily through interface-constrained generics. Specialized

shader variants are generated by providing concrete types for the generic parameters. Host code

88

interfaces with GPU code using a runtime API, which provides reflection information and al-

lows host code to generate specialized variants. Because host and GPU code exist in different

environments, Slang sidesteps the compile-time vs. runtime dichotomy of specialization param-

eters.33 While it does tackle some of the same problems as our work, Slang focuses on the GPU

shading language specifically, whereas we explore unifying both the host and GPU portions of

shader code into the same language. Furthermore, rather than providing a single solution for

all engines, our work aims to enable developers to implement custom solutions that best fit the

needs of their engines.

Effect systems expand the scope of shader code beyond programmable pipeline stages to

include configuration of fixed-function state [51, 58] and even abstraction over multiple render-

ing passes [43]. The EAGL system [41] further expands the role of shaders to include offline

processing of art assets to condition them for efficient rendering on particular platforms.

Several GPU shading languages for real-time graphics support encapsulation of shader

code and parameters via object-orientation, including Cg interfaces [61], HLSL classes [54],

Spark [27], and Slang [32]. The idea dates back to the RenderMan Shading Language

(RSL) [31]. Furthermore, aspects of our ShaderClass design take inspiration from Kuck and

Wesche [40]. Their work implements an object model for GLSL that is managed by corre-

sponding proxy objects in C++. Whereas their system uses dynamic dispatch in GPU code (with

optimizations to remove dispatch code when possible), ours in Chapter 3 guarantees static dis-

patch in generated GPU code. More fundamentally, our work differs from these previous works

by extending shader objects to include both GPU and host code, with unified representations of

types, functions, and parameters.

Each of these projects, representing different visions of what shader programming should

be, is implemented as a stand-alone system, often with considerable effort. We believe that

staged metaprogramming provides an approach that reduces the cost of implementing novel

programming models like these, whether in research or production.

33Hypothetically, if Slang were to introduce a unified shader programming model, we imagine that generics/in-
terfaces would serve a significant role in the host-GPU specialization interface. Consequently, applying lessons
learned from such a system to a C++-based environment would be difficult, since C++ does not support Slang-style
generics/interfaces. By limiting ourselves to the features available in C++, we hope that the lessons from our work
in Chapter 3 are more directly applicable in the field today.

89

6.3 Multi-Stage Programming and Syntax Extension
As described in Section 4.2.1, we take our definition of multi-stage programming from

Taha [72]. Our Selos implementation was built using Terra [16], which adds multi-stage con-

structs and low-level programming support to the Lua language [35], along with user-defined

syntax extensions.

The BraidGL language [66] uses the syntax of staging both for metaprogramming and for

mapping communication to the vertex and fragment stages of a rasterization pipeline, in a man-

ner similar to rates (as used in RTSL, Spark, and Spire). The design of BraidGL promotes

staging as a language mechanism to be used by most shader writers. In contrast, Selos pro-

motes staging as a mechanism to be used in implementing shader systems, but most shader

writers need not use or understand it directly.

Rust [65] is a systems programming language that supports limited syntax extension using

a macro system in the tradition of Scheme [25, 70].

Some projects have attempted to add multi-stage programming features to existing systems

programming languages like C/C++. ‘C (“tick C”) [21] adds a quasiquotation construct to C,

with a focus on code generation at runtime (similar to MetaML [73] and MetaOCAML [9]).

OpenC++ adds compile-time code generation and limited syntactic extension to C++ using a

metaobject protocol [10]. The extension-oriented compiler Xoc [14] allows extensions to the

syntax and semantics of C to be loaded dynamically by the compiler. However, the current (and

upcoming) C and C++ standards do not have such features. We therefore could not use these

languages to implement the staged metaprogramming work in Chapter 4 and, conversely, could

not use such features when focusing on C++ in Chapter 3. Fortunately, ongoing C++ projects

and proposals continue to explore the types of facilities needed for staged metaprogramming

(Section 4.5).

6.4 Shader Metaprogramming
Several previous systems have applied metaprogramming techniques to shaders. For example,

the PyFX system [43] uses Python code to compose multi-pass effects from GPU shader code

written in Cg. Shader programs are authored as strings, and the system extracts parameter data

90

to expose named parameters to Python code.

Sh [49] and Vertigo [19] expose shaders as an embedded DSL (eDSL) in C++ and Haskell,

respectively. Special types are used to express GPU shader code, and operators on those types

are overloaded to construct an intermediate representation (IR). Arbitrary code running in the

host language can be used to generate or specialize GPU shader code. In Sh, the host and shader

languages use distinct syntax for control flow constructs (GPU control flow is expressed with

macros). In both systems, the type checking rules of the host language are used to guarantee

type safety of generated shader code, and they can also provide for statically checked setting of

shader parameters.

These previous systems may be viewed as examples of runtime staged metaprogramming.

In each case, runtime application code (in Python, C++, or Haskell) in the first stage is used

to synthesize shader code for subsequent execution. While GPU shader code is embedded in

the application language (whether as strings of Cg source code, or via macros and overloaded

operators), they belong to different stages, and so cannot easily share types or subroutines.

Our approach in Chapter 4, based on compile-time staged metaprogramming, differs from

prior work in two key ways. First is the simple fact that we perform code generation and manip-

ulation tasks at compile time, which reduces runtime costs and enables deployment on platforms

where runtime code generation is either disallowed or not advised. Furthermore, metaprogram-

ming code running in the compile-time stage has access to more complete information about

source locations and symbol names than is available at runtime, allowing engine-specific ser-

vices to emit higher-quality diagnostic messages (errors and warnings).

Second, and more fundamentally, runtime application code and host/GPU shader code in

Selos (as well as in our C++-based system in Chapter 3), are expressed in both the same lan-

guage and same stage of execution; both are written in Terra (or C++), and they can share types

and subroutines. In contrast, prior shader systems using staged metaprogramming separate host

and GPU code into distinct stages with distinct languages, libraries, etc. Our approach is thus

more similar to CUDA [57], where host and GPU compute code are deeply integrated using the

same language and execution stage.

Partial evaluation [28] is a concept related to metaprogramming. Rodent [60] utilizes partial

91

evaluation to generate a specialized renderer for a given scene description. Both Rodent and Se-

los are motivated by reducing the effort required to implement rendering frameworks. However,

we focus on real-time rendering, whereas their emphasis is on offline path tracing. Our work

provides a clear distinction between compile-time code and runtime code, so real-time graphics

developers can be confident that expensive operations happen at compile time. In contrast, a

partial evaluator will evaluate as much as it can based on data available to it at compile time,

but it does not provide strong guarantees about what it will or will not evaluate at compile time.

