
Lawrence Berkeley National Laboratory
LBL Publications

Title

Plant Metabolic Network 15: A resource of genome‐wide metabolism databases for 126 plants 
and algae

Permalink

https://escholarship.org/uc/item/7f55c4pk

Journal

Journal of Integrative Plant Biology, 63(11)

ISSN

1672-9072

Authors

Hawkins, Charles
Ginzburg, Daniel
Zhao, Kangmei
et al.

Publication Date

2021-11-01

DOI

10.1111/jipb.13163
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7f55c4pk
https://escholarship.org/uc/item/7f55c4pk#author
https://escholarship.org
http://www.cdlib.org/


Plant Metabolic Network 15: A resource of genome-wide metabolism

databases for 126 plants and algae

Running title: Genome-wide metabolism databases for 126 plants 

Charles  Hawkins1,  Daniel  Ginzburg1,  Kangmei  Zhao1,  William  Dwyer1,  Bo  Xue1,

Angela Xu1,1, Selena Rice1, Benjamin Cole2, Suzanne Paley3, Peter Karp3, and Seung

Yon Rhee1*

1Carnegie Institution for Science, Plant Biology Department, Stanford, CA 94305

2DOE-Joint Genome Institute, Lawrence Berkeley Laboratory, Berkeley, CA 94720

3SRI International, Menlo Park, CA 94025

*To whom correspondence should be addressed

srhee@carnegiescience.edu

260 Panama St, Stanford, CA 94305, USA

+1 (650) 650-8541

One-sentence Summary:  We introduce a comprehensive resource of metabolic

enzyme,  reaction,  and  pathway  annotations  for  126  plant  and  algal  genomes,

provide quality assessment of the annotations, and demonstrate their application

for interpreting omics data.

Abstract
To  understand  and  engineer  plant  metabolism,  we  need  a  comprehensive  and

accurate annotation of all  metabolic information across plant species.  As a step

towards this goal, we generated genome-scale metabolic pathway databases of 126

algal  and  plant  genomes,  ranging  from model  organisms  to  crops  to  medicinal

plants  (https://plantcyc.org).  Of  these,  104  have  not  been  reported  before.  We

systematically  evaluated  the  quality  of  the  databases,  which  revealed  that  our

semi-automated  validation  pipeline  dramatically  improves  the  quality.  We  then

1New address: Johns Hopkins University, Baltimore, MD 21218
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compared  the  metabolic  content  across  the  126  organisms  using  multiple

correspondence analysis and found that Brassicaceae, Poaceae,  and Chlorophyta

appeared  as  metabolically  distinct  groups.  To  demonstrate  the  utility  of  this

resource,  we  used  recently  published  sorghum transcriptomics  data  to  discover

previously unreported trends of metabolism underlying drought tolerance. We also

used single-cell  transcriptomics  data from the  Arabidopsis root  to infer cell-type

specific  metabolic  pathways.  This  work  shows  the  quality  and  quantity  of  our

resource and demonstrates its wide-ranging utility in integrating metabolism with

other areas of plant biology.

Introduction
Survival of humans will depend on increased agricultural productivity. Agricultural

productivity is not only more yield per area, but also higher nutritional content, less

dependence on fertilizers, and more resilience against environmental hazards. All of

these traits impinge upon plant metabolism. Plants carry out a myriad of metabolic

reactions that are intricately connected into complex networks. To understand and

engineer  plant  metabolism,  it  is  important  that  metabolic  complements of  plant

genomes are accurately and consistently annotated across species. 

To provide the research community with comprehensive information about

plant  small-molecule  metabolism,  we  previously  introduced  the  Plant  Metabolic

Network (PMN), a plant-specific online resource of metabolic databases (Schläpfer

et al. 2017). Accessible at  https://plantcyc.org, the resource contains known plant

metabolites,  the  reactions  that  create  and  consume  them,  the  enzymes  that

catalyze the reactions, and the pathways into which the reactions can be organized.

PMN consists of PlantCyc, a database of all experimentally-supported information

found  in  the  literature  from  any  plant  species,  as  well  as  22  single-species

databases with a mix of  experimentally-supported and computationally-predicted

information, which allow researchers to explore each species’ unique metabolism. 

Here we describe the substantial expansion of PMN (PMN 15) in both quantity

and  quality,  which  includes  126  single-species  databases.  We  demonstrate  the

utility  of  the  PMN  resource  by  applying  recently  published  omics  data  to  gain

insights  into  plant  physiology  and  cellular  level  metabolism.  Additionally,  we

systematically  compare  126  species  in  the  context  of  metabolism  to  identify

metabolic domains and pathways that distinguish plant families. Finally, we present

2



new  website  tools  for  viewing  and  analyzing  metabolic  data  including  a  Co-

Expression Viewer and subcellular boundaries for metabolic pathways. 

Results
PMN is a comprehensive resource of plant metabolism databases
PMN is a compendium of databases for plant metabolism with a substantial amount

of experimentally supported information. The latest release (version 15) contains

126  databases  of  organism-specific  genome-scale  information  of  small-molecule

metabolism  alongside  the  pan-plant  reference  database  PlantCyc  (Figure  1).

Together,  these  databases  include  1,280 pathways,  of  which  1,163  have  direct

experimental evidence of presence in at least one plant species. In addition, PMN 15

includes 1,167,691 proteins encoding metabolic enzymes and transporters where

3,436  have  direct  experimental  evidence  for  at  least  one  assigned  enzymatic

function. There are 9,129 reactions (of which 34% have at least one enzyme from a

plant species that has direct  experimental  evidence of  catalyzing it),  and 7,316

compounds. Compared to the PMN 10 release described in Schläpfer et al. (2017),

PMN 15 increases  the number of  species 4.7-fold  and proteins 8-fold,  and adds

2,929 more reactions, 2,178 more compounds, 66 more pathways, and 3,229 more

references (Figure S1 and Table S1). Data in the PMN databases are represented

using structured ontologies consisting of hierarchical classes to which pathways and

compounds  are  assigned  by  PMN  curators,  which  makes  statistical  enrichment

analyses  possible.  The  pathway  and  compound  ontology  classes,  alongside  the

phylogeny of the included species, illustrate the breadth of metabolic information

and  species  included  in  the  database  (Figure  1D,  E).  Prominent  specialized

metabolism  classes  such  as  terpenoids  and  phenylpropanoids  are  highly

represented in the databases. This large volume of metabolic information makes

PMN a unique resource for plant metabolism.

