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Abstract

Identifying the mechanisms through which genetic risk causes dementia is an imperative for new 

therapeutic development. Here, we apply a multi-stage, systems biology approach to elucidate 

disease mechanisms in frontotemporal dementia (FTD). We identify two gene co-expression 

modules that are preserved in mice harboring mutations in MAPT, GRN, and other dementia 

mutations on diverse genetic backgrounds. We bridge the species divide via integration with 

proteomic and transcriptomic data from human brain to identify evolutionarily conserved, disease-

relevant networks. We find that overexpression of miR-203, a hub of a putative regulatory miRNA 

module, re-capitulates mRNA co-expression patterns associated with disease state and induces 

neuronal cell death, establishing this miRNA as a regulator of neurodegeneration. Using a 

database of drug-mediated gene expression changes, we identify small molecules that can 

normalize the disease-associated modules and validate this experimentally. Our results highlight 

the utility of an integrative, cross-species, network approach to drug discovery.
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Introduction

Frontotemporal dementia (FTD) is a highly heritable common cause of presenile dementia 

often caused by dominantly-acting mutations in the microtubule associated protein tau 

(MAPT; tau), and in two other genes, GRN and C9orf721. Tau pathology is also a core 

feature of numerous other neurodegenerative syndromes, including Alzheimer’s Disease 

(AD) and Progressive Supranuclear Palsy (PSP), and is associated with the pattern of 

cognitive decline in AD (PSP; for a review see2–4). Thus, identifying the mechanisms by 

which tau and other dementia-causing mutations lead to neurodegeneration is of foremost 

importance in developing new therapies for dementia.

Translating mechanistic studies in mouse models of dementia to human clinical trials has 

proven challenging5,6. We reasoned that one contributing factor, aside from the evolutionary 

distance between mouse and humans7, is that common laboratory mouse strains are highly 

inbred. Although genetic background profoundly impacts the biochemical and behavioral 

repertoires of mouse models of AD8,9, virtually all studies of neurodegeneration in mice rely 

on a single inbred strain10,11.

Here, we take a multi-step, systems biology approach to identify robust, human disease-

relevant gene networks. To minimize the likelihood that findings were dependent on a single 

genetic background, we crossed transgenic mice harboring the FTD-causing P301S mutation 

onto three distinct backgrounds and identified early transcriptomic changes observed across 

mutant F1 progeny, comparing vulnerable regions, such as the cortex and brainstem, to 

regions less affected in the human tauopathies, such as the cerebellum12. Through gene 

network analysis, we identify two major co-expression modules that are conserved across 

genetic backgrounds and in humans. These modules delineate key pathways deregulated in 

disease and are differentially enriched for genetic drivers of human FTD, AD and PSP. 

Using an unbiased integrative genomics approach, we uncover genome-wide relationships 

between miRNAs and their biological targets, and experimentally validate these 

relationships by demonstrating that overexpression of a predicted driver, miR-203, 

recapitulates the mRNA expression patterns observed with disease and promotes 

neurodegenerative pathways. As a proof of principle, we also show that one can leverage 

these highly conserved co-expression modules to identify tool compounds that mitigate 

neurodegeneration induced by miR-203.

Results

We analyzed F1 offspring resulting from crosses of TPR50 mice expressing the human 

TauP301S transgene13, onto FVB, DBA and parent C57BL6 lines (Fig. 1a). All three F1 

crosses share key features of the disease13,14, including decreased survival (Fig. 1b) and 

body weight (Supplementary Fig. 1a–b), progressive accumulation of hyperphosphorylated 

tau in the cortex and hippocampus (AT8 staining; Fig. 1c), and prominent astrogliosis and 

microgliosis (Fig. 1d–f). Consistent with previous reports that FVB mice can be more 

vulnerable to neurodegeneration, we observed that F1 TauP301S transgenics on the FVB/C57 

(TPR50xFVB/NJ) background had decreased survival and increased pathological tau as 

compared to the C57/C57 (TPR50xC57BL/6J) and DBA/C57 (TPR50xDBA/2J) progeny 
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(Fig. 1b) (Supplementary Fig. 1c–h). Importantly, no significant decrease in the weight of 

any of the affected brain areas was detected in transgenic animals at six months 

(Supplementary Fig. 1i), consistent with previous data showing no cell loss at this stage13.

We next investigated whether we could identify a robust, disease-specific transcriptional 

signature by sampling brain regions varying in disease vulnerability, reasoning that key 

disease-related gene expression patterns would overlap across affected areas (cortex, 

hippocampus, brainstem), but be absent in cerebellum, which is unaffected12. We performed 

RNA sequencing (RNA-seq) of four brain regions and two-time points across the three 

genetic backgrounds (36 samples per region, per time point; total of 288 RNA-seq samples; 

Fig. 1a; Online Methods). The differentially expressed genes from transgenic and wild type 

mice clearly separate tau mutant from wild type genotypes within affected brain regions 

(Supplementary Fig. 2a–c), but not in the cerebellum (Supplementary Fig. 2a), and are 

consistent are across strains (Supplementary Fig. 2d, e). There was significant overlap in 

differential expression (Online Methods; Supplementary Fig. 3a) between the cortex and 

hippocampus, and significant correlation between fold changes in differentially expressed 

genes (Rank-rank hypergeometric test; p<0.05) from these two regions (R2=0.76, 

slope=0.92, Supplementary Fig. 3a). We find lesser, but significant correlation in gene 

expression between the cortex and brain stem (R2=0.33, slope=0.82, Supplementary Fig. 

3a). Consistent with the absence of significant cell loss at six months in this model13, 

positive regulators of apoptosis (GO ID:0043065) do not show significant changes across all 

3 strains (Supplementary Fig. 3b–e) and negative regulators of apoptosis (GO ID :0043066) 

show modest, more significant changes (Supplementary Fig. 3f–i).We note that although we 

do not observe frank apoptosis, we do see evidence for initial activation of cellular pathways 

associated with inflammation in cerebral cortex by six months, including increases in GFAP 

and Iba-1 immunoreactivity in cortex (Fig. 1d–f).

We observed no significant overlap in gene expression between the cortex and cerebellum 

(Supplementary Fig. 3j–k) and no correlation between differentially expressed genes in 

cortex and cerebellum (R2=0.01, slope=0.14, Supplementary Fig. 3a). Even more striking is 

that the expression changes of the top upregulated genes in the cerebellum are reversed in 

the cortex (Supplementary Fig. 3l), implying that protective changes may potentially occur 

in the cerebellum, as has been previously suggested12.

Identification of disease-relevant mRNA modules

To place gene expression changes in a systems level framework, we performed consensus 

Weighted Gene Co-expression Network Analysis (cWGCNA15,16) across all three 

heterozygous F1 mouse strains to identify relationships not observed in only a single 

background (Supplementary Fig. 4a, Supplementary Table 1). We identified four mRNA 

modules significantly correlated with the transgenic condition in cortex – which we initially 

labeled the salmon, turquoise magenta and pink modules per WGCNA conventions 

(Bonferroni-corrected p < 0.05, Fig. 2a). Three of these modules are downregulated (salmon, 

magenta and pink), while one module is upregulated in transgenic mice (turquoise) (Fig. 2a). 

Cell-type enrichment analysis demonstrated that the salmon module is enriched in neuronal 

markers, the magenta module for oligodendrocyte markers, and the turquoise module for 
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microglial, astrocyte and endothelial markers (Fig. 2b) across multiple different cell type 

specific gene expression datasets (Supplementary Fig. 4b). Gene ontology (GO) analyses is 

consistent with the cell type enrichments, showing that the salmon module is enriched for 

synaptic pathways, magenta for DNA repair and transcription, while the turquoise module is 

enriched for immune and inflammatory categories (Supplementary Fig. 4c–d).

We next calculated the correlation between expression changes and an established early 

disease marker, the burden of hyperphosphorylated tau, which has been shown to correlate 

with disease progression in human FTD and AD17,18. Genes correlated highly with 

phospho-tau levels (R2>0.6; Online Methods) were found to be significantly enriched in the 

salmon (42-fold) and turquoise modules (9.5-fold), but not in the magenta and pink modules 

(Supplementary Fig. 4e). We therefore focused our subsequent analysis on the salmon and 

turquoise modules. Given the consistent cell type enrichments and strong gene ontology 

enrichments (Fig. 2b, d-g; and Supplementary Fig 4b–d) we relabel the salmon module, the 

Neurodegeneration-Associated Synaptic (NAS) module, and the turquoise module, the 

Neurodegeneration-Associated Inflammatory (NAI) module, so as to provide more intuitive 

names for these core disease-associated modules.

To investigate further if the expression changes were dependent on changes in cell type 

composition, or reflected cell intrinsic signaling changes, we applied a multivariate linear 

regression model using the top one hundred cell-type specific marker genes for five major 

cell types19,20 (Online Methods). Both modules retained their significant association with 

the transgenic condition (salmon, r= −0.73, p= 8.6e-07; turquoise, r= 0.71, p=3e-06), 

indicating that they are independent of changes in cell-type composition caused by neuronal 

loss or gliosis. Moreover, both the NAI and NAS module eigengenes show changes across 

affected brain regions (cortex, Fig. 2e, h; hippocampus, Supplementary Fig. 4f–g; brain 

stem, Supplementary Fig. 4h–i) but not cerebellum (Fig. 2i, j), prior to decreases in brain 

weight that would be indicative of cell loss (Supplementary Fig. 1i). This is further 

supported by analysis of expression profiles from sorted neurons and glia from the Tg4510 

and PS2APP AD model which show cell intrinsic changes in the NAI and NAS module 

trajectories (Supplementary Fig. 5a–d). The NAI module is highly preserved in both 

microglia and astrocytes and significantly upregulated in these populations in transgenics 

(Supplementary Fig. 5a, c, d–l), while the neuronal NAS module is highly preserved in 

sorted neurons and downregulated in transgenics (Supplementary Fig. 5b, e–l).