6.5 Single-Language Shader Programming
While most real-time graphics applications use separate languages for host code and GPU code,

some recent projects explore using the same language for both.

Rust GPU [20] is an early-stage project with the goal of compiling Rust code to SPIR-V

(and possibly DXIL in the future). Similarly, the Circle compiler has recently added support to

compile C++ code to SPIR-V (with DXIL support in progress) [7]. Both of these projects are

working to satisfy a necessary condition for unified shader programming—the ability to author

both host code and GPU code in the same language. Circle also allows both host and GPU

code in the same file. We view Rust GPU and Circle’s C++ shaders as important first steps

toward unified shader programming in these languages. The task of compiling arbitrary Rust

and C++ code to a GPU-compatible language is a massive undertaking that benefits any engine

using these languages. However, neither of these systems include language design provisions

to allow dynamic logic in host code to influence compile-time specialization and selection of

GPU code, which is central to supporting unified shader specialization.

While these two projects do help to unify some aspects of shader programming, develop-

ers using them will still need to develop customized shader systems that handle the missing

aspects (e.g., shader modularity, composition, and specialization). If, for example, develop-

ers choose to utilize Circle’s metaprogramming features to implement these aspects, then our

work on staged metaprogramming can provide guidance for their implementations. However, if

these metaprogramming features are undesirable or unsupported in another compiler that facil-

itates host-language-to-GPU-language compilation, then our method of co-opting existing and

92

implementing them with alternate semantics may prove more useful.

Along with GPU shader code support, Circle also adds many other language features to

C++, including new general-purpose metaprogramming features.34 Using these new features, it

may be possible to build a unified shader programming system within the Circle language. The

philosophy of our work in Chapter 3 differs from that of Circle’s in two key ways. First, creating

and maintaining a compiler to add arbitrary features to a language requires significantly more

effort than our approach of using a source-to-source translator to co-opt existing features. The

resources necessary to achieve the former are prohibitive for most real-time graphics teams.

Secondarily, and more fundamentally, our goal is to create a system in which programmers

write code that looks and feels like normal C++, both to themselves and to others who may be

less familiar with the system. Therefore, we focus on introducing as few syntactic and semantic

changes to C++ as possible while still achieving our other goals.

The aforementioned BraidGL [66] is a prototype language in which both host and GPU code

are written in the base Braid language, with extensions for shader programming. Its compiler

generates Javascript for host code, GLSL for GPU code, and WebGL [36] API function calls

to set up and invoke rendering. Programmers write a top-level render loop stage (host code)

that contains a nested vertex shader stage (GPU code), which in turn contains a nested fragment

shader stage (GPU code). Code in nested stages can refer to variables in parent stages, and the

BraidGL compiler generates the appropriate WebGL functions to communicate data between

the stages. Thus, BraidGL fits our definition of a unified system for shader programming.

Our goals differs from those of BraidGL in that we aim to enable real-time graphics develop-

ers to create their own unified systems, customized to their specific needs. BraidGL presents a

specific abstraction for shader programming and maps that abstraction to the underlying graph-

ics API in a particular manner. However, engine developers may wish to provide a different

abstraction to users and/or utilize alternate graphics API functionality for invoking rendering

(e.g., direct vs. indirect dispatch) and communicating data between host and GPU code (e.g.,

uniform/constant buffers vs. individual uniform parameters). Therefore, our work explores tech-

niques for implementing unified shader programming systems, rather than advocating for any

34However, Circle does not support full staged metaprogramming as defined in Section 4.2.1, since it lacks some
of the necessary features, such as quasiquote.

93

one specific system.

94

Chapter 7

Conclusion

In this dissertation, we have proposed two methods for implementing unified shader systems for

real-time graphics programming. By co-opting existing language features and implementing

them with alternate semantics, developers can integrate unified shader programming into the

languages used in their existing engines today. On the other hand, staged metaprogramming

provides a powerful and general-purpose set of language features with which a unified shader

system can be built, without the need to modify the underlying programming language. By

exploring multiple methods for unifying the host and GPU aspects of shader programming, we

provide graphics developers with options that trade off different advantages and meet different

constraints.

Our work in Chapter 3 focuses on real-time graphics programming in C++, but we hope that

the broader lessons can be applied to other programming languages as well. Bringing unified

shader programming to other languages may involve co-opting different features depending on

the specifics of the language, but we think that the principles that guided our design are largely

transferrable to other, similar languages. This strategy enables programmers to incrementally

integrate unified designs while still maintaining compatibility with existing code, which helps

to encourage adoption of new ideas and features in existing large-scale systems.

While less useful for current engines today, staged metaprogramming has the significant

advantage of being a more flexible technique without requiring language or compiler modifica-

tions. We hope that in the future, GPU shader code will be a first-class construct in mainstream

systems programming languages, just as CUDA gives GPU compute code first-class treatment

95

in C++. However, even if shaders are better supported in modern systems languages, graphics

programming is far from achieving heterogeneity similar to CUDA. In fact, the newer graphics

APIs (Direct3D 12 [53] and Vulkan [39]) push graphics further away from this heterogeneity

by requiring lower-level management of GPU states and resources. Exploring ways to integrate

the performance benefits of these APIs into a heterogeneous environment is a challenging en-

deavor. Our experience leads us to believe that staged metaprogramming will be an important

feature of such future heterogeneous systems.

Beyond real-time graphics applications, GPU-based graphics provides a complex and well-

explored domain in which to investigate the broader concept of unified, heterogeneous pro-

gramming. In a future with potentially many different processor types (e.g., accelerators for

high-performance machine learning), we will need programming models that enable domains

to efficiently utilize a wide range of heterogeneous processing resources. The lessons learned

while studying graphics programming models can help inform such future designs. While co-

opting existing language features provides the ability to partially modify a language for other

applications, we believe that staged metaprogramming is a more powerful and more generally

useful technique applicable to a wide variety of domains. We hope that this work helps to

inform future language designs by advocating for the inclusion of more powerful metaprogram-

ming features, both in new languages and in future versions of the popular languages today.

96

Appendix A

The Implementation of Selos’s
Specialization Framework

A.1 Introduction
In this appendix, we briefly present parts of the specialization implementation in our Selos

shader system. Specifically, we show the deferred pass shader (Section A.2) and the two

ConfigurationOptions used to express specialization options and generate shader vari-

ants: TiledLightListEnv (Section A.3) and TiledDeferredMaterialType (Sec-

tion A.4). The full source code for Selos is available at https://github.com/kseitz/

selos.

A.2 Deferred Pass Shader
Listing A.1 shows the shader used to compute deferred shading in our tiled deferred renderer.