The  reference  database,  PlantCyc,  is  a  comprehensive  plant  metabolic

pathway database.  PlantCyc 15.0.1 contains experimentally  supported metabolic

information from 515 species. Most of the data come from a few model and crop

species  (Figure  1A).  For  example,  Arabidopsis  thaliana  contributes  to  43.4% of

experimentally supported enzyme information in PlantCyc, followed by 7.46% from

Chlamydomonas  reinhardtii and  3.37%  from  Zea  mays.  Compared  to  other

metabolic pathway databases such as KEGG (Kanehisa and Goto 2000; Kanehisa et

al. 2017) and Plant Reactome (Naithani et al. 2017; Naithani et al. 2020), PlantCyc
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has substantially higher numbers of experimentally supported reaction and pathway

data  (Figure 1B).  PlantCyc 15  includes 3,077 experimentally  validated  reactions

with at least one curated enzyme (1,498 are experimentally known to occur in  A.

thaliana) and 1,163 curated pathways (539 are experimentally known to occur in A.

thaliana).  Plant Reactome (Naithani et al. 2020) includes 1,887 and 320 curated

reactions and pathways, with 677 reactions and 266 pathways predicted to occur in

A.  thaliana (Gramene  release  #63),  while  KEGG  includes  543  experimentally-

supported pathways as of February, 2021, with 136 occurring in A. thaliana. Data on

the  number  of  reactions  in  KEGG  that  were  experimentally  validated  were  not

available  at  the  time  of  publication.  The  reference  information  in  PlantCyc  is

incorporated into MetaCyc, which also includes experimentally supported metabolic

information  from  non-plant  organisms  and  is  used  to  predict  species-specific

pathway databases (Caspi et al. 2020).  

In  addition  to  the  reference  database  PlantCyc,  PMN  15  contains  126

organism-specific  metabolism databases  (Figure 1C,  Table  S2).  These databases

range widely in the plant lineage including several  green algae and nonvascular

plants. The majority of the plants are angiosperms with the Poaceae family most

highly  represented  with  25  organisms.  There  are  also  8  pairs  of  wild  and

domesticated  plants,  including  rice,  wheat,  tomato,  switchgrass,  millet,  rose,

cabbage,  and banana,  alongside their  wild  relatives (Table  S3).  Finally,  PMN 15

includes 6 medicinal plants (species whose primary use is considered medicinal):

Camptotheca  acuminata,  Cannabis  sativa,  Catharanthus  roseus,  Ginkgo  biloba,

Salvia miltiorrhiza, and Senna tora. The newest addition to the list of the medicinal

plants is  Senna tora, which is a rich source for anthraquinones and whose recent

genome sequencing and metabolic complement annotation helped discover the first

plant gene encoding a type III polyketide synthase catalyzing the first committed

step  in  anthraquinone  biosynthesis  (Kang  et  al.  2020).  This  rich  collection  of

species-specific metabolic pathway databases enables a wide range of analyses and

comparisons.

To promote interoperability and cross-referencing with other databases, PMN

databases contain links to several compound databases such as ChEBI (Chemical

Entities of Biological Interest) (Hastings et al. 2016), PubChem (Kim et al. 2021),

and  KNApSAcK  (Nakamura  et  al.  2014).  PubChem  containins  over  270  million
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chemical entries as of March 2021, and 95% (6,982) of PMN compounds link to it.

ChEBI release 197 has 58,829 entries and serves as a primary source of compound

structural information during curation into PMN databases. Within PMN, 65% (4,746)

of compounds link to ChEBI. Examining 50 randomly chosen compounds that are

not mapped to ChEBI suggest that the majority of the remaining 35% compounds

do not yet exist in ChEBI (data not shown). KNApSAcK links are comparatively rare,

as only 1.7% (124) of compounds have had a KNApSAcK link added by curators.

Linking to these chemical databases provides a more in-depth source of information

on the compounds and their physical and chemical properties. In summary, PMN is

a  broad  resource  for  plant  metabolism  and  continues  to  be  under  active

development and expansion.

Accuracy of single-species databases 
The  single-species  databases  were  created  using  a  computational  pipeline

((Schläpfer et al. 2017) and Methods). The large number of predicted databases in

PMN  15  allows  us  to  evaluate  the  quality  of  the  predictions  quantitatively.  To

estimate the extent of incorrectly-predicted pathways in the PMN databases, and to

measure the overall accuracy of the computational predictions, both alone and in

conjunction with manual curation,  we evaluated the prediction of 120 randomly-

selected pathways (approximately 10% of the 1280 pathways in PMN) on both the

released single-species databases (also called Pathway Genome Databases (PGDBs)

in Pathway Tools) and naïve prediction versions generated using only computational

prediction (see Methods).  Biocurators evaluated the pathway assignments to the

126  organisms  currently  in  PMN,  and  classified  them as  “Expected”  (predicted

phylogenetic  range  is  consistent  with  information  in  the  literature),  “Broader”

(predicted taxonomic range includes expected range but is too broad), “Narrower”

(predicted taxonomic range is within expected range but is too narrow), or as Non-

PMN Pathways (NPP, not known to be present in plants or algae) (Figure 2, Data S1,

Table S4). In the naïve prediction databases, only 15% of selected pathways were

predicted within the phylogenetic ranges expected from the literature,  and 58%

were  NPPs.  In  the  released  PGDBs,  however,  78% of  evaluated  pathways  were

predicted  as  expected  (p-value  <  2.2E-16,  Fisher’s  exact  test).  In  addition  to

correcting  the  prediction  for  94%  of  all  NPPs  of  the  surveyed  pathways,

incorporating curated information also reduced the percent of pathways predicted

beyond their expected phylogenetic ranges from 13% to 4%. Thus, the application

5



of phylogenetic information and manual curation drastically improves the quality of

pathway  prediction  throughout  PMN  databases  over  the  use  of  computational

prediction alone.

PMN 15 data can distinguish phylogenetic groups
To determine whether different groups of plants can be differentiated solely by their

metabolic capacity, we performed multiple correspondence analysis (MCA), a type

of dimension reduction analysis that is similar to principal component analysis but

can be used for categorical  data (Tenenhaus and Young 1985;  Greenacre et al.

