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A R T I C L E  I N F O   
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A B S T R A C T   

Defining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology 
may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. 
Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger- 
onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. 
To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical 
thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological 
changes in cognitively normal individuals. 

We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight 
Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the 
Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three 
groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and 
cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and am
yloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. 

To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the 
cognitively normal controls and impaired groups within each cohort using six increasingly conservative statis
tical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was 
determined from a receiver operating characteristic analysis testing the performance of each map in discrimi
nating between the cognitively normal controls and preclinical groups. We then performed within-cohort and 
cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the 
optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively 
normal controls and preclinical groups) in comparison to hippocampal volume. 

We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymp
tomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus 
volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest 
the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical 
individuals and the pattern of decline differs between LOAD and ADAD.   

1. Introduction 

Alzheimer disease (AD) is defined pathologically by the accumula
tion of amyloid plaques and neurofibrillary tangles. Amyloid pathology 
is detectable almost 20 years before symptom onset and is followed by 
limbic and neocortical neurofibrillary tangles (Bateman et al., 2012; 
Hardy and Higgins, 1992; Jack et al., 2013). Cognitively, AD manifests 
as a cortical dementia. Cerebral atrophy occurs nearer to onset and is 
more closely related, spatially and temporally, to cognitive decline. 
(Aschenbrenner et al., 2018; Brier et al., 2016a; Ossenkoppele et al., 
2019). Estimates of volume and cortical thickness from magnetic reso
nance imaging (MRI) are one of the most common measures of neuro
degeneration and have been incorporated into recommendations for 
using biomarkers to study AD (Jack et al., 2018). Determining the spe
cific brain regions most susceptible to early neurodegeneration in AD 
would help identify individuals most at risk of cognitive decline. 

Guided by neuropathological studies (Braak and Braak, 1995), much 
of AD research has focused on atrophy of the mesial temporal lobe and 
the hippocampus in particular (Apostolova et al., 2010; Bouwman et al., 
2007; Convit et al., 1997; Gordon et al., 2016; Huijbers et al., 2015; 
Martin et al., 2010; Ridha et al., 2006; Vos et al., 2016). Late-onset 
Alzheimer disease (LOAD) is the most common form of AD and typi
cally develops in individuals aged 65 and older. However, older healthy 
and AD individuals are known to have a high frequency of comorbid
ities, which can affect brain volumetrics (e.g. diabetes, hypertension, 
cerebrovascular disease) including hippocampal size (e.g., hippocampal 
sclerosis) (Faraco and Iadecola, 2013; Jagust et al., 2008; Moran et al., 
2013; Zarow et al., 2008). These comorbidities make the hippocampus a 
relatively nonspecific structure for measuring neurodegeneration. 

Looking beyond the hippocampus, previous studies have defined a 
composite of brain regions susceptible to AD-related cortical atrophy, 
known as AD cortical signatures (Dickerson et al., 2009; Jack et al., 
2017; Wang et al., 2015) and have shown cortical signatures relate to 
cognitive performance in AD beyond the effects of age (Bakkour et al., 
2013). Voxel or vertex-wise approaches (Dickerson et al., 2009; Wang 

et al., 2015) with modest sample sizes often led to statistical maps with a 
series of peak effects spread throughout cortical and subcortical areas. 
Approaches using a larger region of interest (ROI) derived from pro
grams such as FreeSurfer avoid the small focal effects but may incor
porate areas of the brain not affected by AD. We therefore propose that 
an ideal signature region should be large enough to be stable across 
multiple cohorts, yet specific enough that it does not incorporate non- 
informative regions. 

Although AD cortical signatures include numerous brain regions, the 
age-related comorbidities in the LOAD population may still limit the 
sensitivity to detect AD-related neurodegeneration in asymptomatic 
individuals. Autosomal dominant Alzheimer disease (ADAD) is a rare 
form of AD caused by a mutation in one of three genes: amyloid pre
cursor protein (APP), presenilin1 (PSEN1), or presenilin2 (PSEN2). 
ADAD has virtually complete penetrance and a consistent age of onset 
within families for each individual mutation (Bateman et al., 2010). 
Since ADAD has an earlier age of onset compared to LOAD (Ryman et al., 
2014), ADAD individuals typically do not have age-related comorbid
ities. Prior work looking at atrophy in ADAD cohorts using ROI (Ben
zinger et al., 2013; Gordon et al., 2018a; Weston et al., 2016) and 
voxel-wise approaches (Scahill et al., 2013, 2002) found a robust atro
phy signature. Therefore, ADAD may provide a less biased depiction 
needed to identify changes in the preclinical stages of AD. 