This shader would be written by a graphics developer that is implementing the deferred ren-

derer. The two ConfigurationOptions are declared on lines 5–8, a few texture images

(including the GBuffers and the output image) are declared on lines 12–14, and a uniform buffer

for the Camera data is declared on lines 16–20.

In the compute shader GPU code (lines 22–46), the shader first determines the tile ID and

pixel coordinates for the given invocation (lines 23–33) in order to fetch the shading data (in-

cluding material type ID and BRDF parameters) from the GBuffers (lines 35–36).

Then, lighting is computed by calling the illuminate function pro-

97

https://github.com/kseitz/selos
https://github.com/kseitz/selos

1 local MaterialSystem = require("MaterialSystem")
2 local LightSystem = require("LightSystem")
3
4 local pipeline DeferredMaterialShader {
5 ConfigurationOptions {
6 MaterialType = MaterialSystem.TiledDeferredMaterialType.new()
7 LightEnv = LightSystem.TiledLightListEnv.new()
8 }
9

10 numthreads(TILE_SIZE, TILE_SIZE, 1)
11
12 textureImage(Gfx.TextureFormat.RGBA32F, Gfx.MapMode.ReadOnly) gbuffers : image2D[5]
13 textureImage(Gfx.TextureFormat.RGBA16U, Gfx.MapMode.ReadOnly) tileList : uimage2D
14 textureImage(Gfx.TextureFormat.RGBA16F, Gfx.MapMode.WriteOnly) outImage : image2D
15
16 uniform Camera {
17 cameraPos : vec3
18 numTilesX : int
19 cameraVP : mat4
20 }
21
22 compute code
23 var tileIDxyzw : uvec4 =
24 imageLoad(tileList, make_ivec2(WorkGroupID.x / 4, [getConfigurationID()]))
25 var tileID = tileIDxyzw(WorkGroupID.x % 4)
26
27 var tileCoords = make_ivec2(tileID % numTilesX, tileID / numTilesX)
28
29 var locID : ivec2
30 locID.x = LocalInvocationID.x
31 locID.y = LocalInvocationID.y
32
33 var pixelCoords = (tileCoords * TILE_SIZE) + locID
34
35 var sd : MaterialType:ShadingDataType()
36 [GBufferShadingData.prepare(gbuffers, cameraPos, pixelCoords, sd)]
37
38 var clipZ : float = (cameraVP * make_vec4(sd.wPos, 1f)).z
39
40 var colorAcc = [LightEnv:illuminate(MaterialType)](sd, clipZ, tileID)
41
42 colorAcc = colorAcc + sd.emissive
43
44 var color = make_vec4(colorAcc, 1)
45 imageStore(outImage, pixelCoords, color)
46 end
47 }

Listing A.1: The Selos deferred shader used in our design space exploration framework. A
graphics programmer might author such a shader.

98

vided by the TiledLightListEnv (line 40). Notice the brackets around

[LightEnv:illuminate(...)]. They indicate a Lua-Terra escape (i.e., staged

metaprogramming’s unquote). LightEnv:illuminate() is a Lua function that returns a

Terra function, which is then spliced into the shader on line 40. This staged metaprogramming

functionality allows us to generate different versions of the deferred shader, specialized to a

particular lighting environment (Section A.3). Similarly, this code passes the MaterialType

to the illuminate function, so that the generated code can be specialized based on a

particular set of material BRDFs (Section A.4).

A.2.1 Light Types

Separate from this shader, a graphics developer or technical artist would author the code to

implement various light and material types. Listing A.2 shows an example implementation of a

light type.

This code declares a struct for the light’s data (lines 1–4), which can be used in both host

and GPU code. It includes a function for determining if the object being rendered is in shadow

(lines 6–15). Lines 17–43 express the illumination function for this light type. Because we wish

to specialize based on material types as well, the function declared on line 17 is a Lua function

that returns a Terra function. The Terra function, specialized for a given set of material types,

will be spliced into the deferred shader during shader compilation.

The code to compute material shading will be spliced into this Terra function on line 39,

in place of [MaterialType:eval(...)]. The TiledLightListEnv implementation

will call the Lua illuminate() functions for each active light type in order to generate a

specialized deferred shader variant, as we will show in Section A.3. The code registers the light

type with the system on line 45, setting the last parameter to true to indicate that the light type

is cullable. The registerLight() function is provided by the shader system (and, thus,

written by an engine developer), and it adds the light type to the list of all light types so that the

rest of the system can operate on it.

99

1 local struct ShadowedPointLight {
2 intensity : vec3
3 position : vec3
4 }
5
6 terra ShadowedPointLight.isInShadow(light : ShadowedPointLight,
7 shadowMap : samplerCube, wPos : vec3, normal : vec3,
8 farPlane : float, idx : int)
9 var fragToLight = wPos - light.position

10 var closestDepth = textureLod(shadowMap, fragToLight, 0).r
11 closestDepth = closestDepth * farPlane
12 var currentDepth = length(fragToLight)
13 var bias = 0.05f
14 return currentDepth - bias > closestDepth
15 end
16
17 function ShadowedPointLight:illuminate(MaterialType)
18 local terra illuminate(l : ShadowedPointLight,
19 sd : MaterialType:ShadingDataType())
20 var dir = l.position - sd.wPos
21 var dist = length(dir)
22
23 if dist >= POINT_LIGHT_RADIUS then
24 return make_vec3(0,0,0)
25 end
26
27 var distSquared = dot(dir, dir)
28
29 if distSquared > 0.00001f then
30 dir = normalize(dir)
31 else
32 dir = make_vec3(0,0,0)
33 end
34
35 var falloff = getDistanceFalloff(distSquared)
36 var intensity = l.intensity * falloff
37 var ls = make_LightSample(intensity, dir, sd.eyeDir, sd.normal)
38
39 return [MaterialType:eval(LightSample)](sd, ls)
40 end
41
42 return illuminate
43 end
44
45 registerLight(ShadowedPointLight, MAX_SHADOWED_POINT_LIGHTS, true)

Listing A.2: An example light type implementation in Selos. A graphics programmer or
technical artist might author such an implementation.

100

A.2.2 Material Types

Similar to light types, a graphics programmer or technical artist would also create various ma-

terial types to express different BRDF options. Listing A.3 shows an example.

This code computes the diffuse (lines 10–12) and specular (lines 15–21) components for

our StandardMaterial type. Each material type implementation must contain an eval

function (lines 2–25) that the TiledDeferredMaterialType will splice into the deferred

shader for the active set of material types (Section A.4). Notice that the code for the eval

function is stored directly in the StandardMaterial data structure, which is then passed to

the registerMaterial() function (which is written by an engine developer) on line 27.