We next used experimentally derived databases of human protein-protein interactions (PPI) 

from Inweb21 and Biogrid22 to create an integrated co-expression-PPI network23 to 

functionally annotate network edges and provide independent validation24 (Fig. 2c, f).

One of the hubs of the NAS module, Stx6, a SNARE protein25, is also one of the few known 

genetic risk factors for tauopathy, having been previously implicated by GWAS and eQTL 

analyses in PSP. Other hubs, such as Syt4, Nlgn1, Nrgn also play important roles in synaptic 

maintenance and function26,27. Functional annotation of the NAS module with GO and 

KEGG terms, confirms its broader relationship to synaptic function (Fig. 2d and 

Supplementary Fig. 4c). In contrast, functional annotation of the NAI module highlights 

pathways associated with astrogliosis and inflammatory changes28, including T cell 
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activation and Toll-like receptor signaling pathways (Fig. 2g and Supplementary Fig. 4d). 

Among the most central hub genes of the NAI module are Tnip1 and Malt1, important 

inflammatory signaling genes29. The integrated co-expression-PPI network derived from the 

NAI module also contains the gene Fus, mutations in which account for approximately 4% 

of familial ALS, and which forms aggregates in Amyotrophic Lateral Sclerosis (ALS) and 

FTD30.

Reproducibility of disease-specific modules across mouse models and human disease

Further analysis of 4 independent datasets from mouse models harboring pathological tau 

mutations including a replication dataset that we generated using the Tg4510 tau model 

(Methods, Supplementary Fig 5f) confirm the preservation of the NAI and NAS modules 

(Supplementary Fig 5e), and the expected changes in gene expression early in the disease 

course (Supplementary Fig. 5f-h, l). Comparison of the NAS and NAI modules in mice 

harboring 4 different AD and FTD risk mutations (PS2APP, CRND8, APP/PS1 and GRN - 

see Online Methods) was also performed to assess to what extend these modules represent 

convergent pathways across models harboring different pathological proteins. The NAS and 

NAI models are highly preserved and their disease associations are maintained and both the 

NAI and NAS module expression changes occur with similar temporal profiles across each 

of these models (Supplementary Fig. 5e, i–l).

Considering this cross-mouse model conservation, we next assessed module preservation in 

human disease models and post mortem tissue samples to validate their human relevance 

(See Online Methods, Supplementary Table 2a for list and characteristics of all human 

datasets, Supplementary Table 2b–c). The NAS and NAI modules are dysregulated in patient 

cortex, but not in cerebellum, both in the previously published microarray-based data and in 

our newly generated RNA-seq dataset (Fig. 3a–d and Supplementary Fig. 5e, m–n) 

consisting of both tau-positive and tau-negative FTD (Fig. 3c). Moreover, the NAS module 

and its disease-trait relationship are preserved in iPSC-derived neurons from human FTD 

patients carrying GRN mutations (Supplementary Fig. 5e, o).

We also performed mass-spectrometry-based, label-free, quantitative proteomics in an 

independent set of GRN-positive and GRN-negative FTD frontal cortex (Supplementary Fig. 

5p, Supplementary Table 2c–d, Online Methods). We found similar NAI and NAS 

expression patterns at the mRNA and protein level (Fig. 3e) both in GRN-positive and GRN-

negative FTD samples, as compared with age-matched controls (Fig. 3f). Taken together, our 

analyses show that the NAS and NAI co-expression modules are conserved across multiple 

model systems, and generalize from mouse to humans, reflecting convergent RNA co-

expression and protein-level changes in FTD.

Examination of RNA sequencing and proteomic post mortem brain datasets from AD 

patients showed preservation of both the NAI and the NAS modules at the mRNA 

(Supplementary Fig. 5e, Fig. 3g–h, Supplementary Table 4a), and at the protein level (Fig. 

3i). Notably, both modules are not dysregulated in cases of pathologic aging without 

dementia (p=0.77) (Fig. 3j), indicating that they are not related to the presence of Aβ 
amyloid plaques alone31. The NAS and NAI modules are also dysregulated in C9orf72-

related and sporadic ALS (Fig. 3k) and PSP (Fig. 3l), but not in major depression (Fig. 3m), 
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schizophrenia (Fig. 3n) or bipolar disorder (Fig. 3o). These results support the relevance and 

specificity of these changes to allied human neurodegenerative syndromes, but not other 

non-degenerative forms of neuropsychiatric disorders.

Assessment of Genetic Risk within Modules

Transcriptomic changes may be the cause or consequence of disease, so integrating these 

data with genetic risk data provides a means to further understand their relationship to 

potential causal mechanisms (e.g.32,33). Several AD candidate genes mapped to the NAI 

module including APOE, CLU, PICALM, C1q and TREM2 (Online Methods; Fig. 3p, 

Supplementary Table 1i); In contrast to AD, FTD and PSP GWAS data both showed 

significant enrichment in the NAS module, which contains risk genes such as SLC32A1, 

NSF and ELAVL2 (Fig. 3p). These differential module enrichments indicate that genetic risk 

for AD, FTD and PSP likely operates via distinct causal pathways that may converge on 

common downstream neuronal and glial-immune processes.

Identification of potential miRNA drivers

Based upon the strong co-expression relationships observed in the NAS and NAI modules, 

we hypothesized potential co-regulation by miRNA. We identified two miRNA modules 

associated with the transgenic condition (Bonferroni corrected P < 0.05, Fig. 4a, 

Supplementary Table 3): the miM12 module that is anti-correlated, and the miM16 module 

(Fig. 4b), which is positively correlated with the transgenic condition in affected regions, but 

not cerebellum (Fig. 4c and Supplementary Fig. 6a–e). The miM16 module eigengene is 

strongly anti-correlated with the NAS module eigengene (Fig. 4d and Supplementary Fig. 

6f), and predicted targets of miR-203, an miM16 hub, are highly enriched (see Online 

Methods) in the NAS module (Fig. 4e and Supplementary Fig. 6g, h). Consistent with its 

potential regulatory role, miR-203 is robustly upregulated in transgenic mice at six months 

in disease-affected areas (Fig. 4f and Supplementary Fig. 6i–k), and in the frontal cortex in 

both tau-positive and tau-negative FTD (Fig. 4g, h). Protein levels of its targets are also 

significantly decreased in both granulin positive and negative FTD (p<0.005, Fig. 4i). These 

data across mouse and humans suggested that miR-203 may be acting as a driver of the NAS 

neurodegeneration-associated transcriptional program.

miR-203 regulates the neuronal mRNA module and causes cell death

To test the predicted causal relationship between miR-203 expression and NAS module 

down-regulation, we acutely over-expressed miR-203 (Fig. 5a) in primary cortical mouse 

neuronal cultures (Online Methods, Supplementary Fig. 7a), observing downregulation of its 

predicted targets (Fig. 5b) and the NAS module more broadly (Fig. 5c, Supplementary Fig. 

7b, Supplementary Table 4a). We also observed increased apoptosis (Fig. 5d), peaking at 

DIV8 (1.85-fold; Fig. 5e), concurrent with peak NAS module downregulation. We further 

experimentally validated several predicted direct targets of miR-203 (Bcl2l2, Dgkb, 

Mapk10, Vsnl1) by luciferase reporter assays (Fig. 5f) and western blot (BCL2L2 and 

VSNL1l; Fig. 5g, see Supplementary Fig 9 for uncropped blots).

To control for potential confounding by supra-physiological over-expression in vitro, we 

moderately overexpressed miR-203 (approximately 2-fold; Online Methods) or a scrambled 
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miRNA control (sc-miRNA) (Fig. 5h) targeting neurons in wild-type mice in vivo 

(Supplementary Fig. 7c–f). The NAS module is highly preserved (Supplementary Fig. 7g, 

Supplementary Table 4a) and down-regulated in neurons overexpressing miR-203 after six 

weeks (Fig. 5i). Strikingly, the level of miR-203 expression correlates remarkably well with 

downregulation of both miR-203 predicted targets (R2=0.81, slope=−2.3; Supplementary 

Fig. 7h) and NAS module genes (R2=0.81, slope=−2.2; Supplementary Fig. 7i). 

Furthermore, apoptotic pathways are altered in miR-203-overexpressing neurons (, Figure 

5j, Supplementary Table 4b), confirmed by Casp8 protein expression (Figure 5k, 

Supplementary Fig. 7j). Additionally, miR-203 over-expression in one-month-old Tg4510 

Tau transgenic cortex (Supplementary Fig. 8a–b) causes downregulation of predicted 

miR-203 targets (Fig. 5l), the NAS module (Fig. 5m), a significant increase in CASP8 

protein (Fig. 5n) and apoptotic pathways (Supplementary Fig. 8c–d) and genes involved in 

calcium signaling and neuroactive ligand receptors (Supplementary Fig. 8e–f).

To further investigate the causal role of miR-203, we inhibited miR-203 expression in 

neurons using a Tough Decoy (TuDs) AAV system34 in vivo in Tg4510 mice (Fig. 5h). Both 

short term (6-weeks, Supplementary Fig. 8g–h) and longer term (4-months, Supplementary 

Fig. 8i–j) inhibition of miR-203 oppose the pathologic transcriptional changes in predicted 

miR-203 targets (Supplementary Fig. 8k, Fig. 5o) and the NAS module broadly 

(Supplementary Fig. 8l, Fig. 5p) including genes involved in calcium signaling and 

neuroactive ligand receptor pathways (Supplementary Fig. 8m–n), and apoptosis (Fig. 5q, 

Supplementary Fig. 8o–p). Reducing miR-203 did not affect phospho-tau immunostaining 

(Supplementary Fig. 8q–r), consistent with its acting downstream of tau pathology. Previous 

work has shown that five-month-old Tg4510 mice show reduced neocortical network activity 

based on c-fos immunoreactivity35. C-fos intensity was also significantly increased in 

mutant neurons expressing the miR-203 TuD construct, as compared to those expressing the 

control construct (Fig. 5q, Supplementary Fig. 8s, p-value <0.0001), suggesting functional 

rescue. These findings demonstrate that inhibition of miR-203 can reverse expression 

patterns of both the NAS module and apoptotic pathway genes associated with disease state 

in vivo, while overexpression of miR-203 promotes downregulation of the NAS module and 

a neurodegenerative phenotype.