2006).  MCA  was  carried  out  using  presence-absence  matrices  for  pathways,

reactions, and compounds (Figures 3 and S2; Data S2). Reactions were considered

present only if at least one enzyme in the species was annotated as catalyzing the

reaction.  Independently,  the  plants  were  categorized  according  to  phylogenetic

groups. Dimensions 1 and 3 of the pathway and compound MCA, and dimensions 1

and 2 of the reaction MCA, separated the species into several phylogenetic groups

(Figures 3A and S2C, G, H). Phylogenetic groups that clearly cluster together and

away  from other  groups  include  algae,  non-flowering  plants,  Brassicaceae,  and

Poaceae (Figures 3A and S2G, H). Dimension 1 separates the chlorophytes from

land plants  and dimension 3 separates  certain  angiosperm families  such as the

Brassicaceae and Poaceae  well.  No clear  separation was observed among other

eudicot groups. In addition, dimension 2 of the pathway and compound MCA mostly

separated a small number of highly curated species from all the rest (Figure S2A, E;

Data S2).  Overall,  the MCA clustering shows that some groups of plants can be

readily differentiated based on their metabolic information (compounds, enzymes,

reactions,  pathways)  in PMN, while other groups cannot,  suggesting that further

curation of species in these groups may be beneficial.

We  next  asked  which  metabolic  pathways  drive  the  separation  of  the

taxonomic groups on each dimension (Data S2). Seventy percent of the variance in

dimension 1 was described by 109 pathways,  all  of  which were predicted to be

either  embryophyte-specific  pathways  or  present  in  a  larger  proportion  of

embryophytes than chlorophytes.  This mirrors the separation of the Chlorophyta

cluster in dimension 1 of the MCA plot (Figure 3A; Data S2). Similarly, 70% of the

variance  along  dimension  3  was  captured  by  150  pathways,  of  which  81  were

associated more strongly with Poaceae and 69 were associated more strongly with
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Brassicaceae  (Figure  3A;  Data  S2).  The  pathways  that  contributed  95% of  the

variance in dimension 1, which separates chlorophytes from embryophytes, were

enriched  for  hormone  metabolism  (Figure  3B,  adjusted  p-value  =  1.6E-07,

hypergeometric test). Hormone metabolism may have helped support the increased

complexity of land plants compared to their algal ancestors (Wang et al. 2015). In

contrast, pathways responsible for clustering along dimension 3 were enriched for

specialized  metabolism (Figure  3C,  adjusted  p-value  =  1.1E-22,  hypergeometric

test), which is more lineage-specific than other domains of metabolism and can help

distinguish between clades of angiosperms (Chae et al. 2014). Thus, it appears that

metabolic data in PMN can effectively differentiate groups of species not only by the

presence or absence of specific pathways and reactions, but also by the types of

metabolic processes which are related to their evolutionary divergence.

Data analysis tools and applications with external datasets

One  of  the  major  advantages  of  PMN  15  is  the  ability  to  quantitatively  and

qualitatively analyze omics data in the context of global metabolism for the 126

species  represented  in  the  resource.  Here  we  demonstrate  two  applications  of

integrating omics data with PMN 15 to gain novel insights about plant metabolism. 

Pathway Tools’ Omics Dashboard (Paley et al. 2017; Paley et al., 2021) allows

users to visualize omics data across experimental timepoints and conditions across

a broad range of cellular subsystems (examples: biosynthesis, cell cycle, adhesion,

locomotion)  and   at  multiple  scales  of  resolution  (examples:  broad  metabolic

domains, individual pathways, and genes). To demonstrate the utility of the Omics

Dashboard  within  a  metabolic  context,  we  used a  transcriptomic  survey of  two

sorghum cultivars, RTx430 and BTx642, subjected to drought stress (Varoquaux et

al. 2019). RTx430 is tolerant to pre-flowering drought, whereas BTx642 is tolerant to

post-flowering  drought.  To  see  if  there  was  any  difference  in  metabolic  gene

expression between the two cultivars  in  response to post-flowering drought,  we

examined differentially expressed genes (DEGs) in droughted plants compared to

well-watered plants from the last week of watering (week 9 after sowing) to the first

two  weeks  of  post-flowering  drought  (weeks  10-11).  We  observed  a  consistent

down-regulation  of  biosynthetic  activity  from  root  tissues  in  the  post-flowering

drought sensitive cultivar RTx430 compared to relatively stable expression in the

post-flowering  drought  tolerant  cultivar  BTx642  (Figure  4A).  This  observation  is
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consistent  with the authors’  findings that  BTx642 demonstrated higher levels of

redox  balancing  and  likely  experienced lower  levels  of  reactive  oxygen species

stress,  compared  to  RTx430,  as  a  result  of  drought.  By  analyzing  expression

patterns  of  all  metabolic  genes,  we  observed  a  widespread  metabolic  down-

regulation in RTx430 root tissue, which was not reported previously (Varoquaux et

al. 2019). Drought-responsive DEGs were enriched in metabolic genes among both

leaf  (p-value  =  2.2E-84,  hypergeometric  test)  and  root  (p-value  =  1.7E-114,

hypergeometric test) tissues. However, contrary to the clear cultivar-specific trends

shown in the root DEGs (Figure 4A), there was no clear trend in expression patterns

of metabolic genes in the leaves of either cultivar as a result of drought (Figure

S3A). To determine whether the consistent reduction of metabolic gene expression

observed  in  RTx430  roots  in  response  to  drought  was  a  global  trend  in  the

transcriptome  or  specific  to  metabolic  genes,  we  compared  relative  expression

levels of all non-metabolic root DEGs to all metabolic root DEGs in both cultivars

during the same 3-week period. While the average relative expression decreased

each week among both metabolic and non-metabolic genes in RTx430, the down-

regulation was greater among metabolic genes at both time points (Figure S3B). In

contrast, BTx642 roots showed no difference in expression among both metabolic

and non-metabolic genes in response to drought (Figure S3B), suggesting a global

metabolic homeostasis in sorghum drought tolerance. By comparing the patterns of

expression among DEGs in root and leaf tissues, rather than solely the number of

DEGs, analysis via the Omics Dashboards revealed that roots  exhibited stronger

genotype-specific  responses  to  drought  than  leaves,  which  was  not  observed

previously (Varoquaux et al. 2019).

In  addition  to  offering  a  visual  overview  of  metabolism  via  the  Omics

Dashboard, PMN’s analytical toolkit allows researchers to easily conduct enrichment

analyses among a set of genes or compounds of interest. From within a SmartTable,

users can view the pathways associated with a set of genes or compounds, and can

then ask whether those genes or compounds are enriched for specific pathways.

Broader metabolic classifications can also be added to the list of enriched pathways

to better understand which area(s) of metabolism are most enriched. For example,

among  the  set  of  drought-responsive  DEGs  in  RTx430  roots,  we  observed  an

enrichment in various domains of carbohydrate and amino acid biosynthesis and
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degradation,  in  addition  to  chitin  degradation,  consistent  with  the  authors’

observation of drought-induced responsiveness of biotic defense genes (Figure 4B).