The ability to treat code as a first-class construct in the programming language is a key feature

of staged metaprogramming.

1 local StandardMaterial = {
2 eval = terra(sd : ShadingData, ls : LightSample)
3 if ls.NdotL <= 0 then
4 return make_vec3(0,0,0)
5 end
6
7 var NdotV = saturate(dot(sd.normal, sd.eyeDir))
8
9 -- diffuse component

10 var diffuseBrdf = evalDiffuseFrostbiteBrdf(
11 sd.linearRoughness, NdotV, sd.diffuse, ls);
12 var diffuse = ls.intensity * diffuseBrdf * ls.NdotL;
13
14 -- specular component
15 var roughness = sd.linearRoughness * sd.linearRoughness;
16 var D = evalGGX(roughness, ls.NdotH);
17 var G = evalSmithGGX(ls.NdotL, NdotV, roughness);
18 var F = fresnelSchlick(sd.specular, make_vec3(1,1,1),
19 max(0, ls.LdotH));
20 var specularBrdf = D * G * F * kINV_PI;
21 var specular = ls.intensity * specularBrdf * ls.NdotL;
22
23 var color = diffuse + specular
24 return color
25 end
26 }
27 registerMaterial(StandardMaterial)

Listing A.3: An example material type implementation in Selos. A graphics programmer or
technical artist might author such an implementation.

101

A.3 Specialization of Light Types
We now show the core functionality for specializing based on light types in Listing A.4. This

functionality would be implemented by an expert graphics programmer. Note that we simplified

this listing and omit some of the other parts of the implementation for brevity and clarity, in

order to focus on the most relevant portions.

1 function TiledLightListEnv:illuminate(MaterialType)
2 local sd = symbol(MaterialType:ShadingDataType(), "sd")
3 local clipZ = symbol(float, "clipZ")
4 local tileID = symbol(int, "tileID")
5 local colorAcc = symbol(vec3, "colorAcc")
6
7 local quoteList = terralib.newlist()
8
9 local cullableLights = getCullableLights()

10 for k, v in ipairs(cullableLights) do
11 if self.statusList[k] then
12 quoteList:insert(quote
13 for idx=0, self.lightLists[tileID].["num" .. v.name] do
14 var i = self.lightLists[tileID].["idx" .. v.name][idx]
15 var l = self.uniformBlock.["all" .. v.name][i]
16
17 var isInShadow = [generateShadowCode(v, l, i)]
18
19 if not isInShadow then
20 colorAcc =
21 colorAcc + [v:illuminate(MaterialType)](l, sd)
22 end
23 end
24 end)
25 end
26 end
27
28 local terra illuminate([sd], [clipZ], [tileID])
29 var [colorAcc] = make_vec3(0,0,0)
30 [quoteList]
31 return colorAcc
32 end
33
34 return illuminate
35 end

Listing A.4: The implementation of TiledLightListEnv in Selos. This ConfigurationOption
is responsible for specializing the deferred shader based on light types. An expert graphics
programmer would author such an implementation.

102

Lines 2–5 create symbols that allow these specific variables to violate lexical scoping rules.

This functionality allows these variables to be used in multiple different quotes in the rest of the

function (whereas variables declared within a quote cannot permeate outside of that quote).

The function then iterates over the light types that are cullable (lines 9–26). If the variant

currently being generated should include code to evaluate the given light type (line 11), then a

Terra quote is created (lines 12–24) to loop over the lights of this type (lines 13–23). This loop

fetches the runtime data for a light (lines 14–15) and evaluates shadow mapping if applicable

(line 17). Then, the light type’s illuminate function is called to splice in the code to evaluate

the light (line 21).

After iterating over all cullable light types and building up a list of Terra quotes for the active

ones, a Terra function is created (lines 28–32), and these quotes are spliced into the function

using an escape (line 30). Finally, the generated function is returned (line 34), where it will then

be spliced into the deferred shader, as shown on Listing A.1 line 40.

Staged metaprogramming enables Listing A.4 to operate on code using a fully featured

language. It iterates over the various light types, builds up a data structure containing code

(using regular language if statements to decide which code to include), and then unquotes the

code into a function that will be executed by the deferred shader’s GPU code.

A.4 Specialization of Material Types
The implementation of the TiledDeferredMaterialType would also be written by an

expert graphics programmer, and it follows a similar pattern as the implementation of light type

specialization presented above. Listing A.5 shows relevant portions of code (again simplified

for clarity and brevity).

This function first determines how many material types should be included in the variant it

is currently generating (lines 3–11). Then, it creates a Terra function that will be spliced into the

shader to perform material shading (lines 13–41). If only one material type is active, its eval

function will be spliced directly into the code (lines 17–22). Otherwise, the code iterates over all

material types (lines 26–37). If a given type should be included in the variant (line 28), then its

eval function is again spliced in (line 31). However, because the material types are mutually

103

1 local function TiledDeferredMaterialType:eval(ShadingData,
2 LightSample, statusList, componentMask)
3 local numEnabled = 0
4 local lastEnabled = -1
5
6 for i, v in ipairs(statusList) do
7 if v ~= FEATURE_STATUS.DISABLED then
8 numEnabled = numEnabled + 1
9 lastEnabled = i

10 end
11 end
12
13 local terra evalMaterial(sd : ShadingData, ls : LightSample)
14 [(function()
15
16 -- Statically specialize if only one material is enabled
17 if numEnabled == 1 then
18 local matl = MaterialTypes.asList[lastEnabled]
19 return quote
20 return [matl.eval(ShadingData, LightSample)](sd, ls)
21 end
22 end
23
24 local ifStatements = quote return make_vec3(0,0,0) end
25
26 for i = #MaterialTypes.asList, 1, -1 do
27 local matl = MaterialTypes.asList[i]
28 if statusList[i] == FEATURE_STATUS.ENABLED then
29 ifStatements = quote
30 if ([matl.bitflag] and sd.materialMask) > 0 then
31 return [matl.eval(ShadingData, LightSample)](sd, ls)
32 else
33 [ifStatements]
34 end
35 end
36 end
37 end
38
39 return ifStatements
40 end)()]
41 end
42
43 return evalMaterial
44 end

Listing A.5: The implementation of TiledDeferredMaterialType in Selos. This
ConfigurationOption is responsible for specializing the deferred shader based on material types.
An expert graphics programmer would author such an implementation.

