UCLA

UCLA Electronic Theses and Dissertations

Title
Applications of Pin(2)-equivariant Seiberg-Witten Floer homology

Permalink
https://escholarship.org/uc/item/7f80m7fy

Author
Stoffregen, Matthew Henry

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/7f80m7fr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
Los Angeles

Applications of Pin(2)-equivariant Seiberg-Witten Floer homology

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Matthew Henry Stoffregen

2017



(© Copyright by
Matthew Henry Stoffregen
2017



ABSTRACT OF THE DISSERTATION
Applications of Pin(2)-equivariant Seiberg-Witten Floer homology
by

Matthew Henry Stoffregen
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2017

Professor Ciprian Manolescu, Chair

We study Manolescu’s Pin(2)-equivariant Seiberg-Witten Floer homology of rational homol-
ogy three-spheres, with applications to the homology cobordism group 64 in mind. We
compute this homology theory for Seifert rational homology three-spheres in terms of their
Heegaard Floer homology. We prove Manolescu’s conjecture that § = —j, the Neumann-
Siebenmann invariant, for Seifert integral homology three-spheres. We establish the existence
of integral homology spheres not homology cobordant to any Seifert space. We show that
there is a naturally defined subgroup of the homology cobordism group, generated by cer-
tain Seifert spaces, which admits a Z* summand, generalizing the theorem of Fintushel-Stern
and Furuta on the infinite-generation of the homology cobordism group. In addition to the
application of the Pin(2)-theory to Seifert spaces, we apply it to the full homology cobor-
dism group. In this direction, we identify a F[U]-submodule of Heegaard Floer homology,
called connected Seiberg-Witten Floer homology, whose isomorphism class is a homology

cobordism invariant.
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CHAPTER 1

Introduction

1.1 Introduction

Our story starts with Seiberg- Witten Floer homology, a functor that associates to a pointed,
closed, oriented 3-manifold Y with a spin® structure s an abelian group, denoted SWFH (Y, s)
and called the Seiberg-Witten Floer homology of (Y,s). Roughly speaking, SWFH(Y,s) is
defined analgously to the construction of Morse homology for a finite-dimensional manifold.
Recall that Morse homology associates to a (finite-dimensional, closed, oriented) Riemannian
manifold M, equipped with a function f : M — R satisfying certain transversality conditions
(which are generically satisfied) a chain complex, with generators (over Z) the critical points
of the function f, and differentials given by counting the index 1 gradient trajectories between
critical points. The homology of the chain complex is denoted by H (M, f), and it turns out
that the resulting homology theory is isomorphic to singular homology of the manifold M

(in particular, is independent of the function f).

The homology SWFH (Y, s) is thought of as the ‘Morse Homology of the Chern-Simons-
Dirac functional (csd functional) £’. The csd function is defined on an infinite-dimensional
space B of spin“-connections and spinors over the 3-manifold Y, with its spin® structure s,
in contrast to the Morse homology situation in finite dimensions. Roughly, SWFH (Y,s) can
be thought of as the homology of a chain complex whose generators are the critical points of
the csd functional, and whose differentials count formal gradient trajectories between critical

points.

However, in the infinite-dimensional setting, it is not the case that just any functional

f determines a homology theory, but the csd functional has good properties that make it

1



possible to define a homology theory following the general picture above. Typically, we call
any homology theory constructed from an infinite-dimensional space by following this picture

a Floer theory.

To be more precise, there are multiple definitions of a homology theory coming from the
Chern-Simons-Dirac functional, and we will call any such theory a monopole Floer homology.
Marcolli-Wang [32] provided a definition for a restricted class of 3-manifolds. The version
we have been using above, SWFH (Y,s), was defined by Manolescu [28] and is only defined
for 3-manifolds with first betti number b;(Y) = 0. Kronheimer-Mrowka in [23] defined a
monopole Floer homology for all closed oriented 3-manifolds with spin®-structure, and their
version is denoted W(Y,s). We will occasionally confound SWFH(Y,s) and HM (Y,s),
(Lidman-Manolescu [25] have shown that these abelian groups are canonically isomorphic),
but during the course of the introduction we will also address the fact that their definitions

are rather disparate.

For comparison, we note that the first Floer theory for 3-manifolds, instanton homology
[10], is in some sense the dimensional reduction to 3-dimensions of Donaldson’s polynomial
invariant of closed 4-manifolds. Similarly, monopole Floer homology is the 3-dimensional

cousin of the Seiberg-Witten (monopole) invariant of closed 4-manifolds, introduced in [54].

One of the key features of monopole Floer homology comes from the fact that the Chern-
Simons-Dirac functional is invariant with respect to an S'-action on B. Pursuing the finite-
dimensional analogy above, we would like to compare the Floer homology of £ with the
Morse homology of a function on a manifold with an S'-action. For a manifold with S!-
action, we can take the equivariant (or Borel) homology. The Borel homology of a space X
with the action of a compact Lie group G, written H¢(X), is a module over H*(BG), where
BG is the classifying space of G. In particular, for the case G = S, we have BS! = CP®,
and H*(BS") = Z[U], so HS'(X) is equipped with a Z[U]-module structure. To obtain the
most general picture of Floer homology of £, we then would like to have that the homology

theory SWFH(Y,s) is a module over Z[U].

The chief difficulty in setting up such an equivariant theory is the presence of reducible



points in the configuration space B. We call a point p € B reducible if the action by S!
has nontrivial stabilizer (it turns out that having nontrivial stabilizer implies that S acts
trivially on p). In the monopole setting, reducible critical points in the configuration space
correspond to S'-flat connections. In particular, for integer homology spheres, there is a
unique reducible point (and it is always a critical point for £). In the setting of Kronheimer-
Mrowka, the presence of reducibles is overcome by introducing the blow-up construction,
where the configuration space is replaced with a new space (the blow-up) B? lying over B/S?,
and one proceeds to construct Floer homology in the blow-up. However, in this process new
difficulties are also created. The blow-up B? is analogous to a manifold-with-boundary in
the finite-dimensional setting, and so one must develop a Floer theory in analogy with the
case of finite-dimensional manifolds with boundary, generalizing the procedure we outlined

above, for closed finite-dimensional manifolds.

Manolescu’s construction of SWFH(Y,s) proceeds along different lines, and is limited
to the setting where b;(Y) = 0. To describe the construction, we first introduce an object

called the Conley index, associated to a dynamical system on a finite-dimensional manifold

X.

To describe this object, let ¢4 for s € R be the dynamical system on X. We call a compact

subset S of X an isolated invariant set if

1. S is invariant; namely ¢,(S) < S for all t € R.

2. S is the maximal invariant set in some compact neighborhood N of S for which S <

int(NV).

Then the Conley index of S, denoted I(S, ), is defined to be the pointed topological
space (N/L,[L]), where N is any isolating neighborhood of S (that is, a neighborhood so
that the above conditions are satisfied), and L is an ezit set. The Conley index is well-defined

up to homotopy equivalence, independent of the choice of N and L.

Manolescu constructs SWFH(Y,s) as the equivariant homology of a topological space

SWEF (Y, s) equipped with an S'-action, which is built as the Conley index of finite-dimensional

3



approzimations of the Seiberg-Witten equations. Here, by a finite-dimensional approxima-
tion, we mean a finite-dimensional subspace of B, along with a projection of the gradient of
the Chern-Simons-Dirac functional to the finite-dimensional subspace. This gives us a vector
field over a finite-dimensional manifold, and any such defines a dynamical system. From this
dynamical system we can take a Conley index, which is roughly speaking SWF(Y,s). In
particular, Manolescu shows that as one takes larger and larger approximations above, the
homotopy-types are related by suspensions. The result is a well-defined stable-homotopy

type SWF(Y,s) (with an S'-action).

However, the issue of equivariance does not end with considering the Sl-action. In
the case that a spin®structure actually comes from a spin structure, the Seiberg-Witten
equations inherit a Pin(2)-symmetry, where Pin(2) is the subgroup of the unit quaternions
generated by the unit circle in the complex plane, along with the quaternion j. In this
case SWF(Y,s) is a Pin(2)-equivariant stable homotopy type. Then, its Pin(2)-equivariant
homology, denoted SWFH™?(Y,s) is a module over H*(BPin(2)) = F[U,q]/(¢*). Here
and subsequently, F will be the field of two elements, and SWFH"™?) (Y,s) will be taken

with F-coefficients.

The Pin(2)-equivariance of the Seiberg-Witten equations in the presence of a spin struc-
ture was first used by Furuta [I5] in order to prove the 10/8-Theorem. That is, the rank of
Hy(X) is at least 10/8 the signature of the intersection form on Hy(X) for X a spin simply-
connected smooth closed 4-manifold. Furuta’s technique required the Bauer-Furuta invariant
of a 4-manifold, a homotopy refinement of the Seiberg-Witten invariant, and involved looking

at its K-theory.

Manolescu introduced the Pin(2)-equivariant Seiberg-Witten Floer homotopy type, writ-
ten SWF (Y, s), in [30] (upgrading the S'-equivariance from [28]) and used it there to disprove
the Triangulation conjecture. The study of this Pin(2)-equivariant Seiberg-Witten Floer ho-
mology is the topic of this thesis. In particular, we study the Manolescu invariants, o, 3, and

7, that arise as generalizations of the Frgyshov invariant (which we will introduce below).

In the remainder of this section, as motivation, we review Manolescu’s disproof of the



triangulation conjecture using these invariants. Let us first go over the statement of the
triangulation conjecture, then we will address its connection to low-dimensional topology,

and finally return to gauge theory to see how the disproof works.

Question 1 (Kneser [22]). Does every topological manifold admit a triangulation?

Here, by a triangulation we mean a homeomorphism from a topological manifold X to

the realization of a simplicial complex.

1.1.1 The triangulation conjecture and low-dimensional topology

To explain this connection, we introduce the homology cobordism group 6. We call two
oriented, closed integer homology 3-spheres Y; and Yy homology cobordant if there exists a
smooth oriented compact manifold W so that dW = Y, 11 —Y; and so that the maps on
homology induced by inclusions ¢y : H,(Y;;Z) — H,(W;Z) are isomorphisms. Then 6% is
the set of equivalence classes of integer homology 3-spheres up to homology cobordism, and it
inherits the structure of an abelian group as follows. We define addition using the connected
sum operation [Yi]| + [Ya] = [Vi#Ys] € 2. From this, it is clear that [S?] is the identity
element of 0¥ and we have inverse given by orientation reversal (one must of course check

that Y# — Y is homology cobordant to S®, as is readily verified).

The first invariant to distinguish elements of 62 is the Rokhlin homomorphism j: 62 —

Z,/2. The construction of this invariant is made possible by the Theorem of Rokhlin:

Theorem 1.1.1. (Rokhlin [{3]) Any closed, smooth spin 4-manifold X has signature o(X)
divisible by 16.

Then, we define p(Y') to be 0(X)/8 mod 2, where X is a smooth compact spin 4-manifold
bounded by Y. Rokhlin’s Thoerem guarantees that this quantity is independent of the choice
of such X.

Galewski-Stern reduced the triangulation conjecture to a question about low-dimensional
topology. They showed that there exist non-triangulable topological manifolds in all di-

mensions at least 5 if and only if there exists any non-triangulable topological manifold in
5



dimension at least 5 if and only if there exists an element [Y] € 6% with pu(Y) = 1 and

2[Y] =0e€6i.

1.1.2 The Frgyshov invariant

In order to disprove the Triangulation Conjecture, Manolescu introduces a version of the
Frgyshov invariant, in analogy to the h-invariant from [I3]. Previously, the h-invariant
had been generalized from instanton homology to other versions of Floer homology for 3-
manifolds, as in [38] for Heegaard Floer homology and [23] for monopole Floer homology.
For convenience, we will review the h-invariant in the setting of the Seiberg-Witten Floer

stable homotopy type of an oriented 3-manifold Y with spin® structure s and b;(Y") = 0.

Recall that SWFH®' (Y,s) is the S'-equivariant Borel homology of SWF(Y,s). As such,
it comes with the action of F[U] (now working with F coefficients). However, the equivariant
localization, theorem (see [50] I11) states that the localization of HS' (SWF(Y,s)) at the ideal
(U) < F[U] is isomorphic to F[U]"'HS" (SWF(Y,s)5"), where SWF(Y,s)"" is the subset
of SWF(Y,s) fixed under the action of S'. Roughly speaking, this says that the algebraic
structure of the Borel homology module records information about the types of orbits in
SWF(Y,s). Because we know that the fixed-point set of SWF (Y s) is precisely a point, we

have

F[U]'HE (SWE(Y,s)) ~ F[U,U].

Since HZ' (SWF(Y,s)) is bounded below, we obtain that there is some minimal degree d for

which the map
HE (SWF(Y,s)) — F[U] ' HE (SWF(Y,5))
is a surjection. We call d/2 the Froyshov invariant of Y, and denote it 6(Y).

The utility of the Frgyshov invariant derives from knowing the reducible set of the Seiberg-
Witten equations on a 4-manifold. In particular, Manolescu [28] showed that associated to

a homology cobordism from Y] to Y5, there is a map of stable homotopy types

SWF(Y1,s1) — SWF(Ys, 55),



which induces a homotopy equivalence on fixed-point sets. In particular, such a cobordism

map induces an isomorphism:

HS (SWF(Y1,5)%) — HS (SWF(Ya,59)%"),

We inherit a commutative diagram

oS (SWF (Y1,81)) — HS' (SWF(Ya,5,))

T T (1.1)

HS' (SWF(Y1,81)5") —— HS'(SWF(Y3,85)5"),

and reflecting on the commutative diagram we see that §(Y) is an invariant of homology

cobordism.

Manolescu performed a similar construction, using the Pin(2)-equivariant homology of
SWF(Y,s) in place of the S'-equivariant theory. His construction results in three separate
invariants «, 3, and ~, corresponding to the fact that H*(BPin(2);F) = F[v,q]/(¢®), has
three separate ‘towers’ corresponding to 1,¢q,q¢?>. We will review the construction in the

section on equivariant topology.

To finish a sketch of Manolescu’s disproof of the triangulation conjecture, we only need

a few more features of the invariant 5. First,
B(Y,s) = p(Y,s) mod 2.

This follows essentially since the degree of the reducible in the Seiberg-Witten equations
agrees with the Rokhlin invariant mod 2, and that v is of degree 4. Moreover, Manolescu

shows that

BY.s) = —f(-Y,s)
where —Y denotes orientation reversal. Then say, to obtain a contradiction, that Y is 2-
torsion in 64 with (Y) = 1, and hence 3(Y) is nonzero. We have [Y] = [-Y] € 6 and so
BY) = p(-Y) = —p(Y), contradicting 5(Y) # 0. Thus, there is no such Y, finishing the

proof.



1.2 Pin(2)-equivariant Floer homology of Seifert spaces

We next address the contents of this thesis. Let Y be a closed, oriented three-manifold
with b; = 0 and spin structure s, and let G = Pin(2), the subgroup S' U jS! of the unit

quaternions.

For now, also let Y be a Seifert rational homology sphere, such that the base orbifold of the
Seifert fibration of Y has S? as underlying spacd'} We will use the description of the Seiberg-
Witten moduli space given by Mrowka, Ozsvath, and Yu [33] to compute SWFHY(Y,s), as a
module over F[q,v]/(¢*) (Here, the action of v decreases grading by 4, and that of ¢ decreases
grading by 1). The description is in terms of the Heegaard Floer homology HF*(Y,s),
defined in [41],[40]. In particular, this description makes SWFH (Y, s) quickly computable,
as Ozsvath-Szabd, Némethi, and Can-Karakurt [39],[34],[3] have developed algorithms to
calculate HF*(Y,s) for Y a Seifert space. In order to obtain SWFHC(Y,s) in terms of
HF*(Y,s), we use both the equivalence of HF* and HM due to Kutluhan-Lee-Taubes [24],
and Colin-Ghiggini-Honda [4] and Taubes [49], and the equivalence of HM and SWFHS" due
to Lidman-Manolescu [25]. Here SWFH®' (Y, s) denotes the S'-equivariant Borel homology
of the stable homotopy type SWF(Y,s).

We will need to relate SWFH®' (Y, s) and SWFHC(Y,s) when the underlying homotopy
type SWF (Y, s) is simple enough. This should be compared with [27], in which Lin calculates
the Pin(2)-monopole Floer homology in the setting of [26] for many classes of three-manifolds
Y obtained by surgery on a knot. The approach there is based, similarly, on extracting
information from the S'-equivariant theory E_]\?(Y, s) of [23], when m(}/, s) is simple
enough.

To state the calculation of SWFHY(Y,s), let T+ denote F[U,U~!|/UF[U], and T* (i) =

F[U—*Y U2 ..]JUF[U]. We also introduce the notation V* to denote F[v, v~!]/vF[v], and
V(i) = Flo™" =2 | ]/vF[v]. For any graded module M, let M, denote the submodule

IThere are also Seifert fibered rational homology spheres with base orbifold RP?, and some of them do
not have a Seifert structure over S?. These are not considered here. None of them are integral homology
spheres. Furthermore, in order for a Seifert fiber space Y to be a rational homology sphere, it must fiber
over an orbifold with underlying space either RP? or S2.
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of homogeneous elements of degree n, and define M[k] by M[k], = M,k Let T;"(n) =
T*(n)[—d] and V; (n) = V*(n)[—d]|. The module 7, (n) is then supported in degrees from
d to d + 2(n — 1), with the parity of d.

Fix Y a Seifert rational homology three-sphere with negative fibration; that is, the orb-
ifold line bundle of Y is of negative degree (see Section . For example, the Brieskorn
sphere ¥(ay, ..., a,), for coprime a;, is of negative fibration. Using the graded roots algorithm

of Némethi [34], we may write:

dit1 + 201 —

HF+(Y75> = sid1+2n1 169@ s+d 9 C—B@ s+d; nl C—BJ®2[ ]7 (12)

for some constants s, d;,n;, N and some F[U]-module J, all determined by (Y,s). More-
over, di,1 > d;,n;;1 < n; for all i. Roughly, in terms of Seiberg-Witten theory, the
term 7.1, o, 1 accounts for the reducible critical point, and the modules 7,"(n;) and
ET(W) account for the irreducibles which cancel against the bottom of the infinite

U-tower. The term J®? accounts for the other irreducibles.

Let us denote by resg%] the restriction functor from the map of modules F[v] — F[U]

given by v — U?. The restriction functor converts 7,7 (n) to V; (|%]) @ Vi, (12]).

Theorem 1.2.1. Let Y be a Seifert rational homology three-sphere of negative fibration,
fibering over an orbifold with underlying space S%, and let s be a spin structure on Y. Let
HF*(Y,s) be as in (1.9). Then there exist constants (a;,b;) and an Fq,v]/(¢®)-module J",

specified in Corollary and depending only on the sequence (d;,n;), so that, as an F|v]-

module:

SWFHE(Y,s) = V!

+4| =1

N/
it1 +4bi —a;
@@V;ai(a +1 ; +1—a )& 7] @IGSE%Z]J[—S].

=1

+
d1+2n1+1 ® V s+1 D s+2

The q-action is given by the isomorphism V., — V., and the map V.| — V:+4Ld1+2;‘1+lj’

and vanishes

which 1s an F-vector space isomorphism in all degrees at least s + 4[%]

otherwise. Further, q annihilates resggj]]{][—s] and (—Df\il V;ai(%m). The action of

q on J" is specified in Corollary[{.2.4)



Theorem specifies «, 3, and v, which we state as Corollary [1.2.2] For Y an integral
homology three-sphere, let d(Y') be the Heegaard Floer correction term [38]. Using Theorem
2.1l and Theorem [[.2.3 below we obtain:

Corollary 1.2.2. (a) LetY be a Seifert integral homology sphere of negative fibration. Then
BY) =~(Y) = —a(Y), and

d(Y)/2, ifd(Y)/2 = —f(Y) mod 2
)< 120V (V)2 = ~(Y)

dY)/2+1 otherwise.

(b) Let'Y be a Seifert integral homology sphere of positive fibration. Then a(Y) = p(Y) =
_la(Y)> and
d(y)/2 if d(Y)/2 = —ia(Y) mod 2
1Y) =
d(Y)/2 -1 otherwise.
From Corollary [1.2.2] we see that for Seifert integral homology spheres the Manolescu

invariants «, 8, and v are all determined by d and p. In particular, o, 5, and ~ provide no

new obstructions to Seifert spaces bounding acyclic four-manifolds.

In [30], Manolescu also conjectured that for all spin Seifert rational homology spheres
B(Y,s) = —u(Y,s), where fi is the Neumann-Siebenmann invariant defined in [36], [48]. We

are able to prove part of this conjecture:

Theorem 1.2.3. Let Y be a Seifert integral homology three-sphere. Then B(Y) = —p(Y).

We prove Theorem by showing that  is controlled by the degree of the reducible,

and by using a result of Ruberman and Saveliev [44] that gives i as a sum of eta invariants.

Fukumoto-Furuta-Ue showed in [14] that i is a homology cobordism invariant for many
classes of Seifert spaces, and Saveliev [47] extended this to show that Seifert integral ho-
mology spheres with i # 0 have infinite order in 6. Theorem generalizes the result
of Fukumoto-Furuta-Ue, showing that the Neumann-Siebenmann invariant i, restricted to

Seifert integral homology spheres, is a homology cobordism invariant.
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For Seifert spaces with HF* (Y, 5) of a special form, SWFH ¢(Y,s) may be expressed more
compactly than is evident in the statement of Theorem [1.2.1l If YV is of negative fibration

and

HF+<Y75) TJF ®T2n+1 )69@7;;(7”@')@27 (13)

i€l
for some index set I, we say that (Y, s) is of projective type. We will say that Y is of projective
type if Y is an integral homology sphere such that (1.3 holds. There are many examples of
such Seifert spaces, among them Y (p, ¢, pgn £ 1), by work of Némethi and Borodzik [35],[2]
and Tweedy [51]. The condition ([1.3) also admits a natural expression in terms of graded

roots; see Section [4.2.2]

Theorem 1.2.4. If (Y,s) is of projective type, as in (1.5), then:
If d =2n+2 mod 4,

m; +1 1 z
SWFHC(Y,5) = V5@V, 1 @V, @V, 45( @@ [P he@ Vs,
iel iel
(1.4)
If d = 2n mod 4,
SWFHG(Y,s) Vi OV ©V, OV, (5@ C"B V+ l
i€l iel
(1.5)

The g-action is given by the isomorphism V¥, .o — V¥, .1 and the map V', 1 — V.,
(if d = 2n + 2 mod 4), or V*, ., — V5 (if d = 2n mod 4), which is an F-vector space
isomorphism in all degrees at least d + 2 (respectively, d), and vanishes otherwise. In
and , q acts on VI, o(|%]) as the unique nonzero map V*,, 5(|%]) — Vis,.a. The

action of q annihilates @, ; Vi (|22 ]) ® Pjep Vi 1o (1 2]).

For X a topological space with G-action let X5 < X denote the subset fixed by S*  G.
We call X a j-split space if
X/X5 = X, vjiX,. (1.6)

That is, X /X* "isa wedge sum of two components related by the action of j (where X, and
jX, are both S'-spaces). We may think of j-split spaces as the simplest kind of (nontrivial)

G-spaces which may occur as the Seiberg-Witten Floer spectrum SWF (Y, s) of some (Y, s).
11



To prove Theorem , we use [33] to show that a space representative of the stable
homotopy type SWF(Y,s) is j-split. Then the chain complex of EG Ang SWF(Y,s), used to
compute the G-Borel homology, is closely related to the chain complex of ES' A g1 SWF(Y, s),
whose homology is the S*-Borel homology of SWF(Y,s). A careful, but entirely elementary,

analysis of the differentials in these two complexes then yields Theorem [1.2.1]

1.2.1 Local Equivalence

Manolescu’s construction of SWF(Y,s) contains more information about homology cobor-
dism than the invariants «, 3, and . Namely, a spin cobordism W from Y; to Y, with
bo(W) = 0 induces a map SWF(Y1,81) — SWF (Y3, 5) which is a homotopy equivalence on
S1-fixed point sets. We call two G-spaces X1, X5 locally equivalent if there exist G-equivariant
stable maps X; — X, and Xy — X; which induce homotopy equivalences on fixed point
sets. The local equivalence class [SWF(Y,s)]; is then a homology cobordism invariant of
(Y,s). The local equivalence class [SWF(Y,s)]; determines a(Y,s), 5(Y,s) and v(Y,s). The
construction of the local equivalence group is inspired by related constructions by Hom [20]

in the context of knot Floer homology.

For a more computable version of local equivalence, we introduce chain local equivalence,
using the C,(G)-equivariant chain complex associated to a G-CW complex. The chain local
equivalence class of a G-space X, denoted [X]., takes values in the set €& of homotopy-
equivalence classes of chain complexes of a certain form. In particular, using the chain local

equivalence class we have:

Corollary 1.2.5. LetY be a rational homology three-sphere with spin structure s. Then there
is a homology-cobordism invariant, SWFHeon,(Y,s), the connected Seiberg-Witten Floer
homology of (Y,s), taking values in isomorphism classes of F[U]-modules. More specifically,

SWFHeonn (Y, 5) is the isomorphism class of a summand of HFeq(Y,5).

The connected Seiberg-Witten Floer homology is constructed using the CW chain com-
plex of a space representative X of SWF (Y, s). The CW chain complex C¢W (X) splits, as a

module over CEW (@), into a direct sum of two subcomplexes, with one summand attached
12



to the S'-fixed-point set, and the other a free C¢" (G)-module. Roughly, the S'-Borel

homology of the former component is SWFH o, (Y, 5).

In the calculation of SWFHY(Y,s) for Seifert spaces, we provide enough information
about the G-equivariant chain complex of SWF (Y s) to calculate the chain local equivalence

class [SWF(Y,s)]. of Seifert spaces. As a corollary, we obtain:

Corollary 1.2.6. The sets {d;};,{n;}; in Theorem are integral homology cobordism
wmvariants of negative Seifert fiber spaces. That is, say Y1 and Yy are negative Seifert integral
homology spheres with Y1 homology cobordant to Ys. Let S; be the set of isomorphism classes

of simple summands of HF*(Y;) that occur an odd number of times in the decomposition

. Then S| = Ss.

We obtain Corollary by showing that {d;}; and {n;}; determine [SWF (Y, s)]a.

Corollary 1.2.7. Let (Y1,81) be a negative Seifert rational homology three-sphere with spin
structure, with HF*(Y1,81) as in (1.4). Then

div1+ 2n441 — N
SWFHconn }/1751 @ s+d 9 @7;+ nz (17)

In particular, if Y1 is an integral homology sphere and Y, is any integral homology sphere

homology cobordant to Yy, then EM(YQ) ~ HF*(Y3) contains a summand isomorphic to

(1.7), as F[U]-modules.

Remark 1.2.8. In fact, SWFHeon, (Y, 8) is an invariant of spin rational homology cobordism,

for'Y a rational homology three-sphere.

From Corollary and (|1.2)), we see that for Seifert integral homology spheres Y,
SWFHconn(Y,s) = 0 if and only if d(Y,s)/2 = —f(Y,s). As an application of the Corollaries

1.2.5| and [1.2.7], we have:

Corollary 1.2.9. The spaces ¥(5,7,13) and (7,10, 17) satisfy
d(X(5,7,13)) = d(X%(7,10,17)) = 2,

A(2(5,7,13)) = A(2(7,10,17)) = 0.
13



However, SWFHeon(2(5,7,13)) = T, (1), while
SWFHeonn (2(7,10,17)) = T (2) ® TH(1). (1.8)

Thus 3(5,7,13) and (7,10, 17) are not homology cobordant, despite having the same d, [,

a, B, and v invariants.

There are many other examples of homology cobordism classes that are distinguished by
d;,n;, but not by d and 1. As an example, we have the following Corollary.
Corollary 1.2.10. The Seifert space (7,10, 17) is not homology cobordant to 3(p, q, pgn+1)

for any p,q,n.

This result follows from Corollary Indeed, since X(p, ¢, pgn + 1) are of projective
type, SWFHeonn(X(p,q,pgn £+ 1)) is a simple F[U]-module, using the definition (|1.3) and

equation ([1.7). Using (1.8]), Corollary [1.2.10| follows.

Moreover, using a calculation from [29], we are able to show the existence of three-
manifolds not homology cobordant to any Seifert fiber space. This result is also due to
Froyshov using instanton homology, and has been independently proved by Lin [27]. For

example, we have:

Corollary 1.2.11. The connected sum (2,3, 11)#%(2,3,11) is not homology cobordant to

any Seifert fiber space.
Proof. In [29], Manolescu shows «(33(2, 3, 11)#X(2,3,11)) = B(2(2,3, 11)#3(2,3,11)) = 2,
while v(2(2,3,11)#3(2,3,11)) = 0. In addition, d(3(2,3,11)) = 2, so

d(2(2,3, 11)#%(2,3,11)) = 4.

To obtain a contradiction, say first that (2,3, 11)#X(2,3,11) is homology cobordant to a
negative Seifert space Y. Corollary implies

2 =05(2(2,3, 11)#X(2,3,11)) = 5(Y) =~(Y) = v(2(2,3,11)#X(2,3,11)) = 0.

a contradiction. Say instead that (2,3, 11)#X(2, 3, 11) is homology cobordant to a positive
Seifert space Y. Then by Corollary v(Y)=d(Y)/2 =d(2(2,3,11)#X(2,3,11))/2 = 2.

However, 7(Y) = 0, again a contradiction, completing the proof. O
14



Note that Corollary [1.2.11] readily implies the following statement for knots.

Corollary 1.2.12. There exist knots, such as the connected sum T(3,11)#71(3,11) of torus

knots, which are not concordant to any Montesinos knot.

We will also generalize this result to Theorem [1.3.5 in the next subsection, as part of a

more general calculation of the Manolescu invariants of connected sums.

We also have that many Seifert integral homology spheres of negative fibration are not
homology cobordant to any Seifert integral homology sphere of positive fibration. For in-

stance:

Corollary 1.2.13. The Seifert spaces (2,3,12k+7), for k = 0, are not homology cobordant

to —3(aq, ag, ..., a,) for any choice of relatively prime a;.