Pharmacological manipulation of NAS module genes

We reasoned that if the patterns of gene expression robustly associated with disease state 

across mice and humans represented causal phenomena as suggested by the GWAS 

enrichment, then their reversal should ameliorate the miR-203 mediated cell death 

phenotype. To test this, we screened the Connectivity Map (CMAP), a public compendium 

of cell line gene expression responses to drugs, to identify small molecules predicted to 

reverse NAS or NAI module changes observed across pathological conditions, albeit in non-

neuronal cells. Four of the top 10 hits were histone deacetylase inhibitors (HDACs, 

Supplementary Table 4c), which was significant (permutated p< 10−5).

We chose two of the predicted molecules, scriptaid, which was the top hit in CMAP 

(enrichment score = −0.969, Fig. 6a) and SAHA (vorinostat; enrichment score = −0.846), 

which is in human clinical trials36. As predicted, addition of scriptaid to miR-203-
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overexpressing neurons decreases neuronal death caused by miR-203 overexpression to 

levels equivalent to controls (unpaired t-test, Fig. 6b–c). We also found that 0.5μM SAHA 

decreases miR-203 induced cell death (Fig. 6d–e). SAHA upregulated NAS module genes 

(Fig 6f); however, SAHA showed toxicity at 1μM even in control neurons (Fig. 6f). Next, we 

treated human iPSC-derived neurons from control and FTD patients with SAHA, observing 

that SAHA upregulates NAS module genes in a dose-dependent manner (Fig. 6g). We 

therefore conclude that miR-203 directly regulates many NAS module hub genes and that 

the HDAC inhibitors scriptaid and SAHA, by targeting the NAS and NAI module genes and 

normalizing their expression, can ameliorate miR-203-induced pro-neurodegenerative 

changes.

Discussion

The mechanisms of neurodegenerative diseases are still poorly understood, a factor that 

impedes the design of therapeutic interventions to treat these disorders. Rather than focusing 

on a priori candidate genes, we pursued a systematic, genome-wide, functional genomics 

approach. Such studies have not been realized in the study of most neurodegenerative 

diseases, with a few notable exceptions37–39. By taking genetic background into 

consideration, representing diverse causal mutations in transcriptomic network analyses, and 

validation in a dozen independent data sets, we identify disease-relevant gene networks 

representing specific molecular pathways. It is noteworthy that modules identified in the 

initial individual F1 crosses that are not conserved and dysregulated across all three strains, 

are also not conserved in other mouse models, or human brain (Supplementary Fig 10a–c), 

supporting the approach that we have taken.

In functional genomic studies, each experimental system on its own, whether post mortem 

human tissue, in vitro or in vivo mouse models, has significant limitations40. Here we show 

how a multi-stage systems biology analysis coupled with substantial in vitro experimental 

validation, provides a framework for discovery of new disease mechanisms and therapeutic 

targets. We leverage the benefits of animal models of human disease, which permit temporal 

assessment of changes prior to substantial atrophy and cell loss, while mitigating the 

potential bias introduced by a single genetic background. We also consider the principles of 

regional vulnerability and disease trajectories12,41 and find that gene networks associated 

with transgenic status are altered in brain areas that show signs of neurodegeneration. 

Conversely, in the cerebellum, a brain region that is spared in AD and FTD, the expression 

of the NAS and NAI modules, as well as miR-203, do not change significantly.

A key issue in any analysis of gene expression in disease is that changes in gene expression 

may be either a cause or consequence of the disorder. To advance our work towards 

identifying causal drivers, we experimentally validate a putative miRNA driver of the altered 

transcriptional networks, miR-203, which has previously not been implicated in 

neurodegeneration, and we show reversal by gene network-predicted pharmacological 

regulators. We also find significant enrichment of common genetic risk for FTD and PSP in 

the neuronal NAS module, and enrichment for AD GWAS signals in the NAI module, which 

is enriched in glial and immune genes. These data further support the potential causal role of 
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these modules, and suggest different causal pathways in AD versus FTD and PSP, the latter 

of which are considered primary tauopathies3,4

It is important to note that both expression changes in the disease associated gene modules 

NAS and NAI as well as the upregulation of miR-203, though clearly a point of 

convergence, are most likely downstream of initial pathological insults, whether dysfunction 

of tau or other major risk genes. From this perspective, these modules represent robust, 

highly conserved biological processes that provide a crucial link in the chain between an 

initial causal genetic insult and neuronal death and inflammation. As we show, long-term 

inhibition of miR-203 in the Tg4510 model, while upregulating anti-apoptotic pathways, 

downregulating pro-apoptotic pathways and increasing neuronal activity as measured by c-

fos activation, does not reduce the phospho-tau burden (Supplementary Fig. 8q–r). Though 

pharmacologically targeting these gene networks, or miR-203 itself, may not reverse tau 

aggregation or Aβ plaque formation, it may provide a means to uncouple dysfunction of 

aggregation prone proteins from inflammation, neurodegeneration and their behavioral 

outcomes – dementia. Supporting this possibility is the fact that neither the NAS nor the NAI 

modules are dysregulated in patients that show pathological aging, in which significant 

amyloid plaque density, but no dementia, is observed. Therefore, developing therapies that 

reverse the changes in the disease associated gene co-expression modules may be an 

opportunity to impede neurodegeneration across a broad spectrum of dementias without 

having to target unique upstream pathological events. We hypothesize that regulators of 

these highly conserved transcriptional programs, such as miR-203, may therefore be new 

therapeutic targets. Efforts to target miRNAs to treat diseases are already underway42 and 

traditional anti-sense oligo based targets have reached clinical trials43, while small molecule 

modulators represent a new frontier in miRNA-based therapeutics44. In this regard, 

identifying regulators of the NAI module is also likely to be a fertile avenue for future 

studies aimed at therapeutic development.

Methods

Animals

TPR50 mice were generated in the C57BL/6J background and maintained at the Shonan 

research center, Fujisawa as described previously13. TPR50 mice overexpress the TauP301S 

(4R2N isoform) under the control of mouse prion promoter. Mice were outbred to DBA/2J 

and FVB/NJ strains. Heterozygous F1 male mice (at three- and six-months-of-age) were 

used to harvest brain tissues (cortex, hippocampus, brain stem and cerebellum) for 

immunohistochemical staining and RNA isolation. Wild type littermates of same genetic 

background and age were used as controls. All procedures involving animals were 

performed in accordance with the University of California, Los Angeles (UCLA) animal 

research committee, the National Institutes of Health (NIH) Guide for the Care and Use of 
Laboratory Animals and by the Experimental Animal Care and Use Committee of Takeda 

Pharmaceutical Company Limited, Japan. Wild type C57BL/6J mice were directly 

purchased from Jackson Labs (Bar Harbor, USA). Methods describing total RNA isolation 

from brain tissue, tissue fixation and staining are described in the Online Methods.
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Human postmortem brain samples

Post-mortem brain tissue from human FTD and control individuals used for mRNA- and 

miRNA-seq were acquired from the Emory ADRC brain bank at the Emory University 

School of Medicine. Human postmortem tissues were acquired under Emory University 

Institutional Review Board (IRB) with consent from family. Sample acquisition protocols 

approved by UCLA IRB were followed and samples were de-identified prior to acquisition. 

Brain samples and individual level metadata is available in Supplementary Table 2b. 

Proteomics samples were obtained from Penn ADRC as part of the Accelerating Medicine 

Partnership for Alzheimer’s Disease (AMP-AD) and sample level metadata is available in 

Supplementary Table 2c.

Immunohistochemistry/Immunofluorescence

Paraffin-embedded mouse brain samples were briefly deparaffinized and blocked in 5% 

serum. Sections were stained overnight with Phospho-tau (Ser202, Thr205) AT8 clone 

(Thermo Fisher, MN1040) at 1:250 dilution followed by incubation in biotinylated 

secondary antibody and imaged under microscope. For immunofluorescence, sections were 

stained with an antibody raised against Glial Fibrilary Acid protein (GFAP, Dako, Z033429, 

1:500) or Iba-1 (Wako, 019–19741, 1:500) followed by incubation in Alexa Fluor 488 or 594 

secondary antibody (1:500, Invitrogen) for 1h at room temperature and counterstained with 

DAPI. Images were obtained either using Zeiss Axio-Imager or on a digital slide scanner 

NanoZoomer 2.0-HT, Hamamatsu Photonics K.K.

mRNA and miRNA sequencing

1μg of total RNA was used for mRNA- and miRNA-seq. For mRNA-seq polyA-selected 

mRNAs were processed for unstranded libraries using the TruSeq v2 kit (Illumina) that 

underwent 50bp paired-end sequencing on an Illumina HiSeq 2500 machine. Paired-end 

reads were mapped to the reference mouse NCBIM37 genome using Tophat2 and Ensembl 

release 67 annotations (May 2012 data freeze). Count level data was quantified using union 

gene models with HTseq-counts. For miRNA sequencing a second sample from the same 

total RNA fraction was used and libraries were prepared using Truseq small-RNA library 

prep kit (Illumina). The 50bp single-end reads were processed for miRNA expression using 

the miRDeep2 analysis pipeline. For additional information on sequencing, read alignment 

parameters and data-preprocessing, please see the Online Methods.