104

exclusive (per pixel), the call to a material type’s eval function must be nested under a runtime

if statement in the GPU shader code (line 30). For example, if the system is generating a

variant containing only the StandardMaterial and ClothMaterial, lines 26–37 would

produce the following Terra code:

if (1 and sd.materialMask > 0) then
return evalStandardMaterial(sd, ls)

else
if (4 and sd.materialMask > 0) then

return evalClothMaterial(sd,ls)
else

return make_vec3(0,0,0)
end

end

This code is stored in the ifStatements variable (lines 24, 29, and 33), which is then spliced

into the generated evalMaterial Terra function (line 39). This Terra function is returned

and unquoted into the shader (e.g., as shown on Listing A.2 line 39).

The key features of staged metaprogramming drive our implementation of this functionality,

as evidenced by our extensive use of quotes to programmatically create Terra code, which are

then stored in data structures, and finally specialized and unquoted into the shader code to

generate specialized variants.

A.5 Generated HLSL and GLSL code
After applying a specialization decision, the final HLSL and GLSL code generated by Selos

is a fairly straightforward translation from Terra to these shading languages. Selos’s backends

produce human-readable code to help facilitate debugging. Instructions for generating all of the

variants used by our deferred renderer are available at https://github.com/kseitz/

selos.

105

https://github.com/kseitz/selos
https://github.com/kseitz/selos

REFERENCES

[1] Amazon Web Services, Inc. Amazon Lumberyard. https://aws.amazon.com/
lumberyard/, 2021.

[2] Johan Andersson. DirectX 11 Rendering in Battlefield 3. In Game Developers Conference
2011, GDC 2011, February/March 2011. https://www.ea.com/frostbite/
news/directx-11-rendering-in-battlefield-3

[3] Apple Inc. Metal. https://developer.apple.com/documentation/metal,
2014.

[4] Apple Inc. Metal Shading Language Specification Version
2.3, 2021. https://developer.apple.com/metal/
Metal-Shading-Language-Specification.pdf

[5] Alan Bawden and Jonathan Rees. Syntactic Closures. In Proceedings of the 1988 ACM
Conference on LISP and Functional Programming, LFP ’88, pages 86–95, July 1988.
https://dx.doi.org/10.1145/62678.62687

[6] Sean Baxter. Circle. https://github.com/seanbaxter/circle, 2019.

[7] Sean Baxter. Circle C++ Shaders. https://github.com/seanbaxter/
shaders/blob/master/README.md, 2021.

[8] Nir Benty, Kai-Hwa Yao, Petrik Clarberg, Lucy Chen, Simon Kallweit, T. Foley, Matthew
Oakes, Conor Lavelle, and Chris Wyman. The Falcor Rendering Framework. https:
//github.com/NVIDIAGameWorks/Falcor, August 2020.

[9] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implementing Multi-
stage Languages Using ASTs, Gensym, and Reflection. In Proceedings of the 2nd
International Conference on Generative Programming and Component Engineering,
GPCE 2003, pages 57–76, September 2003. https://dx.doi.org/10.1007/
978-3-540-39815-8_4

[10] Shigeru Chiba. A Metaobject Protocol for C++. In Proceedings of the Tenth An-
nual Conference on Object-oriented Programming Systems, Languages, and Applications,
OOPSLA’95, pages 285–299, October 1995. https://dx.doi.org/10.1145/
217838.217868

[11] Matus Chochlik, Axel Naumann, and David Sankel. Static Reflection. C++ Standards
Committee Papers, March 2018. http://wg21.link/p0194

[12] Petrik Clarberg and Jacob Munkberg. Deep Shading Buffers on Commodity GPUs. ACM
Transactions on Graphics, 33(6):227:1–227:12, November 2014. https://dx.doi.
org/10.1145/2661229.2661245

106

https://aws.amazon.com/lumberyard/
https://aws.amazon.com/lumberyard/
https://www.ea.com/frostbite/news/directx-11-rendering-in-battlefield-3
https://www.ea.com/frostbite/news/directx-11-rendering-in-battlefield-3
https://developer.apple.com/documentation/metal
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://dx.doi.org/10.1145/62678.62687
https://github.com/seanbaxter/circle
https://github.com/seanbaxter/shaders/blob/master/README.md
https://github.com/seanbaxter/shaders/blob/master/README.md
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://dx.doi.org/10.1007/978-3-540-39815-8_4
https://dx.doi.org/10.1007/978-3-540-39815-8_4
https://dx.doi.org/10.1145/217838.217868
https://dx.doi.org/10.1145/217838.217868
http://wg21.link/p0194
https://dx.doi.org/10.1145/2661229.2661245
https://dx.doi.org/10.1145/2661229.2661245

[13] Robert L. Cook. Shade Trees. In Computer Graphics (Proceedings of SIGGRAPH 84),
pages 223–231, July 1984.

[14] Russ Cox, Tom Bergan, Austin T. Clements, Frans Kaashoek, and Eddie Kohler. Xoc,
an Extension-Oriented Compiler for Systems Programming. In Proceedings of the Thir-
teenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XIII, pages 244–254, March 2008. https://dx.
doi.org/10.1145/1346281.1346312

[15] Lewis Crawford and Michael O’Boyle. Specialization Opportunities in Graphical Work-
loads. In Proceedings of the 28th International Conference on Parallel Architectures
and Compilation Techniques, PACT 2019, pages 272–283, September 2019. https:
//dx.doi.org/10.1109/PACT.2019.00029

[16] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. Terra: A Multi-
Stage Language for High-Performance Computing. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI 2013,
pages 105–116, 2013. https://dx.doi.org/10.1145/2491956.2462166

[17] Ramy El Garawany. Deferred Lighting in Uncharted 4. In ACM SIGGRAPH 2016
Courses, SIGGRAPH 2016, July 2016. Part of the course: Advances in Real-Time Ren-
dering, Part I, https://dx.doi.org/10.1145/2897826.2940291

[18] Electronic Arts Inc. Frostbite Engine. https://www.ea.com/frostbite, 2021.

[19] Conal Elliott. Programming Graphics Processors Functionally. In Proceedings of the
2004 ACM SIGPLAN Workshop on Haskell, Haskell ’04, pages 45–56, September 2004.
https://dx.doi.org/10.1145/1017472.1017482

[20] Embark Studios. Rust GPU. https://github.com/EmbarkStudios/
rust-gpu, 2021.

[21] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: A Language for High-
level, Efficient, and Machine-Independent Dynamic Code Generation. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1996, pages 131–144, January 1996. https://dx.doi.org/10.
1145/237721.237765

[22] Epic Games. Infiltrator Demo. https://www.unrealengine.com/
marketplace/en-US/product/infiltrator-demo, August 2015.

[23] Epic Games. Unreal Engine Sun Temple, Open Research Content Archive (ORCA).
https://developer.nvidia.com/ue4-sun-temple, October 2017.

[24] Epic Games, Inc. Unreal Engine 4 Documentation. https://docs.
unrealengine.com/en-us/, 2019.

