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ABSTRACT OF THE DISSERTATION

Applications of Pinp2q-equivariant Seiberg-Witten Floer homology

by

Matthew Henry Stoffregen

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2017

Professor Ciprian Manolescu, Chair

We study Manolescu’s Pinp2q-equivariant Seiberg-Witten Floer homology of rational homol-

ogy three-spheres, with applications to the homology cobordism group θH3 in mind. We

compute this homology theory for Seifert rational homology three-spheres in terms of their

Heegaard Floer homology. We prove Manolescu’s conjecture that β “ ´µ̄, the Neumann-

Siebenmann invariant, for Seifert integral homology three-spheres. We establish the existence

of integral homology spheres not homology cobordant to any Seifert space. We show that

there is a naturally defined subgroup of the homology cobordism group, generated by cer-

tain Seifert spaces, which admits a Z8 summand, generalizing the theorem of Fintushel-Stern

and Furuta on the infinite-generation of the homology cobordism group. In addition to the

application of the Pinp2q-theory to Seifert spaces, we apply it to the full homology cobor-

dism group. In this direction, we identify a FrU s-submodule of Heegaard Floer homology,

called connected Seiberg-Witten Floer homology, whose isomorphism class is a homology

cobordism invariant.
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CHAPTER 1

Introduction

1.1 Introduction

Our story starts with Seiberg-Witten Floer homology, a functor that associates to a pointed,

closed, oriented 3-manifold Y with a spinc structure s an abelian group, denoted SWFH pY, sq

and called the Seiberg-Witten Floer homology of pY, sq. Roughly speaking, SWFH pY, sq is

defined analgously to the construction of Morse homology for a finite-dimensional manifold.

Recall that Morse homology associates to a (finite-dimensional, closed, oriented) Riemannian

manifold M , equipped with a function f : M Ñ R satisfying certain transversality conditions

(which are generically satisfied) a chain complex, with generators (over Z) the critical points

of the function f , and differentials given by counting the index 1 gradient trajectories between

critical points. The homology of the chain complex is denoted by HpM, fq, and it turns out

that the resulting homology theory is isomorphic to singular homology of the manifold M

(in particular, is independent of the function f).

The homology SWFH pY, sq is thought of as the ‘Morse Homology of the Chern-Simons-

Dirac functional (csd functional) L’. The csd function is defined on an infinite-dimensional

space B of spinc-connections and spinors over the 3-manifold Y , with its spinc structure s,

in contrast to the Morse homology situation in finite dimensions. Roughly, SWFH pY, sq can

be thought of as the homology of a chain complex whose generators are the critical points of

the csd functional, and whose differentials count formal gradient trajectories between critical

points.

However, in the infinite-dimensional setting, it is not the case that just any functional

f determines a homology theory, but the csd functional has good properties that make it
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possible to define a homology theory following the general picture above. Typically, we call

any homology theory constructed from an infinite-dimensional space by following this picture

a Floer theory.

To be more precise, there are multiple definitions of a homology theory coming from the

Chern-Simons-Dirac functional, and we will call any such theory a monopole Floer homology.

Marcolli-Wang [32] provided a definition for a restricted class of 3-manifolds. The version

we have been using above, SWFH pY, sq, was defined by Manolescu [28] and is only defined

for 3-manifolds with first betti number b1pY q “ 0. Kronheimer-Mrowka in [23] defined a

monopole Floer homology for all closed oriented 3-manifolds with spinc-structure, and their

version is denoted ~HMpY, sq. We will occasionally confound SWFH pY, sq and ~HMpY, sq,

(Lidman-Manolescu [25] have shown that these abelian groups are canonically isomorphic),

but during the course of the introduction we will also address the fact that their definitions

are rather disparate.

For comparison, we note that the first Floer theory for 3-manifolds, instanton homology

[10], is in some sense the dimensional reduction to 3-dimensions of Donaldson’s polynomial

invariant of closed 4-manifolds. Similarly, monopole Floer homology is the 3-dimensional

cousin of the Seiberg-Witten (monopole) invariant of closed 4-manifolds, introduced in [54].

One of the key features of monopole Floer homology comes from the fact that the Chern-

Simons-Dirac functional is invariant with respect to an S1-action on B. Pursuing the finite-

dimensional analogy above, we would like to compare the Floer homology of L with the

Morse homology of a function on a manifold with an S1-action. For a manifold with S1-

action, we can take the equivariant (or Borel) homology. The Borel homology of a space X

with the action of a compact Lie group G, written HG
˚ pXq, is a module over H˚pBGq, where

BG is the classifying space of G. In particular, for the case G “ S1, we have BS1 “ CP8,

and H˚pBS1q “ ZrU s, so HS1

˚ pXq is equipped with a ZrU s-module structure. To obtain the

most general picture of Floer homology of L, we then would like to have that the homology

theory SWFH pY, sq is a module over ZrU s.

The chief difficulty in setting up such an equivariant theory is the presence of reducible

2



points in the configuration space B. We call a point p P B reducible if the action by S1

has nontrivial stabilizer (it turns out that having nontrivial stabilizer implies that S1 acts

trivially on p). In the monopole setting, reducible critical points in the configuration space

correspond to S1-flat connections. In particular, for integer homology spheres, there is a

unique reducible point (and it is always a critical point for L). In the setting of Kronheimer-

Mrowka, the presence of reducibles is overcome by introducing the blow-up construction,

where the configuration space is replaced with a new space (the blow-up) Bσ lying over B{S1,

and one proceeds to construct Floer homology in the blow-up. However, in this process new

difficulties are also created. The blow-up Bσ is analogous to a manifold-with-boundary in

the finite-dimensional setting, and so one must develop a Floer theory in analogy with the

case of finite-dimensional manifolds with boundary, generalizing the procedure we outlined

above, for closed finite-dimensional manifolds.

Manolescu’s construction of SWFH pY, sq proceeds along different lines, and is limited

to the setting where b1pY q “ 0. To describe the construction, we first introduce an object

called the Conley index, associated to a dynamical system on a finite-dimensional manifold

X.

To describe this object, let φs for s P R be the dynamical system on X. We call a compact

subset S of X an isolated invariant set if

1. S is invariant; namely φtpSq Ă S for all t P R.

2. S is the maximal invariant set in some compact neighborhood N of S for which S Ă

intpNq.

Then the Conley index of S, denoted IpS, φq, is defined to be the pointed topological

space pN{L, rLsq, where N is any isolating neighborhood of S (that is, a neighborhood so

that the above conditions are satisfied), and L is an exit set. The Conley index is well-defined

up to homotopy equivalence, independent of the choice of N and L.

Manolescu constructs SWFH pY, sq as the equivariant homology of a topological space

SWF pY, sq equipped with an S1-action, which is built as the Conley index of finite-dimensional

3



approximations of the Seiberg-Witten equations. Here, by a finite-dimensional approxima-

tion, we mean a finite-dimensional subspace of B, along with a projection of the gradient of

the Chern-Simons-Dirac functional to the finite-dimensional subspace. This gives us a vector

field over a finite-dimensional manifold, and any such defines a dynamical system. From this

dynamical system we can take a Conley index, which is roughly speaking SWF pY, sq. In

particular, Manolescu shows that as one takes larger and larger approximations above, the

homotopy-types are related by suspensions. The result is a well-defined stable-homotopy

type SWF pY, sq (with an S1-action).

However, the issue of equivariance does not end with considering the S1-action. In

the case that a spinc-structure actually comes from a spin structure, the Seiberg-Witten

equations inherit a Pinp2q-symmetry, where Pinp2q is the subgroup of the unit quaternions

generated by the unit circle in the complex plane, along with the quaternion j. In this

case SWF pY, sq is a Pinp2q-equivariant stable homotopy type. Then, its Pinp2q-equivariant

homology, denoted SWFH Pinp2q
pY, sq is a module over H˚pBPinp2qq “ FrU, qs{pq3q. Here

and subsequently, F will be the field of two elements, and SWFH Pinp2q
pY, sq will be taken

with F-coefficients.

The Pinp2q-equivariance of the Seiberg-Witten equations in the presence of a spin struc-

ture was first used by Furuta [15] in order to prove the 10{8-Theorem. That is, the rank of

H2pXq is at least 10{8 the signature of the intersection form on H2pXq for X a spin simply-

connected smooth closed 4-manifold. Furuta’s technique required the Bauer-Furuta invariant

of a 4-manifold, a homotopy refinement of the Seiberg-Witten invariant, and involved looking

at its K-theory.

Manolescu introduced the Pinp2q-equivariant Seiberg-Witten Floer homotopy type, writ-

ten SWF pY, sq, in [30] (upgrading the S1-equivariance from [28]) and used it there to disprove

the Triangulation conjecture. The study of this Pinp2q-equivariant Seiberg-Witten Floer ho-

mology is the topic of this thesis. In particular, we study the Manolescu invariants, α, β, and

γ, that arise as generalizations of the Frøyshov invariant (which we will introduce below).

In the remainder of this section, as motivation, we review Manolescu’s disproof of the
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triangulation conjecture using these invariants. Let us first go over the statement of the

triangulation conjecture, then we will address its connection to low-dimensional topology,

and finally return to gauge theory to see how the disproof works.

Question 1 (Kneser [22]). Does every topological manifold admit a triangulation?

Here, by a triangulation we mean a homeomorphism from a topological manifold X to

the realization of a simplicial complex.

1.1.1 The triangulation conjecture and low-dimensional topology

To explain this connection, we introduce the homology cobordism group θH3 . We call two

oriented, closed integer homology 3-spheres Y1 and Y2 homology cobordant if there exists a

smooth oriented compact manifold W so that BW “ Y0 > ´Y1 and so that the maps on

homology induced by inclusions ι˚ : H˚pYi;Zq Ñ H˚pW ;Zq are isomorphisms. Then θH3 is

the set of equivalence classes of integer homology 3-spheres up to homology cobordism, and it

inherits the structure of an abelian group as follows. We define addition using the connected

sum operation rY1s ` rY2s “ rY1#Y2s P θ
H
3 . From this, it is clear that rS3s is the identity

element of θH3 , and we have inverse given by orientation reversal (one must of course check

that Y#´ Y is homology cobordant to S3, as is readily verified).

The first invariant to distinguish elements of θH3 is the Rokhlin homomorphism µ : θH3 Ñ

Z{2. The construction of this invariant is made possible by the Theorem of Rokhlin:

Theorem 1.1.1. (Rokhlin [43]) Any closed, smooth spin 4-manifold X has signature σpXq

divisible by 16.

Then, we define µpY q to be σpXq{8 mod 2, where X is a smooth compact spin 4-manifold

bounded by Y . Rokhlin’s Thoerem guarantees that this quantity is independent of the choice

of such X.

Galewski-Stern reduced the triangulation conjecture to a question about low-dimensional

topology. They showed that there exist non-triangulable topological manifolds in all di-

mensions at least 5 if and only if there exists any non-triangulable topological manifold in
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dimension at least 5 if and only if there exists an element rY s P θH3 with µpY q “ 1 and

2rY s “ 0 P θH3 .

1.1.2 The Frøyshov invariant

In order to disprove the Triangulation Conjecture, Manolescu introduces a version of the

Frøyshov invariant, in analogy to the h-invariant from [13]. Previously, the h-invariant

had been generalized from instanton homology to other versions of Floer homology for 3-

manifolds, as in [38] for Heegaard Floer homology and [23] for monopole Floer homology.

For convenience, we will review the h-invariant in the setting of the Seiberg-Witten Floer

stable homotopy type of an oriented 3-manifold Y with spinc structure s and b1pY q “ 0.

Recall that SWFH S1

pY, sq is the S1-equivariant Borel homology of SWF pY, sq. As such,

it comes with the action of FrU s (now working with F coefficients). However, the equivariant

localization theorem (see [50] III) states that the localization of HS1

˚ pSWF pY, sqq at the ideal

pUq Ă FrU s is isomorphic to FrU s´1HS1

˚ pSWF pY, sqS
1
q, where SWF pY, sqS

1
is the subset

of SWF pY, sq fixed under the action of S1. Roughly speaking, this says that the algebraic

structure of the Borel homology module records information about the types of orbits in

SWF pY, sq. Because we know that the fixed-point set of SWF pY, sq is precisely a point, we

have

FrU s´1HS1

˚ pSWF pY, sqq – FrU,U´1
s.

Since HS1

˚ pSWF pY, sqq is bounded below, we obtain that there is some minimal degree d for

which the map

HS1

˚ pSWF pY, sqq Ñ FrU s´1HS1

˚ pSWF pY, sqq

is a surjection. We call d{2 the Frøyshov invariant of Y , and denote it δpY q.

The utility of the Frøyshov invariant derives from knowing the reducible set of the Seiberg-

Witten equations on a 4-manifold. In particular, Manolescu [28] showed that associated to

a homology cobordism from Y1 to Y2, there is a map of stable homotopy types

SWF pY1, s1q Ñ SWF pY2, s2q,
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which induces a homotopy equivalence on fixed-point sets. In particular, such a cobordism

map induces an isomorphism:

HS1

˚ pSWF pY1, s1q
S1

q Ñ HS1

˚ pSWF pY2, s2q
S1

q,

We inherit a commutative diagram

HS1

˚ pSWF pY1, s1qq HS1

˚ pSWF pY2, s2qq

HS1

˚ pSWF pY1, s1q
S1
q HS1

˚ pSWF pY2, s2q
S1
q,

(1.1)

and reflecting on the commutative diagram we see that δpY q is an invariant of homology

cobordism.

Manolescu performed a similar construction, using the Pinp2q-equivariant homology of

SWF pY, sq in place of the S1-equivariant theory. His construction results in three separate

invariants α, β, and γ, corresponding to the fact that H˚pBPinp2q;Fq “ Frv, qs{pq3q, has

three separate ‘towers’ corresponding to 1, q, q2. We will review the construction in the

section on equivariant topology.

To finish a sketch of Manolescu’s disproof of the triangulation conjecture, we only need

a few more features of the invariant β. First,

βpY, sq “ µpY, sq mod 2.

This follows essentially since the degree of the reducible in the Seiberg-Witten equations

agrees with the Rokhlin invariant mod 2, and that v is of degree 4. Moreover, Manolescu

shows that

βpY, sq “ ´βp´Y, sq

where ´Y denotes orientation reversal. Then say, to obtain a contradiction, that Y is 2-

torsion in θH3 , with µpY q “ 1, and hence βpY q is nonzero. We have rY s “ r´Y s P θH3 and so

βpY q “ βp´Y q “ ´βpY q, contradicting βpY q ‰ 0. Thus, there is no such Y , finishing the

proof.
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1.2 Pinp2q-equivariant Floer homology of Seifert spaces

We next address the contents of this thesis. Let Y be a closed, oriented three-manifold

with b1 “ 0 and spin structure s, and let G “ Pinp2q, the subgroup S1 Y jS1 of the unit

quaternions.

For now, also let Y be a Seifert rational homology sphere, such that the base orbifold of the

Seifert fibration of Y has S2 as underlying space1. We will use the description of the Seiberg-

Witten moduli space given by Mrowka, Ozsváth, and Yu [33] to compute SWFH GpY, sq, as a

module over Frq, vs{pq3q (Here, the action of v decreases grading by 4, and that of q decreases

grading by 1). The description is in terms of the Heegaard Floer homology HF`pY, sq,

defined in [41],[40]. In particular, this description makes SWFH GpY, sq quickly computable,

as Ozsváth-Szabó, Némethi, and Can-Karakurt [39],[34],[3] have developed algorithms to

calculate HF`pY, sq for Y a Seifert space. In order to obtain SWFHG
pY, sq in terms of

HF`pY, sq, we use both the equivalence of HF` and ~HM due to Kutluhan-Lee-Taubes [24],

and Colin-Ghiggini-Honda [4] and Taubes [49], and the equivalence of ~HM and SWFH S1
due

to Lidman-Manolescu [25]. Here SWFH S1

pY, sq denotes the S1-equivariant Borel homology

of the stable homotopy type SWF pY, sq.

We will need to relate SWFH S1
pY, sq and SWFH GpY, sq when the underlying homotopy

type SWF pY, sq is simple enough. This should be compared with [27], in which Lin calculates

the Pinp2q-monopole Floer homology in the setting of [26] for many classes of three-manifolds

Y obtained by surgery on a knot. The approach there is based, similarly, on extracting

information from the S1-equivariant theory ~HMpY, sq of [23], when ~HMpY, sq is simple

enough.

To state the calculation of SWFH GpY, sq, let T ` denote FrU,U´1s{UFrU s, and T `piq “
FrU´i`1, U´i`2, ...s{UFrU s. We also introduce the notation V` to denote Frv, v´1s{vFrvs, and

V`piq “ Frv´i`1, v´i`2, ...s{vFrvs. For any graded module M , let Mn denote the submodule

1There are also Seifert fibered rational homology spheres with base orbifold RP2, and some of them do
not have a Seifert structure over S2. These are not considered here. None of them are integral homology
spheres. Furthermore, in order for a Seifert fiber space Y to be a rational homology sphere, it must fiber
over an orbifold with underlying space either RP2 or S2.
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of homogeneous elements of degree n, and define M rks by M rksn “ Mn`k. Let T `d pnq “
T `pnqr´ds and V`d pnq “ V`pnqr´ds. The module T `d pnq is then supported in degrees from

d to d` 2pn´ 1q, with the parity of d.

Fix Y a Seifert rational homology three-sphere with negative fibration; that is, the orb-

ifold line bundle of Y is of negative degree (see Section 4.2). For example, the Brieskorn

sphere Σpa1, ..., anq, for coprime ai, is of negative fibration. Using the graded roots algorithm

of Némethi [34], we may write:

HF`
pY, sq “ T `s`d1`2n1´1 ‘

N
à

i“1

T `s`dip
di`1 ` 2ni`1 ´ di

2
q ‘

N
à

i“1

T `s`dipniq ‘ J
‘2
r´ss, (1.2)

for some constants s, di, ni, N and some FrU s-module J , all determined by pY, sq. More-

over, di`1 ą di, ni`1 ă ni for all i. Roughly, in terms of Seiberg-Witten theory, the

term T `s`d1`2n1´1 accounts for the reducible critical point, and the modules T `di pniq and

T `di p
di`1`2ni`1´di

2
q account for the irreducibles which cancel against the bottom of the infinite

U -tower. The term J‘2 accounts for the other irreducibles.

Let us denote by res
FrUs
Frvs the restriction functor from the map of modules Frvs Ñ FrU s

given by v Ñ U2. The restriction functor converts T `d pnq to V`d ptn`1
2

uq ‘ V`d`2pt
n
2
uq.

Theorem 1.2.1. Let Y be a Seifert rational homology three-sphere of negative fibration,

fibering over an orbifold with underlying space S2, and let s be a spin structure on Y . Let

HF`pY, sq be as in (1.2). Then there exist constants pai, biq and an Frq, vs{pq3q-module J2,

specified in Corollary 4.2.4 and depending only on the sequence pdi, niq, so that, as an Frvs-

module:

SWFH G
pY, sq “ V`

s`4t
d1`2n1`1

4
u
‘ V`s`1 ‘ V`s`2

‘

N 1
à

i“1

V`s`aip
ai`1 ` 4bi`1 ´ ai

4
q ‘ J2r´ss ‘ res

FrUs
Frvs Jr´ss.

The q-action is given by the isomorphism V`s`2 Ñ V`s`1 and the map V`s`1 Ñ V`s`4t
d1`2n1`1

4
u
,

which is an F-vector space isomorphism in all degrees at least s ` 4td1`2n1`1
4

u and vanishes

otherwise. Further, q annihilates res
FrUs
Frvs Jr´ss and

ÀN 1

i“1 V`s`aip
ai`1`4bi`1´ai

4
q. The action of

q on J2 is specified in Corollary 4.2.4.
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Theorem 1.2.1 specifies α, β, and γ, which we state as Corollary 1.2.2. For Y an integral

homology three-sphere, let dpY q be the Heegaard Floer correction term [38]. Using Theorem

1.2.1 and Theorem 1.2.3 below we obtain:

Corollary 1.2.2. (a) Let Y be a Seifert integral homology sphere of negative fibration. Then

βpY q “ γpY q “ ´µ̄pY q, and

αpY q “

$

’

&

’

%

dpY q{2, if dpY q{2 ” ´µ̄pY q mod 2

dpY q{2` 1 otherwise.

(b) Let Y be a Seifert integral homology sphere of positive fibration. Then αpY q “ βpY q “

´µ̄pY q, and

γpY q “

$

’

&

’

%

dpY q{2 if dpY q{2 ” ´µ̄pY q mod 2

dpY q{2´ 1 otherwise.

From Corollary 1.2.2, we see that for Seifert integral homology spheres the Manolescu

invariants α, β, and γ are all determined by d and µ̄. In particular, α, β, and γ provide no

new obstructions to Seifert spaces bounding acyclic four-manifolds.

In [30], Manolescu also conjectured that for all spin Seifert rational homology spheres

βpY, sq “ ´µ̄pY, sq, where µ̄ is the Neumann-Siebenmann invariant defined in [36], [48]. We

are able to prove part of this conjecture:

Theorem 1.2.3. Let Y be a Seifert integral homology three-sphere. Then βpY q “ ´µ̄pY q.

We prove Theorem 1.2.3 by showing that β is controlled by the degree of the reducible,

and by using a result of Ruberman and Saveliev [44] that gives µ̄ as a sum of eta invariants.

Fukumoto-Furuta-Ue showed in [14] that µ̄ is a homology cobordism invariant for many

classes of Seifert spaces, and Saveliev [47] extended this to show that Seifert integral ho-

mology spheres with µ̄ ‰ 0 have infinite order in θH3 . Theorem 1.2.3 generalizes the result

of Fukumoto-Furuta-Ue, showing that the Neumann-Siebenmann invariant µ̄, restricted to

Seifert integral homology spheres, is a homology cobordism invariant.
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For Seifert spaces with HF`pY, sq of a special form, SWFH GpY, sq may be expressed more

compactly than is evident in the statement of Theorem 1.2.1. If Y is of negative fibration

and

HF`
pY, sq “ T `d ‘ T `´2n`1pmq ‘

à

iPI

T `ai pmiq
‘2, (1.3)

for some index set I, we say that pY, sq is of projective type. We will say that Y is of projective

type if Y is an integral homology sphere such that (1.3) holds. There are many examples of

such Seifert spaces, among them Σpp, q, pqn˘ 1q, by work of Némethi and Borodzik [35],[2]

and Tweedy [51]. The condition (1.3) also admits a natural expression in terms of graded

roots; see Section 4.2.2.

Theorem 1.2.4. If pY, sq is of projective type, as in (1.3), then:

If d ” 2n` 2 mod 4,

SWFH G
pY, sq “ V`d`2‘V`´2n`1‘V`´2n`2‘V`´2n`3pt

m

2
uq‘

à

iPI

V`aipt
mi ` 1

2
uq‘

à

iPI

V`ai`2pt
mi

2
uq.

(1.4)

If d ” 2n mod 4,

SWFH G
pY, sq “ V`d ‘V`´2n`1‘V`´2n`2‘V`´2n`3pt

m

2
uq‘

à

iPI

V`aipt
mi ` 1

2
uq‘

à

iPI

V`ai`2pt
mi

2
uq.

(1.5)

The q-action is given by the isomorphism V`´2n`2 Ñ V`´2n`1 and the map V`´2n`1 Ñ V`d`2

(if d ” 2n ` 2 mod 4), or V`´2n`1 Ñ V`d (if d ” 2n mod 4), which is an F-vector space

isomorphism in all degrees at least d ` 2 (respectively, d), and vanishes otherwise. In (1.4)

and (1.5), q acts on V`´2n`3pt
m
2

uq as the unique nonzero map V`´2n`3pt
m
2

uq Ñ V`´2n`2. The

action of q annihilates
À

iPI V`aiptmi`1
2

uq ‘
À

iPI V`ai`2pt
mi
2

uq.

For X a topological space with G-action let XS1
Ă X denote the subset fixed by S1 Ă G.

We call X a j-split space if

X{XS1

“ X` _ jX`. (1.6)

That is, X{XS1
is a wedge sum of two components related by the action of j (where X` and

jX` are both S1-spaces). We may think of j-split spaces as the simplest kind of (nontrivial)

G-spaces which may occur as the Seiberg-Witten Floer spectrum SWF pY, sq of some pY, sq.
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To prove Theorem 1.2.1, we use [33] to show that a space representative of the stable

homotopy type SWF pY, sq is j-split. Then the chain complex of EG^G SWF pY, sq, used to

compute the G-Borel homology, is closely related to the chain complex of ES1^S1 SWF pY, sq,

whose homology is the S1-Borel homology of SWF pY, sq. A careful, but entirely elementary,

analysis of the differentials in these two complexes then yields Theorem 1.2.1.

1.2.1 Local Equivalence

Manolescu’s construction of SWF pY, sq contains more information about homology cobor-

dism than the invariants α, β, and γ. Namely, a spin cobordism W from Y1 to Y2 with

b2pW q “ 0 induces a map SWF pY1, s1q Ñ SWF pY2, s2q which is a homotopy equivalence on

S1-fixed point sets. We call twoG-spacesX1, X2 locally equivalent if there existG-equivariant

stable maps X1 Ñ X2 and X2 Ñ X1 which induce homotopy equivalences on fixed point

sets. The local equivalence class rSWF pY, sqsl is then a homology cobordism invariant of

pY, sq. The local equivalence class rSWF pY, sqsl determines αpY, sq, βpY, sq and γpY, sq. The

construction of the local equivalence group is inspired by related constructions by Hom [20]

in the context of knot Floer homology.

For a more computable version of local equivalence, we introduce chain local equivalence,

using the C˚pGq-equivariant chain complex associated to a G-CW complex. The chain local

equivalence class of a G-space X, denoted rXscl, takes values in the set CE of homotopy-

equivalence classes of chain complexes of a certain form. In particular, using the chain local

equivalence class we have:

Corollary 1.2.5. Let Y be a rational homology three-sphere with spin structure s. Then there

is a homology-cobordism invariant, SWFHconnpY, sq, the connected Seiberg-Witten Floer

homology of pY, sq, taking values in isomorphism classes of FrU s-modules. More specifically,

SWFHconnpY, sq is the isomorphism class of a summand of HFredpY, sq.

The connected Seiberg-Witten Floer homology is constructed using the CW chain com-

plex of a space representative X of SWF pY, sq. The CW chain complex CCW
˚ pXq splits, as a

module over CCW
˚ pGq, into a direct sum of two subcomplexes, with one summand attached
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to the S1-fixed-point set, and the other a free CCW
˚ pGq-module. Roughly, the S1-Borel

homology of the former component is SWFHconnpY, sq.

In the calculation of SWFHG
pY, sq for Seifert spaces, we provide enough information

about the G-equivariant chain complex of SWF pY, sq to calculate the chain local equivalence

class rSWF pY, sqscl of Seifert spaces. As a corollary, we obtain:

Corollary 1.2.6. The sets tdiui, tniui in Theorem 1.2.1 are integral homology cobordism

invariants of negative Seifert fiber spaces. That is, say Y1 and Y2 are negative Seifert integral

homology spheres with Y1 homology cobordant to Y2. Let Si be the set of isomorphism classes

of simple summands of HF`pYiq that occur an odd number of times in the decomposition

(1.2). Then S1 “ S2.

We obtain Corollary 1.2.6 by showing that tdiui and tniui determine rSWF pY, sqscl.

Corollary 1.2.7. Let pY1, s1q be a negative Seifert rational homology three-sphere with spin

structure, with HF`pY1, s1q as in (1.2). Then

SWFHconnpY1, s1q “

N
à

i“1

T `s`dip
di`1 ` 2ni`1 ´ di

2
q ‘

N
à

i“1

T `s`dipniq. (1.7)

In particular, if Y1 is an integral homology sphere and Y2 is any integral homology sphere

homology cobordant to Y1, then ~HMpY2q » HF`pY2q contains a summand isomorphic to

(1.7), as FrU s-modules.

Remark 1.2.8. In fact, SWFHconnpY, sq is an invariant of spin rational homology cobordism,

for Y a rational homology three-sphere.

From Corollary 1.2.7 and (1.2), we see that for Seifert integral homology spheres Y ,

SWFHconnpY, sq “ 0 if and only if dpY, sq{2 “ ´µ̄pY, sq. As an application of the Corollaries

1.2.5 and 1.2.7, we have:

Corollary 1.2.9. The spaces Σp5, 7, 13q and Σp7, 10, 17q satisfy

dpΣp5, 7, 13qq “ dpΣp7, 10, 17qq “ 2,

µ̄pΣp5, 7, 13qq “ µ̄pΣp7, 10, 17qq “ 0.
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However, SWFHconnpΣp5, 7, 13qq “ T `1 p1q, while

SWFHconnpΣp7, 10, 17qq “ T `´1p2q ‘ T `´1p1q. (1.8)

Thus Σp5, 7, 13q and Σp7, 10, 17q are not homology cobordant, despite having the same d, µ̄,

α, β, and γ invariants.

There are many other examples of homology cobordism classes that are distinguished by

di, ni, but not by d and µ̄. As an example, we have the following Corollary.

Corollary 1.2.10. The Seifert space Σp7, 10, 17q is not homology cobordant to Σpp, q, pqn˘1q

for any p, q, n.

This result follows from Corollary 1.2.6. Indeed, since Σpp, q, pqn ˘ 1q are of projective

type, SWFHconnpΣpp, q, pqn ˘ 1qq is a simple FrU s-module, using the definition (1.3) and

equation (1.7). Using (1.8), Corollary 1.2.10 follows.

Moreover, using a calculation from [29], we are able to show the existence of three-

manifolds not homology cobordant to any Seifert fiber space. This result is also due to

Frøyshov using instanton homology, and has been independently proved by Lin [27]. For

example, we have:

Corollary 1.2.11. The connected sum Σp2, 3, 11q#Σp2, 3, 11q is not homology cobordant to

any Seifert fiber space.

Proof. In [29], Manolescu shows αpΣp2, 3, 11q#Σp2, 3, 11qq “ βpΣp2, 3, 11q#Σp2, 3, 11qq “ 2,

while γpΣp2, 3, 11q#Σp2, 3, 11qq “ 0. In addition, dpΣp2, 3, 11qq “ 2, so

dpΣp2, 3, 11q#Σp2, 3, 11qq “ 4.

To obtain a contradiction, say first that Σp2, 3, 11q#Σp2, 3, 11q is homology cobordant to a

negative Seifert space Y . Corollary 1.2.2 implies

2 “ βpΣp2, 3, 11q#Σp2, 3, 11qq “ βpY q “ γpY q “ γpΣp2, 3, 11q#Σp2, 3, 11qq “ 0.

a contradiction. Say instead that Σp2, 3, 11q#Σp2, 3, 11q is homology cobordant to a positive

Seifert space Y . Then by Corollary 1.2.2, γpY q “ dpY q{2 “ dpΣp2, 3, 11q#Σp2, 3, 11qq{2 “ 2.

However, γpY q “ 0, again a contradiction, completing the proof.
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Note that Corollary 1.2.11 readily implies the following statement for knots.

Corollary 1.2.12. There exist knots, such as the connected sum T p3, 11q#T p3, 11q of torus

knots, which are not concordant to any Montesinos knot.

We will also generalize this result to Theorem 1.3.5 in the next subsection, as part of a

more general calculation of the Manolescu invariants of connected sums.

We also have that many Seifert integral homology spheres of negative fibration are not

homology cobordant to any Seifert integral homology sphere of positive fibration. For in-

stance:

Corollary 1.2.13. The Seifert spaces Σp2, 3, 12k`7q, for k ě 0, are not homology cobordant

to ´Σpa1, a2, ..., anq for any choice of relatively prime ai.

This corollary is a direct consequence of Corollary 1.2.2, which shows that if Y is a

negative Seifert space with dpY q{2 ‰ ´µ̄pY q, then Y is not homology cobordant to any

positive Seifert space. We note dpΣp2, 3, 12k ` 7qq “ 0 and µ̄pΣp2, 3, 12k ` 7qq “ 1, and

the corollary follows. This should be compared with a result of Fintushel-Stern [7] that

gives a similar conclusion: If Rpa1, ..., anq ą 0, then Σpa1, ..., anq is not oriented cobordant

to any connected sum of positive Seifert homology spheres by a positive definite cobordism

W , where H1pW ;Zq contains no 2-torsion. However, there are examples with R ă 0, but

d{2 ‰ ´µ̄, so we can apply Corollary 1.2.2. For instance, Σp2, 3, 7q has R-invariant ´1, but

d ‰ ´µ̄. Thus, Corollary 1.2.13 is not detected by the R-invariant.

1.3 Connected Sums

We investigate the behavior of the Manolescu invariants under the connected sum operation.

In particular, we have the following theorems:

Theorem 1.3.1. Let pY1, s1q, pY2, s2q be rational homology three-spheres with spin structure.
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Then:

αpY1, s1q ` γpY2, s2q ď αpY1#Y2, s1#s2q ď αpY1, s1q ` αpY2, s2q, (1.9)

γpY1, s1q ` γpY2, s2q ď γpY1#Y2, s1#s2q ď αpY1, s1q ` γpY2, s2q, (1.10)

γpY1, s1q ` βpY2, s2q ď βpY1#Y2, s1#s2q ď αpY1, s1q ` βpY2, s2q, (1.11)

γpY1#Y2, s1#s2q ď βpY1, s1q ` βpY2, s2q ď αpY1#Y2, s1#s2q. (1.12)

Theorem 1.3.2. Let pY, sq be a rational homology three-sphere with spin structure. Then:

γpY, sq ď δpY, sq ď αpY, sq. (1.13)

We note, for comparison with Heegaard Floer theory, that the invariant δpY, sq should

correspond to the Heegaard Floer correction term dpY, sq{2.

If we regard Theorem 1.3.2 as a statement constraining the behavior of δpY, sq in terms

of the Manolescu invariants α, β, and γ, then we may think of the following as a kind of

converse statement, showing that δpY, sq heavily constrains the behavior of the Manolescu

invariants:

Theorem 1.3.3. Let pY, sq be a rational homology three-sphere with spin structure. Then:

αp#npY, sqq ´ nδpY, sq, βp#npY, sqq ´ nδpY, sq, and γp#npY, sqq ´ nδpY, sq (1.14)

are bounded functions of n, where #npY, sq denotes the connected sum of n copies of pY, sq.

In particular:

lim
nÑ8

αp#npY, sqq

n
“ lim

nÑ8

βp#npY, sqq

n
“ lim

nÑ8

γp#npY, sqq

n
“ δpY, sq. (1.15)

That is, one might think of the Manolescu invariants as perturbations of the S1-Frøyshov

invariant.

In order to obtain Theorem 1.3.3, we will make an explicit calculation of the Manolescu

invariants of connected sums of negative Seifert spaces of projective type.

Recall that the G-equivariant Seiberg-Witten Floer stable homotopy type of a negative

Seifert space, SWF pY, sq, is especially simple, namely, a j-split space.

16



The projective type condition further restricts what X` (as in Equation (1.6)) may be,

and allows the following result.