This corollary is a direct consequence of Corollary [1.2.2] which shows that if YV is a
negative Seifert space with d(Y)/2 # —pu(Y), then Y is not homology cobordant to any
positive Seifert space. We note d(X(2,3,12k + 7)) = 0 and (3(2,3,12k + 7)) = 1, and
the corollary follows. This should be compared with a result of Fintushel-Stern [7] that
gives a similar conclusion: If R(ay,...,a,) > 0, then ¥(ay, ..., a,) is not oriented cobordant
to any connected sum of positive Seifert homology spheres by a positive definite cobordism
W, where Hy(W;Z) contains no 2-torsion. However, there are examples with R < 0, but
d/2 # —[i, so we can apply Corollary [1.2.2] For instance, £(2,3,7) has R-invariant —1, but
d # —ji. Thus, Corollary is not detected by the R-invariant.

1.3 Connected Sums

We investigate the behavior of the Manolescu invariants under the connected sum operation.

In particular, we have the following theorems:

Theorem 1.3.1. Let (Y1, 51), (Ya, 82) be rational homology three-spheres with spin structure.
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Then:

a(Yr,51) + 7(Y2, 82) < a(Yi#Ys2, s1#52) < a(Y1,81) + (Y2, 82), (1.9)
(Y1, 81) + 7(Y2, 82) < v(Yi#Ya, s1#s2) < (Y7, 81) + (Y2, 82), (1.10)
v(Y1,81) + B(Ya,52) < B(Y1#Y2, 51#52) < a(Y1,81) + B(Y2, 52), (1.11)

Y(Y1#Y2, 519852) < B(Y1,51) + B(Ya, 82) < a(Y1#Y2, 51#52). (1.12)

Theorem 1.3.2. Let (Y,s) be a rational homology three-sphere with spin structure. Then:

v(Y;s) <6(Y,s) < a(Y,s). (1.13)

We note, for comparison with Heegaard Floer theory, that the invariant (Y, s) should

correspond to the Heegaard Floer correction term d(Ys)/2.

If we regard Theorem as a statement constraining the behavior of §(Y,s) in terms
of the Manolescu invariants «, 3, and 7, then we may think of the following as a kind of
converse statement, showing that 6(Y,s) heavily constrains the behavior of the Manolescu

invariants:

Theorem 1.3.3. Let (Y,s) be a rational homology three-sphere with spin structure. Then:
a(#a(Y,5) = n3(Y,5), B(#n(Y,5)) —nd(Y,s), and A(#,(V;5) —nd(V,s)  (114)

are bounded functions of n, where #,(Y,s) denotes the connected sum of n copies of (Y,s).

In particular:

i Q0 i9) B Yi8) o 1 (#(1i9))

n—a0 n n—ao0 n n—0 n

— 5(V,5). (1.15)

That is, one might think of the Manolescu invariants as perturbations of the S*-Frgyshov

invariant.

In order to obtain Theorem [1.3.3] we will make an explicit calculation of the Manolescu

invariants of connected sums of negative Seifert spaces of projective type.

Recall that the G-equivariant Seiberg-Witten Floer stable homotopy type of a negative

Seifert space, SWF (Y, s), is especially simple, namely, a j-split space.
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The projective type condition further restricts what X, (as in Equation (|1.6)) may be,

and allows the following result.

Theorem 1.3.4. Let Yy, ..., Y, be negative Seifert integral homology three-spheres of projec-
tive type. Define 6(Z) = d(Z)/2+(Z), for Z any Seifert fiber space, where d is the Heegaard
Floer correction term from [38], and where i is the Neumann-Siebenmann invariant defined

in [30], [48]. Set b; := 0(Y;), and assume without loss of generality & < --- < b,. Then:

oV #Y,) =2 [ =00t -2 (1.16)
s #y,) =2 [ = 00 ] - X, (117)
Yy, = 2 | L= 00 ! (1.18)
and
S(i#t ... #Y,) = (dY) + -+ d(Y,,))/2 = Za — Z,z(}g). (1.19)

To prove Theorem we will investigate the Pin(2)-equivariant topology of joins of
j-split spaces. To do so, we will make use of the Gysin sequence for Pin(2)-spaces, which
provides a relationship between the Pin(2)-equivariant and S!'-equivariant homology of a
Pin(2)-space. Lin has already used the Gysin sequence in [27] to study HS (Y,s) for Y a

surgery on an alternating knot.

The proof of Theorem [1.3.4] also relies on the equivalence of several versions of Floer
homologies: we employ the equivalence of HF ™ and HM from Colin-Ghiggini-Honda [4] and
Taubes [49], and Kutluhan-Lee-Taubes [24], and the equivalence of HM and SWFH5" due

to Lidman-Manolescu [25].

To obtain Theorem from Theorem we will use the machinery of chain local

equivalence, a refinement of the Manolescu invariants.

More specifically, to obtain Theorem [1.3.3] we will show that any CW chain complex
associated to a Pin(2)-space admits some “large” j-split subcomplex (partly controlled by

the ¢ invariant). Here, we call a Pin(2)-chain complex j-split if it is the CW chain complex
17



of a j-split space. Using the “large” j-split subcomplex inside a given Pin(2)-complex, the
calculation of Theorem [1.3.4] may be carried over, in part, to arbitrary rational homology

three-spheres, yielding Theorem [1.3.3]

1.3.1 Applications

We apply Theorem to study homology cobordisms among Seifert spaces.
A corollary of Theorem [1.3.4]is:

Theorem 1.3.5. Let Y,...,Y, be negative Seifert integral homology spheres of projective

type, with at least two of the Y; having d(;/") > —u(Y;) +2. ThenY = Yi# ... #Y, is not

homology cobordant to any Seifert fiber space.

We say that an integral homology three-sphere Y is H-split if a(Y) = B(Y) = y(Y).
Theorem implies that the set 0 i < 047 of H-split integral homology three-spheres
is, in fact, a subgroup. We obtain from Theorem [1.3.4}

Theorem 1.3.6. Let Ospp be the subgroup of 03 generated by negative Seifert spaces of
projective type, and let O spie spp be the subgroup consisting of Y € Ospp such that a(Y') =
BY)=~(Y). Then:

Osrp = Om - spiit,srp @ Z”. (1.20)

The Z* summand is generated by {Y, = X(p,2p —1,2p + 1) | 3 < p,p odd}. In particular,

the elements {Y, | 3 < p,p odd} are linearly independent in 6.

This implies the existence of a Z* subgroup of 62 a result originally due to Furuta [16]
and Fintushel-Stern [8], both building on the R-invariant introduced by Fintushel and Stern
[7] using instantons. Fintushel and Stern [8] show that the collection {3(p, ¢,pgn—1) | n = 1}
is linearly independent in 64 for any relatively prime p, ¢, and Furuta’s construction of Z* <
01! is the special case p = 2, ¢ = 3 of Fintushel and Stern’s construction. However, we will see
from Theoremthat the image of {3(p, ¢, pgn—1) | n = 1} in 4 is contained in Oy 4,15 D

Z., for any fixed p,q. In particular, the Z* subgroups that Furuta and Fintushel-Stern
18



originally identified are not detected by Pin(2)-techniques. We then obtain the following

corollary:

Corollary 1.3.7. The subgroup 0 _spix < 93{{ is infinitely-generated.

To our knowledge, Theorem [1.3.6| is the first proof of the existence of a Z* subgroup of
0 using either monopoles or the technology of Heegaard Floer homology. The Fintushel-
Stern R invariant also shows that Y}, for p odd, are linearly independent in the homology

cobordism group [6], but it does not show the splitting as in ({1.20)).

Theorem follows from Theorem [1.3.4, once one finds a collection of Seifert integral

homology spheres Y of projective type with d(Y)/2 + p(Y') arbitrarily large:

Theorem 1.3.8. Let Y, = X(p,2p — 1,2p+ 1). For odd p = 3, Y, is of projective type, with
A(Y,) = p— 1 and (Y,) = 0.

Theorem [1.3.8| is proved using the technology of graded roots, introduced by Némethi
[34], and refinements of the method of graded roots for Seifert spaces in [3],[21]. The proof is
essentially borrowed from the partial calculation of HF*(Y,) for even p by Hom, Karakurt,

and Lidman [I§].

Other convenient choices of the generating set for Z* in Theorem [1.3.6 are possible,
such as, for example, {3(2,¢,2¢ + 1) | ¢ = 3 mod 4}. See Theorem for a more precise

statement.

Using Theorem we may also obtain statements about knots. Endo showed in [0]
that the smooth concordance group of topologically slice knots, denoted Crg, contains a
Z* subgroup, using the Fintushel-Stern R-invariant. Using Theorem [1.3.6] we are able to

reproduce Endo’s result:

Corollary 1.3.9. The pretzel knots K(—p,2p — 1,2p + 1), for odd p = 3, are linearly

independent in Crg.

Proof. We chose the Seifert spaces Y), in Theorem instead of other possible generating

sets because Y), are branched double covers of pretzel knots:

Y, = S(K(~p,2p — 1,20 + 1))
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where K(—p,2p — 1,2p + 1) is the pretzel knot of type (—p,2p — 1,2p + 1). We note that

the Alexander polynomial
Ag(K(=p,2p—1,2p+1)) =1

for all odd p. Thus, by [11], K(—p,2p —1,2p + 1) are topologically slice. By Theorem [1.3.6},

the present Corollary follows. m

The subgroup that Endo identifies in Crg is identical to that of Corollary [1.3.90 Hom
[20] much extended Endo’s result, showing that Crg has a Z* summand, using the knot
concordance invariant € defined in [19]. Additionally, Ozsvéth, Stipsicz, and Szabé [37] gave

another proof that Crg has a Z® summand using the knot concordance invariant Y.

Furthermore, Friedl, Livingston, and Zentner [12] recently showed the following.

Theorem 1.3.10 ([12]). There is an infinitely-generated free subgroup H < Crg such that if

K represents a nontrivial class in H, then K is not concordant to any alternating knot.

Theorem provides an alternative proof of Theorem [I.3.10} Indeed, as for Heegaard-
Floer homology, a quasi-alternating knot K has SWFH(%(K),s) = H,(BG), perhaps with
a grading shift, where ¥(K) denotes the double-branched cover of K and s is the unique
spin structure on X(K). In particular, a(X(K),s) = f(X(K),s) = v(X(K),s). Then, in the
decomposition of Theorem [1.3.6, no element of the Z* subgroup is homology cobordant to
a double-branched cover of a quasi-alternating knot. That is, the subgroup of Crg generated

by K(—p,2p — 1,2p + 1) has no nontrivial element concordant to a quasi-alternating knot.

Another natural question is whether the Manolescu invariants of a pair of three-manifolds

determine the Manolescu invariants of the connected sum. This is not the case, as may be

seen using Theorem [1.3.4 We take Y = ¥(2,3,7), noting
aY)=1, 8(Y)=-1, v(Y) =—-1, 6(Y) =0, and a(¥) = 1. (1.21)

Then we have 0(Y) = 1, and, by Theorem [1.3.4, the Manolescu invariants of 2(n 4+ 1)Y and
(2n + 1)Y are independent of n = 0. Specifically,

a2(n+1)Y) =0, B2(n+1)Y) =0, v(2(n+1)Y) = —2,
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a(n+1)Y)=1, s(2n+1)Y) = -1, v(2n+1)Y) = —1.
Then the Manolescu invariants of 2nY and 2mY agree for n > m > 1. However,
a(2nY# —2nY) = B(2nY # — 2nY) = y(2nY# — 2nY) = 0,

while

a(2nY# —2mY) = f2nY# —2mY) = 0, v(2nY # — 2mY) = —2.

Thus, the Manolescu invariants of Y; and Y5 do not determine those of the connected sum

Yi#Ys.

21



CHAPTER 2

Spaces of type SWF

2.1 Spaces of type SWF

2.1.1 G-CW Complexes

In this section we recall the definition of spaces of type SWF from [30], and introduce local
equivalence. Spaces of type SWF are the output of the construction of the Seiberg-Witten
Floer stable homotopy type of [30] and [31]; see Section 3.1}

First, we recall some basics of equivariant algebraic topology from [50]. The reader is
encouraged to consult both [30] and [50] for a fuller discussion. For now, G will denote a
compact Lie group. We define a G-equivariant k-cell as a copy of G/H x D¥, where H is
a closed subgroup of G. A (finite) equivariant G-CW decomposition of a relative G-space

(X, A), where the action of G takes A to itself, is a filtration (X, |n € Z-() such that

e Ac Xyand X = X, for n sufficiently large.

e The space X, is obtained from X, ; by attaching G-equivariant n-cells.

When A is a point, we call (X, A) a pointed G-CW complex.

Let EG be the total space of the universal bundle of G. For two pointed G-spaces X;
and Xy, write:

X1 ng Xo = (X1 A Xo)/(gry X 29 ~ 1 X gxa).

The Borel homology of a pointed G-space X is given by

HY(X) = H,(EG, rg X),

*
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where EG, is EG with a disjoint basepoint. Similarly, we define Borel cohomology:

Hi(X) = H*(EG, rg X).
Additionally, we have a map given by projecting to the first factor:

From f we have a map pg = f* : H*(BG) — H%(X). Then H*(BG) acts on HZ(X), by
composing pg with the cap product action of H&(X) on HE(X). We may also define the

unpointed version of the above constructions in an apparent way.

As an example, consider the case G = S'. Here BS' = CP®, so H*(BS') = F[U], with
deg U = 2. Then F[U] acts on HS' (X), for X any S'-space.

From now on we let G = Pin(2). The group G = Pin(2) is the set S* U jS! < H, where
St is the unit circle in the {(1,4) plane. The group action of G is induced from the group
action of the unit quaternions. In order to agree with the conventions of [30] we deal with
left G-spaces. Manolescu shows in [30] that H*(BG) = F[q,v]/(¢*), where deg ¢ = 1 and
deg v = 4, so HE(X) is naturally an F[q, v]/(¢*)-module for X a pointed G-space. Moreover
S* = S(H®) has a free action by the quaternions, making S® a free G-space. Since S* is
contractible, we identify EG = S®. We may view EG = S* also as FS! (as an S'-space)

by forgetting the action of j.

We will also need to relate G-Borel homology and S*-Borel homology. Consider
f:CP* = BS' - BG,

the map given by quotienting by the action of j € G on BS' = ES'/S!. Then we have the
following fact (for a proof, see [30, Example 2.11]):

Fact 2.1.1. The natural map
res(s;l = f*: Flq,v]/(¢*) = H*(BG) — H*(BS') = F[U]

is an isomorphism in degrees divisible by 4, and zero otherwise. In particular, v — U?>.
Similarly,

fe: Hy(BS") — H,.(BG)
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has f.(u™") = v™" and f.(u=2""1) = 0, where u™ is the unique nonzero element of H,(BS')

n

in degree 2n, and v=" is the unique nonzero element of H,(BG) in degree 4n.

Moreover, for X a G-space, we have a natural map
g: EGy At X — EGy ng X.
The map ¢ induces a map
g« = cory : HY'(X) — HE(X),

called the corestriction map. As a Corollary of Fact we have a relationship between
the action of U and v (see [50], §III.1]):

Fact 2.1.2. Let X be a G-space. Then, for every x € Hfl(X),

v(cord (z)) = cord (Ux).

We shall use that Borel homology with F coefficients behaves well with respect to sus-
pension. If V' is a finite-dimensional (real) representation of G, let V' be the one-point
compactification, where G acts trivially on V* — V. Then XVX = V* A X will be called

the suspension of X by the representation V.

We mention the following representations of G:

e Let R* be the vector space R® on which j acts by —1, and e? acts by the identity, for
all 4.

e We let C be the representation of G on C where j acts by —1, and ¢ acts by the
identity for all 6.

e The quaternions H, on which G acts by multiplication on the left.

Definition 2.1.3. Let s € Z~o. A space of type SWF at level s is a pointed finite G-CW

complex X with

e The S'-fixed-point set X' is G-homotopy equivalent to (R®)™.
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e The action of G on X — X5 is free.

As a source of examples of spaces of type SWF we have the following definition:

Definition 2.1.4. Let G act freely on a finite G-CW complex X (not a space of type SWF).
We call

YX = ([0,1] x X)/((0,2) ~ (0,2) and (1,2) ~ (1,2') for all 2,2’ € X)

the unreduced suspension of X. The space ~X obtains a G-action by letting G act trivially
on the [0,1] factor. We make XX into a pointed space by setting (0,z) as the basepoint.
Then YX is a space of type SWF, since (EX)S1 = S% and G acts freely away from (f]X)Sl.

We also find it convenient to recall the definition of reduced Borel homology, for spaces
X of type SWEF:
HY (X)) = H (X)/m U, (2.1)
for N » 0. Indeed, for all N sufficiently large Im U™ = Im UN*1, so HY | 4(X) is well-defined.
Associated to a space X of type SWF at level s, we take the Borel cohomology f[g(X ),
from which we define a(X), b(X), and ¢(X) as in [30]:
a(X) = min{r = s mod 4 | 3z € HL(X),v'z # 0 for all [ > 0}, (2.2)
b(X) =min{r = s+ 1mod 4| Iz e HL(X),v'z # 0 foralll >0} — 1,
o(X)=min{r =s+2mod 4 |3z e HL(X),v'z # 0 forall | > 0} — 2.
The well-definedness of a,b, and ¢ follows from the Equivariant Localization Theorem (see

[50] IIT). We list a version of this theorem for spaces of type SWEF:

Theorem 2.1.5 ([50] §111 (3.8)). Let X be a space of type SWF. Then the inclusion X5 —

X, after inverting v, induces an isomorphism of F|q,v,v™]/(¢*)-modules:
v HE(XSY) = o VHE(X).

For X a space of type SWF, X is a finite G-complex and so we have that H, &(X) is finitely
generated as an F[v]-module. In particular, the F[v]-torsion part of H(X) is bounded above

in grading. Theorem then implies:
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Fact 2.1.6. Let X be a space of type SWF. Then the inclusion v: X5 — X induces an

1somorphism

2 50 — HEXS)
in cohomology in sufficiently high degrees. Dualizing, v induces an isomorphism in homology

in sufficiently high degrees.

We note that Fact implies
Ime, = {zre HY(X) | x € Imv! for all I > 0}. (2.3)
We also list an equivalent definition of a, b, and ¢ from [30], using homology:

a(X) =min {r =t mod 4 |3z € HY(X),z € Imv' for all [ > 0}, (2.4)
b(X)=min{r=t+1mod4|Ize HY(X),zeImv foralll >0} -1,

¢(X)=min {r=t+2mod4 |3z e HY(X),z e Imv' forall [ > 0} — 2.

We will see review the construction of o, and v from a,b,c shortly, from which the

Manolescu invariants of a 3-manifold are defined.

Definition 2.1.7 (see [31]). Let X and X’ be spaces of type SWF, m, m’ € Z, and n,n’ € Q.
We say that the triples (X, m,n) and (X', m’,n’) are stably equivalent if n—n’ € Z and there
exists a G-equivariant homotopy equivalence, for some r » 0 and some nonnegative M € Z
and N € Q:

SREM-mRGNV-mH SRy (M -mOR g (N 7 (2.5)

Let & be the set of equivalence classes of triples (X, m,n) for X a space of type SWF,
m € Z, n € QQ, under the equivalence relation of stable G—equivalenceﬂ. The set € may
be considered as a subcategory of the G-equivariant Spanier-Whitehead category [30], by

viewing (X, m,n) as the formal desuspension of X by m copies of R* and n copies of HT.

IThis convention is slightly different from that of [31]. The object (X, m,n) in the set of stable equivalence
classes €, as defined above, corresponds to (X, %, n) in the conventions of [31].
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For (X,m,n),(X’,m',n') € € a map (X,m,n) — (X',m/,n’) is simply a map as in ({2.5))
that need not be a homotopy equivalence. We define Borel homology for (X, m,n) € € by

HE((X, m,n)) = HE(X)[m + 4n). (2.6)

*

The well-definedness of (2.6)) follows from Proposition [2.1.8]

Proposition 2.1.8 ([30] Proposition 2.2). Let V' be a finite-dimensional representation of
G. Then, as F|q,v]/(¢*)-modules:

Hi (XY X) = HE YV (X) (2.7)

ﬁf(EVX) = ﬁffdimV(X)'

Definition 2.1.9. For [(X,m,n)] € €, we set

a(X) m b(X) m

a((Xym,n)) = == = o = 2n, B((X;m,n)) = == = = = 2n, (2.8)
c(X) m
y(X,m,n)) = 5 —E—Qn.

The invariants «, 5 and v do not depend on the choice of representative of the class [ (X, m, n)].

Definition 2.1.10. We call X1, X5 € € [ocally equivalent if there exist G-equivariant (stable)
maps

¢ Xy — X,

Y Xy — Xy,
which are G-homotopy equivalences on the S'-fixed-point set. For such X, X, we write

X1 =; Xo, and let £€ denote the set of local equivalence classes.

Local equivalence is easily seen to be an equivalence relation. The set £& comes with an
abelian group structure, with multiplication given by smash product. One may check that

inverses are given by Spanier-Whitehead duality.
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2.1.2 G-CW decompositions of G-spaces

Throughout this section X will denote a space of type SWF. Here we will give example

G-CW decompositions and construct a G-CW structure on smash products of G-spaces.

For W a CW complex, we write CE" (W) for the corresponding cellular (CW) chain
complex. We fix a convenient CW decomposition of G. The 0-cells are the points 1, j, 52, j°
in G, and the 1-cells are s, js,j2s,j%s, where s = {e? € S | § € (0,7)}. We identify each of
the cells of this CW decomposition with its image in CW (G), the corresponding CW chain

complex of G. Then d(s) = 1 + j2. To ease notation, we will refer to CSV(G) by G.

We will use that this CW decomposition also induces a CW decomposition of S, for

which C¢W (S') is the subcomplex of G generated by 1, 52, s, j2s.

A G-CW decomposition of X also induces a CW decomposition of X, using the decom-
position of GG into cells as above, which we will call a G-compatible CW decomposition of

X.

Example 2.1.11. Note that the representation (I@S)Jr admits a G-CW decomposition with
0-skeleton a copy of S° on which G acts trivially, and an i-cell ¢; of the form D' x 7,2 for

1 < s. One of the two points of the 0-skeleton of (RS)Jr 18 fized as the basepoint.

In particular, any space of type SWF has a G-CW decomposition with a subcomplex as
in Example [2.1.11

Example 2.1.12. We find a CW decomposition for H" as a G-space. We write elements
of H as pairs of complex numbers (z,w) = (1€, r2e¥?) in polar coordinates. The action
of j is then given by j(z,w) = (—w, z). Fix the point at infinity as the base point. We let
(0,0) be the (G-invariant) 0-cell labelled ro. We let y; be the G-1-cell given by the orbit of
{(r1,0) | r1 > 0}:

{(Tlew,rgew) | rire = 0}.

We take yo the G-2-cell given by the orbit of {(ri,r2) | rira # 0.}:

{(re®, r2¢") | 61 = 65 mod w1175 # 0}.
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Finally, y3 consists of the orbit of {(rie?,ry) | 01 € (0,7), riry # 0.} :

{(rlewl, rgewz) | 61 # 03 mod 7,1y # 0}.

We now give X7 A X5 a G-CW structure for X; and X, spaces of type SWF. To do so,
we proceed cell by cell on both factors, so we need only find a G-CW structure on G x G,
Z)2 x G, and Z/2 x Z/2, each with the diagonal G-action. The space Z/2 x G has a G-CW
decomposition as G11G, as may be seen directly, and Z/2 x Z/2 may be written as a disjoint

union of G-0-cells Z/2117Z/2.

Example 2.1.13. The G-CW structure on G x G is more complicated. Note that the product
CW decomposition on G x G is not equivariant. We choose a homotopy ¢y : G x G - G x G
as in Fz'gure with t € [0,1], ¢o = Id, and ¢1(G x G) shown. The arrows depict the action
of S*. On the left, the diagonal lines show the G-action before homotopy. For example, the
homotopy ¢ takes the line £ = {(e? x e | § € (0,7)}, the first half of the diagonal in S* x S*,
to the sum of CW cells:

s®1+ j2 ® s.
The arrows on the right show the G-action on G x G given by
(g1 % g2) = d1(901 (g1 x 92))- (2.9)

The action is clearly cellular with respect to the product CW structure of G x G. Then

GxG (G x G)

0 €?2r 0 jeif 2m 0 ¢if 2m 0 je" 2rm
2 \ 2 \ 2 o
eie jeiG ei(’ \—L jei(’ i
NN N NI~
0 je2n 0 ¢ 2r 0 jem 2 0 € 27

Figure 2.1: Homotopy of the action of G on G x G.

G x G admits a G-CW-decomposition so that the induced CW decomposition is the product

CW decomposition of G x G.
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Now, let X; and X5 be spaces of type SWF. We then give X; A X5 a G-CW decomposition
proceeding cell-by-cell. That is, for G-cells e; € X3, e5 € Xo we give e; A es the appropriate
G-CW decomposition as constructed above. This is possible because the cells e; are neces-
sarily of the form: D* Z/2 x DF, or G x D¥. In particular, the construction of a G-CW
structure on X; A X5 gives us a G-CW structure for suspensions. For V' a finite-dimensional
G-representation which is a direct sum of copies of R, R, and H, we have VX = V* A X,

and so we give XY X the smash product G-CW decomposition.

Finally, we construct a CW structure for the G-smash product X; A¢ Xy = (X7 A X3)/G.
More generally, we describe a CW structure for the quotient W /G for W a G-CW complex.
Indeed, let W = | Je; a G-CW complex, where ¢; = G/H; x D*® are equivariant G-cells for
some function k, and H; € G are subgroups. Then W /G admits a CW decomposition given

by W = Je;/G = | DFO.

2.1.3 Modules from G-CW decompositions.

Throughout this section X will denote a space of type SWF. Here we will show that the CW
chain complex of X inherits a module structure from the action of GG, and we will define

chain local equivalence.

From the group structure of G, C¢W(G) = G acquires an algebra structure. Namely, the
multiplication map G x G — G gives a map CSV(G) @ CEV(G) — CEY(G). Here, we
have used the product G-CW decomposition of G' x G, from Example [2.1.13] for which the

multiplication map is cellular. A small calculation yields
CYM(G) = F[s, j1/(si = j°s,s* = 0,5 = 1).

For any G-compatible decomposition of X, the relative CW chain complex C¢W (X pt) in-
herits the structure of a G-chain complex, as the map G x X — X gives a map GxC¢W(X) —
CEW(X). That is, CEW (X, pt) is a module over G, such that, for z € CS" (X, pt), and a € G,
d(az) = ad(z) + d(a)z.

We find the module structure for the Examples [2.1.1142.1.13] of Section [2.1.2]
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Example 2.1.14. Consider the G-chain complex structure of CEW ((R®)*, pt) from Ezample
. Identifying ¢; with its image in CSV ((R*)*,pt), we have d(co) = 0,0(cy) = ¢y, and
o(c;) = (1 + j)ei—q fori = 2. One may check that the action of G is given by the relations
jeo = co, j2ci = ¢ fori =1, and s¢; = 0 for all i (in particular, the CW cells of ((R*)*, pt)

are precisely cg, c1, ...cs and jcq, ..., jcs, and all of these are distinct).

Example 2.1.15. We also find the G-chain complex structure of CEW (H*, pt) from Ezample
2.1.12. One may check that the differentials are given by

d(ro) =0, dyy =19, Oya = (1 + j)y1, and dys = sy1 + (1 + 7)ye. (2.10)

The G-action on the fized-point set, ry, is necessarily trivial. However, elsewhere the G-
action on (HT,pt) is free, and so the submodule (not a subcomplex, however) of CEW (H™* | pt)

generated by y1, 2, ys is G-free, specifying the G-module structure of CSW (H*, pt).

Example 2.1.16. The CW chain complex of the usual product CW structure on G x G

becomes a G-module via:
CIM(G = G) = CTM(G) @ CTY(G),
where the action of G is given by
s(a®b) =sa®b+ j2a® sb, (2.11)
Jjla®b) = ja® jb.
The differentials are induced by those of the usual product CW structure on G x G.
For X; A X5 with the G-CW decomposition described in Section [2.1.2 we have:
CEV(X, A Xy, pt) = COY(Xq, pt) @ CEW (X, pt), (2.12)

as G-chain complexes.

Furthermore the CW chain complex for the G-smash product X; Ag X5 is given by:

CEV(X1 Ag Xa,pt) = CEV (X1 A Xo, pt)/G. (2.13)
31



We will write elements of the latter as x; ®g 2. Note that Borel homology HE(X) is
calculated using a G-smash product, and so may be computed from the following chain

complex:

¢ (X) = HCSY(EG) ® CEY (X, pt), d). (2.14)

In ([2.14)), we choose some fixed G-CW decomposition of EG to define C¢W (EG). Following

(2.14]), we make a definition.

Definition 2.1.17. Let Z a G-chain complex. We define the G-Borel homology of Z by
HE(Z) = H(CSY(EG) ®g Z,0), (2.15)
and similarly for S*-Borel homology:
HY'(Z) = H(CEY (EG) @uow 51y Z. 0), (2.16)
where CEW (S1) is viewed as a subcomplex of G.

By construction:

Fact 2.1.18. If Z = CSW(X,pt) is the relative CW chain complex of a G-space X, then
H{(Z) = H{(X).

Note then that G-module CEW (X, pt) determines HS(X) for X a space of type SWF.

For R a ring and M an R-module with a fixed basis {B;}, we say that an element m € M

contains b € {B;} if when m is written in the basis {B;} it has a nontrivial b term.