107

https://dx.doi.org/10.1145/1346281.1346312
https://dx.doi.org/10.1145/1346281.1346312
https://dx.doi.org/10.1109/PACT.2019.00029
https://dx.doi.org/10.1109/PACT.2019.00029
https://dx.doi.org/10.1145/2491956.2462166
https://dx.doi.org/10.1145/2897826.2940291
https://www.ea.com/frostbite
https://dx.doi.org/10.1145/1017472.1017482
https://github.com/EmbarkStudios/rust-gpu
https://github.com/EmbarkStudios/rust-gpu
https://dx.doi.org/10.1145/237721.237765
https://dx.doi.org/10.1145/237721.237765
https://www.unrealengine.com/marketplace/en-US/product/infiltrator-demo
https://www.unrealengine.com/marketplace/en-US/product/infiltrator-demo
https://developer.nvidia.com/ue4-sun-temple
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/

[25] Matthew Flatt. Composable and Compilable Macros: You Want It When? In Proceed-
ings of the Seventh ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2002, pages 72–83, October 2002. https://dx.doi.org/10.1145/
581478.581486

[26] T. Foley. A Modern Programming Language for Real-Time Graphics: What is Needed? In
ACM SIGGRAPH 2016 Courses, SIGGRAPH 2016, July 2016. Part of the course: Open
Problems in Real-Time Rendering, https://dx.doi.org/10.1145/2897826.
2940293

[27] T. Foley and Pat Hanrahan. Spark: Modular, Composable Shaders for Graphics Hardware.
ACM Transactions on Graphics, 30(4):107:1–107:12, July 2011. https://dx.doi.
org/10.1145/2010324.1965002

[28] Yoshihiko Futamura. Partial Computation of Programs. In RIMS Symposium on Software
Science and Engineering, pages 1–35, 1983. https://dx.doi.org/10.1007/
3-540-11980-9_13

[29] Kate Gregory and Ade Miller. C++ AMP: Accelerated Massive Parallelism with Mi-
crosoft® Visual C++®. Microsoft Press, October 2012.

[30] Romain Guy and Mathias Agopian. Filament. https://github.com/google/
filament, 2019.

[31] Pat Hanrahan and Jim Lawson. A Language for Shading and Lighting Calculations. In
Computer Graphics (Proceedings of SIGGRAPH 90), pages 289–298, August 1990.

[32] Yong He, Kayvon Fatahalian, and T. Foley. Slang: Language Mechanisms for Extensible
Real-time Shading Systems. ACM Transactions on Graphics, 37(4):141:1–141:13, July
2018. https://dx.doi.org/10.1145/3197517.3201380

[33] Yong He, T. Foley, and Kayvon Fatahalian. A System for Rapid Exploration of Shader
Optimization Choices. ACM Transactions on Graphics, 35(4):112:1–112:12, July 2016.
https://dx.doi.org/10.1145/2897824.2925923

[34] Qiming Hou, Kun Zhou, and Baining Guo. BSGP: Bulk-Synchronous GPU Programming.
ACM Transactions on Graphics, 27(3):19:1–19:13, August 2008. https://dx.doi.
org/10.1145/1360612.1360618

[35] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes Filho. Lua—
An Extensible Extension Language. Software: Practice and Experience, 26(6):635–652,
June 1996. https://dx.doi.org/10.1002/(SICI)1097-024X(199606)
26:6<635::AID-SPE26>3.0.CO;2-P

[36] Dean Jackson and Jeff Gilbert. WebGL Specification. The Khronos WebGL Work-
ing Group, 2021. https://www.khronos.org/registry/webgl/specs/
latest/1.0/

108

https://dx.doi.org/10.1145/581478.581486
https://dx.doi.org/10.1145/581478.581486
https://dx.doi.org/10.1145/2897826.2940293
https://dx.doi.org/10.1145/2897826.2940293
https://dx.doi.org/10.1145/2010324.1965002
https://dx.doi.org/10.1145/2010324.1965002
https://dx.doi.org/10.1007/3-540-11980-9_13
https://dx.doi.org/10.1007/3-540-11980-9_13
https://github.com/google/filament
https://github.com/google/filament
https://dx.doi.org/10.1145/3197517.3201380
https://dx.doi.org/10.1145/2897824.2925923
https://dx.doi.org/10.1145/1360612.1360618
https://dx.doi.org/10.1145/1360612.1360618
https://dx.doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
https://dx.doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
https://www.khronos.org/registry/webgl/specs/latest/1.0/
https://www.khronos.org/registry/webgl/specs/latest/1.0/

[37] John Kessenich, Dave Baldwin, and Randi Rost. The OpenGL© Shading Language
(Version 4.50). The Khronos Group Inc., 2017. https://www.khronos.org/
registry/OpenGL/specs/gl/GLSLangSpec.4.50.pdf

[38] John Kessenich and Boaz Ouriel. SPIR-V Specification (Version 1.00). The Khronos
Group Inc., 2018. https://www.khronos.org/registry/spir-v/specs/
1.0/SPIRV.pdf

[39] Khronos Group. Vulkan 1.0.12 - A Specification. The Khronos Group Inc., 2016. https:
//www.khronos.org/registry/vulkan/specs/1.0/pdf/vkspec.pdf

[40] Roland Kuck and Gerold Wesche. A Framework for Object-Oriented Shader Design. In
Advances in Visual Computing, ISVC 2009, pages 1019––1030, 2009. https://dx.
doi.org/10.1007/978-3-642-10331-5_95

[41] Paul Lalonde and Eric Schenk. Shader-Driven Compilation of Rendering Assets. ACM
Transactions on Graphics, 21(3):713–720, July 2002. https://dx.doi.org/10.
1145/566654.566641

[42] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the 2004 International Symposium on Code
Generation and Optimization, CGO ’04, pages 75–86, March 2004. https://dx.
doi.org/10.1109/CGO.2004.1281665

[43] Calle Lejdfors and Lennart Ohlsson. PyFX – An Active Effect Framework. In Pro-
ceedings of The Annual SIGRAD Conference Special Theme — Environmental Visualiza-
tion, SIGRAD 2004, pages 17–24, November 2004. http://www.ep.liu.se/ecp/
article.asp?issue=013&article=006

[44] Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A User-Programmable Vertex En-
gine. In Proceedings of the 28th Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH 2001, pages 149–158, August 2001. https://dx.doi.
org/10.1145/383259.383274

[45] Juan Linietsky, Ariel Manzur, and contributors. Godot Engine. https://
godotengine.org/, 2021.