Theorem 1.3.4. Let Y1, . . . , Yn be negative Seifert integral homology three-spheres of projec-

tive type. Define δ̃pZq “ dpZq{2`µ̄pZq, for Z any Seifert fiber space, where d is the Heegaard

Floer correction term from [38], and where µ̄ is the Neumann-Siebenmann invariant defined

in [36], [48]. Set δ̃i :“ δ̃pYiq, and assume without loss of generality δ̃1 ď ¨ ¨ ¨ ď δ̃n. Then:

αpY1# . . .#Ynq “ 2

[

p
řn
i“1 δ̃iq ` 1

2

_

´

n
ÿ

i“1

µ̄pYiq, (1.16)

βpY1# . . .#Ynq “ 2

[

p
řn´1
i“1 δ̃iq ` 1

2

_

´

n
ÿ

i“1

µ̄pYiq, (1.17)

γpY1# . . .#Ynq “ 2

[

p
řn´2
i“1 δ̃iq ` 1

2

_

´

n
ÿ

i“1

µ̄pYiq, (1.18)

and

δpY1# . . .#Ynq “ pdpY1q ` ¨ ¨ ¨ ` dpYnqq{2 “
n

ÿ

i“1

δ̃i ´
n

ÿ

i“1

µ̄pYiq. (1.19)

To prove Theorem 1.3.4 we will investigate the Pinp2q-equivariant topology of joins of

j-split spaces. To do so, we will make use of the Gysin sequence for Pinp2q-spaces, which

provides a relationship between the Pinp2q-equivariant and S1-equivariant homology of a

Pinp2q-space. Lin has already used the Gysin sequence in [27] to study }HSpY, sq for Y a

surgery on an alternating knot.

The proof of Theorem 1.3.4 also relies on the equivalence of several versions of Floer

homologies: we employ the equivalence of HF` and ~HM from Colin-Ghiggini-Honda [4] and

Taubes [49], and Kutluhan-Lee-Taubes [24], and the equivalence of ~HM and SWFH S1
due

to Lidman-Manolescu [25].

To obtain Theorem 1.3.3 from Theorem 1.3.4 we will use the machinery of chain local

equivalence, a refinement of the Manolescu invariants.

More specifically, to obtain Theorem 1.3.3, we will show that any CW chain complex

associated to a Pinp2q-space admits some “large” j-split subcomplex (partly controlled by

the δ invariant). Here, we call a Pinp2q-chain complex j-split if it is the CW chain complex
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of a j-split space. Using the “large” j-split subcomplex inside a given Pinp2q-complex, the

calculation of Theorem 1.3.4 may be carried over, in part, to arbitrary rational homology

three-spheres, yielding Theorem 1.3.3.

1.3.1 Applications

We apply Theorem 1.3.4 to study homology cobordisms among Seifert spaces.

A corollary of Theorem 1.3.4 is:

Theorem 1.3.5. Let Y1, . . . , Yn be negative Seifert integral homology spheres of projective

type, with at least two of the Yi having dpYiq
2
ě ´µ̄pYiq ` 2. Then Y :“ Y1# . . .#Yn is not

homology cobordant to any Seifert fiber space.

We say that an integral homology three-sphere Y is H-split if αpY q “ βpY q “ γpY q.

Theorem 1.3.1 implies that the set θH–split Ă θH3 of H-split integral homology three-spheres

is, in fact, a subgroup. We obtain from Theorem 1.3.4:

Theorem 1.3.6. Let θSFP be the subgroup of θH3 generated by negative Seifert spaces of

projective type, and let θH–split,SFP be the subgroup consisting of Y P θSFP such that αpY q “

βpY q “ γpY q. Then:

θSFP “ θH– split,SFP ‘ Z8. (1.20)

The Z8 summand is generated by tYp “ Σpp, 2p ´ 1, 2p ` 1q | 3 ď p, p oddu. In particular,

the elements tYp | 3 ď p, p oddu are linearly independent in θH3 .

This implies the existence of a Z8 subgroup of θH3 , a result originally due to Furuta [16]

and Fintushel-Stern [8], both building on the R-invariant introduced by Fintushel and Stern

[7] using instantons. Fintushel and Stern [8] show that the collection tΣpp, q, pqn´1q | n ě 1u

is linearly independent in θH3 for any relatively prime p, q, and Furuta’s construction of Z8 Ď

θH3 is the special case p “ 2, q “ 3 of Fintushel and Stern’s construction. However, we will see

from Theorem 5.2.3 that the image of tΣpp, q, pqn´1q | n ě 1u in θH3 is contained in θH–split‘

Z, for any fixed p, q. In particular, the Z8 subgroups that Furuta and Fintushel-Stern
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originally identified are not detected by Pinp2q-techniques. We then obtain the following

corollary:

Corollary 1.3.7. The subgroup θH–split Ă θH3 is infinitely-generated.

To our knowledge, Theorem 1.3.6 is the first proof of the existence of a Z8 subgroup of

θH3 using either monopoles or the technology of Heegaard Floer homology. The Fintushel-

Stern R invariant also shows that Yp, for p odd, are linearly independent in the homology

cobordism group [6], but it does not show the splitting as in (1.20).

Theorem 1.3.6 follows from Theorem 1.3.4, once one finds a collection of Seifert integral

homology spheres Y of projective type with dpY q{2` µ̄pY q arbitrarily large:

Theorem 1.3.8. Let Yp “ Σpp, 2p´ 1, 2p` 1q. For odd p ě 3, Yp is of projective type, with

dpYpq “ p´ 1 and µ̄pYpq “ 0.

Theorem 1.3.8 is proved using the technology of graded roots, introduced by Némethi

[34], and refinements of the method of graded roots for Seifert spaces in [3],[21]. The proof is

essentially borrowed from the partial calculation of HF`
pYpq for even p by Hom, Karakurt,

and Lidman [18].

Other convenient choices of the generating set for Z8 in Theorem 1.3.6 are possible,

such as, for example, tΣp2, q, 2q ` 1q | q ” 3 mod 4u. See Theorem 5.2.3 for a more precise

statement.

Using Theorem 1.3.6, we may also obtain statements about knots. Endo showed in [6]

that the smooth concordance group of topologically slice knots, denoted CTS, contains a

Z8 subgroup, using the Fintushel-Stern R-invariant. Using Theorem 1.3.6, we are able to

reproduce Endo’s result:

Corollary 1.3.9. The pretzel knots Kp´p, 2p ´ 1, 2p ` 1q, for odd p ě 3, are linearly

independent in CTS.

Proof. We chose the Seifert spaces Yp in Theorem 1.3.6 instead of other possible generating

sets because Yp are branched double covers of pretzel knots:

Yp “ ΣpKp´p, 2p´ 1, 2p` 1qq
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where Kp´p, 2p ´ 1, 2p ` 1q is the pretzel knot of type p´p, 2p ´ 1, 2p ` 1q. We note that

the Alexander polynomial

∆KpKp´p, 2p´ 1, 2p` 1qq “ 1

for all odd p. Thus, by [11], Kp´p, 2p´ 1, 2p` 1q are topologically slice. By Theorem 1.3.6,

the present Corollary follows.

The subgroup that Endo identifies in CTS is identical to that of Corollary 1.3.9. Hom

[20] much extended Endo’s result, showing that CTS has a Z8 summand, using the knot

concordance invariant ε defined in [19]. Additionally, Ozsváth, Stipsicz, and Szabó [37] gave

another proof that CTS has a Z8 summand using the knot concordance invariant Υ.

Furthermore, Friedl, Livingston, and Zentner [12] recently showed the following.

Theorem 1.3.10 ([12]). There is an infinitely-generated free subgroup H Ă CTS such that if

K represents a nontrivial class in H, then K is not concordant to any alternating knot.

Theorem 1.3.6 provides an alternative proof of Theorem 1.3.10. Indeed, as for Heegaard-

Floer homology, a quasi-alternating knot K has SWFHG
pΣpKq, sq “ H˚pBGq, perhaps with

a grading shift, where ΣpKq denotes the double-branched cover of K and s is the unique

spin structure on ΣpKq. In particular, αpΣpKq, sq “ βpΣpKq, sq “ γpΣpKq, sq. Then, in the

decomposition of Theorem 1.3.6, no element of the Z8 subgroup is homology cobordant to

a double-branched cover of a quasi-alternating knot. That is, the subgroup of CTS generated

by Kp´p, 2p´ 1, 2p` 1q has no nontrivial element concordant to a quasi-alternating knot.

Another natural question is whether the Manolescu invariants of a pair of three-manifolds

determine the Manolescu invariants of the connected sum. This is not the case, as may be

seen using Theorem 1.3.4. We take Y “ Σp2, 3, 7q, noting

αpY q “ 1, βpY q “ ´1, γpY q “ ´1, δpY q “ 0, and µ̄pY q “ 1. (1.21)

Then we have δ̃pY q “ 1, and, by Theorem 1.3.4, the Manolescu invariants of 2pn` 1qY and

p2n` 1qY are independent of n ě 0. Specifically,

αp2pn` 1qY q “ 0, βp2pn` 1qY q “ 0, γp2pn` 1qY q “ ´2,
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αpp2n` 1qY q “ 1, βpp2n` 1qY q “ ´1, γpp2n` 1qY q “ ´1.

Then the Manolescu invariants of 2nY and 2mY agree for n ą m ě 1. However,

αp2nY#´ 2nY q “ βp2nY#´ 2nY q “ γp2nY#´ 2nY q “ 0,

while

αp2nY#´ 2mY q “ βp2nY#´ 2mY q “ 0, γp2nY#´ 2mY q “ ´2.

Thus, the Manolescu invariants of Y1 and Y2 do not determine those of the connected sum

Y1#Y2.
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CHAPTER 2

Spaces of type SWF

2.1 Spaces of type SWF

2.1.1 G-CW Complexes

In this section we recall the definition of spaces of type SWF from [30], and introduce local

equivalence. Spaces of type SWF are the output of the construction of the Seiberg-Witten

Floer stable homotopy type of [30] and [31]; see Section 3.1.

First, we recall some basics of equivariant algebraic topology from [50]. The reader is

encouraged to consult both [30] and [50] for a fuller discussion. For now, G will denote a

compact Lie group. We define a G-equivariant k-cell as a copy of G{H ˆ Dk, where H is

a closed subgroup of G. A (finite) equivariant G-CW decomposition of a relative G-space

pX,Aq, where the action of G takes A to itself, is a filtration pXn|n P Zě0q such that

‚ A Ă X0 and X “ Xn for n sufficiently large.

‚ The space Xn is obtained from Xn´1 by attaching G-equivariant n-cells.

When A is a point, we call pX,Aq a pointed G-CW complex.

Let EG be the total space of the universal bundle of G. For two pointed G-spaces X1

and X2, write:

X1 ^G X2 “ pX1 ^X2q{pgx1 ˆ x2 „ x1 ˆ gx2q.

The Borel homology of a pointed G-space X is given by

H̃G
˚ pXq “ H̃˚pEG` ^G Xq,
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where EG` is EG with a disjoint basepoint. Similarly, we define Borel cohomology:

H̃˚
GpXq “ H̃˚

pEG` ^G Xq.

Additionally, we have a map given by projecting to the first factor:

f : EG` ^G X Ñ BG`.

From f we have a map pG “ f˚ : H˚pBGq Ñ H̃˚
GpXq. Then H˚pBGq acts on H̃G

˚ pXq, by

composing pG with the cap product action of H̃˚
GpXq on H̃G

˚ pXq. We may also define the

unpointed version of the above constructions in an apparent way.

As an example, consider the case G “ S1. Here BS1 “ CP8, so H˚pBS1q “ FrU s, with

deg U “ 2. Then FrU s acts on HS1

˚ pXq, for X any S1-space.

From now on we let G “ Pinp2q. The group G “ Pinp2q is the set S1 Y jS1 Ă H, where

S1 is the unit circle in the x1, iy plane. The group action of G is induced from the group

action of the unit quaternions. In order to agree with the conventions of [30] we deal with

left G-spaces. Manolescu shows in [30] that H˚pBGq “ Frq, vs{pq3q, where deg q “ 1 and

deg v “ 4, so H̃G
˚ pXq is naturally an Frq, vs{pq3q-module for X a pointed G-space. Moreover

S8 “ SpH8q has a free action by the quaternions, making S8 a free G-space. Since S8 is

contractible, we identify EG “ S8. We may view EG “ S8 also as ES1 (as an S1-space)

by forgetting the action of j.

We will also need to relate G-Borel homology and S1-Borel homology. Consider

f : CP8 “ BS1
Ñ BG,

the map given by quotienting by the action of j P G on BS1 “ ES1{S1. Then we have the

following fact (for a proof, see [30, Example 2.11]):

Fact 2.1.1. The natural map

resGS1 :“ f˚ : Frq, vs{pq3
q “ H˚

pBGq Ñ H˚
pBS1

q “ FrU s

is an isomorphism in degrees divisible by 4, and zero otherwise. In particular, v Ñ U2.

Similarly,

f˚ : H˚pBS
1
q Ñ H˚pBGq
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has f˚pu
´2nq “ v´n and f˚pu

´2n`1q “ 0, where u´n is the unique nonzero element of H˚pBS
1q

in degree 2n, and v´n is the unique nonzero element of H˚pBGq in degree 4n.

Moreover, for X a G-space, we have a natural map

g : EG` ^S1 X Ñ EG` ^G X.

The map g induces a map

g˚ “ corS
1

G : H̃S1

˚ pXq Ñ H̃G
˚ pXq,

called the corestriction map. As a Corollary of Fact 2.1.1, we have a relationship between

the action of U and v (see [50, §III.1]):

Fact 2.1.2. Let X be a G-space. Then, for every x P HS1

˚ pXq,

vpcorS
1

G pxqq “ corS
1

G pU
2xq.

We shall use that Borel homology with F coefficients behaves well with respect to sus-

pension. If V is a finite-dimensional (real) representation of G, let V ` be the one-point

compactification, where G acts trivially on V ` ´ V . Then ΣVX “ V ` ^ X will be called

the suspension of X by the representation V .

We mention the following representations of G:

‚ Let R̃s be the vector space Rs on which j acts by ´1, and eiθ acts by the identity, for

all θ.

‚ We let C̃ be the representation of G on C where j acts by ´1, and eiθ acts by the

identity for all θ.

‚ The quaternions H, on which G acts by multiplication on the left.

Definition 2.1.3. Let s P Zě0. A space of type SWF at level s is a pointed finite G-CW

complex X with

‚ The S1-fixed-point set XS1
is G-homotopy equivalent to pR̃sq`.
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‚ The action of G on X ´XS1
is free.

As a source of examples of spaces of type SWF we have the following definition:

Definition 2.1.4. Let G act freely on a finite G-CW complex X (not a space of type SWF).

We call

Σ̃X “ pr0, 1s ˆXq{pp0, xq „ p0, x1q and p1, xq „ p1, x1q for all x, x1 P Xq

the unreduced suspension of X. The space Σ̃X obtains a G-action by letting G act trivially

on the r0, 1s factor. We make Σ̃X into a pointed space by setting p0, xq as the basepoint.

Then Σ̃X is a space of type SWF, since pΣ̃XqS
1
“ S0 and G acts freely away from pΣ̃XqS

1
.

We also find it convenient to recall the definition of reduced Borel homology, for spaces

X of type SWF:

H̃S1

˚,redpXq “ H̃S1

˚ pXq{ImUN , (2.1)

for N " 0. Indeed, for all N sufficiently large ImUN “ ImUN`1, so H̃S1

˚,redpXq is well-defined.

Associated to a space X of type SWF at level s, we take the Borel cohomology H̃˚
GpXq,

from which we define apXq, bpXq, and cpXq as in [30]:

apXq “ mintr ” s mod 4 | Dx P H̃r
GpXq, v

lx ‰ 0 for all l ě 0u, (2.2)

bpXq “ mintr ” s` 1 mod 4 | Dx P H̃r
GpXq, v

lx ‰ 0 for all l ě 0u ´ 1,

cpXq “ mintr ” s` 2 mod 4 | Dx P H̃r
GpXq, v

lx ‰ 0 for all l ě 0u ´ 2.

The well-definedness of a, b, and c follows from the Equivariant Localization Theorem (see

[50] III). We list a version of this theorem for spaces of type SWF:

Theorem 2.1.5 ([50] §III (3.8)). Let X be a space of type SWF. Then the inclusion XS1
Ñ

X, after inverting v, induces an isomorphism of Frq, v, v´1s{pq3q-modules:

v´1H̃˚
GpX

S1

q – v´1H̃˚
GpXq.

For X a space of type SWF, X is a finite G-complex and so we have that H̃˚
GpXq is finitely

generated as an Frvs-module. In particular, the Frvs-torsion part of H̃˚
GpXq is bounded above

in grading. Theorem 2.1.5 then implies:
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Fact 2.1.6. Let X be a space of type SWF. Then the inclusion ι : XS1
Ñ X induces an

isomorphism

ι˚ : H̃˚
GpXq Ñ H̃˚

GpX
S1

q

in cohomology in sufficiently high degrees. Dualizing, ι˚ induces an isomorphism in homology

in sufficiently high degrees.

We note that Fact 2.1.6 implies

Im ι˚ “ tx P H̃G
˚ pXq | x P Im vl for all l ě 0u. (2.3)

We also list an equivalent definition of a, b, and c from [30], using homology:

apXq “ min tr ” t mod 4 | Dx P H̃G
r pXq, x P Im vl for all l ě 0u, (2.4)

bpXq “ min tr ” t` 1 mod 4 | Dx P H̃G
r pXq, x P Im vl for all l ě 0u ´ 1,

cpXq “ min tr ” t` 2 mod 4 | Dx P H̃G
r pXq, x P Im vl for all l ě 0u ´ 2.

. We will see review the construction of α, β and γ from a, b, c shortly, from which the

Manolescu invariants of a 3-manifold are defined.

Definition 2.1.7 (see [31]). Let X and X 1 be spaces of type SWF, m,m1 P Z, and n, n1 P Q.

We say that the triples pX,m, nq and pX 1,m1, n1q are stably equivalent if n´n1 P Z and there

exists a G-equivariant homotopy equivalence, for some r " 0 and some nonnegative M P Z

and N P Q:

ΣrRΣpM´mqR̃ΣpN´nqHX Ñ ΣrRΣpM
1´m1qR̃ΣpN´n

1qHX 1. (2.5)

Let E be the set of equivalence classes of triples pX,m, nq for X a space of type SWF,

m P Z, n P Q, under the equivalence relation of stable G-equivalence1. The set E may

be considered as a subcategory of the G-equivariant Spanier-Whitehead category [30], by

viewing pX,m, nq as the formal desuspension of X by m copies of R̃` and n copies of H`.

1This convention is slightly different from that of [31]. The object pX,m, nq in the set of stable equivalence
classes E, as defined above, corresponds to pX, m

2 , nq in the conventions of [31].
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For pX,m, nq, pX 1,m1, n1q P E, a map pX,m, nq Ñ pX 1,m1, n1q is simply a map as in (2.5)

that need not be a homotopy equivalence. We define Borel homology for pX,m, nq P E by

H̃G
˚ ppX,m, nqq “ H̃G

˚ pXqrm` 4ns. (2.6)

The well-definedness of (2.6) follows from Proposition 2.1.8.

Proposition 2.1.8 ([30] Proposition 2.2). Let V be a finite-dimensional representation of

G. Then, as Frq, vs{pq3q-modules:

H̃˚
GpΣ

VXq – H̃˚´dimV
G pXq (2.7)

H̃G
˚ pΣ

VXq – H̃G
˚´dimV pXq.

Definition 2.1.9. For rpX,m, nqs P E, we set

αppX,m, nqq “
apXq

2
´
m

2
´ 2n, βppX,m, nqq “

bpXq

2
´
m

2
´ 2n, (2.8)

γppX,m, nqq “
cpXq

2
´
m

2
´ 2n.

The invariants α, β and γ do not depend on the choice of representative of the class rpX,m, nqs.

Definition 2.1.10. We call X1, X2 P E locally equivalent if there exist G-equivariant (stable)

maps

φ : X1 Ñ X2,

ψ : X2 Ñ X1,

which are G-homotopy equivalences on the S1-fixed-point set. For such X1, X2, we write

X1 ”l X2, and let LE denote the set of local equivalence classes.

Local equivalence is easily seen to be an equivalence relation. The set LE comes with an

abelian group structure, with multiplication given by smash product. One may check that

inverses are given by Spanier-Whitehead duality.
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2.1.2 G-CW decompositions of G-spaces

Throughout this section X will denote a space of type SWF. Here we will give example

G-CW decompositions and construct a G-CW structure on smash products of G-spaces.

For W a CW complex, we write CCW
˚ pW q for the corresponding cellular (CW) chain

complex. We fix a convenient CW decomposition of G. The 0-cells are the points 1, j, j2, j3

in G, and the 1-cells are s, js, j2s, j3s, where s “ teiθ P S1 | θ P p0, πqu. We identify each of

the cells of this CW decomposition with its image in CCW
˚ pGq, the corresponding CW chain

complex of G. Then Bpsq “ 1` j2. To ease notation, we will refer to CCW
˚ pGq by G.

We will use that this CW decomposition also induces a CW decomposition of S1, for

which CCW
˚ pS1q is the subcomplex of G generated by 1, j2, s, j2s.

A G-CW decomposition of X also induces a CW decomposition of X, using the decom-

position of G into cells as above, which we will call a G-compatible CW decomposition of

X.

Example 2.1.11. Note that the representation pR̃sq` admits a G-CW decomposition with

0-skeleton a copy of S0 on which G acts trivially, and an i-cell ci of the form Di ˆ Z{2 for

i ď s. One of the two points of the 0-skeleton of pR̃sq` is fixed as the basepoint.

In particular, any space of type SWF has a G-CW decomposition with a subcomplex as

in Example 2.1.11.

Example 2.1.12. We find a CW decomposition for H` as a G-space. We write elements

of H as pairs of complex numbers pz, wq “ pr1e
iθ1 , r2e

iθ2q in polar coordinates. The action

of j is then given by jpz, wq “ p´w̄, z̄q. Fix the point at infinity as the base point. We let

p0, 0q be the (G-invariant) 0-cell labelled r0. We let y1 be the G-1-cell given by the orbit of

tpr1, 0q | r1 ą 0u:

tpr1e
iθ, r2e

iθ
q | r1r2 “ 0u.

We take y2 the G-2-cell given by the orbit of tpr1, r2q | r1r2 ‰ 0.u:

tpr1e
iθ1 , r2e

iθ2q | θ1 “ θ2 mod π, r1r2 ‰ 0u.
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Finally, y3 consists of the orbit of tpr1e
iθ1 , r2q | θ1 P p0, πq, r1r2 ‰ 0.u :

tpr1e
iθ1 , r2e

iθ2q | θ1 ‰ θ2 mod π, r1r2 ‰ 0u.

We now give X1 ^X2 a G-CW structure for X1 and X2 spaces of type SWF. To do so,

we proceed cell by cell on both factors, so we need only find a G-CW structure on G ˆ G,

Z{2ˆG, and Z{2ˆ Z{2, each with the diagonal G-action. The space Z{2ˆG has a G-CW

decomposition as G>G, as may be seen directly, and Z{2ˆZ{2 may be written as a disjoint

union of G-0-cells Z{2 > Z{2.

Example 2.1.13. The G-CW structure on GˆG is more complicated. Note that the product

CW decomposition on GˆG is not equivariant. We choose a homotopy φt : GˆGÑ GˆG

as in Figure 2.1, with t P r0, 1s, φ0 “ Id, and φ1pGˆGq shown. The arrows depict the action

of S1. On the left, the diagonal lines show the G-action before homotopy. For example, the

homotopy φ takes the line ` “ tpeiθˆeiθ | θ P p0, πqu, the first half of the diagonal in S1ˆS1,

to the sum of CW cells:

sb 1` j2
b s.

The arrows on the right show the G-action on GˆG given by

gpg1 ˆ g2q “ φ1pgφ
´1
1 pg1 ˆ g2qq. (2.9)

The action (2.9) is clearly cellular with respect to the product CW structure of GˆG. Then

0

0

eiθ
2π

2π

eiθ ℓ

0

0

2π

2π

0

0 0

0

2π

eiθjeiθ 2π

2π

2π

2π

jeiθ

jeiθ

jeiθeiθ 2π

2π

2π

φ1(G×G)

eiθ 2π

2πjeiθ

G×G

2πeiθ

2πjeiθ

jeiθeiθ

eiθ jeiθ

Figure 2.1: Homotopy of the action of G on GˆG.

GˆG admits a G-CW-decomposition so that the induced CW decomposition is the product

CW decomposition of GˆG.
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Now, let X1 and X2 be spaces of type SWF. We then give X1^X2 a G-CW decomposition

proceeding cell-by-cell. That is, for G-cells e1 Ď X1, e2 Ď X2 we give e1^ e2 the appropriate

G-CW decomposition as constructed above. This is possible because the cells ei are neces-

sarily of the form: Dk,Z{2 ˆ Dk, or G ˆ Dk. In particular, the construction of a G-CW

structure on X1^X2 gives us a G-CW structure for suspensions. For V a finite-dimensional

G-representation which is a direct sum of copies of R, R̃, and H, we have ΣVX “ V ` ^X,

and so we give ΣVX the smash product G-CW decomposition.

Finally, we construct a CW structure for the G-smash product X1^GX2 “ pX1^X2q{G.

More generally, we describe a CW structure for the quotient W {G for W a G-CW complex.

Indeed, let W “
Ť

ei a G-CW complex, where ei “ G{Hi ˆD
kpiq are equivariant G-cells for

some function k, and Hi Ď G are subgroups. Then W {G admits a CW decomposition given

by W “
Ť

ei{G “
Ť

Dkpiq.

2.1.3 Modules from G-CW decompositions.

Throughout this section X will denote a space of type SWF. Here we will show that the CW

chain complex of X inherits a module structure from the action of G, and we will define

chain local equivalence.

From the group structure of G, CCW
˚ pGq “ G acquires an algebra structure. Namely, the

multiplication map G ˆ G Ñ G gives a map CCW
˚ pGq bF C

CW
˚ pGq Ñ CCW

˚ pGq. Here, we

have used the product G-CW decomposition of GˆG, from Example 2.1.13, for which the

multiplication map is cellular. A small calculation yields

CCW
˚ pGq – Frs, js{psj “ j3s, s2

“ 0, j4
“ 1q.

For anyG-compatible decomposition ofX, the relative CW chain complex CCW
˚ pX, ptq in-

herits the structure of a G-chain complex, as the map GˆX Ñ X gives a map GˆCCW
˚ pXq Ñ

CCW
˚ pXq. That is, CCW

˚ pX, ptq is a module over G, such that, for z P CCW
˚ pX, ptq, and a P G,

Bpazq “ aBpzq ` Bpaqz.

We find the module structure for the Examples 2.1.11-2.1.13 of Section 2.1.2.
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Example 2.1.14. Consider the G-chain complex structure of CCW
˚ ppR̃sq`, ptq from Example

2.1.11. Identifying ci with its image in CCW
˚ ppR̃sq`, ptq, we have Bpc0q “ 0, Bpc1q “ c0, and

Bpciq “ p1 ` jqci´1 for i ě 2. One may check that the action of G is given by the relations

jc0 “ c0, j2ci “ ci for i ě 1, and sci “ 0 for all i (in particular, the CW cells of ppR̃sq`, ptq

are precisely c0, c1, ...cs and jc1, ..., jcs, and all of these are distinct).

Example 2.1.15. We also find the G-chain complex structure of CCW
˚ pH`, ptq from Example

2.1.12. One may check that the differentials are given by

Bpr0q “ 0, By1 “ r0, By2 “ p1` jqy1, and By3 “ sy1 ` p1` jqy2. (2.10)

The G-action on the fixed-point set, r0, is necessarily trivial. However, elsewhere the G-

action on pH`, ptq is free, and so the submodule (not a subcomplex, however) of CCW
˚ pH`, ptq

generated by y1, y2, y3 is G-free, specifying the G-module structure of CCW
˚ pH`, ptq.

Example 2.1.16. The CW chain complex of the usual product CW structure on G ˆ G

becomes a G-module via:

CCW
˚ pGˆGq “ CCW

˚ pGq bF C
CW
˚ pGq,

where the action of G is given by

spab bq “ sab b` j2ab sb, (2.11)

jpab bq “ jab jb.

The differentials are induced by those of the usual product CW structure on GˆG.

For X1 ^X2 with the G-CW decomposition described in Section 2.1.2, we have:

CCW
˚ pX1 ^X2, ptq “ CCW

˚ pX1, ptq bF C
CW
˚ pX2, ptq, (2.12)

as G-chain complexes.

Furthermore the CW chain complex for the G-smash product X1 ^G X2 is given by:

CCW
˚ pX1 ^G X2, ptq » CCW

˚ pX1 ^X2, ptq{G. (2.13)
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We will write elements of the latter as x1 bG x2. Note that Borel homology H̃G
˚ pXq is

calculated using a G-smash product, and so may be computed from the following chain

complex:

H̃G
˚ pXq “ HpCCW

˚ pEGq bG C
CW
˚ pX, ptq, Bq. (2.14)

In (2.14), we choose some fixed G-CW decomposition of EG to define CCW
˚ pEGq. Following

(2.14), we make a definition.

Definition 2.1.17. Let Z a G-chain complex. We define the G-Borel homology of Z by

HG
˚ pZq “ HpCCW

˚ pEGq bG Z, Bq, (2.15)

and similarly for S1-Borel homology:

HS1

˚ pZq “ HpCCW
˚ pEGq bCCW˚ pS1q Z, Bq, (2.16)

where CCW
˚ pS1q is viewed as a subcomplex of G.

By construction:

Fact 2.1.18. If Z “ CCW
˚ pX, ptq is the relative CW chain complex of a G-space X, then

HG
˚ pZq “ H̃G

˚ pXq.

Note then that G-module CCW
˚ pX, ptq determines H̃G

˚ pXq for X a space of type SWF.

For R a ring and M an R-module with a fixed basis tBiu, we say that an element m PM

contains b P tBiu if when m is written in the basis tBiu it has a nontrivial b term.

Definition 2.1.19. We call a G-chain complex Z a chain complex of type SWF at level s if

Z is isomorphic to a chain complex (perhaps with a grading shift) generated by

tc0, c1, c2, ..., csu Y
ď

iPI

txiu, (2.17)

subject to the following conditions. The element ci is of degree i, and I is some finite index

set. The only relations are j2ci “ ci, sci “ 0, jc0 “ c0. The differentials are given by Bc1 “ c0,

and Bci “ p1` jqci´1 for 2 ď i ď s´ 1. Further, Bpcsq contains p1` jqcs´1. The submodule

generated by txiuiPI is free under the action of G. We call the submodule generated by tciui

the fixed-point set of Z.
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Chain complexes of type SWF are to be thought of as reduced G-CW chain complexes

of spaces of type SWF. Indeed, all spaces X of type SWF have a G-CW decomposition

with reduced G-CW chain complex a complex of type SWF. To see this, we first decompose

XS1
» pR̃sq` using the CW decomposition of Example 2.1.11 for pR̃sq`. We note that XS1

is

a G-CW subcomplex of X, and all cells of pX,XS1
q are free G-cells, since X is a space of type

SWF. Label these cells txiu for i in some index set, and we obtain that the corresponding

CW chain complex is as in Definition 2.1.19.

To introduce chain local equivalence, we will consider the CW chain complexes coming

from suspensions. For a module M and a submodule S Ď M , we let xSy Ď M denote the

subset generated by S.

Note that, by Example 2.1.14 and the G-CW decomposition constructed in Section 2.1.2

for suspensions, for X a complex of type SWF:

CCW
˚ pΣR̃X, ptq “ xc0, c1y bF C

CW
˚ pX, ptq, (2.18)

with relations Bc1 “ c0, j2c1 “ c1, jc0 “ c0, sc0 “ sc1 “ 0. The differential on the right is

given by Bpab bq “ Bpaq b b` ab Bpbq. Similarly, using Example 2.1.15:

CCW
˚ pΣHX, ptq “ xr0, y1, y2, y3y bF C

CW
˚ pX, ptq,

with the product differential on the right, and differentials for the yi given as in Example

2.1.15.

For V “ H, R̃, or R, we set:

ΣVZ “ CCW
˚ pV `, ptq bF Z, (2.19)

with G-action given by:

spab bq “ psab bq ` pj2ab sbq, (2.20)

jpab bq “ jab jb.

The chain complexes CCW
˚ pH`, ptq and CCW

˚ pR̃`, ptq were given in Examples 2.1.14 and

2.1.15, respectively. Also, CCW
˚ pR`, ptq “ xc1y, where jc1 “ c1, sc1 “ 0, and deg c1 “ 1.

Hence, for example:

ΣRZ “ Zr´1s. (2.21)
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Lemma 2.1.20. Let V “ H, R̃, or R. If Z “ CCW
˚ pX, ptq for X a space of type SWF, then

ΣVZ “ CCW
˚ pΣVX, ptq.

Proof. This follows from the CW chain complex structure given for suspensions in Section

2.1.2, and (2.12).

For V “ Hi ‘ R̃j ‘ Rk for some constants i, j, k, we define ΣVZ by:

ΣVZ “ pΣH
q
i
pΣR̃

q
j
pΣRqkZ. (2.22)

where pΣHqi denotes applying ΣH i times, and so for R̃ and R. It is then clear that:

ΣV ΣWZ – ΣWΣVZ, (2.23)

for two G-representations V,W , each a direct sum of copies of H,R, R̃.

Definition 2.1.21. Let Zi be chain complexes of type SWF, mi P Z, ni P Q, for i “ 1, 2.

We call pZ1,m1, n1q and pZ2,m2, n2q chain stably equivalent if n1 ´ n2 P Z and there exist

M P Z, N P Q and maps

ΣpN´n1qHΣpM´m1qR̃Z1 Ñ ΣpN´n2qHΣpM´m2qR̃Z2 (2.24)

ΣpN´n1qHΣpM´m1qR̃Z1 Ð ΣpN´n2qHΣpM´m2qR̃Z2, (2.25)

which are chain homotopy equivalences.

Remark 2.1.22. We do not consider suspensions by R, unlike in the case of stable equiva-

lence for spaces, since by (2.21), no new maps are obtained by suspending by R.

Chain stable equivalence is an equivalence relation, and we denote the set of chain stable

equivalence classes by CE.

Lemma 2.1.23. Associated to an element pX,m, nq P C there is a well-defined element

pCCW
˚ pX, ptq,m, nq P CE.
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Proof. Say that rpX1,m1, n1qs “ rpX2,m2, n2qs P C with G-CW decompositions Ci of Xi.

We will show that

rpCCW
˚ pX1, ptq,m1, n1qs “ rpC

CW
˚ pX2, ptq,m2, n2qs P CE, (2.26)

where CCW
˚ pXi, ptq is the G-chain complex associated to the G-CW decomposition Ci of Xi.

(In the case X1 » X2, and m1 “ m2, n1 “ n2, we are showing that the corresponding element

in CE does not depend on the choice of G-CW decomposition). By hypothesis, there are

homotopy equivalences f and g:

f : ΣpN´n1qHΣpM´m1qR̃X1 Ñ ΣpN´n2qHΣpM´m2qR̃X2,

g : ΣpN´n2qHΣpM´m2qR̃X2 Ñ ΣpN´n1qHΣpM´m1qR̃X1.