Definition 2.1.19. We call a G-chain complex Z a chain complex of type SWFE at level s if
Z is isomorphic to a chain complex (perhaps with a grading shift) generated by

{co,c1,C9, ..., C5} U U{xl}, (2.17)

iel

subject to the following conditions. The element ¢; is of degree i, and [ is some finite index
set. The only relations are j2¢; = ¢;, s¢; = 0, jcy = cy. The differentials are given by dc; = ¢,
and de; = (1 + j)ei—q for 2 <@ < s — 1. Further, d(cs) contains (1 4 j)cs—1. The submodule
generated by {x;};cs is free under the action of G. We call the submodule generated by {c¢;};

the fized-point set of Z.
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Chain complexes of type SWF are to be thought of as reduced G-CW chain complexes
of spaces of type SWEF. Indeed, all spaces X of type SWF have a G-CW decomposition
with reduced G-CW chain complex a complex of type SWF. To see this, we first decompose
X5 ~ (R*)* using the CW decomposition of Example for (R*)*. We note that X5 is
a G-CW subcomplex of X, and all cells of (X, X* 1) are free G-cells, since X is a space of type
SWF. Label these cells {x;} for i in some index set, and we obtain that the corresponding

CW chain complex is as in Definition [2.1.19]

To introduce chain local equivalence, we will consider the CW chain complexes coming
from suspensions. For a module M and a submodule S € M, we let (S) < M denote the

subset generated by S.
Note that, by Example [2.1.14] and the G-CW decomposition constructed in Section [2.1.2
for suspensions, for X a complex of type SWEF:

CEW(SRX, pt) = (eo, 1) @ CEV (X, pt), (2.18)

with relations dc; = ¢, j?c1 = c1,jco = ¢, 5¢o = sc; = 0. The differential on the right is

given by d(a ® b) = d(a) ® b + a ® d(b). Similarly, using Example [2.1.15
CIM(ERX, pt) = (ro, 41, 42, y3) ®e O (X, pt),
with the product differential on the right, and differentials for the y; given as in Example
2113
For V = H, R, or R, we set:
»WZ =CWWVT pt) ®r Z, (2.19)

with G-action given by:

s(a®b) = (sa®b) + (j°a ® sb), (2.20)

jla®b) = ja® jb.

The chain complexes CSW (H*, pt) and CS"(R™,pt) were given in Examples [2.1.14] and
2.1.15| respectively. Also, C¢W(R*, pt) = {c;), where jc; = c1,sc; = 0, and deg ¢; = 1.

Hence, for example:

Y7 = Z[-1]. (2.21)
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Lemma 2.1.20. Let V =H, R, or R. If Z = CSV(X,pt) for X a space of type SWF, then
SVZ = OOV (SV X, pt).

Proof. This follows from the CW chain complex structure given for suspensions in Section

, and . O
For V = H! ® R/ @ R for some constants i, j, k, we define XV Z by:
V7 = (S5 (SR (SR)FZ. (2.22)
where (XH)? denotes applying X 4 times, and so for R and R. It is then clear that:
YWyWz xyWyVz, (2.23)
for two G-representations V, W, each a direct sum of copies of H, R, R.

Definition 2.1.21. Let Z; be chain complexes of type SWF, m; € Z,n; € Q, for i = 1,2.
We call (Z;,m1,n1) and (Zy, ma,ny) chain stably equivalent if ny — ny € Z and there exist

M e Z,N € Q and maps
E(N—nl)HE(M—ml)Rzl — E(N_TLQ)HZ(M_"LQ)RZ2 (224)
E(me)Hz(M*mﬂ]RZl - E(N*”2)HE(M*T”2)RZ2, (225)
which are chain homotopy equivalences.

Remark 2.1.22. We do not consider suspensions by R, unlike in the case of stable equiva-

lence for spaces, since by , no new maps are obtained by suspending by R.

Chain stable equivalence is an equivalence relation, and we denote the set of chain stable

equivalence classes by C€.

Lemma 2.1.23. Associated to an element (X,m,n) € € there is a well-defined element

(CSY(X, pt),m,n) € C&.
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Proof. Say that [(X1,m1,n1)] = [(X2,m2,n2)] € € with G-CW decompositions C; of X;.
We will show that

[(C*CW(Xl,pt),ml,nl)] = [(C*CW(XQ,pt),mQ,nQ)] € CE, (2.26)

where CSW (X, pt) is the G-chain complex associated to the G-CW decomposition C; of Xj;.
(In the case X7 ~ Xy, and m; = mgy, ny = ny, we are showing that the corresponding element
in €€ does not depend on the choice of G-CW decomposition). By hypothesis, there are

homotopy equivalences f and g:
f . E(anl)Hz(Mfml)]RXl N E(ang)HE(Mfmg)]li)f27
qg: Z(ang)HE(Mfmg)]RXZ N Z(Nfrq)HE(Mfmﬂﬂin.

By the Equivariant Cellular Approximation Theorem (see [52]), we may homotope f and g
to cellular maps (where the cell structures of suspensions are given as in (2.19)):
fCW . E(N_RI)HZ(M_ml)Rcl N E(N_TQ)HE(M_WQ)@CQ,

gCW : E(N—nz)HE(M—mz)RC2 . Z(N—nl)HE(M—ml)RCI'

Since f and g are homotopy equivalences, so are " and g¢"'. The cellular maps f¢" and

¢“" induce maps f, and g,:

fo o SN=HSM-m)RCOW (x| 1) —y Sy (N-n2) B (M=m)ROCW () 1)

gu s SNTESMmIRCOW () pt) s RVmERMmIECCW () p).

These are chain homotopy equivalences, by construction, and so we obtain ([2.26), as needed.

]

In analogy with (2.6), we define Borel homology for elements of C€&.
Definition 2.1.24. Let (Z,m,n) € €&. We define HS((Z,m,n)) = HZ(Z)[m + 4n].

*

Fact 2.1.25. For Z € €€, HY(Z) is well-defined.
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Proof. 1t suffices to show, for Z a chain complex of type SWF, that
HE<EVZ) = HffdimV(Z)' (2.27)
By (2.17)), we need to compute
H.(C.M(EG) @ (CSM (V' pt) @k Z)).

However, we have, by ,

CYM(EG) @ (C (V7 pt) ®s Z) = (CLW(EG) @ CY (V7 pt)) ®s Z,
as G-modules. Recalling the definition of ®g in we have

CIM(EG) @ (CM(VE,pt) @ Z2) = (CF(EG) @ O (VF,pt)) ®g Z
Then to show we need only show

H.((CSY(EG) @ CS (VY pt)) Qg Z) = Hy—aimv (CL" (EG) Qg Z).

Indeed, CEW(EG) @ CSW (VT pt) is the relative CW chain complex of XY EG,, a free
G-space with nonzero homology only in degree dim V. As any two G-free resolutions are
homotopy equivalent, we obtain C¢W (EG) @z CEW (V' pt) ~ CEW(EG)[—dim V]. Then

we have
H,(CSM(EG) @ CSV (VT pt) ®g Z) = H ((CSV(EG) Qg Z)[—dim V]) = HY 4 v(2),
as needed. O

Definition 2.1.26. Let Z; be chain complexes of type SWF, m; € Z,n; € Q, for 1 =
1,2. We call (Z1,mq,n1) and (Zy, ma, ns) chain locally equivalent, written (Zy,my,ny) =4

(Z3,ma,ns), if there exist M € Z, N € Q and maps
SN-n)HE(M—m)R 7, 5\ (N—no)Hy2 (M—m2)R 57 (2.28)
SN-mHp(M-m1)R 7 5 (N-n2)Hy (M-m2)R 7 (2.29)

which are chain homotopy equivalences on the fixed-point sets.
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We call a map as in (2.28)) or (2.29) a chain local equivalence. Elements Z,,Z, € €€&

are chain locally equivalent if and only if there are chain local equivalences Z; — Z5 and
Zy — 7. There are pairs of chain complexes with a chain local equivalence in one direction
but not the other; these are not chain locally equivalent complexes. Chain local equivalence
is an equivalence relation, and we write [(Z, m,n)]y for the chain local equivalence class of
(Z,m,n) € €&. The set €LE of chain local equivalence classes is naturally an abelian group,
with multiplication given by the tensor product (over F, with G-action as above). (This
abelian group structure on €L£E corresponds to connected sum in the homology cobordism
group; see Fact [3.1.5)). The inverse of an element [(Z, 0,0)]y of €€ is [(Z*,0,0)], where Z*
denotes the chain complex dual to Z. The identity element 0 of €£& is [(F,0,0)]., where
CEW (S pt) = F = (fy) is the G-module concentrated in degree 0 for which jfy = f; and

Sf() = 0.

Definition 2.1.27. For [(Z,m,n)] € €LE, we call

a((Z,m,n)) = “(22) - % —2n, B((Z,m,n)) = @ . % —on, (2.30)
cZ) m
7((Z7m’n)) = 9 _5_27%

the Manolescu invariants of (Z,m,n). The invariants «, 5 and v do not depend on the

choice of representative of the class [(Z, m,n)].

2.1.4 Calculating the chain local equivalence class

In this section we will obtain a description of €£& more amenable to calculations than the
definition. Throughout this section Z will denote a chain complex of type SWF. The main
result is Lemma [2.1.30] which allows us to determine if (Z;,mq,n1) and (Zs, ma, ny) are

chain locally equivalent without checking all possible M, N.

To prove Lemma [2.1.30] we will first need Lemma [2.1.28, a result on chain homotopy
classes of maps between fixed-point sets. For two G-chain complexes Z] and Z}, let [Z], Z}]
denote the set of chain homotopy classes of maps from 7] to Z). We have an algebraic

anologue of the Equivariant Freudenthal Suspension Theorem (Theorem 3.3 of [I]), as follows.
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We recall that for Z a chain complex of type SWF at level s, the fixed point set R < Z is

isomorphic, as a G-chain complex, to
CEW(Rsa pt) = <C(]7 ceey Cs>7 (231)

with relations jcy = scg = 0 and, for i > 0, j2¢; = ¢;, while s¢; = 0. The differentials in

(2.31) are given by d(¢;) = (1 + j)e;—q for 2 < i < s, and d(c1) = ¢, d(cg) = 0.

Lemma 2.1.28. Let Ry =~ Ry =~ C*CW(RS,pt), where =~ denotes isomorphism of G-chain
complexes. Then the map

[Ri, Ry] — [Z® Ry, ¥¥ Ry, (2.32)

obtained by suspension by H is an isomorphism.

Proof. To show that the map in (2.32) is an isomorphism, we consider the commutative
diagram:
nE?

[SHECEW (SO pt), SECEW (S0 pt)] —— [ZF Ry, ZER,]
zw[ EHI (2.33)

[CEW (S, pt), CEV (S, pt)] S [Ry, Ry
We have used the isomorphisms R; =~ Ry =~ X% CCW (S0 pt) in writing the right column. In

(2.33)), the composition is precisely
SR [CPY (S, pt), O (S, pt)] — [£7 Ry, S Ry).

We will show that the maps:

SH OIS, pt), O (S0, pt)] — [ZHCTT (SO, pt), ROV (S0, pt)], (2.34)
SR [COW (S0, pt), CEW (S0, pt)] — [Ry, Ral, (2.35)

and
SE L [SECOW (S0 pt), SECCW (S0, pt)] — [SHRy, SHR,) (2.36)

are isomorphisms. Then, since three of the four maps in (2.33)) are isomorphisms, so is the
fourth, which is exactly the map from (2.32)), proving the Lemma.
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We show that is an isomorphism. We use the notation of Example for
SHCOOW (S0 pt), writing ¢y for the generator of CEW (S0 pt). Let f : SHCCW (SO pt) —
SHCOW (SO pt). Then f(ro ® cg) = 1o ® o or f(ro ® o) = 0, for degree reasons. In the
former case, f(y1 ® co) = u1y1 ® co where u; is a unit in G. Indeed, this follows from the
requirement:

Af( ®co)) = f(Ayr ®co)) = f(ro®co) =10 ® co.

Similarly, we obtain, perhaps after a homotopy,

fyi ® co) = iy ® co, (2.37)

where u; is a unit in G for i = 1,2, 3. Indeed, this follows from H, (X%{cy)) being concentrated
in grading 4. For instance, f(y2®co)+u;y2®co must be a cycle in S8{cy), since o f (y2®cp)) =
f(0(y2®cp)) = (14 7)ury1 ®co. Then, by Ho(XH{cy)) = 0, the element f(y2 ®co) + u1y2 ® co
is a boundary, and we may choose a homotopy h, vanishing in grading 1, so that (dh +

ho)(y2 ® ¢o) = (Y2 ® cp) = f(y2 ® o) + u1ys @ co. This establishes (2.37)) for i = 2, and

1 = 3 follows similarly.

We show that f =~ Tdgecow (o). We define a homotopy h : XHCIW(S,pt) —
RO (S, pt) from f to Idsmeew g0 ), Proceeding by defining it in each grading. First, let
h(ro®co) = 0. Then choose h in grading 1 so that 0h(y; ® co) = (1 + u1)y; ® ¢o, and extend
G-linearly. This is possible, because (1 + u1)y; ® ¢p is a boundary in SECEW (S0 pt) for any
unit u;. An elementary calculation shows that h may be extended over degree 2 and degree
3. In the case that f(ro®cy) = 0, an explicit homotopy as above shows that f is homotopic
to the zero map. This shows that is surjective.

To show that is injective, we note that [CEW(S° pt), CEW (S, pt)] = [{co), {co)]
is exactly Z/2 as there is precisely one nontrivial map, ¢g — ¢o. Then we need only show
the identity map has nontrivial suspension. But EHIng:‘W(SO’pt) = Idy+, which induces an
isomorphism in homology, and so is not null-homotopic. Then, indeed, we obtain that the
map in is an isomorphism.

The proof of the isomorphism ([2.35)) is parallel to the proof of , and is left to the

reader.
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We show that the map in (2.36) is an isomorphism. Note that SHCSW (S0 pt) ~
CSW(H*, pt). We let @ denote a direct sum of G-modules that is not necessarily a di-

rect sum of chain complexes (i.e. there may be differentials between the summands). Then

CEW(H™*, pt) = {co)®F, for F a G-free submodule. We have:
SECOW (HY, pt) = SF ()OS F. (2.38)

However, Y% F ~ F[—s]. Indeed, we have a map ~ : F[—s] — ¥ F defined by ~(z[—s]) =
C®x, where C is the fundamental class of (RS)+. If Z is of type SWF at level 0, then C' = ¢,
while if Z is of type SWF at level s > 0, we have C' = (1 + j)c,, where we use the notation
from Example Also, 7 is a chain map, as the reader may verify. Furthermore, it is
clear that + induces a quasi-isomorphism. We show it is, in fact, a homotopy equivalence.

We construct a homotopy inverse
7Y% F o F[-s], (2.39)

so that 7(C' ® x) = x[—s] for x € F'. We treat the case s = 1; for s > 1 we apply:

SRR = (S8 F ~ F[—s]. (2.40)
Fix a G-basis x; of F. Assume we have defined 7(¢; ® z;) for k = 0,1, for all x; such that
deg x; < m — 1, for some m. For generators x; of degree m we define:
T(co @ x;) = 7(c1 ® 05), (2.41)
(e ®wx;) =0,
T(ja ®x;) = z[-1],

and extend by linearity. Further, (1 + j)e; ® @ — z[—1] for all x € F by definition, so
77 = lp[—s), where 1p[_g is the identity on F[—s].

We find a homotopy H from y7 to Idys ., to show that 7 is a homotopy equivalence. Fix
generators x; as in the definition of 7. Define H by H(co ® x;) = ¢1 ® x;, for all x;, and by
H(p®x) =0= H(jcy ®x) for all x € F, and extend linearly. We must then show that H
is a chain homotopy between 7 and Idyz .. That is, we need

(OH + HO)(co ® x;) = y7(co ® ;) + co ® x;, (2.42)
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((9H + Ha)(Cl ® I‘l) = ’yT(Cl ® I‘Z) + C ® ZTi, (243)

and

(0H + HO)(jor ®x;) = 7(jer @ x;) + jor ® ;. (2.44)

We suppose inductively that (2.42))-(2.44)) are true for all z; with deg z; < N for some N. The
inductive hypothesis is true (vacuously) for N sufficiently small, since F' is a bounded-below

complex. Fix z; of degree N + 1. We show that ([2.42))-(2.44) hold for x;.

First, consider:
(0H + HO)(co ® ;) = d(c1 @ ;) + H(co ® ), (2.45)
where we have used the definition H(co ® ;) = ¢1 ® ;. Also:
(0H + HO)(¢y ® 0x;) = 0H (¢1 ® 0x;) + H(co ® 0x;) = y7(c1 ® 0x) + ¢4 ® Ox;,  (2.46)
by the inductive hypothesis. Rearranging , we have:
H(co® 0x;) = y1(c1 ® 0z) + ¢1 ® Oy + 0H (¢ ® 0x).
By the definition of 7, we have 7(¢; ® dz;) = 7(co ® x;), so, using , we obtain:
(OH + HO)(co® x;) = y7(co ® ;) + co ® x; + 0H (¢ ® ;). (2.47)
But H(¢; ® dx;) = 0 by definition, so:
(OH + HO)(co ® ;) = y7(co ® x;) + ¢o ® ;, (2.48)

verifying ([2.42]).
Next, we investigate (0H + H0)(c1 ® x;):

(CH+ HO)(c1®x;) = 0H(c1®x;) + H(co®x;) + H(c1 ®0x;) = H(co®w;) = 1 @y, (2.49)

using H(c; ® ;) = 0 and H(¢; ® dz;) = 0. Using 7(¢c; ® z;) = 0, we obtain (2.43)) from
[2.49).

We also check (0H + H0)(jor ®@ ;)

(0H+ H0)(jai®x;) = 0H(jer®x;) + H(co®x;) + H(jer®0x;) = H(co®x;) = c1®x;, (2.50)
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since H(joy ® x;) = 0 and H(joy ® dx;) = 0. Additionally, 7(jo ® ;) = x;[—1], and
Y(zi[-1]) = (1 + j)e1 ® 2. Then ¢4 ® z; = y7(jey ® ;) + jer ® x4, and ([2.44]) follows.
Then H is a chain homotopy between 7 and Idys,, as needed, and so v and 7 are

homotopy equivalences.

We let I denote the identity map on YR {¢py. We have a homotopy equivalence:
YILSOENNES) Sl AN 3 NGy of S | (2.51)
Further, there is an isomorphism
(2500 (EF,pt), SF O HY, pb)] =[5 ()@F [—s], 5 (co)@F [ -],

given by
f = (1o7)f(I&y).
Here, the map (Id) acts by the identity on the first summand, and by « on the second.

We first prove surjectivity of . Fix [ : SECOW (HT, pt) — SFCOV(H*, pt). Let
F = (1&7)f(1&y). We find g : CEW (HT, pt) — CEV (H*, pt) so that S¥g ~ f. We define
g separately on the two summands CS" (S% pt) and F.

Let g € [CEW (SO, pt), CEW(SY pt)] so that Zngl ~ flico,ey- Such a g; exists by
(2.35)). Further, note that there is a natural isomorphism [F, F'| = [F[—s], F[—s]], and let
g2 € [F, F'| be the element corresponding to f’|p[_q € [F[—s], F[—s]]. Define a chain map
by g : {co)®F — {co)DF by

9= 919gs.
By construction, S¥¢g ~ f, as needed.

Finally, we check injectivity of (2.36). We have [{co), (coy] = [S%(co), ¥¥co)] is Z/2, with

nontrivial map given by the identity Idg+. We need only show then that the map ke Idy+

is not null-homotopic. Indeed, it induces a nontrivial map on homology by construction, so

is not null-homotopic. Then (2.36) is an isomorphism, as needed. O

Remark 2.1.29. We have [CEW (S, pt), CEW (SO pt)] = Z/2, as remarked in the proof.

Hence Lemma implies [SR R, YHRy| =~ 7,/2.
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Lemma 2.1.30. Let Zy and Zs be locally equivalent chain complexes of type SWEF. Let
R; < Z; be the corresponding fixed-point sets. Additionally, for all nonzero homogeneous

r € R;, we require degr < degx for all nonzero homogeneous
x € Z;/R;,

for i =1,2. Then there exist chain maps
Zy — Zy, (2.52)
Zy — Zy,

that are chain homotopy equivalences on the fixed-point sets.

Proof. Let Z;(N, M) denote ZNHEM@Zi. By hypothesis there exist maps which are homo-

topy equivalences on the fixed-point sets:
Zi(N, M) — Zy(N, M), (2.53)

Zy(N, M) « Zy(N, M),

for M, N sufficiently large.

Claim 1. Let V = H or R. Take ¢ a map which is a chain homotopy equivalence on

fixed-point sets:

¢:XVZ - V2,

Then ¢ is chain homotopic to the suspension of a map ¢, also a chain homotopy equivalence

on fixed-point sets:

Go 2 Ly — L.

Since ¥V Z; also satisfy the conditions of the Lemma, it follows from Claim [1] that any

map which is a homotopy equivalence on fixed-point sets, for My, Ny = 0:
¢ : Z1(No, Mo) — Za(No, Mo)
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is homotopic to the suspension of a map:
Go 1 L1 — Za,

which implies the existence of the maps as in ([2.52]).
We prove Claim [1| for V' = H; the case of V = R is similar, but easier.

We let @ denote a direct sum of G-modules that is not necessarily a direct sum of chain

complexes.

Let F; be the G-free submodule of Z; generated by elements x of degree greater than
deg r for all r in the fixed-point set R;. We will also consider F; as a G-chain complex so
that the projection

Zy — Zi/ Ry ~ F;

is a map of complexes. Then we have Z; = R,®F;. For a given local equivalence ¢ : ¥#7; —

YH7Z,, we have the diagram:

SHRGF) —2  SHRGE)

| l

CERDOHF) —— (CERy)O(ZER)
However, % F} is homotopy equivalent to YRR = F;[—4]. To see this, we use the notation
for suspension by H as in Example and write v : F;[—4] — SHF;, where y(z[—4]) =
s(1+ 7)%ys ® z. The term s(1 + j)3ys appears as it is the fundamental class of S* ~ HT.
Furthermore, v is a chain map, as the reader may verify. It is clear that ~ is a quasi-
isomorphism, and it is, in fact, a homotopy equivalence. There is a homotopy inverse T,
whose construction is analogous to that in (2.41)), so that 7(s(1 + j)%ys ® ) = z[—4]. We

obtain a map:
¢ = (1yrp,®7) (1, ®) 1 (BT R)O(F1[—4]) — (57 Ry)®(Fa[—4]).

For degree reasons, ¢’ sends X®R; — YRy and Fy[—4] — F3[—4]. By Lemma [2.1.28, we
have:
[R1, Ry] =5 [SHR,, SER,] (2.54)
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is an isomorphism. Also, [Fi[—4], F5[|—4]] = [F}, F3], clearly. Define ¢g|g, by the element of
[Ri1, Ry] corresponding to ¢'|sup, € [E¥ Ry, ¥ R,|. Similarly, define ¢o|r, by the element of

[F, F>] corresponding to ¢'|p 4] € [F1[—4], F2[—4]]. Then we have a map, of G-complexes:
¢ : Ri®F — Ro®F.

By construction, "¢y ~ ¢, as needed.

]

For Z a chain complex of type SWF, we will let Z also denote the element (Z,0,0) € €&.

Definition 2.1.31. Let R be the fixed-point set of Z. If degr < degx for all nonzero
homogeneous = € (Z/R) and r € R, we say that the chain complex Z is a suspensionlike

complex.

Remark 2.1.32. Let X be a free, finite G-CW complex. Then the reduced G-CW chain
complex of ©X, the unreduced suspension of X, is a suspensionlike chain complex. Con-
versely, any suspensionlike chain complex with fized-point set R = {cy) may be realized as
the G-CW chain complex of an unreduced suspension. Further, any suspensionlike chain

complex of type SWF is chain stably equivalent to CSW (X, pt) for some space X of type
SWE.

Remark 2.1.33. For X a space of type SWE, CSW (X, pt) need not be a suspensionlike
chain complex of type SWF. However, any class in € admits a representative (X, m,n) with

CEW (X, pt) a suspensionlike chain complex of type SWF.

Lemma [2.1.30| states that if Z(NO_”i)HE(MO_mi)RZi are suspensionlike, then all local (sta-
ble) maps between (Z1,my,ny) and (Zy, ma, ny) are realized as genuine chain maps by sus-

pending the complexes Z; by NoH @ M,R.

Note that the tensor product Z; ®r Z, of suspensionlike chain complexes of type SWF,
at levels t1,ty respectively, is not suspensionlike unless t; = 0 or t, = 0. However, after

quotienting Z; ®r Z» by a large acylic subcomplex, the resulting complex is suspensionlike.
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To be more explicit, we note that any suspensionlike chain complex Z of type SWF is quasi-
isomorphic to a suspensionlike chain complex of type SWF at level 0, say Z’. We form Z’
by replacing the generators cq,...,¢; in Z by ¢, where (1 + j)c¢, = 0 = sc}, and otherwise

constructing Z’ just as Z. There is a quasi-isomorphism Z’ — Z given by ¢, — (1 + j)¢.

In particular, Z{®p Z} is quasi-isomorphic to Z;®Z,, and the quasi-isomorphism takes the
fundamental class of (Z, ®r Z3)5" to (1+7)c, @ (14 j)cr,. We may replace (Z] Qg Z5)5" with
a copy of CEW (R"*%2 pt), and the resulting complex Z” is a summand of Z; ®g Z, for which
inclusion is a chain homotopy equivalence. Thus, the tensor product of suspensionlike chain
complexes is chain homotopy equivalent to a suspenionlike complex at the appropriate level,
and the fundamental class of the fixed point set is f;, ® fi,, where f;, are the fundamental

1
classes of Z;".

2.1.5 Inessential subcomplexes and connected quotient complexes

In this section, we show how Lemma [2.1.30] allows for a convenient characterization of chain
locally equivalent complexes. We then define connected S!'-homology of spaces of type SWF,
which we will use later to define SWFH,,,, as in Corollary [1.2.5]

Definition 2.1.34. Take Z a chain complex of type SWF, and let R = Z be the fixed-point
set. For any subcomplex M < Z such that M n R = {0}, the projection Z — Z/M is a
chain homotopy equivalence on R. If there exists a map of chain complexes Z /M — Z that

is a chain homotopy equivalence on R, we say that M is an inessential subcomplex.

If M is inessential, then Z/M =, Z. We order inessential subcomplexes by inclusion,
N < M if N € M. We show that there is a unique “minimal” model Z/N locally equivalent
to Z.

Lemma 2.1.35. Let M < Z be an inessential subcomplex, maximal with respect to inclusion.

Then a map f: Z/M — Z which is a homotopy equivalence on fized-point sets is injective.

Proof. Indeed, say f: Z/M — Z is a local equivalence with nonzero kernel. Let R; denote

the fixed-point set of Z/M and R, denote the fixed-point set of Z. Since f restricts to a
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homotopy equivalence on the fixed-point sets, (ker f) n Ry = {0}. Let 7 : Z — Z/M be the
projection map. Then f induces a map Z/(7 ! (ker f)) — Z, and by (ker f) n R; = {0}, this
map is a homotopy-equivalence on fixed-point sets. Additionally, we have 7! (ker f) N Ry =
{0}. Then 7! (ker f) is an inessential submodule, and it (strictly) contains M, contradicting

that M was maximal. Then f was injective, as needed. O

Lemma 2.1.36. Let Z be a chain complex of type SWE and let M, N < Z be inessential
subcomplexes, with M and N mazimal with respect to inclusion. Then Z/M =~ Z /N, where

=~ denotes isomorphism of G-chain complexes.

Proof. Indeed, if there exist maps o : Z/M — Z, and 8 : Z/N — Z as above, consider the
composition:

¢:Z/N —>Z— Z/M.

In particular, we have a map a¢ : Z/N — Z, which is injective by Lemma [2.1.35, It then

follows that ¢ is injective. We also have:
v:Z/M— Z — Z/N.

As before, 1) is injective. Then, since we have injective chain maps between Z/N and Z/M,
finite-dimensional F-complexes, the two chain complexes must have the same dimension. An
injective map between complexes of the same dimension is bijective, and, finally, a bijective

G-chain complex map is a G-chain complex isomorphism. O

Lemma 2.1.37. Let Z be a chain complex of type SWF and M a maximal inessential

subcomplex of Z. We have a (noncanonical) decomposition of Z :
Z=(Z/M)® M, (2.55)

where the isomorphism class of Z/M is an invariant of Z, independent of the choice of

maximal inessential subcomplex M < Z.

Proof. Let B : Z/M — Z be a homotopy equivalence on fixed-point sets. The map [ is

injective by Lemma [2.1.35] Let m be the projection Z — Z /M. We note that x5 is a map
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Z /M — Z which is a homotopy equivalence on the fixed point set, and so by Lemma ,
B is injective. Then 7/ is also injective.

We have a map 8@ : (Z/M)@® M — Z, where i is the inclusion i : M — Z. We check
that § @ i is injective. Indeed, if (8@ i)(z @ m) = 0, we have 5(z) = m. By definition,
m(m) = 0, while 73 is injective. It follows that m = 2z = 0, and § @i is injective. Then
Z/M ® M — Z is an injective map of F-vector spaces of the same dimension, and so is
an isomorphism (of G-chain complexes). Since, by Lemma the isomorphism class of
Z /M is independent of M, we obtain that the isomorphism class of Z/M is a well-defined

invariant of Z. O]

Definition 2.1.38. For Z a chain complex of type SWF, let Z.,,, denote Z/Zyess, for

Ziness © 2 a maximal inessential subcomplex. We call Z.,,, the connected complex of Z.

Theorem 2.1.39. Let Z be a suspensionlike chain complex of type SWF. Then for W another
suspensionlike complex of type SWF, Z =, W if and only if Zeonn = Weonn-

Proof. By Lemma [2.1.37, we may write Z = Zeoun @ Zinesss W = Weonn @ Winess, With
Ziness; Winess maximal inessential subcomplexes. Say we have local equivalences (we need

not consider suspensions, by Lemma [2.1.30))
¢ : Zeconn D Ziness — Weonn © Winess,

1/) WCOHH @ M/iness - Zconn @ Ziness‘

We restrict ¢ and ¢ to Zeonn and Weonn, since it is clear that Zeon, @ Ziness 1S chain locally
equivalent to Z.on,, and likewise for We,,,. Further, we project the image of ¢ and v to
Weonn and Zeonn, respectively. Call the resulting maps ¢ and vg. If ¢y had a nontrivial

kernel, then we would obtain by composition a local equivalence:

wOQSO : Zconn/ker ¢O - Zconn'

Composing with the inclusion ¢ : Zeon, — Z gives a chain local map tgdg : Zeonn/ker ¢g — Z,

so by Lemma [2.1.35] tig¢g is injective. Thus, ¢q is injective. Similarly ¢y is injective, so
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we obtain an isomorphism of chain complexes Z.onn = Weonn. Conversely, a homotopy

equivalence Z.onn — Weonn yields a local equivalence Z — W by the composition
A 5 Zconn - Wconn - W7
where 7 : Z — Zeoun is projection to the first summand. O

The next Corollary allows us to view the chain local equivalence type of a space of type

SWF in €¢ instead of CLE.