[46] Ronan Marchalot. Cluster Forward Rendering and Anti-Aliasing in ‘De-
troit: Become Human’. In Game Developers Conference 2018, GDC
2018, March 2018. https://www.gdcvault.com/play/1025420/
Cluster-Forward-Rendering-and-Anti

[47] Stephen McAuley. The Challenges of Rendering an Open World in Far Cry 5. In ACM
SIGGRAPH 2018 Courses, SIGGRAPH 2018, August 2018. Part of the course: Ad-
vances in Real-time Rendering in Games, Part I, https://dx.doi.org/10.1145/
3214834.3264541

109

https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.50.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.50.pdf
https://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.pdf
https://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.pdf
https://www.khronos.org/registry/vulkan/specs/1.0/pdf/vkspec.pdf
https://www.khronos.org/registry/vulkan/specs/1.0/pdf/vkspec.pdf
https://dx.doi.org/10.1007/978-3-642-10331-5_95
https://dx.doi.org/10.1007/978-3-642-10331-5_95
https://dx.doi.org/10.1145/566654.566641
https://dx.doi.org/10.1145/566654.566641
https://dx.doi.org/10.1109/CGO.2004.1281665
https://dx.doi.org/10.1109/CGO.2004.1281665
http://www.ep.liu.se/ecp/article.asp?issue=013&article=006
http://www.ep.liu.se/ecp/article.asp?issue=013&article=006
https://dx.doi.org/10.1145/383259.383274
https://dx.doi.org/10.1145/383259.383274
https://godotengine.org/
https://godotengine.org/
https://www.gdcvault.com/play/1025420/Cluster-Forward-Rendering-and-Anti
https://www.gdcvault.com/play/1025420/Cluster-Forward-Rendering-and-Anti
https://dx.doi.org/10.1145/3214834.3264541
https://dx.doi.org/10.1145/3214834.3264541

[48] John McCarthy. Recursive Functions of Symbolic Expressions and Their Computation
by Machine, Part I. Communications of the ACM, 3(4):184–195, April 1960. https:
//dx.doi.org/10.1145/367177.367199

[49] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader Metaprogramming. In Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware,
HWWS ’02, pages 57–68, September 2002. http://dl.acm.org/citation.
cfm?id=569046.569055

[50] Morgan McGuire, George Stathis, Hanspeter Pfister, and Shriram Krishnamurthi. Abstract
Shade Trees. In Proceedings of the 2006 Symposium on Interactive 3D Graphics and
Games, I3D 2006, pages 79–86, March 2006. https://dx.doi.org/10.1145/
1111411.1111425

[51] Microsoft. Effect Format (Direct3D 11). https://msdn.microsoft.com/
en-us/library/windows/desktop/ff476118(v=vs.85).aspx, 2010.

[52] Microsoft. Shader Model 5.1. https://msdn.microsoft.com/en-us/
library/windows/desktop/dn933277(v=vs.85).aspx, 2014.

[53] Microsoft. Direct3D 12 Programming Guide. https://docs.
microsoft.com/en-us/windows/desktop/direct3d12/
directx-12-programming-guide, 2017.

[54] Microsoft. Interfaces and Classes. https://docs.
microsoft.com/en-us/windows/win32/direct3dhlsl/
overviews-direct3d-11-hlsl-dynamic-linking-class, 2018.

[55] Microsoft. DirectX Shader Compiler. https://github.com/Microsoft/
DirectXShaderCompiler, 2019.

[56] Microsoft. Direct3D. https://docs.microsoft.com/en-us/windows/
win32/direct3d, 2020.

[57] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Program-
ming Guide, January 2007. http://developer.nvidia.com/cuda.

[58] NVIDIA Corporation. Introduction to CgFX. http://http.developer.nvidia.
com/CgTutorial/cg_tutorial_chapter01.html, 2010.

[59] Yuriy O’Donnell. FrameGraph: Extensible Rendering Architecture in
Frostbite. In Game Developers Conference 2017, GDC 2017, Febru-
ary/March 2017. https://www.gdcvault.com/play/1024612/
FrameGraph-Extensible-Rendering-Architecture-in

[60] Arsène Pérard-Gayot, Richard Membarth, Roland Leißa, Sebastian Hack, and Philipp
Slusallek. Rodent: Generating Renderers Without Writing a Generator. ACM Transac-
tions on Graphics, 38(4):40:1–40:12, July 2019. https://dx.doi.org/10.1145/
3306346.3322955

110

https://dx.doi.org/10.1145/367177.367199
https://dx.doi.org/10.1145/367177.367199
http://dl.acm.org/citation.cfm?id=569046.569055
http://dl.acm.org/citation.cfm?id=569046.569055
https://dx.doi.org/10.1145/1111411.1111425
https://dx.doi.org/10.1145/1111411.1111425
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476118(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476118(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn933277(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn933277(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows/desktop/direct3d12/directx-12-programming-guide
https://docs.microsoft.com/en-us/windows/desktop/direct3d12/directx-12-programming-guide
https://docs.microsoft.com/en-us/windows/desktop/direct3d12/directx-12-programming-guide
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/overviews-direct3d-11-hlsl-dynamic-linking-class
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/overviews-direct3d-11-hlsl-dynamic-linking-class
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/overviews-direct3d-11-hlsl-dynamic-linking-class
https://github.com/Microsoft/DirectXShaderCompiler
https://github.com/Microsoft/DirectXShaderCompiler
https://docs.microsoft.com/en-us/windows/win32/direct3d
https://docs.microsoft.com/en-us/windows/win32/direct3d
http://developer.nvidia.com/cuda
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
https://www.gdcvault.com/play/1024612/FrameGraph-Extensible-Rendering-Architecture-in
https://www.gdcvault.com/play/1024612/FrameGraph-Extensible-Rendering-Architecture-in
https://dx.doi.org/10.1145/3306346.3322955
https://dx.doi.org/10.1145/3306346.3322955

[61] Matt Pharr. An Introduction to Shader Interfaces. In GPU Gems (edited by Randima
Fernando), chapter 32, pages 537–550. Addison Wesley, March 2004.

[62] Aras Pranckevičius. HLSL to GLSL Shader Language Translator. https://github.
com/aras-p/hlsl2glslfork, 2013.

[63] Aras Pranckevičius, October 2016. Personal Communication.

[64] Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov, and Pat Hanrahan. A Real-Time
Procedural Shading System for Programmable Graphics Hardware. In Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
2001, pages 159–170, August 2001. https://dx.doi.org/10.1145/383259.
383275

[65] Rust Project Developers. The Rust Programming Language. https://doc.
rust-lang.org/book/, 2015.