By the Equivariant Cellular Approximation Theorem (see [52]), we may homotope f and g

to cellular maps (where the cell structures of suspensions are given as in (2.19)):

fCW : ΣpN´n1qHΣpM´m1qR̃C1 Ñ ΣpN´n2qHΣpM´m2qR̃C2,

gCW : ΣpN´n2qHΣpM´m2qR̃C2 Ñ ΣpN´n1qHΣpM´m1qR̃C1.

Since f and g are homotopy equivalences, so are fCW and gCW . The cellular maps fCW and

gCW induce maps f˚ and g˚:

f˚ : ΣpN´n1qHΣpM´m1qR̃CCW
˚ pX1, ptq Ñ ΣpN´n2qHΣpM´m2qR̃CCW

˚ pX2, ptq,

g˚ : ΣpN´n2qHΣpM´m2qR̃CCW
˚ pX2, ptq Ñ ΣpN´n1qHΣpM´m1qR̃CCW

˚ pX1, ptq.

These are chain homotopy equivalences, by construction, and so we obtain (2.26), as needed.

In analogy with (2.6), we define Borel homology for elements of CE.

Definition 2.1.24. Let pZ,m, nq P CE. We define HG
˚ ppZ,m, nqq “ HG

˚ pZqrm` 4ns.

Fact 2.1.25. For Z P CE, HG
˚ pZq is well-defined.
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Proof. It suffices to show, for Z a chain complex of type SWF, that

HG
˚ pΣ

VZq “ HG
˚´dim V pZq. (2.27)

By (2.15), we need to compute

H˚pC
CW
˚ pEGq bG pC

CW
˚ pV `, ptq bF Zqq.

However, we have, by (2.12),

CCW
˚ pEGq bF pC

CW
˚ pV `, ptq bF Zq “ pC

CW
˚ pEGq bF C

CW
˚ pV `, ptqq bF Z,

as G-modules. Recalling the definition of bG in (2.13) we have

CCW
˚ pEGq bG pC

CW
˚ pV `, ptq bF Zq “ pC

CW
˚ pEGq bF C

CW
˚ pV `, ptqq bG Z.

Then to show (2.27) we need only show

H˚ppC
CW
˚ pEGq bF C

CW
˚ pV `, ptqq bG Zq “ H˚´dimV pC

CW
˚ pEGq bG Zq.

Indeed, CCW
˚ pEGq bF C

CW
˚ pV `, ptq is the relative CW chain complex of ΣVEG`, a free

G-space with nonzero homology only in degree dim V . As any two G-free resolutions are

homotopy equivalent, we obtain CCW
˚ pEGq bF C

CW
˚ pV `, ptq » CCW

˚ pEGqr´dim V s. Then

we have

H˚ppC
CW
˚ pEGq bF C

CW
˚ pV `, ptqq bG Zq “ H˚ppC

CW
˚ pEGq bG Zqr´dim V sq “ HG

˚´dim V pZq,

as needed.

Definition 2.1.26. Let Zi be chain complexes of type SWF, mi P Z, ni P Q, for i “

1, 2. We call pZ1,m1, n1q and pZ2,m2, n2q chain locally equivalent, written pZ1,m1, n1q ”cl

pZ2,m2, n2q, if there exist M P Z, N P Q and maps

ΣpN´n1qHΣpM´m1qR̃Z1 Ñ ΣpN´n2qHΣpM´m2qR̃Z2 (2.28)

ΣpN´n1qHΣpM´m1qR̃Z1 Ð ΣpN´n2qHΣpM´m2qR̃Z2, (2.29)

which are chain homotopy equivalences on the fixed-point sets.
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We call a map as in (2.28) or (2.29) a chain local equivalence. Elements Z1, Z2 P CE

are chain locally equivalent if and only if there are chain local equivalences Z1 Ñ Z2 and

Z2 Ñ Z1. There are pairs of chain complexes with a chain local equivalence in one direction

but not the other; these are not chain locally equivalent complexes. Chain local equivalence

is an equivalence relation, and we write rpZ,m, nqscl for the chain local equivalence class of

pZ,m, nq P CE. The set CLE of chain local equivalence classes is naturally an abelian group,

with multiplication given by the tensor product (over F, with G-action as above). (This

abelian group structure on CLE corresponds to connected sum in the homology cobordism

group; see Fact 3.1.5). The inverse of an element rpZ, 0, 0qscl of CLE is rpZ˚, 0, 0qscl where Z˚

denotes the chain complex dual to Z. The identity element 0 of CLE is rpF, 0, 0qscl, where

CCW
˚ pS0, ptq “ F “ xf0y is the G-module concentrated in degree 0 for which jf0 “ f0 and

sf0 “ 0.

Definition 2.1.27. For rpZ,m, nqs P CLE, we call

αppZ,m, nqq “
apZq

2
´
m

2
´ 2n, βppZ,m, nqq “

bpZq

2
´
m

2
´ 2n, (2.30)

γppZ,m, nqq “
cpZq

2
´
m

2
´ 2n,

the Manolescu invariants of pZ,m, nq. The invariants α, β and γ do not depend on the

choice of representative of the class rpZ,m, nqs.

2.1.4 Calculating the chain local equivalence class

In this section we will obtain a description of CLE more amenable to calculations than the

definition. Throughout this section Z will denote a chain complex of type SWF. The main

result is Lemma 2.1.30, which allows us to determine if pZ1,m1, n1q and pZ2,m2, n2q are

chain locally equivalent without checking all possible M,N .

To prove Lemma 2.1.30 we will first need Lemma 2.1.28, a result on chain homotopy

classes of maps between fixed-point sets. For two G-chain complexes Z 11 and Z 12, let rZ 11, Z
1
2s

denote the set of chain homotopy classes of maps from Z 11 to Z 12. We have an algebraic

anologue of the Equivariant Freudenthal Suspension Theorem (Theorem 3.3 of [1]), as follows.
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We recall that for Z a chain complex of type SWF at level s, the fixed point set R Ă Z is

isomorphic, as a G-chain complex, to

CCW
˚ pR̃s, ptq – xc0, ..., csy, (2.31)

with relations jc0 “ sc0 “ 0 and, for i ą 0, j2ci “ ci, while sci “ 0. The differentials in

(2.31) are given by Bpciq “ p1` jqci´1 for 2 ď i ď s, and Bpc1q “ c0, Bpc0q “ 0.

Lemma 2.1.28. Let R1 – R2 – CCW
˚ pR̃s, ptq, where – denotes isomorphism of G-chain

complexes. Then the map

rR1, R2s Ñ rΣHR1,Σ
HR2s, (2.32)

obtained by suspension by H is an isomorphism.

Proof. To show that the map in (2.32) is an isomorphism, we consider the commutative

diagram:

rΣHCCW
˚ pS0, ptq,ΣHCCW

˚ pS0, ptqs
ΣR̃s

ÝÝÝÑ rΣHR1,Σ
HR2s

ΣH

İ

§

§ ΣH

İ

§

§

rCCW
˚ pS0, ptq, CCW

˚ pS0, ptqs
ΣR̃s

ÝÝÝÑ rR1, R2s

(2.33)

We have used the isomorphisms R1 – R2 – ΣR̃sCCW
˚ pS0, ptq in writing the right column. In

(2.33), the composition is precisely

ΣH‘R̃s : rCCW
˚ pS0, ptq, CCW

˚ pS0, ptqs Ñ rΣHR1,Σ
HR2s.

We will show that the maps:

ΣH : rCCW
˚ pS0, ptq, CCW

˚ pS0, ptqs Ñ rΣHCCW
˚ pS0, ptq,ΣHCCW

˚ pS0, ptqs, (2.34)

ΣR̃s : rCCW
˚ pS0, ptq, CCW

˚ pS0, ptqs Ñ rR1, R2s, (2.35)

and

ΣR̃s : rΣHCCW
˚ pS0, ptq,ΣHCCW

˚ pS0, ptqs Ñ rΣHR1,Σ
HR2s (2.36)

are isomorphisms. Then, since three of the four maps in (2.33) are isomorphisms, so is the

fourth, which is exactly the map from (2.32), proving the Lemma.

38



We show that (2.34) is an isomorphism. We use the notation of Example 2.1.15 for

ΣHCCW
˚ pS0, ptq, writing c0 for the generator of CCW

˚ pS0, ptq. Let f : ΣHCCW
˚ pS0, ptq Ñ

ΣHCCW
˚ pS0, ptq. Then fpr0 b c0q “ r0 b c0 or fpr0 b c0q “ 0, for degree reasons. In the

former case, fpy1 b c0q “ u1y1 b c0 where u1 is a unit in G. Indeed, this follows from the

requirement:

Bpfpy1 b c0qq “ fpBpy1 b c0qq “ fpr0 b c0q “ r0 b c0.

Similarly, we obtain, perhaps after a homotopy,

fpyi b c0q “ uiyi b c0, (2.37)

where ui is a unit in G for i “ 1, 2, 3. Indeed, this follows from H˚pΣ
Hxc0yq being concentrated

in grading 4. For instance, fpy2bc0q`u1y2bc0 must be a cycle in ΣHxc0y, since Bpfpy2bc0qq “

fpBpy2b c0qq “ p1` jqu1y1b c0. Then, by H2pΣ
Hxc0yq “ 0, the element fpy2b c0q`u1y2b c0

is a boundary, and we may choose a homotopy h, vanishing in grading 1, so that pBh `

hBqpy2 b c0q “ Bhpy2 b c0q “ fpy2 b c0q ` u1y2 b c0. This establishes (2.37) for i “ 2, and

i “ 3 follows similarly.

We show that f » IdΣHCCW˚ pS0,ptq. We define a homotopy h : ΣHCCW
˚ pS0, ptq Ñ

ΣHCCW
˚ pS0, ptq from f to IdΣHCCW˚ pS0,ptq, proceeding by defining it in each grading. First, let

hpr0b c0q “ 0. Then choose h in grading 1 so that Bhpy1b c0q “ p1` u1qy1b c0, and extend

G-linearly. This is possible, because p1` u1qy1b c0 is a boundary in ΣHCCW
˚ pS0, ptq for any

unit u1. An elementary calculation shows that h may be extended over degree 2 and degree

3. In the case that fpr0b c0q “ 0, an explicit homotopy as above shows that f is homotopic

to the zero map. This shows that (2.34) is surjective.

To show that (2.34) is injective, we note that rCCW
˚ pS0, ptq, CCW

˚ pS0, ptqs “ rxc0y, xc0ys

is exactly Z{2 as there is precisely one nontrivial map, c0 Ñ c0. Then we need only show

the identity map has nontrivial suspension. But ΣHIdCCW˚ pS0,ptq “ IdH` , which induces an

isomorphism in homology, and so is not null-homotopic. Then, indeed, we obtain that the

map in (2.34) is an isomorphism.

The proof of the isomorphism (2.35) is parallel to the proof of (2.34), and is left to the

reader.
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We show that the map in (2.36) is an isomorphism. Note that ΣHCCW
˚ pS0, ptq »

CCW
˚ pH`, ptq. We let ‘̃ denote a direct sum of G-modules that is not necessarily a di-

rect sum of chain complexes (i.e. there may be differentials between the summands). Then

CCW
˚ pH`, ptq “ xc0y‘̃F , for F a G-free submodule. We have:

ΣR̃sCCW
˚ pH`, ptq “ ΣR̃s

xc0y‘̃ΣR̃sF. (2.38)

However, ΣR̃sF » F r´ss. Indeed, we have a map γ : F r´ss Ñ ΣR̃sF defined by γpxr´ssq “

Cbx, where C is the fundamental class of pR̃sq`. If Z is of type SWF at level 0, then C “ c0,

while if Z is of type SWF at level s ą 0, we have C “ p1` jqcs, where we use the notation

from Example 2.1.14. Also, γ is a chain map, as the reader may verify. Furthermore, it is

clear that γ induces a quasi-isomorphism. We show it is, in fact, a homotopy equivalence.

We construct a homotopy inverse

τ : ΣR̃sF Ñ F r´ss, (2.39)

so that τpC b xq “ xr´ss for x P F . We treat the case s “ 1; for s ą 1 we apply:

ΣR̃sF “ pΣR̃
q
sF » F r´ss. (2.40)

Fix a G-basis xi of F . Assume we have defined τpck b xiq for k “ 0, 1, for all xi such that

deg xi ď m´ 1, for some m. For generators xi of degree m we define:

τpc0 b xiq “ τpc1 b Bxiq, (2.41)

τpc1 b xiq “ 0,

τpjc1 b xiq “ xir´1s,

and extend by linearity. Further, p1 ` jqc1 b x Ñ xr´1s for all x P F by definition, so

τγ “ 1F r´ss, where 1F r´ss is the identity on F r´ss.

We find a homotopy H from γτ to IdΣR̃F , to show that γ is a homotopy equivalence. Fix

generators xi as in the definition of τ . Define H by Hpc0 b xiq “ c1 b xi, for all xi, and by

Hpc1 b xq “ 0 “ Hpjc1 b xq for all x P F , and extend linearly. We must then show that H

is a chain homotopy between γτ and IdΣR̃F . That is, we need

pBH `HBqpc0 b xiq “ γτpc0 b xiq ` c0 b xi, (2.42)
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pBH `HBqpc1 b xiq “ γτpc1 b xiq ` c1 b xi, (2.43)

and

pBH `HBqpjc1 b xiq “ γτpjc1 b xiq ` jc1 b xi. (2.44)

We suppose inductively that (2.42)-(2.44) are true for all xi with deg xi ď N for some N . The

inductive hypothesis is true (vacuously) for N sufficiently small, since F is a bounded-below

complex. Fix xi of degree N ` 1. We show that (2.42)-(2.44) hold for xi.

First, consider:

pBH `HBqpc0 b xiq “ Bpc1 b xiq `Hpc0 b Bxiq, (2.45)

where we have used the definition Hpc0 b xiq “ c1 b xi. Also:

pBH `HBqpc1 b Bxiq “ BHpc1 b Bxiq `Hpc0 b Bxiq “ γτpc1 b Bxiq ` c1 b Bxi, (2.46)

by the inductive hypothesis. Rearranging (2.46), we have:

Hpc0 b Bxiq “ γτpc1 b Bxiq ` c1 b Bxi ` BHpc1 b Bxiq.

By the definition of τ , we have τpc1 b Bxiq “ τpc0 b xiq, so, using (2.45), we obtain:

pBH `HBqpc0 b xiq “ γτpc0 b xiq ` c0 b xi ` BHpc1 b Bxiq. (2.47)

But Hpc1 b Bxiq “ 0 by definition, so:

pBH `HBqpc0 b xiq “ γτpc0 b xiq ` c0 b xi, (2.48)

verifying (2.42).

Next, we investigate pBH `HBqpc1 b xiq:

pBH`HBqpc1bxiq “ BHpc1bxiq`Hpc0bxiq`Hpc1bBxiq “ Hpc0bxiq “ c1bxi, (2.49)

using Hpc1 b xiq “ 0 and Hpc1 b Bxiq “ 0. Using τpc1 b xiq “ 0, we obtain (2.43) from

(2.49).

We also check pBH `HBqpjc1 b xiq :

pBH`HBqpjc1bxiq “ BHpjc1bxiq`Hpc0bxiq`Hpjc1bBxiq “ Hpc0bxiq “ c1bxi, (2.50)
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since Hpjc1 b xiq “ 0 and Hpjc1 b Bxiq “ 0. Additionally, τpjc1 b xiq “ xir´1s, and

γpxir´1sq “ p1` jqc1 b xi. Then c1 b xi “ γτpjc1 b xiq ` jc1 b xi, and (2.44) follows.

Then H is a chain homotopy between γτ and IdΣR̃F , as needed, and so γ and τ are

homotopy equivalences.

We let I denote the identity map on ΣR̃sxc0y. We have a homotopy equivalence:

ΣR̃s
xc0y‘̃ΣR̃sF

I‘̃τ
ÝÝÑ ΣR̃s

xc0y‘̃F r´ss. (2.51)

Further, there is an isomorphism

rΣR̃sCCW
˚ pH`, ptq,ΣR̃sCCW

˚ pH`, ptqs Ñ rΣR̃s
xc0y‘̃F r´ss,Σ

R̃s
xc0y‘̃F r´sss,

given by

f Ñ pI‘̃τqfpI‘̃γq.

Here, the map pI‘̃γq acts by the identity on the first summand, and by γ on the second.

We first prove surjectivity of (2.36). Fix f : ΣR̃sCCW
˚ pH`, ptq Ñ ΣR̃sCCW

˚ pH`, ptq. Let

f 1 “ pI‘̃τqfpI‘̃γq. We find g : CCW
˚ pH`, ptq Ñ CCW

˚ pH`, ptq so that ΣR̃sg » f . We define

g separately on the two summands CCW
˚ pS0, ptq and F .

Let g1 P rC
CW
˚ pS0, ptq, CCW

˚ pS0, ptqs so that ΣR̃sg1 » f |xc0,...,csy. Such a g1 exists by

(2.35). Further, note that there is a natural isomorphism rF, F s “ rF r´ss, F r´sss, and let

g2 P rF, F s be the element corresponding to f 1|F r´ss P rF r´ss, F r´sss. Define a chain map

by g : xc0y‘̃F Ñ xc0y‘̃F by

g “ g1‘̃g2.

By construction, ΣR̃sg » f , as needed.

Finally, we check injectivity of (2.36). We have rxc0y, xc0ys “ rΣ
Hxc0y,Σ

Hxc0ys is Z{2, with

nontrivial map given by the identity IdH` . We need only show then that the map ΣR̃sIdH`

is not null-homotopic. Indeed, it induces a nontrivial map on homology by construction, so

is not null-homotopic. Then (2.36) is an isomorphism, as needed.

Remark 2.1.29. We have rCCW
˚ pS0, ptq, CCW

˚ pS0, ptqs “ Z{2, as remarked in the proof.

Hence Lemma 2.1.28 implies rΣHR1,Σ
HR2s – Z{2.
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Lemma 2.1.30. Let Z1 and Z2 be locally equivalent chain complexes of type SWF. Let

Ri Ă Zi be the corresponding fixed-point sets. Additionally, for all nonzero homogeneous

r P Ri, we require deg r ă deg x for all nonzero homogeneous

x P Zi{Ri,

for i “ 1, 2. Then there exist chain maps

Z1 Ñ Z2, (2.52)

Z1 Ð Z2,

that are chain homotopy equivalences on the fixed-point sets.

Proof. Let ZipN,Mq denote ΣNHΣMR̃Zi. By hypothesis there exist maps which are homo-

topy equivalences on the fixed-point sets:

Z1pN,Mq Ñ Z2pN,Mq, (2.53)

Z1pN,Mq Ð Z2pN,Mq,

for M,N sufficiently large.

Claim 1. Let V “ H or R̃. Take φ a map which is a chain homotopy equivalence on

fixed-point sets:

φ : ΣVZ1 Ñ ΣVZ2.

Then φ is chain homotopic to the suspension of a map φ0, also a chain homotopy equivalence

on fixed-point sets:

φ0 : Z1 Ñ Z2.

Since ΣVZi also satisfy the conditions of the Lemma, it follows from Claim 1 that any

map which is a homotopy equivalence on fixed-point sets, for M0, N0 ě 0:

φ : Z1pN0,M0q Ñ Z2pN0,M0q
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is homotopic to the suspension of a map:

φ0 : Z1 Ñ Z2,

which implies the existence of the maps as in (2.52).

We prove Claim 1 for V “ H; the case of V “ R̃ is similar, but easier.

We let ‘̃ denote a direct sum of G-modules that is not necessarily a direct sum of chain

complexes.

Let Fi be the G-free submodule of Zi generated by elements x of degree greater than

deg r for all r in the fixed-point set Ri. We will also consider Fi as a G-chain complex so

that the projection

Zi Ñ Zi{Ri » Fi

is a map of complexes. Then we have Zi “ Ri‘̃Fi. For a given local equivalence φ : ΣHZ1 Ñ

ΣHZ2, we have the diagram:

ΣHpR1‘̃F1q
φ

ÝÝÝÑ ΣHpR2‘̃F2q
§

§

đ

§

§

đ

pΣHR1q‘̃pΣ
HF1q ÝÝÝÑ pΣHR2q‘̃pΣ

HF2q

However, ΣHFi is homotopy equivalent to ΣR4
Fi “ Fir´4s. To see this, we use the notation

for suspension by H as in Example 2.1.15 and write γ : Fir´4s Ñ ΣHFi, where γpxr´4sq “

sp1 ` jq3y3 b x. The term sp1 ` jq3y3 appears as it is the fundamental class of S4 » H`.

Furthermore, γ is a chain map, as the reader may verify. It is clear that γ is a quasi-

isomorphism, and it is, in fact, a homotopy equivalence. There is a homotopy inverse τ ,

whose construction is analogous to that in (2.41), so that τpsp1 ` jq3y3 b xq “ xr´4s. We

obtain a map:

φ1 “ p1ΣHR2
‘̃τqφp1ΣHR1

‘̃γq : pΣHR1q‘̃pF1r´4sq Ñ pΣHR2q‘̃pF2r´4sq.

For degree reasons, φ1 sends ΣHR1 Ñ ΣHR2 and F1r´4s Ñ F2r´4s. By Lemma 2.1.28, we

have:

rR1, R2s
ΣH
ÝÑ rΣHR1,Σ

HR2s (2.54)
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is an isomorphism. Also, rF1r´4s, F2r´4ss “ rF1, F2s, clearly. Define φ0|R1 by the element of

rR1, R2s corresponding to φ1|ΣHR1
P rΣHR1,Σ

HR2s. Similarly, define φ0|F1 by the element of

rF1, F2s corresponding to φ1|F1r´4s P rF1r´4s, F2r´4ss. Then we have a map, of G-complexes:

φ0 : R1‘̃F1 Ñ R2‘̃F2.

By construction, ΣHφ0 „ φ, as needed.

For Z a chain complex of type SWF, we will let Z also denote the element pZ, 0, 0q P CE.

Definition 2.1.31. Let R be the fixed-point set of Z. If deg r ă deg x for all nonzero

homogeneous x P pZ{Rq and r P R, we say that the chain complex Z is a suspensionlike

complex.

Remark 2.1.32. Let X be a free, finite G-CW complex. Then the reduced G-CW chain

complex of Σ̃X, the unreduced suspension of X, is a suspensionlike chain complex. Con-

versely, any suspensionlike chain complex with fixed-point set R “ xc0y may be realized as

the G-CW chain complex of an unreduced suspension. Further, any suspensionlike chain

complex of type SWF is chain stably equivalent to CCW
˚ pX, ptq for some space X of type

SWF.

Remark 2.1.33. For X a space of type SWF, CCW
˚ pX, ptq need not be a suspensionlike

chain complex of type SWF. However, any class in E admits a representative pX,m, nq with

CCW
˚ pX, ptq a suspensionlike chain complex of type SWF.

Lemma 2.1.30 states that if ΣpN0´niqHΣpM0´miqR̃Zi are suspensionlike, then all local (sta-

ble) maps between pZ1,m1, n1q and pZ2,m2, n2q are realized as genuine chain maps by sus-

pending the complexes Zi by N0H‘M0R̃.

Note that the tensor product Z1 bF Z2 of suspensionlike chain complexes of type SWF,

at levels t1, t2 respectively, is not suspensionlike unless t1 “ 0 or t2 “ 0. However, after

quotienting Z1 bF Z2 by a large acylic subcomplex, the resulting complex is suspensionlike.
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To be more explicit, we note that any suspensionlike chain complex Z of type SWF is quasi-

isomorphic to a suspensionlike chain complex of type SWF at level 0, say Z 1. We form Z 1

by replacing the generators c0, . . . , ct in Z by c1t where p1 ` jqc1t “ 0 “ sc1t, and otherwise

constructing Z 1 just as Z. There is a quasi-isomorphism Z 1 Ñ Z given by c1t Ñ p1` jqct.

In particular, Z 11bFZ
1
2 is quasi-isomorphic to Z1bZ2, and the quasi-isomorphism takes the

fundamental class of pZ 11bFZ
1
2q
S1

to p1`jqct1bp1`jqct2 . We may replace pZ 11bFZ
1
2q
S1

with

a copy of CCW
˚ pR̃t1`t2 , ptq, and the resulting complex Z2 is a summand of Z1bFZ2 for which

inclusion is a chain homotopy equivalence. Thus, the tensor product of suspensionlike chain

complexes is chain homotopy equivalent to a suspenionlike complex at the appropriate level,

and the fundamental class of the fixed point set is ft1 b ft2 , where fti are the fundamental

classes of ZS1

i .

2.1.5 Inessential subcomplexes and connected quotient complexes

In this section, we show how Lemma 2.1.30 allows for a convenient characterization of chain

locally equivalent complexes. We then define connected S1-homology of spaces of type SWF,

which we will use later to define SWFHconn as in Corollary 1.2.5.

Definition 2.1.34. Take Z a chain complex of type SWF, and let R Ă Z be the fixed-point

set. For any subcomplex M Ă Z such that M X R “ t0u, the projection Z Ñ Z{M is a

chain homotopy equivalence on R. If there exists a map of chain complexes Z{M Ñ Z that

is a chain homotopy equivalence on R, we say that M is an inessential subcomplex.

If M is inessential, then Z{M ”cl Z. We order inessential subcomplexes by inclusion,

N ďM if N ĎM . We show that there is a unique “minimal” model Z{N locally equivalent

to Z.

Lemma 2.1.35. Let M Ă Z be an inessential subcomplex, maximal with respect to inclusion.

Then a map f : Z{M Ñ Z which is a homotopy equivalence on fixed-point sets is injective.

Proof. Indeed, say f : Z{M Ñ Z is a local equivalence with nonzero kernel. Let R1 denote

the fixed-point set of Z{M and R2 denote the fixed-point set of Z. Since f restricts to a
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homotopy equivalence on the fixed-point sets, pker fq XR1 “ t0u. Let π : Z Ñ Z{M be the

projection map. Then f induces a map Z{pπ´1pker fqq Ñ Z, and by pker fqXR1 “ t0u, this

map is a homotopy-equivalence on fixed-point sets. Additionally, we have π´1pker fqXR2 “

t0u. Then π´1pker fq is an inessential submodule, and it (strictly) contains M , contradicting

that M was maximal. Then f was injective, as needed.

Lemma 2.1.36. Let Z be a chain complex of type SWF and let M,N Ă Z be inessential

subcomplexes, with M and N maximal with respect to inclusion. Then Z{M – Z{N , where

– denotes isomorphism of G-chain complexes.

Proof. Indeed, if there exist maps α : Z{M Ñ Z, and β : Z{N Ñ Z as above, consider the

composition:

φ : Z{N Ñ Z Ñ Z{M.

In particular, we have a map αφ : Z{N Ñ Z, which is injective by Lemma 2.1.35. It then

follows that φ is injective. We also have:

ψ : Z{M Ñ Z Ñ Z{N.

As before, ψ is injective. Then, since we have injective chain maps between Z{N and Z{M ,

finite-dimensional F-complexes, the two chain complexes must have the same dimension. An

injective map between complexes of the same dimension is bijective, and, finally, a bijective

G-chain complex map is a G-chain complex isomorphism.

Lemma 2.1.37. Let Z be a chain complex of type SWF and M a maximal inessential

subcomplex of Z. We have a (noncanonical) decomposition of Z:

Z “ pZ{Mq ‘M, (2.55)

where the isomorphism class of Z{M is an invariant of Z, independent of the choice of

maximal inessential subcomplex M Ď Z.

Proof. Let β : Z{M Ñ Z be a homotopy equivalence on fixed-point sets. The map β is

injective by Lemma 2.1.35. Let π be the projection Z Ñ Z{M . We note that βπβ is a map
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Z{M Ñ Z which is a homotopy equivalence on the fixed point set, and so by Lemma 2.1.35,

βπβ is injective. Then πβ is also injective.

We have a map β ‘ i : pZ{Mq ‘M Ñ Z, where i is the inclusion i : M Ñ Z. We check

that β ‘ i is injective. Indeed, if pβ ‘ iqpz ‘ mq “ 0, we have βpzq “ m. By definition,

πpmq “ 0, while πβ is injective. It follows that m “ z “ 0, and β ‘ i is injective. Then

Z{M ‘ M Ñ Z is an injective map of F-vector spaces of the same dimension, and so is

an isomorphism (of G-chain complexes). Since, by Lemma 2.1.36, the isomorphism class of

Z{M is independent of M , we obtain that the isomorphism class of Z{M is a well-defined

invariant of Z.

Definition 2.1.38. For Z a chain complex of type SWF, let Zconn denote Z{Ziness, for

Ziness Ď Z a maximal inessential subcomplex. We call Zconn the connected complex of Z.

Theorem 2.1.39. Let Z be a suspensionlike chain complex of type SWF. Then for W another

suspensionlike complex of type SWF, Z ”cl W if and only if Zconn – Wconn.

Proof. By Lemma 2.1.37, we may write Z “ Zconn ‘ Ziness,W “ Wconn ‘ Winess, with

Ziness,Winess maximal inessential subcomplexes. Say we have local equivalences (we need

not consider suspensions, by Lemma 2.1.30)

φ : Zconn ‘ Ziness Ñ Wconn ‘Winess,

ψ : Wconn ‘Winess Ñ Zconn ‘ Ziness.

We restrict φ and ψ to Zconn and Wconn, since it is clear that Zconn ‘ Ziness is chain locally

equivalent to Zconn, and likewise for Wconn. Further, we project the image of φ and ψ to

Wconn and Zconn, respectively. Call the resulting maps φ0 and ψ0. If φ0 had a nontrivial

kernel, then we would obtain by composition a local equivalence:

ψ0φ0 : Zconn{kerφ0 Ñ Zconn.

Composing with the inclusion ι : Zconn Ñ Z gives a chain local map ιψ0φ0 : Zconn{ker φ0 Ñ Z,

so by Lemma 2.1.35, ιψ0φ0 is injective. Thus, φ0 is injective. Similarly ψ0 is injective, so
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we obtain an isomorphism of chain complexes Zconn – Wconn. Conversely, a homotopy

equivalence Zconn Ñ Wconn yields a local equivalence Z Ñ W by the composition

Z
π
ÝÑ Zconn Ñ Wconn Ñ W,

where π : Z Ñ Zconn is projection to the first summand.

The next Corollary allows us to view the chain local equivalence type of a space of type

SWF in CE instead of CLE.

Corollary 2.1.40. In the language of Theorem 2.1.39, there is an injection B : CLEÑ CE

given by rpZ,m, nqs Ñ rpZconn,m, nqs, for pZ,m, nq a representative of the class rpZ,m, nqs

with Z suspensionlike.

Proof. Fix rpZ,m, nqs “ rpZ 1,m1, n1qs P CLE with Z and Z 1 suspensionlike; we will show

that rpZconn,m, nqs “ rpZ
1
conn,m

1, n1qs in CE. First, we observe that, for V “ H, R̃ :

ΣVZconn » pΣ
VZqconn. (2.56)

We have, for M,N sufficiently large:

ΣpM´mqR̃ΣpN´nqHZ Ô ΣpM´m
1qR̃ΣpN´n

1qHZ 1.

Here the maps in both directions are local equivalences. Choosing M ě maxtm,m1u and

N ě max tn, n1u guarantees that both

ΣpM´mqR̃ΣpN´nqHZ and ΣpM´m
1qR̃ΣpN´n

1qHZ 1

are suspensionlike. Then, by Theorem 2.1.39, we have a homotopy equivalence:

pΣpM´mqR̃ΣpN´nqHZqconn Ñ pΣpM´m
1qR̃ΣpN´n

1qHZ 1qconn.

However, by (2.56), we obtain a homotopy equivalence:

ΣpM´mqR̃ΣpN´nqHpZconnq Ñ ΣpM´m
1qR̃ΣpN´n

1qH
pZ 1connq.
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Then rpZconn,m, nqs “ rpZ
1
conn,m

1, n1qs P CE, as needed. Finally, we show B is injective.

If pZconn,m, nq is stably equivalent to pZ 1conn,m
1, n1q, then pZ,m, nq and pZ 1,m1, n1q are locally

equivalent, by Theorem 2.1.39 and (2.56).

By Corollary 2.1.40, instead of considering the relation given by chain local equivalence,

we need only consider chain homotopy equivalences.

Definition 2.1.41. The connected S1-homology of pZ,m, nq P CE, denoted by H S1

connppZ,m, nqq,

for Z a suspensionlike chain complex of type SWF, is the quotient pHS1

˚ pZq{pH
S1

˚ pZ
S1
q `

HS1

˚ pZinessqqqrm ` 4ns, where Ziness Ď Z is a maximal inessential subcomplex. By Theorem

2.1.39, the graded FrU s-module isomorphism class of H S1

connppZ,m, nqq is an invariant of the

chain local equivalence class of pZ,m, nq.

Remark 2.1.42. We could have instead considered the quotient pHS1

˚ pZq{H
S1

˚ pZinessqqrm`

4ns, which is isomorphic to H S1

connppZ,m, nqq ‘ T `d , for some d. As defined above, the group

H S1

connppZ,m, nqq has no infinite FrU s-tower.

2.1.6 Ordering CLE

In the following section we define a partial order on CLE.

Definition 2.1.43. The groups LE and CLE also come with a natural partial ordering.

That is, we say X1 ĺ X2 if there exists a local equivalence X1 Ñ X2 or a local equivalence

Σ
1
2
HX1 Ñ X2, for X1, X2 P LE. For pZ,m, nq P CLE, we write Σ

1
2
HpZ,m, nq “ pZ,m, n´ 1

2
q.

For Z1, Z2 P CLE, we say Z1 ĺ Z2 if there exists a chain local equivalence Z1 Ñ Z2 or if

there exists a chain local equivalence Σ
1
2
HZ1 Ñ Z2.

We have:

Lemma 2.1.44. If Z1 ĺ Z2 P CLE, then αpZ1q ď αpZ2q, βpZ1q ď βpZ2q, γpZ1q ď γpZ2q.

Proof. We assume without loss of generality Z1 “ pZ1, 0, 0q, Z2 “ pZ2, 0, 0q, for suspension-

like chain complexes of type SWF Z1 and Z2. A chain local equivalence φ : Z1 Ñ Z2 induces
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a map φG : CCW
˚ pEGqbGZ1 Ñ CCW

˚ pEGqbGZ2. We then have a commuting triangle, where

ι1 and ι2 come from the inclusions ZS1

1 Ñ Z1 and ZS1

2 Ñ Z2.

CCW
˚ pEGq bG Z1 CCW

˚ pEGq bG Z2

CCW
˚ pEGq bG CCW

˚ ppR̃tq`, ptq

φ

ι1

ι2 (2.57)

Diagram (2.57) also induces a commuting triangle in homology:

HG
˚ pZ1q HG

˚ pZ2q

HG
˚ pZ

S1

1 q

φ˚

ι1,˚

ι2,˚ (2.58)

By Remark 2.1.32, a suspensionlike chain complex of type SWF is chain stably equivalent

to some CCW
˚ pX, ptq for X a space of type SWF. Then we may apply Fact 2.1.6 to see that

ι1,˚ and ι2,˚ are isomorphisms in sufficiently high degree. Thus φ˚ must be an isomorphism

in sufficiently high degree. Furthermore,

Im ιi “ tx P H
G
˚ pZiq | x P Im vl for all l ě 0u,

from (2.3). Thus, if x P HG
˚ pZ2q is in Im vl for all l ě 0, there exists some y so that

x “ ι2,˚pyq. By the commutativity of (2.58), ι1,˚pyq ‰ 0. Applying the definitions (2.4), we

see mpZ2q ě mpZ1q where m is any of a, b, c. Applying Definition 2.1.27, the Lemma follows.