In this study, we sought to produce a refined AD cortical atrophy 
signature by 1) creating a signature without ROI restrictions and with a 
large cohort for more reliable regions, 2) comparing the degree of 
overlap between the ADAD and LOAD signatures, and 3) comparing the 
abilities of the ADAD and LOAD signatures to predict early amyloid 
pathological changes in the cognitively normal groups within and across 
cohorts. 
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2. Materials and methods 

2.1. Participants 

Two datasets were used to define and analyze AD cortical signatures 
of cortical thickness. For both datasets, dementia severity was defined 
by the global Clinical Dementia Rating (CDR) (Morris, 1993). The LOAD 
participants were selected from ongoing longitudinal studies of memory 
and aging at the Knight Alzheimer Disease Research Center (Knight 
ADRC) at Washington University in Saint Louis. All participants from the 
12th semiannual Knight ADRC data release that had at least one 3 Tesla 
(3T) MRI scan, an amyloid positron emission tomography (PET) scan 
within a year of the MRI, a clinical assessment within two years of the 
MRI, and demographic data including age, sex, and apolipoprotein E 
(APOE) genotype were included in the study (n = 703). The date of the 
MRI scan was considered the baseline visit. Participants were subse
quently divided into three groups: cognitively normal controls (CNADRC, 
CDR 0 and amyloid negative for all visits, n = 381), preclinical LOAD 
(PCADRC, CDR 0 and amyloid positive at baseline visit, n = 153), and 
cognitively impaired (LOAD, CDR 0.5 and amyloid positive at baseline 
visit and remains CDR 0.5 or higher at subsequent visits, n = 54). 115 
participants were excluded as follows: 43 participants were CDR 0.5 and 
amyloid negative; 37 participants were CDR 0 and amyloid negative at 
baseline visit but did not remain so for all other visits; 26 participants 
were CDR > 0.5 at baseline visit; 6 participants were CDR 0.5 and am
yloid positive at baseline visit but did not remain CDR 0.5 or higher for 
subsequent visits; 3 participants had a non-AD diagnosis. 

ADAD participants were selected from the Dominantly Inherited 
Alzheimer Network (DIAN) observational study (Morris et al., 2012; 
Moulder et al., 2013). Participants are recruited from families having an 
ADAD pathogenic mutation in APP, PSEN1, or PSEN2 genes. Participant 
enrollment and procedures have been previously defined (Morris et al., 
2012). For this study, participants from the 11th DIAN annual data 
release were required to have the same criteria as the Knight ADRC 
cohort (n = 386). Participants were then divided into three groups: 
cognitively normal mutation non-carrier controls (CNADAD, CDR 0 and 
amyloid negative for all time points, n = 145), preclinical ADAD mu
tation carriers (PCADAD, CDR 0 and amyloid positive at baseline visit, n 
= 76), and cognitively impaired mutation carriers (ADAD, CDR 0.5 and 
amyloid positive at baseline visit and remains CDR 0.5 or higher at 
subsequent visits, n = 48). 117 participants were excluded as follows: 65 
participants were CDR 0 and amyloid negative mutation carriers; 29 
participants were CDR > 0.5 at baseline visit; 18 participants were CDR 
0.5 and amyloid negative; 2 participants were CDR 0 and amyloid 
negative mutation non-carriers at baseline visit but did not remain so for 
all other visits; 2 participants were CDR 0 and amyloid positive mutation 
non-carriers; 1 participant was CDR 0.5 and an amyloid positive muta
tion carrier but did not remain CDR 0.5 or higher for subsequent visits. 

2.2. Ethics statement 

All participants or their legal caregivers provided written informed 
consent approved by their local institution’s review board. Each site’s 
institutional review board approved all study procedures. For the DIAN 
study, the institutional review board at Washington University in St. 
Louis provided supervisory review and human studies approval. 

2.3. MRI acquisition and processing 

For the Knight ADRC cohort, T1-weighted images were acquired 
using a magnetization-prepared rapid gradient-echo sequence on either 
the Siemens Biograph mMR (n = 172) or the Siemens 3T TIM Trio (n =
416) scanner. Structural T1 scans for the Biograph mMR were acquired 
with 1 × 1 × 1.2 mm resolution, 2300 ms repetition time, 2.95 ms echo 
time, 9 degree flip angle, 176 frames, and a 240 × 256 field of view in 
sagittal orientation. Structural T1 scans for the TIM Trio were acquired 

with a 1 × 1 × 1 mm resolution, 2400 ms repetition time, 3.16 echo 
time, 8 degree flip angle, 176 frames, and a 256 × 256 field of view in 
sagittal orientation. For the DIAN cohort, the T1-weighted images were 
acquired using the Alzheimer Disease Neuroimaging Initiative structural 
MRI protocol (Jack et al., 2010) using either a Siemens (n = 236) or a 
Phillips (n = 33) 3T scanner and the images underwent quality control 
assessments for protocol compliance. Structural T1 scans had a resolu
tion of 1 × 1 × 1.2 mm. Images from both cohorts were processed with 
FreeSurfer 5.3-HCP (Fischl et al., 2002) and were resampled to 1 × 1 ×
1 mm resolution for volumetric segmentation and cortical reconstruc
tion. The total hippocampal volume (HCV) was derived from the sum of 
the left and right hemisphere hippocampal volume from the automated 
FreeSurfer regions. 