Thus,  by combining PMN’s analytical  capabilities with its  broad set of  metabolic

data, users can find additional means of supporting existing hypotheses, uncovering

novel insights, and finding new avenues for exploration in their own research.

PMN 15  data  can  also  be  integrated  with  other  cutting-edge  datasets  to

investigate novel  biological  questions.  As an example,  we integrated  A. thaliana

root single-cell  RNA-seq datasets from five independent studies to examine cell-

type  specificity  of  metabolic  domains  and pathways  (Denyer  et  al.,  2019;  Jean-

Baptiste  et  al.  2019;  Ryu  et  al.,  2019;  Shulse  et  al.  2019;  Zhang et  al.,  2019;

Wendrich et al., 2020) (Data S3). We define cell type-specific metabolic domains (or

pathways) as those whose constituent genes show significantly higher expression

levels  (fold  change  ≥  1.5,  Wilcoxon  test  p-value  <  0.05)  in  certain  cell  types

compared  to  their  average  expression  level  in  total  cells.  Different  metabolic

domains showed overlapping as well  as  distinct  cell  type specificity (Figure 5A).

First,  epidermal  and cortex  cells  were most  metabolically  active throughout  the

various  domains  of  metabolism  (Figure  5A).  This  is  consistent  with  previous

observations that the major groups of metabolites detected in  Arabidopsis roots,

including glucosinolates, phenylpropanoids, and dipeptides, were highly abundant in

the cortex (Moussaieff et al. 2013). In contrast, maturing xylem showed relatively

low metabolic activity as the major roles of these cells are structural support and

water/soluble transport (Schuetz et al. 2013). Viewed from the level of metabolic

domains, this analysis demonstrates a diverse range of metabolic activity across

unique cell types in Arabidopsis roots.

We next probed cell-type specificity of individual pathways. Among the 198

pathways associated with at least 10 genes, 40 pathways (20%) showed specificity

in  at  least  one  cell  type  compared  to  their  background  gene  expression  levels

represented by the average expression level of the pathway across all cell types

(Figure 5B).  For  example,  in  actively  dividing cells,  such as meristematic  xylem

cells, pathways involved in pyrimidine, histidine, arginine, and lysine biosynthesis

showed  high  activity  (Figure  5B).  These  pathways  are  involved  in  essential

metabolism, which are critical for maintaining cell division and growth. On the other

hand, hormone biosynthesis pathways, such as cytokinin glucoside and gibberellin,
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showed high activity in the cortex. This is consistent with current understanding

that the cortex is one of the predominant cell  types that synthesizes these two

hormones in the  Arabidopsis root (Antoniadi et al. 2015; Barker et al. 2020). By

elucidating cell  type-level  activity  of  metabolic  pathways,  we can  begin  to  map

metabolism at cellular and tissue levels, which will be instrumental in understanding

how metabolism affects plant development and responses to the environment as

well as enabling effective engineering strategies.

Similar  to  cell-type  specificity,  the  concept  of  pathway  divergence  at  the

individual cell level can also be explored using single-cell transcriptomics data. To

probe this question, we asked whether isozymes catalyzing the same reaction are

more  likely  to  be  expressed  in  different  cells  compared  to  enzymes  catalyzing

different reactions in the same pathway. Isozymes are defined as enzymes encoded

by different genes catalyzing the same reaction,  which are usually the result of

gene  duplication  events.  We  computed  Spearman’s  correlation  coefficient  to

measure  gene  expression  pattern  similarity  between  a  pair  of  enzymes  across

Arabidopsis root cells.  The coefficients computed based on single cell  data were

generally lower than that generated by bulk RNA-seq, which may be due to the

sparseness  of  single  cell  transcriptomic  profiles  or  high  heterogeneity  of  gene

expression across cells. Nonetheless, metabolic genes in the same pathway showed

higher  correlation  than  randomly  sampled  metabolic  genes  (Figure  5C),  which

suggests functional coordination between genes involved in the same pathway at

the cellular level. Isozymes were much less correlated than enzyme pairs catalyzing

different reactions in the same pathway. This indicates that isozymes may have

evolved divergent expression patterns in root cells (Figure 5C). Since isozymes are

often the results of gene duplication events,  this diversified expression between

isozymes may contribute to retaining duplicated genes through subfunctionalization

or  neofunctionalization  and  fine-tuning  metabolic  pathways  at  the  cellular  level

(Panchy et al. 2016).

New capabilities and integration with other databases
Recently  we  introduced  the  Pathway  Co-Expression  Viewer,  which  integrates

information from PMN 15 and ATTED-II  (Obayashi et al. 2018), a database of gene

co-expression,  to  visualize  co-expression  of  the genes  in  a  pathway for  species

represented  in  ATTED-II  (Arabidopsis  thaliana,  Glycine  max (soybean),  Solanum
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lycopersicum (tomato),  Oryza sativa (rice),  Zea mays (maize),  Brassica rapa,  Vitis

vinifera (grape),  Populus  trichocarpa (poplar),  and  Medicago  truncatula).  An

example is shown in Supplemental Figure S4A-B; Lysine biosynthesis is currently

known  to  occur  via  two  distinct  routes,  utilizing  either  diaminopimelate  or  α-

aminoadipate as an intermediate. Its biosynthetic pathway in plants, cyanobacteria,

and  certain  archaebacteria  (PWY-5097)  (Supplemental  Figure  S4A)  converts

tetrahydrodipicolinate  to  L,L-diaminopimelate  via  L,L-diaminopimelate

aminotransferase  and  is  distinct  from  that  of  other  prokaryotes  and  of  fungi

(Hudson et al. 2006). Lysine biosynthesis is of particular importance as it is both an

essential amino acid not biosynthesized by mammals and it is the least abundant

essential amino acid in cereals and legumes (Wang and Galili, 2016). The Pathway

Co-Expression Viewer shows that the genes in this pathway exhibit high levels of co-

expression. The co-expression levels of six pairs of genes are in the top 1% of co-

expressed gene pairs within ATTED-II, while an additional 10 gene pairs are in the

top 5% (Supplemental Figure S4B, dark gray). This tool provides a convenient way

of visualizing the co-expression of genes in a pathway and thus provides clues as to

how the pathway may be regulated.