Corollary 2.1.40. In the language of Theorem there is an injection B : CLE — CE
giwen by [(Z,m,n)] = [(Zeonn, m,n)]|, for (Z,m,n) a representative of the class [(Z,m,n)]

with Z suspensionlike.

Proof. Fix [(Z,m,n)] = [(Z',m/,n')] € €L£E with Z and Z’ suspensionlike; we will show
that [(Zeonns m,n)] = [(Zens, m',n')] in €E. First, we observe that, for V = H, R :

YV Zeonn = (Y Z) conn- (2.56)
We have, for M, N sufficiently large:
E(Mfm)ﬂiE(an)HZ < Z(Mfm’)ﬂiz(an/)HZ/.
Here the maps in both directions are local equivalences. Choosing M > max{m, m'} and

N > max {n,n'} guarantees that both

Z(M—m)@z(N—n)HZ and Z(M—m')RE(N—n’)Hzl

are suspensionlike. Then, by Theorem [2.1.39] we have a homotopy equivalence:

(SM-mRS(N=mE 7y (SR (NenE gy

However, by ([2.56]), we obtain a homotopy equivalence:

Z(M—m)ﬂéz(N—n)H(zﬂ)ﬂﬂ) N Z(M_mI)RE(N_n/)H(Zéonn)-
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Then [(Zeonn, m,n)| = [(Zl o0, m',n')] € €&, as needed. Finally, we show B is injective.

conn?

If (Zeonn, m, n) is stably equivalent to (Z. .., m',n’), then (Z,m,n) and (Z',m’, n’) are locally

conn?’

equivalent, by Theorem [2.1.39 and ({2.56)). O

By Corollary [2.1.40] instead of considering the relation given by chain local equivalence,

we need only consider chain homotopy equivalences.

Definition 2.1.41. The connected S*-homology of (Z,m,n) € €€, denoted by HS' ((Z,m,n)),
for Z a suspensionlike chain complex of type SWF, is the quotient (HS'(Z)/(HS'(Z5") +
Hfl(ZinCSS)))[m + 4n], where Zjes © Z is a maximal inessential subcomplex. By Theorem
2.1.39, the graded F[U]-module isomorphism class of HS ((Z,m,n)) is an invariant of the

conn

chain local equivalence class of (Z,m,n).

Remark 2.1.42. We could have instead considered the quotient (HS" (Z)/HS" (Ziness))[m +
4n), which is isomorphic to HS. ((Z,m,n)) ® T, for some d. As defined above, the group

conn

HS' ((Z,m,n)) has no infinite F[U]-tower.

conn

2.1.6 Ordering C£€

In the following section we define a partial order on €LE.

Definition 2.1.43. The groups £€¢ and €L€ also come with a natural partial ordering.
That is, we say X; < X, if there exists a local equivalence X; — X5 or a local equivalence
D28 X, — Xy, for X1, X, € £€. For (Z,m,n) € €LE, we write £2%(Z,m,n) = (Z,m,n—1).
For Z,,7, € €LE, we say Z; < Z, if there exists a chain local equivalence Z; — Z; or if

there exists a chain local equivalence E%HZl — Zs.

We have:

Lemma 2.1.44. If 7, < Zy € €€, then o(Z,) < a(Zs), B(Z) < B(Za),¥(Z1) < Y(Za).

Proof. We assume without loss of generality Z; = (Z1,0,0), Zy = (Z5,0,0), for suspension-

like chain complexes of type SWF Z; and Z;. A chain local equivalence ¢: Z; — Z, induces
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amap ¢g: CEW(EG)®¢ Z; — CEW(EG)®g Z5. We then have a commuting triangle, where

. . 1 1
11 and ¢y come from the inclusions Z¢ — Z; and Z5 — Z,.

CW(EG) ®g 7, » CCW(EG) ®¢ Zo

\ / (257)

OCW EG @ CCW Rt

Diagram ([2.57)) also induces a commuting triangle in homology:

N -

HS (75

By Remark [2.1.32, a suspensionlike chain complex of type SWF is chain stably equivalent
to some CSW (X, pt) for X a space of type SWF. Then we may apply Fact to see that
t1,+ and o, are isomorphisms in sufficiently high degree. Thus ¢, must be an isomorphism

in sufficiently high degree. Furthermore,
Imt; = {x € HS(Z;) | € Imv' for all I > 0},

from (2.3). Thus, if + € HY(Z,) is in Imo' for all [ > 0, there exists some y so that

T = 19,(y). By the commutativity of (2.58)), ¢1.(y) # 0. Applying the definitions , We
see m(Zy) = m(Z;) where m is any of a, b, c. Applying Definition [2.1.27] the Lemma follows.

A similar argument applies for a chain local equivalence ¢: Z%HZl — Z, in which case

one has:

a(Zy) < a(Zs) = 1, B(Z1) < B(Z2) — 1, v(Z1) < v(Z2) — 1.

Lemma 2.1.45. Let Zy, Zy, Z3 complexes of type SWF with Zy < Zy. Then Z; ® Z3 <
Zo ® Zs.
Proof. If there exists a (stable) map:

Qb: Zl - ZQ?
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then ¢ ®1Id: 71 ® Z3 — Z, ® Z3 satisfies the conditions of Definition [2.1.43] establishing the

Lemma (and similarly for suspensions by %]H[) O]

2.2 Inequalities for the Manolescu Invariants

In this section we will obtain bounds on the Manolescu invariants of tensor products of
suspensionlike chain complexes. In Section we will apply these results to obtain bounds

on the Manolescu invariants of three-manifolds.

2.2.1 Calculating Manolescu Invariants from a chain complex

We start by fixing a convenient G-CW decomposition of EG = S(H®). Recalling Example
, we have a G-CW decomposition for Ht =~ S* = (ry, y1, y2, y3) with differentials as in
. We then attach free G-cells ys, yg, y7, with deg y; = ¢, where the attaching map of y;
is the suspension of the attaching map of y;_4. The result is a G-CW decomposition by cells
{ro,y;}, for i < 7,4 # 4, of S® =~ (H?)*. We can repeat this procedure to obtain a G-CW
decomposition of ((H")*,pt) for any n, by cells {rg, ¥; }i=0 mod 4-

The unit sphere S(H") admits a G-CW decomposition with G-(i — 1)-cells e;_; = y; N
S(H") for i < 4n — 1.

In the limit, the e; provide a G-CW decomposition of S(H*) = EG. That is, there

is a G-CW decomposition of FG with cells ey, €411, €4i42 for © = 0. The chain complex

CSW(EQ) is then the free G-module on e; with

d(eg) = (2.59)

)

Oeq;) = s(1+ 5+ 5%+ j¥)egig fori > 1,

Oesivr) = (1+ j)ea,
) =

O(€e4it2 (14 j)eqir1 + Seu.

The reader may check that H(CSW (EGQ)), for CCW (EG) as above, is a copy of F concentrated

in degree 0. As all contractible free G-chain complexes are chain homotopy equivalent, all
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G-CW complexes for EG have CW chain complex chain homotopic to that given above.

Fix a space X of type SWF so that Z = CSW (X, pt) is a suspensionlike chain complex
of type SWF. (By Remark [2.1.33] for any class in & there will be such a representative X).
One may compute the reduced Borel homology of X in terms of Z, using and -

In particular, we show how to determine a(Z),b(Z), c(Z) from Z.

Lemma 2.2.1. Let Z be a suspensionlike chain complex of type SWF at level t, with funda-
mental class f, € Z5', of degree t, and A, B,C € Z=q. Then a(Z) = 4A+t if and only if there

exist elements x; € Z, degx; =14, for all v witht +1 <i<t+4A—3 and i # t +2mod4,
so that
.
fi ifi=t+1
s(1+7+52+ 720 ifi=t+3mod4,i<t+4A—3
o(z;) = < (2.60)
(1+ 7))z ifi=tmod4,i <t+4A-3

(1+j)xiog + sz ift=t+1mod4,t+1<i<t+4A-3.

\

Also, b(Z) = 4B + t if and only if there exist elements x; € Z, degx; = i, for all i with
t+1<i1<t+4B—2 andi1#t+ 3mod4 so that

-

fi ifi=t+1
(14 j)aiq ifi=1t+2
(i) = 1 s(1+j+72+7)rio ifi=tmod4d, i <t+4B—2 (2.61)
(14 5)zi ifi=t+1mod4,t+1<i<t+4B -2
(14 j)xig + sxi—o ifi=t+2mod4, t+2<i<t+4B —2.

Also, ¢(Z) = 4C + t if and only if there exist elements x; € Z, degx; = i, for all i with
t+1<i<t+4C —1 andi # tmod4 so that

(

ft ifi=t+1

(14 j)zi ifi=t+2mod4, i <t+4C —1
o) = 4 (2.62)

(1+j)xi1 + sxio ifi=t+3mod4,i <t+4C -1

s(1+7+524+ 7)1 e ifi=t+1modd, t+1<i<t+4C —1.
\
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Proof. By (2.3), we have, where v, : Hf(ZSl) — HE(Z) is the map induced by inclusion,

*

Im i, = {re HY(Z) | z € Im ' for all | > 0}. (2.63)
Further, HG(Z5") is given by:
H(2%) = 2V (BG) @ fi,

which is an F-vector space with generators e; ® f; in degree i + ¢ for ¢ such that ¢ > 0 and

i #% 3 mod 4. Then a(Z) = 4A + t is equivalent to e4s_4 ® f; being a boundary in
CY(2) = C{V(EG) ®g Z.

That is, a(Z) = 4A + t is equivalent to the existence of some

i=t+4A-3
xTr = Z Ctr4A—3—4 X xT; € O*CW(EG) ®g Z,

i=t+1
so that d(x) = eqq_4 ® fi, where x; € Z is of degree i. Writing out the differential of x, one
obtains the conditions ([2.60)) of the Lemma. Similarly, b(Z) > 4B+t if and only if e4p_3® f;

is a boundary, and ¢(Z) = 4C + t if and only if e;o_2 ® f; is a boundary, from which one

obtains (2.61)) and (2.62)). O

Lemma 2.2.2. Let Z be a suspensionlike chain complex of type SWE at level t, so that
c(Z)=4C +t. Then
CYV (SRR T, pt) < Z.

Proof. The chain complex CEW (SCH(R!)*, pt) consists of cells cq, . . . , ¢; constituting the S'-
fixed point set, and has free cells z;, of degree i, for: =t+1,...,t+4C —1, for ¢ # ¢t mod 4.
The fundamental class of the subcomplex CSW ((RY)*, pt) is f, = (1+7)¢; (if t > 0, or f; = ¢
if t = 0). The differentials of the z; in CSW (LCH(R?)*, pt) are given exactly by the relations
in . Then, since Z has elements satisfying , there exists a chain local equivalence

CEV(SUHRN T, pt) — Z,

as needed. O
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The problem of computing the Manolescu invariants of tensor products (and, thus, con-

nected sums, using Fact |3.1.5)) then amounts to asking how to find towers of elements of the
form ([2.60))-(2.62) in Z; ®p Z5 from towers in Z; and Zs.

Remark 2.2.3. Say a(Z) = v(Z) = 0 for Z a chain complex of type SWF. Then Lemma
implies Z > 0 € €L£E. By duality, —a(Z) = v(Z*) = 0, where Z* is the dual of Z, so
Z* = 0. Combined, we see Z =0 e CLE. That is, if Z € €LE has a(Z) = v(Z) = 0, then
[Z]a = [CSM (S, pt)]a

Theorem 2.2.4. For Z,, Zy suspensionlike G-chain complexes of type SWEF, we have:
a(Zy) + a(Zy) = a(Z) ®s Za) = a(Zy) + (Z,), (2.64)

a(Zy) + B(Z2) = B(Z1 ®r Zo) = B(Z1) + v(Za),

a(Zy) +v(Z2) = V(21 @ Za) = Y(Z1) + 7(Za).

Proof. Let Z; be at level t; for i = 1,2. Then, by Lemma|[2.2.2} CSW(E(C(Z%L)W)H(R'S?)*, pt) <

Zy. By Lemma [2.1.45]

(c(Zg)—t2)
c24 2) 1

Z, @ CEV(B (R)", pt) < Z, ®p Zo.

However, Z; @ C*CW(ZWH(R”)*, pt) is, by definition, (Z,, —t,, ~4Z204%2),

Then

—C(ZQ) + tQ

(Zy,—ta, ) < 74 ®p Zs.

By Lemma [2.1.44) M ((Zy, —ta, %)) < M(Z, ®p Z5) where M is any of «, 3, or 7. By
Definition [2.1.27, we have v(Z,) = ¢(Z3)/2. Then, again using Definition [2.1.27] we see

O./(Zl, —tg, W) = O[(Zl) + ’Y(ZQ) < O[(Zl ®IF Zg),
B(Zy, —ta, W) = B(Z1) +v(Z2) < B(Z1 ®r Z2),
W12, "B (7)o 0(2) < (280 ).

Thus, we have obtained the right-hand inequalities of (2.64]).
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To obtain the left-hand inequalities, we recall from [30][Proposition 2.13] that a(X) =
—v(X*) and B(X) = —B(X*) where X is a space of type SWF and X* is Spanier-Whitehead
dual to X. The same argument as in [30][Proposition 2.13] implies that, for Z a chain complex
of type SWF, a(Z) = —y(Z*) and 5(Z) = —(Z*) where Z* is the dual chain complex. The
left-hand inequalities of then follow by applying the right-hand inequalities to Z} and

Z5, and using the above rules for duality. O

Theorem 2.2.5. For Zy, Zy suspensionlike G-chain complexes of type SWEF, we have:
V(Z1 ®r Za) < B(Z1) + B(Z2) < a(Z1 ®r Z2). (2.65)

Proof. We construct a tower of elements in Z; Q7 satistying from towers in Z; and Z
satisfying . Say that Z; is at level t; and Z; is at level t5, and denote the fundamental
class of Zfl by f:, and that of Z2S1 by fi,. We would like to apply Lemma but, as
explained after the introduction of the chain local equivalence group, the tensor product
of suspensionlike chain complexes of type SWF is usually not suspensionlike. However, it

becomes suspenionlike after removing a large acyclic subcomplex, and we can indeed apply

Lemma [2.2.1] as follows.

respectively. Then consider the sequence of elements:
T41 @ fis, 5(1 +j2)$t1+2®ftz7 (2'66)

$t1+4®ft27 xt1+5®ft27 3(1 +j2)xt1+6®ft2a
T48 @ oy Tui9 ® fro, (1 + 52) 20,110 ® fia,
Ty(71)-4 @ fray To(z1)-3 @ fra, (1 +j2)xb(Z1)f2®ft2-

One may verify that the sequence in (2.66)) satisfies (2.60)). In fact, the sequence in (2.66))
generates a subcomplex that is just a subcomplex of Z; satisfying ([2.60) smashed against

Zégl. To lengthen the sequence, we then incorporate chains coming from Zj:

s(1+ 3)°2p(z)—2 @ Yuss1, S(1 + 5)°Tp(z1)—2 @ Yuy 42, (2.67)
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s(1+ j)3$b(zl)72 ® Yot S(1+ ]‘)3901)(21)72 ® Ytot5, (1 + j)sﬁb(zl)ﬁ & Yir+6,
8(1 + j)gl‘b(Zl)72 & Yip+8, 8(1 + ]')3%(21)72 & Yty 195 3(1 + ]‘)3!131)(21)72 X Yty410
S(1 4 3)°@pz)—2 @ Yn(zo)—1, S(1+ 3)°Tp(z1)—2 @ Yn(za)-35 S(1+ 1)*Tp(z1)—2 ® Yp(z2)—2-

One confirms that the sequence specified by (2.66))-(2.67)) satisfies (2.60)), and this establishes

Using Definition [2.1.27, we obtain the right-hand inequality of (2.65)). The left-hand side

follows from duality, as in the proof of Theorem [2.2.4 ]

2.2.2 Relationship with S!-invariants

We also recall the definition of the invariant d from [30], analogous to the Frgyshov invariant

of S'-equivariant Seiberg-Witten Floer theory.

Definition 2.2.6. Let Z be a suspensionlike chain complex of type SWF at level t.
d(Z) =min {r =tmod 2 |3z € H (Z), x € Im ' for all | > 0}. (2.68)

Remark 2.2.7. In [30)], d, is defined for coefficients in any field, rather than only F = Z/2.

The invariant d in our notation is ds of [30].

Analogous to the the calculation for a,b, and ¢ in Lemma [2.2.1, we find a formula for

d(Z). We obtain:

Lemma 2.2.8. Let Z be a suspensionlike chain complex of type SWF at level t, and let f;
denote the fundamental class of Z5'. Then d(Z) = 2D +t if and only if there exist elements
x;mZ, fori=t+1,...,t+2D —1 withi=1t+ 1 mod 2, where deg x; =, such that

t i
ooy = 17 yrote (2.69)

s(14 %)z s ift+3<i<t+2D—1.
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Proof. The proof is analogous to that of Lemma [2.2.1] m

Definition 2.2.9. We let Th(t) denote the chain complex given by

where ({z;}) is the free G-module with generators z;, with the following requirements. We
require that CSW ((RY)*, pt) < T (t) is a subcomplex, where CEW ((RY)*, pt) is as in Example
2.1.14] Also, we set degx; = i. The differentials of T)h(¢) are as in (2.69)); namely, d(x;,1) is

the fundamental class of (R*)*:

(14 j)e ift>0
8(a:t+1) =
Co if t =0.
The differential of z; for i >t + 1 is given by d(x;) = s(1 + j)*x;_».
Fact 2.2.10. Ift = 0, the chain complex Tp(t) is the reduced CW complex of the unreduced

suspension i(SzD—l 1 S2P=1 " where S* acts on S*P~1 by complex multiplication, and j

interchanges the two copies of S*P~' (see Definition .

Lemma 2.2.11. We have 5(Tp(t)) =t/2 and v(Tp(t)) = t/2.

Proof. Let Q be the quotient complex T(t)/Tp(t)5". By inspection éQ < (1 + j2)Q. Then
there is no pair of elements 1, x5 € Tp(t) so that dzy = f; and dzy = (14 j)x;. By (2.61) and
(2.62), we obtain b(Tp(t)) = c(Tp(t)) = t. By Definition [2.1.27] the statement follows.  [J

The motivation for considering the complex Tp(t) is that it is the “minimal” G-chain

complex for a fixed d-invariant, as made precise in the following lemma.

Lemma 2.2.12. Let Z be a suspensionlike chain complex at level t. Then d(Z) = 2D +t if
and only if Z > Tp(t).

Proof. The lemma follows immediately from Lemma [2.2.§| [

We also recall the definition of the invariant ¢ from [30], analogous to Definition [2.1.9]
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Definition 2.2.13. For [(X,m,n)] € &, we set
5((X,m,n)) = d(CEV(X,pt))/2 —m/2 — 2n (2.70)
The invariant ¢ does not depend on the choice of representative of the class [(X, m,n)].
Proposition 2.2.14. For X1, Xs€ €, §(X; ® X3) = 0(X1) + 6(Xs).
Proof. Entirely analogous to the proof of Theorem [2.2.4] we obtain
I(X1®Xs) = 6(Xq) + 0(Xy).

Additionally, 6(X) = —0(X™) using the properties of § under duality, where X* denotes the
dual of X. We then obtain:

6(X1 ® Xp) < 6(X1) +0(Xa),
completing the proof. O

We next relate the Pin(2)-invariants to d.

Proposition 2.2.15. Let Z be a suspensionlike G-chain complex of type SWF. Then a(Z) =
5 2).

Proof. We will use the description of a from Lemma Recall that E'G is the total space

of the universal S*-bundle, by forgetting the action of j € G. Viewed thus, the chains

eo, J((1 + 7)ea + ser),eq, (1 + j)eg + ses), es, j((1 + j)eio + seg), €12, - - - (2.71)

descend to generators of homology in BS' = EG x g {pt}.

Say Z is at level t and let f, be the fundamental class of Z5'. Using (2.71)) and repeating
the proof of Lemma [2.2.1} d(Z) is the degree of the minimal element of the form

eq; @ fror j((1+ j)esiro + sesiv1) ® fi

that is not a boundary in C5'(Z) = CSV(EQ) ®cow (s1y Z -
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That is, d(Z) = 4D + 2 + t if and only if e4p ® f; is a boundary. Further, d(Z) = 4D +t
if and only if j((1 + j)esp_2 + seap_3) ® f; is a boundary. In particular, if, for some A > 0,
d(Z) = 4A +t — 2, we have eqy_4 ®cow (g1 f: is a boundary.
However, if
ein1® fr € CYV(EG) Qcgw g1y Z

is a boundary, then e;q 4 ® f; € CSW(EG) ®g Z is also a boundary. Thus a(Z) > 4A + t,
and so a(Z) = d(Z). Thus, using Definition [2.1.27], the Proposition follows. O

2.3 Manolescu Invariants of unreduced suspensions

In this section, we calculate the Manolescu invariants of certain smash products of unreduced

suspensions.

2.3.1 Unreduced Suspensions

We draw from [30] the following calculation, which we will use in our application to Seifert

fiber spaces. Recall the definition of unreduced suspensions from Definition [2.1.4

For X a free G-space, the cone of the inclusion map (iX )S1 — BX is YRX,, where
X, is X with a disjoint basepoint added. This gives the exact sequence, by taking Borel

homology,

. —— HS (ZRX,) —— HE(S°) —— HE(XX) — ... (2.72)

*

The term ﬁfﬂ(ZRXQ is isomorphic to HY(X ) because of suspension-invariance of Borel
homology with F-coefficients, from (2.7). Furthermore, HS(X,) ~ H,(X/G) since G acts
freely on X. The exact sequence (2.72) becomes (as an exact sequence of F[q,v]/(¢?)-

modules):
. —— H.(X/G) = H,(BG) —— HE(XX) — ... (2.73)

Here r, is induced from x: X/G — BG, the classifying space map. Let x¢ denote the
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restriction of k, to degree d. From the exactness of (2.73), we have:

a(3X) =min{d = 0 mod 4 | x? = 0}, (2.74)
b(XX) =min{d = 1 mod 4 | x =0} —1, (2.75)
¢(XX) =min{d =2 mod 4 | ¢ =0} —2. (2.76)

2.3.2 Smash Products

In this section we compute the Manolescu invariants for smash products of the form

A S(8# 7 52, (2.77)
=1

This calculation will enable us to find the Manolescu invariants for connected sums of certain

Seifert spaces in Section [3.1]

We will find it convenient to write:

E(x)=2v+1|.

2
Theorem 2.3.1. Fiz 6; € Z=1, and 6y < -+ < 6,. Let X; = S%—1115%1 fori=1,...,n,
where X; has a G-action given by S' acting by complex multiplication on each factor, and j

acting by interchanging the sphere factors. Then:

3(/\EX;) = ia (2.78)

a(/\ SX;) = E(Z 5;), (2.79)
BO\EX) = E(3 5). (2.80)
7(/”\ SX;) = E(n 5;), (2.81)

We will use Gysin sequences in the proof of Theorem for convenience we record
the necessary fact here. As in [50][§III.2] there exists a Gysin sequence in homology for a

G-space X:

HE(X) U5 gt (x) ™ HO(X) 2 HE (X) —— ... (2.82)
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Sl 0~ 5251—1 Sl = 5251—1
o o

Figure 2.2: An image of X for n = 1.

F(Ol) = 5170 * 5271 ~ 5’2(51+52)71

S10 >~ 525171 SQ 1™ 5282_1

N

6146 Fuyy =811 % S21 ~ §2(81+32)—1
F(OO) = Sl,O * 5270 ~ 52(51+52)71

SQ 0~ 5252_1 Sl 1 525171

Flio) = S1,1 % S20 =~ §2(51+62)—1

Figure 2.3: An image of X for n = 2.

Here, the map (1 + j) - — is the map sending a cycle [z] € HY(X), with chain representative
(not necessarily a cycle) z € HS'(X), to [(1 + j)z] € HS'(X). The map m, comes from the
quotient 7: EG xg1 X — EG xg X. From (4.17)), we obtain immediately:

Fact 2.3.2. Let [x] € HS(X) so that (1 + j) - [z] = 0. Then [z] € Imgq.

Proof of Theorem |2.3.1. 'We will use the description in Section to perform the

required calculation. Let X = «7, X;, where %] ; denotes the join. We note

/n\ YX; = B X). (2.83)

i=1
Further, for each 4, label one of the disjoint spheres of X; by ;¢ and the other by S;;. See
Figures [2.2] 2.3 and [2.4] for visualization of X. As in the figures, we consider X as if it were
a polyhedron, with “points” the X; and “faces” (edges, etc.) the joins of subsets of {X;}.

We write

F(kl,...,kn) = *?zlsi,ki,
where k; € {0,1} for all i € {1,...,n}, for the “face” spanned by S;, (see Figure .

By Fact [2.2.10,and Lemma [2.2.12 5(‘2X¢) = §;. Proposition [2.2.14 then implies 1)
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53 0 5253_1

~ Q2(81462+63)—1 .
S1,0 % S2,0 % S3,0 = Floon) =2 S2(01102+03) Sy ~ G221

S1 0 5251_1

F100)

Sl 0% SQ 0= 52(81+82)_1

Sl 1 5251_1

SQ 0 =~ 5252_1

Sg 1 8253_1

Figure 2.4: An image of X for n = 3. Here, we only label a few of the faces.

Proof of (2.79). We observe that S2Xi-18i-1 ~ *" 1 Si0 © X, as S'-spaces, where the

action on both sides is given by complex multiplication. We then have a map:
§2Tim ity 2R Al im0 I %21 Sip € X

of G-spaces, where the action of j interchanges the factors of $22i=1 di=1y1 G2 X 6i-1, Taking

the quotient by the action of G we have a diagram:

92X -l §2Yi -1

l l (2.84)

CPEmd-l —  X/G —— BG

with vertical arrows given by G-quotient. The composition H, (CPZi-1 Si*l) — H,(BG) com-

) 2% §i—1
#,CPEi=1 %1 of 5 Ziz1 u

ing from the second line of (|2.84]) is the characteristic class map «

2101 g5 g G-bundle, so using Fact , we have:

61 n o1

(U_2l i:12 J) — /U_l i:12 J

R cpEi1 81

Here U~*, for i, N > 0, is the unique element of H,(CPY) so that U (U ") = 1, where 1 is
the unique nonzero element of Ho((CIP’N ), and similarly g%, v™" are, respectively, the unique

63




elements of H.(BG) so that ¢'(¢7") = 1 = v'(v™%), where 1 € Hy(BG) is nonzero. Then

Z?:léi_l
2

Im k., must be nonzero in degree 4| ], so

a(SX) = 4L%J +4.

However, k¢ must be zero in all degrees d > 4[%] + 4, since dim X = 237" 4 — 1.

Thus, using Definition [2.1.9}
a(EX) = E(Y ),
i=1
giving (2.79).

Proof of (2.80). We have a (G-equivariant) map ¢g: S2Xi %=1 x S0 — X (where j

acts by interchanging the factors S2Zi-1 %~1) given by the inclusion
S50 W% Sin € %y (Sio L1 Sin).

We will use the map ¢z to find classes in H,(BG) in the image of x, in degree congruent to
1 mod 4.

Let

anl — L[ *?;11(511,,0 I Sli,l)a
(ll ----- ln—l)e‘C

where L is the set of all (n — 1)-tuples of distinct elements of {1,...,n}. In the analogy from

the start of the proof, F"~! is the “(n — 1)-skeleton” of X.

Note that associated to a linear subspace CX < C¥, there is an S'-equivariant subman-
ifold S?25-1 < §2N=1 That is, there is a map from Gr(K, N), the space of all K-planes

in CV, to the space of all submanifolds S?5-! < S2¥N-1 'We will call an embedded sphere

obtained from a linear subspace this way a linear sphere. We also see that the inclusion

xS0 S Flo.,...0) (2.85)

-----

-----
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S1 0~ 825171 SQ 1 X 5252_1

~ 281—1
3 S11=8

SQ 0o~ 525271

Figure 2.5: The homotopy from S} to jS1 o in the case n = 2. The sphere S} ¢ is homotopic
to a copy of $21-1 ¢ Soo in Flog) =~ Sio * Sa0 =~ §2(01+02)=1  Fyrthermore, S21~1 < Sa.0
is homotopic to Sy in F(ip). Thus, we have found a homotopy */''S;o — j (/7' S; o) for

n = 2.

Further, we note that for any *2‘:_11511.,@, < Flky,... k), there exists some linear sphere
S ~ SgK_l o *;:fsli,kli, (286)

for all K < 377" 6; (here we have used 6, < --- < 6,).

In particular, fixing K < Z;:ll 0;, we have a linear sphere S as in (2.86). Then S
is S'-equivariantly homotopic (through linear spheres, in Fi, _.)) to a copy of S**~! in
*;-:1151;,@” for any other sequence of integers 1 <[} < --- <[/ _; < n. Inductively then, S is
homotopic to a subset of

*?;11514/,19;,{7
for any sequences " € £, and k] € {0, 1}, in X. It follows that there exists a homotopy from
*?:_1152‘31'71 to *?;llSzfi’I = (*?:_1152.2%’1) in X. See Figures ﬁ and [2.6 for illustrations in
the n = 2,3 cases.

Now we take advantage of the Gysin sequence from . Let ®, denote the fundamental

class of the projective space
CPX 0t~ (§2X001 5 §0) /G~ (#1515, /S,
and let ¢, denote the map on homology induced by the inclusion:

v (WS 0 "1 Si) /G — X /G

wn—1 7
STy 81
2

Then, as in the argument proving (2.79)), we have r, (1,(®4)) = v 1,
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Sg 0 5253—1

S1,0 x 52,0 * S3.0 = Flooo) =~ §2(01+82+63)—1 Gy ~ G205-1

Sl 0~ 525171

Fl100)

Sl ox SQ 0o 52(51+52)71

Sl 1 Szgl_l

52 0 325271

Sg 1~ 5253_1

Figure 2.6: The homotopy *?:_115@0 — j(*?;llSw), for n = 3. In Fpo0) we have Sy * Sz ~

G2(01+62)-1 homotopic to a copy S of 52014+62)-1 contained in Soo * S30. The sphere S’ is
then homotopic in F{igp) to S” S S11 * Ssp. In Fly10), S” is homotopic to §” < Si; * Sy 1,
so we have constructed a homotopy *7_,S;0 — j(*7,5i0), as needed. A similar procedure

applies for n > 4.
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We check that ¢, (®,) is in the image of ¢ (for the action of ¢ on H,(X/G)). Indeed, we
have that (1 + j) - t4(®,), viewed as a class of X /S, is zero by the above homotopy from
*1 1S 0 to *71S; 1 = j(*72'Si0). Then, by Fact m L+(®4) is in the image of ¢ N —.