2.4. PET acquisition and processing 

Amyloid PET imaging was performed with 11C-Pittsburgh compound 
B (PiB) in the DIAN cohort and either PiB or 18F-florbetapir (AV-45) in 
the Knight ADRC cohort. All PET scans were processed with the PET 
Unified Pipeline (PUP, https://github.com/ysu001/PUP) using Free
Surfer derived ROIs (Su et al., 2015, 2013) to calculate the standardized 
uptake value ratio (SUVR) using the cerebellar cortex as a reference 
region. A 30–60 min post-injection window for PiB and a 50–70 min 
post-injection window for AV-45 were used in the Knight ADRC cohort 
and a 40–70 min post injection window for PiB was used in the DIAN 
cohort. Partial volume correction was performed using a geometric 
transfer matrix (Rousset et al., 1998; Su et al., 2015). To measure am
yloid burden, we calculated the mean cortical SUVR (mcSUVR) by 
averaging the partial volume corrected SUVRs from the FreeSurfer ROIs 
in the lateral orbitofrontal, mesial orbitofrontal, rostral mesial frontal, 
superior frontal, superior temporal, mesial temporal, and precuneus 
regions as previously defined (Su et al., 2013). 

To standardize the PiB and AV-45 tracers, the mcSUVR values for the 
Knight ADRC cohort were converted into Centiloid units (Klunk et al., 
2015) using a linear transformation from previously defined equations 
(Su et al., 2019, 2018). The value of zero on the Centiloid scale repre
sents the mean amyloid burden for healthy participants and the value of 
100 on the Centiloid scale represents the mean amyloid burden for AD 
participants. For statistical analysis, we utilized Centiloid for the Knight 
ADRC cohort and mcSUVR for the DIAN cohort. Amyloid positivity was 
defined as an mcSUVR ≥ 1.42 for PiB scans (Brier et al., 2016b; Sutphen 
et al., 2015) and an mcSUVR ≥ 1.22 for AV-45 scans (Mishra et al., 
2017). 

2.5. Creation of the cortical maps 

For each hemisphere, cortical thickness spatial maps were created 
via vertex-wise analyses using a general linear model in FreeSurfer. The 
LOAD cortical maps were generated by computing cortical thickness 
differences between the LOAD and CNADRC groups while adjusting for 
age and sex. Similarly, the ADAD cortical maps were generated by 
calculating cortical thickness differences between the ADAD and CNDIAN 
groups while accounting for the effects of age and sex. 

Generating a robust cortical signature requires a balance between 
specificity and sensitivity; it is a tradeoff between having a large enough 
cortical map which adequately captures the most informative regions 
but not so large it incorporates regional information with limited pre
dictive value. For this reason, Monte Carlo simulations were performed 
using a selection of vertex-wise thresholds (p < 0.05, p < 0.01, p < 
0.005, p < 0.001, p < 0.0005 and p < 0.0001) followed by a p < 0.001 
cluster-wise threshold to correct for multiple comparisons. Each Monte 
Carlo vertex-wise threshold generated a different ROI, which is identi
fied as the significant cluster of vertices, and were generated separately 
for the Knight ADRC and DIAN cohorts (Supplementary Fig. 1, Supple
mentary Fig. 2). The LOAD and ADAD ROIs were mapped to participant 
space within and across cohorts. For each hemisphere, the mean cortical 
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thickness values were obtained for each cortical map (Supplementary 
Fig. 3). 

To identify the ROI cortical maps which represent the optimal 
“cortical signature”, we compared the ability of the mean cortical 
thickness in each ROI to discriminate between the CN and PC groups by 
calculating the area under the receiver operating characteristic 
(AUROC) curve using the pROC package (Robin et al., 2011) in R. The 
left and right hemisphere ROIs which exhibited the best performance (i. 
e. those with the highest AUROC values) were identified as the optimal 
cortical signature and defined separately for the Knight ADRC and DIAN 
cohorts. Subsequently, the thickness values from the optimal cortical 
maps were averaged across hemispheres and weighted by the number of 
vertices in the ROI to obtain the cortical signature thickness. The 
optimal ADAD and LOAD cortical signatures are available online at 
https://github.com/benzinger-icl/ADcortsig-roi. 

To verify that the cortical signature thickness performed with similar 
results to the receiver operating characteristic (ROC) analysis, a within- 
cohort analysis was done examining the cortical signature thickness 
performance from the ADAD and LOAD maps in predicting PCDIAN 
versus CNDIAN and PCADRC versus CNADRC groups, respectively. Second, 
we performed a cross-cohort analysis examining the cortical signature 
thickness performance from the ADAD and LOAD maps in predicting 
PCADRC versus CNADRC and PCDIAN versus CNDIAN groups, respectively. 
As atrophy is a biomarker that occurs before but close to symptom onset, 
we also repeated the cross-cohort analysis in a subset of the PCADRC (n =
39) and PCDIAN (n = 19) participants who were in the top quartile in 
terms of amyloid burden. 

2.6. Statistical analysis 

All statistical tests were conducted in R version 3.6.0 (R Core Team, 
2019). Logistic regression models were used to examine the ability of 
cortical signature thickness to discriminate PC versus CN groups with 
amyloid status as the dependent term and the cortical signature thick
ness as the independent term while adjusting for age and sex. Addi
tionally, we performed linear regression models to examine the ability of 
cortical signature thickness to predict amyloid burden in the PC and CN 
groups. The amyloid burden measure was the dependent term, defined 
in Centiloid units for the Knight ADRC cohort and mcSUVR for the DIAN 
cohort, while the cortical signature thickness measure was the inde
pendent term with adjustments made to account for age and sex vari
ability. The purpose of the linear models is to examine the amyloid levels 
immediately above and below the amyloid status cutoff as these values 
are meaningful and may provide a more sensitive measure to detect the 
PC and CN groups. The logistic and linear models were again run 
including HCV as a covariate as a direct comparison of MRI biomarkers. 
Due to the prevalence of comorbidities in LOAD, we additionally 
examined the association of obesity, measured with body mass index 
(BMI), and white matter hyperintensity (WMH) burden, measured with 
the log transformed WMH volume, against the LOAD cortical signature 
thickness for a subset of the CNADRC and PCADRC groups (nBMI = 374; 
nWMH = 237) by calculating the Pearson correlation coefficient (r). 
Finally, we were interested in quantifying demographic differences 
within each cohort. For our continuous variables, age and education, 
ANOVAs were run and follow-up pair-wise t-tests were conducted for 
any significant outcomes. Similarly, for our categorical variables, APOE 
ε4status and sex, chi-square tests were run and follow-up pair-wise chi- 
square tests were conducted for significant outcomes. 