A similar argument applies for a chain local equivalence φ : Σ
1
2
HZ1 Ñ Z2, in which case

one has:

αpZ1q ď αpZ2q ´ 1, βpZ1q ď βpZ2q ´ 1, γpZ1q ď γpZ2q ´ 1.

Lemma 2.1.45. Let Z1, Z2, Z3 complexes of type SWF with Z1 ĺ Z2. Then Z1 b Z3 ĺ

Z2 b Z3.

Proof. If there exists a (stable) map:

φ : Z1 Ñ Z2,
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then φb Id : Z1bZ3 Ñ Z2bZ3 satisfies the conditions of Definition 2.1.43, establishing the

Lemma (and similarly for suspensions by 1
2
H).

2.2 Inequalities for the Manolescu Invariants

In this section we will obtain bounds on the Manolescu invariants of tensor products of

suspensionlike chain complexes. In Section 3.1 we will apply these results to obtain bounds

on the Manolescu invariants of three-manifolds.

2.2.1 Calculating Manolescu Invariants from a chain complex

We start by fixing a convenient G-CW decomposition of EG “ SpH8q. Recalling Example

2.1.15, we have a G-CW decomposition for H` – S4 “ xr0, y1, y2, y3y with differentials as in

(2.10). We then attach free G-cells y5, y6, y7, with deg yi “ i, where the attaching map of yi

is the suspension of the attaching map of yi´4. The result is a G-CW decomposition by cells

tr0, yiu, for i ď 7, i ‰ 4, of S8 – pH2q`. We can repeat this procedure to obtain a G-CW

decomposition of ppHnq`, ptq for any n, by cells tr0, yiuiı0 mod 4.

The unit sphere SpHnq admits a G-CW decomposition with G-pi ´ 1q-cells ei´1 “ yi X

SpHnq for i ď 4n´ 1.

In the limit, the ei provide a G-CW decomposition of SpH8q “ EG. That is, there

is a G-CW decomposition of EG with cells e4i, e4i`1, e4i`2 for i ě 0. The chain complex

CCW
˚ pEGq is then the free G-module on ei with

Bpe0q “ 0, (2.59)

Bpe4iq “ sp1` j ` j2
` j3

qe4i´2 for i ě 1,

Bpe4i`1q “ p1` jqe4i,

Bpe4i`2q “ p1` jqe4i`1 ` se4i.

The reader may check thatHpCCW
˚ pEGqq, for CCW

˚ pEGq as above, is a copy of F concentrated

in degree 0. As all contractible free G-chain complexes are chain homotopy equivalent, all
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G-CW complexes for EG have CW chain complex chain homotopic to that given above.

Fix a space X of type SWF so that Z “ CCW
˚ pX, ptq is a suspensionlike chain complex

of type SWF. (By Remark 2.1.33, for any class in E there will be such a representative X).

One may compute the reduced Borel homology of X in terms of Z, using (2.15) and (2.16).

In particular, we show how to determine apZq, bpZq, cpZq from Z.

Lemma 2.2.1. Let Z be a suspensionlike chain complex of type SWF at level t, with funda-

mental class ft P Z
S1

, of degree t, and A,B,C P Zě0. Then apZq ě 4A`t if and only if there

exist elements xi P Z, deg xi “ i, for all i with t ` 1 ď i ď t ` 4A ´ 3 and i ı t ` 2 mod 4,

so that

Bpxiq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ft if i “ t` 1

sp1` j ` j2 ` j3qxi´2 if i ” t` 3 mod 4, i ď t` 4A´ 3

p1` jqxi´1 if i ” tmod 4, i ď t` 4A´ 3

p1` jqxi´1 ` sxi´2 if i ” t` 1 mod 4, t` 1 ă i ď t` 4A´ 3.

(2.60)

Also, bpZq ě 4B ` t if and only if there exist elements xi P Z, deg xi “ i, for all i with

t` 1 ď i ď t` 4B ´ 2 and i ı t` 3 mod 4 so that

Bpxiq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

ft if i “ t` 1

p1` jqxt`1 if i “ t` 2

sp1` j ` j2 ` j3qxi´2 if i ” tmod 4, i ď t` 4B ´ 2

p1` jqxi´1 if i ” t` 1 mod 4, t` 1 ă i ď t` 4B ´ 2

p1` jqxi´1 ` sxi´2 if i ” t` 2 mod 4, t` 2 ă i ď t` 4B ´ 2.

(2.61)

Also, cpZq ě 4C ` t if and only if there exist elements xi P Z, deg xi “ i, for all i with

t` 1 ď i ď t` 4C ´ 1 and i ı tmod 4 so that

Bpxiq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ft if i “ t` 1

p1` jqxi´1 if i ” t` 2 mod 4, i ď t` 4C ´ 1

p1` jqxi´1 ` sxi´2 if i ” t` 3 mod 4, i ď t` 4C ´ 1

sp1` j ` j2 ` j3qxi´2 if i ” t` 1 mod 4, t` 1 ă i ď t` 4C ´ 1.

(2.62)
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Proof. By (2.3), we have, where ι˚ : HG
˚ pZ

S1
q Ñ HG

˚ pZq is the map induced by inclusion,

Im ι˚ “ tx P H
G
˚ pZq | x P Im vl for all l ě 0u. (2.63)

Further, HG
˚ pZ

S1
q is given by:

HG
˚ pZ

S1

q “ CCW
˚ pEGq bF ft,

which is an F-vector space with generators ei b ft in degree i ` t for i such that i ě 0 and

i ı 3 mod 4. Then apZq ě 4A` t is equivalent to e4A´4 b ft being a boundary in

CG
˚ pZq “ CCW

˚ pEGq bG Z.

That is, apZq ě 4A` t is equivalent to the existence of some

x “
i“t`4A´3

ÿ

i“t`1

et`4A´3´i b xi P C
CW
˚ pEGq bG Z,

so that Bpxq “ e4A´4 b ft, where xi P Z is of degree i. Writing out the differential of x, one

obtains the conditions (2.60) of the Lemma. Similarly, bpZq ě 4B` t if and only if e4B´3bft

is a boundary, and cpZq ě 4C ` t if and only if e4C´2 b ft is a boundary, from which one

obtains (2.61) and (2.62).

Lemma 2.2.2. Let Z be a suspensionlike chain complex of type SWF at level t, so that

cpZq ě 4C ` t. Then

CCW
˚ pΣCH

pR̃t
q
`, ptq ĺ Z.

Proof. The chain complex CCW
˚ pΣCHpR̃tq`, ptq consists of cells c0, . . . , ct constituting the S1-

fixed point set, and has free cells xi, of degree i, for i “ t`1, . . . , t`4C´1, for i ı t mod 4.

The fundamental class of the subcomplex CCW
˚ ppR̃tq`, ptq is ft “ p1`jqct (if t ą 0, or ft “ c0

if t “ 0). The differentials of the xi in CCW
˚ pΣCHpR̃tq`, ptq are given exactly by the relations

in (2.62). Then, since Z has elements satisfying (2.62), there exists a chain local equivalence

CCW
˚ pΣCH

pR̃t
q
`, ptq Ñ Z,

as needed.
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The problem of computing the Manolescu invariants of tensor products (and, thus, con-

nected sums, using Fact 3.1.5) then amounts to asking how to find towers of elements of the

form (2.60)-(2.62) in Z1 bF Z2 from towers in Z1 and Z2.

Remark 2.2.3. Say αpZq “ γpZq “ 0 for Z a chain complex of type SWF. Then Lemma

2.2.2 implies Z ľ 0 P CLE. By duality, ´αpZq “ γpZ˚q “ 0, where Z˚ is the dual of Z, so

Z˚ ľ 0. Combined, we see Z “ 0 P CLE. That is, if Z P CLE has αpZq “ γpZq “ 0, then

rZscl “ rC
CW
˚ pS0, ptqscl.

Theorem 2.2.4. For Z1, Z2 suspensionlike G-chain complexes of type SWF, we have:

αpZ1q ` αpZ2q ě αpZ1 bF Z2q ě αpZ1q ` γpZ2q, (2.64)

αpZ1q ` βpZ2q ě βpZ1 bF Z2q ě βpZ1q ` γpZ2q,

αpZ1q ` γpZ2q ě γpZ1 bF Z2q ě γpZ1q ` γpZ2q.

Proof. Let Zi be at level ti for i “ 1, 2. Then, by Lemma 2.2.2, CCW
˚ pΣ

pcpZ2q´t2q
4

HpR̃t2q`, ptq ĺ

Z2. By Lemma 2.1.45,

Z1 bF C
CW
˚ pΣ

pcpZ2q´t2q
4

H
pR̃t2q

`, ptq ĺ Z1 bF Z2.

However, Z1 bF C
CW
˚ pΣ

pcpZ2q´t2q
4

HpR̃t2q`, ptq is, by definition, pZ1,´t2,
´cpZ2q`t2

4
q.

Then

pZ1,´t2,
´cpZ2q ` t2

4
q ĺ Z1 bF Z2.

By Lemma 2.1.44, MppZ1,´t2,
´cpZ2q`t2

4
qq ĺ MpZ1 bF Z2q where M is any of α, β, or γ. By

Definition 2.1.27, we have γpZ2q “ cpZ2q{2. Then, again using Definition 2.1.27, we see

αpZ1,´t2,
´cpZ2q ` t2

4
q “ αpZ1q ` γpZ2q ď αpZ1 bF Z2q,

βpZ1,´t2,
´cpZ2q ` t2

4
q “ βpZ1q ` γpZ2q ď βpZ1 bF Z2q,

γpZ1,´t2,
´cpZ2q ` t2

4
q “ γpZ1q ` γpZ2q ď γpZ1 bF Z2q.

Thus, we have obtained the right-hand inequalities of (2.64).
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To obtain the left-hand inequalities, we recall from [30][Proposition 2.13] that αpXq “

´γpX˚q and βpXq “ ´βpX˚q where X is a space of type SWF and X˚ is Spanier-Whitehead

dual toX. The same argument as in [30][Proposition 2.13] implies that, for Z a chain complex

of type SWF, αpZq “ ´γpZ˚q and βpZq “ ´βpZ˚q where Z˚ is the dual chain complex. The

left-hand inequalities of (2.64) then follow by applying the right-hand inequalities to Z˚1 and

Z˚2 , and using the above rules for duality.

Theorem 2.2.5. For Z1, Z2 suspensionlike G-chain complexes of type SWF, we have:

γpZ1 bF Z2q ď βpZ1q ` βpZ2q ď αpZ1 bF Z2q. (2.65)

Proof. We construct a tower of elements in Z1bFZ2 satisfying (2.60) from towers in Z1 and Z2

satisfying (2.61). Say that Z1 is at level t1 and Z2 is at level t2, and denote the fundamental

class of ZS1

1 by ft1 and that of ZS1

2 by ft2 . We would like to apply Lemma 2.2.1, but, as

explained after the introduction of the chain local equivalence group, the tensor product

of suspensionlike chain complexes of type SWF is usually not suspensionlike. However, it

becomes suspenionlike after removing a large acyclic subcomplex, and we can indeed apply

Lemma 2.2.1, as follows.

Let txiui“t1`1,...,bpZ1q´2 and tyiui“t2`1,...,bpZ2q´2 be sequences satisfying (2.61) for Z1, Z2,

respectively. Then consider the sequence of elements:

xt1`1 b ft2 , sp1` j
2
qxt1`2 b ft2 , (2.66)

xt1`4 b ft2 , xt1`5 b ft2 , sp1` j
2
qxt1`6 b ft2 ,

xt1`8 b ft2 , xt1`9 b ft2 , sp1` j
2
qxt1`10 b ft2 ,

. . . ,

xbpZ1q´4 b ft2 , xbpZ1q´3 b ft2 , sp1` j
2
qxbpZ1q´2 b ft2 .

One may verify that the sequence in (2.66) satisfies (2.60). In fact, the sequence in (2.66)

generates a subcomplex that is just a subcomplex of Z1 satisfying (2.60) smashed against

ZS1

2 . To lengthen the sequence, we then incorporate chains coming from Z2:

sp1` jq3xbpZ1q´2 b yt2`1, sp1` jq
3xbpZ1q´2 b yt2`2, (2.67)
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sp1` jq3xbpZ1q´2 b yt2`4, sp1` jq
3xbpZ1q´2 b yt2`5, sp1` jq

3xbpZ1q´2 b yt2`6,

sp1` jq3xbpZ1q´2 b yt2`8, sp1` jq
3xbpZ1q´2 b yt2`9, sp1` jq

3xbpZ1q´2 b yt2`10

. . . ,

sp1` jq3xbpZ1q´2 b ybpZ2q´4, sp1` jq
3xbpZ1q´2 b ybpZ2q´3, sp1` jq

3xbpZ1q´2 b ybpZ2q´2.

One confirms that the sequence specified by (2.66)-(2.67) satisfies (2.60), and this establishes

apZ1 bF Z2q ě bpZ1q ` bpZ2q.

Using Definition 2.1.27, we obtain the right-hand inequality of (2.65). The left-hand side

follows from duality, as in the proof of Theorem 2.2.4.

2.2.2 Relationship with S1-invariants

We also recall the definition of the invariant d from [30], analogous to the Frøyshov invariant

of S1-equivariant Seiberg-Witten Floer theory.

Definition 2.2.6. Let Z be a suspensionlike chain complex of type SWF at level t.

dpZq “ min tr ” t mod 2 | Dx P HS1

r pZq, x P Im ul for all l ě 0u. (2.68)

Remark 2.2.7. In [30], dp is defined for coefficients in any field, rather than only F “ Z{2.

The invariant d in our notation is d2 of [30].

Analogous to the the calculation for a, b, and c in Lemma 2.2.1, we find a formula for

dpZq. We obtain:

Lemma 2.2.8. Let Z be a suspensionlike chain complex of type SWF at level t, and let ft

denote the fundamental class of ZS1
. Then dpZq ě 2D` t if and only if there exist elements

xi in Z, for i “ t` 1, . . . , t` 2D ´ 1 with i ” t` 1 mod 2, where deg xi “ i, such that

Bpxiq “

$

’

&

’

%

ft if i “ t` 1,

sp1` j2qxi´2 if t` 3 ď i ď t` 2D ´ 1.

(2.69)
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Proof. The proof is analogous to that of Lemma 2.2.1.

Definition 2.2.9. We let TDptq denote the chain complex given by

CCW
˚ ppR̃t

q
`, ptq ‘ xtxt`2i´1uyti“1,...,Du,

where xtxiuy is the free G-module with generators xi, with the following requirements. We

require that CCW
˚ ppR̃tq`, ptq Ď TDptq is a subcomplex, where CCW

˚ ppR̃tq`, ptq is as in Example

2.1.14. Also, we set deg xi “ i. The differentials of TDptq are as in (2.69); namely, Bpxt`1q is

the fundamental class of pR̃tq`:

Bpxt`1q “

$

’

&

’

%

p1` jqct if t ą 0

c0 if t “ 0.

The differential of xi for i ą t` 1 is given by Bpxiq “ sp1` jq2xi´2.

Fact 2.2.10. If t “ 0, the chain complex TDptq is the reduced CW complex of the unreduced

suspension Σ̃pS2D´1 > S2D´1q, where S1 acts on S2D´1 by complex multiplication, and j

interchanges the two copies of S2D´1 (see Definition 2.1.4).

Lemma 2.2.11. We have βpTDptqq “ t{2 and γpTDptqq “ t{2.

Proof. Let Q be the quotient complex TDptq{TDptq
S1

. By inspection BQ Ď p1` j2qQ. Then

there is no pair of elements x1, x2 P TDptq so that Bx1 “ ft and Bx2 “ p1`jqx1. By (2.61) and

(2.62), we obtain bpTDptqq “ cpTDptqq “ t. By Definition 2.1.27, the statement follows.

The motivation for considering the complex TDptq is that it is the “minimal” G-chain

complex for a fixed d-invariant, as made precise in the following lemma.

Lemma 2.2.12. Let Z be a suspensionlike chain complex at level t. Then dpZq ě 2D ` t if

and only if Z ľ TDptq.

Proof. The lemma follows immediately from Lemma 2.2.8.

We also recall the definition of the invariant δ from [30], analogous to Definition 2.1.9.
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Definition 2.2.13. For rpX,m, nqs P E, we set

δppX,m, nqq “ dpCCW
˚ pX, ptqq{2´m{2´ 2n (2.70)

The invariant δ does not depend on the choice of representative of the class rpX,m, nqs.

Proposition 2.2.14. For X1, X2 P E, δpX1 bX2q “ δpX1q ` δpX2q.

Proof. Entirely analogous to the proof of Theorem 2.2.4, we obtain

δpX1 bX2q ě δpX1q ` δpX2q.

Additionally, δpXq “ ´δpX˚q using the properties of δ under duality, where X˚ denotes the

dual of X. We then obtain:

δpX1 bX2q ď δpX1q ` δpX2q,

completing the proof.

We next relate the Pinp2q-invariants to d.

Proposition 2.2.15. Let Z be a suspensionlike G-chain complex of type SWF. Then αpZq ě

δpZq.

Proof. We will use the description of α from Lemma 2.2.1. Recall that EG is the total space

of the universal S1-bundle, by forgetting the action of j P G. Viewed thus, the chains

e0, jpp1` jqe2 ` se1q, e4, jpp1` jqe6 ` se5q, e8, jpp1` jqe10 ` se9q, e12, . . . (2.71)

descend to generators of homology in BS1 “ EGˆS1 tptu.

Say Z is at level t and let ft be the fundamental class of ZS1
. Using (2.71) and repeating

the proof of Lemma 2.2.1, dpZq is the degree of the minimal element of the form

e4i b ft or jpp1` jqe4i`2 ` se4i`1q b ft

that is not a boundary in CS1

˚ pZq “ CCW
˚ pEGq bCCW˚ pS1q Z.
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That is, dpZq ě 4D` 2` t if and only if e4D b ft is a boundary. Further, dpZq ě 4D` t

if and only if jpp1` jqe4D´2 ` se4D´3q b ft is a boundary. In particular, if, for some A ě 0,

dpZq ě 4A` t´ 2, we have e4A´4 bCCW˚ pS1q ft is a boundary.

However, if

e4A´4 b ft P C
CW
˚ pEGq bCCW˚ pS1q Z

is a boundary, then e4A´4 b ft P C
CW
˚ pEGq bG Z is also a boundary. Thus apZq ě 4A ` t,

and so apZq ě dpZq. Thus, using Definition 2.1.27, the Proposition follows.

2.3 Manolescu Invariants of unreduced suspensions

In this section, we calculate the Manolescu invariants of certain smash products of unreduced

suspensions.

2.3.1 Unreduced Suspensions

We draw from [30] the following calculation, which we will use in our application to Seifert

fiber spaces. Recall the definition of unreduced suspensions from Definition 2.1.4.

For X a free G-space, the cone of the inclusion map pΣ̃XqS
1
Ñ Σ̃X is ΣRX`, where

X` is X with a disjoint basepoint added. This gives the exact sequence, by taking Borel

homology,

. . . H̃G
˚`1pΣ

RX`q H̃G
˚ pS

0q H̃G
˚ pΣ̃Xq . . . (2.72)

The term H̃G
˚`1pΣ

RX`q is isomorphic to H̃G
˚ pX`q because of suspension-invariance of Borel

homology with F-coefficients, from (2.7). Furthermore, H̃G
˚ pX`q » H˚pX{Gq since G acts

freely on X. The exact sequence (2.72) becomes (as an exact sequence of Frq, vs{pq3q-

modules):

. . . H˚pX{Gq H˚pBGq H̃G
˚ pΣ̃Xq . . .

κ˚
(2.73)

Here κ˚ is induced from κ : X{G Ñ BG, the classifying space map. Let κd˚ denote the
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restriction of κ˚ to degree d. From the exactness of (2.73), we have:

apΣ̃Xq “mintd ” 0 mod 4 | κd˚ “ 0u, (2.74)

bpΣ̃Xq “mintd ” 1 mod 4 | κd˚ “ 0u ´ 1, (2.75)

cpΣ̃Xq “mintd ” 2 mod 4 | κd˚ “ 0u ´ 2. (2.76)

2.3.2 Smash Products

In this section we compute the Manolescu invariants for smash products of the form

n
ľ

i“1

Σ̃pS2δ̃i´1
> S2δ̃i´1

q. (2.77)

This calculation will enable us to find the Manolescu invariants for connected sums of certain

Seifert spaces in Section 3.1.

We will find it convenient to write:

Epxq “ 2

Z

x` 1

2

^

.

Theorem 2.3.1. Fix δ̃i P Zě1, and δ̃1 ď ¨ ¨ ¨ ď δ̃n. Let Xi “ S2δ̃i´1 > S2δ̃i´1 for i “ 1, . . . , n,

where Xi has a G-action given by S1 acting by complex multiplication on each factor, and j

acting by interchanging the sphere factors. Then:

δp
n

ľ

i“1

Σ̃Xiq “

n
ÿ

i“1

δ̃i, (2.78)

αp
n

ľ

i“1

Σ̃Xiq “ Ep
n

ÿ

i“1

δ̃iq, (2.79)

βp
n

ľ

i“1

Σ̃Xiq “ Ep
n´1
ÿ

i“1

δ̃iq, (2.80)

γp
n

ľ

i“1

Σ̃Xiq “ Ep
n´2
ÿ

i“1

δ̃iq, (2.81)

We will use Gysin sequences in the proof of Theorem 2.3.1; for convenience we record

the necessary fact here. As in [50][§III.2] there exists a Gysin sequence in homology for a

G-space X:

HG
˚ pXq HS1

˚ pXq HG
˚ pXq HG

˚´1pXq . . .
p1`jq¨´ π˚ qX´

(2.82)
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Figure 2.2: An image of X for n “ 1.

Figure 2.3: An image of X for n “ 2.

Here, the map p1` jq ¨ ´ is the map sending a cycle rxs P HG
˚ pXq, with chain representative

(not necessarily a cycle) x P HS1

˚ pXq, to rp1 ` jqxs P HS1

˚ pXq. The map π˚ comes from the

quotient π : EGˆS1 X Ñ EGˆG X. From (4.17), we obtain immediately:

Fact 2.3.2. Let rxs P HG
˚ pXq so that p1` jq ¨ rxs “ 0. Then rxs P Im q.

Proof of Theorem 2.3.1. We will use the description in Section 2.3.1 to perform the

required calculation. Let X “ ‹ni“1Xi, where ‹ni“1 denotes the join. We note

n
ľ

i“1

Σ̃Xi “ Σ̃p‹ni“1Xiq. (2.83)

Further, for each i, label one of the disjoint spheres of Xi by Si,0 and the other by Si,1. See

Figures 2.2, 2.3, and 2.4 for visualization of X. As in the figures, we consider X as if it were

a polyhedron, with “points” the Xi and “faces” (edges, etc.) the joins of subsets of tXiu.

We write

Fpk1,...,knq “ ‹
n
i“1Si,ki ,

where ki P t0, 1u for all i P t1, . . . , nu, for the “face” spanned by Si,ki (see Figure 2.4).

By Fact 2.2.10 and Lemma 2.2.12, δpΣ̃Xiq “ δ̃i. Proposition 2.2.14 then implies (2.78).

62



Figure 2.4: An image of X for n “ 3. Here, we only label a few of the faces.

Proof of (2.79). We observe that S2
řn
i“1 δ̃i´1 » ‹ni“1Si,0 Ď X, as S1-spaces, where the

action on both sides is given by complex multiplication. We then have a map:

S2
řn
i“1 δ̃i´1

> S2
řn
i“1 δ̃i´1

Ñ ‹
n
i“1Si,0 > ‹

n
i“1Si,1 Ď X

of G-spaces, where the action of j interchanges the factors of S2
řn
i“1 δ̃i´1 >S2

řn
i“1 δ̃i´1. Taking

the quotient by the action of G we have a diagram:

S2
řn
i“1 δ̃i´1 > S2

řn
i“1 δ̃i´1 X

CP
řn
i“1 δ̃i´1 X{G BG

(2.84)

with vertical arrows given by G-quotient. The composition H˚pCP
řn
i“1 δ̃i´1

q Ñ H˚pBGq com-

ing from the second line of (2.84) is the characteristic class map κ
˚,CP

řn
i“1

δ̃i´1 of S2
řn
i“1 δ̃i´1 >

S2
řn
i“1 δ̃i´1 as a G-bundle, so using Fact 2.1.1, we have:

κ
˚,CP

řn
i“1

δ̃i´1pU
´2t

řn
i“1 δ̃i´1

2
u
q “ v´t

řn
i“1 δ̃i´1

2
u.

Here U´i, for i, N ě 0, is the unique element of H˚pCPNq so that U ipU´iq “ 1, where 1 is

the unique nonzero element of H0pCPNq, and similarly q´i, v´i are, respectively, the unique
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elements of H˚pBGq so that qipq´iq “ 1 “ vipv´iq, where 1 P H0pBGq is nonzero. Then

Imκ˚ must be nonzero in degree 4t
řn
i“1 δ̃i´1

2
u, so

apΣ̃Xq ě 4t

řn
i“1 δ̃i ´ 1

2
u` 4.

However, κd˚ must be zero in all degrees d ě 4t
řn
i“1 δ̃i´1

2
u ` 4, since dimX “ 2

řn
i“1 δ̃i ´ 1.

Thus, using Definition 2.1.9:

αpΣ̃Xq “ Ep
n

ÿ

i“1

δ̃iq,

giving (2.79).

Proof of (2.80). We have a (G-equivariant) map φβ : S2
řn´1
i“1 δ̃i´1 ˆ S0 Ñ X (where j

acts by interchanging the factors S2
řn´1
i“1 δ̃i´1) given by the inclusion

‹
n´1
i“1 Si,0 > ‹

n´1
i“1 Si,1 Ď ‹

n
i“1pSi,0 > Si,1q.

We will use the map φβ to find classes in H˚pBGq in the image of κ˚ in degree congruent to

1 mod 4.

Let

F n´1
“

ž

pl1,...,ln´1qPL
‹
n´1
i“1 pSli,0 > Sli,1q,

where L is the set of all pn´1q-tuples of distinct elements of t1, . . . , nu. In the analogy from

the start of the proof, F n´1 is the “pn´ 1q-skeleton” of X.

Note that associated to a linear subspace CK Ď CN , there is an S1-equivariant subman-

ifold S2K´1 Ď S2N´1. That is, there is a map from GrpK,Nq, the space of all K-planes

in CN , to the space of all submanifolds S2K´1 Ď S2N´1. We will call an embedded sphere

obtained from a linear subspace this way a linear sphere. We also see that the inclusion

‹
n´1
i“1 Si,0 Ď Fp0,...,0q (2.85)

corresponds to the inclusion of a linear subspace C
řn´1
i“1 δ̃i Ă C

řn
i“1 δ̃i (i.e. (2.85) is linear).

Since GrpK,Nq is connected, we see that any two linear spheres S2K´1 Ñ Fpk1,...,knq, with

K ď
řn
i“1 δ̃i, are homotopic in Fpk1,...,knq, through linear spheres.
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Figure 2.5: The homotopy from S1,0 to jS1,0 in the case n “ 2. The sphere S1,0 is homotopic

to a copy of S2δ̃1´1 Ď S2,0 in Fp00q » S1,0 ‹ S2,0 » S2pδ̃1`δ̃2q´1. Furthermore, S2δ̃1´1 Ď S2,0

is homotopic to S1,1 in Fp10q. Thus, we have found a homotopy ‹n´1
i“1 Si,0 Ñ jp‹n´1

i“1 Si,0q for

n “ 2.

Further, we note that for any ‹n´1
i“1 Sli,kli Ă Fpk1,...,knq, there exists some linear sphere

S » S2K´1
Ď ‹

n´1
i“1 Sli,kli , (2.86)

for all K ď
řn´1
i“1 δ̃i (here we have used δ̃1 ď ¨ ¨ ¨ ď δ̃n).

In particular, fixing K ď
řn´1
i“1 δ̃i, we have a linear sphere S as in (2.86). Then S

is S1-equivariantly homotopic (through linear spheres, in Fpk1,...,knq) to a copy of S2K´1 in

‹
n´1
i“1 Sl1i,kl1

i

, for any other sequence of integers 1 ď l11 ă ¨ ¨ ¨ ă l1n´1 ď n. Inductively then, S is

homotopic to a subset of

‹
n´1
i“1 Sl2i ,k1l2

i

,

for any sequences l2 P L, and k1i P t0, 1u, in X. It follows that there exists a homotopy from

‹
n´1
i“1 S

2δ̃i´1
i,0 to ‹n´1

i“1 S
2δ̃i´1
i,1 “ jp‹n´1

i“1 S
2δ̃i´1
i,0 q in X. See Figures 2.5 and 2.6 for illustrations in

the n “ 2, 3 cases.

Now we take advantage of the Gysin sequence from (4.17). Let Φα denote the fundamental

class of the projective space

CP
řn´1
i“1 δ̃i´1

» pS2
řn´1
i“1 δ̃i´1

ˆ S0
q{G » p‹n´1

i“1 Si,0q{S
1,

and let ι˚ denote the map on homology induced by the inclusion:

ι : p‹n´1
i“1 Si,0 > ‹

n´1
i“1 Si,1q{GÑ X{G.

Then, as in the argument proving (2.79), we have κ˚pι˚pΦαqq “ v´t

řn´1
i“1

δ̃i´1

2
u.
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Figure 2.6: The homotopy ‹n´1
i“1 Si,0 Ñ jp‹n´1

i“1 Si,0q, for n “ 3. In Fp000q we have S1,0 ‹S2,0 »

S2pδ̃1`δ̃2q´1 homotopic to a copy S 1 of S2pδ̃1`δ̃2q´1 contained in S2,0 ‹ S3,0. The sphere S 1 is

then homotopic in Fp100q to S2 Ď S1,1 ‹ S3,0. In Fp110q, S
2 is homotopic to S3 Ď S1,1 ‹ S2,1,

so we have constructed a homotopy ‹2
i“1Si,0 Ñ jp‹2

i“1Si,0q, as needed. A similar procedure

applies for n ě 4.
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We check that ι˚pΦαq is in the image of q (for the action of q on H˚pX{Gq). Indeed, we

have that p1 ` jq ¨ ι˚pΦαq, viewed as a class of X{S1, is zero by the above homotopy from

‹
n´1
i“1 Si,0 to ‹n´1

i“1 Si,1 “ jp‹n´1
i“1 Si,0q. Then, by Fact 2.3.2, ι˚pΦαq is in the image of q X´.

Thus, there exists some class ΦX
β P H

G
˚ pXq so that qΦX

β “ ι˚pΦαq. It follows that κ˚pΦ
X
β q

must be nonzero, and we obtain q´1v´t

řn´1
i“1

δ̃i´1

2
u P Imκ˚. Using (2.75), we see:

bpΣ̃Xq ě 2Ep
n´1
ÿ

i“1

δ̃iq. (2.87)

Using the Definition 2.1.9 of β, that is:

βpΣ̃Xq ě Ep
n´1
ÿ

i“1

δ̃iq. (2.88)

By Theorem 2.2.4,

βpΣ̃Xq ď αpΣ̃p‹n´1
i“1 Xiqq ` βpΣ̃Xnq

ď Ep
řn´1
i“1 δ̃iq ` 0.

(2.89)

Here we have used Lemma 2.2.11 to see βpΣ̃Xnq “ 0. Finally, (2.88) and (2.89) together

imply (2.80).

Proof of (2.81). We again apply the Gysin sequence after constructing a homotopy.

Repeating the argument from (2.80), we construct a homotopy, where I is the unit interval:

ψ : I ˆ S2
řn´2
i“1 δ̃i´1

Ñ X

so that ψp0,´q is a linear sphere:

S2
řn´2
i“1 δ̃i´1

Ñ ‹
n´2
i“1 Si,0,

and so that ψp1,´q is a linear sphere:

S2
řn´2
i“1 δ̃i´1

Ñ ‹
n´2
i“1 Si,1 “ jp‹n´2

i“1 Si,0q.

Following the argument of (2.80), we see that we may choose ψ to lie entirely within F n´1, the

“pn´ 1q-skeleton” of X. The construction of ψ gives that it is a composition of homotopies

in the faces:

F n´1
pk1,...,knq

“ F n´1
X Fpk1,...,knq,
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Figure 2.7: The tetrahedron corresponding to the face Fp0000q, where n “ 4. In this example,

the image of ψ1 is contained in S1,0 ‹S2,0 ‹S3,0, and ψ1 takes a sphere in S1,0 ‹S2,0 to a sphere

in S2,0 ‹ S3,0. Further, for this example, L1 “ p1, 2, 4q, and L2 “ p2, 3, 4q. The path followed

by ψL is pictured.

so that in each Fpk1,...,knq, ψ is a homotopy through linear spheres.

We will construct a homotopy from ψ to jψ (perhaps up to reparameterization in the

domain). Knowing that the homotopy ψ was constructed by combining homotopies in the

“faces” Fpk1,...,knq, we constuct a homotopy from ψ to jψ by considering homotopies between

homotopies in the “faces”.

Let S Ď ‹n´2
i“1 Sli,kli Ă Fpk1,...,knq where 1 ď l1 ă ¨ ¨ ¨ ă ln´2 ď n, and S » S2K´1 for some

K ď
řn´2
i“1 δ̃i. Let ψ1 be a homotopy, through linear spheres, in Fpk1,...,knq, from S to some

S 1 » S2K´1 Ď ‹
n´2
i“1 Sl1i,kl1

i

, where 1 ď l11 ă ¨ ¨ ¨ ă l1n´2 ď n.

Let L1, . . . , Lm P L so that

pl1, . . . , ln´2q Ă L1 and pl11, . . . , l
1
n´2q Ă Lm,

and so that Li and Li`1 differ in only one place; see Figure 2.7. Then there exists a homotopy:

ψL : I ˆ S Ñ Fpk1,...,knq,

so that ψLp0,´q is the inclusion of S and ψLp1,´q is ψ1p1,´q, and so that

ψLpr
p´ 1

m
,
p

m
s,´q Ă ‹lPLpSl,kl ,

for 1 ď p ď m. The homotopy ψL|r p´1
m
, p
m
sˆS is constructed exactly as in the proof of (2.80).
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Next, let ψ´L : I ˆ S Ñ Fpk1,...,knq be given by ψ´L px, yq “ ψLp1´ x, yq.

Consider the concatenation

H “ ψ´L ˚ ψ
1 : I ˆ S Ñ Fpi1,...,inq (2.90)

obtained by applying ψ1 and then running ψL backwards. Since

ImHp0,´q “ ImHp1,´q,

we see that H corresponds to a loop in GrpK´1,
řn
i“1 δ̃i´1q. However, π1pGrpK´1,

řn
i“1 δ̃i´

1qq “ 1, from which we see that H is null-homotopic. That is, ψ1 is homotopic to ψL (again,

perhaps up to reparameterization in the domain), as needed.

As in the proof of (2.80), we compose a sequence of the ψ1 to ψL homotopies to see that

ψ is homotopic to jψ, as in Figure 2.8. Concatenating the reverse pjψq´ and ψ, we obtain

a map:

pjψq´ ˚ ψ : I ˆ S2
řn´2
i“1 δ̃i´1

Ñ X.