Thus, there exists some class @ € HY (X) so that ¢@F = 1.(®,). It follows that r,(PF)

| Zim it

must be nonzero, and we obtain ¢~ 1v~ =1 e Imk,. Using (2.75), we see:
b(EX) = 2E() ] &) (2.87)
i=1
Using the Definition of 3, that is:
n—1
B(EX) = E(). &) (2.88)
i=1

By Theorem [2.2.4]
BEX) < a(B(+51X0) + B(EXa)

< BT +0.
Here we have used Lemma [2.2.11] to see 5(XX,,) = 0. Finally, (2.88) and (2.89) together
imply (2-80)).

Proof of (2.81)). We again apply the Gysin sequence after constructing a homotopy.

(2.89)

Repeating the argument from , we construct a homotopy, where [ is the unit interval:
Wi [ x SRS
so that (0, —) is a linear sphere:
S 12,
and so that (1, —) is a linear sphere:
SERIL AT K281 = G (17 Si0).

Following the argument of (2.80]), we see that we may choose 9 to lie entirely within F"~1, the
“(n — 1)-skeleton” of X. The construction of ¢ gives that it is a composition of homotopies

in the faces:

n—1 n—1
Fliey = F77 0 Fly k)



P —

S1.0

Figure 2.7: The tetrahedron corresponding to the face Fgoop), where n = 4. In this example,
the image of ¢’ is contained in S} g * Sa o * S5, and ¢’ takes a sphere in S o * Sa o to a sphere
in Sy * S50. Further, for this example, L; = (1,2,4), and Ly = (2, 3,4). The path followed

by v, is pictured.

so that in each Fiy, . x,), ¥ is a homotopy through linear spheres.

We will construct a homotopy from ¢ to ji (perhaps up to reparameterization in the
domain). Knowing that the homotopy v was constructed by combining homotopies in the
“faces” Fk,....k,), We constuct a homotopy from ¢ to ji by considering homotopies between

homotopies in the “faces”.
Let S < *2:12511,1% < Flgy,. gy Wwhere 1 < Iy < -+ < l,_o < n, and S ~ S*7! for some

-----

S~ §2K-1 < *:’L;IQSI/.JCL/? where 1 < lll << l;l*Q ST

Let Lq,...,L,, € L so that
(lla R >ln—2> = Ll and (lll, RN ;_2) C Lm,
and so that L; and L; differ in only one place; see Figure[2.7] Then there exists a homotopy:

IDLI I X S — F(kl,---JC

n)’

so that ¢(0,—) is the inclusion of S and (1, —) is ¢'(1,—), and so that

p—11p
Yr(] - s =1, =) < *ier, Stk

3

for 1 < p <m. The homotopy ¥ [z-1 »;,¢ I8 constructed exactly as in the proof of 1)
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Next, let ¢ : I x S — Fi, . be given by ¥ (z,y) = (1 — z,y).

Consider the concatenation
H=op st/ IxS— Fy i) (2.90)
obtained by applying ¢' and then running ¢, backwards. Since
ImH(0,—) =ImH(1,—),

we see that H corresponds to a loop in Gr(K —1, %" , 51-—1). However, m; (Gr(K—1,> " , oi—
1)) = 1, from which we see that H is null-homotopic. That is, ¢’ is homotopic to ¢, (again,

perhaps up to reparameterization in the domain), as needed.

As in the proof of (2.80)), we compose a sequence of the ¥’ to 1, homotopies to see that
¢ is homotopic to ji, as in Figure 2.8, Concatenating the reverse (ji)~ and v, we obtain
a map:

(i) = p: I x S2E8-L X

Since Im ju(1) = Im 1(0), by reparameterizing the domain S2Zi=i" %=1 we obtain a map:
L= ()" s STX ST AL, X

Here S!x S2Xi51 %=1 i5 a space obtained by gluing the ends of I x $2Xi=r 8i-1,
The map ¢ descends to quotients by S! and G to give maps 11 and g, respectively.
Now that we have constructed the homotopy between 1 and ji, we repeat the Gysin
sequence argument we have already used in proving .
Let ®, denote the fundamental class of

n

(1 « 522?:—12 Sifl)/Sl ~ (C]pz;:l?&—l c (51;(5221':_1251*1)/G.

We have that (1+j)-®, = 0 as a homology class in HS' (S' % $2Xi=1 %-1) since the homotopy
¥ takes @y to jP,. Then g, viewed as a class in HE (ST S2Xi57 1) is in Im ¢. Let Dg
denote the fundamental class of

n

(S' % §2Zi= 01y /.
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K&

¢

2
N

N

Jv

Figure 2.8: A homotopy from v to ji in the case n = 3. Here v is a homotopy from 5 o

to 7510, and each stage pictured is one instance of the above construction of ¢;,. Composing

these intermediate homotopies in the faces, we have the homotopy between ¢ and j.
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(Sl %8230 5;—1)/51 (51;5222;12 5'71)/G

([0, 4] x §2Zi= b1y /g1

n—2 1
*i—i Si0/8

JO=1Si0/S8Y)

n—2 1
*i1 950/

/(Z/2)

([%7 1] X 32211:712 Si*l)/Sl

Figure 2.9: The shaded region C denotes the relative fundamental class of ([0, 3] x

S2XI500-1) /ST the domain of 1. We see from the figure that the quotient by the ac-
tion of Z/2 = G/S" takes ([0,1] x S2Zi8-1)/81) surjectively onto (S'xS2Ti=r 1) /@,

72
n

Thus C is indeed a chain representative for @4, as a class in (S!x§2Xi= 9i-1) /1

Then &g € HE(S'%S2Zi 51) is the only class in degree 237725, — 1, so ¢®3 = ®,. Our

next goal will be to show that (1 + 7) - q.(®g) = 0, as a class in HS' (X).

n

Note that a chain representative C' of ®5 in (S1% S22 0i=1) /61 is the relative funda-

n

mental class of ([0,1] x S2XI5 %=1y /61 as in Figure 2.9, Then we see that (1 + j) - g is

n

the fundamental class of (S!x 5?2 Py %=1y /St Tt follows that

0= LSl’*((]. + j) . CI)B) = (1 +]) : LG,*<CI)5)7

since

$([0,1] x STy and ([0, 1] x S2Ti= 1)
are homotopic in X. By Fact we have g4 (P5) = ¢ for some &Y € HY(X).

As in the argument for (2.80)) we note that k.t .(Py) # 0, since Kyt is the characteris-
tic class map for S*xS? Y2701 a5 4 G-bundle. Then kyta«(Pg) is nonzero, because Kyl s
must be F[q, v]/(¢*)-equivariant. Similarly, we see . (®X) € H,(BG) must be nonzero, from

which we obtain
_ _ Z?:f 51'*1
¢ v 155 e Imk,.
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Thus:

SO

(2.91)

From Theorem [2.2.4] we have the inequalities (using 0 < Y(X(X,_1 * X)) < B(EX,_1) +

ﬁ(f]Xn) =0):
YEX) < aEHITX)) (X1 + X))
< E(XTP6) +0.
Finally, and imply .
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CHAPTER 3

The Seiberg-Witten Floer Stable homotopy type

3.1 Seiberg-Witten Floer spectra and Floer homologies

3.1.1 Finite-dimensional approximation

In this section we review the finite-dimensional approximation to the Seiberg-Witten equa-

tions from Manolescu [28],[30].

Let S be the spinor bundle of the three-manifold with spin structure (Y, s), and T'(S) its
space of sections. Let D denote the Dirac operator. Let W = kerd* @ I'(S) be the global
Coulomb slice, a Hilbert subspace of an appropriate Sobolev completion of Q'(Y,iR)®T(S).
For A € (0, 00), the Seiberg-Witten equations of (Y, s, g) determine a sequence of vector fields
Xfc on finite-dimensional vector spaces W*. Here W? is the span of eigenvectors of the
elliptic operator =d + D acting on W, with eigenvalue in (=X, \). The vector field XAgC on
W? is an approximation of the Seiberg-Witten equations restricted to W*. The action of
G = Pin(2) on I'(S) restricts to a smooth action on W* that commutes with the flow defined
by Xfc, and we define an action of G on Q! by letting j act by —1 and S! act trivially.
There is a distinguished subspace W (—X\,0) = W consisting of the span of the eigenvectors
with eigenvalue in (—A,0). Following [28], we will use the sequence of flows on the spaces

W2 to define an invariant of (Y, s).

We next recall a few properties of the Conley Index. For a one-parameter family ¢; of

diffeomorphisms of a manifold M and a compact subset A = M, we define:

Inv(A,¢) = {x e Al ¢y(x) € Aforallt e R}.

Then we say that a set S < M is an isolated invariant set if there is some A as above
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such that S = Inv(A,¢) < int(A). Conley proved in [5] that one may associate to any
isolated invariant set S a pointed homotopy type I(.S), an invariant of the triple (M, ¢y, S).
Floer [9] and Pruszko [42] defined an equivariant version, so that if a compact Lie group K
acts smoothly on M preserving the flow ¢;, then we may associate a pointed K-equivariant
homotopy type Ix(S). The Conley Index, as well as its equivariant refinement, are invariant

under continuous changes of the flow, if S' is isolated in an appropriate sense.

Manolescu showed in [30] that S?, the set of all critical points of Xfc, along with all
trajectories of finite type between them contained in a certain sufficiently large ball in W?, is
an isolated invariant set, and that the flow X’ /\gC is G-equivariant. We then write I*(Y,s,g) =
I(S?). To make this construction independent of A, we desuspend by W(—\,0). Then we

can define a pointed stable homotopy type associated to a tuple (Y, s, g):
SWF(Y,s,9) = 2" WEAITA (Y 5, g). (3.1)
The desuspension in (3.1]) is interpreted in €. That is,
SWF(Y,s,9) = (I'(Y, s, g), dimg W (=X, 0)(R), dimg W (=X, 0)(H)),
where W (=X, 0) = W (=X, 0)(R) @ W (=X, 0)(H), and W (=X, 0)(R) is a direct sum of copies
of R. Similarly, W (=, 0)(H) is a direct sum of copies of H.

Manolescu showed in [30] that SWF (Y, s, g) is well-defined, for A sufficiently large. Fur-
ther, we must remove the dependence on the choice of metric g. We use n(Y, s, g), a rational
number which controls the spectral flow of the Dirac operator and may be expressed as a

sum of eta invariants; for its definition, see [28]. We have:

SWF(Y,s) = £~ 2"V»OHGWE(Y, 5, g). (3.2)

Interpreted in €, if SWF(Y,s,g) = (X,m,n), then SWF(Y,s) = (X,m,n + in(Y,s, g)).

In addition to the approximate flow above, we may also consider perturbations of the

flow as in [23].

For fixed k > 1, we call

C(Y,s) = L;Q'(Y,iR) ® L;(Y;S)
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the configuration space for the Seiberg-Witten equations, where LiQ!(Y,4R) is the space of
L3 1-forms. We write £ for the Chern-Simons-Dirac functional and G for the L7, ;-gauge

transformations. Let X be the L?-gradient of £ on C(Y,s). We call a map
q:C(Y,s) = To, (3.3)

a perturbation, where 7; denotes the L? completion of the tangent bundle to C(Y,s). Then
we write

Xy=X+q:C(Y,s) = To.

Let W denote the global Coulomb slice in C(Y,s) and T the L2 completion of the tangent
bundle to W. Lidman and Manolescu also consider a version of X;, obtained by projecting

trajectories of Xy to W
C . W T C

Lidman and Manolescu prove that there is a bijective correspondence between finite-energy

trajectories of quc and those of X;, modulo the appropriate gauges.

We write Xcﬁg for the finite-dimensional approximation of Xfc in W* (recalling that 1WA
are finite-dimensional subspaces of W). For very tame perturbations in the sense of [25], we
may define I (Y, s, g, q) as above using ng in place of Xfc. Furthermore, from (Y, s, g, q)
we may also define SWF(Y, s, g,q) analogously to the unperturbed case. Proposition 6.6 of

[25] shows that the spectrum is independent of q. That is:
SWE(Y,s,9,q4) = SWF(Y.s,9).

We also have the attractor-repeller sequence of [30]. For a generic perturbation q we may
arrange that the reducible critical point of &; is nondegenerate and that there are no irre-
ducible critical points x with £(z) € (0, €) for some € > 0. Denote the reducible critical point
by ©. Let T = T* be the set of all critical points of Xcﬁg and points on flows of finite type

between them. Then, for all w > 0, we have the following isolated invariant sets:

o TM: the set of irreducible critical points x with £4(z) > w, together with all points

on the flows between critical points of this type.
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o T, : Same, but with £4(z) < w, and allowing = to be reducible.

Then we have the exact sequence:
I(T,) = I(T) - I(T™) - XI(Te,) — - .. (3.4)

We record a theorem of [30].

Theorem 3.1.1 (Manolescu [30],[31]). Associated to a three-manifold with by = 0 and a
choice of spin structure (Y,s) there is an invariant SWF(Y,s), the Seiberg- Witten Floer
spectrum class, in €. A spin cobordism (W,t) from Y; to Ys, with bo(W) = 0, induces a
map SWF(Y1,tly,) — SWF(Ya,t|y,). The induced map is a homotopy-equivalence on the
S1-fized-point set.

Remark 3.1.2. The three-manifold Y in Theorem may be disconnected.
Definition 3.1.3. For (Y, s) a spin rational homology three-sphere, the Manolescu invariants

a(Y)s), B(Y,s), and (Y, s) are defined by a(SWF(Y,s)), B(SWF(Y,s)), and v(SWF(Y,s)),

respectively.

Theorem 3.1.4 ([30]). Let (Y,s) be a spin rational homology three-sphere, and let —Y

denote Y with orientation reversed. Then
Oé(Y;E) = _7(_Y75)7 6(}/75) = _B<_Y75)7 7(}/7 5) = —Oé(—Y,E).
Furthermore §(Y,s) = —6(—Y,s).

From Theorem , the local and chain local equivalence classes of SWF (Y, s), namely
[SWE(Y,s)], and [SWF(Y,s)]u, respectively, are homology cobordism invariants of the
pair (Y);s). Since the G-Borel homology of SWF(Y,s) depends only on [SWF(Y,s)]a,
we have that a(Y)s), 5(Y,s), and (Y, s) depend only on the chain local equivalence class
[SWE(Y, 8)]a

Fact 3.1.5. Let Y1,Y5 be rational homology three-spheres with spin structures ti,ts and
(Xi,mi,n;) = SWE(Y;, 4) fori=1,2. Then

SWE (Yi#Ys, 1 #t2) = (X1 A Xo,mq + ma, ng + na).
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Proof. According to [30], the Seiberg-Witten Floer spectrum class of the disjoint union Y311Y5
is given by:

SWE(Y111Y3) =, (X1 A Xo,my + mg,ny + ng).
On the other hand Y; 11Y; is homology cobordant to the connected sum Y;#Y5. Since the

local equivalence class is a homology cobordism invariant, we obtain the claim. O]

By Theorem and Fact [3.1.5] we have a sequence of homomorphisms:

ol VL, gg O, g, (3.5)

3.1.2 Approximate Trajectories

Fix q a very tame admissible perturbation, as in Definitions 4.9 and 4.19 of [25]. Here we
will record several results of Lidman-Manolescu [25] for use in Section 1.2 The first result

is a corollary of Proposition 7.7 of [25]:

Proposition 3.1.6. [25] For \ sufficiently large, there is a grading-preserving isomorphism
between the set of irreducible critical points of the finite-dimensional approzimation qug and

the set of irreducible critical points of X; on C(Y,s)/G.

For x, y critical points of quf\j, let M, ([z], [y]) denote the set of unparameterized trajecto-
ries of Xcﬁf from [z] to [y] contained in the ball used to define S*. Similarly, we let M ([z], [y])

be the set of unparameterized trajectories between critical points of X; on C(Y,s)/G.

Proposition 3.1.7 ([25] Proposition 13.1). There is a correspondence of degree one trajec-
tories compatible with Proposition . That is, if [z)], [yr] are irreducible critical points,
with gr(zy) = gr(yx) + 1, of ij’ corresponding to irreducible critical points (x|, [y] of A,

respectively, then there is an identification
M([z], [y]) = Mxa([zx], [ya])-

The condition gr(z) = gr(y) + 1 allows the application of an inverse function theorem.
However, without the grading assumption, a compactness result still holds. That is, Propo-

sition 12.17 of [25] implies:
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Proposition 3.1.8. [25] Let [x] and [y]| be critical points of X, corresponding to critical
points [1,], [ya] of &5 If M([a],[y]) = @, then My([z:], [ya]) = .

We will also need the following Theorem from [25].

Theorem 3.1.9. [2]] Let (Y,s) be a rational homology three-sphere with spin® structure.
Then
HM(Y,s) = SWFHS' (Y, s),

as absolutely graded F[U]-modules, where W(Y,s) denotes the “to” wersion of monopole
Floer homology defined in [23)].

3.1.3 Connected Seiberg-Witten Floer homology
Definition 3.1.10. Let (Y,s) be a rational homology three-sphere with spin structure, and
[SWE(Y,s)] = (Z,m,n) € €€,

with Z suspensionlike. The connected Seiberg-Witten Floer homology of (Y,s), written
SWFHeonn (Y, 5), is the quotient (HS" (Z)/(HS' (Z5")+ HS' (Ziess)) ) [m~+4n], where Ziness © Z

is a maximal inessential subcomplex. By Theorems [2.1.39| and [3.1.1} the isomorphism class

of SWFHeon (Y, s) is a homology cobordism invariant.

Remark 3.1.11. We could have instead considered the quotient (HS" (Z)/HS' (Ziness))[m +
4n], which is isomorphic to SWFHeon (Y, 8) ® T;" where d is the Heegaard Floer correction
term of (Y,s). As defined above, SWFHeon (Y, s) has no infinite F[U]-tower, because of the
quotient by HS' (Z5"). Further, let Zeonn denote the connected complex (Definition

of Z. It is clear from the construction that
SWFHeonn(Y,8) = (HY' (Zeomn)/HZ' (25))[m + 4n].
Remark 3.1.12. Let ¢ be the canonical isomorphism:
¢ HS (SWF(Y,s)) — HM(Y,s) — HF*(Y,s),
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provided by, for the first map, [25], and for the second, [{|] and [2])]. Let w be the projection
7w HFY(Y,s) —» HF.q(Y,s). We note that SWFHou (Y, 5) is naturally isomorphic to the

quotient
T ($(HS (SWF(Y,8)))/6(H" (Ziness))-

Then SWFHeonn(Y,s) can be viewed as an F[U]-summand of HFeq(Y,s).
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CHAPTER 4

Seiberg-Witten Floer homotopy of Seifert spaces

4.1 j-split spaces

In this section we introduce j-split spaces of type SWF, and compute their G-Borel homology.
We will see in Lemma that the Seiberg-Witten Floer spectra of Seifert spaces are j-
split. The computation of this section will then provide the G-equivariant Seiberg-Witten

Floer homology of Seifert spaces.

Definition 4.1.1. We call a space X of type SWF j-split if X/XS1 may be written:
X/X% ~ X, v X_,

for some S'-space X, where ~ denotes G-equivariant homotopy equivalence, and j acts on
the right-hand side by interchanging the factors (that is, X, = X_). Similarly, we call a
G-chain complex (Z, 0) of type SWF j-split if (1) — (3) below are satisfied.

1. There exists fieq € Z such that (fieq) is the fixed-point set, ZSl, of Z. Furthermore
Sfred = 0, jfrea = frea- In particular, Z is of type SWF at level 0.
2. The fixed-point set Z°" is a subcomplex of Z (that is, d(fea) = 0).

3. We have:
2/231 = (Z+ @jZ+)7

where Z, is a CSW(S) chain complex, and j acts on the right-hand side by inter-

changing the factors.
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Recall that @ denotes a direct sum of G-modules that is not necessarily a direct sum of

chain complexes. For a j-split chain complex Z we may write, referring to jZ, by Z_:
Z = (2: ® Z)8het).

In the above, Z is to be thought of as the reduced CW chain complex of a G-space X,
and fiq is to be thought of as the chain corresponding to the S!-fixed subset of X. The
requirement that Z be a chain complex of type SWF at level 0 will be used in Section

to calculate the chain local equivalence class of j-split chain complexes.

A j-split space X with X5 ~ S° admits a CW chain complex which is a j-split chain
complex. For X a j-split space of type SWF at level s, we use the following Lemma to relate

the CW chain complex of X to j-split complexes.
Lemma 4.1.2. Let X be a j-split space of type SWF at level s. Then
[CEM (X.pt)] = [(Z, —5,0)] € €€,
for some j-split chain complex Z.
Proof. The chain complex CSW (X, pt) may be written
CV(X,pt) = ROF, (4.1)

where R = CSW (X5 pt) =~ CEW((R*)", pt) is a subcomplex and F is a free G-chain com-

plex. Since X is j-split, the decomposition (4.1)) may be chosen so that
F = F, ®jF,, (42)

where F, is a C¢W(S1)-chain complex, and j acts on F' by interchanging F, and jF,.

We first show that we may choose F' satisfying (4.1)) and (4.2) and so that, for x € F
homogeneous,

(0z)[r = 0, (4.3)
if deg z # s + 1.
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Indeed, fix some I satisfying and , and let {x;} be a homogeneous basis for F'.
Let F'(n) denote the G-chain complex generated by x; of degree less than or equal to n. We
define new chain complexes F'(n) so that ROF'(n) = ROF(n), and so that F' = | J F'(n)
satisfies —. Let m, denote projection m, : ROF'(n) — R onto the first factor. Set
F’(0) = 0. Assume we have defined F'(n) forn < N < s, so that holds for all z € F'(n).

We define F'(N + 1) by defining generators z, of F'(N + 1)/F'(N) corresponding to the
generators x; of F(N + 1)/F(N). For each z; of degree N + 1 so that my(dx;) = 0, let

x, = x;. If instead x; is of degree N + 1 and 7y (dx;) # 0, then
o(mn(0x;)) = (0% (4)) = 0.

So, mx(0x;) = (1 + j)ew, since (1 + j)ey is the only nonzero cycle of R in grading N (or,
when N = 0, my(0x;) = ¢p). However, by assumption, N < s, so my(0x;) = deyyq. Then,
we let z) = z; + ey 1.
Let
F(N+1) = (N), ] b

{i|deg x;=N+1}

By construction ROF'(N + 1) = ROF'(N), and holds for all 2 € F'(N + 1).

For N > s, define F'(N + 1) by F'(N + 1) = (F'(N), Uijdeg 2,241} Ti)-

From the construction, it is clear that F” satisfies —, as needed.

Take F satisfying (4.1)-(4.3). Consider the G-chain complex Z = CSW(S°, pt)®F[s],
where CSW (5% pt) = {cy) is a subcomplex. To define the differentials F[s] — C¢W (S°, pt)
in Z, we set, for z[s] € F[s]:

(@z[s])logw (s0,pt) = o, (4.4)
if (0z)|r = (14 j)cs, and

(@z[s])lcgw (s0,pt) = 0 (4.5)
if (0x)|gr = 0.

By the construction of F, (4.4) and (4.5) determine the differential on Z.
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Finally, consider the suspension:
S 7 = SF(COW (S, pt)BEF (F[s]) ~ REX® F[s].

We note, as in the proof of Lemma [2.1.28, that X% F[s] ~ F[0] = F. Then, there is a

homotopy equivalence, constructed exactly as in the proofs of Lemmas [2.1.28| and [2.1.30

S 7 ~ ROF. (4.6)

It follows that [(Z, —s,0)] = [CSV (X, pt)] € €€, as needed. O

Note also that any j-split chain complex occurs as the CW chain complex of some j-split

space.

Remark 4.1.3. j-splitness is not the same as Floer Kqg-splitness of [31].

4.1.1 Calculation of HZ(X)

In this section we will compute the G-equivariant homology of a j-split space in terms of its

S1-homology.

Let X be a j-split space of type SWF at level m with X/XS1 = X, v X_. The Puppe
sequence

X% 5 X - x/x% - uxd

leads to a commutative diagram, where the rows are exact:

EG. rgt X5' —— EG, Agt X —— EG, rgt (Xp v X)) — EG, rgt X5

J l J |

EG, rng X5' —— EG, A X ——  EG, r¢ X/X5' —— EG, rgEX5".
(4.7)

In (4.7) the vertical maps are obtained by taking the quotient by the action of j € G. The
diagram (4.7)) itself yields a commutative diagram for Borel homology, where the rows are
g y g gy
exact:
AN (X)) —— HY'(X) —— HY (X @ 5 (X ) = A5 (2X)
¢ l b2 l 3 l S l (4.8)
H(XS) oo AS(X) o AS(X/XT) S
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Specifically, we view (4.8) as a diagram of F[q,v]/(¢®) modules, where v acts on the top
row by U? and ¢ annihilates the top row. An F[U]-module M viewed as an F[q, v]/(¢®)-
module this way is denoted resggl] jgn M- More precisely, let ¢ : Flg,v]/ (¢*) — F[U] be
v—U? q— 0, and let resﬁgl] @) be the corresponding restriction functor. The restriction

takes the simple F[U]-module 7;"(n) to

n+1
resgiy i Tat () = VE(=5 =D @ Via(l5 ). (4.9)

S

We define the maps dg1 : HS' (X,) — HS (X5") and dg : HE(X/XS') — HS(X5') by
shifting by 1 the degree of the horizontal maps on the right of diagram (4.8). (So that dg:

and dg are maps of degree —1.)

Fact 4.1.4. The map ¢1 in (@ 15 precisely the corestriction map corgl, and s an 1s0mor-

phism in degrees congruent to mmod4, and vanishes otherwise.

Proof. This follows from the construction of the ¢; and the dual of Fact [2.1.1] O

Fact 4.1.5.
Gsl st () - B (X0) = HE(X/X) (4.10)

is an isomorphism (of F[q,v]/(¢*)-modules).

Proof. Since X is j-split, both domain and target are isomorphic, as vector spaces, to
H,.(X,/S1). The map ¢3 is a bijection and an F[q, v]/(¢*)-module map, and so is an isomor-
phism. O

In particular, Fact{4.1.5{shows that the g-action on HE (X /X5") is trivial. Since ¢35 X,

)

is an isomorphism, we have:

F[U ~ gl ~ 1
ey 1 (Xe) = HI(X/X). (4.11)

Fact 4.1.6. The maps ds1 and dg are F[U] and Flq,v]/(¢®)-equivariant, respectively.

Proof. The fact follows since the maps dg: and dg are induced on Borel homology, respec-

tively, from S! and G-equivariant maps. O
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By (4.8),
daos = ¢rdg. (4.12)

Lemma 4.1.7. We have:
H'(X) = coker dg1 @ ker dg:. (4.13)

Proof. Using the top row of (4.8), we have an exact sequence:
0 — coker dg1 — I:Ifl(X) — ker dg1 — 0,

SO H'fl (X)) is an extension of ker dg: by coker dgi1. Note that coker dg: is isomorphic to T,
for some integer d. A calculation shows Ext]lF[U] (T3 (n:), T;") = 0 for all d, d;, n;. Thus, any

extension of ker dg1 by coker dg: is trivial, and we obtain the Lemma. O

We also write (4.13) as the homology of the complex HS' (X5') @ HS'(X/X5") with

differential dg:.

Lemma 4.1.8. We have:

HE(X) = coker dg @ ker dg. (4.14)

as Flv]-vector spaces. The subspace cokerdg is a F|q,v]/(¢)-submodule, and q acts on
z € kerdg by qr = 0 if © € Im $olkera,, (using the decomposition of HS (X) in Lemma
. Also, qx # 0 € cokerdq if x € kerdg but x ¢ Im (bQ\kerdsl. As there is at most one

homogeneous element of each degree in coker dg, qu is uniquely specified for all x € ker dg in

the decomposition .

Proof. As in the proof of Lemma , we see that HS(X) is an extension of

F[U Fr Sl
kerdg < resﬁq}ﬂ/(qg)ﬂf (X4)

by cokerdg = HS(X5')/(Imdg). We will first show that the extension is trivial as an

[F[v]-extension.

We construct M < HE(X) a vector space lift of ker dg « HE(X/X5"), so that ¢o(ker dgi) =
M, using the decomposition of HS'(X) in (4.13).
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Specifically, we define M in each degree ¢ by:

(¢a(ker dg1)); for i # 3 + m mod 4,

HE(X) for i = 3 + m mod 4.

We next show that 7|y : M — kerdg is an isomorphism.

We have (coker dg); = 0 for i = 3 + m mod 4, since HG(X5") ~ H,(BG)[—m], so
ma: HE(X) — (ker dg); (4.15)

is an isomorphism for all 7 = 3 + m mod 4.

We now show that 7g : (Im ¢s|ker dg1 )i — (ker d¢); is an isomorphism for ¢ # 3+m mod 4.
It suffices to show ker dg € Im ¢3yer dgi 1D degrees not congruent to 3 + mmod 4. Indeed, ¢3
is surjective by . Furthermore, by Fact , ¢ is injective in degrees not congruent
to 2 + mmod4. By (4.12), if y € kerdg with deg (y) # 3 + m mod 4, and y = ¢3(x), for
z € HS (X/X5"), then ¢1(dsiz) = 0. By the injectivity of ¢y, we have dgiz = 0, and we
obtain:

y € Im (¢3|kerds1)'

That is, (Im ¢3|kera,, )i = (ker dg); for i # 3 +m mod 4. Then, 7g(Im ¢z|ier ay, )i = (ker dg)s,

as needed.
We have then established that lf[f (X) = coker dg @ M as F-vector spaces.

We next determine the F[q, v]/(¢)-action on M < HE(X). Since ker dgr = H5'(X) is an
F(q,v]/(¢*)-submodule, so is its image in HS(X). Then, for € M homogeneous of degree
not congruent to 3 +m mod 4, we have qx,vx € M. In fact, gr = 0, since q acts trivially on
HS'(X). Moreover, for 2 € M of degree congruent to 3 +m mod 4, vz € HE(X) is also of
degree congruent to 3 + m, and, in particular, we see vx € M. So we need only determine

qx for x € M with deg x = 3 + m mod 4.
As in [50][IIL.2] there exists a Gysin sequence:

~ ~ qu— ~

HA(X) —— HiH(X) —— HL(X) 25 HEFHX) —— .., (4.16)
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where ¢ U — denotes cup product with ¢. Dualizing, we obtain an exact sequence:

AG(x) U g8 (x) —2 AS(X) 2 S (X) —— .., (4.17)
where (1 + j) - — denotes the map obtained from multiplication (on the chain level) by

1+ j €@, and ¢ n — denotes cap product with q.