3. Results 

3.1. Demographics 

The demographics from the DIAN and Knight ADRC cohorts are 
presented in Table 1. 

Within the DIAN cohort, significant age and education differences 

were found between the CNDIAN versus ADAD groups and PCDIAN versus 
ADAD groups. However, there were no significant results for sex or 
APOE ε4 status from these analyses. In contrast, we report significant 
age and APOE ε4 status differences for all groups within the Knight 
ADRC cohort, but there were no significant differences in education and 
sex for these groups. 

3.2. ADAD and LOAD cortical signatures 

The ADAD cortical maps for each vertex-wise threshold are pre
sented in Supplementary Fig. 1. The AUROC values from the ROC 
analysis discriminating PCDIAN and CNDIAN groups for each hemisphere 
and each vertex-wise significance threshold (p < 0.05, p < 0.01, p < 
0.005, p < 0.001, p < 0.0005, p < 0.0001) are presented in Table 2. 

The highest AUROC value for the right hemisphere was 0.5400, 
which corresponded to the cortical map generated using the p < 0.001 
threshold. For the left hemisphere, the highest AUROC value was 
0.5469, which corresponded to the cortical map defined using the p < 
0.0001 threshold. These two cortical maps define the optimal cortical 
signature for ADAD shown in Fig. 1A. The associated effect size maps are 
presented in Fig. 1B. 

We also identified the approximate FreeSurfer regions which best 
match the vertex-wise signature by calculating the percentage of voxels 
in the signature map overlaying each FreeSurfer region. Specifically, the 
vertex-wise signature was converted into a volume and the percentage of 

Table 1 
Participant demographics.   

DIAN Cohort Knight ADRC Cohort  

CNDIAN PCDIAN ADAD CNADRC PCADRC LOAD 

N 145 76 48 381 153 54 
Age, years 38.5 

(11.3)b 
37.2 
(9.0)c 

44.8 
(10.6) 

65.5 
(9.4)a,b 

73.1 
(7.1)c 

76.5 
(7.1) 

EYO − 9.9 
(11.8) 

− 9.9 
(7.8) 

3.0 
(2.7) 

– – – 

Male, n (%) 58 
(40.0) 

37 
(48.7) 

18 
(37.5) 

150 
(39.4) 

66 
(43.1) 

29 
(53.7) 

Education, 
years 

15.0 
(2.7)b 

14.7 
(2.9)c 

13.4 
(2.5) 

16.0 
(2.4) 

16.0 
(2.4) 

15.1 
(2.9) 

APOE ε4+, n 
(%) 

42 
(29.0) 

26 
(34.2) 

15 
(31.2) 

106 
(27.8)a, 

b 

88 
(57.5)c 

41 
(75.9) 

PSEN1/ 
PSEN2/APP, 
n 

97 / 18 
/ 30 

59 / 11 
/ 6 

39 / 2 
/ 7 

– – – 

CDR 0/0.5, n 145 / 0 76 / 0 0 / 48 381 / 0 153 / 0 0 / 54 
Aβ-/Aβ+, n 145 / 0 0 / 76 0 / 48 381 / 0 0 / 153 0 / 54 
ADAD cortical 

signature 
thickness, 
mm 

2.34 
(0.11) 

2.31 
(0.13) 

2.09 
(0.17) 

2.22 
(0.12) 

2.16 
(0.12) 

2.08 
(0.12) 

LOAD cortical 
signature 
thickness, 
mm 

2.74 
(0.12) 

2.73 
(0.12) 

2.60 
(0.15) 

2.60 
(0.12) 

2.53 
(0.12) 

2.36 
(0.13) 

PiB-PET SUVR 1.05 
(0.07) 

2.05 
(0.61) 

2.89 
(1.08) 

– – – 

Centiloid − 0.4 
(3.1) 

44.8 
(27.5) 

82.5 
(48.6) 

0.1 
(6.2) 

48.2 
(26.6) 

82.5 
(27.0) 

Mean (standard deviation) unless otherwise noted. 
ADAD = autosomal dominant Alzheimer disease; LOAD = late-onset Alzheimer 
disease; CNDIAN = cognitively normal mutation non-carrier; CNADRC = cogni
tively normal controls; PCDIAN = preclinical ADAD; PCADRC = preclinical LOAD; 
EYO = estimated years to symptom onset; APOE = apolipoprotein E; PSEN1 =
presenilin 1; PSEN2 = presenilin 2; APP = amyloid precursor protein; CDR =
Clinical Dementia Rating; Aβ-/Aβ+ = amyloid negative/amyloid positive; PiB- 
PET = Pittsburgh compound B positron emission tomography. 

a Significant differences between CN and PC, p < 0.05. 
b Significant differences between CN and ADAD/LOAD, p < 0.05. 
c Significant differences between PC and ADAD/LOAD, p < 0.05. 
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overlapping voxels was determined by dividing the number of cortical 
signature voxels within a FreeSurfer region by the total number of voxels 
in that FreeSurfer region and multiplying by 100. The FreeSurfer region 
with the highest ADAD signature overlap for the right hemisphere is the 
inferior parietal region (60% overlap) and for the left hemisphere is the 
precuneus region (54% overlap). 