Since Im jψp1q “ Im ψp0q, by reparameterizing the domain S2
řn´2
i“1 δ̃i´1 we obtain a map:

ι :“ pjψq´ ˚ ψ : S1 ˜̂S2
řn´2
i“1 δ̃i´1

Ñ X.

Here S1 ˜̂S2
řn´2
i“1 δ̃i´1 is a space obtained by gluing the ends of I ˆ S2

řn´2
i“1 δ̃i´1.

The map ι descends to quotients by S1 and G to give maps ιS1 and ιG, respectively.

Now that we have constructed the homotopy between ψ and jψ, we repeat the Gysin

sequence argument we have already used in proving (2.80).

Let Φα denote the fundamental class of

p1ˆ S2
řn´2
i“1 δ̃i´1

q{S1
» CP

řn´2
i“1 δ̃i´1

Ď pS1 ˜̂S2
řn´2
i“1 δ̃i´1

q{G.

We have that p1`jq¨Φα “ 0 as a homology class in HS1

˚ pS
1 ˜̂S2

řn´2
i“1 δ̃i´1q, since the homotopy

ψ takes Φα to jΦα. Then Φα, viewed as a class in HG
˚ pS

1 ˜̂S2
řn´2
i“1 δ̃i´1q, is in Im q. Let Φβ

denote the fundamental class of

pS1 ˜̂S2
řn´2
i“1 δ̃i´1

q{G.
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Figure 2.8: A homotopy from ψ to jψ in the case n “ 3. Here ψ is a homotopy from S1,0

to jS1,0, and each stage pictured is one instance of the above construction of ψL. Composing

these intermediate homotopies in the faces, we have the homotopy between ψ and jψ.
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Figure 2.9: The shaded region C denotes the relative fundamental class of pr0, 1
2
s ˆ

S2
řn´2
i“1 δ̃i´1q{S1, the domain of ψ. We see from the figure that the quotient by the ac-

tion of Z{2 “ G{S1 takes pr0, 1
2
s ˆ S2

řn´2
i“1 δ̃i´1q{S1q surjectively onto pS1 ˜̂S2

řn´2
i“1 δ̃i´1q{G.

Thus C is indeed a chain representative for Φβ, as a class in pS1 ˜̂S2
řn´2
i“1 δ̃i´1q{S1.

Then Φβ P H
G
˚ pS

1 ˜̂S2
řn´2
i“1 δ̃i´1q is the only class in degree 2

řn´2
i“1 δ̃i ´ 1, so qΦβ “ Φα. Our

next goal will be to show that p1` jq ¨ ιG,˚pΦβq “ 0, as a class in HS1

˚ pXq.

Note that a chain representative C of Φβ in pS1 ˜̂S2
řn´2
i“1 δ̃i´1q{S1 is the relative funda-

mental class of pr0, 1
2
s ˆ S2

řn´2
i“1 δ̃i´1q{S1, as in Figure 2.9. Then we see that p1 ` jq ¨ Φβ is

the fundamental class of pS1 ˜̂S2
řn´2
i“1 δ̃i´1q{S1. It follows that

0 “ ιS1,˚pp1` jq ¨ Φβq “ p1` jq ¨ ιG,˚pΦβq,

since

ψpr0, 1s ˆ S2
řn´2
i“1 δ̃i´1

q and jψpr0, 1s ˆ S2
řn´2
i“1 δ̃i´1

q

are homotopic in X. By Fact 2.3.2, we have ιG,˚pΦβq “ qΦX
γ for some ΦX

γ P H
G
˚ pXq.

As in the argument for (2.80) we note that κ˚ιG,˚pΦαq ‰ 0, since κ˚ιG,˚ is the characteris-

tic class map for S1 ˜̂S2
řn´2
i“1 δ̃i´1 as a G-bundle. Then κ˚ιG,˚pΦβq is nonzero, because κ˚ιG,˚

must be Frq, vs{pq3q-equivariant. Similarly, we see κ˚pΦ
X
γ q P H˚pBGq must be nonzero, from

which we obtain

q´2v´t

řn´2
i“1

δ̃i´1

2
u
P Imκ˚.
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Thus:

cpΣ̃Xq ě 2Ep
n´2
ÿ

i“1

δ̃iq,

so

γpΣ̃Xq ě Ep
n´2
ÿ

i“1

δ̃iq. (2.91)

From Theorem 2.2.4, we have the inequalities (using 0 ď γpΣ̃pXn´1 ‹ Xnqq ď βpΣ̃Xn´1q `

βpΣ̃Xnq “ 0):

γpΣ̃Xq ď αpΣ̃p‹n´2
i“1 Xiqq ` γpΣ̃pXn´1 ‹Xnqq

ď Ep
řn´2
i“1 δ̃iq ` 0.

(2.92)

Finally, (2.91) and (2.92) imply (2.81).
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CHAPTER 3

The Seiberg-Witten Floer Stable homotopy type

3.1 Seiberg-Witten Floer spectra and Floer homologies

3.1.1 Finite-dimensional approximation

In this section we review the finite-dimensional approximation to the Seiberg-Witten equa-

tions from Manolescu [28],[30].

Let S be the spinor bundle of the three-manifold with spin structure pY, sq, and ΓpSq its

space of sections. Let D denote the Dirac operator. Let W “ ker d˚ ‘ ΓpSq be the global

Coulomb slice, a Hilbert subspace of an appropriate Sobolev completion of Ω1pY, iRq‘ΓpSq.

For λ P p0,8q, the Seiberg-Witten equations of pY, s, gq determine a sequence of vector fields

X gC
λ on finite-dimensional vector spaces W λ. Here W λ is the span of eigenvectors of the

elliptic operator ˚d ` D acting on W , with eigenvalue in p´λ, λq. The vector field X gC
λ on

W λ is an approximation of the Seiberg-Witten equations restricted to W λ. The action of

G “ Pinp2q on ΓpSq restricts to a smooth action on W λ that commutes with the flow defined

by X gC
λ , and we define an action of G on Ω1 by letting j act by ´1 and S1 act trivially.

There is a distinguished subspace W p´λ, 0q Ă W λ consisting of the span of the eigenvectors

with eigenvalue in p´λ, 0q. Following [28], we will use the sequence of flows on the spaces

W λ to define an invariant of pY, sq.

We next recall a few properties of the Conley Index. For a one-parameter family φt of

diffeomorphisms of a manifold M and a compact subset A ĂM , we define:

InvpA, φq “ tx P A | φtpxq P A for all t P Ru.

Then we say that a set S Ă M is an isolated invariant set if there is some A as above
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such that S “ InvpA, φq Ă intpAq. Conley proved in [5] that one may associate to any

isolated invariant set S a pointed homotopy type IpSq, an invariant of the triple pM,φt, Sq.

Floer [9] and Pruszko [42] defined an equivariant version, so that if a compact Lie group K

acts smoothly on M preserving the flow φt, then we may associate a pointed K-equivariant

homotopy type IKpSq. The Conley Index, as well as its equivariant refinement, are invariant

under continuous changes of the flow, if S is isolated in an appropriate sense.

Manolescu showed in [30] that Sλ, the set of all critical points of X gC
λ , along with all

trajectories of finite type between them contained in a certain sufficiently large ball in W λ, is

an isolated invariant set, and that the flow X gC
λ is G-equivariant. We then write IλpY, s, gq “

IGpS
λq. To make this construction independent of λ, we desuspend by W p´λ, 0q. Then we

can define a pointed stable homotopy type associated to a tuple pY, s, gq:

SWF pY, s, gq “ Σ´W p´λ,0qIλpY, s, gq. (3.1)

The desuspension in (3.1) is interpreted in E. That is,

SWF pY, s, gq “ pIλpY, s, gq, dimR W p´λ, 0qpR̃q, dimH W p´λ, 0qpHqq,

where W p´λ, 0q – W p´λ, 0qpR̃q ‘W p´λ, 0qpHq, and W p´λ, 0qpR̃q is a direct sum of copies

of R̃. Similarly, W p´λ, 0qpHq is a direct sum of copies of H.

Manolescu showed in [30] that SWF pY, s, gq is well-defined, for λ sufficiently large. Fur-

ther, we must remove the dependence on the choice of metric g. We use npY, s, gq, a rational

number which controls the spectral flow of the Dirac operator and may be expressed as a

sum of eta invariants; for its definition, see [28]. We have:

SWF pY, sq “ Σ´
1
2
npY,s,gqHSWF pY, s, gq. (3.2)

Interpreted in E, if SWF pY, s, gq “ pX,m, nq, then SWF pY, sq “ pX,m, n` 1
2
npY, s, gqq.

In addition to the approximate flow above, we may also consider perturbations of the

flow as in [23].

For fixed k ě 1, we call

CpY, sq “ L2
kΩ

1
pY, iRq ‘ L2

kpY ;Sq
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the configuration space for the Seiberg-Witten equations, where L2
kΩ

1pY, iRq is the space of

L2
k 1-forms. We write L for the Chern-Simons-Dirac functional and G for the L2

k`1-gauge

transformations. Let X be the L2-gradient of L on CpY, sq. We call a map

q : CpY, sq Ñ T0, (3.3)

a perturbation, where Tj denotes the L2
j completion of the tangent bundle to CpY, sq. Then

we write

Xq “ X ` q : CpY, sq Ñ T0.

Let W denote the global Coulomb slice in CpY, sq and T gC
k the L2

k completion of the tangent

bundle to W . Lidman and Manolescu also consider a version of Xq, obtained by projecting

trajectories of Xq to W :

X gC
q : W Ñ T gC

0 .

Lidman and Manolescu prove that there is a bijective correspondence between finite-energy

trajectories of X gC
q and those of Xq, modulo the appropriate gauges.

We write X gC
q,λ for the finite-dimensional approximation of X gC

q in W λ (recalling that W λ

are finite-dimensional subspaces of W ). For very tame perturbations in the sense of [25], we

may define IλpY, s, g, qq as above using X gC
q,λ in place of X gC

λ . Furthermore, from IλpY, s, g, qq

we may also define SWF pY, s, g, qq analogously to the unperturbed case. Proposition 6.6 of

[25] shows that the spectrum is independent of q. That is:

SWF pY, s, g, qq “ SWF pY, s, gq.

We also have the attractor-repeller sequence of [30]. For a generic perturbation q we may

arrange that the reducible critical point of Xq is nondegenerate and that there are no irre-

ducible critical points x with Lpxq P p0, εq for some ε ą 0. Denote the reducible critical point

by Θ. Let T “ T λ be the set of all critical points of X gC
q,λ and points on flows of finite type

between them. Then, for all ω ą 0, we have the following isolated invariant sets:

‚ T irr
ąω: the set of irreducible critical points x with Lqpxq ą ω, together with all points

on the flows between critical points of this type.
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‚ Tďω : Same, but with Lqpxq ď ω, and allowing x to be reducible.

Then we have the exact sequence:

IpTďωq Ñ IpT q Ñ IpT irr
ąωq Ñ ΣIpTďωq Ñ . . . (3.4)

We record a theorem of [30].

Theorem 3.1.1 (Manolescu [30],[31]). Associated to a three-manifold with b1 “ 0 and a

choice of spin structure pY, sq there is an invariant SWF pY, sq, the Seiberg-Witten Floer

spectrum class, in E. A spin cobordism pW, tq from Y1 to Y2, with b2pW q “ 0, induces a

map SWF pY1, t|Y1q Ñ SWF pY2, t|Y2q. The induced map is a homotopy-equivalence on the

S1-fixed-point set.

Remark 3.1.2. The three-manifold Y in Theorem 3.1.1 may be disconnected.

Definition 3.1.3. For pY, sq a spin rational homology three-sphere, the Manolescu invariants

αpY, sq, βpY, sq, and γpY, sq are defined by αpSWF pY, sqq, βpSWF pY, sqq, and γpSWF pY, sqq,

respectively.

Theorem 3.1.4 ([30]). Let pY, sq be a spin rational homology three-sphere, and let ´Y

denote Y with orientation reversed. Then

αpY, sq “ ´γp´Y, sq, βpY, sq “ ´βp´Y, sq, γpY, sq “ ´αp´Y, sq.

Furthermore δpY, sq “ ´δp´Y, sq.

From Theorem 3.1.1, the local and chain local equivalence classes of SWF pY, sq, namely

rSWF pY, sqsl and rSWF pY, sqscl, respectively, are homology cobordism invariants of the

pair pY, sq. Since the G-Borel homology of SWF pY, sq depends only on rSWF pY, sqscl,

we have that αpY, sq, βpY, sq, and γpY, sq depend only on the chain local equivalence class

rSWF pY, sqscl.

Fact 3.1.5. Let Y1, Y2 be rational homology three-spheres with spin structures t1, t2 and

pXi,mi, niq “ SWF pYi, tiq for i “ 1, 2. Then

SWF pY1#Y2, t1#t2q ”l pX1 ^X2,m1 `m2, n1 ` n2q.

76



Proof. According to [30], the Seiberg-Witten Floer spectrum class of the disjoint union Y1>Y2

is given by:

SWF pY1 > Y2q ”l pX1 ^X2,m1 `m2, n1 ` n2q.

On the other hand Y1 > Y2 is homology cobordant to the connected sum Y1#Y2. Since the

local equivalence class is a homology cobordism invariant, we obtain the claim.

By Theorem 3.1.1 and Fact 3.1.5, we have a sequence of homomorphisms:

θH3
SWF
ÝÝÝÑ LE

C˚
ÝÑ CLE. (3.5)

3.1.2 Approximate Trajectories

Fix q a very tame admissible perturbation, as in Definitions 4.9 and 4.19 of [25]. Here we

will record several results of Lidman-Manolescu [25] for use in Section 4.2. The first result

is a corollary of Proposition 7.7 of [25]:

Proposition 3.1.6. [25] For λ sufficiently large, there is a grading-preserving isomorphism

between the set of irreducible critical points of the finite-dimensional approximation X gC
q,λ and

the set of irreducible critical points of Xq on CpY, sq{G.

For x, y critical points of X gC
q,λ , let Mλprxs, rysq denote the set of unparameterized trajecto-

ries of X gC
q,λ from rxs to rys contained in the ball used to define Sλ. Similarly, we let Mprxs, rysq

be the set of unparameterized trajectories between critical points of Xq on CpY, sq{G.

Proposition 3.1.7 ([25] Proposition 13.1). There is a correspondence of degree one trajec-

tories compatible with Proposition 3.1.6. That is, if rxλs, ryλs are irreducible critical points,

with grpxλq “ grpyλq ` 1, of X gC
q,λ corresponding to irreducible critical points rxs, rys of Xq,

respectively, then there is an identification

Mprxs, rysq “Mλprxλs, ryλsq.

The condition grpxq “ grpyq ` 1 allows the application of an inverse function theorem.

However, without the grading assumption, a compactness result still holds. That is, Propo-

sition 12.17 of [25] implies:
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Proposition 3.1.8. [25] Let rxs and rys be critical points of Xq corresponding to critical

points rxλs, ryλs of X gC
q,λ . If Mprxs, rysq “ H, then Mλprxλs, ryλsq “ H.

We will also need the following Theorem from [25].

Theorem 3.1.9. [25] Let pY, sq be a rational homology three-sphere with spinc structure.

Then

~HMpY, sq “ SWFH S1

pY, sq,

as absolutely graded FrU s-modules, where ~HMpY, sq denotes the “to” version of monopole

Floer homology defined in [23].

3.1.3 Connected Seiberg-Witten Floer homology

Definition 3.1.10. Let pY, sq be a rational homology three-sphere with spin structure, and

rSWF pY, sqs “ pZ,m, nq P CE,

with Z suspensionlike. The connected Seiberg-Witten Floer homology of pY, sq, written

SWFHconnpY, sq, is the quotient pHS1

˚ pZq{pH
S1

˚ pZ
S1
q`HS1

˚ pZinessqqqrm`4ns, where Ziness Ă Z

is a maximal inessential subcomplex. By Theorems 2.1.39 and 3.1.1, the isomorphism class

of SWFHconnpY, sq is a homology cobordism invariant.

Remark 3.1.11. We could have instead considered the quotient pHS1

˚ pZq{H
S1

˚ pZinessqqrm`

4ns, which is isomorphic to SWFHconnpY, sq ‘ T `d where d is the Heegaard Floer correction

term of pY, sq. As defined above, SWFHconnpY, sq has no infinite FrU s-tower, because of the

quotient by HS1

˚ pZ
S1
q. Further, let Zconn denote the connected complex (Definition 2.1.38)

of Z. It is clear from the construction that

SWFHconnpY, sq “ pH
S1

˚ pZconnq{H
S1

˚ pZ
S1

qqrm` 4ns.

Remark 3.1.12. Let φ be the canonical isomorphism:

φ : HS1

pSWF pY, sqq Ñ ~HMpY, sq Ñ HF`
pY, sq,
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provided by, for the first map, [25], and for the second, [4] and [24]. Let π be the projection

π : HF`pY, sq Ñ HFredpY, sq. We note that SWFHconnpY, sq is naturally isomorphic to the

quotient

πpφpHS1

˚ pSWF pY, sqqq{φpHS1

˚ pZinessqq.

Then SWFHconnpY, sq can be viewed as an FrU s-summand of HFredpY, sq.

79



CHAPTER 4

Seiberg-Witten Floer homotopy of Seifert spaces

4.1 j-split spaces

In this section we introduce j-split spaces of type SWF, and compute their G-Borel homology.

We will see in Lemma 4.2.3 that the Seiberg-Witten Floer spectra of Seifert spaces are j-

split. The computation of this section will then provide the G-equivariant Seiberg-Witten

Floer homology of Seifert spaces.

Definition 4.1.1. We call a space X of type SWF j-split if X{XS1
may be written:

X{XS1

» X` _X´,

for some S1-space X`, where » denotes G-equivariant homotopy equivalence, and j acts on

the right-hand side by interchanging the factors (that is, jX` “ X´). Similarly, we call a

G-chain complex pZ, Bq of type SWF j-split if p1q ´ p3q below are satisfied.

1. There exists fred P Z such that xfredy is the fixed-point set, ZS1
, of Z. Furthermore

sfred “ 0, jfred “ fred. In particular, Z is of type SWF at level 0.

2. The fixed-point set ZS1
is a subcomplex of Z (that is, Bpfredq “ 0).

3. We have:

Z{ZS1

“ pZ` ‘ jZ`q,

where Z` is a CCW
˚ pS1q chain complex, and j acts on the right-hand side by inter-

changing the factors.

80



Recall that ‘̃ denotes a direct sum of G-modules that is not necessarily a direct sum of

chain complexes. For a j-split chain complex Z we may write, referring to jZ` by Z´:

Z “ pZ` ‘ Z´q‘̃xfredy.

In the above, Z is to be thought of as the reduced CW chain complex of a G-space X,

and fred is to be thought of as the chain corresponding to the S1-fixed subset of X. The

requirement that Z be a chain complex of type SWF at level 0 will be used in Section 4.1.2

to calculate the chain local equivalence class of j-split chain complexes.

A j-split space X with XS1
» S0 admits a CW chain complex which is a j-split chain

complex. For X a j-split space of type SWF at level s, we use the following Lemma to relate

the CW chain complex of X to j-split complexes.

Lemma 4.1.2. Let X be a j-split space of type SWF at level s. Then

rCCW
˚ pX, ptqs “ rpZ,´s, 0qs P CE,

for some j-split chain complex Z.

Proof. The chain complex CCW
˚ pX, ptq may be written

CCW
˚ pX, ptq “ R‘̃F, (4.1)

where R “ CCW
˚ pXS1

, ptq – CCW
˚ ppR̃sq`, ptq is a subcomplex and F is a free G-chain com-

plex. Since X is j-split, the decomposition (4.1) may be chosen so that

F “ F` ‘ jF`, (4.2)

where F` is a CCW
˚ pS1q-chain complex, and j acts on F by interchanging F` and jF`.

We first show that we may choose F satisfying (4.1) and (4.2) and so that, for x P F

homogeneous,

pBxq|R “ 0, (4.3)

if deg x ‰ s` 1.
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Indeed, fix some F satisfying (4.1) and (4.2), and let txiu be a homogeneous basis for F .

Let F pnq denote the G-chain complex generated by xi of degree less than or equal to n. We

define new chain complexes F 1pnq so that R‘̃F 1pnq “ R‘̃F pnq, and so that F 1 “
Ť

n F
1pnq

satisfies (4.1)-(4.3). Let πn denote projection πn : R‘̃F 1pnq Ñ R onto the first factor. Set

F 1p0q “ 0. Assume we have defined F 1pnq for n ď N ă s, so that (4.3) holds for all x P F 1pnq.

We define F 1pN ` 1q by defining generators x1i of F 1pN ` 1q{F 1pNq corresponding to the

generators xi of F pN ` 1q{F pNq. For each xi of degree N ` 1 so that πNpBxiq “ 0, let

x1i “ xi. If instead xi is of degree N ` 1 and πNpBxiq ‰ 0, then

BpπNpBxiqq “ πNpB
2
pxiqq “ 0.

So, πNpBxiq “ p1 ` jqcN , since p1 ` jqcN is the only nonzero cycle of R in grading N (or,

when N “ 0, πNpBxiq “ c0). However, by assumption, N ă s, so πNpBxiq “ BcN`1. Then,

we let x1i “ xi ` cN`1.

Let

F 1pN ` 1q “ xF 1pNq,
ď

ti|deg xi“N`1u

x1iy.

By construction R‘̃F 1pN ` 1q “ R‘̃F 1pNq, and (4.3) holds for all x P F 1pN ` 1q.

For N ě s, define F 1pN ` 1q by F 1pN ` 1q “ xF 1pNq,
Ť

ti|deg xi“N`1u xiy.

From the construction, it is clear that F 1 satisfies (4.1)-(4.3), as needed.

Take F satisfying (4.1)-(4.3). Consider the G-chain complex Z “ CCW
˚ pS0, ptq‘̃F rss,

where CCW
˚ pS0, ptq “ xc0y is a subcomplex. To define the differentials F rss Ñ CCW

˚ pS0, ptq

in Z, we set, for xrss P F rss:

pBxrssq|CCW˚ pS0,ptq “ c0, (4.4)

if pBxq|R “ p1` jqcs, and

pBxrssq|CCW˚ pS0,ptq “ 0 (4.5)

if pBxq|R “ 0.

By the construction of F , (4.4) and (4.5) determine the differential on Z.
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Finally, consider the suspension:

ΣR̃sZ “ ΣR̃s
pCCW
˚ pS0, ptqq‘̃ΣR̃s

pF rssq » R‘̃ΣR̃sF rss.

We note, as in the proof of Lemma 2.1.28, that ΣR̃sF rss » F r0s “ F. Then, there is a

homotopy equivalence, constructed exactly as in the proofs of Lemmas 2.1.28 and 2.1.30:

ΣR̃sZ » R‘̃F. (4.6)

It follows that rpZ,´s, 0qs “ rCCW
˚ pX, ptqs P CE, as needed.

Note also that any j-split chain complex occurs as the CW chain complex of some j-split

space.

Remark 4.1.3. j-splitness is not the same as Floer KG-splitness of [31].

4.1.1 Calculation of H̃G
˚ pXq

In this section we will compute the G-equivariant homology of a j-split space in terms of its

S1-homology.

Let X be a j-split space of type SWF at level m with X{XS1
“ X` _X´. The Puppe

sequence

XS1

Ñ X Ñ X{XS1

Ñ ΣXS1

leads to a commutative diagram, where the rows are exact:

EG` ^S1 XS1
ÝÝÝÑ EG` ^S1 X ÝÝÝÑ EG` ^S1 pX` _X´q ÝÝÝÑ EG` ^S1 ΣXS1

§

§

đ

§

§

đ

§

§

đ

§

§

đ

EG` ^G X
S1
ÝÝÝÑ EG` ^G X ÝÝÝÑ EG` ^G X{X

S1
ÝÝÝÑ EG` ^G ΣXS1

.
(4.7)

In (4.7) the vertical maps are obtained by taking the quotient by the action of j P G. The

diagram (4.7) itself yields a commutative diagram for Borel homology, where the rows are

exact:

H̃S1

˚ pX
S1
q ÝÝÝÑ H̃S1

˚ pXq ÝÝÝÑ H̃S1

˚ pX`q ‘ H̃
S1

˚ pX´q
dS1 r´1s
ÝÝÝÝÝÑ H̃S1

˚ pΣX
S1
q

φ1

§

§

đ

φ2

§

§

đ

φ3

§

§

đ

Σφ1

§

§

đ

H̃G
˚ pX

S1
q

ιG
ÝÝÝÑ H̃G

˚ pXq
πG

ÝÝÝÑ H̃G
˚ pX{X

S1
q

dGr´1s
ÝÝÝÝÑ H̃G

˚ pΣX
S1
q.

(4.8)
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Specifically, we view (4.8) as a diagram of Frq, vs{pq3q modules, where v acts on the top

row by U2 and q annihilates the top row. An FrU s-module M viewed as an Frq, vs{pq3q-

module this way is denoted res
FrUs
Frq,vs{pq3q

M . More precisely, let φ : Frq, vs{pq3q Ñ FrU s be

v Ñ U2, q Ñ 0, and let res
FrUs
Frq,vs{pq3q

be the corresponding restriction functor. The restriction

takes the simple FrU s-module T `d pnq to

res
FrUs
Frq,vs{pq3q

T `d pnq “ V`d pt
n` 1

2
uq ‘ V`d`2pt

n

2
uq. (4.9)

We define the maps dS1 : H̃S1

˚ pX`q Ñ H̃S1

˚ pX
S1
q and dG : H̃G

˚ pX{X
S1
q Ñ H̃G

˚ pX
S1
q by

shifting by 1 the degree of the horizontal maps on the right of diagram (4.8). (So that dS1

and dG are maps of degree ´1.)

Fact 4.1.4. The map φ1 in (4.8) is precisely the corestriction map corS
1

G , and is an isomor-

phism in degrees congruent to mmod 4, and vanishes otherwise.

Proof. This follows from the construction of the φi and the dual of Fact 2.1.1.

Fact 4.1.5.

φ3|H̃S1
˚ pX`q

: H̃S1

˚ pX`q Ñ H̃G
˚ pX{X

S1

q (4.10)

is an isomorphism (of Frq, vs{pq3q-modules).

Proof. Since X is j-split, both domain and target are isomorphic, as vector spaces, to

H˚pX`{S
1q. The map φ3 is a bijection and an Frq, vs{pq3q-module map, and so is an isomor-

phism.

In particular, Fact 4.1.5 shows that the q-action on H̃G
˚ pX{X

S1
q is trivial. Since φ3|H̃S1

pX`q

is an isomorphism, we have:

res
FrUs
Frq,vs{pq3q

H̃S1

˚ pX`q “ H̃G
˚ pX{X

S1

q. (4.11)

Fact 4.1.6. The maps dS1 and dG are FrU s and Frq, vs{pq3q-equivariant, respectively.

Proof. The fact follows since the maps dS1 and dG are induced on Borel homology, respec-

tively, from S1 and G-equivariant maps.
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By (4.8),

dGφ3 “ φ1dS1 . (4.12)

Lemma 4.1.7. We have:

H̃S1

˚ pXq “ coker dS1 ‘ ker dS1 . (4.13)

Proof. Using the top row of (4.8), we have an exact sequence:

0 Ñ coker dS1 Ñ H̃S1

˚ pXq Ñ ker dS1 Ñ 0,

so H̃S1

˚ pXq is an extension of ker dS1 by coker dS1 . Note that coker dS1 is isomorphic to T `d
for some integer d. A calculation shows Ext1

FrUspT `di pniq, T
`
d q “ 0 for all d, di, ni. Thus, any

extension of ker dS1 by coker dS1 is trivial, and we obtain the Lemma.

We also write (4.13) as the homology of the complex H̃S1

˚ pX
S1
q ‘ H̃S1

˚ pX{X
S1
q with

differential dS1 .

Lemma 4.1.8. We have:

H̃G
˚ pXq – coker dG ‘ ker dG. (4.14)

as Frvs-vector spaces. The subspace coker dG is a Frq, vs{pq3q-submodule, and q acts on

x P ker dG by qx “ 0 if x P Imφ2|kerdS1 (using the decomposition of H̃S1

˚ pXq in Lemma

4.1.7). Also, qx ‰ 0 P coker dG if x P ker dG but x R Imφ2|ker dS1 . As there is at most one

homogeneous element of each degree in coker dG, qx is uniquely specified for all x P ker dG in

the decomposition (4.14).

Proof. As in the proof of Lemma 4.1.7, we see that H̃G
˚ pXq is an extension of

ker dG Ď res
FrUs
Frq,vs{pq3q

H̃S1

˚ pX`q

by coker dG “ H̃G
˚ pX

S1
q{pIm dGq. We will first show that the extension is trivial as an

Frvs-extension.

We constructM Ă H̃G
˚ pXq a vector space lift of ker dG Ă H̃G

˚ pX{X
S1
q, so that φ2pker dS1q Ď

M , using the decomposition of H̃S1

˚ pXq in (4.13).
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Specifically, we define M in each degree i by:

Mi “

$

’

&

’

%

pφ2pker dS1qqi for i ı 3`m mod 4,

H̃G
i pXq for i ” 3`m mod 4.

We next show that πG|M : M Ñ ker dG is an isomorphism.

We have pcoker dGqi “ 0 for i ” 3`m mod 4, since H̃G
˚ pX

S1
q – H˚pBGqr´ms, so

πG : H̃G
i pXq Ñ pker dGqi (4.15)

is an isomorphism for all i ” 3`m mod 4.

We now show that πG : pImφ2|ker dS1 qi Ñ pker dGqi is an isomorphism for i ı 3`m mod 4.

It suffices to show ker dG Ď Imφ3|ker dS1 in degrees not congruent to 3`mmod 4. Indeed, φ3

is surjective by (4.10). Furthermore, by Fact 4.1.4, φ1 is injective in degrees not congruent

to 2 ` mmod 4. By (4.12), if y P ker dG with deg pyq ı 3 ` m mod 4, and y “ φ3pxq, for

x P H̃S1

˚ pX{X
S1
q, then φ1pdS1xq “ 0. By the injectivity of φ1, we have dS1x “ 0, and we

obtain:

y P Im pφ3|ker dS1 q.

That is, pImφ3|kerdS1 qi “ pker dGqi for i ı 3`m mod 4. Then, πGpImφ2|ker dS1 qi “ pker dGqi,

as needed.

We have then established that H̃G
˚ pXq “ coker dG ‘M as F-vector spaces.

We next determine the Frq, vs{pq3q-action on M Ă H̃G
˚ pXq. Since ker dS1 Ă H̃S1

˚ pXq is an

Frq, vs{pq3q-submodule, so is its image in H̃G
˚ pXq. Then, for x P M homogeneous of degree

not congruent to 3`m mod 4, we have qx, vx PM . In fact, qx “ 0, since q acts trivially on

H̃S1

˚ pXq. Moreover, for x P M of degree congruent to 3 `m mod 4, vx P H̃G
˚ pXq is also of

degree congruent to 3 `m, and, in particular, we see vx P M . So we need only determine

qx for x PM with deg x ” 3`m mod 4.

As in [50][III.2] there exists a Gysin sequence:

H̃˚
GpXq H̃˚

S1pXq H̃˚
GpXq H̃˚`1

G pXq . . . ,
qY´

(4.16)
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where q Y´ denotes cup product with q. Dualizing, we obtain an exact sequence:

H̃G
˚ pXq H̃S1

˚ pXq H̃G
˚ pXq H̃G

˚´1pXq . . . ,
p1`jq¨´ φ2 qX´

(4.17)

where p1 ` jq ¨ ´ denotes the map obtained from multiplication (on the chain level) by

1` j P G, and q X´ denotes cap product with q.

From (4.17), we have that if x PM Ă H̃G
˚ pXq is not in Imφ2|ker dS1 , then qx ‰ 0. We will

show that qx P coker dG.

First, we see

p1` jq ¨ coker dG Ă coker dS1 . (4.18)

Indeed, (4.18) follows from the commutativity of the diagram

H̃G
˚ pXq H̃S1

˚ pXq

H̃G
˚ pX

S1
q H̃S1

˚ pX
S1
q.

p1`jq¨

p1`jq¨

Additionally, we see that

ker dG ker dS1

p1`jq¨´

is injective by the j-splitness condition (Definition 4.1.1). Then ker p1 ` jq Ă H̃G
˚ pXq is, in

fact, a subset of coker dG. Thus, if x R Im φ2|ker dS1 , qx must be the unique nonzero element

in grading deg x´ 1 in coker dG, completing the proof.

Our goal will be to relate (4.13) and (4.14), relying on (4.11) and (4.12). From this

relationship we will be able to show that the S1-homology (4.13) determines the G-homology

(4.14). In Lemmas 4.1.10 and 4.1.11 we compute H̃S1

˚ pXq from H̃S1

˚ pX{X
S1
q and dS1 . In

Lemmas 4.1.12-4.1.15, we show how to compute H̃G
˚ pXq from the same information. Then

in Theorem 4.1.16 we compute H̃G
˚ pXq directly from H̃S1

˚ pXq.

We begin by noting that any finite graded FrU s-module may be written as a direct sum

of copies of T `di pniq, as FrU s is a principal ideal domain. In particular, H̃S1

˚ pX{X
S1
q, since

it has finite rank as an F-module, is a direct sum of copies of the T `di pniq.
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Lemma 4.1.9. On T `d pnq Ă H̃S1

˚ pX{X
S1
q, the differential dS1 vanishes unless 2n`d ě 3`m

and d ď m` 1.

Proof. Let U´k denote the unique nonzero element of T `m in degree m ` 2k. Let xd`2n´2

be an FrU s-module generator of T `d pnq, with deg pxd`2n´2q “ d ` 2n ´ 2. Then either dS1

vanishes on T `d pnq or dS1pxd`2n´2q is nonzero. In this latter case, because of the grading,

dS1pxd`2n´2q “ U´
d`2n´m´3

2 . If 2n`d ă 3`m, then T `d pnq has no elements in degree greater

than m, and so has no nontrivial maps to T `m . Similarly, for d ą m ` 1, dS1pT `d pnqq “ 0.

Indeed, if dS1pT `d pnqq ‰ 0, then

dS1xd`2n´2 “ U´
d`2n´m´3

2 .

Then, by Fact 4.1.6, dS1pU
d`2n´m´3

2 xd`2n´2q “ U0 ‰ 0 P T `m . However, if d ą m ` 1, then

U
d`2n´m´3

2 xd`2n´2 “ 0, a contradiction.

Lemma 4.1.10. There exists a decomposition

H̃S1

˚ pX`q “ J1 ‘ J2, (4.19)

as a direct sum of FrU s-modules J1 and J2, where dS1 vanishes on J2 and

J1 “

N
à

i“1

T `di pniq,

with 2ni`di ą 2ni`1`di`1, and di`1 ą di, for some N . Moreover, dN ď 1`m, 2nN `dN ě

3`m, and dS1 is nonvanishing on each summand T `di pniq.

Proof. To begin, set H̃S1

˚ pX`q “ J1 ‘ J2 for some choices of J1 and J2 so that dS1 |J2 “ 0,

possibly by setting J2 “ 0. We introduce a partial ordering ľ of (graded) FrU s-modules.