Co-expression network analysis

Co-expression network analysis was performed in R using WGCNA package16. To identify 

mRNA modules that are conserved across various transgenic mouse strains, we used a 

consensus network analysis (cWGCNA) approach. To identify common expression patterns 

across genetic backgrounds we created a signed consensus network for each brain region 

individually by calculating component-wise minimum values for topological overlap across 

different mouse strains. For miRNA data we performed WGCNA analysis using signed 

networks. Please see Online Methods for more details.
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Mouse embryonic cortical cell culture

Cortical tissue from E15 C57BL/6J embryos was harvested, dissected and washed in ice-

cold HBSS (Invitrogen; 14170–112). Tissue was incubated in 0.25% trypsin (Invitrogen; 

15090–046) in the presence of DNase I (Roche; 10104159001) at 37°C for 10min. Tissue 

was washed with cold HBSS and titurated in plating media (Neurobasal Media (Invitrogen; 

21103–049), 20% Horse Serum (Invitrogen; 26050–088), 25mM Sucrose and 0.25% 

GlutaMax (Invitrogen; 35050–061)) in the presence of DNase I. Dissociated cells were 

centrifuged at 125g for 5min at 4°C, resuspended in plating media, counted and plated in 

poly-L-lysine (Sigma P1274) coated plates at a density of 300,000 cells/mL. If cells were 

infected with miRNA-203 or scrambled control lentiviral constructs (Systems Bioscience; 

MMIR203-PA-1), 10 IFU/cell was added to the suspended cells prior to plating. Plating 

media was replaced 24hrs after plating with Neurobasal Medium supplemented with 1% 

B27 (17504–044) and 0.25% GlutaMax. For virus production and titration methods please 

see Online Methods.

Stereotactic Injection of AAV2/9 into mouse brain

Mice were anesthetized using isoflurane and head-fixed over a heating pad set to 37°C. 

Craniotomy was performed according to approved procedures (animal protocol 

number#2000–159): Eyes were covered with artificial tear drops, the scalp was bisected and 

the exposed area sterilized on a stereotactic frame (Model 900, David Kopf Instruments). 

The skull was thinned using a dremel drill and 1μl of AAV 2/9 (1 × 1013 vector genomes 

(Vg)/ml of hSyn-miR203-hSyn-eGFP; 1 × 1013 Vg/ml of hSyn-scrambled:miRNA-hSyn-

eGFP (Signagen Labs, Rockville, USA)) was injected bilaterally into the frontal cortex 

(anterior/posterior: +2.1mm; mediolateral: ±1.5mm; dorsal/ventral: −2.5mm) at a rate of 

100nl/min rate using Hamilton 5ul syringe (87930 Hamilton , Reno, USA. Before each 

injection the pipette was lowered 0.1mm beyond intended target depth and held in place for 

3 minutes to create space for injected solution, while after each injection the pipette was 

held in place for 7 min before retraction to prevent leakage. The incision was sterilized, 

glued and post-operative antibiotics (Amoxil, 50mg/ml) were administered for 7 days 

following surgery.

Data and Code Availability

miRNA- and mRNA-seq data from TPR50 Tau mice, microarray data on PS19 

hippocampus, microarray data on overexpression of miR-203 in vitro, RNA-seq on sorted 

mouse neurons, and RNA-seq data with SAHA available at the NCBI Gene Expression 

Omnibus database under Gene Expression Omnibus accession number #GSE90696. Human 

FTD miRNA- and mRNA-seq data is available at https://www.synapse.org/#!

Synapse:syn7818788. Human UPenn FTD Proteomics data is available at https://

www.synapse.org/#!Synapse:syn9884357. Custom code used for the analysis can be 

accessed using this link in github - https://github.com/dhglab/Identification-of-

evolutionarily-conserved-gene-networks-mediating-neurodegenerative-dementia
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Online Methods

Sample Collection and RNA Isolation

TPR50 mouse at 3- and 6-months-of-age were sacrificed using cervical dislocation. Cortex, 

hippocampus, brain stem and cerebellum were dissected on ice-cold PBS and flash frozen to 

minimize RNA degradation. RNA was isolated from different brain regions of interest from 

each sample using the miRNeasy kit with on-column DNase digestion (Qiagen) using a 

QIAcube automated system. For each RNA sample, RNA concentration was determined 

using Ribogreen assay (Invitrogen) and RNA integrity was quantified using the RNA 

Integrity Number (RIN)1 on an Agilent 2200 TapeStation.

Frozen human brain samples obtained from Emory brain bank were dissected on dry ice in a 

dehydrated dissection chamber to reduce degradation effects from sample thawing or 

humidity. 50–100mg tissue samples were used to isolate RNA using miRNeasy kit with on-

column DNase digestion and samples with RIN > 2 were further used.

Mouse primary cortical neurons were washed with ice-cold RNase-free PBS and Qiazol was 

immediately added to the 6-well plates. RNA was isolated using miRNeasy kit following the 

manufacture’s protocol.

Several datasets have been used throughout the study, details of which can be found in 

Supplemental Table 2a. Mouse datasets consist of – Tg45102, PS2APP3, CRND84, APP/

PS15, GRN6. Human postmortem data consist of AD Temporal cortex7, AD Frontal cortex8, 

AD proteomics9, Pathological aging without dementia7, ALS10, PSP7, major depression11, 

schizophrenia and bipolar disorder12

ELISA

Total tau and pT231 tau content were measured by commercial tau ELISA kits according to 

the manufacturer’s instructions (total tau - KHB0041; pT231 tau - KHB8051, Invitrogen). 

Briefly, standards, RIPA-soluble or sarkosyl insoluble samples were applied to the ELISA 

plate. After washing, a biotin-conjugated detection antibody was applied. The positive 

reaction was enhanced with streptavidin-HRP and colored by TMB. The absorbance at 450 

nm was then measured and the concentration of tau protein was calculated from the standard 

curve.

RNA-seq Library Preparation

For TPR50 mouse data, 1μg of total RNA was used to obtain poly-A selected mRNAs, 

which were processed for unstranded libraries using TruSeq RNA Sample preparation (v2) 

kit. Briefly, poly-A tail containing mRNA was isolated using oligo-dT attached magnetic 

beads. mRNA is fragmented, and first strand cDNA is generated using SuperScript II reverse 

transcriptase followed by second strand cDNA generation. Barcodes and adapters were 

added and subsequent steps followed the TruSeq protocol to generate fragment sizes (150–

500bp, mean 250bp). The libraries were quantified with the Quant-iT PicoGreen assay (Life 

Technologies) and validated on an Agilent 2200 TapeStation system. Libraries were 

multiplexed 24 samples per lane and each lane was sequenced several times to get an 
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average read-depth of 40–50 million reads per sample on a HiSeq2500 instrument using 

high output mode with standard chemistry and protocols for 50bp paired end reads.

For postmortem human data, 1μg of total RNA was used for rRNA depletion with the 

RiboZero Gold kit (Illumina). Remaining RNA was size selected using AMPure XP beads 

(Beckman Coulter) and standard libraries were prepared following Illumina’s TruSeq 

protocols for 50bp paired end reads. Libraries were sequenced at an average read-depth of 

60–70 million reads per sample on a HiSeq2500 instrument using rapid mode.

We used SMART-Seq v4 ultra low input RNA kit (Clontech) for the library preparation of 

FACS sorted adult mouse neurons. RNA from FAC sorted cells (~1000 cells) were isolated 

using Nucleospin RNA XS kit (Clontech) with on-column DNase digestion following the 

manufacture’s protocol and the RNA was eluted in 10μl of RNase-free water. rRNA was 

depleted from the eluted total RNA and cDNA was synthesized using Primescript Reverse 

transcriptase. Sequencing adapters were added and library was amplified using SeqAmp 

DNA polymerase. Strand-specific library was size selected using AMPure XP beads and 

validated for fragment sizes (200–1000bp, peaking at 300bp). Libraries were multiplexed 12 

samples per lane and each library was sequenced several times to get an average read-depth 

of 30–40 million reads per sample on a HiSeq2500 instrument using rapid mode.

We used TruSeq Stranded RNA-seq (Illumina) for the library preparation of vorinostat-

treated neurons. Briefly cell pellet was collected from 6-well plates and RNA isolated using 

miRNeasy kit with on-column DNase digestion (Qiagen). 100ng of total RNA was used for 

downstream library preparation using manufacture’s recommended protocol. Libraries were 

multiplexed 24 samples per lane, and each library was sequenced several times to get an 

average read-depth of 30–40 million reads per sample on a HiSeq4000 instrument.

mRNA-seq Read Alignment and Processing

To analyze TPR50 mouse mRNA-seq data, the paired-end raw reads were mapped to the 

reference mouse NCBIM37 genome using Ensembl release 67 (May 2012 data freeze) 

annotations with Tophat2 (v2.0.5)13 with novel junction option turned off. Aligned reads 

were sorted and alignments mapped to different chromosomes were removed from the BAM 

file using samtools14. Gene expression levels were quantified for all the samples using union 

gene models with HTSeq-Counts (v0.5.4)15 which uses uniquely aligned reads. Genes were 

included in the analysis if they were expressed in 80% of the samples with >10 reads. It is a 

common practice in RNA-seq experiments to filter low expressed gene16,17. There are a few 

reasons for this: 1) the low expressed genes are not reliably quantified and thus vary a lot 

between biological replicates. 2) None of the models such as the negative binomial 

distribution from DESeq2 (or edgeR) or log2 transformation followed by linear regression 

(which we used) can effectively model such highly variable genes. Due to these reasons, we 

remove these genes mainly to reduce noise in gene-expression from RNA-seq experiments.

The resulting read counts were normalized for library size using cpm function of egdeR 

package in R18 to get fragments per kilobase million mapped reads (FPKM) values. Log2 

transformed FPKM values were quantile normalized using betweenLaneNormalization 
function of EDAseq package in R19.
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For postmortem human data, the paired-end strand-specific reads were mapped to the 

reference human GRCh37.73 (Gencode 19) genome using rna-STAR aligner (v2.4.2a)20. 