Identical analyses were performed in the Knight ADRC cohort to 

determine the optimal cortical signature. The LOAD cortical maps for all 
vertex-wise thresholds are presented in Supplementary Fig. 2 and the 
AUROC values for each hemisphere and threshold are presented in 
Table 2. The best AUROC was 0.6470 for the right hemisphere, corre
sponding to the p < 0.05 vertex-wise threshold, and 0.6518 for the left 
hemisphere, corresponding to the p < 0.005 threshold. These two 
cortical maps are used to define the optimal LOAD cortical signature 
presented in Fig. 2A. The associated effect size maps of the cortical 
signature are found in Fig. 2B. 

The FreeSurfer region with the greatest LOAD signature overlap for 
the left and right hemisphere is the entorhinal cortex (85% right 
hemisphere overlap and 74% left hemisphere overlap). A list of addi
tional FreeSurfer regions and the associated cortical signature overlap 
percentage are presented in Supplemental Table 1. We additionally 
compared the ADAD and LOAD cortical signatures (Fig. 3). The LOAD 
signature emphasized atrophy in the temporal lobe whereas ADAD is 
more prominent in the parietal and precuneus. There is also a noticeable 
overlap within the precuneus and parietal regions in both signatures. 

3.3. Within-cohort analysis: association of the cortical signature thickness 
with amyloid 

Although each hemispheric signature was optimized to discriminate 
between PC and CN groups, we wanted to confirm the cortical 

Table 2 
AUROC values from the ROC analysis discriminating PC and CN participants for 
each ROI cortical map in their respective cohort.   

ADAD ROI Cortical 
Maps 

LOAD ROI Cortical Maps 

Monte Carlo Vertex-wise 
Thresholds 

RH 
AUROC 

LH 
AUROC 

RH 
AUROC 

LH 
AUROC 

p < 0.05  0.4671  0.5416  0.6470  0.6455 
p < 0.01  0.5357  0.5397  0.6332  0.6487 
p < 0.005  0.5330  0.5431  0.6427  0.6518 
p < 0.001  0.5400  0.5329  0.6425  0.6443 
p < 0.0005  0.4601  0.5396  0.6422  0.6509 
p < 0.0001  0.4540  0.5469  0.6326  0.6379 

Bold indicates the highest AUROC value for each ROI and hemisphere. 
ADAD = autosomal dominant Alzheimer disease; LOAD = late-onset Alzheimer 
disease; AUROC = area under the receiver operating characteristic. 

Fig. 1. A. The optimal ADAD cortical signature 
depicting cortical thickness differences between the 
ADAD and CNDIAN groups including age and sex as 
covariates and using a p < 0.001 cluster-wise 
threshold. The vertex-wise threshold was found to 
be p < 0.001 for right hemisphere and p < 0.0001 
for left hemisphere. Significant vertices are depicted 
in yellow highlighting the inferior parietal and pre
cuneus. B. The cortical thickness effect size maps 
comparing ADAD and CNDIAN. The blue indicates 
areas where the ADAD group had lower cortical 
thickness values compared to the CNDIAN and the red 
indicates areas where the ADAD group had higher 
cortical thickness values compared to the CNDIAN 
group. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web 
version of this article.)   

Fig. 2. A. The optimal LOAD cortical signature 
depicting cortical thickness differences between the 
LOAD and CNADRC groups including age and sex as 
covariates and using a p < 0.001 cluster-wise 
threshold. The vertex-wise threshold was found to 
be p < 0.05 for right hemisphere and p < 0.005 for 
left hemisphere. Significant vertices are depicted in 
blue highlighting predominantly the temporal lobe. 
B. The cortical thickness effect size maps comparing 
LOAD and CNADRC. The blue indicates areas where 
the LOAD group had lower cortical thickness values 
compared to the CNADRC and the red indicates areas 
where the LOAD group had higher cortical thickness 
values compared to the CNADRC group. (For inter
pretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   
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signatures’ capabilities within its own cohort and compare it to a more 
common MRI biomarker, HCV. We found that the ADAD cortical 
signature thickness marginally separated CNDIAN and PCDIAN (ADAD 
cortical signature thickness: β = − 2.44, p = 0.048). While the ADAD 
cortical signature thickness discriminated CNDIAN and PCDIAN, the HCV 
did not reach statistical significance. (ADAD cortical signature thickness: 
β = − 2.51, p = 0.044; HCV: β = 7.37e-5, p = 0.69). In the linear 
regression analysis, the ADAD cortical signature thickness predicted 

amyloid burden within the combined PCDIAN mutation carrier and 
CNDIAN mutation non-carrier groups (ADAD cortical signature thickness: 
β = − 0.78, p = 0.025) whereas HCV was not able to discriminate groups 
(ADAD cortical signature thickness: β = − 0.76, p = 0.03; HCV: β =
− 1.42e-5, p = 0.79). 