We say

Td1pn1q ľ Td2pn2q

if 2n1 ` d1 ě 2n2 ` d2 and d1 ě d2. Our goal is to arrange that the summands of J1

are not comparable under this relation. Suppose we have T `d1
pn1q ‘ T `d2

pn2q Ă J1, and

T `d1
pn1q ľ T `d2

pn2q. If one of the T `di pniq has dS1 |T `di pniq
“ 0, we move it to J2. Otherwise, we
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have that dS1 is nontrivial on both T `di pniq. Let T `di pniq be generated by xi for i “ 1, 2. Then

xx1, U
n1´n2`pd1´d2q{2x1`x2y are new FrU s-generators for T `d1

pn1q‘T `d2
pn2q Ă J1, such that dS1

vanishes on Un1´n2`pd1´d2q{2x1`x2, i.e. so that dS1 vanishes on the T `d2
pn2q submodule. So we

may choose a new decomposition H̃S1

˚ pX`q “ J 11‘J
1
2, where J 12 » J2‘T `d2

pn2q. Thus, we may

choose J1 such that there is no submodule X ‘Y of J1 with X ľ Y . Say J1 “
ÀN

i“1 T `di pniq
has been chosen so that all its summands are incomparable under ľ (and so that dS1 is

nonvanishing on each T `di pniq). Perhaps by reordering, let di`1 ě di. If di`1 “ di, T `di pniq
and T `di`1

pni`1q would be comparable, contradicting our choice of J1. Thus di`1 ą di. Again

using that the T `di pniq are incomparable, we obtain 2ni ` di ą 2ni`1 ` di`1. Finally, we saw

in Lemma 4.1.9 that dS1 vanishes on any summand T `d pnq with d ą 1`m or 2n`d ă 3`m,

so by the condition that dS1 is nonvanishing, we have dN ď 1`m, 2nN ` dN ě 3`m.

Lemma 4.1.11. Let H̃S1

˚ pX`q “ J1 ‘ J2, with J1 as in Lemma 4.1.10. Then

H̃S1

˚ pXq “ T `d1`2n1´1 ‘

N
à

i“1

T `di p
di`1 ` 2ni`1 ´ di

2
q ‘

N
à

i“1

T `di pniq ‘ J
‘2
2 . (4.20)

We interpret dN`1 “ m` 1, nN`1 “ 0. The expression dN`1`2nN`1´dN
2

may vanish, in which

case T `dN p
dN`1`2nN`1´dN

2
q is the zero module.

Proof. In the decomposition of Lemma 4.1.10, we write xi for the generator of T `di pniq. We

choose a basis for ker dS1 , given by tyiui for yi “ xi`1`U
ni´ni`1`pdi´di`1q{2xi for i “ 1, ..., n´1,

and yN “ U pdN`2nN´1q{2xN . Note that yN may be zero.

We have seen that J2 Ă ker dS1 , and also jJ2 Ă ker dS1 , giving the two copies of the J2

summand in (4.20). We see that FrU sU´
d1`2n1´m´3

2 “ Im dS1 Ă T `m , by Lemma 4.1.10. Then

T `d1`2n1´1 “ coker dS1 . Further, p1 ` jqJ1 contributes the summand
ÀN

i“1 T `di pniq, since dS1

is j-invariant, and so vanishes on multiples of p1 ` jq. Finally, the set tyiu generates the
ÀN

i“1 T `di p
di`1`2ni`1´di

2
q summand.

For an example of how the new basis gives the Lemma, see Figures 4.1 and 4.2.

We now compute H̃G
˚ pX{X

S1
q. To find ker dG, we write H̃G

˚ pX{X
S1
q “ J 11 ‘ J 12, where

dG vanishes on J 12 (J 12 need not be maximal, currently). To find J 11 and J 12 in terms of J1 and

J2, we use:
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F

F

F

F

..

.

F

F

F

F

F

F FF

F F

0

−1

1

2

3

4

5

6

(H̃S1

(XS1

)⊕ H̃S1

(X/XS1

), dS1) =

U U

UU

U

U

U

Figure 4.1: An example of H̃S1

˚ pXq as in Lemma 4.1.11. The first four (finite) towers are

T `´1p3q
‘2 ‘ T `1 p1q‘2. Then J1 “ T `´1p3q ‘ T `1 p1q and J2 “ T `´1p1q in (4.19) (keeping in mind

that the action of j interchanges the pairs of copies T `di pniq, so H̃S1

˚ pX{X
S1
q » J1‘J2‘J1‘J2

as an FrU s-module). In particular, d1 “ ´1, n1 “ 3, d2 “ 1, n2 “ 1. Here m “ 0. The

shaded-head arrows denote differentials while the open-head arrows denote U -actions.

H̃S1

0 (XS1

) ≃ F

H̃S1

2 (XS1

) ≃ F

H̃S1

4 (XS1

) ≃ F

...

x1

U(x1)

x1 + jx1

U(x1 + jx1)

U2(x1 + jx1)

x2 + U(x1) x2 + jx2

z−1 + jz−1z−1U2(x1)

Figure 4.2: Using the basis in the proof of Lemma 4.1.11 for the complex of Figure 4.1.

Here the generator of J2 is written z´1. The xi are generators of T `di pniq for i “ 1, 2.

Lemma 4.1.12. Let J1, J2 and di, ni be as in Lemma 4.1.10. Then we may set H̃G
˚ pX{X

S1
q “

J 11 ‘ J
1
2, where

J 11 “
à

ti|di”m`1 mod 4u

V`dipt
ni ` 1

2
uq ‘

à

ti|di”m`3 mod 4u

V`di`2pt
ni
2

uq,

J 12 “ res
FrUs
Frvs J2 ‘

à

ti|di”m`1 mod 4u

V`di`2pt
ni
2

uq ‘
à

ti|di”m`3 mod 4u

V`dipt
ni ` 1

2
uq.

Moreover, dG is nonvanishing on each nontrivial summand of J 11, and dGpJ
1
2q “ 0.
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Proof. We use (4.9) and (4.11) to conclude that

φ3J1 “

N
à

i“1

V`dipt
ni ` 1

2
uq ‘

N
à

i“1

V`di`2pt
ni
2

uq.

We also use

corS
1

G dS1 “ dGφ3,

as in (4.12) to obtain that dG is nonvanishing on each of V`dipt
ni`1

2
uq, with di ” m` 1 mod 4

and V`di`2pt
ni
2

uq with di ” m ` 3 mod 4. To find J 12 we apply (4.11) again, to J2, and we

observe that dG is vanishing on each of V`dipt
ni`1

2
uq, with di ” m ` 3 mod 4 and V`di`2pt

ni
2

uq

with di ” m` 1 mod 4.

Fact 4.1.13. The Frvs-submodule

à

ti|di”m`1 mod 4u

V`di`2pt
ni
2

uq ‘
à

ti|di”m`3 mod 4u

V`dipt
ni ` 1

2
uq

in Lemma 4.1.12 is the component of H̃G
˚ pX{X

S1
q not in the image of φ2|ker dS1 .

For an example of Lemma 4.1.12, see Figure 4.3. We define an order ľ on modules V`d pnq

0

3
2
1

−1 corS
1

G z−1

corS
1

G Ux1 corS
1

G x2

vcorS
1

G x1

v

corS
1

G x1

Figure 4.3: Computing H̃G
˚ pX{X

S1
q for the complex of Figures 4.1 and 4.2. Here J 11 “

V`1 p1q‘2, and J 12 “ V`´1p2q ‘ V`´1p1q.

with d ” m ` 1 mod 4. Note that all simple submodules V`d pnq of J 11 in Lemma 4.1.12 have

d ” m`1 mod 4. Let V`d1
pn1q ľ V`d2

pn2q if d1 ě d2 and d1`4n1 ě d2`4n2. Let J denote the

set of distinct pairs pa, bq for which V`a pbq is a maximal summand of J 11 as in Lemma 4.1.12.

If pa, bq P J , set mpa, bq ` 1 to be the multiplicity with which V`a pbq occurs as a summand

of J 11. If pa, bq R J , set mpa, bq to be the multiplicity with which V`a pbq occurs in J 11. Then

we define:

Jrep “
à

pa,bq

V`a pbq‘mpa,bq, (4.21)
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where summands of multiplicity 0,´1 do not contribute to the sum. That is, Jrep counts the

repeated summands (whence the “rep”) in J 11, as well as those which are not contributing

“new” differentials targeting the reducible. In the example of Figure 4.3, Jrep “ V`1 p1q.

Arguing as in Lemma 4.1.10, we obtain the following.

Lemma 4.1.14. Let H̃S1

˚ pX`q be decomposed as in Lemma 4.1.10, and let J be as in the

preceding paragraphs. Then we may set H̃G
˚ pX{X

S1
q “ J21 ‘ J

2
2 with

J21 »
à

pai,biqPJ
V`aipbiq,

J22 » res
FrUs
Frvs J2 ‘

à

ti|di”m`1 mod 4u

V`di`2pt
ni
2

uq ‘
à

ti|di”m`3 mod 4u

V`dipt
ni ` 1

2
uq ‘ Jrep.

Moreover, dG is nonvanishing on each nontrivial summand of J21 , and dGpJ
2
2 q “ 0. Further,

ai ă ai`1 and ai ` 4bi ą ai`1 ` 4bi`1 for i “ 1, ..., N0 ´ 1, where N0 “ |J |.

Proof. We argue as in Lemma 4.1.10, starting with the decomposition

H̃G
˚ pX{X

S1

q “ J 11 ‘ J
1
2

given in Lemma 4.1.12. We will show that we may choose J21 “
À

pai,biqPJ V`aipbiq, so that

H̃G
˚ pX{X

S1
q “ J21 ‘ J22 with dGJ

2
2 “ 0. Fix a direct sum decomposition J 11 “

À

i V`aipbiq,
for some ai, bi. Say that V`e1pf1q Ď J 11, where pe1, f1q R J and choose pe2, f2q P J , with

V`e2pf2q ľ V`e1pf1q and V`e1pf1q ‘ V`e2pf2q Ď J 12. Further, assume that dG is nontrivial on

V`e1pf1q; if it were trivial, then we enlarge J 12 by setting J22 “ J 12 ‘ V`e1pf1q. Let xi be the

generator of V`ei pfiq. We choose new Frvs-generators, x2 of V`e2pf2q and vf2´f1`pe2´e1q{4x2`x1

of V`e1pf1q so that dG vanishes on V`e1pf1q. Again, then we may enlarge J 12 by adding the

V`e1pf1q factor. This shows that we can remove all summands T `a pbq with pa, bq R J from J 11.

Similarly, if V`a pbq ‘ V`a pbq Ď J 11, with pa, bq P J and with generators x1 and x2 such that

dGpx1q “ dGpx2q ‰ 0, we choose the new basis xx1, x2 ` x1y. The differential dG is nonzero

on the copy of V`a pbq generated by x1, while dG vanishes on the copy of V`a pbq generated by

x1 ` x2, and J 12 may be enlarged. Then we may choose J21 »
À

pa,bqPJ V`a pbq. The formula

for J22 also follows once J21 is specified.
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1
2
3
4
5
6
7
8

0
−1
−2
−3
−4
−5
−6

(1 + j)U5x1

(1 + j)x1

(H̃S1

∗ (XS1
)⊕ H̃S1

∗ (X/XS1
), dS1) =

x2

U3x2

U4x2

(1 + j)U6x1

U2x2

Ux2

(1 + j)U3x2

(1 + j)U2x2

(1 + j)Ux2

(1 + j)x2

(1 + j)U4x2

H̃S1

8 (XS1
) ≃ F

...

U5x1

U6x1

(1 + j)U2x1

(1 + j)Ux1

U4x1

U2x1

H̃S1

4 (XS1
) ≃ F

(1 + j)U4x1

(1 + j)U3x1U3x1

H̃S1

2 (XS1
) ≃ F

H̃S1

0 (XS1
) ≃ F

H̃S1

6 (XS1
) ≃ F

x1

Ux1

Figure 4.4: An example FrU s-module H̃S1

˚ pX
S1
q ‘ H̃S1

˚ pX{X
S1
q for X with m “ 0. Here

d1 “ ´5, n1 “ 7 and d2 “ ´3, n2 “ 5, and J2 “ 0.

In Figures 4.4 and 4.5, we provide an example illustrating the proof of Lemma 4.1.14.

We may now compute H̃G
˚ pXq in terms of H̃S1

˚ pX{X
S1
q and the map dS1 .

Lemma 4.1.15. Let H̃S1

˚ pX`q be decomposed as in Lemma 4.1.10 and let J21 , J
2
2 be as in

Lemma 4.1.14. Then:

H̃G
˚ pXq “ V`a1`4b1´1 ‘ V`1`m ‘ V`2`m (4.22)

‘

N0
à

i“1

V`aip
ai`1 ` 4bi`1 ´ ai

4
q ‘ J22 ,

as an Frvs-module. The q-action is given by the isomorphism q : V`2`m Ñ V`1`m and the map

V`1`m Ñ V`a1`4b1´1, which is an F-vector space isomorphism in all degrees at least a1`4b1´1.

The action of q annihilates
ÀN0

i“1 V`aip
ai`1`4bi`1´ai

4
q and res

FrUs
Frvs J2 ‘ Jrep Ď J22 .

To finish specifying the q-action, let xi be a generator of V`di`2pt
ni
2

uq for i such that

di ” m ` 1 mod 4 (respectively, let xi be a generator of V`dipt
ni`1

2
uq if di ” m ` 3 mod 4).

Then qxi is the unique nonzero element of HG
˚ pX{X

S1
q in grading deg xi ´ 1, for all i. In

particular, H̃S1

˚ pX{X
S1
q and dS1 determine H̃G

˚ pXq. Here aN0`1 “ m` 1, bN0`1 “ 0.

Proof. The proof is analogous to that of Lemma 4.1.11. We choose a basis for ker dG as
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H̃G
0 (XS1

) ≃ F

H̃G
2 (XS1

) ≃ F

H̃G
6 (XS1

) ≃ F

H̃G
8 (XS1

) ≃ F

...

0

1

2

3

4

5

6

7

8

−1

−2

−3

−4

−5

corS
1

G x1

v3corS
1

G x1

corS
1

G Ux1

H̃G
4 (XS1

) ≃ F

vcorS
1

G Ux1

v2corS
1

G Ux1

vcorS
1

G Ux2

corS
1

G Ux2

(H̃G
∗ (XS1

)⊕ H̃G
∗ (X/XS1

), dG) =

v

v2corS
1

G x2

corS
1

G x2

v

v

v

v

H̃G
1 (XS1

) ≃ F

H̃G
5 (XS1

) ≃ F

v2corS
1

G x1

vcorS
1

G x1

vcorS
1

G x2

Figure 4.5: Here we show how to compute pH̃G
˚ pX

S1
q‘H̃G

˚ pX{X
S1
q, dGq, given pH̃S1

˚ pX
S1
q‘

H̃S1

˚ pX{X
S1
q, dS1q, for the example complex given in Figure 4.4. The curved arrows denote

the v-action. Here, Jrep is V`´3p3q, and J21 “ V`´3p3q. Then we have also J22 “ V`´3p3q ‘

V`´1p2q ‘ V`´5p4q. If we have a basis of corS
1

G Ux1, corS
1

G x2 for J 11, then corS
1

G Ux1 ` corS
1

G x2

would be a basis for Jrep produced by Lemma 4.1.14.

follows. Write the generator of V`aipbiq as xi. Then set yi “ xi`1 ` vbi´bi`1`pai´ai`1q{4xi

for i “ 1, ..., N0 ´ 1, and yN0 “ vpaN0
`4bN0

´1q{4xN0 . It is clear that yi P ker dG for all i,

and it is straightforward to check that tyiu generates ker dG X J
2
1 . The yi generate the term

ÀN0

i“1 V`aip
ai`1`4bi`1´ai

4
q in (4.22). Since dG is q-equivariant and q annihilates H̃G

˚ pX{X
S1
q, the

modules V`1 and V`2 Ă H˚pBGq are disjoint from the image of dG. Moreover, v´
a1`4b1´5´m

4 “

dGpx1q, where v´k is the unique element x of H˚pBGqr´ms with vkx an F-generator of

H0pBGqr´ms. Since there are no elements x P J21 with grading greater than a1 ` 4b1 ´ 4,

the maximal k for which v´k P Im dG is a1`4b1´5´m
4

. It follows that

coker dG “ V`a1`4b1´1 ‘ V`1`m ‘ V`2`m.

Furthermore, J22 Ď ker dG by definition, contributing the J22 term of (4.22). To determine

the q-action on ker dG, we use Lemma 4.1.8. Indeed, q takes elements not in the image of

φ2|ker dS1 to nontrivial elements of coker dG, and q vanishes on Imφ2|ker dS1 . Using Fact 4.1.13,
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we obtain the q-action on J22 as in the Lemma. The q-action on coker dG is given by that on

H˚pBGq.

We combine Lemmas 4.1.10-4.1.15 to determine H̃G
˚ pXq from H̃S1

˚ pXq. We record this

as the following Theorem.

Theorem 4.1.16. Let X “ pX 1, p, h{4q P E and X 1 be a j-split space of type SWF. Then:

H̃S1

˚ pXq “ T `s`d11`2n1´1 ‘

N
à

i“1

T `s`d1ip
d1i`1 ` 2ni`1 ´ d

1
i

2
q ‘

N
à

i“1

T `s`d1ipniq ‘ J
‘2
r´ss, (4.23)

for some constants s, d1i, ni, N and some FrU s-module J , where 2ni ` d1i ą 2ni`1 ` d1i`1 and

d1i ă d1i`1 for all i, 2nN ` d1N ě 3, d1N ď 1, and d1N`1 “ 1, nN`1 “ 0. Let J0 “ tpak, bkquk be

the collection of pairs consisting of all pd1i, t
ni`1

2
uq for d1i ” 1 mod 4 and all pd1i ` 2, tni

2
uq for

d1i ” 3 mod 4, counting multiplicity. Let pa, bq ľ pc, dq if a` 4b ě c` 4d and a ě c, and let

J be the subset of J0 consisting of pairs maximal under ľ (not counted with multiplicity).

If pa, bq P J , set mpa, bq ` 1 to be the multiplicity of pa, bq in J0. If pa, bq R J , set mpa, bq

to be the multiplicity of pa, bq in J0. Let |J | “ N0 and order the elements of J so that

J “ tpai, biqui, with ai ` 4bi ą ai`1 ` 4bi`1. We interpret aN0`1 “ 1, bN0`1 “ 0. Then:

H̃G
˚ pXq “ pV`

4t
d11`2n1`1

4
u

‘ V`1 ‘ V`2 (4.24)

‘

N0
à

i“1

V`aip
ai`1 ` 4bi`1 ´ ai

4
q ‘

à

pa,bqPJ0

V`a pbq‘mpa,bq ‘ res
FrUs
Frvs J

‘
à

ti|d1i”1 mod 4u

V`d1i`2pt
ni
2

uq ‘
à

ti|d1i”3 mod 4u

V`d1ipt
ni ` 1

2
uqqr´ss.

The q-action is given by the isomorphism q : V`2 r´ss Ñ V`1 r´ss and the map q :

V`1 r´ss Ñ V`
4t
d11`2n1`1

4
u

r´ss which is an F-vector space isomorphism in all degrees (in V`1 r´ss)

greater than or equal to 4t
d11`2n1`1

4
u ` s ` 1, and vanishes on elements of V`1 r´ss of degree

less than 4t
d11`2n1`1

4
u` s` 1.

The action of q annihilates
ÀN0

i“1 V`aip
ai`1`4bi`1´ai

4
qr´ss, as well as p

À

pa,bqPJ0
V`a pbq‘mpa,bq‘

res
FrUs
Frvs Jqr´ss.

To finish specifying the q-action, let xi be a generator of V`d1i`2pt
ni
2

uqr´ss for i such that

d1i ” 1 mod 4 (respectively, let xi be a generator of V`d1ipt
ni`1

2
uqr´ss if d1i ” 3 mod 4). Then
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qxi is the unique nonzero element of pV`
4t
d11`2n1`1

4
u

‘ V`1 ‘ V`2 qr´ss in grading deg xi ´ 1, for

all i.

Proof. We show that for M an FrU s-module of the form (4.20), the sets tniu,td
1
iu, and the

module J2, are determined by the (graded) isomorphism type of M , to establish that all the

constants in (4.23) are well-defined (independent of the choice of direct sum decomposition

of H̃S1

˚ pXq). For a fixed d, there are at most two distinct isomorphism classes T `d pxq, each

appearing as summands of M that occur an odd number of times in the decomposition of

M into simple submodules (not including the infinite tower). Such a submodule T `d pxq will

be called a submodule occurring with odd multiplicity. For any d such that there is at least

one isomorphism class T `d pxq with odd multiplicity, then d “ s` d1i for some i, using (4.20).

Consider the case that there are exactly two such isomorphism classes T `d px1q and T `d px2q

with, say, x1 ă x2. Setting d “ s`d1i for a fixed i, and using (4.20), we see that x2 “ ni, since

ni ą ni`1 `
d1i`1´d

1
i

2
for all i. If instead there is one (graded) isomorphism class Tdpxq with

odd multiplicity, Lemma 4.1.11 shows x “ nN . If, for a fixed d, there are no isomorphism

classes T `d pxq occurring with odd multiplicity, then d R ts` d1iu. Thus, we see that tdiu and

tniu are determined by the isomorphism type of M as a graded FrU s-module. It is then easy

to see that J2 is also determined by the isomorphism type of M .

In addition, we find that s in (4.23) exists and is uniquely determined. First, we check

that there is an s so that (4.23) holds. Observe that H̃S1

˚ pXq “ H̃S1

˚ pX
1qrp ` hs. Say that

X 1 is a space of type SWF at level m, and set d1i “ di ´m. Then Lemma 4.1.11 shows that

(4.23) holds for this choice of d1i, and s “ m ´ p ´ h. We next show that there is a unique

s so that (4.23) holds. To see this, observe that H̃S1

˚,redpXq, as in (4.23), is an F-module of

odd rank in degrees d such that d ” s ` 1 mod 2, with s ă d ă s ` d11 ` 2n1, and of even

rank (possibly zero) in all other degrees (Recall from (2.1) the definition of H̃S1

˚,red). Then,

for M an FrU s-module that is the homology of pX 1, p, h{4q with X 1 j-split, we have that

s “ m´ p´ h is determined by M .

As in (4.13),

H̃S1

˚ pXq “ cokerdS1 ‘ kerdS1 .
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Additionally, given M , we have determined the sets td1iu, tniu appearing in Lemma 4.1.10.

Then Lemmas 4.1.12 and 4.1.14 show that J21 “ ‘pai,biqPJV`aipbiq, for ai, bi as in the statement

of the Theorem, and that

J22 “ res
FrUs
Frvs J ‘

à

ti|di”1 mod 4u

V`di`2pt
ni
2

uq ‘
à

ti|di”3 mod 4u

V`dipt
ni ` 1

2
uq ‘

à

pa,bqPJ0

V`a pbq‘mpa,bq.

(4.25)

Here we have replaced the notation res
FrUs
Frq,vs{pq3q

by res
FrUs
Frvs since q acts by 0. Finally, Lemma

4.1.15 determines H̃G
˚ pXq given J21 and J22 . This completes the proof of the Theorem.

Remark 4.1.17. Since every j-split chain complex of type SWF is the cellular chain complex

of some space of type SWF, Theorem 4.1.16 also applies to j-split chain complexes.

We give an example illustrating the steps of the proof of Theorem 4.1.16. Let X be a

j-split space, and say that H̃S1

˚ ppX, p, h{4qq is given as in Figure 4.6; that is:

H̃S1

˚ ppX, p, h{4qq » T `6 ‘ T `´5p6q ‘ T `´5p5q ‘ T `´3p4q ‘ T `´3p3q ‘ T `´1p2q ‘ T `´1p1q.

1

2

3

4

5

0

−1

−2

−3

−4

−5

t6

t8

...

F

F

F

F

F

F

F

F

F

F

F F

F

F

F F

F

F

F

F

F

...

Figure 4.6: The S1-Borel Homology of pX, p, h{4q P E. The variables ti stand for entries of

the infinite tower in grading i.

We calculate d1i, ni. As specified in the proof of Theorem 4.1.16, we see td1i`m´p´hu “

t´5,´3,´1u, and tniu “ t6, 4, 2u. We see that m ´ p ´ h “ 0 because H̃S1

´1,redppX, p, h{4qq
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(i.e. the contribution in degree ´1 not coming from the tower) is of even rank, while

H̃S1

1,redppX, p, h{4qq has odd rank. So s “ 0 in Theorem 4.1.16. Then td1iu “ t´5,´3,´1u.

Furthermore, we see J2 “ 0. Then we recover pH̃S1

˚ ppX{X
S1
, p, h{4qq‘H̃S1

˚ ppX
S1
, p, h{4qq, dS1q,

as in Figure 4.7.

H̃S1

0 (XS1
)

...

x1

x3

H̃S1

4 (XS1
)

H̃S1

2 (XS1
)

Ux1

U3x1

U4x1

U2x1

U5x1

Ux3

U3x2

Ux2

U2x2

x2

U(1 + j)x3

(1 + j)x3

H̃S1

6 (XS1
)

H̃S1

8 (XS1
)

U2(1 + j)x1

U(1 + j)x1

(1 + j)x1

U5(1 + j)x1

U4(1 + j)x1

U3(1 + j)x1 U2(1 + j)x2

U(1 + j)x2

(1 + j)x2

U3(1 + j)x2

Figure 4.7: The complex pH̃S1

˚ pX{X
S1
qrp` hs ‘ H̃S1

˚ ppX
S1
, p, h{4qq, dS1q corresponding to

Figure 4.6.

Using Lemma 4.1.12, we have J 11 “ V`´3p3q ‘V`´3p2q ‘V`1 p1q and J 12 “ V`´5p3q ‘V`´1p2q ‘

V`´1p1q, as in Figure 4.8. We see that V`´3p2q is not maximal in J 11, so mp´3, 2q “ 1, while

mp´3, 3q “ 0, since V`´3p3q is maximal under ľ. Similarly, V`1 p1q is maximal, so mp1, 1q “ 0.

Then Jrep “ V`´3p2q, using (4.21).

In Figure 4.8, J21 “ V`´3p3q ‘ V`1 p1q. Then Lemma 4.1.15 allows us to compute H̃G
˚ pXq,

as in Figure 4.9.

We find H̃G
˚ pXq “ V`8 ‘ V`1 ‘ V`2 ‘ V`´5p3q ‘ V`´3p2q

‘2 ‘ V`´1p2q ‘ V`´1p1q, in accordance

with Theorem 4.1.16.

4.1.2 Chain local equivalence and j-split spaces

Using Theorem 4.1.16, we can determine the chain local equivalence class of j-split spaces.

We start with some results on j-split chain complexes. First, write Sdpnq for the free G-
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Figure 4.8: The complex pH̃G
˚ pX{X

S1
qrp ` hs ‘ H̃G

˚ ppX
S1
, p, h{4qq, dGq corresponding to

Figure 4.6.
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Figure 4.9: Finishing the calculation of H̃G
˚ pXq for the example of Figure 4.6. The curved

arrows again represent the v-action. The straight arrows indicate a nontrivial q-action.

module generated by

xxd, xd`2, ..., xd`2n´2y,

with xi of degree i and Bpxiq “ sp1 ` j2qxi´2. A quick computation gives HS1

˚ pSdpnqq “
T `d pnq‘2 as FrU s-modules, where HS1

˚ pZq is defined as in (2.16). Moreover, for an FrU s-

module J “
À

i T `ei pmiq, let SpJq “
À

i Seipniq.
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Proposition 4.1.18. Let C “ xfredy‘̃pC` ‘ C´q be a j-split chain complex and

HS1

˚ pCq “ T `d1`2n1´1 ‘

N
à

i“1

T `di p
di`1 ` 2ni`1 ´ di

2
q ‘

N
à

i“1

T `di pniq ‘ J
‘2, (4.26)

where di`1 ą di and 2ni ` di ą 2ni`1 ` di`1, 2nN ` dN ě 3, and dN ď 1. We interpret

dN`1 “ 1, nN`1 “ 0. Then C is homotopy equivalent to the chain complex

pxfredy‘̃p
à

i

Sdipniqqq ‘ SpJq, (4.27)

where Bpfredq “ 0, jfred “ fred, sfred “ 0, and deg pfredq “ 0. Furthermore, let each factor

Sdipniq have generators xij, with deg xij “ j. Then Bxi1 “ fred ` sp1` j
2qxi´1 for all i.

Remark 4.1.19. By Lemma 4.1.10, for C any j-split chain complex, a decomposition as in

(4.26) is possible.

Before giving the proof we establish a Lemma.

Lemma 4.1.20. Let F1, F2 be two free, finite CCW
˚ pS1q-complexes such that HS1

˚ pF1q –

HS1

˚ pF2q as FrU s-modules. Then F1 » F2, where » denotes homotopy equivalence.

Proof. First, we note that CCW
˚ pS1q is chain homotopy equivalent to the algebra Frs̄s{ps̄2q

where deg ps̄q “ 1 and Bps̄q “ 0. Koszul Duality [17] states that F1 and F2 are quasi-

isomorphic as Frs̄s{ps̄2q modules if and only if HS1

˚ pF1q and HS1

˚ pF2q are isomorphic as

FrU s-modules. Indeed, our original hypothesis was HS1

˚ pF1q » HS1

˚ pF2q, so we see that F1

and F2 are quasi-isomorphic. Finally, by Theorem 10.4.8 of [53], quasi-isomorphic free chain

complexes are chain homotopy equivalent, and so F1 and F2 are chain homotopy equivalent.

This establishes the Lemma.

Proof of Proposition 4.1.18. The proof is in two steps: first, we show that C` is chain ho-

motopy equivalent to a chain complex of a certain form, and then we investigate differentials

from C` to xfredy.

Note that the complex C` is a CCW
˚ pS1q-complex. Let SS1

d pnq be the CCW
˚ pS1q-submodule

of Sdpnq generated (as a CCW
˚ pS1q-module) by xxd, xd`2, ..., xd`2n´2y. As for Sdpnq, a quick
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calculation shows HS1

˚ pSS
1

d pnqq “ T `d pnq. Similarly, for an FrU s-module J “
À

i T `ei pmiq, let

SS
1
pJq “

À

i SS
1

ei
pniq. We see:

SpJq – SS
1

pJq ‘ SS
1

pJq, (4.28)

as G-complexes, for all FrU s-modules J , where the action of j on the right is given by

interchanging the factors.

Recall, by the proof of Theorem 4.1.16, that HS1

˚ pC`‘C´q is determined by HS1

˚ pCq for

C a j-split chain complex (see Remark 4.1.17). That is, from (4.26):

HS1

˚ pC`q “
N

à

i“1

T `di pniq ‘ J.

Lemma 4.1.20 then implies C` “ SS1

d pnq‘S
S1
pJq as a CCW

˚ pS1q-complex. Since j : C` Ñ C´

is an isomorphism, we have from (4.28):

C` ‘ C´ –
à

i

Sdipniq ‘ SpJq. (4.29)

Moreover, HS1

˚ pCq determines the map dS1 : HS1

˚ pC`q Ñ HS1

˚ pxfredyq. We compute dS1 a

different way, by using the differential from C` to xfredy, and the form of C` determined

by (4.29). Fix a pair of integers pd, nq. If xi is the generator of a copy of Sdpnq in degree

i and xi P C`, then dS1 : HS1

˚ pSdpnqq – T `d pnq Ñ T ` is nontrivial if and only if Bpx1q “

fred ` sp1 ` j2qx´1. Thus, since dS1 is nonvanishing on the factors T `di pniq Ă HS1

˚ pC`q

and vanishing elsewhere, each generator xi1, with deg xi1 “ 1 of Sdipniq in (4.29) must have

Bpxi1q “ fred`sp1`j
2qxi´1, and all other differentials C` Ñ xfredy vanish. Thus, in particular,

BpSpJqq Ă SpJq. The decomposition (4.27) follows.

Proposition 4.1.21. Let pX, p, h{4q P E with X a j-split space of type SWF at level m, and

H̃S1

˚ ppX, p, h{4qq “ T `s`d1`2n1`1 ‘

N
à

i“1

T `s`dip
di`1 ` 2ni`1 ´ di

2
q ‘

N
à

i“1

T `s`dipniq ‘ J
‘2
r´ss,

(4.30)

where di`1 ą di and 2ni ` di ą 2ni`1 ` di`1, as well as 2nN ` dN ě 3, and dN ď 1. Then

the chain local equivalence type rpCCW
˚ pX, ptq, p, h{4qscl P CLE is the equivalence class of

Cpp´m,h{4, tdiui, tniuiq :“ ppxfredy‘̃p
à

i

Sdipniqqq, p´m,h{4q P CLE. (4.31)
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The connected S1-homology of pX, p, h{4q is given by:

H S1

connppX, p, h{4qq “
N

à

i“1

T `s`dip
di`1 ` 2ni`1 ´ di

2
q ‘

N
à

i“1

T `s`dipniq. (4.32)

Further, s in (4.30) is m ´ p ´ h. Moreover, Cpp, h{4, tdiu, tniuq is chain locally equivalent

to Cpp1, h1{4, td1iu, tn
1
iuq if and only if p “ p1, h “ h1, tdiu “ td

1
iu, and tniu “ tn

1
iu.

Proof. Write rpA, b, cqscl for the chain local equivalence class of pA, b, cq P CE. Let

rpZ,´m, 0qs “ rCCW
˚ pX, ptqs P CE

where Z is a j-split chain complex, as allowed by Lemma 4.1.2. Using Proposition 4.1.18,

we see:

rpZ, p, h{4qscl “ ppxfredy‘̃
à

Sdipniqq, p, h{4q.

We have then:

Cpp´m,h{4, tdiu, tniuq “ rpZ, p´m,h{4qscl “ rpC
CW
˚ pX, ptq, p, h{4qscl,

as in (4.31).

To prove (4.32) we consider the complex ΣHt
´d1`3

4 u

Cp0, 0, tdiu, tniuqr4t´d1`3
4

us (we include

the grading shift for convenience). We will see that it is a suspensionlike complex, so we

may apply the results of Section 2.1.5. There is a homotopy equivalence:

ΣHt
´d1`3

4 u

Cp0, 0, tdiu, tniuqr4t
´d1 ` 3

4
us » xfredy‘̃

à

k

xyky‘̃
N

à

i“1

à

tk”1 mod 2, diďkďdi`2ni´2u

xziky,

(4.33)

where

xfredy‘̃
à

k

xyky » ΣHt
´d1`3

4 u

xfredy, (4.34)

and deg zik “ deg yk “ k. Additionally, Bpzikq “ sp1 ` j2qzik´2 if k ‰ 1, and Bpzi1q “

sp1`j2qzi´1`sp1`jq
3y´1. The yk are defined for k such that k ı 3 mod 4 and´4t´d1`3

4
u`1 ď
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k ď ´1. Also,

Bpy4kq “ sp1` jq3y4k´2, (4.35)

Bpy4k`1q “ p1` jqy4k, k ‰ ´t
´d1 ` 3

4
u, (4.36)

Bpy4k`2q “ p1` jqy4k`1 ` sy4k, (4.37)

Bpy
´4t

´d1`3
4

u`1
q “ fred. (4.38)

According to (4.34), the first two terms on the right of (4.33) account for the suspension

of the reducible tower, and the zik correspond to the suspension of the free part. The zik

are suspensions of xik P Sdipniq Ă Cp0, 0, tdiu, tniuq. From this presentation, it is clear that

the chain complex ΣHt
´d1`3

4 u

Cp0, 0, tdiu, tniuqr4t´d1`3
4

us is irreducible (that is, it may not

be written as a non-trivial direct sum of G-chain complexes). Then by Lemma 2.1.37 and

Definition 2.1.38,

pΣHt
´d1`3

4 u

Cp0, 0, tdiu, tniuqr4t
´d1 ` 3

4
usqconn “ ΣHt

´d1`3
4 u

Cp0, 0, tdiu, tniuqr4t
´d1 ` 3

4
us.