From 1} we have that if 2z € M < H%(X) is not in Im P2lkerdg, » then gz # 0. We will

show that qx € coker dg.

First, we see

(1 + j) - coker dg = coker dg:. (4.18)

Indeed, (4.18)) follows from the commutativity of the diagram

H9(X) T 75 (x)
AG(xsYy W st (xsh,
Additionally, we see that

ker dg (1+—])_> ker d g1

is injective by the j-splitness condition (Definition 4.1.1). Then ker (1 4+ j) ¢ HZ(X) is, in
fact, a subset of coker dg. Thus, if = ¢ Im ¢s|ker dg1» ¢ must be the unique nonzero element

in grading degx — 1 in coker d¢g, completing the proof. O

Our goal will be to relate (4.13) and (4.14)), relying on (4.11) and (4.12). From this
relationship we will be able to show that the S'-homology (4.13)) determines the G-homology

(4.14). In Lemmas |4.1.10{ and [4.1.11| we compute HS" (X) from HS' (X/X5") and dgi. In
Lemmas |4.1.1214.1.15, we show how to compute HZ(X) from the same information. Then
in Theorem [4.1.16| we compute HS(X) directly from HS' (X).

We begin by noting that any finite graded F[U]-module may be written as a direct sum
of copies of T;"(n;), as F[U] is a principal ideal domain. In particular, 75" (X/X5"), since

it has finite rank as an F-module, is a direct sum of copies of the 7" (n;).
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Lemma 4.1.9. On T, (n) ¢ HS (X/X5"), the differential dg: vanishes unless 2n+d = 3+m

andd <m + 1.

Proof. Let U~% denote the unique nonzero element of T.Fin degree m + 2k. Let z4i9,2
be an F[U]-module generator of 7, (n), with deg (zg42n,—2) = d + 2n — 2. Then either dg
vanishes on 7,7 (n) or dgi(2412,—2) is nonzero. In this latter case, because of the grading,
A1 (Tgson_s) = U= "2 If 2n+d < 3+ m, then 7, (n) has no elements in degree greater

than m, and so has no nontrivial maps to 7;7. Similarly, for d > m + 1, ds:(7; (n)) = 0.

Indeed, if dgi (T (n)) # 0, then

_ d+2n—m—3
ds1Tqion2=U 2

Then, by Fact 1.1.6, dgi (U™ 2" 2g19n_2) = U° # 0 € T.5. However, if d > m + 1, then

d+2n—m—3 . .
U7  x4i0,_2 =0, a contradiction. ]

Lemma 4.1.10. There exists a decomposition
HY (X)) = i@ ]y, (4.19)

as a direct sum of F[U]-modules Jy and Jy, where dgi vanishes on Jo and

with 2n; +d; > 2n;1 +d; 11, and d;yq > d;, for some N. Moreover, dy < 1+m,2ny +dy =

3+m, and dg is nonvanishing on each summand T;" (n;).

Proof. To begin, set ﬁ]fl(XJr) = J; @ J, for some choices of J; and J, so that dgi|;, = 0,
possibly by setting J, = 0. We introduce a partial ordering > of (graded) F[U]-modules.

We say
Ty (n1) = Ty (n2)

if 2ny +dy = 2ny + dy and d; > dy. Our goal is to arrange that the summands of J;
are not comparable under this relation. Suppose we have 7;1“(711) @ 7;;(712) c Ji, and

Tar (n1) = T (ng). If one of the 7;"(n;) has d51|7$(m_) = 0, we move it to Jy. Otherwise, we
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have that dg1 is nontrivial on both 7, (n;). Let 7" (n;) be generated by ; for i = 1,2. Then
(wy, U2t (d=d2)/2g, 4 355 are new F[U]-generators for T, (n,)®T, (n2) < Ji, such that dg:
vanishes on U™ "2 (h1=d2)/2:) 4 3, je. so that dg: vanishes on the 7, (n,) submodule. So we
may choose a new decomposition HS' (X, ) = JI@®J}, where J} ~ Jo@®T, (n2). Thus, we may
choose J; such that there is no submodule X @Y of J; with X > Y. Say J; = @Z]\il 7;* (n;)
has been chosen so that all its summands are incomparable under > (and so that dg is
nonvanishing on each 7, (n;)). Perhaps by reordering, let diy1 > d;. If dipy = dy, T, (ns)
and 7;:’“ (n;+1) would be comparable, contradicting our choice of J;. Thus d;,; > d;. Again
using that the 7? (n;) are incomparable, we obtain 2n; + d; > 2n;,1 + d;41. Finally, we saw
in Lemmam that dg: vanishes on any summand 7;"(n) with d > 1+m or 2n+d < 3+m,

so by the condition that dg: is nonvanishing, we have dy <1+ m,2ny +dy =3 +m. [

Lemma 4.1.11. Let HS (X)) = J, ® J,, with J, as in Lemma |{.1.10. Then

Ni41 — d;
2

gl N ditq +2 N
HY(X) = T oy 1 @D Ty (75 )OD T, () ® J5*. (4.20)
=1 =1

dni1+2nNy1—dn

5 may vanish, in which

We interpret dyy1 = m + 1,nyy1 = 0. The expression

(dN+1 +27;N+1—dN )

case 7;;1; 18 the zero module.

Proof. Tn the decomposition of Lemma {4.1.10} we write z; for the generator of 7, (n;). We
choose a basis for ker dg1, given by {y;}; for y; = @,y + UM et (dimdiv) 2 for§ = 1, ... ,n—1,

and yy = U@~ +2nv=1/24 . Note that yy may be zero.

We have seen that Jo < ker dg1, and also jJo < ker dg1, giving the two copies of the J;
summand in 1) We see that IF[U]U‘W =Imds < 7}, by Lemma.1.10l Then
i ion,_1 = coker dgi. Further, (1 + j)J; contributes the summand (—Dzj\il T4 (ni), since dg

is j-invariant, and so vanishes on multiples of (1 + j). Finally, the set {y;} generates the

DY, ET(W) summand.

For an example of how the new basis gives the Lemma, see Figures [4.1] and [4.2] O

We now compute HS(X/X5"). To find kerdg, we write HS(X/X5") = J! @ Jb, where
d¢ vanishes on J;, (J5 need not be maximal, currently). To find J] and Jj in terms of J; and

Jo, we use:
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(5 (X5") @ HS'(X/X5"),dg1) =

F

-

NN N

F
F.__TF
FﬁU}U
U F.__F._F _F
-1 FF F F

Figure 4.1: An example of HS'(X) as in Lemma 4.1.11] The first four (finite) towers are
TH(3)®2® 7,7 (1)®% Then J; = TH(3)@®T," (1) and J, = T (1) in (keeping in mind
that the action of j interchanges the pairs of copies 7" (n;), so HS' (X/X5") ~ 1@ JL®J,®J;
as an F[U]-module). In particular, dj = —1,ny = 3,dy = 1,ny = 1. Here m = 0. The

shaded-head arrows denote differentials while the open-head arrows denote U-actions.

Y (XS ~TF
/’El 1+ jT1
s (X)) ~F
/U(:m) U(zy+ jz1) z2+ U(z1) @2 + jzo
~Sl Sl
S (XS ) ~TF

U?(z1 + ja1) U?(21) Z_1 Zz-1+jz1

Figure 4.2: Using the basis in the proof of Lemma for the complex of Figure [£.1]

Here the generator of J; is written z_;. The x; are generators of 7? (n;) for i =1,2.

Lemma 4.1.12. Let J;, J, and d;, n; be as in Lemmal{.1.10. Then we may set HE (X /X5") =
J1 @ J5, where

Tli-f—l n;
G- @ v e @ via0.
{ildi=m+1mod 4} {i|d;=m+3 mod 4}
F[U i ni +1
L=resglh® @D Vielzhe @ VilT5D
{tld;=m+1mod 4} {i|di=m+3 mod 4}

Moreover, dg is nonvanishing on each nontrivial summand of J{, and dg(J) = 0.

90




Proof. We use (4.9) and (4.11)) to conclude that

n; + 1 n;

s = DVLIT =) e DVillG ).

We also use

1
COI"% dsl = dG¢3,

as in 1) to obtain that d¢ is nonvanishing on each of V(Z([WHJ), with d; = m + 1 mod 4

2

and V; _,(|%]) with di = m + 3mod4. To find J; we apply (4.11)) again, to J,, and we

2

observe that dg is vanishing on each of V; (|%4]), with d; = m + 3mod 4 and V; ,(|%&])

with d; = m + 1 mod 4. O

Fact 4.1.13. The F[v]-submodule
n; +1

@ Vielzhe @  vil=5—)

{i|di=m+1mod 4} {t|di=m+3 mod 4}

in Lemma is the component of HE(X /X5") not in the image of Palkerdg; -

For an example of Lemmal4.1.12| see Figure . We define an order > on modules V] (n)

3 corglxl

2

1 U cord Uzy  cord g
0

-1 vcorglxl corgz_l

Figure 4.3: Computing HS(X/X5") for the complex of Figures and Here J] =

with d = m + 1mod 4. Note that all simple submodules V; (n) of J; in Lemma have
d=m+1mod4. Let V; (n1) = Vy (ng) if dy = dy and dy +4ny = dy +4ny. Let J denote the
set of distinct pairs (a,b) for which V; (b) is a maximal summand of J{ as in Lemma [4.1.12]
If (a,b) € J, set m(a,b) + 1 to be the multiplicity with which V" (b) occurs as a summand
of Ji. If (a,b) ¢ J, set m(a,b) to be the multiplicity with which V7 (b) occurs in J;. Then

we define:

Jrep = EP VF (0)®m@b) (4.21)
(a,b)
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where summands of multiplicity 0, —1 do not contribute to the sum. That is, J.e, counts the
repeated summands (whence the “rep”) in Jj, as well as those which are not contributing

“new” differentials targeting the reducible. In the example of Figure Jrep = Vi (1).

Arguing as in Lemma we obtain the following.

Lemma 4.1.14. Let HS' (X,) be decomposed as in Lemma |4.1.10, and let J be as in the
preceding paragraphs. Then we may set HG (X /X5") = J' @ J! with

J{/ >~ @ V;(bz),

(aibi)ed
F[U n; n; +1
Baresgh® @D Vielghe @ Vi3 )@ e
{i|d;=m+1mod 4} {ildi=m+3 mod 4}

Moreover, dg is nonvanishing on each nontrivial summand of Jy, and dg(J5) = 0. Further,

a; < Q41 and a; + 4bl > @41 + 4bi+1 fOT”i = 1, ...,Ng — 1, where No = ‘._7|
Proof. We argue as in Lemma starting with the decomposition
H(X/X%) = T @ J;

given in Lemma . We will show that we may choose Ji' = @, j)es Va, (i), so that
HS(X/X5") = JI' @ J! with dgJ} = 0. Fix a direct sum decomposition J, = @), Vi(bi),
for some a;,b;. Say that VI (fi) < Ji, where (e1, f1) ¢ J and choose (es, fo) € J, with
VIE(f2) = VI(f1) and VI(f1) @ Vi (f:) © Jy. Further, assume that dg is nontrivial on
VI (f1); if it were trivial, then we enlarge J; by setting J; = J; @ VI (f1). Let z; be the
generator of V' (f;). We choose new F[v]-generators, z of V. (f5) and v/2=/it(c2men)/Ag,y 4 4y
of VI (f1) so that dg vanishes on VI (f1). Again, then we may enlarge J; by adding the
VI (f1) factor. This shows that we can remove all summands 7,7 (b) with (a,b) ¢ J from Jj.
Similarly, if V7 (b) @ V. (b) < J{, with (a,b) € J and with generators x; and x5 such that
dg(x1) = dg(x2) # 0, we choose the new basis (x1, 25 + x1). The differential dg is nonzero
on the copy of V. (b) generated by x;, while d¢ vanishes on the copy of V. (b) generated by
1 + 2, and J; may be enlarged. Then we may choose Ji' ~ @B, s Va (b). The formula

for J also follows once Ji is specified. O
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(H7 (X)) @ HE (X/X),ds1) =

8 <~§1(X51) ~F

7 . Iy 14+7)x

6 S5 = FT ) ( )j) 1

5 C o L Ux (1 + j)Ul‘l i) (1 + j)l‘g

4 (X Pl ) )
3 <~ o U?xy (147U  Ux (1+j)Ux
: Py are n?
1 ( 1 . 14 U3 anz (14 j)U%xy
0 §(XT) =T g 3 -~y
-1 U 33)1 (13‘])[] U 52 (14 5)Ux,
-2

-3 U5$1 (1 —5J)U5I1 U4$2 (1 + j)U4f>2
—4

-5 U6$1 (1 + j)Uﬁl‘l

—6

Figure 4.4: An example F[U]-module HS' (X)) ® HS' (X/X5") for X with m = 0. Here
di = —=5,n,=T7and dy = —3,ny =5, and J, = 0.

In Figures [4.4] and we provide an example illustrating the proof of Lemma [1.1.14]
We may now compute HS(X) in terms of HS' (X/X5") and the map dg:.

Lemma 4.1.15. Let HS'(X,) be decomposed as in Lemma |{.1.1(| and let J!, J2 be as in
Lemmal[4.1.1) Then:

ﬁf(X) = V 1+4b1 1 S V1+m ) V2+m (422>
az + 4b; ; ”
@C—D +1 ; +1 — )(‘B Jg,

as an F[v]-module. The q-action is given by the isomorphism q : V3., — Vi, and the map
Vi — V;1+4b1 1> which is an F-vector space isomorphism in all degrees at least a; +4by —1.
The action of q annihilates C—D VWWL#) and 1“es]F J2 D Jrep S J5.

To finish specifying the q-action, let x; be a generator of Vi (|5 ]) for i such that
d; = m + 1mod4 (respectively, let x; be a generator of V+(["1+1J) if di = m + 3mod4).
Then qx; is the unique nonzero element of Hf(X/XS ) in grading degz; — 1, for all i. In

particular, HS' (X /X°") and ds: determine HS(X). Here any41 = m + 1,by,+1 = 0.

Proof. The proof is analogous to that of Lemma [4.1.11l We choose a basis for kerds as
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1
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1
-5 vgcorg T

Figure 4.5: Here we show how to compute (HS (XS )®HS (X /X5"), dg), given (HS (X5")®
HS' (X /X5, dg1), for the example complex given in Figure The curved arrows denote
the v-action. Here, Jiop is V75(3), and J/ = V5(3). Then we have also Jj = V,(3) @
V*(2) ® V*,(4). If we have a basis of cor?, Uzy, cor? ay for Ji, then corf Uz, + cord x,

would be a basis for J,e, produced by Lemma

follows. Write the generator of V; (b;) as x;. Then set y; = w441 + phibirt(aimainn)/4y,
for i = 1,..., Ny — 1, and yy, = v(“N0+4bN0_1)/4:UNO. It is clear that y; € kerdqg for all 4,
and it is straightforward to check that {y;} generates kerdg n Jy. The y; generate the term
@ V*(W) in . Since dg is g-equivariant and ¢ annihilates HS (X /X5"), the

=1 "a,
modules V;" and V; < H,(BG) are disjoint from the image of dg. Moreover, I

dc(r1), where v™* is the unique element x of H,(BG)[—m] with v*z an F-generator of
Ho(BG)[—m]. Since there are no elements = € J; with grading greater than a; + 4b; — 4,

the maximal k for which v=* € Im dg is ‘“*41’1%. It follows that

+ + +
coker dg = Va1+4b1_1 OV @ Vo -

Furthermore, JJ < ker dg by definition, contributing the JJ term of (4.22)). To determine
the g-action on ker dg, we use Lemma [£.1.8l Indeed, g takes elements not in the image of

®2|ker dg tO nontrivial elements of coker dg, and ¢ vanishes on Im ¢ |ye; dg1 - Using Fact [4.1.13]
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we obtain the g-action on Jj as in the Lemma. The g-action on coker dg is given by that on

H.(BG). O

We combine Lemmas [4.1.1004.1.15] to determine HS(X) from HZS'(X). We record this

as the following Theorem.

Theorem 4.1.16. Let X = (X',p,h/4) € € and X' be a j-split space of type SWF. Then:

H—l + 2141 —

j_:]'fl( ) S+d’+2n1 1@@ +d’ 9 C_B@T—i-d/ nl (‘BJ®2[—S], (423)

for some constants s,d;,n;, N and some F[U]|-module J, where 2n; + d; > 2n;.1 + d;,, and
d; < dj,q foralli,2ny +dy =3, dy <1, and dyy,; = 1,ny11 = 0. Let Jo = {(ax, br)}r be
the collection of pairs consisting of all (d;,|%2]) for d; = 1 mod 4 and all (d, + 2,|%]) for
d; =3 mod 4, counting multiplicity. Let (a,b) > (¢,d) if a+4b > ¢+ 4d and a = ¢, and let
J be the subset of Jy consisting of pairs maximal under > (not counted with multiplicity).
If (a,b) € J, set m(a,b) + 1 to be the multiplicity of (a,b) in Jy. If (a,b) ¢ T, set m(a,b)
to be the multiplicity of (a,b) in Jo. Let |J| = Ny and order the elements of J so that

J = {(a;,b;)}i, with a; +4b; > a; 41 + 4biy1. We interpret any41 = 1,bn,+1 = 0. Then:

HS(X) = (V;Id’l-%—in-%—l @Vl—i_ EBVQJ’_ (424)
@@ a/l—‘rl + 451)7,4-1 (‘B @ V+ @m a b (—B YGSEEJJ]]J
(a,b)edo
® @ VialZle @ vi“Ihrs

{i|d;=1 mod 4} {i|d;=3 mod 4}

The q-action is given by the isomorphism q : Vi[—s| — V{'[—s| and the map q :
Vi[-s] — V+d/+2n 1 [—s] which is an F-vector space isomorphism in all degrees (in Vi [—s])
]

d'1+2n1+1J
4

greater than or equal to 4| + s+ 1, and vanishes on elements of V;'[—s]| of degree

less than 4le + 5+ 1.

The action of ¢ annihilates PN’ V*(W)[—s], as well as (D, pesy Va (b)Em@b)p
resﬁg]] J)[—s].

To finish specifying the q-action, let z; be a generator of V,, (|5 ])[—s] for i such that

d; = 1mod 4 (respectively, let x; be a generator of Vi (|*|)[—s] if d; = 3mod4). Then
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qx; is the unique nonzero element of <V:[d/1+2"1+1j AV ®@Vy)[—s] in grading degx; — 1, for
4

all 1.

Proof. We show that for M an F[U]-module of the form (4.20), the sets {n;},{d}}, and the
module Jy, are determined by the (graded) isomorphism type of M, to establish that all the
constants in are well-defined (independent of the choice of direct sum decomposition
of HS'(X)). For a fixed d, there are at most two distinct isomorphism classes 7, (z), each
appearing as summands of M that occur an odd number of times in the decomposition of
M into simple submodules (not including the infinite tower). Such a submodule T, (z) will
be called a submodule occurring with odd multiplicity. For any d such that there is at least
one isomorphism class 7" (z) with odd multiplicity, then d = s + d; for some i, using .
Consider the case that there are exactly two such isomorphism classes 7;"(x1) and 7" (x2)

with, say, r1 < z5. Setting d = s+ d for a fixed i, and using (4.20]), we see that xo = n;, since
diy—d;
2

n; > Niy1 + for all 4. If instead there is one (graded) isomorphism class T,(z) with
odd multiplicity, Lemma shows = ny. If, for a fixed d, there are no isomorphism
classes T, () occurring with odd multiplicity, then d ¢ {s + d}}. Thus, we see that {d;} and
{n;} are determined by the isomorphism type of M as a graded F[U]-module. It is then easy

to see that J, is also determined by the isomorphism type of M.

In addition, we find that s in exists and is uniquely determined. First, we check
that there is an s so that (4.23) holds. Observe that HS' (X) = HS' (X')[p + h]. Say that
X' is a space of type SWF at level m, and set d; = d; — m. Then Lemma shows that
holds for this choice of d;, and s = m — p — h. We next show that there is a unique
s so that holds. To see this, observe that ﬁ]iied(X ), as in , is an F-module of
odd rank in degrees d such that d = s + 1mod 2, with s < d < s + d| + 2n;, and of even
rank (possibly zero) in all other degrees (Recall from the definition of ﬁﬁied). Then,

for M an F[U]-module that is the homology of (X', p,h/4) with X’ j-split, we have that

s =m — p — h is determined by M.

As in (L13),

H'(X) = cokerdg: @ kerdg:.

*
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Additionally, given M, we have determined the sets {d.}, {n;} appearing in Lemma |4.1.10|

Then Lemmas@.1.12/and 4.1.14)show that J{' = @(a, p,)es Vs, (bi), for a;, b; as in the statement

of the Theorem, and that

J”*resﬂ?v J® <_D VCZJFZ([%J)@ C_D V+ (‘D <_B V+ @mab

{il|di=1mod 4} {t1|d;=3 mod 4} (a,b)edo

(4.25)

Here we have replaced the notation res%qu] @) by resg%] since g acts by 0. Finally, Lemma

4.1.15| determines HE(X) given J! and J4. This completes the proof of the Theorem.
[l

Remark 4.1.17. Since every j-split chain complex of type SWF s the cellular chain complex
of some space of type SWF, Theorem [{.1.16 also applies to j-split chain complexes.

We give an example illustrating the steps of the proof of Theorem 4.1.16| Let X be a
j-split space, and say that HS' ((X,p, h/4)) is given as in Figure 4.6} that is:

H (Xop, h/4)) = Tgh @ TH(6) @ T5(5) © TH(4) © T5(3) @ T4(2) @ T2 (1),

S

S
D D
)

T )

Figure 4.6: The S'-Borel Homology of (X, p, h/4) € €. The variables t; stand for entries of

the infinite tower in grading 7.

We calculate d}, n;. As specified in the proof of Theorem 4.1.16} we see {d;+m—p—h} =

{—5,-3,—1}, and {n;} = {6,4,2}. We see that m — p — h = 0 because H_lred((X,p, h/4))
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(i.e. the contribution in degree —1 not coming from the tower) is of even rank, while
I:Ified((X,p, h/4)) has odd rank. So s = 0 in Theorem 4.1.16, Then {d/} = {—5,—3,—1}.
Furthermore, we see J, = 0. Then we recover (H3' ((X/X5", p, h/4))@HS" (X5',p, h/4)),ds1),

as in Figure [4.7]

~ ol 1
S (X57)

~ ol 1
S (X57)

z1 1+ )z

c
Hfl(XSl) > >
< Uz, U(l+ )z T 143
a5t (xs"5 2> v

< Uz U2(1 + )z’ Uzy” U(l+j)ze 1+ 5z
I_{OSI(XSI%//T 3 > >
j Jj)xs3

U3 U3(1+ )z ? U? 1\52 Uzs U1+

.

U4xJ> U1 + jz1” Ulzo 3(145)z2
5

U°xq U5(1 +j)x1

Figure 4.7: The complex (HS' (X/X5)[p+ h]® HS' (X5, p,h/4)),dg1) corresponding to
Figure

Using Lemma [4.1.12] we have J; = V'5(3)®V%(2) @ Vi (1) and J; = V(3) DV, (2) @
V7,(1), as in Figure [4.8] We see that V*5(2) is not maximal in Jj, so m(—3,2) = 1, while
m(—3,3) = 0, since V7,(3) is maximal under >. Similarly, V;"(1) is maximal, so m(1,1) = 0.
Then Jyep = V75(2), using .

In Figure 4.8 J7 = V7,(3) ® V; (1). Then Lemma allows us to compute H%(X),
as in Figure [4.9]

We find HS(X) = Vi @V @V @ V5(3) @ V5(2)22 @V (2) @V (1), in accordance
with Theorem [£.1.16]

4.1.2 Chain local equivalence and j-split spaces

Using Theorem [4.1.16, we can determine the chain local equivalence class of j-split spaces.

We start with some results on j-split chain complexes. First, write Sy(n) for the free G-
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1
cord xy

Uacl corG T2
vcorcg' corG Uxo gorG T3
vcors Uxq > COFG T2 CorG Uzxs
v? corG 1 >

vcorG Uxso

v? corG Uz,

Figure 4.8: The complex (HS(X/X5)[p + h] ® HE((X5",p,h/4)),de) corresponding to
Figure [4.6]

8 ts
7
6 te
5 ts
4
gt
3 cor Uxq

2 to
1 t1 :p1 =+ corG x3 vcorG 1 + corG Uxo
0

veor?

-1 vcorG U:):1 vcorG ) corG Uzg
—2

-3 v2 corG T v?2 corG T +vcorG Uz
—4

-5 v?2 corG Uxq

Figure 4.9: Finishing the calculation of H G(X) for the example of Figure The curved

arrows again represent the v-action. The straight arrows indicate a nontrivial ¢g-action.

module generated by

<$d, Ld+2y -y xd+2n—2>7

with z; of degree i and d(z;) = s(1 + j2)zi_o. A quick computation gives HS (Sy(n)) =
T (n)®? as F[U]-modules, where HS'(Z) is defined as in (2.16). Moreover, for an F[U]-
module J = @, 7.7 (m;), let S(J) = @, S, (n:)-
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Proposition 4.1.18. Let C' = {fea)®D(Cy ® C_) be a j-split chain complex and

51 . N 4 i1 + 2040 — d; X ¥ ®2
H(O) = Ty o 1 @D T ( 5 )P T, (n:) ® T, (4.26)
i1 i=1

where d; 11 > d; and 2n; + d; > 2n;,1 + dipq, 2ny +dy = 3, and dy < 1. We interpret

dyi1 =1, nyi1 = 0. Then C is homotopy equivalent to the chain complex

((he)®(ED Sa,(ni)) @ S(J), (4.27)

where O(fred) = 0, Jfed = freds Sfea = 0, and deg (fiea) = 0. Furthermore, let each factor

Sa,(ni) have generators x';, with deg x; = j. Then 0x} = fiea + (1 + j%)z*, for all i.

Remark 4.1.19. By Lemma for C' any j-split chain complex, a decomposition as in

4.20) is possible.

Before giving the proof we establish a Lemma.

Lemma 4.1.20. Let Fy, Fy be two free, finite CEW (S)-complexes such that HS' (Fy) =~

HS'(Fy) as F[U]-modules. Then Fy ~ Fy, where ~ denotes homotopy equivalence.

Proof. First, we note that C¢" (S1) is chain homotopy equivalent to the algebra F[5]/(5?)
where deg (5) = 1 and d(s) = 0. Koszul Duality [I7] states that F; and F, are quasi-
isomorphic as F[5]/(5%) modules if and only if HS' (Fy) and HS'(F,) are isomorphic as
F[U]-modules. Indeed, our original hypothesis was HS' (Fy) ~ HS'(F), so we see that F}
and F; are quasi-isomorphic. Finally, by Theorem 10.4.8 of [53], quasi-isomorphic free chain
complexes are chain homotopy equivalent, and so F; and F, are chain homotopy equivalent.

This establishes the Lemma. O

Proof of Proposition[4.1.18 The proof is in two steps: first, we show that C is chain ho-
motopy equivalent to a chain complex of a certain form, and then we investigate differentials
from C4 t0 (frea)-

Note that the complex C is a CSW (S')-complex. Let S5 (n) be the CSW (S!)-submodule

of 84(n) generated (as a CEW (SY)-module) by (x4, Tas2, ..., Taron—2y. As for Sg(n), a quick
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calculation shows HS' (85" (n)) = T, (n). Similarly, for an F[U]-module J = @), TS (my), let
SSNT) = @, szl(nz) We see:

S(J) = S5 (J)@ 5% (J), (4.28)

as G-complexes, for all F[U]-modules J, where the action of j on the right is given by

interchanging the factors.
Recall, by the proof of Theorem [4.1.16| that HS' (C'y @ C_) is determined by HS'(C) for
C' a j-split chain complex (see Remark 4.1.17)). That is, from ({4.26]):

HSl C+ @T+ TLZ @J

i=1
Lemma4.1.20|then implies C,. = S5 (n)®S55" (J) as a CEW (S)-complex. Since j : C; — C_

is an isomorphism, we have from (4.28)):

C,o0_ =~ (—B Sq,(n;) ® S(J). (4.29)

Moreover, H5'(C) determines the map dg1 : HS' (C,) — HS' ((f.eq)). We compute dgi a
different way, by using the differential from C, to (fieq), and the form of C, determined
by . Fix a pair of integers (d,n). If x; is the generator of a copy of Syz(n) in degree
i and z; € Cy, then dgi = HS (Sy(n)) = T;7(n) — T is nontrivial if and only if d(z;) =
frea + s(1 + j*)x_1. Thus, since dgi is nonvanishing on the factors 7, (n;) < HS'(CL)
and vanishing elsewhere, each generator 2, with deg =% = 1 of Sy, (n;) in must have
(%) = frea+5(1+5%)z" ;, and all other differentials C'y — {f.cq) vanish. Thus, in particular,
d(S(J)) = S(J). The decomposition follows. O

Proposition 4.1.21. Let (X,p, h/4) € € with X a j-split space of type SWF at level m, and

1 dZ + 2n;
HS ((X b, h/4)) s+d1+2n1+1 @@ s+d = D) = ®@ s+d; nZ ®J®2[ ]

(4.30)

where d;y1 > d; and 2n; + d; > 2n;1 + d;y1, as well as 2ny + dy = 3, and dy < 1. Then

the chain local equivalence type [(CE™ (X, pt), p, h/4)]a € €LE is the equivalence class of

Clp —m, h/A,{di}i, {ni}i) := (ea)D(D Sa.(n0))), p — m, h/4) € €LE. (4.31)
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The connected S*-homology of (X, p, h/4) is given by:

S z+1 + 2n7,+1 N +
H: (X, p,h/4)) @ o @7;+ n;). (4.32)

conn 2

Further, s in is m —p — h. Moreover, C(p, h/4,{d;}, {n;}) is chain locally equivalent
to C(p', W/4,{d;}, {ni}) if and only if p=p', h = I, {di} = {d}}, and {n;} = {n;}.