For the Knight ADRC, the LOAD cortical signature thickness did not 
significantly separate the CNADRC and PCADRC groups (LOAD cortical 
signature thickness: β = − 0.89, p = 0.36), primarily due to the signifi
cant effect of age in the model (age: β = 0.09, p = 3.74e-10), and HCV 
performed similarly to the cortical signature (LOAD cortical signature 
thickness: β = − 0.85, p = 0.41; HCV: β = − 1.60e-5, p = 0.90). When 
treating amyloid as a continuous measure, the LOAD cortical signature 
thickness predicted amyloid burden (LOAD cortical signature thickness: 
β =− 24.37, p = 0.016) beyond the covariates but HCV did not reach 
statistical significance (LOAD cortical signature thickness: β = –22.14, p 
= 0.036; HCV: β = − 9.70e-4, p = 0.46). Amyloid as a continuous vari
able performed better in all statistical models when compared to 
analyzing amyloid as a categorical variable. The distributions for the 
cortical signature thickness and HCV within the DIAN and Knight ADRC 
cohorts are shown in Fig. 4. 

When analyzing BMI and WMH volume against the LOAD cortical 
signature thickness in the CNADRC and PCADRC groups, no association 
was present between BMI and LOAD cortical signature thickness (r =
− 0.06). Notably, there was an association between the log transformed 
WMH volume and LOAD cortical signature thickness (r = − 0.63), pri
marily driven by age (Supplementary Fig. 4). 

3.4. Cross-cohort analysis: association of the cortical signature thickness 
with amyloid 

Since there are known similarities between ADAD and LOAD, we 
examined whether the ADAD signature could differentiate between the 
PCADRC and CNADRC groups and whether the LOAD signature could 
differentiate between the PCDIAN and CNDIAN groups. We found the 
ADAD cortical signature thickness was unable to discriminate the 
PCADRC and CNADRC groups (ADAD cortical signature thickness: β =
− 0.61, p = 0.52) and likewise when including HCV into the model 
(ADAD cortical signature thickness: β = − 0.55, p = 0.57, HCV: β =
− 3.47e-5, p = 0.79). The ADAD cortical signature thickness could not 
predict amyloid burden (ADAD cortical signature thickness: β = -12.46, 

Fig. 3. A comparison of the ADAD and LOAD optimal cortical signatures. 
Yellow indicates ADAD areas, blue indicates LOAD areas, and green indicates 
areas where both ADAD and LOAD cortical signatures overlap. Much of the 
overlap between the two signatures are in parts of the precuneus and parietal 
regions. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 4. The distributions of the ADAD and LOAD cortical signature thickness and hippocampal volume within the DIAN and Knight ADRC cohorts, respectively. For 
comparison, the cortical signature thickness and hippocampal volume were normalized relative to the cognitively normal control groups. The black circles indicate 
the mean for each group. CNDIAN = cognitively normal mutation non-carrier (dark green); PCDIAN = preclinical ADAD (orange); ADAD = autosomal dominant 
Alzheimer disease (purple); CNADRC = cognitively normal controls (pink); PCADRC = preclinical LOAD (green); LOAD = late-onset Alzheimer disease (yellow). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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p = 0.21) and HCV performed equally (ADAD cortical signature thick
ness: β = − 9.94, p = 0.33; HCV: β = − 0.0015, p = 0.25). Subsequently, 
the logistic regression analysis was repeated to only include the top 
quartile amyloid burden PC participants. In this analysis, the ADAD 
cortical signature thickness could not discriminate the groups (ADAD 
cortical signature thickness: β = − 2.08, p = 0.18) and was unable to 
predict amyloid burden (ADAD cortical signature thickness: β = − 16.13, 
p = 0.14). 

The LOAD cortical signature thickness was unable to distinguish 
between the CNDIAN and PCDIAN groups (LOAD cortical signature 
thickness: β = − 1.01, p = 0.42) and HCV performed similarly (LOAD 
cortical signature thickness: β = − 1.10, p = 0.39; HCV: β = 5.56e-5, p =
0.77). Additionally, the LOAD cortical signature thickness could not 
predict amyloid burden (LOAD cortical signature thickness: β = -0.38, p 
= 0.29) and likewise for HCV (LOAD cortical signature thickness: β 
=− 0.35, p = 0.34; HCV: β = − 1.92e-5, p = 0.72). When restricting the 
PCDIAN group to the top quartile amyloid burden participants, the LOAD 
cortical signature thickness was unable to separate the groups (LOAD 
cortical signature thickness: β = − 1.86, p = 0.38) or predict amyloid 
burden (LOAD cortical signature thickness: β = − 0.57, p = 0.19). 