(4.39)

Then (4.32) follows from the definition of H S1

conn, applied to Cp0, 0, tdiu, tniuq. The calculation

of H S1

connppX, p, h{4qq for nonzero m, p, h follows, since

Cpp´m,h{4, tdiu, tniuq “ Σpm´pqR̃Σ´
h
4
HCp0, 0, tdiu, tniuq.

The assertion that s “ m´ p´ h follows from the homology calculation of Theorem 4.1.16.

Recall that H S1

conn is a chain local equivalence invariant. Hence, if rCpp, h{4, tdiu, tniuqscl “

rCpp1, h1{4, td1iu, tn
1
iuqscl, we see from (4.32) that tdiu “ td

1
iu, tniu “ tn

1
iu, and p`h “ p1`h1.

Furthermore, if Cpp, h{4, tdiu, tniuq and Cpp1, h1{4, td1iu, tn
1
iuq are chain locally equivalent,

they must have chain homotopy equivalent fixed-point sets. That is, p “ p1 and so also

h “ h1, completing the proof.
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4.2 Floer spectra of Seifert fiber spaces

4.2.1 The Seiberg-Witten equations on Seifert spaces

In this section we record some results of [33] to describe explicitly the monopole moduli space

on Seifert fiber spaces. First we recall some notation associated with Seifert fiber spaces.

The standard fibered torus corresponding to a pair of integers pa, bq, for a ą 0, is the

mapping torus of the automorphism of the disk D2 given by rotation by 2πb{a. Let D2
a be

the standard disk, given an orbifold structure by letting Z{a act by rotation by 2π{a; the

origin is then an orbifold point, with multiplicity a. The standard fibered torus is naturally

a circle bundle over the orbifold D2
a.

Let f : Y Ñ P be a circle bundle over an orbifold P , and x P P an orbifold point with

multiplicity a. If a neighborhood of the fiber over x is equivalent, as an orbifold circle bundle,

to the standard fibered torus corresponding to pa, bq, we say that Y has local invariant b at

x.

For ai P Zě1, let Spa1, . . . , akq denote the orbifold with underlying space S2 and k orb-

ifold points, with corresponding multiplicities a1, . . . , ak. Fix bi P Z with gcdpai, biq “

1 for all i. We let Σpb, pb1, a1q, . . . , pbk, akqq denote the circle bundle over Spa1, . . . , akq

with first Chern class b and local invariants bi. We define the degree of the Seifert space

Σpb, pb1, a1q, . . . , pbk, akqq by b `
ř

bi
ai

. Finally, we call a space Σpb, pb1, a1q, . . . , pbk, akqq

negative (positive) if b `
ř

bi
ai

is negative (positive). The spaces Σpb, pb1, a1q, . . . , pbk, akqq

of nonzero degree are rational homology spheres. As orbifold circle bundles, the orienta-

tion reversal ´Σpb, pb1, a1q, . . . , pbk, akqq is isomorphic to Σp´b, p´b1, a1q, . . . , p´bk, akqq. We

write Σpa1, . . . , akq for the unique negative Seifert integral homology sphere fibering over

S2pa1, . . . , akq.

Let Y be a negative Seifert rational homology three-sphere fibering over a base orbifold

P with underlying space S2. Equipping Y with the metric for which Y has the Seifert

geometry, Mrowka, Ozsváth, and Yu [33] show that the Seiberg-Witten moduli spaceMpY q
is composed of the following:
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‚ A finite set of points forming the reducible critical set, in bijection with HompH1pY q, S
1q,

and

‚ for each pk ` 1q-tuple of non-negative integers e “ pe, ε1, ..., εkq, such that 0 ď εi ă ai

and

e`
k

ÿ

i“1

εi
ai
ď p

k

2
´ 1q ´

k
ÿ

i“1

1

2ai
,

there are two components, labelled C`peq and C´peq, in MpY q.

Each component C`peq, C´peq is a copy of Symep|Σ|q, where Σ is the base orbifold and

|Σ| its underlying manifold. Furthermore, C`peq and C´peq are related by the action of

j P Pinp2q. That is, the restriction of j to C`peq acts as a diffeomorphism C`peq Ñ C´peq,

and vice versa. Then, in the quotient of the configuration space by the based gauge group,

each C˘peq is diffeomorphic to Gˆ Symep|Σ|q.

Fact 4.2.1. All reducible critical points x have Lpxq “ 0, where L is the Chern-Simons-Dirac

functional. All irreducible critical points have L ą 0.

Mrowka, Ozsváth, and Yu do not use the Seiberg-Witten equations as in [23]. Instead,

they replace the Dirac operator D̂ associated to the Seifert metric in the equations with D “

D̂´ 1
2
ξ for ξ some constant depending on the Seifert fibration. It is then clear that the Seiberg-

Witten equations they consider differ from the usual equations by a tame perturbation q0

in the sense of [23]. Abusing notation somewhat, we call the Seiberg-Witten equations as

in [33] simply the Seiberg-Witten equations, or the unperturbed Seiberg-Witten equations in

the sequel.

In the case of a negative Seifert space Y with four or fewer singular fibers, the Seiberg-

Witten equations are transverse in the sense of [23], so we may take q “ q0, as in [33].

We will further need:

Fact 4.2.2. There are no trajectories between C`peq and C´pfq for any e, f. The Seiberg-

Witten equations on Y is Morse-Bott, and if Y has four or fewer singular fibers, the pertur-

bation q “ q0 is admissible in the sense of Definition 22.1.1 of [23].
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Combining Propositions 3.1.6, 3.1.7, and Fact 4.2.2, we have:

Lemma 4.2.3. Let Y “ Σpb, pb1, a1q, . . . , pbk, akqq be a negative Seifert rational homology

three-sphere. Then SWF pY, sq has a representative pX,m, nq P E with X a j-split space.

Proof. We first treat the case where Y has at most four singular fibers. Then the irreducibles

are isolated, by Fact 4.2.2.

We recall the attractor-repeller sequence (3.4), which shows that SWF pY, sq is obtained

by successively attaching stable cells GˆDindC`peq, corresponding to the irreducible critical

point C`peq, to the reducible cell. Let Iďω be the complex obtained by attaching all critical

points with L ď ω. We show by induction that Iďω is j-split for all ω. For ω “ 0, the only

critical point is the reducible by Fact 4.2.1, so the statement is vacuous. Let

Iďω0{I
S1

ďω0
“ I`ďω0

_ jI`ďω0
, (4.40)

for some fixed ω0, where I`ďω0
contains all irreducible critical points C`peq with L ď ω0. Fix

e1 so that LpC`pe1qq ą ω0 and LpC`pe1qq is minimal among Lpxq for critical points x with

Lpxq ą ω0. By Fact 4.2.2, and Proposition 3.1.8, Mλpxλ, yλq “ 0, where xλ corresponds to

C`pe1q, and yλ corresponds to any critical point of C´pfq. Additionally, the Conley Index

satisfies:

IďLpC`pe1qYjC`pe1qq{Iďω0 “ GˆDindC`pe1q “ S1
ˆDindC`pe1q _ jS1

ˆDindC`pe1q,

as S1ˆDindC`pe1q and jS1ˆDindC`pe1q are disjoint isolated invariant sets. Since Mλpxλ, yλq “

0 for all yλ P jI
`
ďω0

we have that the attaching map of the cell S1 ˆ DindC`pe1q has target

only in I`ďω0
Y IS

1

ďω0
; then we set

I`
ďLpC`pe1qq

“ I`ďω0
Y pS1

ˆDindC`pe1qq,

so that the analogue of the splitting (4.40) holds:

IďLpC`pe1qYC´pe1qq{I
S1

“ I`
ďLpC`pe1qYC´pe1qq

_ jI`
ďLpC`pe1qYC´pe1qq

, (4.41)

completing the induction.
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In the case of five or more singular fibers, we perturb the Seiberg-Witten equations to

be nondegenerate. We can arrange that for a small perturbation q the analogue of Fact

4.2.2 continues to hold. That is, there exists some tame admissible perturbation q such that

the set of irreducible critical points of Xq may be partitioned into two sets C` and C´,

interchanged by the action of j, so that for all x P C`, y P C´, we have Mpx, yq “ H.

We show the existence of such a j-equivariant perturbation q. Choose a sequence of

small j-equivariant tame admissible perturbations qi, converging to 0 in C8, so that for each

i the perturbed Seiberg-Witten equations have non-degenerate irreducible critical points.

Lin establishes the existence of such perturbations in [26]. Choose disjoint neighbourhoods

U˘peq of C˘peq such that for i sufficiently large all irreducible critical points of Lqi lie in

ď

e

pU`peq Y U´peqq.

Let C`i denote the set of irreducible critical points of Lqi in YeU`peq and let C´i denote the

set of irreducible critical points of Lqi in YeU´peq. Let C˘ denote the union YeC
˘peq.

Say, to obtain a contradiction, that for all i there exists some pair of critical points

xi P C
`
i , yi P C

´
i , such that Mpxi, yiq is nonempty. The sequences xi, yi have limit points

x P C`peq and y P C´pfq, by Proposition 11.6.4 of [23]. Theorem 16.1.3 of [23] shows that the

moduli space of unparameterized broken trajectories (for a fixed perturbation) is compact.

The proof of Theorem 16.1.3 can be applied to a sequence of trajectories γ̆i for perturbations

qi with qi Ñ q. That is, the sequence γ̆i has a limit point a broken trajectory pτ̆1, ..., τ̆nq

from x to y, for the perturbation q. Since x P C`, y P C´, there exists a trajectory τ̆k from

C` to C´, or there exists a trajectory τ̆k from C` to the reducible and a trajectory τ̆l from

the reducible to C´. The first case contradicts Fact 4.2.2. The second case contradicts the

minimality of L on the reducible (Fact 4.2.1). Thus, for some perturbation q as above we

have the desired partition.

The Lemma then follows as in the case of three or four singular fibers.

By Lemma 4.2.3, Theorem 4.1.16 applies to SWF pY, sq for Y a Seifert rational homology

sphere, and we obtain the following corollary, from which Theorems 1.2.1 and 1.2.4 of the

Introduction follow.
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Corollary 4.2.4. Let Y “ Σpb, pβ1, α1q, . . . , pβk, αkqq be a negative Seifert rational homology

sphere with a choice of spin structure s. Then

HF`
pY, sq “ T `s`d1`2n1´1 ‘

N
à

i“1

T `s`dip
di`1 ` 2ni`1 ´ di

2
q ‘

N
à

i“1

T `s`dipniq ‘ J
‘2
r´ss, (4.42)

for some constants s, di, ni, N and some FrU s-module J , all determined by pY, sq. Further-

more, 2ni` di ą 2ni`1` di`1 for all i, 2nN ` dN ě 3, dN ď 1, and dN`1 “ 1, nN`1 “ 0. Let

J0 “ tpak, bkquk be the collection of pairs consisting of all pdi, t
ni`1

2
uq for di ” 1 mod 4 and all

pdi`2, tni
2

uq for di ” 3 mod 4, counting multiplicity. Let pa, bq ľ pc, dq if a`4b ě c`4d and

a ě c, and let J be the subset of J0 consisting of pairs maximal under ľ (not counted with

multiplicity). If pa, bq P J , set mpa, bq ` 1 to be the multiplicity of pa, bq in J0. If pa, bq R J ,

set mpa, bq to be the multiplicity of pa, bq in J0. Let |J | “ N0 and order the elements of J
so that J “ tpai, biqui, with ai ` 4bi ą ai`1 ` 4bi`1. Then:

SWFH G
˚ pY, sq “ pV`

4t
d1`2n1`1

4
u
‘ V`1 ‘ V`2 (4.43)

‘

N0
à

i“1

V`aip
ai`1 ` 4bi`1 ´ ai

4
q ‘

à

pa,bqPJ0

V`a pbq‘mpa,bq ‘ res
FrUs
Frvs J

‘
à

ti|di”1 mod 4u

V`di`2pt
ni
2

uq ‘
à

ti|di”3 mod 4u

V`dipt
ni ` 1

2
uqqr´ss.

The q-action is given by the isomorphism V`2 r´ss Ñ V`1 r´ss and the map V`1 r´ss Ñ
V`

4t
d1`2n1`1

4
u
r´ss which is an F-vector space isomorphism in all degrees (in V`1 r´ss) greater

than or equal to 4td1`2n1`1
4

u` s` 1, and vanishes on elements of V`1 r´ss of degree less than

4td1`2n1`1
4

u` s` 1. We interpret aN0`1 “ 1, bN0`1 “ 0.

The action of q annihilates

N0
à

i“1

V`aip
ai`1 ` 4bi`1 ´ ai

4
qr´ss and p

à

pa,bqPJ0

V`a pbq‘mpa,bq ‘ res
FrUs
Frvs Jqr´ss.

To finish specifying the q-action, let xi be a generator of V`di`2pt
ni
2

uqr´ss for i such that

di ” 1 mod 4 (respectively, let xi be a generator of V`dipt
ni`1

2
uqr´ss if di ” 3 mod 4). Then

qxi is the unique nonzero element of pV`
4t
d1`2n1`1

4
u
‘ V`1 ‘ V`2 qr´ss in grading deg xi ´ 1, for

all i.
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Theorem 1.2.4 follows by setting N “ 1 and d1 “ 1; these conditions imply that d2 `

2n2 ´ d1 “ 0, and so the term
ÀN

i“1 T `s`dip
di`1`2ni`1´di

2
q in (4.42) is the zero module in this

case.

The constant s is the grading of the reducible critical point, where the metric on Y is

that associated to the Seifert geometry on Y .

Proof. Let pX 1, p, h{4q be a j-split representative for SWF pY, sq at level m, and let s “

m ´ p ´ h. We may choose such a representative for SWF pY, sq by Lemma 4.2.3. Then,

using Lemma 4.1.11, we have:

SWFH S1

˚ pY, sq “ H̃S1

˚ pX
1
qr´p´ hs (4.44)

“ p

N
à

i“1

T `di p
di`1 ` 2ni`1 ´ di

2
q ‘

N
à

i“1

T `di pniq ‘ J
‘2
2 ‘ T `d1`2n1´1qr´ss. (4.45)

Applying the equivalence of ~HM and SWFH S1
of [25], and the equivalence of ~HM and HF`

of [4] and [24], we obtain the expression (4.42). Then we apply Theorem 4.1.16 to obtain

the calculation of SWFH G
˚ of the corollary.

Further, using the results of Section 4.1.2, we prove the results of the Introduction on

homology cobordisms of Seifert spaces. Corollaries 1.2.6 and 1.2.7 of the Introduction follow

from Proposition 4.2.5 below.

Proposition 4.2.5. Let Y “ Σpb, pb1, a1q, . . . , pbk, akqq be a negative Seifert rational homol-

ogy three-sphere with a choice of spin structure s, and

HF`
pY, sq “ T `s`d1`1 ‘

N
à

i“1

T `s`dip
di`1 ` 2ni`1 ´ di

2
q ‘

N
à

i“1

T `s`dipniq ‘ J
‘2
r´ss, (4.46)

where di`1 ą di and 2ni` di ą 2ni`1` di`1, as well as 2nN ` dN ě 3 and dN ď 1. Then the

chain local equivalence type rSWF pY, sqscl P CLE is the equivalence class of

Cps, tdiui, tniuiq “ ppxfredy‘̃p
à

i

Sdipniqqq, 0,´s{4q P CLE. (4.47)

Further, the connected Seiberg-Witten Floer homology of pY, sq is:

SWFHconnpY, sq “
N

à

i“1

T `s`dip
di`1 ` 2ni`1 ´ di

2
q ‘

N
à

i“1

T `s`dipniq. (4.48)
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Moreover, if s ‰ t, or tdiui ‰ teiui, or tniui ‰ tmiui, the complexes Cps, tdiui, tniuiq and

Cpt, teiui, tmiuiq are not locally equivalent.

Proof. Let SWF pY, sq “ pX, p, h{4q P E with X a j-split space of type SWF. By the con-

struction of SWF pY, sq, XS1
» pR̃pq`. By Lemma 4.1.2, rpX, p, h{4qs P CE admits a repre-

sentative pZ, p1, h1{4q with Z a j-split chain complex, for some p1, h1. Since rpX, p, h{4qs P CE

and pZ, p1, h1{4q must have chain homotopy equivalent fixed-point sets, we have:

Σ´R̃
p

ppR̃p
q
`
q “ rpXS1

, p, 0qs “ pZS1

, p1, 0q P CE.

However, by the requirement that Z is j-split, ZS1
» xfredy, where jfred “ sfred “ Bpfredq “ 0.

Thus, p1 “ 0. Furthermore, by the proof of Corollary 4.2.4, ´p1´ h1 “ ´h1 “ s. Proposition

4.1.21 applied to pZ, 0,´s{4q yields (4.47) from (4.31) and (4.48) from (4.32).

4.2.2 Spaces of projective type

Let Y “ Σpb, pb1, a1q, . . . , pbk, akqq be a negative Seifert rational homology three-sphere. Con-

sider the case that HF`pY, sq is given by:

HF`
pY, sq “ T `2δ ‘ T `d pnq ‘ J‘2, (4.49)

for some FrU s-module J , where possibly n “ 0. In particular, by Corollary 4.2.4, this implies

d ` 2n ´ 1 “ 2δ. Let pZ, 0,´s{4q “ SWF pY, sq P CE. Then by Proposition 4.1.18, we may

write:

Z “ pxfredy‘̃S1pnqq ‘ SpJq (4.50)

as a direct sum of CCW
˚ pS1q-chain complexes, with Bpx1q “ fred, Bpx2i`1q “ sp1` j2qx2i´1 for

i “ 1, ..., n´ 1. Here d “ s` 1, by Corollary 4.2.4. The complex Z is evidently chain locally

equivalent to xfredy‘̃S1pnq. For X a G-space, let Σ̃X denote the unreduced suspension of X.

The complex (4.50), for δ ą 0, may be realized as the G-CW complex associated to

pΣ̃pS2n´1
> S2n´1

q, 0,´s{4q,

where S1 acts by complex multiplication on each of the two factors, and j interchanges the

factors. Then

rSWF pY, sqscl ” rpΣ̃pS
2n´1

> S2n´1
q, 0,´s{4qscl. (4.51)
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We call a negative Seifert rational homology sphere with spin structure pY, sq of projective

type if (4.51) holds or if the chain local equivalence class of SWF pY, sq is rxfredyscl. Indeed,

we have established that pY, sq is of projective type if and only if HF`pY, sq takes the form

(4.49) (where perhaps n “ 0). The term of projective type refers to the fact:

pS2n´1
> S2n´1

q{G » CP n´1.

We can rephrase the projective type condition (4.49) in terms of the graded roots of [34].

A graded root pΓ, χq is an infinite tree Γ with an action of FrU s, together with a grading

function χ : Γ Ñ Z. Associated to any positive Seifert rational homology sphere with spin

structure there is a graded root, which, additionally, has an involution ι : Γ Ñ Γ that

preserves the grading. We will provide a more detailed review of graded roots in Section 5.3.

We have the following characterization of spaces of projective type in terms of graded

roots as a consequence of Corollary 4.2.4.

Fact 4.2.6. Let Y “ Σpb, pb1, a1q, . . . , pbk, akqq be a negative Seifert rational homology sphere

with spin structure s. Let pΓY , χq be the graded root associated to p´Y, sq, and let ι be the

associated involution of ΓY . Let v P ΓY be the vertex of minimal grading which is invariant

under ι. The space pY, sq is of projective type if and only if there exists a vertex w, and a

path from v to w in ΓY which is grading-decreasing at each step, with χpwq “ minxPΓY χpxq.

Moreover, δpY, sq ´ βpY, sq “ χpvq ´ χpwq.

For instance, we refer to Figure 4.10. We call a graded root of projective type if its

homology is of the form (4.49), so that a Seifert integral homology sphere is of projective

type if and only if its graded root is.

More generally, the sets tdiu and tniu may be read from the graded root, in terms of the

minimal grading elements w that are leaves of vertices v that are invariant under ι.

For spaces Y of projective type, the homology cobordism invariants pdi, niq are determined

by dpY q, µ̄pY q. The nice topological description of the Seiberg-Witten Floer spectrum of

spaces of projective type simplifies calculations.

The spaces Σpp, q, pqn ` 1q and Σpp, q, pqn ´ 1q are of projective type for all p, q, n, as
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(b)(a) (c)

Figure 4.10: Three Graded Roots. The roots paq and pbq are of projective type, while pcq

is not.

shown by Némethi [35] and Tweedy [51], respectively, building on work of Borodzik and

Némethi [2].

However, not all Seifert fiber spaces are of projective type. The Brieskorn sphere Σp5, 8, 13q

is a Seifert space not of projective type, for instance, as one may confirm using graded roots.

Indeed, SWFHconnpΣp5, 8, 13qq “ T `1 p2q ‘ T `1 p1q. By Corollary 1.2.6, any space not of pro-

jective type is not homology cobordant to a space of projective type. In particular, Σp5, 8, 13q

is not homology cobordant to any Σpp, q, pqn˘ 1q.

4.2.3 Calculation of Beta

By the construction of SWF pY, sq, the grading of the reducible element is ´2npY, s, gq. We

also saw that the constant s (depending on pY, sq) in Corollary 4.2.4 is the grading of the

reducible (with respect to the Seifert metric). Also in Corollary 4.2.4, we saw s{2 “ βpY, sq

for Seifert rational homology spheres. We then obtain:

Corollary 4.2.7. Let Y “ Σpb, pb1, a1q, . . . , pbk, akqq be a negative Seifert rational homology

sphere and s a spin structure on Y . Then βpY, sq “ ´npY, s, gq, where g is a metric for

which Y has the Seifert geometry.

Ruberman and Saveliev [44] show npY, gq “ µ̄pY q for Seifert integral homology spheres

for the Seifert metric, from which we establish Theorem 1.2.3.

We have established that µ̄ restricted to Seifert integral homology three-spheres extends

to a homology cobordism invariant, but not necessarily that µ̄ extends to a homology cobor-

dism invariant. In [29] it is shown that β is not additive; on the other hand, µ̄ is additive.
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Similarly, β does not agree with the Saveliev ν invariant of [45],[46], although the two agree

on Seifert fiber spaces.

4.3 Manolescu Invariants for Connected Sums of Seifert Spaces

We will take advantage of Theorem 3.1.1 again

We can now prove Theorems 1.3.1 and 1.3.2 of the Introduction.

Proof of Theorem 1.3.1. By Definition, MpY1#Y2, s1#s2q “MpSWF pY1#Y2, s1#s2qq, where

M is any of α, β and γ. By Fact 3.1.5, MpSWF pY1#Y2, s1#s2qq “ MpSWF pY1, s1q ^

SWF pY2, s2qq. Theorems 2.2.4 and 2.2.5 applied to SWF pY1, s1q and SWF pY2, s2q yield

Theorem 1.3.1.

Proof of Theorem 1.3.2. It follows from Definition 3.1.3 and Proposition 2.2.15 that δpY, sq ď

αpY, sq. The inequality γpY, sq ď δpY, sq then follows from Theorem 3.1.4.

Next, we specialize to Seifert spaces to acquire Theorem 1.3.4 of the Introduction.

We focus on Seifert spaces of projective type because their chain local equivalence class

is simplest. Recall that a Seifert rational homology three-sphere pY, sq is of projective type

if (4.49) holds, which is equivalent to

rSWF pY, sqscl “ rpΣ̃pS
dpY,sq`2s´1

> SdpY,sq`2s´1
q, 0, s{2qscl. (4.52)

where dpY, sq the Heegaard Floer correction term, for some s P Q. If Y is an integral

homology three-sphere, the quantity s is n “ µ̄pY q.

Applying Theorem 2.3.1, we obtain Theorem 1.3.4 of the Introduction:
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Proof of Theorem 1.3.4. By (4.52) and Fact 3.1.5, we have:

rSWF pY1# . . .#Ynqscl “ rp^
n
i“1pΣ̃pS

2pdpYiq{2`µ̄pYiqq´1
>S2pdpYiq{2`µ̄pYiqq´1

q, 0, µ̄pY1# . . .#Ynq{2qscl.

(4.53)

In Theorem 2.3.1, we computed α, β, and γ for the right-hand side of (4.53), completing the

proof.

114



CHAPTER 5

Applications to the Homology Cobordism Group

5.1 Seifert Spaces

First, we see that Corollary 1.2.2 follows from Corollary 4.2.4 and Theorem 1.2.3. Indeed,

the negative fibration case follows immediately, and the positive fibration statement follows

by using the properties of α, β, γ, µ̄, and d under orientation reversal.

We also obtain:

Theorem 5.1.1. Let Y be a Seifert integral homology sphere. If ´µ̄pY q{2 ‰ dpY q, then

Y is not homology cobordant to any Seifert integral homology sphere with fibration of sign

opposite that of Y .

Proof. If Y is a negative Seifert fibration, and ´µ̄pY q{2 ‰ dpY q, then αpY q ‰ βpY q, but for

all positive fibrations α “ β. One performs a similar check for positive fibrations.

This statement is expressed only in terms of µ̄ and d, but the proof comes from the

properties of α, β, γ. As a particular example, we have Σp2, 3, 12k ´ 5q and Σp2, 3, 12k ´ 1q,

for all k ě 1, have α ‰ β and so are not homology cobordant to any positive Seifert fibration.

We remark that Némethi’s algorithm [34] for Heegaard Floer homology of Seifert fiber

spaces makes SWFH G
˚ of Seifert spaces computable. Using Tweedy’s computations in [51],

we provide calculations of SWFH G
˚ for the following infinite families as an example. In

the following tables, there are nontrivial q-actions between infinite towers. The only other

nontrivial q-actions are for Σp2, 7, 28k´1q and Σp2, 7, 28k`15q, where q sends each summand

of V`3 p1q‘k (respectively V`´1p1q
‘k`1) to V`2 (respectively V`´2).
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Y SWFH G
˚ pY q α β γ δ

Σp2, 5, 20k ` 11q V`2 ‘ V`´1 ‘ V`0 ‘ V`´1p1q
‘k ‘

À2k`1
i“1 V`´1´2ip1q 1 -1 -1 0

Σp2, 5, 20k ` 1q V`0 ‘ V`1 ‘ V`2 ‘ V`´1p1q
‘k ‘

À2k
i“1 V`´1´2ip1q 0 0 0 0

Σp2, 5, 20k ´ 11q V`2 ‘ V`3 ‘ V`4 ‘ V`1 p1q‘k´1 ‘
À2k´2

i“0 V`´1´2ip1q 1 1 1 1

Σp2, 5, 20k ´ 1q V`4 ‘ V`1 ‘ V`2 ‘ V`1 p1q‘k´1 ‘
À2k´1

i“0 V`´1´2ip1q 2 0 0 1

Σp2, 5, 20k ´ 13q V`0 ‘ V`1 ‘ V`2 ‘ V`´1p1q
‘k´1 ‘

À2k´2
i“0 V`´1´2ip1q 0 0 0 0

Σp2, 5, 20k ´ 3q V`2 ‘ V`´1 ‘ V`0 ‘ V`´1p1q
‘k´1 ‘

À2k´1
i“0 V`´1´2ip1q 1 -1 -1 0

Σp2, 5, 20k ` 3q V`2 ‘ V`3 ‘ V`4 ‘ V`1 p1q‘k ‘
À2k´1

i“0 V`´1´2ip1q 1 1 1 1

Σp2, 5, 20k ` 13q V`4 ‘ V`1 ‘ V`2 ‘ V`1 p1q‘k ‘
À2k

i“0 V`´1´2ip1q 2 0 0 1

Table 5.1: The Pinp2q-equivariant Floer homology of Σp2, 5, pq.

5.2 Connected Sums

We use Theorem 1.3.4 to obtain Theorem 1.3.5 of the Introduction:

Proof of Theorem 1.3.5. Define δ̃pYiq by dpYiq{2` µ̄pYiq. Assume without loss of generality

that δ̃pY1q ď ¨ ¨ ¨ ď δ̃pYnq. We have, by Theorem 1.3.4:

βpY q ´ γpY q “ Ep
n´1
ÿ

i“1

δ̃pYiqq ´ Ep
n´2
ÿ

i“1

δ̃pYiqq.

Since we assumed δ̃pYiq ě 2 for at least two distinct i, we have δ̃pYn´1q ě 2, so:

βpY q ´ γpY q ě 2.

Negative Seifert integral homology spheres Z have βpZq ´ γpZq “ 0, so Y is not homology

cobordant to any negative Seifert integral homology sphere.

Using Theorem 1.3.4 again, we similarly obtain αpY q ´ βpY q ě 2. But positive Seifert

spaces have αpZq “ βpZq, using Corollary 1.2.2. Thus Y is not homology cobordant to any

positive Seifert space, completing the proof.
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Y SWFHG
˚ pY q

Σp2, 7, 28k ´ 1q V`4 ‘ V`1 ‘ V`2 ‘ V`3 p1q‘k ‘ V`1 p1q‘k´1 ‘
À2k´1

i“0 V`´1´2ip1q ‘
À2k´1

i“0 V`´1´4k´4ip1q

Σp2, 7, 28k ´ 15q V`4 ‘ V`5 ‘ V`6 ‘ V`3 p1q‘k´1 ‘ V`1 p1q‘k´1 ‘
À2k´2

i“0 V`´1´2ip1q ‘
À2k´2

i“0 V`1´4k´4ip1q

Σp2, 7, 28k ` 1q V`0 ‘ V`1 ‘ V`2 ‘ V`´3p1q
‘k ‘ V`´1p1q

‘k ‘
À2k

i“1 V`´1´2ip1q ‘
À2k

i“1 V`´1´4k´4ip1q

Σp2, 7, 28k ` 15q V`0 ‘ V`´3 ‘ V`´2 ‘ V`´3p1q
‘k ‘ V`´1p1q

k`1 ‘
À2k`1

i“1 V`´1´2ip1q ‘
À2k`1

i“1 V`´3´4k´4ip1q

Σp2, 7, 14k ´ 3q V`2 ‘ V`3 ‘ V`4 ‘ V`1 p1q‘k´1 ‘
Àk´1

i“0 V`1´2ip1q ‘
Àk´1

i“0 V`1´2k´4ip1q

Σp2, 7, 14k ` 3q V`2 ‘ V`´1 ‘ V`0 ‘ V`´1p1q
‘k ‘

Àk
i“1 V`´1´2ip1q ‘

Àk
i“1 V`´1´2k´4ip1q

Σp2, 7, 14k ´ 5q V`4 ‘ V`1 ‘ V`2 ‘ V`1 p1q‘k´2 ‘
Àk´1

i“0 V`1´2ip1q ‘
Àk´1

i“0 V`1´2k´4ip1q

Σp2, 7, 14k ` 5q V`0 ‘ V`1 ‘ V`2 ‘ V`´1p1q
‘k`1 ‘

Àk
i“1 V`´1´2ip1q ‘

Àk
i“1 V`´1´2k´4ip1q

Table 5.2: The Pinp2q-equivariant Floer homology of Σp2, 7, pq.

Definition 5.2.1. We call a rational homology three-sphere with spin structure pY, sq H-

split if αpY, sq “ βpY, sq “ γpY, sq, in analogy to the concept of K-split from [31]. We

note from Theorem 1.3.1 that the subset θH–split of H-split homology cobordism classes is a

subgroup of θH3 .

Lemma 5.2.2. Let Y “ Y1# . . .#Yn be a connected sum of negative Seifert integral homology

spheres of projective type Yi, with δ̃pY1q ď ¨ ¨ ¨ ď δ̃pYnq. Then δ̃pYnq is determined by rY s P θH3 .

That is, δ̃pYnq is a homology cobordism invariant of Y1# . . .#Yn among connected sums of

negative Seifert integral homology spheres of projective type.

Proof. We show how to determine δ̃pYnq from Y . First, we note that Y is H-split if and only

if δ̃pYnq “ 0 using (1.16)-(1.19), so we may assume from now on that δ̃pYnq ě 1. Consider

Y#Σp2, 3, 11q (recalling that dpΣp2, 3, 11qq “ 2, and µ̄pΣp2, 3, 11qq “ 0). We have:

αpY q ´ βpY q “ Ep
n

ÿ

i“1

δ̃pYiqq ´ Ep
n´1
ÿ

i“1

δ̃pYiqq (5.1)

αpY#Σp2, 3, 11qq ´ βpY#Σp2, 3, 11qq “ Ep
n

ÿ

i“1

δ̃pYiq ` 1q ´ Ep
n´1
ÿ

i“1

δ̃pYiq ` 1q (5.2)

If δ̃pYnq is even, then the difference in (5.1) is δ̃pYnq, while if δ̃pYnq is odd, (5.1) is δ̃pYnq ` 1

if
řn´1
i“1 δ̃pYiq is even, or δ̃pYnq ´ 1 otherwise. If δ̃pYnq is even, the difference in (5.2) is δ̃pYnq,

while if δ̃pYnq is odd, (5.2) is δ̃pYnq ´ 1 if
řn´1
i“1 δ̃pYiq is even, or δ̃pYnq ` 1 otherwise.
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In particular, we observe that αpY q, βpY q, αpY#Σp2, 3, 11qq, and βpY#Σp2, 3, 11qq de-

termine δ̃pYnq.

We show the existence of a summand of a certain subgroup of the homology cobordism

group. Let θSFP denote the subgroup of θH3 generated by negative Seifert spaces of projective

type.

Theorem 5.2.3. Let θH–split,SFP “ θH–split X θSFP . The group θSFP splits into a direct sum

θSFP “ θH–split,SFP ‘
à

txą0|DY, δ̃pY q“xu

Z. (5.3)

Proof. Here the rightmost direct sum runs over all positive x for which there exists a negative

Seifert integral homology sphere Y of projective type with δ̃pY q “ x. Let H be the free

abelian group with generators ei, for each i P Zą0. The group H is isomorphic to Z8.

We define a homomorphism ψ : θSFP Ñ H. For Y a negative Seifert integral homology

sphere of projective type with δ̃pY q ą 0, we define ψpY q “ eδ̃pY q, while if δ̃pY q “ 0, we

set ψpY q “ 0. To define ψ on all of θSFP we extend linearly. To establish that ψ is

a homomorphism, we need only show that the set (with multiplicity) tδ̃pY1q, . . . , δ̃pYnqu

associated to Y „ Y1# . . .#Yn is indeed a homology cobordism invariant of Y , i.e. that

it does not depend on how we express Y as a connected sum of Seifert integral homology

spheres in θSFP .