PMN  15  introduces  an  additional  feature  which  provides  a  new  way  of

visualizing pathways  that  span intracellular  compartments  and include transport

reactions. For example, the glutamate-glutamine shuttle (PWY-7061; Supplemental

Figure  S5)  from  AraCyc  is  a  pathway  in  which  glutamate  and  glutamine  are

exchanged between the mitochondria and chloroplast as a means of ridding the

mitochondria  of  ammonium produced  during  photorespiration  (Linka  and  Weber

2005). Membranes that separate compartments are rendered as gray bars,  with

both sides labelled, and transporters are shown as breaks in the gray bar with pairs

of  brown  ovals  on  either  side  to  suggest  a  channel.  This  new  feature  makes

intracellular transport within pathways clearer and easier to visualize. A full user’s

guide  for  PMN  15  is  provided  in  Supplemental  File  S1,  and  online  at

https://pmn.plantcyc.org/PToolsWebsiteHowto.shtml. 

Discussion
PMN 15 is an extensive and regularly-updated database of compounds, pathways,

reactions, and enzymes for 126 plant and green algae species and subspecies as

well as a pan-species reference database called PlantCyc. We examined the quality
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of  the  data  contained  in  the  databases  by  assessing  the  accuracy  of  pathway

prediction  via  manual  validation  of  a  randomly-selected  subset  of  predicted

pathways. Using two publicly available transcriptomics datasets, we demonstrated

how PMN resources can be leveraged to characterize and gain insights from omics

data. The present work demonstrates that the Plant Metabolic Network can be a

useful tool for various analyses of plant metabolism across species.

Comparison to other databases

PMN  15  differs  from  other  metabolic  pathway  databases  in  several  ways:  the

quantity of curated and computational information, its comprehensive set of tools,

and its specific focus on plants. Other, comparable databases include KEGG (the

Kyoto Encyclopedia of Genes and Genomes) (Kanehisa and Goto 2000; Kanehisa et

al. 2017; Kanehisa et al. 2019), Plant Reactome (Gramene Pathways) (Naithani et al.

2020), and WikiPathways (Slenter et al. 2018). Like PMN, these databases contain

metabolic  pathways  along  with  their  associated  reactions,  compounds,  and

enzymes. KEGG pathways represent broad metabolic reactions shared among many

organisms,  and  it  is  common  to  map  genes  or  compounds  to  KEGG  pathways

alongside  Gene  Ontology  (GO)  annotations  for  enrichment  analyses.  However,

because KEGG pathways represent a generalized set of reactions leading to many

possible compound classes (but not to specific compounds), it lacks the granularity

to analyze metabolism on a species-specific level (Altman et al. 2013). For example,

a  recent  study  identified  enriched  KEGG  pathways  (e.g.,  “phenylpropanoid

biosynthesis”)  among  genes  belonging  to  gene  families  that  were  expanded  in

Senna tora  compared with its relatives (Kang et al. 2020). Enrichment analysis of

the same genes using PMN’s StoraCyc 1.0.0 identified individual phenylpropanoid

biosynthetic  pathways  enriched  among  the  gene  set,  such  as  coumarin

biosynthesis. PMN and MetaCyc feature structured data that is both human- and

machine-readable,  making it  possible for  users  to  obtain pathway structure and

other data for their own offline analysis and enabling features such as the Pathway

Co-Expression Viewer to be easily incorporated. WikiPathways is another pathway-

centric  database.  WikiPathways  is  not  plant-focused,  and takes a crowd-sourced

approach, in contrast with PMN’s focus on expert curation. Plant Reactome, another

metabolism database, is specific to plants and green algae as PMN is. However,

Plant Reactome uses Oryza sativa as a reference species to predict reactions and
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pathways  to  the  106  other  species  currently  in  the  database  and  uses  gene

orthology to predict the presence of a pathway, where a pathway is predicted in a

species if at least one rice ortholog for an enzyme in that pathway is present in that

species (Naithani et al. 2020). Pathway prediction in PMN, on the other hand, is

more stringent via its implementation through the PathoLogic and SAVI pipelines.

Accuracy of PMN

The ability of PMN to enable research is dependent on the accuracy of its data. We

therefore evaluated  the performance  of  PMN’s  metabolic  reconstruction  pipeline

both in its entirety and using only computational prediction. The manual pathway

validation revealed a number of pathways predicted to be present outside of their

known taxonomic range, such as momilactone’s predicted presence across Poaceae

despite being known to exist only in rice and a few other species, some outside of

Poaceae (in which they appear to have evolved convergently) (Mao et al. 2020).

While some of these results may reflect compounds that are, in fact, more widely

distributed than currently thought, many such cases likely result from inaccurate

prediction  of  enzymatic  function  by  E2P2.  The  performance  of  enzyme function

prediction using a sequence similarity approach can suffer when dealing with highly

similar  enzymes  of  a  shared  family  (Schläpfer  et  al.  2017).  In  cases  like

momilactone,  where  the  pipeline  has  predicted  the  pathway  in  species  closely

related to species known to possess it, it may be the case that the predicted species

do have most of the enzymes necessary to catalyze the pathway, but that one or a

few of the predicted enzymes actually have a different function  in vivo. This may

draw attention to cases where enzymes have gained new functions and allow for

exploration of how enzymes evolve. Meanwhile, cases of universal plant pathways

being predicted only in Brassicaceae may indicate the pitfalls of an overemphasis

on  Arabidopsis in curation and research, as key enzymes might be predicted less

reliably  outside of  this clade.  This  might  be the case  if  there are  Brassicaceae-

specific variations that may result in a failure to reliably predict orthologs. A focus

on  curating  information  from diverse  species  may improve  the  accuracy  of  the

computational prediction, requiring less semi-automated curation to fix such errors.

Additionally,  incorporating  evidence  from  recently  published  species-specific

metabolomics  reference  datasets  may  help  corroborate  PMN’s  prediction  of

metabolites, for which there is currently little experimental support (Li et al. 2021).
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Pathway misannotation in the naïve prediction pipeline (see Methods) could

also be the result of PathoLogic’s incorrect integration of enzyme annotation with

reference reactions. In addition to incorporating enzyme predictions, PathoLogic can

infer pathways for a given species based on a number of additional considerations.