4. Discussion 

AD-related atrophy affects many brain regions beyond just the hip
pocampus alone. LOAD individuals are also likely to have age-related 
comorbidities which could make it difficult to characterize regions 
more prone to AD-specific pathology. Since individuals affected by 
ADAD tend to be younger and thus lack many age-related comorbidities, 
this cohort may provide a better cortical atrophy model specific to AD. 
The goals of this study were to create a refined and reliable cortical 
atrophy signature by using a large cohort and no ROI restrictions and to 
compare the ADAD and LOAD signature maps and their ability to detect 
amyloid burden in cognitively normal groups within and across cohorts. 
We defined signature maps of cortical thickness separately for LOAD and 
ADAD by comparing the cognitively impaired and CN groups. The ADAD 
and LOAD cortical signatures can be accessed online (https://github.co 
m/benzinger-icl/ADcortsig-roi). These cortical signatures included the 
temporal lobe, parietal, and occipital regions. In the statistical analyses 
of amyloid, we analyzed only the PC and CN groups. We found the 
optimal signatures are sensitive in detecting amyloid levels in the 
cognitively normal groups within their respective cohorts and are sig
nificant beyond the inclusion of hippocampus volume, yet the signatures 
performed poorly when applied cross-cohort (e.g. ADAD signature 
evaluated in Knight ADRC cohort). In both the Knight ADRC and DIAN 
cohorts, the signature maps were better predictors when analyzing 
amyloid as a continuous variable rather than a categorical variable in all 
statistical models. This result suggests that amyloid levels immediately 
above and below the amyloid positivity cutoff are important and provide 
a more sensitive measure to detect the subtle atrophy differences be
tween the CN and PC groups. Finally, by using a continuous variable 
over dichotomized, our models are optimized for greater statistical 
power and therefore more able to detect true effects where they exist. 

To generate the cortical signatures, we used a vertex-wise approach 
on a substantial sample size and determined the optimal statistical 
threshold for multiple comparison correction for each hemisphere. 
Previous work defining AD cortical signatures used predefined large 
regions of interest (Dickerson et al., 2009; Jack et al., 2017; Weston 
et al., 2016) or a similar vertex-wise approach (Wang et al., 2015) with a 
modest sample size. The spatial extent of significant effects seen in 
vertex or voxel-wise analyses is highly dependent upon the sample size 
with a smaller sample creating small peaks which may not translate to 
other cohorts. Predefined regions of interest from programs like Free
Surfer avoid the small focal effects but incorporate areas that may not be 
susceptible to AD-related pathology. There is a compromise between 
having large enough ROIs that the region is stable but not so large it 
includes marginally predictive areas. By examining cortical maps 

defined by multiple significance thresholds, we found the optimal 
tradeoff between these two properties. Each statistical threshold for 
multiple comparisons correction generated a new cortical map with 
different ROIs with the strongest threshold (p < 0.0001) producing the 
smallest ROIs. We tested how well each statistical threshold for the left 
and right hemisphere discriminated the PC and CN groups within-cohort 
and defined optimal cortical signatures from the best performing 
thresholds. Since our primary interest is focused on individuals tran
sitioning between cognitively normal to early stages of dementia, the 
selected Monte Carlo thresholds optimize the signatures to the earliest 
changes in neurodegeneration. We found the optimal selection varied 
between the left and right hemispheres as well as between the LOAD and 
ADAD cortical maps. More specifically, the AUROC values in the left 
hemisphere were overall higher than the right hemisphere for both the 
ADAD and LOAD cortical maps. Past work have shown hemispherical 
differences in Alzheimer disease (Kim et al., 2012; Long et al., 2013; 
Minkova et al., 2017; Toga and Thompson, 2003) and there is also ev
idence the left hemisphere has an earlier and more rapid progression of 
atrophy relative to the right hemisphere in AD (Damoiseaux et al., 2009; 
Thompson et al., 2007). This earlier progression may explain the higher 
AUROC values in the left hemisphere compared to the right hemisphere. 
Additionally, the AUROC values in LOAD were higher compared to 
ADAD, whereas in the regression analyses, the ADAD signature thick
ness outperformed LOAD. This is primarily due to the inclusion of the 
age and sex covariates in the regression models. These covariates were 
not included in the optimization ROC analyses. Since LOAD is largely 
driven by age, the covariates reduce the predictive value of the cortical 
signature. This variance shows using a single threshold for each hemi
sphere and between diseases would have included areas with marginal 
effect or removed vital areas. Our approach for defining cortical signa
tures has not, to our knowledge, been attempted previously. We iden
tified the percentage overlap of the cortical signatures on FreeSurfer 
regions and found the cortical signatures did not encompass any Free
Surfer region entirely, with the highest overlap percentage being 85%. 
The cortical signature maps are a blend of the most significant areas 
within each FreeSurfer region, strengthening the point that a larger ROI 
may not represent the AD cortical thinning behavior. We tested whether 
different comorbidities, particularly obesity and WMH burden, influ
ence the LOAD cortical signature thickness within the CNADRC and 
PCADRC groups. BMI had no association to cortical thickness whereas 
WMH volume had a moderate association, largely due to age. ADAD is 
also associated with increased WMH burden (Lee et al., 2016). Since the 
ADAD and LOAD cortical signatures are largely distinct from each other, 
this may further exemplify WMH burden is not influencing the cortical 
signatures. 