Proof. Write [(A, b, c)]y for the chain local equivalence class of (A,b,c) € €E. Let
[(Z,—m,0)] = [C7 (X pt)] € €€

where Z is a j-split chain complex, as allowed by Lemma 4.1.2] Using Proposition [4.1.18],

[(Z,p, /D)) = ((frea)® D Sa, (1)), p, h/4).-

We have then:
C(p - m, h’/4’ {dz}v {nz}) = [(va - m, h/4)]cl = [(C*CW(Xa pt)apv h’/4)]cl7

as in (4.31)).

+
To prove (4.32]) we consider the complex SH C(0,0, {d;}, {rn;})[4|=4*2]] (we include

the grading shift for convenience). We will see that it is a suspensionlike complex, so we
may apply the results of Section [2.1.5 There is a homotopy equivalence:

—di+3

dy +3

STC0,0,{d), )1 ~ <ﬁed>@@<yk>@§)l{k B
(4.33)

where
<fred>@@<yk> S, (4.34)

and deg z, = deg yr = k. Additionally, d(z}) = s(1 + j?)zi , if k& # 1, and 9(z}) =
s(1+44%)2" +s(144)%y_1. The yj, are defined for k such that k # 3 mod 4 and —4|=4+2|+1 <
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kE < —1. Also,

=
o
S

O(ya) = s(1+ ]')3941%27
—d; + 3

!

t.]>,J>

w W

~N o
~— N N~

= (14 J)Yars1 + SYar,

)
OYars1) = (147 yar, k#—|
O(Yar+2)

)

o~ o~ o~~~

Ay_y o

=
Lo
3o

fred .

—|+1

According to , the first two terms on the right of account for the suspension
of the reducible tower, and the 2} correspond to the suspension of the free part. The 2
are suspensions of xi € Sy, (nz) < C(0,0,{d;}, {n;}). From this presentation, it is clear that
the chain complex )3 = C(0,0,{d;}, {n;})[4|=2*2]] is irreducible (that is, it may not
be written as a non-trivial direct sum of G-chain complexes). Then by Lemma and
Definition [2.1.38]

dy +3 —3) —di +3

00,0, (), ) A Do = 5 00,0, (), na) 472
(4.39)
applied to C'(0, 0, {d;}, {n;}). The calculation

Then (4.32) follows from the definition of HS5!

conn?

of HS! ((X,p,h/4)) for nonzero m, p, h follows, since

Cp—m, h/4,{d;}, {ni}) = S PESTREC(0,0,{dy}, {na}).

The assertion that s = m — p — h follows from the homology calculation of Theorem [4.1.16|

Recall that HS'

conn

[CW', W /4, {di}, {ni})]a, we see from (4.32) that {d;} = {d;}, {n;} = {nj}, and p+h = p'+ 1/,
Furthermore, if C'(p,h/4,{d;},{n;}) and C(p/,h'/4,{d}}, {n’}) are chain locally equivalent,

is a chain local equivalence invariant. Hence, if [C(p, h/4, {d;},{n:})]a =

they must have chain homotopy equivalent fixed-point sets. That is, p = p’ and so also

h = h’, completing the proof. H
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4.2 Floer spectra of Seifert fiber spaces

4.2.1 The Seiberg-Witten equations on Seifert spaces

In this section we record some results of [33] to describe explicitly the monopole moduli space

on Seifert fiber spaces. First we recall some notation associated with Seifert fiber spaces.

The standard fibered torus corresponding to a pair of integers (a,b), for a > 0, is the
mapping torus of the automorphism of the disk D? given by rotation by 27b/a. Let D? be
the standard disk, given an orbifold structure by letting Z/a act by rotation by 27/a; the
origin is then an orbifold point, with multiplicity a. The standard fibered torus is naturally

a circle bundle over the orbifold D?.

Let f:Y — P be a circle bundle over an orbifold P, and € P an orbifold point with
multiplicity a. If a neighborhood of the fiber over x is equivalent, as an orbifold circle bundle,
to the standard fibered torus corresponding to (a, b), we say that Y has local invariant b at

x.

For a; € Z=1, let S(ay,...,a;) denote the orbifold with underlying space S? and k orb-
ifold points, with corresponding multiplicities ay,...,ax. Fix b; € Z with ged(a;,b;) =
1 for all i. We let X(b, (by,a1),. .., (bg,ax)) denote the circle bundle over S(aq,...,ax)
with first Chern class b and local invariants b;. We define the degree of the Seifert space
X(b, (by,a1),...,(br,ar)) by b+ > Z—Z Finally, we call a space X(b, (b1,a1),..., (bk,ax))
negative (positive) if b + >’ Z—Z is negative (positive). The spaces X(b, (b1,a1), ..., (bk,ax))
of nonzero degree are rational homology spheres. As orbifold circle bundles, the orienta-
tion reversal —X(b, (b1, a1), ..., (b, ax)) is isomorphic to X(—b, (=by,a1), ..., (—bg, ax)). We
write X(aq,...,ax) for the unique negative Seifert integral homology sphere fibering over

S%(ay, ..., ax).

Let Y be a negative Seifert rational homology three-sphere fibering over a base orbifold
P with underlying space S?. Equipping Y with the metric for which Y has the Seifert
geometry, Mrowka, Ozsvéath, and Yu [33] show that the Seiberg-Witten moduli space M(Y')

is composed of the following:
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e A finite set of points forming the reducible critical set, in bijection with Hom(H;(Y), S*),

and

e for each (k + 1)-tuple of non-negative integers e = (e, €y, ..., €), such that 0 < ¢; < g;

and

1
there are two components, labelled C*(e) and C~(e), in M(Y).

Each component C*(e),C~(e) is a copy of Sym®(|X]), where ¥ is the base orbifold and
|X| its underlying manifold. Furthermore, C*(e) and C~(e) are related by the action of
j € Pin(2). That is, the restriction of j to C'*(e) acts as a diffeomorphism C*(e) — C~(e),
and vice versa. Then, in the quotient of the configuration space by the based gauge group,

each C*(e) is diffeomorphic to G x Sym¢(|X]).

Fact 4.2.1. All reducible critical points x have L(x) = 0, where L is the Chern-Simons-Dirac

functional. All irreducible critical points have £ > 0.

Mrowka, Ozsvath, and Yu do not use the Seiberg-Witten equations as in [23]. Instead,
they replace the Dirac operator D associated to the Seifert metric in the equations with D =
ﬁ—%f for £ some constant depending on the Seifert fibration. It is then clear that the Seiberg-
Witten equations they consider differ from the usual equations by a tame perturbation qq
in the sense of [23]. Abusing notation somewhat, we call the Seiberg-Witten equations as
in [33] simply the Seiberg-Witten equations, or the unperturbed Seiberg-Witten equations in
the sequel.

In the case of a negative Seifert space Y with four or fewer singular fibers, the Seiberg-

Witten equations are transverse in the sense of [23], so we may take q = qq, as in [33].

We will further need:

Fact 4.2.2. There are no trajectories between C*(e) and C~(f) for any e, f. The Seiberg-
Witten equations on'Y is Morse-Bott, and if Y has four or fewer singular fibers, the pertur-

bation q = qq is admissible in the sense of Definition 22.1.1 of [23).
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Combining Propositions and Fact we have:

Lemma 4.2.3. Let Y = X(b, (b1,a1),..., (br,ax)) be a negative Seifert rational homology
three-sphere. Then SWF(Y,s) has a representative (X, m,n) € € with X a j-split space.

Proof. We first treat the case where Y has at most four singular fibers. Then the irreducibles

are isolated, by Fact

We recall the attractor-repeller sequence , which shows that SWF(Y,s) is obtained
by successively attaching stable cells G x D¢ () corresponding to the irreducible critical
point C'*(e), to the reducible cell. Let I, be the complex obtained by attaching all critical
points with £ < w. We show by induction that I, is j-split for all w. For w = 0, the only
critical point is the reducible by Fact [£.2.1] so the statement is vacuous. Let

Iew /IS, =12

<wo <wo

v il (4.40)

<wo?

for some fixed wg, where IZ,, contains all irreducible critical points C*(e) with £ < wy. Fix

<wo
e; so that £L(C*(e1)) > wy and L(C*(eq)) is minimal among L(x) for critical points = with
L(x) > wy. By Fact 4.2.2] and Proposition My (xx,yn) = 0, where x, corresponds to
C*(ey), and y, corresponds to any critical point of C~(f). Additionally, the Conley Index

satisfies:

L0+ (o100 (o)) Tcwy = G x DMACT(CD) = Gl 5 pindCT(er) |, jgl 5 pindCT(er)

Y

as ST x DACT(e1) and jST x DICT (1) gre disjoint isolated invariant sets. Since My (zy,yy) =

0 for all yy € jIZ, we have that the attaching map of the cell S* x D®dC7(e1) hag target

<wo

only in IZ, U IZ, ; then we set
+ _ 7+ 1 indC* (e
I (o (o)) = L2y v (8" x D7),

so that the analogue of the splitting (4.40) holds:

51 :
]éE(C”f(el)uC*(el))/I == ];’_,C(CJr(el)UCi(el)) \ jlgﬁ(c*(el)uC’*(el)ﬁ (441)

completing the induction.
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In the case of five or more singular fibers, we perturb the Seiberg-Witten equations to
be nondegenerate. We can arrange that for a small perturbation q the analogue of Fact
continues to hold. That is, there exists some tame admissible perturbation q such that
the set of irreducible critical points of &; may be partitioned into two sets C* and C~,

interchanged by the action of j, so that for all x € C*,y € C~, we have M(z,y) = .

We show the existence of such a j-equivariant perturbation q. Choose a sequence of
small j-equivariant tame admissible perturbations q;, converging to 0 in C*, so that for each
1 the perturbed Seiberg-Witten equations have non-degenerate irreducible critical points.
Lin establishes the existence of such perturbations in [26]. Choose disjoint neighbourhoods

U*(e) of C*(e) such that for i sufficiently large all irreducible critical points of L, lie in

U e) vt (e)).

e

Let C; denote the set of irreducible critical points of L4, in Usd*(e) and let C;~ denote the

set of irreducible critical points of Ly, in U/~ (). Let C* denote the union UC*(e).

Say, to obtain a contradiction, that for all 7 there exists some pair of critical points
z; € CF ) y; € C;, such that M(x;,y;) is nonempty. The sequences x;,y; have limit points
x e C*(e)andye C(f), by Proposition 11.6.4 of [23]. Theorem 16.1.3 of [23] shows that the
moduli space of unparameterized broken trajectories (for a fixed perturbation) is compact.
The proof of Theorem 16.1.3 can be applied to a sequence of trajectories ; for perturbations
q; with q; — q. That is, the sequence 7; has a limit point a broken trajectory (71, ..., 7,)
from x to y, for the perturbation q. Since x € C*,y € C~, there exists a trajectory 7; from
C™* to C~, or there exists a trajectory 7, from C* to the reducible and a trajectory 7; from
the reducible to C~. The first case contradicts Fact [4.2.20 The second case contradicts the
minimality of £ on the reducible (Fact . Thus, for some perturbation q as above we

have the desired partition.

The Lemma then follows as in the case of three or four singular fibers. m

By Lemma|4.2.3] Theorem [4.1.16|applies to SWF (Y, s) for Y a Seifert rational homology
sphere, and we obtain the following corollary, from which Theorems [1.2.1] and of the

Introduction follow.
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Corollary 4.2.4. Let Y = X(b, (81, 1), - .., (Bk, ax)) be a negative Seifert rational homology

sphere with a choice of spin structure s. Then

+ dz+1 + 2nz+1 X @2
HF (}/’ 5) = 7;+d1+2n1 1 C_B@ s+d 2 @ nl C—B J [ :I’ (442)

=1 i=1

for some constants s,d;,n;, N and some F[U]|-module J, all determined by (Y,s). Further-
more, 2n; +d; > 2n;.1 +d;yq1 foralli, 2ny +dy =3, dy <1, and dyy1 =1, nyy1 = 0. Let
Jo = {(ak, b) }i, be the collection of pairs consisting of all (d;,|%2]) for d; = 1 mod 4 and all
(di +2,|%]) for d; = 3 mod 4, counting multiplicity. Let (a,b) = (c,d) if a+4b > c+4d and

a = c, and let J be the subset of Jy consisting of pairs mazximal under > (not counted with
multiplicity). If (a,b) € J, set m(a,b) + 1 to be the multiplicity of (a,b) in Jo. If (a,b) ¢ T,
set m(a,b) to be the multiplicity of (a,b) in Jy. Let |J| = Ny and order the elements of J
so that J = {(a;,b;)}s, with a; + 4b; > a; 11 + 4b;11. Then:

SWFH(Yi5) = (V) wian @V @V (4.43)
az+1 + 4bz+1 m(a, F[U]
S @ 1 )& P Vib)© @ resgp,j J
(a,b)Ejo
n; n; + 1
® D Vielzbe @ Vil
{i]d;i=1 mod 4} {i|d;=3 mod 4}

The q-action is given by the isomorphism Vi [—s] — V' [—s] and the map V| [—s] —
Vidlﬁfﬁlj[—s] which is an F-vector space isomorphism in all degrees (in Vi'[—s]) greater

than or equal to 4|

dt2mil| 4 541, and vanishes on elements of Vit [—s| of degree less than

q|a2mrl| 4 g 4 1. We interpret anys1 = 1, b1 = 0.

The action of q annihilates

4
(—DV+ al+1+ Zerl sland ( @ VS (b @m(“’b)@)resiw]t])[_s]-

((l b)ejo

To finish specifying the q-action, let x; be a generator of Vi (1% ])[—s] for i such that
d; = 1mod 4 (respectively, let x; be a generator of V; (|%5=])[—s] if d; = 3mod4). Then

qr; is the unique nonzero element of (V* ayson i1 AV ®VS)[—s] in grading deg x; — 1, for
dyt2ng 41

4
all 1.
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Theorem [1.2.4] follows by setting N = 1 and d; = 1; these conditions imply that dy +
2ny — dy = 0, and so the term (—Dz  Toba, (W) in | is the zero module in this

case.

The constant s is the grading of the reducible critical point, where the metric on Y is

that associated to the Seifert geometry on Y.

Proof. Let (X', p,h/4) be a j-split representative for SWF(Y,s) at level m, and let s =
m — p —h. We may choose such a representative for SWF(Y,s) by Lemma [4.2.3] Then,

using Lemma [4.1.11} we have:

SWFHS' (Y,5) = HE' (X)[—p — 1] (4.44)

N dl +2n2 —dz N
- (@7 e DT (1) © P @ Tyl -s] (445)
i=1 =1

Applying the equivalence of HM and SWFHS' of [25], and the equivalence of HM and HF*

of [] and [24], we obtain the expression (4.42). Then we apply Theorem {4.1.16| to obtain
the calculation of SWFHE of the corollary. O

Further, using the results of Section [4.1.2] we prove the results of the Introduction on
homology cobordisms of Seifert spaces. Corollaries [1.2.6]and [1.2.7] of the Introduction follow
from Proposition below.

Proposition 4.2.5. Let Y = X(b, (b1, a1), ..., (bk,ar)) be a negative Seifert rational homol-

oqy three-sphere with a choice of spin structure s, and

dit1 + 20 —
2

HF+(Y 5 s+d1+1 S @ s+d @ @ s+d; nl S J®2[ ]7 (446>

where d; 1 > d; and 2n; +d; > 2n;.1 +d; 11, as well as 2ny +dy = 3 and dy < 1. Then the

chain local equivalence type [SWF (Y, s)]a € €LE is the equivalence class of

Cs, {dibi, {ni}i) = ((e)D(ED Sa (1)), 0, —5/4) € €LE. (4.47)
Further, the connected Seiberg- Witten Floer homology of (Y,s) is:
9 N

SWFH,on (Y, 5) @ R e B @@ngl no). (4.48)

2
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Moreover, if s # t, or {d;}; # {ei}i, or {ni}i # {mi}i, the complezes C(s,{d;}i, {ni}i) and
C(t,{ei}i, {ms}i) are not locally equivalent.

Proof. Let SWF(Y,s) = (X,p,h/4) € € with X a j-split space of type SWF. By the con-
struction of SWF(Y,s), X5 ~ (RP)*. By Lemma m, [(X,p,h/4)] € €& admits a repre-
sentative (Z,p', h'/4) with Z a j-split chain complex, for some p’, i’. Since [(X,p, h/4)] € €&
and (Z,p', h'/4) must have chain homotopy equivalent fixed-point sets, we have:
ST ((R)) = [(X,p,0)] = (2°',9,0) € €&

However, by the requirement that Z is j-split, Z5 =~ (fiea), Where jfiea = Sfiea = 0(fiea) = 0.
Thus, p’ = 0. Furthermore, by the proof of Corollary —p' —h' = —h/ = 5. Proposition
4.1.21] applied to (Z,0, —s/4) yields (4.47)) from (4.31)) and (4.48) from (4.32). O

4.2.2 Spaces of projective type

Let Y = X(b, (b1, a1), ..., (bk, ar)) be a negative Seifert rational homology three-sphere. Con-
sider the case that HF'* (Y, s) is given by:

HF*(Y.5) = Ty @ T (n) ® J, (4.49)

for some F[U]-module J, where possibly n = 0. In particular, by Corollary [4.2.4] this implies
d+2n—1=26 Let (Z,0,—s/4) = SWF(Y,s) € €&. Then by Proposition [4.1.18, we may
write:

Z = ((frea)®S1(n)) @ S(J) (4.50)
as a direct sum of CEW (S1)-chain complexes, with d(x1) = fiea, A(2i11) = s(1 + j*)x9;_; for
i=1,..,n—1. Here d = s+ 1, by Corollary [4.2.4 The complex Z is evidently chain locally
equivalent to (f,eq)@®S1(n). For X a G-space, let X denote the unreduced suspension of X.
The complex , for 6 > 0, may be realized as the G-CW complex associated to

(S(S* 1S, 0, —s/4),

where S! acts by complex multiplication on each of the two factors, and j interchanges the

factors. Then

[SWF(Y,8)]a = [(2(S2 1115271, 0, —s/4)]a. (4.51)
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We call a negative Seifert rational homology sphere with spin structure (Y,s) of projective
type if holds or if the chain local equivalence class of SWF(Y,s) is [{frea)]a- Indeed,
we have established that (Y, s) is of projective type if and only if HF*(Y,s) takes the form
(4.49) (where perhaps n = 0). The term of projective type refers to the fact:

(S2n—1 11 SQn—l)/G ~ C.Pn_l.

We can rephrase the projective type condition in terms of the graded roots of [34].
A graded root (I, x) is an infinite tree I' with an action of F[U], together with a grading
function x : I' — Z. Associated to any positive Seifert rational homology sphere with spin
structure there is a graded root, which, additionally, has an involution ¢ : I' — I' that

preserves the grading. We will provide a more detailed review of graded roots in Section [5.3|

We have the following characterization of spaces of projective type in terms of graded

roots as a consequence of Corollary [4.2.4]

Fact 4.2.6. Let Y = (b, (b1, a1), ..., (bg,ax)) be a negative Seifert rational homology sphere
with spin structure s. Let (I'y,x) be the graded root associated to (—Y,s), and let v be the
associated involution of I'y. Let v € I'y be the vertex of minimal grading which is invariant
under v. The space (Y,s) is of projective type if and only if there exists a vertex w, and a

path from v to w in I'y which is grading-decreasing at each step, with x(w) = minger, x(z).

Moreover, 6(Y,s) — B(Y,s) = x(v) — x(w).

For instance, we refer to Figure [£.10] We call a graded root of projective type if its
homology is of the form (4.49)), so that a Seifert integral homology sphere is of projective

type if and only if its graded root is.

More generally, the sets {d;} and {n;} may be read from the graded root, in terms of the

minimal grading elements w that are leaves of vertices v that are invariant under .

For spaces Y of projective type, the homology cobordism invariants (d;, n;) are determined
by d(Y), @(Y). The nice topological description of the Seiberg-Witten Floer spectrum of
spaces of projective type simplifies calculations.

The spaces X(p, q¢,pgn + 1) and X(p, ¢, pgn — 1) are of projective type for all p,q,n, as
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@) (b) (¢)

Figure 4.10: Three Graded Roots. The roots (a) and (b) are of projective type, while (c)

1s not.

shown by Némethi [35] and Tweedy [51], respectively, building on work of Borodzik and
Némethi [2].

However, not all Seifert fiber spaces are of projective type. The Brieskorn sphere (5, 8, 13)
is a Seifert space not of projective type, for instance, as one may confirm using graded roots.
Indeed, SWEFHeonn(2(5,8,13)) = T,7(2) @ 7,7 (1). By Corollary [1.2.6] any space not of pro-
jective type is not homology cobordant to a space of projective type. In particular, 3(5, 8, 13)

is not homology cobordant to any X(p, ¢, pgn + 1).

4.2.3 Calculation of Beta

By the construction of SWF (Y, s), the grading of the reducible element is —2n(Y,s, g). We
also saw that the constant s (depending on (Y,s)) in Corollary is the grading of the
reducible (with respect to the Seifert metric). Also in Corollary [4.2.4] we saw s/2 = (Y, s)

for Seifert rational homology spheres. We then obtain:

Corollary 4.2.7. Let Y = X(b, (b1, a1), ..., (bk,ar)) be a negative Seifert rational homology
sphere and s a spin structure on Y. Then B(Y,s) = —n(Y,s,g), where g is a metric for

which Y has the Seifert geometry.

Ruberman and Saveliev [44] show n(Y, g) = pu(Y') for Seifert integral homology spheres
for the Seifert metric, from which we establish Theorem [1.2.3]

We have established that j restricted to Seifert integral homology three-spheres extends
to a homology cobordism invariant, but not necessarily that ji extends to a homology cobor-

dism invariant. In [29] it is shown that / is not additive; on the other hand, f is additive.
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Similarly, 5 does not agree with the Saveliev v invariant of [45],[46], although the two agree

on Seifert fiber spaces.

4.3 Manolescu Invariants for Connected Sums of Seifert Spaces

We will take advantage of Theorem |3.1.1] again

We can now prove Theorems [1.3.1] and [1.3.2] of the Introduction.

Proof of Theorem[1.3.1] By Definition, M (Y1#Y5, 51482) = M(SWEF (Y1#Y5, 51452)), where
M is any of o, and . By Fact B.15, M(SWF(Y1#Ys,81485)) = M(SWF(Y1,81) A
SWEF(Y3,55)). Theorems [2.2.4] and [2.2.5] applied to SWF(Y1,s1) and SWF(Ys,s9) yield
Theorem [L.3.11 O

Proof of Theorem|[1.3.4 1t follows from Definition and Proposition [2.2.15|that §(Y, s) <
a(Y,s). The inequality (Y, s) < §(Y,s) then follows from Theorem (3.1.4] O

Next, we specialize to Seifert spaces to acquire Theorem of the Introduction.

We focus on Seifert spaces of projective type because their chain local equivalence class
is simplest. Recall that a Seifert rational homology three-sphere (Y, s) is of projective type
if (4.49)) holds, which is equivalent to

[SWF(Y,8)]q = [(S(SUY®)+2s=1 11 gdVe)+2s—1y g 5/9)] . (4.52)

where d(Y,s) the Heegaard Floer correction term, for some s € Q. If Y is an integral

homology three-sphere, the quantity s is n = a(Y).

Applying Theorem [2.3.1], we obtain Theorem of the Introduction:
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Proof of Theorem|1.3.4). By (4.52) and Fact 3.1.5] we have:

[SWF(Yl# o #Yn)]d _ [(/\?:1(i(52(d(Yi)/2+ﬁ(Yi))*1L[S2(d(}/i)/2+ﬂ(yi))*1)’ 0, E(Y1# o #Yn)/2)]cz-
(4.53)

In Theorem [2.3.1 we computed «, 3, and 7 for the right-hand side of (4.53)), completing the

proof. ]
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CHAPTER 5

Applications to the Homology Cobordism Group

5.1 Seifert Spaces

First, we see that Corollary follows from Corollary and Theorem Indeed,
the negative fibration case follows immediately, and the positive fibration statement follows

by using the properties of «a, 3,7, i, and d under orientation reversal.

We also obtain:

Theorem 5.1.1. Let Y be a Seifert integral homology sphere. If —u(Y)/2 # d(Y'), then
Y is not homology cobordant to any Seifert integral homology sphere with fibration of sign

opposite that of Y.

Proof. 1f Y is a negative Seifert fibration, and —fi(Y)/2 # d(Y), then a(Y) # (YY), but for

all positive fibrations a = . One performs a similar check for positive fibrations. O

This statement is expressed only in terms of g and d, but the proof comes from the
properties of a, 3,v. As a particular example, we have ¥(2,3,12k — 5) and %(2,3,12k — 1),

for all £ > 1, have a # [ and so are not homology cobordant to any positive Seifert fibration.

We remark that Némethi’s algorithm [34] for Heegaard Floer homology of Seifert fiber
spaces makes SWFHS of Seifert spaces computable. Using Tweedy’s computations in [51],
we provide calculations of SWFHS for the following infinite families as an example. In
the following tables, there are nontrivial g-actions between infinite towers. The only other
nontrivial g-actions are for 3(2,7,28k—1) and X(2, 7, 28k +15), where ¢ sends each summand

of Vi (1)®* (respectively V(1)1 to Vy (respectively V).
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SWFHE(Y) al| Bl
2(2,5,20k +11) | Vi @V @ Vi @ v () e @* vt 1) [ 1]-1]-1
$(2,5,20k +1) | Vi@V @V oV (D) ®F v 1) 000
$(2,5,20k — 11) | Vi @Vf @V @ V()1 e @22V (1) [ 1] 1] 11
%(2,5,20k — 1) | Vi@V oVy oV (1) Te @, v (1)
2,
(
(
2,

O | O | >

2
$(2,5,20k —13) | Vi @V @ Vi @ V(1) @7,2 VT (1) | 0] 0] 0
2(2,5,20k —3) | Vi@V eV v le@F ' v (1) | 1]-1]-1
$(2,5,20k +3) | Vi @V @V oV (1)o@, v (1) 1111
>

5,20k + 13) | Vi @ Vi @ Vi @ VI ()% @ @, Vi, (1) 210/ 01

Table 5.1: The Pin(2)-equivariant Floer homology of (2,5, p).

5.2 Connected Sums

We use Theorem [1.3.4] to obtain Theorem [L.3.5 of the Introduction:

Proof of Theorem | Define §(Y;) by d(Y;)/2 + fi(Y;). Assume without loss of generality
that 6(Y;) < --- < 8(Y,). We have, by Theorem m

Since we assumed 0(Y;) = 2 for at least two distinct i, we have §(Y,_1) = 2, so:

Negative Seifert integral homology spheres Z have 5(Z) —v(Z) = 0, so Y is not homology

cobordant to any negative Seifert integral homology sphere.

Using Theorem again, we similarly obtain a(Y) — 5(Y) = 2. But positive Seifert
spaces have a(Z) = B(Z), using Corollary [1.2.2l Thus Y is not homology cobordant to any
positive Seifert space, completing the proof. O
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SWFHE (Y)
2(2,7,28k—1) | Vi @V @V @V () @V (1)o@ v (1) @@k Vi u()
£(2,7,28k — 15) | Vi @ Vi @ V§ @ Vi (D™ 1@V ()™ 1@ @X 2V (1) @ @2V, (1)
2(2,7,28k+1) | Vi @V @V @Vi,(1)® e v (1) e @k Vi L, () e@%, vV, 4,0
£(2,7,28k+15) | Vi @V, @V, @ Vi, ()% @ v (DM e @V (e @V (1)

(

(

(

(

%(2,7,14k —3) | Vy @V @V @V (1)®- 1@@2 0V1 2i(1) @@k 1V1Jr op—4i(1)
$(2,7, 14k + 3

) | Vievhevyevi)®edr, v _)edr, v _ op—a;(1)
2(2,7,14k = 5) | Vi @V @ Vs @V (1)@ 2@ @) Vio(1) @ Dy Vi op_ui(1)
) | Ve eV eVl eV () @@ Vo ()@@, Vo y(1)

¥(2,7,14k + 5

Table 5.2: The Pin(2)-equivariant Floer homology of (2,7, p).

Definition 5.2.1. We call a rational homology three-sphere with spin structure (Y, s) H-
split if a(Y,s) = B(Y,s) = v(Y,s), in analogy to the concept of K-split from [3I]. We
note from Theorem that the subset 0y gpir of H-split homology cobordism classes is a

subgroup of 0.

Lemma 5.2.2. LetY = Y # ... #Y, be a connected sum of negative Seifert integral homology
spheres of projective type Y;, with (Y1) < --- < 0(Y,). Then §(Y,) is determined by [Y] € 4.
That is, S(Yn) 1s a homology cobordism invariant of Y14 ...#Y, among connected sums of

negative Seifert integral homology spheres of projective type.

Proof. We show how to determine §(Y;,) from Y. First, we note that Y is H-split if and only
if §(Y,) = 0 using (1.16)-(1.19), so we may assume from now on that 4(Y;) = 1. Consider
Y#3%(2,3,11) (recalling that d(X(2,3,11)) = 2, and a(X(2,3,11)) = 0). We have:

oY)~ A(Y) = B(Y50%)) — B(Y, 5(04) 5.)
a(Y#%(2,3,11)) — B(Y#X(2,3,11)) = E(Zn: o(Y;) + 1) — E(nz_]1 o(Y;) + 1) (5.2)

If 6(Y, ) is even, then the difference in (5.1)) is 6(Y,), while if 6(Y;,) is odd, (5.1) is 6(Y;) + 1
if 3771 5(Y;) is even, or (Y,) — 1 otherwise. If §(Y;,) is even, the difference in (5.2) is 0(Y;,),

while if 6(Y,,) is odd, . is 0(Y,) — Lif Y"1 5(V;) is even, or §(Y,) + 1 otherwise.
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In particular, we observe that a(Y), 5(Y), a(Y#X(2,3,11)), and S(Y#X(2,3,11)) de-
termine 0(Y},). O

We show the existence of a summand of a certain subgroup of the homology cobordism

group. Let Ospp denote the subgroup of 01 generated by negative Seifert spaces of projective

type.