For example, if a species contains an enzyme which catalyzes a reaction unique

only  to  one  pathway in  the  PGDB,  the  pathway  is  likely  to  be  predicted  to  be

present. Additionally, if all reactions of a pathway are predicted to be present, the

pathway is likely to be predicted as. Using PathoLogic without taxonomic pruning

thus provides increased prediction sensitivity while also increasing false positives

(Karp et al. 2011; Schläpfer et al. 2017). By design, SAVI removes false-positive and

adds false-negative pathways predicted by PathoLogic. Our analyses indicate that

the predominant function of SAVI and PathoLogic’s taxonomic pruning currently is

to  remove  false-positives  and  consequently  restrict  the  taxonomic  range  of

predicted  pathways,  consistent  with  previous  analyses  of  SAVI’s  performance

(Figures  2,  S2)  (Schläpfer  et  al.  2017).  Interestingly,  our  manual  pathway

assessment revealed that, in certain cases, SAVI should have increased the range of

a predicted pathway and added it  to more species than it  was predicted for by

PathoLogic. For example, the phytol salvage pathway (PWY-5107) is predicted to be

present in all  photosynthetic organisms (Valentin et al.,  2006). While PathoLogic

incorrectly  restricted  the  predicted  range  of  this  pathway  to  include  only

angiosperms even without taxonomic pruning, SAVI did not correct this incorrect

taxonomic restriction, nor did it assign the pathway to the few angiosperm species

not  predicted  by  PathoLogic  to  contain  the  pathway.  Examples  like  this  may

represent  errors  in  the  manual  curation  decisions  used  by  SAVI  to  make  its

correction,  or it  may reflect  new information added to the literature after those

curation decisions were made. Both possibilities represent important information in

accurately  representing  metabolism  across  species  and  highlight  the  need  to

regularly  update  the  curation  rules  upon  which  SAVI  operates.  We  therefore

reclassified  the  final  pathway  assignments  in  PMN 15  for  each  pathway  whose

classification after SAVI implementation was determined to be anything other than

“Expected”. Through the continual process of introducing new species — and thus

new pathways  — into  PMN,  along  with  regular  curation  of  those  new  pathway

predictions, SAVI’s correction performance, and thus the overall  value of data in

PMN, should continue to improve over time.
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The  results  of  the  manual  pathway  validation  suggest  that  additional

systematic manual checks and validation may be productive. The manual validation

reported here focused on the phylogenetic distribution of pathways, but this is only

one aspect of the data found in PMN. Future reviews will focus on reviewing the

previously-curated data in plant-specific pathways, both to review for accuracy and

to check for research published after the pathway was last updated that may have

been missed by curators  when it  was published. Semi-automated curation could

also play a role; nearly half of PMN compounds, for example, do not have ChEBI

links, and scripts could be written to identify ChEBI and other external links like this

that should be added, to be vetted by curators before inclusion in PMN.

Associations between metabolism and phylogeny
PMN  is  organized  primarily  by  species,  and  a  significant  component  of  the

expansion  over  its  history  has  been  in  the  form  of  adding  new  species  and

subspecies to it. In order for this to be a worthwhile endeavor and useful to the

plant biology research community, the species databases need to be meaningfully

differentiated  from  one  another  in  ways  that  accurately  reflect  their  metabolic

differences.  Multiple  correspondence  analysis  was  therefore  performed  to

determine  whether  related  species  would  cluster  together,  an  indication  that

underlying biology is driving the differences in their database contents. The analysis

revealed that some plant groups such as Brassicaceae, Poaceae, the green algae,

and non-flowering plants each clustered together, showing that these major groups

of  plants  can  be  readily  differentiated  based  on  their  metabolic  complements.

Within the eudicots, however, there was little separation apart from the grouping of

Brassicaceae.  Other  groups  such as  Rosaceae  and Solanaceae  did  not  separate

from  the  other  eudicots,  even  though  both  groups  are  known  to  have  unique

metabolism,  suggesting  that  more  research  and curation  on  members  of  these

groups is needed. This analysis also indicated that despite being represented by a

number  of  PMN  species,  the  unique  metabolisms  of  these  groups  remain

understudied. The separation of Brassicaceae from the other groups may reflect a

more comprehensive body of knowledge about the metabolism of Arabidopsis due

to its status as a model plant and, as a result, a larger number of Brassicaceae-

specific pathways being known than for compounds specific to other clades. This is

reflected in the large percentage of pathways and enzymes in PMN that are curated

to  the  species.  The  same  might  be  true  of  the  grasses,  a  clade  that  contains

15



economically important crops such as maize, rice, wheat, and switchgrass. These

results  suggest  that  study  of  representative  members  of  a  group  could  help

differentiate the group as a whole and suggest that much of current knowledge is

limited to common pathways. The focus on Arabidopsis in the database also carries

a risk of biasing studies that utilize the PlantCyc database as a source, though as

this reflects a similar bias in plant research in general this issue may not be limited

to PlantCyc and PMN. More detailed studies of the metabolism of other groups are

needed  to  understand  what  makes  them  unique.  Curating  information  from

underrepresented species will also be valuable going forward.

Previous work making use of PMN
PMN has been used in a variety of ways by the plant research community. One

common use is to find metabolic information about a specific area of metabolism,

such as finding sets  of  biosynthesis  genes for a  particular compound or  sets of

compounds  under  study,  or  finding  pathways  associated  with  a  set  of  genes

highlighted by an experiment. Clark and Verwoerd (2011) used AraCyc to determine

different biosynthetic routes for anthocyanin pigments and to predict minimal sets

of  genes  which  could  be  mutated  to  eliminate  pigment  production.  Pant  et  al.

(2015)  performed  metabolite  profiling  on  phosphorus-deprived  Arabidopsis wild

type plants and phosphorus-signaling mutants. PMN was used to find genes in the

biosynthetic pathways of  metabolites which showed altered concentration in the

mutants and P-deprived plants. Saptari and Susila (2018) examined the expression

of hormone biosynthesis genes during somatic embryogenesis in  Arabidopsis and

rice. The authors used PMN to identify hormone biosynthetic genes and performed

expression analysis on the identified gene set.  Kooke et al.  (2019) used AraCyc

(alongside  other  databases)  to  identify  genes  involved  in  glucosinolate  and

flavonoid metabolism, and then examined the relationship between methylation of

these  genes  and  metabolic  trait  values.  Uhrig  et  al.  (2020)  examined  diurnal

changes  in  protein  phosphorylation  and  acetylation,  and  used  PMN’s  pathway

enrichment feature to identify AraCyc pathways enriched for proteins associated

with these protein modification events.