Count level data were quantified using union gene and union exon models with HTSeq-

Counts (v0.6.1) and genes were kept if they were expressed in 80% of the samples with >10 

reads with HTSeq union exon and union gene quantifications. Read counts were log2 

transformed and GC content, gene length, and library size normalized FPKM values using 

the cqn package in R21.

FACS sorted neuronal RNA-seq data were processed similar to the human RNA-seq data 

except the paired-end reads were mapped to the reference mouse NCBIM37 genome using 

Ensembl release 67 annotations using rna-STAR aligner (v2.4.2a).

miRNA-seq Read Alignment and Processing

Mouse and human miRNA-seq read alignments and quantifications were performed using 

miRDeep2 package22. We used mapper.pl script to map the 50bp single end reads to the 

reference genome – NCBIM37 for mouse and GRCh37 for human. We then used 

quantifier.pl script of the package to map the reads to annotated miRNAs, which were 

downloaded from miRbase (v20 for mouse data and miRbase v21 for human data) website. 

The script gives a count-level quantification of each known miRNA and we used the 

quantile-normalized values as provided by the script for downstream analyses.

Microarray - mouse embryonic cortical cells

Total RNA isolated from E15 cortical cultures using QIAGEN miRNeasy mini kit 

(QIAGEN; 217004) were processed on an Illumina mouse Ref8 v2 beadchip microarrays 

following the manufacture’s protocol. Microarray data analysis was performed using R and 

Bioconductor packages. Raw expression data were log2 transformed and normalized by 

quantile normalization. Probes were considered robustly expressed if the detection P value 

was 0.05 for at least half of the samples in the data set. Probes were re-mapped to mouse 

Ensembl gene IDs (v67; May 2012 data freeze) for comparison with RNA-seq data.

Differential Gene Expression

We used principal component (PC) analysis of the normalized gene-expression data to 

understand the biological and technical covariates effecting the data. For TPR50 dataset, we 

found that none of the first five gene-expression PCs correlated significantly with batch or 

sequencing PCs, and thus we only performed differential expression within a brain region 

and separately for each age-group using the normalized FPKM values in the linear 

regression model in R as follows:

lm expression Transgenic . Condition + MouseStrain + Sequencing . Lane . Batch + RIN

For all other mouse datasets, RIN, first two sequencing PCs, batch, experimental batch were 

used as covariates in the linear regression model. For human data, additional traits like age, 

sex and PMI were also used for the analysis. We also performed DGE for TPR50 dataset 

using DESeq2 R package23 using raw counts data from HTSeq-Counts following the default 
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parameters and taking Transgenic Condition, Mouse Strain, Sequencing Lane Batch and 

RIN as covariates for DESeq2 regression.

mRNA Weighted Co-expression Network Analysis

Co-expression network analysis was performed using a user-friendly R WGCNA library24. 

We wanted to investigate mouse brain co-expression networks that are disease-specific but 

are independent of genetic backgrounds (C57BL6/J, DBA and FVB). We thus used 

consensus network analysis approach, which provided us with groups of co-expressed genes 

(or modules) that are not affected by mouse genetic background. TPR50 mouse were 

generated using a BAC clone as transgene, which overexpressed P301S mutation in human 

MAPT gene (4R2N isoform). However, the BAC clone had 3 additional confounding genes 

– Prnd (ENSMUSG00000027338), Erv3 (ENSMUSG00000037482) and Rassf2 

(ENSMUSG00000027339) in the construct, which were also overexpressed. To remove the 

effect of the confounding genes, we took the 1st principal component of the expression of 

the confounding genes and removed the genes, which are significantly correlated at FDR 

p<0.05. This resulted in removal of about 1000 genes, which are highly correlated with the 

confounding genes. We only used the 6-month time-point to construct the initial network. 

The resulting expression data for each brain region, except cerebellum, at the 6-month time-

point was used to create consensus network separately and matchLabels function of 

WGCNA package was used to have consistent network labeling between brain regions.

In short, biweighted mid-correlations were calculated for all pairs of genes, and then a 

signed similarity matrix was created. In the signed network, the similarity between genes 

reflects the sign of the correlation of their expression profiles. The signed similarity matrix 

was then raised to power β to emphasize strong correlations and reduce the emphasis of 

weak correlations on an exponential scale. The resulting adjacency matrix was then 

transformed into a topological overlap matrix as described here25.

Since we are primarily interested in finding co-expression patterns conserved across 

different mouse genetic backgrounds, we created a consensus network to identify common 

co-expression patterns across strains, following published methods26. After scaling for each 

individual network (consensus scaling quantile=0.2) a thresholding power of 12 was chosen 

(as it was the smallest threshold that resulted in a scale-free R2 fit of 0.8) and the consensus 

network was created by calculating the component-wise minimum values for topologic 

overlap (TO). Using 1 − TO (dissTOM) as the distance measure, genes were hierarchically 

clustered. Initial module assignments were determined by using a dynamic tree-cutting 

algorithm (cutreeHybrid, using default parameters except deepSplit = 4, cutHeight = 0.999, 

minModulesize = 100, dthresh=0.1 and pamStage = FALSE).

The resulting modules or groups of co-expressed genes were used to calculate module 

eigengenes (MEs; or the 1st principal component of the module). Modules annotated using 

the GOElite package27. We performed module preservation analysis using mRNA module 

definitions. MEs were correlated with different biological and technical traits like transgenic 

condition, strain, RIN, etc. to find disease-specific modules. Module hubs were defined by 

calculating module membership (kME) values which are the Pearson correlations between 

each gene and each ME. Genes with kME < 0.7 were removed from the module. Network 
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visualization was done using iGraph package in R28. Module definitions from the network 

analysis were used to create synthetic eigengene for the 3-month time point and were used to 

understand the trajectory of various modules across time-points. For the cerebellum a data 

synthetic module eigengene was calculated using cortex co-expression definitions and 

plotted.

Cell-type Specific Regression Analysis

To ensure that the changes in module expression identified were not solely a product of 

neurodegeneration and gliosis, we employed a multivariate linear regression model to 

regress gene expression levels against transgenic condition and the first principal component 

(PC1) of the top one hundred cell-type specific marker genes29 for five major cell types: 

neurons, astrocytes, oligodendrocytes, microglia and endothelial cells. This method removes 

the confounding effect of changes in cell composition (e.g. see30,31).

lm geneExpression TransgenicCondition + PC1 . Neurons + PC1 . Astrocytes + PC1 . Microglia + PC1
. Oligodendrocytes + PC1 . EndothelialCells

Module Preservation Analysis

We used module preservation analysis to validate co-expression in independent mouse and 

human datasets. Module definitions from TPR50 consensus network analysis were used as 

reference and the analysis was used to calculate the Zsummary statistic for each module. 

This measure combines module density and intramodular connectivity metrics to give a 

composite statistic where Z > 2 suggests moderate preservation and Z > 10 suggests high 

preservation32.

Enrichment Analyses for Gene Sets

Gene set enrichment analysis was performed using a two-sided Fisher exact test with 95% 

confidence intervals calculated according to the R function fisher.test. We used p values 

from this two-sided approach for the one-sided test (which is equivalent to the 

hypergeometric p-value) as we do not a priori assume enrichment33. To reduce false 

positives, we used FDR adjusted p-values34 for multiple hypergeometric test comparisons. 

For cell-type enrichment analysis we used already published mouse brain dataset29. The 

background for over-representation analysis was chosen as brain region expressed data from 

our RNA-seq data.

For miRNA binding site/target enrichment analysis, we downloaded predicted miRNA 

targets from mouse TargetScan database (v6.2) using only conserved predicted targets35. For 

background we used all genes expressed in the mouse genome.

Genes in network modules were characterized using GO Elite (version 1.2.5) using the brain 

region expressed genes as background27. GO Elite uses a Z-score approximation of the 

hypergeometric distribution to assess term enrichment, and removes redundant GO or 

KEGG terms to give a concise output. We used 10,000 permutations and required at least 10 
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genes to be enriched in a given pathway at a Z score of at least 2. We report only biological 

process and molecular function category output.

Protein-Protein Interaction Analysis

We used two protein-protein interactions (PPIs) resources - InWeb36 and BioGRID37. Basic 

analysis was performed similar to methods published elsewhere38. Using the union of the 

two resources, the subset of compiled PPIs between genes in a module was extracted and all 

edges were counted. The PPI dataset was matrix multiplied with co-expression data from 

RNA-seq (as above) and edges, which were present both in PPI and co-expression datasets 

were eventually kept. This approach allowed us to infer tissue and species specificity in the 

PPI network. PPI network was then visualized using iGraph package in R. We also assessed 

whether the modules are interconnected by PPIs above chance using DAPPLE36, which uses 

a within-degree within-node permutation method that allows us to rank PPI hubs by p value.

miRNA Weighted Co-expression Network Analysis

miRNA co-expression networks for each brain region, except the cerebellum, at the 6 month 

time point was constructed separately using the R package WGCNA as described 

previously39. A thresholding power of 12 was chosen (as it was the smallest threshold that 

resulted in a scale-free R2 fit of 0.8). The network was created by calculating the 

component-wise minimum values for topologic overlap (TO) and miRNAs were 

hierarchically clustered. Initial module assignments were determined by using a dynamic 

tree-cutting algorithm (cutreeHybrid, using default parameters except deepSplit = 2, 

cutHeight = 0.999, minModulesize = 40, dthresh=0.1 and pamStage = FALSE). Other steps 

were similar to mRNA co-expression analysis described above. Module definitions from the 

network analysis were used to create synthetic eigengenes for the three-month time point 

and were used to understand the trajectory of various modules across time-points.