Theorem 5.2.3. Let Oy piit,srp = On—spiiv N Ospp. The group Ogpp splits into a direct sum

Osrp = O spiit,srp @ @ Z. (5.3)
{&>0[3Y,6(Y)=x}

Proof. Here the rightmost direct sum runs over all positive x for which there exists a negative

Seifert integral homology sphere Y of projective type with 6(Y) = z. Let H be the free

abelian group with generators e;, for each ¢ € Z.o. The group H is isomorphic to Z®.

We define a homomorphism v : spp — H. For Y a negative Seifert integral homology
sphere of projective type with 8(Y) > 0, we define (Y) = €5(yy, while if 5(Y) = 0, we
set P(Y) = 0. To define ¥ on all of Ogpp we extend linearly. To establish that 1 is
a homomorphism, we need only show that the set (with multiplicity) {d(Y3),...,d(Y,)}
associated to Y ~ Y #...#Y,, is indeed a homology cobordism invariant of Y, i.e. that
it does not depend on how we express Y as a connected sum of Seifert integral homology

spheres in Ogrp.

Say we have an identity in fspp among (not necessarily negative) Seifert spaces of pro-
jective type:
YVi#. . H#HY, ~ 1 H#H .. H#HZ,. (5.4)

We need to show > ¥(Y;) = > ¢(Z;). To do so, by rearranging (5.4) we may assume
that all the Y;, Z; are negative Seifert spaces. We assume without loss of generality that

6(Y1) < --- <4(Y,) and §(Zy) < --- < 0(Zn), and that n < m.
By Lemma 5(Y,) = 6(Zyp), and so

(SWE(Zott — V)] = [(8°,0, 4Zm) - A¥a)y,
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Thus, subtracting Y,, from both sides of (5.4), we obtain:

(SWE(Yide .. 40 ) = [(SWE(Zudt . 470 1)) A (80,0, 4Zm) - Yy (55)

The right-hand side of ([5.5) is

[SWF<<#(ﬂ(Yn)—ﬂ(Zm))E<27 37 5))#21# ce #Zm—l)]cla

using d(X(2,3,5)) = 2 and u(X(2,3,5)) = —1.

We repeat the use of Lemma to find 6(Y,_;) = 6(Zm_;) for all i < n. This gives
finally that Z,# ... #Z,,_, must be H-split, and so in particular 6(Z;) = 0 for all i < m —n.
This shows that Y. ¥(Z;) = >, ¥(Y;), whence v is well-defined on Ogpp. It is clear that

1) is surjective onto the @{x>O|HY 5(v)=a} Z factor, with kernel 0 i1, 57 p, giving the splitting

stated in the Theorem. O

Proof of Theorem[1.3.6. By Theorem [I.3.8] for all N > 0 there exists some negative Seifert
space of projective type Y for which & (Y) = N. Theorem m then follows from Theorem
623

However, other generators for

P Z

{z>0[3Y,6(Y )=}

are easier to find, using results of Némethi (we use Y}, from Theorem in order to obtain
Corollary [1.3.9)).

We record a different generating set, starting with some notation from [35]. Let, for

relatively prime p and ¢, S, , © Z>( denote the semigroup

Spyq = {ap + bg ‘ ((1, b) € Z220}7

and
o, =H#{s¢S,,|s>1i}.
Also, set
- (p— 1)2(61— )
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Then Némethi [35] shows

HF+(_2(p7 q,pgn + ]-)) = 7B+ @76+(Oég_1)®n @ 7E+ ) )@2'

Reversing orientation, we have:

HF " (3(p, ¢, pqn+1)) = T'@T, o, (g 1)®"® @ T,°

N ©2
et I-(z [+ D) ({5 n+i)—2a ’

a,_ i
g—1+[%1( 914151

This implies that Y (p, ¢, pgn + 1) is of projective type, and the discussion following (|4.49))

gives, for n odd, ay—1 = d(X(p, ¢, pgn + 1))/2 + p(X(p, ¢, pgn + 1)).

Fixing p = 2, we note that the complement of S, is precisely {s | s < ¢, s odd}. We see
from the definition of a,_; that ag_; = |2+]. We then have that {2(2, ¢,2¢+1) | ¢ > 1, odd}
attains all positive values of § = d/2 + fi. By Theorem m, ¥(2,4k + 3,8k 4+ 7) then span

a Z* summand of Ogpp. O

Proof of Corollary . By the calculation in [30], for all k£ > 1,

d(2(2,3,12k — 1))

d(S(2,3,12k — 7)) = 2, i(2(2,3,12k — 7)) = —1.

In particular, [3(2, 3,12k — 7)]. is independent of k. Furthermore,
[E(Z, 3, 12k — 7)] € ersplit

for all k¥ > 1. However, Furuta [16] shows (2, 3,6k — 1) are linearly independent in 6.
Then {X(2, 3,12k — 7)};>1 generates a Z* subgroup of 8y g1, as needed. O

We establish Theorem [1.3.3| of the Introduction, using Theorem [2.3.1}

Proof of Theorem[1.3.3 By Lemmal[2.2.12] for X a space of type SWF at level ¢ the complex
CEW(X) must contain a copy of T' = T4(x)—s)2(t). We recall, by Fact 2.2.10| that 7" is chain
locally equivalent to
ZtRi(Sd(X)—t—l 1 Sd(X)—t—1>'
120



Theorem 2.3.1] then shows:

a(T®) = 2E(n(d(X) —t)/2) + nt, (5.6)
b(T®) = 2E((n — 1)(d(X) —t)/2) + nt, (5.7)
c(T®) = 2E((n — 2)(d(X) —t)/2) + nt. (5.8)

Let (X, g,h) = SWF(Y,s), and let X be of type SWF at level t. Then §(Y,s) = d(X)/2 —
g/2 — 2h. From

n n

N\ Tax)-n2(t), 9. ) < (X, g9.h)
and ((5.6)-(5.8]) we obtain:

o(A\X.0.1) = B(d(x) — 1)/2) + =TI
BN, 9.1) = E(fn — )(d(X) —1)/2) + Lm0
WK 0.1) > E((n—2)(d(X) ~1)/2) + =200
5( /n\(x, 9, ) = nd(X)/2 — ng/2 — 2nh.
Using E(x) > z, we see:
a(#n(Y,s)) = nd(Y,s),
B#aY,5)) = (n = 1i(v;e) + L
H#Y9) = (0 2)a(v.s) + 2L, (5.9
S(#n(Y,5)) = nd(Y, s).
From (5.9), we obtain:
V(#n(Y,8)) =2 né(Y,s) + C (5.10)

where C' is some constant depending on Y (but not n). However, by Theorem m,
Y(#n(Y,8)) < §(#n(Y,5)) = nd(Y,s), from which we obtain that v(#,(Y,s)) — nd(Y,s)
is a bounded function of n. Using the properties of «, 5, and 7 under orientation reversal
we find that a(#,(Y,s)) — nd(Y,s) is also a bounded function of n. Since v(#,(Y,s)) <
B(#.(Y,5)) < a(#.(Y,5)), we also obtain that 5(#,(Y,s)) —nd(Y,s) is a bounded function

of n. 0
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— O = N Wk Ot

Figure 5.1: Example of a graded root, with A sequence {2, —1,1, —2}.

5.3 Graded Roots

In this section we collect the preliminaries needed to show Theorem [1.3.8, We use graded
roots, which were introduced by Némethi [34] in order to study the Heegaard Floer homology
of plumbed manifolds. The graded roots of Seifert spaces were studied in [3],[21]. Our brief

introduction to graded roots will follow [I8], §4] extremely closely.

5.3.1 Definitions

Definition 5.3.1 ([34]). A graded root consists of a pair (T, x), where I" is an infinite tree,
and x: Vert(I') — Z satisfies the following.

o x(u) — x(v) = £1, if u,v are adjacent.

X(uw) > min{x(v), x(w)} if © and v are adjacent and u and w are adjacent.

X is bounded below.

For all k € Z, x~ (k) is finite.

For k sufficiently large, [x "' (k)| = —1.

An example graded root is featured in Figure 5.1}
Graded roots are specified, up to degree shift, by a finite sequence, as follows. Let

A:{0,...,N} > Z, and define 7a: {0,..., N} — Z by the recurrence:

TA(n 4+ 1) = 7a(n) = A(n), with 74(0) = 0. (5.11)
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For each n € {0,...,N + 1}, let R, be the graph with vertex set {7ra(n),7a(n) +1,...},
with edges between k and k + 1 for all £ = 7a(n). The graded root associated to 7 is the
infinite tree obtained by identifying the common edges and vertices of R,, and R, for each
n € {0,..., N + 1}; call this tree I'n. We define the grading function ya on I'n by setting
Xa(v) to be the integer corresponding to v (this integer is independent of which tree R,, we
consider v as a vertex of, by the construction). Notice that lengthening A by assigning 0 to

{N +1,..., M}, for some M > N does not change the graded root determined by A.

To a graded root (I, x) is associated a graded F[U]-module H(I", x). We define H(T", x) by
the F-vector space with generators the vertices of I'. The element of H(T, y) corresponding
to a vertex v € I' has grading 2x(v). The F[U]-module structure is given by setting Uv to

be the sum of all vertices w adjacent to v with x(w) = x(v) — 1.

5.3.2 Delta Sequences

Karakurt and Lidman [21] define an abstract delta sequence as a pair (X, A) with X a well-
ordered finite set, and A: X — Z — {0}, with A positive on the minimal element of X. As

we saw in §5.3.1] an abstract delta sequence specifies a graded root up to a grading shift.

To connect graded roots back to topology: Némethi associates a graded root to any
manifold belonging to a large family of plumbed manifolds (including Brieskorn spheres).
The corresponding F[U]-module H(T, x) is isomorphic to HF™(—=Y) up to a grading shift.
Can and Karakurt [3] simplify the method for Seifert homology spheres. In the proof of

Theorem [1.3.8 we will use their reformulation.

In particular, we review the abstract delta sequence (Xy, Ay) of an arbitrary Brieskorn
sphere Y = X(p, ¢, ), following [3]. We follow the convention that the Seifert space ¥(p, ¢, )
is the circle bundle over the orbifold S?(p, ¢, r) with orbifold degree —1/pqr. Here S?(p, q,r)
is the orbifold with underlying space S? and cone singularities modelled on the actions of
Z/p, Z/q, and Z/r. This convention for (p,q,r) agrees with the notation of [3], but is

opposite the notation of [I8]. Set Ny = pgr — pg — pr — gr. Let Sy be the intersection of
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the semigroup on the generators pq, pr, gr with [0, Ny |. Set

QY:{NY—S‘SESY},

and

Xy =SyUQy.

Can and Karakurt show Sy and @y are disjoint. Define Ay : Xy — {—1,1} by Ay =1 on

Sy and —1 on Qy. It is clear that (Xy, Ay) is an abstract delta sequence.

Theorem 5.3.2 ([3] Theorem 1.3,[34] Section 11 ,[39] Theorem 1.2). Let Y = X(p,q,r)
for coprime p,q,r. Let (I'y, xy) be the graded root associated to the abstract delta sequence

(Xy, Ay) described above. Then H(T'y, xy) =~ HF " (=Y) as relatively graded F[U]-modules.

Note furthermore that Ay (z) = —Ay(Ny — z) for z € Xy.

5.3.3 Operations on Delta Sequences

Different abstract delta sequences may correspond to the same graded root. For instance,
let (X,A) be an abstract delta sequence. Fix ¢t > 2 and z € X with |A(z)| > ¢. Choose
ni,...,n € Z, so that the sign of all n; is the same as that of A(z) and so that ny+---+n; =
A(z). From this data we construct an abstract delta sequence with the same graded root as
(X,A). Let X' = X/z0{z,..., 2} for some new elements z; < --- < z taking the place of
z in X. Define A": X' — Z by A’(x) = A(z) for x € X/{z} and by A’(z;) = n; for all i. We
call (X', A") a refinement of (X, A), and (X, A) a merge of (X', A").

Definition 5.3.3. We call an abstract delta sequence (X, A) reduced if it has no consecutive
positive or negative values of A (this is the same as (X, A) not admitting any merges). Every
abstract delta sequence admits a unique reduced form. We call an abstract delta sequence

expanded if it does not admit any refinement (this is equivalent to all values of A being +1).

It is more convenient to work with reduced delta sequences, but we saw in Section [5.3.2]
that the abstract delta sequence associated to Brieskorn spheres is expanded, so we will need
a way to explicitly write the reduced form of (Xy, Ay ). This will be handled in Section

using several lemmas from [I8§].
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5.3.4 Successors and Predecessors

Let (X, A) be an abstract delta sequence. Let S < X be the set on which A is positive, and

@ < X the set on which A is negative. For x € X, we define the positive successor
sucy (x) =min{zr € S|z < 2’}

and negative successor suc_(z) = min{z’' € Q | z < 2'}.

The sequence (X, A) is reduced if and only if for all z € S:
x < suc_(z) < sucy(x),
and, for all z € Q:
x < sucy(z) < suc_(x).
We also define pre, (), the positive and negative predecessors, analogously.

We will need a specific model for the reduced form of (X, A). First, we need a few further

pieces of notation. For x € S, let
my(x) =max{z€ S|z <suc_(x)} and 7_(z) =min{z € S | z > pre_(z)}.
For y € Q, let

n+(y) = max{z € Q | z <sucy(y)} and n_(y) = min{z € Q | z > pre, (y)}.

Now define S = {7 (x) | z € S} (noting that S contains one element for each maximal
interval of elements of X on which A is positive). Similarly, define Q = {n_(y) | y € Q}.
Then set X = S U Q. We define A on S by

A(rs(z)) = Y AR,

zlm(2)<z<m i (x)
and on Q by
Am—w) = >,  A).
)<z<n4

zn—(y ()

The pair (X, A) is the reduced form of (X, A).

Note, in particular, that we may consider X as a subset of X.
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5.3.5 Tau Functions and Sinking Delta Sequences

Let suc(z) be min{z’ € X | x < 2'}, and let iy, Tmax be the minimal and maximal elements

of X. For an abstract delta sequence (X, A), we define 7a as in (5.11)) by:
Ta(suc(x)) — 7a(x) = A(x), with 7a(Zmin) = 0.

Let X* = X u {z*} where 27 = suc(2yax). The function 7, is then defined on X*.

We call 7o the tau function associated to the abstract delta sequence (X, A).

Definition 5.3.4 ([I8]). Let (X, A) be an abstract delta sequence and (X, A) its reduced
form. We call (X, A) sinking if the following hold.

1. The maximal element ., of X belongs to @ (i.e. A(Zmax) < 0).

2. For all z € S, A(z) < |A(suc_(x))|.

3. A(pre+($ma}<)) < [A(Tmax)|-

Sinking delta sequences will be significant to us because of the following Proposition,

which follows immediately from Definition [5.3.4l

Proposition 5.3.5 (Proposition 4.7 [18]). A sinking delta sequence attains its minimum at

and only at its last element.

5.3.6 Symmetric Delta Sequences

There is a symmetry in Figure [5.1] obtained by reflecting the graded root across the vertical
axis. This symmetry holds for graded roots of all Seifert integral homology spheres. For
simplicity, write A = (ky, ko, ..., k,) for the function A: X — Z/{0}, where X is a finite
well-ordered set, and k; is the value of A on the minimal element of X, ks is the value of A

on the successor of the minimal element of X, and so on.

Definition 5.3.6. Let (X, A) be an abstract delta sequence with A = (ky,..., k). Define
the symmetrization of (X, A) by the abstract delta sequence AY™ = (ky, ... kn, —kp,...,—k1).

We call a delta sequence A symmetric if A = (A’)™™ for some delta sequence A’.
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Definition 5.3.7. For delta sequences Ay = {ky,..., k,) and Ay = {fq,...,¢,,), we define

the join delta sequence A; * Ay by

Al*AQ :<k17~-~7kn7€17-”7€m>'

For A a symmetric delta sequence, the F[U]-module H(I'x) admits an involution ¢a,

given as follows. The delta sequence A gives a map:
A:{0,....2n + 1} > Z.
Let ¢: {0,...,2n+2} — {0,...,2n + 2} be «(k) = 2n + 2 — k. Then 7a is t-equivariant:

AQR)) =7a ek + 1)) = 7a(u(k) (5.12)
=A(2n+2—(k+1))—7a(2n+2—k)
=—(ta(2n+2—k)—1A(2n+1—k))
=—A@2n+1-k)
=A(k).

where in the last equality we have used that A is symmetric. We may then define to on each

of the R, ) by acting as the identity map:
tat Bege) = Lrs iy

Then ¢ induces an involution of I'a, and so also of H(I'a), as an F[U]-module.

We use the definition of symmetrization for delta sequences to further specify the form
of the abstract delta sequence (and its reduction) associated to Brieskorn spheres.
Since x € Sy if and only if Ny — x € Qy (so, in particular, Ay (x) = —Ay(Ny — x)), we
have Ny /2 ¢ Xy, and
Ay = (Ayliony/2)™™ (5.13)
We also need a version of for the reduction. By Ay (z) = —Ay (N, — z), if the

maximal element of Xy n [0, Ny /2] is in Sy (respectively @y ), then the minimal element of

Xy M [Ny/2, Ny] is in QY (Sy) Then

Ay = (AY|[0,NY/2])Sym‘ (5.14)
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Cogt1 Coct2

Figure 5.2: Creatures I'c,. Based on Figure 5 of [18].

5.4 Semigroups and Creatures

In this section we will prove Theorem [1.3.8] First, we will introduce the creatures from [18]
and write their delta sequences. Then we will prove a technical decomposition result (Lemma
for the graded roots of the Brieskorn spheres ¥ (p,2p — 1,2p + 1), for p odd. Hom,
Lidman and Karakurt were concerned with this family of Brieskorn spheres, but with p even,
and the proof of Lemma is adapted from their proof of an analogous decomposition
result, for p even. We will quote, without proof, the lemmas from [I§] that do not depend on
parity, and suitably modify several other lemmas from that paper to account for the change
in parity. We will then verify that 3(p, 2p — 1,2p + 1) is of projective type, and calculate its
p and d. As in Section we will be following [18] extremely closely.

5.4.1 Creatures

Hom, Karakurt, and Lidman [I§] observe via examples that there are certain sub-graded
roots occuring in ¥(p, 2p — 1,2p + 1), as shown in Figure[5.2] The two graded roots I', in
Figure |5.2| are both called creatures.

The abstract delta sequence for the creature I'c, for p = 2§ + 2, § € Z>, is the sym-
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metrization of

ACp = <£7 _57 (5 - 1)7 _(5 - 1)7 ER) 27 _27 17 _27 17 _27 27 R _<€ - 1)75_ 17 _éagv _<€ + 1)>7
as observed in [18].

Definition 5.4.1. For every p = 2§ + 1, with § € Z>,, the creature I'c, is the graded root

defined by the symmetrization of the abstract delta sequence:
Acp = <§7 _57 (§ - ]-)a _(5 - ]-)7 cee 727 _27 ]-7 _27 ]-7 _27 27 R _(5 - 1)a§ - ]-a _§7£> (515)

Set Y, = X(p,2p — 1,2p + 1), and Ay, the abstract delta sequence corresponding to Y,
with reduced form Ayp. We have the following technical lemma, the analogue of [18][Lemma

5.3.

Lemma 5.4.2. For every odd integer p = 3, we have the decomposition:

Ayp = (Azp * Acp>sym7 (516)
where Ay, is a sinking delta sequence.

Set r+ =p(2p £ 1) and w = (2p + 1)(2p — 1). We work with the semigroup S(r_,r,,w)
on the generators r_,r,, and w in studying the graded root associated to Y,. The next three

lemmas are verbatim from [I§] and apply to both even and odd p.

Lemma 5.4.3 ([I8] Lemma 5.4). Let S(r_,r,) be the semigroup generated by r—_ and 7.

The intersection S(r_,r.) n [0, (p — 1)ry], as an ordered set, is given by:

{0,
Ty,
2r_,r_ + 1y, 2ry,

3r_2r_+ry ,r_ +2r,,3r,,

p=1Vr_,(p—2)r_+ry,....(p—Dry}. (5.17)
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Lemma 5.4.4 ([I8] Lemma 5.6). Say that x € Sy, is of the form x = ar_ + br,, with

a,b=0, and x < 2r_ + (p—3)ry. Then,

1.z <Ny, —(p—a—1)r_ —(p—>b—3)ry <sucy(x).

2. [n_(z), 7. (x)] n Sy, = {x —min{a,b},...,x}, unless v = (p —2)r or (p—1)r_. In

either of these exceptional cases, [r_(x), 74 (x)] N Sy, = {(p — 2)r4, (p — L)r_}.

Lemma 5.4.5 ([I8] Proposition 5.7 ). The reduced form Ay, of Ay, satisfies:

1. As ordered subsets of N, Sypm[O, 2r_+(p—3)ry] = Str—,ry)n[0,2r_+(p—3)r. \{(p—

2)r, ).

2. Letxe S(r_,ri)n[0,2r_+ (p—3)ri\{(p—2)ry, (p—1)r_} be written x = ar_ + br.

Then Ay, (v) = minf{a,b} + 1. Further, Ay, ((p — 1)r_) = 2.

3. Let x € gyp and say v < Ny, —cr_ — dry < sucy(w), where c,d > 0.

Ay, (suc_(z)) < —min{c,d} — 1.
Fix p = 2¢ + 1 for a positive integer . Define

K=(E—-1r_+(&—1)ry.
We note two inequalities:

(p—Dr—+ (p—3)rs < Ny,

(p—2)r—+(p—2)ry > Ny,.
Note

K < (p—3)ry < Ny, /2,

by (E19). By (1),

AYP = (AYP‘Xypm[O,K) * AYp|Xypm[K,Nyp/2])sym

Then

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

Let S(r_,r.) be the semigroup generated by r_,r,. Observe that K € S(r_,r,) n[0,2r_ +

(p—3)ry] and K # (p — 2)ry, so K € Sy, by Lemma [5.4.5 Set:
AZP = AYP|)~(YPQ[0’K)

Ay, = Ay, |Xypm[K,Nyp/2] .
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Lemma 5.4.6 (cf. Lemma 5.8 of [I8]). For p > 3 odd, the abstract delta sequence Ay, is

sinking.

Proof. We check — of Definition [5.3.4] For 7 we recall that Ay is in reduced form.
We saw above that K € S’yp, so if the last element of the delta sequence Az, were positive,

Ayp would have two consecutive positive values, contradicting that Ayp is reduced. This
establishes (1)) in Definition [5.3.4

As in [I8], we denote predecessors and successors taken with respect to X y, with a tilde,
and those with respect to Xy, without a tilde. By the construction of the reduced delta

sequence as in Section [5.3.4]

suc, () < $ticy () for every z € Xy, . (5.25)
We will next show:
Ay, (z) < —Ay, (Sic_(z)) for all z € Sy, n [0, K), (5.26)

to establish (2) of Definition m Let 2 € Sy, n [0, K). Then z € S(r_,r4) n [0, (p— 3)r4]

by and Lemma . Writing x = ar_ + br,, Lemma gives Ayp($> =

min{a, b} + 1. Set

y=p—-a—Lr_+(p—0b—3)r;.
Lemma and ([5.25)) give:
r < Ny, —y < sucy(v) < sucy ().

By z € S(r_,ry) n [0,(p — 3)ry], we see that a + b < p—3. Thus p—a—1 > 0 and
p—b—3=>0. Then, by the definition of Qy,, Ny, —y € Qy,. Lemma gives

Ay, (stic_(z)) < —min{p—a—1,p—b—3} — 1.
Then, to prove (5.26]) it is sufficient to show

min{a, b} < min{p —a—1,p — b — 3}. (5.27)

Buta+b<p—-3,s0a<p—>b—3andb<p—a-—3, showing ([5.27).
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We must check that Definition holds for Az . The last positive value of Ay

occurs at pre, (K) = &r_ + (£ —2)r; by Lemma and Lemma [5.4.5(T]). Thus stic_(&r_ +
(€ —2)r,) is the largest element of Z,. Then to show Definition holds for Ay , we

need to show:

Ay (&r— + (€ = 2)ry) < —Ay, (STe_(Er— + (£ = 2)ry)). (5.28)
By Lemma , Ayp (ér_+ (£ —2)ry) = & — 1. However, Lemma gives:
Er 4 (€= < Ny, — (p—€— D — (p— € — Dy < suey (& + (€~ 2)rs) < K.
Then from Lemma :
Ay, (S (er_ + (€= 2)r) > minfp—E—Lp—E—1} +1=p—&.
Then to show , we need only show & — 1 < p — &, which is clear since p =2 + 1. [

Lemma 5.4.7 (cf. Lemma 5.9 of [I8]). Let p > 3 odd. As abstract delta sequences Ay, =
Ac, where A¢, is as in Definition m

Proof. We must explicitly compute Ay, . We begin by describing S'YP Nn[K, Ny,/2]. By 1'
K < Ny,, and by |D Ny,/2 < (p —2)r;. By Lemma , we see S‘yp N [K, Ny,/2] =
S(r—,r4+) n [K, Ny,/2]. Then Lemma gives:

Sy, " [K, Ny, /2] ={({ = Dr— + (= Dr, (§=2)r— +&ry, .. ,r— + (26 = 3)ry,

(26 —2)ry, (26 = V)r, (28 = 2)r— + 14y Ero + (6 — Dry ). (5.29)
To check that the last term of the sequence is as written, we need to show
§r— + (£ —1)ry < Ny, /2, (5.30)
and
(& —=1r_+&ry > Ny, /2. (5.31)

To see ([5.30), note that ((5.19) gives 2{r_ 4 (2§ —2)r; < Ny,, s0 {r_+ (£ —1)r. < Ny, /2. To
see (5.31]), note that (5.20) gives (26—1)r_+(2§—1)ry > Ny,, so (§—3)r_+(§—3)r > Ny, /2,
and observe (€ —1)r_ + &ry > (£ — 3)r— + (£ — 3)r4. Thus, (5.29) holds.
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We also find Qy, N [K, Ny, /2], which is the same as finding Sy, n [Ny, /2, Ny, — K]. By
520) and (5:21),
Nyp/2<Nyp—K<2T,+(p—3)7’+. (532)

By Lemma/[5.4.5[1), Sy, A [Ny, /2, Ny, — K] = S(r_,r,) [Ny, /2, Ny, = K\{(26 = 1)r,}.
Then, by Lemma [5.4.3

Sy, 0 [Ny, /2, Ny, = K] ={({ = D)r— +&re, (§=2)r— + (§+ Dry oo yrm + (26 = 2)ry,
28r_, (26— Vr— +ry, .., (E+ Dr—+ (£ —Dry ). (5.33)
Note that (2§ — 1)r, is not present in (5.33)). To verify that (£ + 1)r_ + (£ — 1)r, is the last
element in Sy, N [Ny, /2, Ny, — K], we must show
€+ 1)r_+({—1)ry < Ny, — K, and (5.34)
§r—+&ry > Ny, — K. (5.35)

Inequality ((5.34)) follows from ((5.19)) and the definition of K, while ([5.35)) follows from (5.20]).
Thus ((5.33) holds.

We find the positions of elements of Qy, n [K, Ny, /2] relative to the elements of Sy,
[K, Ny, /2]. To do so, we use the following inequalities, all obtained from (5.19)) and ([5.20)).

For 0 < j <& — 1, we have:

E—1—g)r—+(E—1+)rs <Ny, —(E+1+)r-—(E—-1—j)ry. (5.36)

For 0 < j < & — 2, we have:

Ny, = (§+1+j)r-—(§—=1—j)ry <(E—=2—J)r— + (§+1)rs, (5.37)
Jre+ (6 —1—j)r_ < Ny, =+ Or-— (26 —2—re,  (5.39)
Ny, =(G+1Dr- =2 —=2—g)ro <+ 1ry +(26—-2—j)r_. (5.39)

We observe
Ny, —26r_ < (26 —1)r_ (5.40)

directly from the definitions, and

Ny, —(—=1)r_ =&ry <&r_+ (£ —1)ry (5.41)
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from .
It follows from (5.29), (5.33), (5.36)-(5.39), (5.40), and (5.41) that Xy, n [K, Ny, /2] is:

Xy, 0 [K, Ny, /2] ={(§ = D)r— + (= Dry, Ny, — (€ + Dr— = (§ = Dry, (€= 2)r— + Ery,
Ny, = (§+2)r- = (§=2)ry,...,r— 4+ (26 = 3)ry,
Ny, — (26 — 1)r_ —ry, (26 — 2)ry, Ny, —2¢r_, (26 — 1)r_,
Ny, —r_ — (26 = 2)ry, (26 = 2)r_ +ry, Ny, —2r_ — (26 = 3)r,..., (§+2)r— + (£ = 3)r,
Ny, =(€=2)r— =€+ Dre, (§+ Dr—+ (€ =2)r4, Ny, = (§ = r— —&ry §r— + (= 1)ry ).
(5.42)
Now we need to calculate Ayp on X v, N [K, Ny, /2], and verify that it agrees with A¢, . By
Lemma and Ny, /2 < (p —2)ry,
Ay, (cr_ +dry) = min{c,d} + 1 for cr_ + dry € Sy, n [K, Ny, /2]. (5.43)
Similarly, for Ny, —cr_ —dr, € Qyp N [K, Ny, /2] such that cr_ 4 dry # 2&r_:

Ay, (Ny, —cr_ —dry) = —Ay, (cr— +dry) = —min{e,d} — 1 (5.44)

by Lemma , using (5.32)) to obtain cr_ +dry < Ny, — K < 2r_ + (p — 3)r,. Also,
Lemma [5.4.5] gives

—2=—Ay (26r_) = Ay, (Ny, — 26r_). (5.45)
Computing Ayp using |HD and 1) we see that Ay, agrees with Ag from
Definition This completes the proof of Lemma [5.4.2] O

Proof of Theorem[1.3.8 By Remark 3.3 of [18], d(Y,) = p—1, so we need only show that Y,
is of projective type, and that 5(Y,) = 0.

Let I'y, have its grading shifted so that it agrees with the grading of HF"(-Y}) (using
Theorem . The decomposition in Lemma implies that I'c, embeds into I'y, as
a subgraph. Since d(—Y,) = 1 — p, we see that the embedding of I'¢, is degree-preserving.
Since Ay, is sinking, by Proposition the minimal value of 7z, is 0. Thus

Heo(I'c,) = Heo(I'y, ).
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By Fact applied to the graded root I'a,. (see Figure, we have that Y), is of projective
type. It is clear from Figure that the vertex of minimal grading which is invariant under

¢ is in degree 0, from which we obtain 3(Y,,) = 0. O
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