A  second  common  use  of  PMN  is  to  study  broader  patterns  in  plant

metabolism. Hanada et al. (2011) explored two rival hypotheses which attempt to

explain the large number of Arabidopsis metabolic genes for which single mutants
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show  weak  or  no  phenotypes,  and  used  data  from  PMN  to  determine  the

connectivity of different metabolites in the network. Chae et al. (2014) compared

primary  and  specialized  metabolism  in  plants  and  green  algae  and  found  that

specialized metabolism genes  have different  evolutionary  patterns  from primary

metabolism genes. Moore et al. (2019) used AraCyc in assembling lists of enzyme-

coding genes involved in primary and specialized metabolism, and then explored

associations  between  various  qualities  and  metrics  of  the  genes  and  their

involvement  in  primary  or  specialized  metabolism.  The  PlantClusterFinder

(Schläpfer et al. 2017) software was also used in that analysis. Song et al. (2020)

set out to test the hypothesis that stoichiometric balance imposes selection on gene

copy number. AraCyc pathways were used as a source of functionally-related gene

groups to test for reciprocal retention.

A third use of PMN is in genome annotation. Gupta et al. (2015) used RNA-seq

data from blueberry (Vaccinium corymbosum) to annotate a draft genome sequence

for the plant. Gene models were BLASTed against metabolic genes from AraCyc and

other species-specific pathway genome databases,  and the results were used to

improve the annotations.  The annotations were then used to examine blueberry

metabolism.  Similarly,  Najafabadi  et  al.  (2017)  took  transcriptomes  of  Ferula

gummosa Boiss.,  a  relative  of  carrot  that  is  the  source  of  the  aromatic  resin

galbanum, and used BLASTx against enzyme-coding genes from PMN as a source

for annotation of enzyme-coding genes in Ferula.

PMN provides an important resource for organizing and making accessible

plant metabolism information. The study of plant metabolism enables improvement

of  the  productivity,  nutrition,  and  resilience  of  crop  plants,  and  furthers

understanding of how wild plants function in their ecosystems. PMN data and tools

have been used by researchers to answer a broad range of biological  questions

from development to physiology to evolution. The latest release of PMN, PMN 15,

has the breadth and depth of metabolic information that should enable even a wider

spectrum of questions to be pursued in plant biology.

Methods
The PMN pipeline
New plant databases introduced in each version of PMN are Tier 3 BioCyc databases

(Karp  et  al.  2019),  which  indicate  that  the  information  is  based  mostly  on
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automated prediction using their genome. Any experimentally-supported enzymes

and  pathways  in  Metacyc  or  Plantcyc  that  are  annotated  as  belonging  to  the

organism are also imported into the database along with their citations and codes

for  the  type  of  evidence  the  cited  papers  present.  The  plant’s  remaining

complement of enzymes is predicted, and its metabolites and pathways are in turn

predicted based on the enzymes. 

Bringing a new species or subspecies into PMN begins with the sequenced

and annotated  genome with  predicted  protein  sequences.  To  be  considered  for

inclusion,  a  genome  must  pass  a  quality  metric  in  the  form  of  BUSCO

(Benchmarking Single-Copy Orthologs) (Simão et al. 2015; Waterhouse et al. 2018),

which assesses genome completeness using a database of proteins expected to be

present in all eukaryotes, with matches assessed using HMMER (http://hmmer.org)

(Potter et al. 2018). A score of at least 75% “complete” is required for inclusion in

PMN. If a genome passes this metric, it can then be run through the PGDB creation

pipeline. First, splice variants are removed, leaving one protein sequence per gene,

with the longest variant being retained. The sequences are classified as enzymes or

non-enzymes, and enzymatic functions are predicted, using the Ensemble Enzyme

Prediction Pipeline (E2P2) software (Chae et al. 2014; Schläpfer et al. 2017). E2P2

uses BLAST and PRIAM to assign enzyme function based on sequence similarity to

proteins with previously-known enzymatic functions based on functional annotations

taken from several sources including MetaCyc (Caspi et al. 2020), SwissProt (UniProt

Consortium 2021), and BRENDA (Chang et al. 2021). The genomes included in PMN

15 were checked using BUSCO v 3.0.2 using the Eukaryota ODB9 dataset. Enzyme

prediction  for  PMN  15  was  done  using  E2P2  v4.0  and  RPSD  v4.2,  which  was

generated using data from PlantCyc 12.5, MetaCyc 21.5, BRENDA (downloaded April

4, 2018), SwissProt (downloaded April 4, 2018), TAIR (downloaded April 5, 2018),

Gene Ontology (Downloaded April 4, 2018), and Expasy (release of March 28, 2018).

Once enzymes are predicted, they must be assembled into pathways by the

PathoLogic  function  of  Pathway  Tools  (Karp  et  al.  2019).  The  set  of  predicted

pathways is then further refined using the Semi-Automated Validation Infrastructure

(SAVI) software (Schläpfer et al. 2017). SAVI is used to automatically apply broad

curation decisions to the pathways predicted for each species. It can be used, for

example, to specify particular pathways that are universal among plants and should
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therefore be included in all species’ databases even if not predicted by PathoLogic.

SAVI can also be used to specify that a particular pathway is known to be present

only within a specific plant clade. Therefore, if the pathway is predicted in a species

outside of that clade, it should be considered a false prediction and removed. PMN

15 was generated using Pathway Tools 24.0 and SAVI 3.1.

The final parts of the pipeline are grouped into three stages: refine-a, refine-

b, and refine-c. In refine-a, the database changes recommended by SAVI are applied

to  the  database  and pathways  added or  approved by  SAVI  have  SAVI  citations

added. In refine-b, pathways and enzymes with experimental evidence of presence

in  a  plant  species  are  added  to  that  PGDB  if  they  were  not  predicted,  and

appropriate  experimental  evidence  codes  are  added.  In  refine-c,  authorship

information is added to the PGDB, the cellular overview is generated, and various

automated data consistency checks are run.

The  convention  for  PGDB  versions  was  updated  in  PMN  15.  Taking

SorghumbicolorCyc 7.0.1 as an example, the first number, 7, is incremented when

the PGDB is re-generated  de novo from a new version of MetaCyc and/or a new

genome assembly. The second, 0, is incremented when there are error corrections

or other fixes to the content of the database. A third, 1 in the example, may be

added when the database is converted to a new version of Pathway Tools without

being regenerated, a process that does not alter the database contents.

Changes in curation policy
Since its initial 1.0 release, some changes in curation policy have been made to

PMN and PlantCyc.  In  2013,  the  Arabidopsis-specific  database,  AraCyc,  switched

from identifying proteins by locus ID to using the gene model ID. This eliminates

ambiguity when multiple splice variants exist  for a single locus.  In PMN 10,  the

policy for all species was switched from using the first splice variant to the longest.

This  was  done  because  a  longer  splice  variant  is  likely  to  have  more  domains,

making it easier to determine its function.