Label-free Quantitative Proteomics

Label-free Quantitative proteomics were performed at the Emory Proteomics Core, Emory 

University, USA. Detailed methods were published elsewhere9. Briefly, postmortem frozen 

human brain samples were homogenized in urea lysis buffer (8M urea, 100 mM NaHPO4 

buffer system, pH 8.5), including 5 μL (100x stock) HALT protease and phosphatase 

inhibitor cocktail (ThermoFisher, Cat# 78440) and further diluted with 50 mM NH4HCO3 

to a final concentration of less than 2M urea and then treated with 1 mM dithiothreitol 

(DTT) at 25°C for 30 minutes, followed by 5 mM iodoacetamide (IAA) at 25°C for 30 

minutes in the dark. Protein was digested with 1:100 (w/w) lysyl endopeptidase (Wako) at 

25°C for 2 hours and further digested overnight with 1:50 (w/w) trypsin (Promega) at 25°C. 

Resulting peptides were desalted with a Sep-Pak C18 column (Waters) and dried under 

vacuum.

Brain derived tryptic peptides (2 mg) were resuspended in peptide loading buffer (0.1% 

formic acid, 0.03% trifluoroacetic acid, 1% acetonitrile) containing 0.2 pmol of isotopically 

labeled peptide calibrants (ThermoFisher, #88321). Peptide mixtures were separated on a 

self-packed C18 (1.9 um Dr. Maisch, Germany) fused silica column (25 cm × 75 mM 

internal diameter; New Objective, Woburn, MA) by a NanoAcquity UHPLC (Waters, 
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Milford, FA) and monitored on a Q-Exactive Plus mass spectrometer (ThermoFisher 

Scientific, San Jose, CA). Elution was performed over a 120 min gradient at a rate of 400 

nL/min with buffer B ranging from 3% to 80% (buffer A: 0.1% formic acid and 5% DMSO 

in water, buffer B: 0.1% formic and 5% DMSO in aceto- nitrile). The mass spectrometer 

cycle was programmed to collect one full MS scan followed by 10 data dependent MS/MS 

scans. The MS scans (300–1800 m/z range, 1,000,000 AGC, 150 ms maximum ion time) 

were collected at a resolution of 70,000 at m/z 200 in profile mode and the MS/MS spectra 

(2 m/z isolation width, 25% collision energy, 100,000 AGC target, 50 ms maximum ion 

time) were acquired at a resolution of 17,500 at m/z 200. Dynamic exclusion was set to 

exclude previous sequenced precursor ions for 30 s within a 10ppm window. Precursor ions 

with +1, and +6 or higher charge states were excluded from sequencing. The label free 

quantitation (LFQ) algorithm in MaxQuant40 was used for protein quantitation. The 

quantitation method only considered razor and unique peptides for protein level quantitation. 

The LFQ intensities were log2 transformed for downstream analyses.

Lentivirus Production

10cm dishes were coated in poly-L-ornithine (Sigma) diluted in PBS and incubated at 37°C 

for 1hr-overnight. Plates were washed twice with PBS. HEK293T cells were seeded in 

DMEM supplemented with 10% Fetal Bovine Serum (FBS; Invitrogen). 24hrs after plating, 

media was replaced with prewarmed DMEM and HEK293T cells were transfected with 9ug 

purified lentiviral construct DNA, 9ug purified PAX2 DNA and 0.9ug purified VSV-G DNA 

diluted in 1mL OptiMEM (Invitrogen) and 60uL lipofectamine 2000 (Invitrogen) diluted in 

1mL OptiMEM. 4–6hrs post-transfection, media was removed and replaced with 10mL 

prewarmed DMEM + 30% FBS. 16hrs after media exchange, media was replaced with 

prewarmed DMEM + 10% FBS. 48hrs following second media exchange, media was 

collected, centrifuged for three minutes at 3000g at room temperature and filtered through a .

45um filter. Virus was concentrated using Lenti-X concentration (Clontech) and resuspended 

in Neurobasal A Medium (Invitrogen) supplemented with 5ug/mL polybrene. Virus was 

titered using Lenti-X p24 Rapid Titer Kit (Clontech), aliquoted and stored at −80°C until 

used.

miRNA expression

Expression levels of individual miRNAs of interest were quantified using the QIAGEN 

miscript kits. For low input miRNA quantification, miRCURY LNA Universal RT 

microRNA PCR (Exiqon) were used using primers specifically designed for miR-203.

TUNEL staining – mouse embryonic cortical cells

Embryonic cortical cultures were fixed with 4% Paraformaldehyde (PFA) (EMS; 15710), 

washed with Phosphate Buffered Saline (PBS) and permeabilized in 0.25% triton X-100 in 

PBS for 20min at room temperature. For TUNEL staining, cover slips were washed with 

deionized water and double-stranded DNA breaks were labeled using the Click-iT TUNEL 

AlexaFluor Imaging Assay (Invitrogen, C10246). Nuclei were labeled using the Hoechst 

33342 dye provided in Click-iT TUNEL kit. Cover slips were mounted in Fluoromount-G 

(SouthernBiotech; 0100–01) and imaged using Zeiss Axio-Imager. The percentage of 
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TUNEL+ cells in each condition was determined as the number of TUNEL+ cells over total 

nuclei detected.

Isolation of infected adult mouse neurons using flow cytometry.

Frontal cortex of adult male mice was dissected in ice-cold Hibernate A-lacking calcium 

(BrainBits; HA-Ca). Tissue was roughly chopped in HA-Ca, moved to 15mL Falcon tube 

and incubated in 5ml of activated papain (Worthington; LK003178; resuspended in HA-Ca) 

in the presence of DNase I for 30min at 37°C with continuous agitation. Papain digested 

tissue was triturated and cell debris was removed using ovomucoid (Worthington; 

LK003182; resuspended in HA-Ca) discontinuous density gradient centrifugation. The cell 

pellet was resuspended in 1.8mL Hibernate A-low fluorescence (BrainBits; HA-LF) to 

create a mononuclear cell suspension. To further reduce the amount of debris, the Miltyne 

myelin removal kit was used. Briefly, 200uL myelin removal beads (Miltyne; 130–096-733) 

were added to the cell suspension, incubated at 4°C for 15 minutes, 2mL of HA-LF was 

added and the cell suspension was centrifuged at 300g for 10 minutes at 4°C. The 

supernatant was aspirated and the pellet was resuspended in 1mL of HA-LF and applied to 

prepared LS columns (Miltyne; 130–042-401). Flow-through, as well as two 1mL washes 

with Ha-LF, were collected, centrifuged at 600g for 5min at 4°C and resuspended in 750uL 

HA-LF. Myelin depleted samples were labeled with live cell marker DRAQ5 (Fisher; 6225; 

1uL/1mL of cell suspension) and dead-cell marker NucBlue® (Invitrogen; R37606; 2 

drops/mL of cell suspension). The cells were FAC sorted on BD FACS Aria cell sorter 

gating for DAPI-/DRAQ5+/GFP+ cells. For each sample a maximum of 1000 cells were 

isolated and directly collected in 100ul of RA1 buffer with 2ul tris(2-

carboxyethyl)phosphine (TCEP) and low mass RNA was isolated with on-column DNase 

digestion using Nucleospin RNA XS kit (Clontech) following the manufacture’s protocol.

Immunohistochemistry

Three or six weeks after AAV-mediated infection, mice were anesthetized with Pentasol 

(sodium pentobarbital, 40 mg/kg body weight) and perfused intracardially, first with PBS, 

followed by 4% PFA in PBS. The brains were removed, post-fixed overnight, and 

cryoprotected by immersion in 30% sucrose in PBS for 48hrs. Brains were embedded in 

optimum cutting temperature (OCT) compound, sectioned at a thickness of 20 μm on a 

cryostat, mounted and used for IHC using standard protocols. Incubations with primary 

antibodies were performed overnight at 4°C and with secondary antibodies for 60 min at 

room temperature. For primary antibodies, we used rabbit anti-GFP (1:500, Invitrogen) and 

rabbit anti-Casp8 (1:800, Cell Signaling). Images were acquired with a Zeiss LSM 780 laser 

scanning confocal microscope (fluorescence) or Zeiss Axio-Imager.

Western blotting

E15 cortical cultures were washed in PBS, dissociated in 0.25% prewarmed trypsin, washed 

in PBS and pelleted by centrifugation at 1,500g for 1min at room temperature. Cell pellets 

were resuspended in 50–70uL TNT buffer (150mM NaCl, 1mM EDTA, 50mM Tris pH 7.4, 

1% Triton X-100) supplemented with protease and phosphatase inhibitors (Roche, 

4693159001 & 4906845001). Lysates were incubated at 4°C for 30 minutes with constant 

agitation and centrifuged at 13,000g for 5 minutes at 4°C. Supernatant was transferred to 
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new tube, protein concentration was measured using Bradford Reagent (BioRad, 500–0006) 

and equal volumes of Laemmle sample buffer (BioRad; 161–0737) supplemented with β-

mercaptoethanol were added to the lysate. Lysates were briefly heated to 95°C, loaded onto 

4–15% mini-PROTEAN TGX Precast gels (BioRad, 456–1086) and run at 100V for approx. 

1.5hrs. Samples were transferred to PLVD membranes (BioRad, 162–0177), blocked with 

5% milk or 3% BSA in PBST for 1hr at room temperature, probed with primary antibody 

overnight at 4°C, washed with PBST and probed with secondary antibody for 1hr at room 

temperature. Primary antibodies used: VSNL1 (1:1000; Millipore MABN762), DGKB 

(1:1000; ThermoScientific PA5–15416), β-actin (1:2000, Sigma A1978), BCL2L2 (1:1000, 

Origene TA302168). Mouse brain samples were dissected, washed in PBS and snap frozen 

in liquid nitrogen. Samples were homogenized in 0.5% sarkosyl buffer and sarkosyl soluble 

and insoluble fractions were separated. Western blots were probed with either total tau (Ab-3 

antibody, RB-1429, Invitrogen) or phospho-tau (AT8 antibody, pS202/pT205, MN1020, 

Invitrogen).

Luciferase Assay

HEK293T cells were plated on poly-L-ornithine (Sigma, P3655) coated 96-well plates. 