In a comparison between the LOAD and ADAD cortical signatures, 
we found there is spatial overlap between the two cortical signatures in 
portions of the right hemisphere inferior and superior parietal regions 
and portions of the precuneus in both hemispheres (Fig. 3). This spatial 
overlap may be due to the interrelatedness of these regions on both the 
structural and functional networks. Further understanding of the un
derlying network structure in these regions is an important future di
rection. Examining the significant maps from all possible thresholds 
(Supplemental Fig. 1, 2) and the effect size maps (Figs. 1B, 2B) show 
atrophy in ADAD and LOAD is occurring in similar regions, but to a 
different magnitude. The LOAD signature emphasized atrophy in the 
temporal lobe regions, while the ADAD signature was most focused on 
parietal regions. This shift in spatial emphasis is consistent with previous 
work examining atrophy in LOAD, (La Joie et al., 2012; Singh et al., 
2006; Thompson et al., 2003; Whitwell et al., 2007) and ADAD (Apos
tolova et al., 2011; Cash et al., 2013; Fortea et al., 2010; Gordon et al., 
2018a; Knight et al., 2011). The observed atrophy spatial differences 
also mirror the differences found in the tau pathology patterns, rather 
than amyloid pathology. Previous work demonstrated tau pathology and 
cortical atrophy have a high association within the temporal, occipital, 
parietal, and frontal lobe for the LOAD participants (Gordon et al., 
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2018b). In ADAD, there are higher levels of tau pathology in the pre
cuneus and a higher precuneus to inferior temporal tau pathology ratio 
when compared to LOAD (Gordon et al., 2019). Additionally, spatial 
differences are also seen in early-onset LOAD with previous work 
corroborating both atrophy (Frisoni, 2005; Möller et al., 2013) and tau 
PET deposition (Schöll et al., 2017) occur preferentially in the cortex. In 
contrast, the amyloid spatial pattern between the diseases are largely 
similar (Shepherd et al., 2009). ADAD having a more prevalent amyloid 
pathology (Ringman et al., 2016; Shepherd et al., 2009) as well as an 
increased amyloid tracer uptake in the basal ganglia (Benzinger et al., 
2013; Gordon et al., 2019, 2018a) are the major differences between the 
diseases. 

The exact cause of the different atrophy spatial pattern is unknown 
but is potentially due to multiple factors. There is evidence that 
increasing age at dementia onset is tied to more temporal lobe pre
dominant atrophy (Frisoni, 2005; Möller et al., 2013). The pattern may 
also be tied to the different drivers of pathology in the two forms of the 
disease. ADAD mutations lead to an overproduction of amyloid burden 
(Potter et al., 2013) while LOAD is a product of multiple genetic and 
lifestyle influences that affect both production (Ye et al., 2005) and 
clearance (Mawuenyega et al., 2010; Moore et al., 2016). Understanding 
more about this spatial divergence will elucidate unknown factors about 
AD pathobiology and potentially highlight new therapeutic mecha
nisms. These different degrees of atrophy between the diseases are most 
likely playing a role in the unsuccessful cross-cohort analysis in this 
study and suggests that cortical signature maps are not interchangeable. 

This study has many strengths which include the relatively large 
sample from the Knight ADRC and DIAN cohorts and the application of 
the cortical signatures to preclinical stages of AD. This comparison be
tween the ADAD and LOAD signatures and the cross-cohort analysis in 
relation to amyloid pathology has not been studied before to our 
knowledge. One limitation for this study is the use of cross-sectional 
data. Identifying regions where longitudinal changes in cortical thick
ness occur may provide more detail in the progression of the disease. 
Additionally, future work is needed to examine the performance of the 
cortical signature in predicting longitudinal cognitive decline. Another 
limitation is that the cortical signature is only for amnestic presentation 
due to the use of solely research-based cohorts. Literature suggests that 
atypical presentations, such as posterior cortical atrophy, might have 
different atrophy signatures (Lehmann et al., 2011). Clinical cohorts 
tend to include more participants with comorbidities compared to 
research cohorts and thus this study may not be translatable to a clinical 
setting. Finally, prior work suggests there may be differences in atrophy 
due to specific mutations (Scahill et al., 2013), however the infrequency 
of APP and PSEN2 prevent us from analyzing these differences. As 
studies of ADAD become more common, it would be of interest to 
investigate the effect of the different ADAD mutations. 

5. Conclusion 

The LOAD and ADAD cortical signatures are sensitive to amyloid 
burden in asymptomatic individuals in their respective cohorts. This 
finding illustrates that the cortical signature maps are an indicator of 
AD-related neurodegeneration in early stages of AD and are a useful MRI 
biomarker measure. However, the different spatial emphasis in atrophy 
between LOAD and ADAD may be responsible for the unsuccessful cross- 
cohort analysis. Therefore, the cortical signatures are not compatible 
across cohorts and should be optimized within the targeted disease. 
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matter asymmetries in aging and neurodegeneration: a review and meta-analysis: 
VBM-ALE analysis of GM asymmetries. Hum. Brain Mapp. 38 (12), 5890–5904. 
https://doi.org/10.1002/hbm.23772. 

Mishra, S., Gordon, B.A., Su, Y.i., Christensen, J., Friedrichsen, K., Jackson, K., 
Hornbeck, R., Balota, D.A., Cairns, N.J., Morris, J.C., Ances, B.M., Benzinger, T.L.S., 
2017. AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: 
defining a summary measure. NeuroImage 161, 171–178. https://doi.org/10.1016/ 
j.neuroimage.2017.07.050. 
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