[66] Adrian Sampson, Kathryn S. McKinley, and Todd Mytkowicz. Static Stages for
Heterogeneous Programming. Proceedings of the ACM on Programming Lan-
guages, 1(OOPSLA):71:1–71:27, October 2017. https://dx.doi.org/10.1145/
3133895

[67] Mark Segal, Kurt Akeley, Chris Frazier, Jon Leech, and Pat Brown. The OpenGL© Graph-
ics System: A Specification (Version 4.5 (Core Profile) - June 29, 2017). The Khronos
Group Inc., 2017. https://www.khronos.org/registry/OpenGL/specs/
gl/glspec45.core.pdf

[68] Kerry A. Seitz, Jr., T. Foley, Serban D. Porumbescu, and John D. Owens. Staged Metapro-
gramming for Shader System Development. ACM Transactions on Graphics, 38(6):202:1–
202:15, November 2019. https://dx.doi.org/10.1145/3355089.3356554

[69] Tiago Sousa and Jean Geffroy. The Devil Is in the Details: idTech 666. In ACM SIG-
GRAPH 2016 Courses, SIGGRAPH 2016, July 2016. Part of the course: Advances
in Real-Time Rendering, Part II, https://dx.doi.org/10.1145/2897826.
2940292

[70] Gerald Jay Sussman and Guy L. Steele, Jr. Scheme: A Interpreter for Extended Lambda
Calculus. Higher-Order and Symbolic Computation, 11(4):405–439, December 1998.
https://dx.doi.org/10.1023/A:1010035624696

[71] Herb Sutter. Metaclasses: Generative C++. C++ Standards Committee Papers, February
2018. http://wg21.link/P0707

[72] Walid Taha. Multi-Stage Programming: Its Theory and Applications. Ph.D. thesis, Oregon
Graduate Institute of Science and Technology, Beaverton, OR, USA, November 1999.

[73] Walid Taha and Tim Sheard. MetaML and Multi-Stage Programming With Explicit An-
notations. Theoretical Computer Science, 248(1–2):211–242, October 2000. https:
//dx.doi.org/10.1016/S0304-3975(00)00053-0

111

https://github.com/aras-p/hlsl2glslfork
https://github.com/aras-p/hlsl2glslfork
https://dx.doi.org/10.1145/383259.383275
https://dx.doi.org/10.1145/383259.383275
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://dx.doi.org/10.1145/3133895
https://dx.doi.org/10.1145/3133895
https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://dx.doi.org/10.1145/3355089.3356554
https://dx.doi.org/10.1145/2897826.2940292
https://dx.doi.org/10.1145/2897826.2940292
https://dx.doi.org/10.1023/A:1010035624696
http://wg21.link/P0707
https://dx.doi.org/10.1016/S0304-3975(00)00053-0
https://dx.doi.org/10.1016/S0304-3975(00)00053-0

[74] Natalya Tatarchuk and Chris Tchou. Destiny Shader Pipeline. In Game Devel-
opers Conference 2017, GDC 2017, February/March 2017. http://advances.
realtimerendering.com/destiny/gdc_2017/

[75] The Khronos Vulkan Working Group. Vulkan 1.1.178 - A Specification (with KHR exten-
sions), chapter 10.8. Specialization Constants. The Khronos Group Inc., 2021. https:
//www.khronos.org/registry/vulkan/specs/1.1-khr-extensions/
html/chap10.html#pipelines-specialization-constants

[76] Unity Technologies. Unity User Manual (2019.1). https://docs.unity3d.com/
Manual/index.html, 2019.

[77] Daveed Vandevoorde and Louis Dionne. Exploring the Design Space of Metaprogram-
ming and Reflection. C++ Standards Committee Papers, March 2017. http://wg21.
link/P0633

112

http://advances.realtimerendering.com/destiny/gdc_2017/
http://advances.realtimerendering.com/destiny/gdc_2017/
https://www.khronos.org/registry/vulkan/specs/1.1-khr-extensions/html/chap10.html#pipelines-specialization-constants
https://www.khronos.org/registry/vulkan/specs/1.1-khr-extensions/html/chap10.html#pipelines-specialization-constants
https://www.khronos.org/registry/vulkan/specs/1.1-khr-extensions/html/chap10.html#pipelines-specialization-constants
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html
http://wg21.link/P0633
http://wg21.link/P0633

	Title Page
	Contents
	List of Figures
	List of Tables
	List of Code Listings
	Abstract
	Acknowledgments
	Introduction
	Contributions

	Background
	Terminology and Key Concepts
	Shader Programming
	GPU Shader Code
	Host Shader Code (in Unreal Engine 4)
	Issues in a Non-Unified Environment

	Modern Shader System Implementations
	Plain C++ and HLSL
	A Layered DSL with Embedded HLSL
	A DSL That Manipulates and Generates HLSL
	Modifying HLSL
	Summary

	Unified Shader Programming in C++
	Goals, Constraints, and Non-Goals
	Design Decisions
	C++ for Both Host and GPU Code
	Use C++ Attributes to Express Declarations Specific to Shader Programming
	Modularize Host and GPU Shader Code Using Classes
	Implement Specialization by Co-opting Virtual Function Calls
	Limitations

	Translation Tool Implementation
	Evaluation
	ShaderClass Modularity
	Lines of Code
	Performance

	Chapter Conclusion

	Staged Metaprogramming for Shader System Development
	Design Goals
	Staged Metaprogramming
	Definition
	Example Shader
	Lua-Terra: A Research Substrate for Staged Metaprogramming
	Limitations of Staged Metaprogramming

	Other Key Design Decisions
	Represent Shaders as Compile-time Lua Objects
	Write Shader Definitions Using a DSL
	Write Shader Logic and Application Code in the Same Language
	Generate Runtime Data Structures for Shaders
	Implement Complex Specialization Options Using Staged Metaprogramming Constructs Directly

	Exploring the Specialization Design Space
	Background and Motivation
	Experimental Setup
	Performance Results

	The Future of Metaprogramming in C++
	Chapter Conclusion

	Discussion
	Analysis of Co-opting Existing Features
	Analysis of Staged Metaprogramming
	Future Work
	Supporting Additional Shader Types
	Static, Dynamic, and Hybrid Dispatch Strategies
	Real-time Ray Tracing
	Co-opting the Features of Rust
	Adding Staged Metaprogramming to Another Language
	Future Opportunities Enabled by Unified Programming

	Related Work
	Shader Programming in GPU-based Graphics APIs
	Extended Shader Programming Models
	Multi-Stage Programming and Syntax Extension
	Shader Metaprogramming
	Single-Language Shader Programming

	Conclusion
	The Implementation of Selos's Specialization Framework
	Introduction
	Deferred Pass Shader
	Light Types
	Material Types

	Specialization of Light Types
	Specialization of Material Types
	Generated HLSL and GLSL code

	References