When 70–80% confluent, cells were transfected with pmirGLO Dual-Luciferase miR Target 

Expression vector (Promega, E1330) containing 950pb target 3’UTR (centered around 

proposed miR-203 binding site) and 20nM mimic (Dharmacon; C-310523–05, C-310459–

07) using lipofectamine 2000 (ThermoFischer Scientific; 11668027). 24–48hr after 

transfection, Dual-Glo Luciferase Assay (Promega, E2920) was used to measure both firefly 

and renilla luciferase-mediated luminesence using BioTek Synergy 2 plate reader (1 second 

integration time, 100 sensitivity). Firefly luciferase luminescence was normalized to renilla 

luciferase luminescence to control for transfection efficiency. Samples treated with miR-203 

mimic were normalized to samples treated with scrambled mimic (control).

Connectivity Map (CMAP) Analysis

Top 300 salmon and turquoise hub genes (according to descending kME values) were used 

as input for CMAP database (https://portals.broadinstitute.org/cmap/). This signature was 

used to query drugs or small molecules and the similarity between this signature and more 

than 7,000 expression profiles for 1,309 compounds (reference signatures) in the cmap 

database were evaluated41. Enrichment of both salmon and turquoise module hub genes in 

the profiles of each treatment instance were estimated with a metric based on the 

Kolmogorov-Smirnov statistic, (a nonparametric, rank-based pattern-matching strategy) as 

described41 and combined to produce a “connectivity score.” Mean connectivity scores 

across several cell lines were then ranked by increasing order of connectivity. Gene-

expression data of the top scoring drug, scriptaid was extracted from CMAP database and 

used for finding genes differentially affected with the drug treatment.

Generation of the Human iNgn2 Neurons and Compound Treatment

The control 8330–8-RC1 and the Tau-A152T 19–5-RC6 neural progenitor cell (NPC) lines 

(derived from 8330–8 and 19–5 iPSC (generation of these iPSC lines are described in42–44, 

respectively) were stably transduced with an inducible Neurogenin 2 (iNgn2) construct 

containing puromycin and blasticidin selection markers and a transactivator construct 
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(derivation method described in Cheng et al. (2017)) resulting in the iNgn2-NPC stable cell 

lines. On day 0, each of the iNgn2-NPC cell line was plated at 9×105 cells/well into 6-well 

plates precoated with 20 μg/ml poly-ornithine (Sigma cat# P3655–50MG), and 5 μg/ml 

laminin (Sigma cat# L-2020–1MG) in neural medium (48% Neurobasal medium (Gibco 

cat# 21103–049), 48% DMEM/F12 (Gibco cat# 11330), 1% B27 (Gibco cat# 17504–044), 

0.5% N2 supplement (Gibco cat# 17502–048), 0.75% GlutaMax (Gibco cat# 35050–061), 

1% penicillin/streptomycin (Gibco cat# 15140–122), 0.5% MEM NEAA (Gibco cat# 

11140), 50 μM 2-mercaptoethanol (BioRad cat# 161–0710), 0.2% bovine serum albumin 

(Sigma, cat# A7906–100 G), 2 μg/ml doxycycline (Clontech cat# 631311), 10 ng/ml BDNF 

(Peprotech cat# 450–02), 10 ng/ml NT3 (Peptrotech cat# 450–03) to start the neural 

induction. The cells were re-fed every other day with half replacement of the neural 

medium, with 1 μg/ml puromycin (Sigma cat# P8833–25MG) added on day 2 and 4, and 

cytosine arabinoside (AraC; Sigma cat# C6645) on day 6. Between days 13–14, the cells 

were treated for 24hrs with either 0.05% DMSO (vehicle control), 500nM, 1uM or 2.5uM 

SAHA in neural medium minus the growth factors and doxycycline. After the 24hr 

treatment, the 14-day iNgn2 neurons were harvested in TRIzol (Ambion cat# 15596018) 

with each replicate collected from two wells and stored at −80°C.

FACS sorting of adult mouse neurons.

Cortical cell suspension from adult mouse neurons were labeled with live cell marker 

DRAQ5 (Fisher; 6225; 1uL/1mL of cell suspension) and dead-cell marker NucBlue® 

(Invitrogen; R37606; 2 drops/mL of cell suspension). The cells were FACS sorted on BD 

FACS Aria cell sorter gating for DAPI-/DRAQ5+/GFP+ cells. For each sample a maximum 

of 1000 cells were isolated and directly collected in 100ul of RA1 buffer with 2ul tris(2-

carboxyethyl)phosphine (TCEP) and low mass RNA was isolated with on-column DNase 

digestion using Nucleospin RNA XS kit (Clontech) following the manufacture’s protocol.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Experimental Design and Characterization of TPR50 Tau Transgenic Mice in 
Divergent Genetic Backgrounds.
(a) Schematic of the experimental design highlighting that TPR50 mice were crossed with 

three genetically divergent mouse strains and that tissue from the cortex, hippocampus, brain 

stem and cerebellum from the resulting F1 crosses was isolated at three and six months for 

mRNA- and miRNA-seq and downstream weighted co-expression network analysis 

(WGCNA). (b) Kaplan-Meier survival curve showing significantly decreased survival of all 

transgenic mice compared to their wild type littermates, as well as decreased survival of the 

FVB/C57-Tg mice compared to DBA/C57-Tg and C57/C57-Tg mice (two-sided log rank 

test, p=0.0025, n=180; 15 males and 15 females/condition). (c) Representative images from 

three independent experiments of phospho-tau specific AT8 staining and hematoxylin 

counterstaining in coronal and sagittal brain sections of three- and six-month-old transgenic 

mice of all three strains (n=4 mice/group; sagittal scale bar = 4μm, coronal scale bar = 3μm). 

(d) Representative images from three independent experiments showing cortical sections of 
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six-month-old wild type and transgenic mice of all three strains stained against Iba1 (red) 

and GFAP (green) and the nuclear counterstain DAPI (blue) (scale bar=50μm). (e-f) 
Quantification of GFAP (e) and Iba1 (f) positive cells from 6-month-old cortical slices (n=6 

images/mouse, 3 mice per genotype; unpaired two-sided t-test, error bars= SEM). The center 

line represents the mean.
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Figure 2: mRNA Consensus Co-expression Network Analysis.
(a) Signed association (Pearson correlation) of the mRNA module eigengenes with 

transgenic condition. Modules with positive values indicate increased expression in 

transgenic mice; modules with negative values indicate decreased expression in transgenic 

mice. Red dotted lines indicate Bonferroni corrected p<0.05 for multiple comparisons (n=15 

modules, n=36 mice/region) using p-values obtained from two-sided test for Pearson 

correlation. (b) Cell-type enrichment of modules (average n=200 genes) using mouse genes 

in mRNA modules (fisher’s two-sided exact test, ***FDR<0.005). (c) Co-expression PPI 

network plot of the NAS module. Top 30 hub genes are indicated by name. The edges 

between nodes represent both gene co-expression and PPI permitting us to focus on hub 

genes observed at both the RNA and protein level. (d) GO term enrichment of the NAS 

module using 794 NAS modules genes (permutation test Z-score). (e-i) Trajectory of the 

NAS module eigengene in the cortex (e) and cerebellum (i) (unpaired two-sided Wilcox rank 
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test, n=6 mice/group). (f) Co-expression PPI network plot of the NAI module. Top 30 hub 

genes are indicated by gene name. (g) GO term enrichment of the NAI module using 1833 

NAI module genes. (h-j) Trajectory of the NAI module in the cortex (h) and cerebellum (j) 
(Unpaired two-sided Wilcox rank test, n=6 mice/group). Boxplots in e, h, i and j, the upper 

and lower lines represent the 75th and 25th percentiles, respectively. The center line 

represents the median.
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Figure 3: Transcriptomic and Proteomic Analyses in Human FTD samples
(a) Scatterplot showing Pearson correlation of sub-sampled discovery (Control n=7, Tau-

positive FTD n=5) and replication FTD (Control n=7, Tau-positive FTD n=5) dataset. P-

values obtained from two-sided test for Pearson correlation are shown. (b) Module 

preservation in human FTD (cortex) using module definitions from strain independent 

transgenic mouse network analysis. (c-d) NAS and NAI module eigengene expression in 

human FTD and control samples in the cortex (c, Control n=14, Tau-positive FTD n=10, 

Tau-negative FTD n=6) and cerebellum (d, Control n=10, Tau-positive FTD n=7). Tau-

positive FTD (FTD-tau Pos.) and tau-negative FTD (FTD-Tau Neg.) are shown (unpaired 

two-sided Wilcox rank test). (e) Log2 fold change of the top 20 NAS and NAI module genes 

at the mRNA and protein level. (f) NAS and NAI module eigengene (ME) in human FTD 

and control protein samples from the cortex. Progranulin-positive FTD (FTD GRN Pos.) and 

progranulin-negative FTD (FTD GRN Neg.) are shown (unpaired two-sided Wilcox rank 
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test). (g-o) NAS and NAI module eigengene (ME) in various neurological diseases – (g) 

Human AD Temporal Cortex (Control n=52, AD n=52; Allen et al., 2016), (h) Human AD 

frontal cortex (Control n=308, AD n=157, Zhang et al., 2013), (i) Human AD frontal cortex 

proteomics (Control n=15, AD n=20; Seyfried et al., 2017), (j) Human Pathological Aging 

temporal cortex (Control n=70, Pathological Aging n=30; Allen et al., 2016), (k) Human 

ALS frontal cortex (Control n=9, C9orf ALS n=8, Sporadic ALS n=10; Prudencio et al., 
2015), (l) Human PSP temporal cortex (Control n=73, PSP n=83; Allen et al., 2016), (m) 

Human Major depressive disorder (MDD) (Control n=67, MDD n=66; Chang et al., 2014), 

(n) Human Schizophrenia (Control n=167, Schizophrenia n=131; Fromer et al., 2016) and 

(o) Bipolar disorder (Control n=65, Bipolar disorder n=40; Fromer et al., 2016); unpaired 

two-sided Wilcox rank test. In all the boxplots, the upper and lower lines represent the 75th 

and 25th percentiles, respectively. The center line represents the median. (p) Mean scaled 

enrichment of GWAS hits (MAGMA calculated p-value < 0.05) from FTD GWAS (Ferrari et 
al., 2014), PSP GWAS (Hoglinger et al., 2011) and AD GWAS (Lambert et al., 2013) in 

various TPR50 modules (n=15 modules). NAI module enrichment for AD risk genes was 

still significant after omitting APOE from the analysis (Supplementary Table 4d).
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Figure 4: miRNA Co-expression Network Analysis
(a) Signed association (Pearson correlation) of the miRNA module eigengenes with 

transgenic condition. Modules with positive values indicate increased expression in 

transgenic mice; modules with negative values indicate decreased expression in transgenic 

mice. Red dotted lines indicate Bonferroni corrected p<0.05 for multiple comparisons (n=16 

modules) using p-values obtained from two-sided test for Pearson correlation. (b) miRNA 

co-expression network plot of the miM16 module showing hub miRNAs in the center. Large 

nodes indicate top five hub miRNAs. (c) Trajectory of the miM16 module in the cortex 

(unpaired two-sided Wilcox rank test, n=6 mice/group). (d) Multidimensional scaling plot 

illustrating correlations between module eigengenes of the mRNA and miRNA modules. 