Say we have an identity in θSFP among (not necessarily negative) Seifert spaces of pro-

jective type:

Y1# . . .#Yn „ Z1# . . .#Zm. (5.4)

We need to show
ř

ψpYiq “
ř

ψpZiq. To do so, by rearranging (5.4) we may assume

that all the Yi, Zj are negative Seifert spaces. We assume without loss of generality that

δ̃pY1q ď ¨ ¨ ¨ ď δ̃pYnq and δ̃pZ1q ď ¨ ¨ ¨ ď δ̃pZmq, and that n ď m.

By Lemma 5.2.2, δ̃pYnq “ δ̃pZmq, and so

rSWF pZm#´ Ynqscl “ rpS
0, 0,

µ̄pZmq ´ µ̄pYnq

2
qscl.
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Thus, subtracting Yn from both sides of (5.4), we obtain:

rSWF pY1# . . .#Yn´1qscl “ rpSWF pZ1# . . .#Zm´1qq ^ pS
0, 0,

µ̄pZmq ´ µ̄pYnq

2
qscl (5.5)

The right-hand side of (5.5) is

rSWF pp#pµ̄pYnq´µ̄pZmqqΣp2, 3, 5qq#Z1# . . .#Zm´1qscl,

using dpΣp2, 3, 5qq “ 2 and µ̄pΣp2, 3, 5qq “ ´1.

We repeat the use of Lemma 5.2.2 to find δ̃pYn´iq “ δ̃pZm´iq for all i ď n. This gives

finally that Z1# . . .#Zm´n must be H-split, and so in particular δ̃pZiq “ 0 for all i ď m´n.

This shows that
řm
i“1 ψpZiq “

řn
i“1 ψpYiq, whence ψ is well-defined on θSFP . It is clear that

ψ is surjective onto the
À

txą0|DY, δ̃pY q“xu Z factor, with kernel θH–split,SFP , giving the splitting

stated in the Theorem.

Proof of Theorem 1.3.6. By Theorem 1.3.8, for all N ą 0 there exists some negative Seifert

space of projective type Y for which δ̃pY q “ N . Theorem 1.3.6 then follows from Theorem

5.2.3.

However, other generators for
à

txą0|DY, δ̃pY q“xu

Z

are easier to find, using results of Némethi (we use Yp from Theorem 1.3.8 in order to obtain

Corollary 1.3.9).

We record a different generating set, starting with some notation from [35]. Let, for

relatively prime p and q, Sp,q Ă Zě0 denote the semigroup

Sp,q “ tap` bg | pa, bq P Z2
ě0u,

and

αi “ #ts R Sp,q | s ą iu.

Also, set

g “
pp´ 1qpq ´ 1q

2
.
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Then Némethi [35] shows

HF`
p´Σpp, q, pqn` 1qq “ T `0 ‘ T `0 pαg´1q

‘n
‘

npg´1q
à

i“1

T `
pt i
n

u`1qpt i
n
un`iq

pαg´1`r i
n

sq
‘2.

Reversing orientation, we have:

HF`
pΣpp, q, pqn`1qq “ T `0 ‘T `1´2αg´1

pαg´1q
‘n
‘

npg´1q
à

i“1

T `
1´pt i

n
u`1qpt i

n
un`iq´2α

g´1`r in s

pαg´1`r i
n

sq
‘2.

This implies that Σpp, q, pqn ` 1q is of projective type, and the discussion following (4.49)

gives, for n odd, αg´1 “ dpΣpp, q, pqn` 1qq{2` µ̄pΣpp, q, pqn` 1qq.

Fixing p “ 2, we note that the complement of Sp,q is precisely ts | s ă q, s oddu. We see

from the definition of αg´1 that αg´1 “ t
q`1

4
u. We then have that tΣp2, q, 2q`1q | q ą 1, oddu

attains all positive values of δ̃ “ d{2` µ̄. By Theorem 5.2.3, Σp2, 4k ` 3, 8k ` 7q then span

a Z8 summand of θSFP .

Proof of Corollary 1.3.7. By the calculation in [30], for all k ě 1,

dpΣp2, 3, 12k ´ 1qq “ 2, µ̄pΣp2, 3, 12k ´ 1qq “ 0,

dpΣp2, 3, 12k ´ 7qq “ 2, µ̄pΣp2, 3, 12k ´ 7qq “ ´1.

In particular, rΣp2, 3, 12k ´ 7qscl is independent of k. Furthermore,

rΣp2, 3, 12k ´ 7qs P θH–split

for all k ě 1. However, Furuta [16] shows Σp2, 3, 6k ´ 1q are linearly independent in θH3 .

Then tΣp2, 3, 12k ´ 7qukě1 generates a Z8 subgroup of θH–split, as needed.

We establish Theorem 1.3.3 of the Introduction, using Theorem 2.3.1.

Proof of Theorem 1.3.3. By Lemma 2.2.12, for X a space of type SWF at level t the complex

CCW
˚ pXq must contain a copy of T “ TpdpXq´tq{2ptq. We recall, by Fact 2.2.10, that T is chain

locally equivalent to

ΣtR̃Σ̃pSdpXq´t´1
> SdpXq´t´1

q.
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Theorem 2.3.1 then shows:

apTbnq “ 2EpnpdpXq ´ tq{2q ` nt, (5.6)

bpTbnq “ 2Eppn´ 1qpdpXq ´ tq{2q ` nt, (5.7)

cpTbnq “ 2Eppn´ 2qpdpXq ´ tq{2q ` nt. (5.8)

Let pX, g, hq “ SWF pY, sq, and let X be of type SWF at level t. Then δpY, sq “ dpXq{2 ´

g{2´ 2h. From
n

ľ

pTpdpXq´tq{2ptq, g, hq ď
n

ľ

pX, g, hq

and (5.6)-(5.8) we obtain:

αp
n

ľ

pX, g, hqq ě EpnpdpXq ´ tq{2q `
nt´ ng ´ 4nh

2
,

βp
n

ľ

pX, g, hqq ě Eppn´ 1qpdpXq ´ tq{2q `
nt´ ng ´ 4nh

2
,

γp
n

ľ

pX, g, hqq ě Eppn´ 2qpdpXq ´ tq{2q `
nt´ ng ´ 4nh

2
,

δp
n

ľ

pX, g, hqq “ ndpXq{2´ ng{2´ 2nh.

Using Epxq ě x, we see:

αp#npY, sqq ě nδpY, sq,

βp#npY, sqq ě pn´ 1qδpY, sq `
pt´ g ´ 4hq

2
,

γp#npY, sqq ě pn´ 2qδpY, sq ` 2
pt´ g ´ 4hq

2
, (5.9)

δp#npY, sqq “ nδpY, sq.

From (5.9), we obtain:

γp#npY, sqq ě nδpY, sq ` C (5.10)

where C is some constant depending on Y (but not n). However, by Theorem 1.3.2,

γp#npY, sqq ď δp#npY, sqq “ nδpY, sq, from which we obtain that γp#npY, sqq ´ nδpY, sq

is a bounded function of n. Using the properties of α, β, and γ under orientation reversal

we find that αp#npY, sqq ´ nδpY, sq is also a bounded function of n. Since γp#npY, sqq ď

βp#npY, sqq ď αp#npY, sqq, we also obtain that βp#npY, sqq ´ nδpY, sq is a bounded function

of n.
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Figure 5.1: Example of a graded root, with ∆ sequence t2,´1, 1,´2u.

5.3 Graded Roots

In this section we collect the preliminaries needed to show Theorem 1.3.8. We use graded

roots, which were introduced by Némethi [34] in order to study the Heegaard Floer homology

of plumbed manifolds. The graded roots of Seifert spaces were studied in [3],[21]. Our brief

introduction to graded roots will follow [18, §4] extremely closely.

5.3.1 Definitions

Definition 5.3.1 ([34]). A graded root consists of a pair pΓ, χq, where Γ is an infinite tree,

and χ : VertpΓq Ñ Z satisfies the following.

‚ χpuq ´ χpvq “ ˘1, if u, v are adjacent.

‚ χpuq ą mintχpvq, χpwqu if u and v are adjacent and u and w are adjacent.

‚ χ is bounded below.

‚ For all k P Z, χ´1pkq is finite.

‚ For k sufficiently large, |χ´1pkq| “ ´1.

An example graded root is featured in Figure 5.1.

Graded roots are specified, up to degree shift, by a finite sequence, as follows. Let

∆: t0, . . . , Nu Ñ Z, and define τ∆ : t0, . . . , Nu Ñ Z by the recurrence:

τ∆pn` 1q ´ τ∆pnq “ ∆pnq, with τ∆p0q “ 0. (5.11)
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For each n P t0, . . . , N ` 1u, let Rn be the graph with vertex set tτ∆pnq, τ∆pnq ` 1, . . . u,

with edges between k and k ` 1 for all k ě τ∆pnq. The graded root associated to τ∆ is the

infinite tree obtained by identifying the common edges and vertices of Rn and Rn`1 for each

n P t0, . . . , N ` 1u; call this tree Γ∆. We define the grading function χ∆ on Γ∆ by setting

χ∆pvq to be the integer corresponding to v (this integer is independent of which tree Rn we

consider v as a vertex of, by the construction). Notice that lengthening ∆ by assigning 0 to

tN ` 1, . . . ,Mu, for some M ą N does not change the graded root determined by ∆.

To a graded root pΓ, χq is associated a graded FrU s-module HpΓ, χq. We define HpΓ, χq by

the F-vector space with generators the vertices of Γ. The element of HpΓ, χq corresponding

to a vertex v P Γ has grading 2χpvq. The FrU s-module structure is given by setting Uv to

be the sum of all vertices w adjacent to v with χpwq “ χpvq ´ 1.

5.3.2 Delta Sequences

Karakurt and Lidman [21] define an abstract delta sequence as a pair pX,∆q with X a well-

ordered finite set, and ∆: X Ñ Z ´ t0u, with ∆ positive on the minimal element of X. As

we saw in §5.3.1, an abstract delta sequence specifies a graded root up to a grading shift.

To connect graded roots back to topology: Némethi associates a graded root to any

manifold belonging to a large family of plumbed manifolds (including Brieskorn spheres).

The corresponding FrU s-module HpΓ, χq is isomorphic to HF`
p´Y q up to a grading shift.

Can and Karakurt [3] simplify the method for Seifert homology spheres. In the proof of

Theorem 1.3.8 we will use their reformulation.

In particular, we review the abstract delta sequence pXY ,∆Y q of an arbitrary Brieskorn

sphere Y “ Σpp, q, rq, following [3]. We follow the convention that the Seifert space Σpp, q, rq

is the circle bundle over the orbifold S2pp, q, rq with orbifold degree ´1{pqr. Here S2pp, q, rq

is the orbifold with underlying space S2 and cone singularities modelled on the actions of

Z{p, Z{q, and Z{r. This convention for Σpp, q, rq agrees with the notation of [3], but is

opposite the notation of [18]. Set NY “ pqr ´ pq ´ pr ´ qr. Let SY be the intersection of
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the semigroup on the generators pq, pr, qr with r0, NY s. Set

QY “ tNY ´ s | s P SY u,

and

XY “ SY YQY .

Can and Karakurt show SY and QY are disjoint. Define ∆Y : XY Ñ t´1, 1u by ∆Y “ 1 on

SY and ´1 on QY . It is clear that pXY ,∆Y q is an abstract delta sequence.

Theorem 5.3.2 ([3] Theorem 1.3,[34] Section 11 ,[39] Theorem 1.2). Let Y “ Σpp, q, rq

for coprime p, q, r. Let pΓY , χY q be the graded root associated to the abstract delta sequence

pXY ,∆Y q described above. Then HpΓY , χY q – HF`
p´Y q as relatively graded FrU s-modules.

Note furthermore that ∆Y pxq “ ´∆Y pNY ´ xq for x P XY .

5.3.3 Operations on Delta Sequences

Different abstract delta sequences may correspond to the same graded root. For instance,

let pX,∆q be an abstract delta sequence. Fix t ě 2 and z P X with |∆pzq| ě t. Choose

n1, . . . , nt P Z, so that the sign of all ni is the same as that of ∆pzq and so that n1`¨ ¨ ¨`nt “

∆pzq. From this data we construct an abstract delta sequence with the same graded root as

pX,∆q. Let X 1 “ X{zY tz1, . . . , ztu for some new elements z1 ď ¨ ¨ ¨ ď zt taking the place of

z in X. Define ∆1 : X 1 Ñ Z by ∆1pxq “ ∆pxq for x P X{tzu and by ∆1pziq “ ni for all i. We

call pX 1,∆1q a refinement of pX,∆q, and pX,∆q a merge of pX 1,∆1q.

Definition 5.3.3. We call an abstract delta sequence pX,∆q reduced if it has no consecutive

positive or negative values of ∆ (this is the same as pX,∆q not admitting any merges). Every

abstract delta sequence admits a unique reduced form. We call an abstract delta sequence

expanded if it does not admit any refinement (this is equivalent to all values of ∆ being ˘1).

It is more convenient to work with reduced delta sequences, but we saw in Section 5.3.2

that the abstract delta sequence associated to Brieskorn spheres is expanded, so we will need

a way to explicitly write the reduced form of pXY ,∆Y q. This will be handled in Section 5.4

using several lemmas from [18].
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5.3.4 Successors and Predecessors

Let pX,∆q be an abstract delta sequence. Let S Ă X be the set on which ∆ is positive, and

Q Ă X the set on which ∆ is negative. For x P X, we define the positive successor

suc`pxq “ min tx1 P S | x ă x1u

and negative successor suc´pxq “ min tx1 P Q | x ă x1u.

The sequence pX,∆q is reduced if and only if for all x P S:

x ă suc´pxq ď suc`pxq,

and, for all x P Q:

x ă suc`pxq ď suc´pxq.

We also define pre˘pxq, the positive and negative predecessors, analogously.

We will need a specific model for the reduced form of pX,∆q. First, we need a few further

pieces of notation. For x P S, let

π`pxq “ maxtz P S | z ă suc´pxqu and π´pxq “ mintz P S | z ą pre´pxqu.

For y P Q, let

η`pyq “ maxtz P Q | z ă suc`pyqu and η´pyq “ mintz P Q | z ą pre`pyqu.

Now define S̃ “ tπ`pxq | x P Su (noting that S contains one element for each maximal

interval of elements of X on which ∆ is positive). Similarly, define Q̃ “ tη´pyq | y P Qu.

Then set X̃ “ S̃ Y Q̃. We define ∆̃ on S̃ by

∆̃pπ`pxqq “
ÿ

z|π´pxqďzďπ`pxq

∆pzq,

and on Q̃ by

∆̃pη´pyqq “
ÿ

z|η´pyqďzďη`pyq

∆pzq.

The pair pX̃, ∆̃q is the reduced form of pX,∆q.

Note, in particular, that we may consider X̃ as a subset of X.
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5.3.5 Tau Functions and Sinking Delta Sequences

Let sucpxq be mintx1 P X | x ă x1u, and let xmin, xmax be the minimal and maximal elements

of X. For an abstract delta sequence pX,∆q, we define τ∆ as in (5.11) by:

τ∆psucpxqq ´ τ∆pxq “ ∆pxq, with τ∆pxminq “ 0.

Let X` “ X Y tx`u where x` “ sucpxmaxq. The function τ∆ is then defined on X`.

We call τ∆ the tau function associated to the abstract delta sequence pX,∆q.

Definition 5.3.4 ([18]). Let pX,∆q be an abstract delta sequence and pX̃, ∆̃q its reduced

form. We call pX,∆q sinking if the following hold.

1. The maximal element xmax of X belongs to Q (i.e. ∆pxmaxq ă 0).

2. For all x P S̃, ∆̃pxq ď |∆̃psuc´pxqq|.

3. ∆̃ppre`pxmaxqq ă |∆̃pxmaxq|.

Sinking delta sequences will be significant to us because of the following Proposition,

which follows immediately from Definition 5.3.4.

Proposition 5.3.5 (Proposition 4.7 [18]). A sinking delta sequence attains its minimum at

and only at its last element.

5.3.6 Symmetric Delta Sequences

There is a symmetry in Figure 5.1 obtained by reflecting the graded root across the vertical

axis. This symmetry holds for graded roots of all Seifert integral homology spheres. For

simplicity, write ∆ “ xk1, k2, . . . , kny for the function ∆: X Ñ Z{t0u, where X is a finite

well-ordered set, and k1 is the value of ∆ on the minimal element of X, k2 is the value of ∆

on the successor of the minimal element of X, and so on.

Definition 5.3.6. Let pX,∆q be an abstract delta sequence with ∆ “ xk1, . . . , kny. Define

the symmetrization of pX,∆q by the abstract delta sequence ∆sym “ xk1, . . . , kn,´kn, . . . ,´k1q.

We call a delta sequence ∆ symmetric if ∆ “ p∆1qsym for some delta sequence ∆1.
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Definition 5.3.7. For delta sequences ∆1 “ xk1, . . . , kny and ∆2 “ x`1, . . . , `my, we define

the join delta sequence ∆1 ˚∆2 by

∆1 ˚∆2 “ xk1, . . . , kn, `1, . . . , `my.

For ∆ a symmetric delta sequence, the FrU s-module HpΓ∆q admits an involution ι∆,

given as follows. The delta sequence ∆ gives a map:

∆: t0, . . . , 2n` 1u Ñ Z.

Let ι : t0, . . . , 2n` 2u Ñ t0, . . . , 2n` 2u be ιpkq “ 2n` 2´ k. Then τ∆ is ι-equivariant:

∆pιpkqq “τ∆pιpk ` 1qq ´ τ∆pιpkqq (5.12)

“τ∆p2n` 2´ pk ` 1qq ´ τ∆p2n` 2´ kq

“ ´ pτ∆p2n` 2´ kq ´ τ∆p2n` 1´ kqq

“ ´∆p2n` 1´ kq

“∆pkq.

where in the last equality we have used that ∆ is symmetric. We may then define ι∆ on each

of the Rτ∆pkq by acting as the identity map:

ι∆ : Rτ∆pkq Ñ Rτ∆pιpkqq.

Then ι∆ induces an involution of Γ∆, and so also of HpΓ∆q, as an FrU s-module.

We use the definition of symmetrization for delta sequences to further specify the form

of the abstract delta sequence (and its reduction) associated to Brieskorn spheres.

Since x P SY if and only if NY ´ x P QY (so, in particular, ∆Y pxq “ ´∆Y pNY ´ xq), we

have NY {2 R XY , and

∆Y “ p∆Y |r0,NY {2sq
sym. (5.13)

We also need a version of (5.13) for the reduction. By ∆Y pxq “ ´∆Y pNy ´ xq, if the

maximal element of XY X r0, NY {2s is in SY (respectively QY ), then the minimal element of

XY X rNY {2, NY s is in QY (SY ). Then

∆̃Y “ p∆̃Y |r0,NY {2sq
sym. (5.14)
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Figure 5.2: Creatures ΓCp . Based on Figure 5 of [18].

5.4 Semigroups and Creatures

In this section we will prove Theorem 1.3.8. First, we will introduce the creatures from [18]

and write their delta sequences. Then we will prove a technical decomposition result (Lemma

5.4.2) for the graded roots of the Brieskorn spheres Σpp, 2p ´ 1, 2p ` 1q, for p odd. Hom,

Lidman and Karakurt were concerned with this family of Brieskorn spheres, but with p even,

and the proof of Lemma 5.4.2 is adapted from their proof of an analogous decomposition

result, for p even. We will quote, without proof, the lemmas from [18] that do not depend on

parity, and suitably modify several other lemmas from that paper to account for the change

in parity. We will then verify that Σpp, 2p´ 1, 2p` 1q is of projective type, and calculate its

β and d. As in Section 5.3, we will be following [18] extremely closely.

5.4.1 Creatures

Hom, Karakurt, and Lidman [18] observe via examples that there are certain sub-graded

roots occuring in Σpp, 2p ´ 1, 2p ` 1q, as shown in Figure 5.2. The two graded roots ΓCp in

Figure 5.2 are both called creatures.

The abstract delta sequence for the creature ΓCp for p “ 2ξ ` 2, ξ P Zě1 is the sym-
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metrization of

∆Cp “ xξ,´ξ, pξ ´ 1q,´pξ ´ 1q, . . . , 2,´2, 1,´2, 1,´2, 2, . . . ,´pξ ´ 1q, ξ ´ 1,´ξ, ξ,´pξ ` 1qy,

as observed in [18].

Definition 5.4.1. For every p “ 2ξ ` 1, with ξ P Zě1, the creature ΓCp is the graded root

defined by the symmetrization of the abstract delta sequence:

∆Cp “ xξ,´ξ, pξ ´ 1q,´pξ ´ 1q, . . . , 2,´2, 1,´2, 1,´2, 2, . . . ,´pξ ´ 1q, ξ ´ 1,´ξ, ξy. (5.15)

Set Yp “ Σpp, 2p ´ 1, 2p ` 1q, and ∆Yp the abstract delta sequence corresponding to Yp,

with reduced form ∆̃Yp . We have the following technical lemma, the analogue of [18][Lemma

5.3].

Lemma 5.4.2. For every odd integer p ě 3, we have the decomposition:

∆̃Yp “ p∆Zp ˚∆Cpq
sym, (5.16)

where ∆Zp is a sinking delta sequence.

Set r˘ “ pp2p˘ 1q and w “ p2p` 1qp2p´ 1q. We work with the semigroup Spr´, r`, wq

on the generators r´, r`, and w in studying the graded root associated to Yp. The next three

lemmas are verbatim from [18] and apply to both even and odd p.

Lemma 5.4.3 ([18] Lemma 5.4). Let Spr´, r`q be the semigroup generated by r´ and r`.

The intersection Spr´, r`q X r0, pp´ 1qr`s, as an ordered set, is given by:

t0,

r´, r`,

2r´, r´ ` r`, 2r`,

3r´, 2r´ ` r`, r´ ` 2r`, 3r`,

...

pp´ 1qr´, pp´ 2qr´ ` r`, . . . , pp´ 1qr`u. (5.17)
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Lemma 5.4.4 ([18] Lemma 5.6). Say that x P SYp is of the form x “ ar´ ` br`, with

a, b ě 0, and x ď 2r´ ` pp´ 3qr`. Then,

1. x ă NYp ´ pp´ a´ 1qr´ ´ pp´ b´ 3qr` ă suc`pxq.

2. rπ´pxq, π`pxqs X SYp “ tx ´ minta, bu, . . . , xu, unless x “ pp ´ 2qr` or pp ´ 1qr´. In

either of these exceptional cases, rπ´pxq, π`pxqs X SYp “ tpp´ 2qr`, pp´ 1qr´u.

Lemma 5.4.5 ([18] Proposition 5.7 ). The reduced form ∆̃Yp of ∆Yp satisfies:

1. As ordered subsets of N, S̃YpXr0, 2r´`pp´3qr`s “ Spr´, r`qXr0, 2r´`pp´3qr`sztpp´

2qr`u.

2. Let x P Spr´, r`qX r0, 2r´`pp´3qr`sztpp´2qr`, pp´1qr´u be written x “ ar´` br`.

Then ∆̃Yppxq “ minta, bu ` 1. Further, ∆̃Ypppp´ 1qr´q “ 2.

3. Let x P S̃Yp and say x ă NYp ´ cr´ ´ dr` ă suc`pxq, where c, d ě 0. Then

∆̃Yppsuc´pxqq ď ´mintc, du ´ 1.

Fix p “ 2ξ ` 1 for a positive integer ξ. Define

K “ pξ ´ 1qr´ ` pξ ´ 1qr`. (5.18)

We note two inequalities:

pp´ 1qr´ ` pp´ 3qr` ă NYp , (5.19)

pp´ 2qr´ ` pp´ 2qr` ą NYp . (5.20)

Note

K ă pp´ 3qr` ă NYp{2, (5.21)

by (5.19). By (5.14),

∆̃Yp “ p∆̃Yp |X̃YpXr0,Kq
˚ ∆̃Yp |X̃YpXrK,NYp{2s

q
sym. (5.22)

Let Spr´, r`q be the semigroup generated by r´, r`. Observe that K P Spr´, r`q X r0, 2r´`

pp´ 3qr`s and K ‰ pp´ 2qr`, so K P S̃Yp by Lemma 5.4.5. Set:

∆Zp “ ∆̃Yp |X̃YpXr0,Kq
(5.23)

∆Wp “ ∆̃Yp |X̃YpXrK,NYp {2s
. (5.24)
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Lemma 5.4.6 (cf. Lemma 5.8 of [18]). For p ě 3 odd, the abstract delta sequence ∆Zp is

sinking.

Proof. We check (1)-(3) of Definition 5.3.4. For (1), we recall that ∆Zp is in reduced form.

We saw above that K P S̃Yp , so if the last element of the delta sequence ∆Zp were positive,

∆̃Yp would have two consecutive positive values, contradicting that ∆̃Yp is reduced. This

establishes (1) in Definition 5.3.4.

As in [18], we denote predecessors and successors taken with respect to X̃Yp with a tilde,

and those with respect to XYp without a tilde. By the construction of the reduced delta

sequence as in Section 5.3.4,

suc`pxq ď Ăsuc`pxq for every x P X̃Yp . (5.25)

We will next show:

∆̃Yppxq ď ´∆̃YppĂsuc´pxqq for all x P S̃Yp X r0, Kq, (5.26)

to establish (2) of Definition 5.3.4. Let x P S̃Yp X r0, Kq. Then x P Spr´, r`q X r0, pp´ 3qr`s

by (5.21) and Lemma 5.4.5(1). Writing x “ ar´ ` br`, Lemma 5.4.5(2) gives ∆̃Yppxq “

minta, bu ` 1. Set

y “ pp´ a´ 1qr´ ` pp´ b´ 3qr`.

Lemma 5.4.4 and (5.25) give:

x ă NYp ´ y ă suc`pxq ď Ăsuc`pxq.

By x P Spr´, r`q X r0, pp ´ 3qr`s, we see that a ` b ď p ´ 3. Thus p ´ a ´ 1 ě 0 and

p´ b´ 3 ě 0. Then, by the definition of QYp , NYp ´ y P QYp . Lemma 5.4.5(3) gives

∆̃YppĂsuc´pxqq ď ´mintp´ a´ 1, p´ b´ 3u ´ 1.

Then, to prove (5.26) it is sufficient to show

minta, bu ď mintp´ a´ 1, p´ b´ 3u. (5.27)

But a` b ď p´ 3, so a ď p´ b´ 3 and b ď p´ a´ 3, showing (5.27).
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We must check that Definition 5.3.4(3) holds for ∆Zp . The last positive value of ∆Zp

occurs at Ăpre`pKq “ ξr´`pξ´2qr` by Lemma 5.4.3 and Lemma 5.4.5(1). Thus Ăsuc´pξr´`

pξ ´ 2qr`q is the largest element of Zp. Then to show Definition 5.3.4(3) holds for ∆Zp , we

need to show:

∆̃Yppξr´ ` pξ ´ 2qr`q ă ´∆̃YppĂsuc´pξr´ ` pξ ´ 2qr`qq. (5.28)

By Lemma 5.4.5(2), ∆̃Yppξr´ ` pξ ´ 2qr`q “ ξ ´ 1. However, Lemma 5.4.4(1) gives:

ξr´ ` pξ ´ 2qr` ă NYp ´ pp´ ξ ´ 1qr´ ´ pp´ ξ ´ 1qr` ă suc`pξr´ ` pξ ´ 2qr`q ď K.

Then from Lemma 5.4.5(3):

´∆̃YppĂsuc´pξr´ ` pξ ´ 2qr`qq ě mintp´ ξ ´ 1, p´ ξ ´ 1u ` 1 “ p´ ξ.

Then to show (5.28), we need only show ξ ´ 1 ă p´ ξ, which is clear since p “ 2ξ ` 1.

Lemma 5.4.7 (cf. Lemma 5.9 of [18]). Let p ě 3 odd. As abstract delta sequences ∆Wp –

∆Cp where ∆Cp is as in Definition 5.4.1.

Proof. We must explicitly compute ∆Wp . We begin by describing S̃YpXrK,NYp{2s. By (5.21),

K ă NYp , and by (5.20), NYp{2 ă pp ´ 2qr`. By Lemma 5.4.5, we see S̃Yp X rK,NYp{2s “

Spr´, r`q X rK,NYp{2s. Then Lemma 5.4.3 gives:

S̃Yp X rK,NYp{2s “ tpξ ´ 1qr´ ` pξ ´ 1qr`, pξ ´ 2qr´ ` ξr`, . . . , r´ ` p2ξ ´ 3qr`,

p2ξ ´ 2qr`, p2ξ ´ 1qr´, p2ξ ´ 2qr´ ` r`, . . . , ξr´ ` pξ ´ 1qr`u. (5.29)

To check that the last term of the sequence (5.29) is as written, we need to show

ξr´ ` pξ ´ 1qr` ă NYp{2, (5.30)

and

pξ ´ 1qr´ ` ξr` ą NYp{2. (5.31)

To see (5.30), note that (5.19) gives 2ξr´`p2ξ´2qr` ă NYp , so ξr´`pξ´1qr` ă NYp{2. To

see (5.31), note that (5.20) gives p2ξ´1qr´`p2ξ´1qr` ą NYp , so pξ´1
2
qr´`pξ´

1
2
qr` ą NYp{2,

and observe pξ ´ 1qr´ ` ξr` ą pξ ´
1
2
qr´ ` pξ ´

1
2
qr`. Thus, (5.29) holds.

132



We also find Q̃Yp X rK,NYp{2s, which is the same as finding S̃Yp X rNYp{2,NYp ´Ks. By

(5.20) and (5.21),

NYp{2 ă NYp ´K ă 2r´ ` pp´ 3qr`. (5.32)

By Lemma 5.4.5(1), S̃Yp X rNYp{2,NYp ´Ks “ Spr´, r`q X rNYp{2,NYp ´Ksztp2ξ ´ 1qr`u.

Then, by Lemma 5.4.3,

S̃Yp X rNYp{2,NYp ´Ks “ tpξ ´ 1qr´ ` ξr`, pξ ´ 2qr´ ` pξ ` 1qr`, . . . , r´ ` p2ξ ´ 2qr`,

2ξr´, p2ξ ´ 1qr´ ` r`, . . . , pξ ` 1qr´ ` pξ ´ 1qr`u. (5.33)

Note that p2ξ ´ 1qr` is not present in (5.33). To verify that pξ ` 1qr´` pξ ´ 1qr` is the last

element in S̃Yp X rNYp{2,NYp ´Ks, we must show

pξ ` 1qr´ ` pξ ´ 1qr` ă NYp ´K, and (5.34)

ξr´ ` ξr` ą NYp ´K. (5.35)

Inequality (5.34) follows from (5.19) and the definition of K, while (5.35) follows from (5.20).

Thus (5.33) holds.

We find the positions of elements of Q̃Yp X rK,NYp{2s relative to the elements of S̃Yp X

rK,NYp{2s. To do so, we use the following inequalities, all obtained from (5.19) and (5.20).

For 0 ď j ď ξ ´ 1, we have:

pξ ´ 1´ jqr´ ` pξ ´ 1` jqr` ă NYp ´ pξ ` 1` jqr´ ´ pξ ´ 1´ jqr`. (5.36)

For 0 ď j ď ξ ´ 2, we have:

NYp ´ pξ ` 1` jqr´ ´ pξ ´ 1´ jqr` ă pξ ´ 2´ jqr´ ` pξ ` jqr`, (5.37)

jr` ` p2ξ ´ 1´ jqr´ ă NYp ´ pj ` 1qr´ ´ p2ξ ´ 2´ jqr`, (5.38)

NYp ´ pj ` 1qr´ ´ p2ξ ´ 2´ jqr` ă pj ` 1qr` ` p2ξ ´ 2´ jqr´. (5.39)

We observe

NYp ´ 2ξr´ ă p2ξ ´ 1qr´ (5.40)

directly from the definitions, and

NYp ´ pξ ´ 1qr´ ´ ξr` ă ξr´ ` pξ ´ 1qr` (5.41)
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from (5.20).

It follows from (5.29), (5.33), (5.36)-(5.39), (5.40), and (5.41) that X̃Yp X rK,NYp{2s is:

X̃Yp X rK,NYp{2s “ tpξ ´ 1qr´ ` pξ ´ 1qr`,NYp ´ pξ ` 1qr´ ´ pξ ´ 1qr`, pξ ´ 2qr´ ` ξr`,

NYp ´ pξ ` 2qr´ ´ pξ ´ 2qr`, . . . , r´ ` p2ξ ´ 3qr`,

NYp ´ p2ξ ´ 1qr´ ´ r`, p2ξ ´ 2qr`,NYp ´ 2ξr´, p2ξ ´ 1qr´,

NYp ´ r´ ´ p2ξ ´ 2qr`, p2ξ ´ 2qr´ ` r`,NYp ´ 2r´ ´ p2ξ ´ 3qr`, . . . , pξ ` 2qr´ ` pξ ´ 3qr`,

NYp ´ pξ´ 2qr´´ pξ` 1qr`, pξ` 1qr´` pξ´ 2qr`,NYp ´ pξ´ 1qr´´ ξr`, ξr´` pξ´ 1qr`u.

(5.42)

Now we need to calculate ∆̃Yp on X̃Yp X rK,NYp{2s, and verify that it agrees with ∆Cp . By

Lemma 5.4.5(2) and NYp{2 ă pp´ 2qr`,

∆̃Yppcr´ ` dr`q “ mintc, du ` 1 for cr´ ` dr` P S̃Yp X rK,NYp{2s. (5.43)

Similarly, for NYp ´ cr´ ´ dr` P Q̃Yp X rK,NYp{2s such that cr´ ` dr` ‰ 2ξr´:

∆̃YppNYp ´ cr´ ´ dr`q “ ´∆̃Yppcr´ ` dr`q “ ´mintc, du ´ 1 (5.44)

by Lemma 5.4.5(2), using (5.32) to obtain cr´ ` dr` ă NYp ´K ă 2r´ ` pp ´ 3qr`. Also,

Lemma 5.4.5 gives

´ 2 “ ´∆̃Ypp2ξr´q “ ∆̃YppNYp ´ 2ξr´q. (5.45)

Computing ∆̃Yp using (5.43),(5.44), and (5.45), we see that ∆Wp agrees with ∆Cp from

Definition 5.4.1. This completes the proof of Lemma 5.4.2.

Proof of Theorem 1.3.8. By Remark 3.3 of [18], dpYpq “ p´ 1, so we need only show that Yp

is of projective type, and that βpYpq “ 0.

Let ΓYp have its grading shifted so that it agrees with the grading of HF`
p´Ypq (using

Theorem 5.3.2). The decomposition in Lemma 5.4.2 implies that ΓCp embeds into ΓYp as

a subgraph. Since dp´Ypq “ 1 ´ p, we see that the embedding of ΓCp is degree-preserving.

Since ∆Zp is sinking, by Proposition 5.3.5 the minimal value of τZp is 0. Thus

Hď0pΓCpq “ Hď0pΓYpq.
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By Fact 4.2.6 applied to the graded root Γ∆Yp
(see Figure 5.2), we have that Yp is of projective

type. It is clear from Figure 5.2 that the vertex of minimal grading which is invariant under

ι is in degree 0, from which we obtain βpYpq “ 0.
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[39] Peter Ozsváth and Zoltán Szabó. On the Floer homology of plumbed three-manifolds.
Geom. Topol., 7:185–224 (electronic), 2003.
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