Colors indicate bi-weighted mid-correlation (R) values. (e) Enrichment of selected miM16 

module miRNA predicted targets in mRNA modules. All enrichment values (odds ratio) 

with FDR<0.05 and OR>2 are shown (fisher’s two-sided exact test, ***FDR<0.005). For a 
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full list of enrichments refer to Supplementary Fig. 6g. Targetscan database was used for 

miRNA target prediction. (f) Trajectory of log2 expression of miR-203 in the cortex 

(unpaired two-sided Wilcox rank test, n=6 mice/group). (g,h) miR-203 expression in the 

cortex (g, Control n=14, Tau-positive FTD n=10, Tau-negative FTD n=6) and cerebellum (h, 
Control n=10, Tau-positive FTD n=7) of human FTD and control samples. Tau-positive FTD 

(FTD-Tau Pos.) and tau-negative FTD (FTD-tau Neg.) are shown are shown for cortex. 

(Unpaired two-sided Wilcox rank test). (i) Module eigengene of predicted targets of 

miR-203 expression in human FTD and control protein samples in the cortex. Control=8, 

FTD GRN-Pos=6, FTD GRN-Neg=10, Progranulin-positive FTD (FTD GRN Pos.) and 

progranulin-negative FTD (FTD GRN Neg.) are shown (unpaired two-sided Wilcox rank 

test). In all the boxplots, the upper and lower lines represent the 75th and 25th percentiles, 

respectively, while the center line represents the median.
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Figure 5: Overexpression of miR-203 in vitro and in vivo
(a) Schematic of lentiviral vector used for in vitro studies. (b-c) Trajectory of the miR-203 

target genes (b) and NAS module eigengene (c) in uninfected primary cortical cultures or 

cultures infected with either miR-203- or sc-miRNA-lentiviral construct (n=4/group, 

unpaired two-sided Wilcox rank test). (d) Representative images of TUNEL staining from 

three independent experiments in mouse primary cortical neurons overexpressing miR-203 

or sc-miRNA (control) at DIV6, DIV8 and DIV10 days. Green: GFP (infection), Red: 

TUNEL and Blue: Hoechst. Scale bar=25μm. (e) Quantification of TUNEL staining. The 

percent of TUNEL-positive cells in miR-203 overexpressing cultures were normalized at 

each time point to the average percent of TUNEL-positive cells in sc-miRNA control (error 

bars = SEM, unpaired two-tailed t-test, n=60 cells for DIV6, n=50 for DIV8 and n=60 cells 

for DIV10). The center line represents the mean. (f) Normalized luminescence of luciferase 

reporter assay. Luciferase vectors containing 950 bps of the 3’UTR sequence of Bcl2l2, 
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Dgkb, Mapk10, Vsnl1 and Npepps genes were co-transfected with 20nM miR-203 or 

control mimics in HEK293T cells and assayed after 24–48hrs (error bars = SEM, unpaired 

two-tailed t-test, n=12/group). The center line represents the mean. (g) Representative 

immunoblots from three independent experiments and quantification of BCL2L2 and 

VSNL1 protein levels from total cell lysates isolated from primary mouse cortical neurons 

overexpressing miR-203 or sc-miRNA (error bars = SEM, paired two-tailed t-test). The 

center line represents the mean. Uncropped blots are shown in Supplementary Fig. 9. (h) 
Schematic representation of experimental design and timeline to overexpress or inhibit 

miR-203 in C57BL/6 wild type or Tg4510 tau transgenic mouse frontal cortex using 

AAV2/9 system. (i) NAS module eigengene expression in GFP-positive cells overexpressing 

miR-203 or sc-miRNA at 3 or 6 weeks after AAV injection in C57BL/6 wild type mice 

(Unpaired two-tailed Wilcox rank test, n=6/group). (j) Expression of genes involved in 

positive regulation of apoptosis (GO term ID: 0043065) and negative regulation of apoptosis 

(GO term ID: 0043066) in GFP-positive cells overexpressing miR-203 or sc-miRNA at 3 

and 6 weeks after AAV injection in C57BL/6 wild type mice (unpaired two-tailed Wilcox 

rank test, n=6/group). (k) Caspase-8 (CASP8) intensity of GFP-positive cells overexpressing 

miR-203 were normalized at each time point to the average Caspase-8 intensity of GFP-

positive cells overexpressing sc-miRNA control (unpaired two-tailed Mann-Whitney test, 

n=464 cells for 3-weeks control, n=937 cells for 3-weeks miR-203, n=629 cells for 6-weeks 

control, n=1441 cells for 6-weeks miR-203; three independent biological replicates/

condition). The center line represents the mean and error bars showing SEM (l-m) Module 

eigengene of miR-203 targets (l) or NAS module (m) in GFP-positive cells overexpressing 

miR-203 6 weeks after AAV injection (unpaired two-tailed Wilcox rank test, n=5 scrambled 

(sc)-miRNA infected mice and n=6 miR203 infected mice). (n) Caspase-8 (Casp8) intensity 

of GFP-positive cells overexpressing miR-203 in Tg4510 Tau transgenic mice were 

normalized at each time point to the average Caspase-8 intensity of GFP-positive cells 

overexpressing sc-miRNA control (unpaired two-tailed Mann-Whitney test, n=507 cells for 

sc-miRNA and 2793 cells for miR-203; three independent biological replicates/condition). 

The center line represents the mean and error bars showing SEM. (o-p) Module eigengene 

of miR-203 targets (o) or NAS module (p) in GFP-positive cells overexpressing sc-TuD 

control or miR-203 TuD 6 weeks after AAV injection in Tg4510 Tau transgenic mice 

(Unpaired two-tailed Wilcox rank test, n=5 scrambled (sc)-miRNA infected mice and n=6 

miR203 infected mice). In all the boxplots, the upper and lower lines represent the 75th and 

25th percentiles, respectively, while the center line represents the median. (q) C-fos intensity 

of GFP-positive cells expressing TuD-miR203 in Tg4510 Tau transgenic mice were 

normalized at each time point to the average c-fos intensity of GFP-positive cells expressing 

sc-TuD control (Unpaired two-tailed Student’s T-test, n=50 images (control) and n=60 

images (miR203); n=5 scrambled (sc)-miRNA infected mice and n=6 miR203 infected 

mice). The center line represents the mean and error bars showing SEM.
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Figure 6: Small Molecule Inhibition of miR-203 Induced Cell Death in vitro.
(a) Co-expression based network plot of scriptaid targets from the Connectivity Map 

database with genes in the NAS and NAI modules. Genes which are upregulated with 

scriptaid treatment are connected by red edges and those which are downregulated are 

connected by green edges. Nodes size represents centrality within the network. (b, d) 

Representative images from three independent experiments of TUNEL staining in mouse 

primary cortical neurons overexpressing miR-203 or sc-miRNA (control) at DIV7 treated 

with DMSO control and 1uM or 2.5uM scriptaid (b) or DMSO control and 0.5uM or 1uM 

SAHA (d) for 24hrs prior (green: GFP, red: TUNEL, blue: Hoechst, scale bar=25μm). (c, e) 
Quantification of TUNEL positive cells from three independent experiments treated with 

scriptaid (c) and SAHA (e) (unpaired two-tailed t-test, n=15/group for SAHA experiments 

and n=20/group for scriptaid experiments). Scriptaid treatment does not alter miR-203 

overexpression levels (Supplementary Fig. 9, indicating that the decrease in cell death is not 
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a result of changes in viral infection, miRNA processing or regulation of miR-203 by 

scriptaid. The center line represents the mean and error bars showing SEM. (f) Trajectory of 

the NAS module eigengene in cultures infected with either miR-203- or sc-miRNA-lentiviral 

construct treated with either DMSO, 0.5 or 1uM SAHA (unpaired two-tailed Wilcox rank 

test, n=6/group). (g) Trajectory of the NAS module eigengene in human iPSC derived 

neurons from control and A152T Tau patients treated either DMSO, 0.5, 1 or 2.5uM SAHA 

(unpaired two-tailed Wilcox rank test, n=6/group). In all the boxplots, the upper and lower 

lines represent the 75th and 25th percentiles, respectively, while the center line represents 

the median.
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Figure SM1. Gating strategy used for FACS sorting.
After setting the initial gate for FSC (Gate P1) and SSC (Gate P2) and both (Gate P3) based 

on previous experiments with adult mouse cortex, we further gated for DAPI -ve and 

DRAQ5 positive gates to get “live” cells (Gate P4). Gate P4 was then sorted for GFP 

positive fraction based on fluorescent intensity (P5)
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