In  PMN  10,  the  database  narrowed  its  focus  strictly  to  small-molecule

metabolism, and pathways involved solely in macromolecule metabolism (such as

protein synthesis) were removed. Macromolecules have never been the focus of

PMN,  and provision of  information  about  them is  a  role  better  served by other
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databases with tools specifically suited to large heteropolymers like proteins and

DNA/RNA.

In version 13 of PMN, the PlantCyc database was limited to only include pathways

and enzymes with experimental evidence to support them. The original purpose of

including all information, experimental and computational, in PlantCyc was to allow

cross-species comparison, a function now served by the virtual data integration and

display  functionality  recently  introduced  in  Pathway  Tools  (Karp  et  al.  2019).

PlantCyc now serves as a repository of all  experimentally-supported compounds,

reactions, and pathways for plants.

Manual pathway prediction validation
One hundred and twenty PMN pathways were randomly selected to manually assess

pathway  prediction  accuracy.  The  126  organism-specific  PGDBs  were  then  re-

generated  using  E2P2  and  PathoLogic  alone,  with  PathoLogic  set  to  ignore  the

expected phylogenetic range of the pathway and call pathway presence / absence

based  only  on  the  presence  of  enzymes (no  taxonomic  pruning),  no  SAVI,  and

skipping the step of importing pathways with experimental evidence of a species

into that species database if the pathway was not predicted. This resulted in a set of

PGDBs  based  purely  on  computational  prediction  that  we  refer  to  as  “naïve

prediction  PGDBs”.  Biocurators  evaluated  the  accuracy  of  each  of  the  120

pathway’s prediction across all 126 organisms in PMN in the naïve prediction PGDBs

and, separately, in the released version of PMN. Specifically, we evaluated whether

pathway assignments to the PGDBs reflected the taxonomic range of the pathway

as expected from the literature. Each pathway’s assignment to the naïve prediction

PGDBs and released PGDBs was classified with respect to the expected taxonomic

range as either “Expected” (predicted and expected species are mostly the same),

“Broader” (pathway is predicted beyond its expected range), “Narrower” (predicted

range of the pathway is smaller than the expected range), or it was identified to be

a non-plant or non-algal pathway, and therefore classified as a non-PMN pathway.

The  improved  accuracy  in  pathway  prediction  by  incorporating  phylogenetic

information and manual curation was statistically quantified in R version 3.6.3 with

Fisher’s exact text using the fisher.test() function.
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Presence-absence matrices
In order to analyze the pathways, reactions, and compounds (PRCs) in each species’

database, presence-absence matrices were generated for each of these three data

types. Each is a binary matrix containing the list of PMN organisms as its rows and a

list of PRCs of one type as its columns. Each matrix element is equal to 1 if the

organism contains the PRC and 0 if it does not (Data S4-S6). Reactions were only

marked as present in a species if the species had at least one enzyme annotated to

the reaction, whether predicted or from experimental evidence. Since PRCs that are

present in either only one organism or all organisms are not useful in differentiating

plant groups, we excluded these PRCs from further analysis. Separately, a table was

generated that maps the species to one of several pre-defined taxonomic groups

(Data S7). The groups were selected manually to best represent the diversity of

species in PMN and included monophyletic and paraphyletic groups, as well as a

polyphyletic “catch-all”  group (“Other  angiosperms”).  The PRC matrices and the

plant group table were used to investigate relationships among the species through

the  lens  of  metabolism.  The  PRC  matrices  were  produced  using  a  custom  lisp

function (File S2).

Multiple correspondence analysis
The PRC matrices were used to perform multiple correspondence analysis (MCA)

(Greenacre et al. 2006). This is a technique similar to principal component analysis

(PCA)  but  is  frequently  used  with  categorical  (binomial  or  multinomial)  data.  It

differs from PCA in that a complete disjunctive table (CDT) is first produced from the

input matrix. In a CDT, each multinomial variable i (a column in the input matrix) is

split into Ji columns where Ji is the number of levels of variable i. In this analysis, the

variables are the pathways,  reactions,  or compounds (PRCs),  and there are two

levels for each, present and absent. Each CDT column ji therefore corresponds to

one level of one variable and is initially set equal to 1 for species for whom that PRC

is present and 0 otherwise. Each group of Ji columns therefore contains, in each row,

one column equal to 1 and Ji–1 columns equal to 0. In this analysis, therefore, each

pathway results in two columns in the CDT, set to 1 0 if the pathway is present and

0 1 if the pathway is absent. MCA then scales the values of each column in the CDT

according to the rarity of that level of that variable, so that each CDT column sums

to 1. The remainder of the procedure is the same as in PCA. Because of the scaling,

a  species  will  be  further  from the  origin  in  the  MCA scatterplot  if  it  possesses
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uncommon PRCs or lacks common ones. The MCA was performed using the MCA()

function of the R package FactoMineR v2.3 (Lê et al. 2008). The MCA scatter plots

were colored using the columns of  the plant group table (Data S7) to elucidate

relationships between the MCA clusters and plant groups. The scatter plots were

generated using ggplot2 v3.3.4.

Metabolic domain enrichment
To  examine  the  pathways  associated  with  each  MCA  axis,  the  percentage  of

variance  explained  by  the  presence  or  absence  of  each  pathway,  found  in

pwy.mca$var$contrib  (where pwy.mca is  the R object  returned by FactoMineR’s

MCA function when run on the pathway matrix), was exported to a tab-delimited

text file. To determine which metabolic domains, if any, were overrepresented in

the set of pathways describing the variance of MCA dimensions 1 and 3, we ran an

enrichment analysis of the set of pathways explaining the 95th percentile of  the

variance.  Pathways  were  mapped  to  a  metabolic  domain  using  supplementary

information from (Schläpfer et al. 2017). Pathways left unmatched were manually

assigned to a metabolic domain by expert curators and a new pathway-metabolic

domain mapping file version 2.0 was created (Data S8).  Enrichment background

was set as all pathways from PMN’s 126 organism-specific databases, all of which

were assigned to metabolic domains. Enrichment was calculated using the phyper()

function  from  the  R  stats  package and  p-values  were  corrected  for  multiple

hypothesis testing at a false discovery rate (FDR) of 5%.

Omics Dashboard and Enrichment Analysis
The  sorghum  drought  transcriptomics  data  from  (Varoquaux  et  al.  2019) were

downloaded from:  https://www.stat.berkeley.edu/~epicon/publications/rnaseq/.  We

specifically used their log-fold change and differential expression analysis results.

For both leaf and root samples, the sets of all  expressed genes were filtered to

include only  those differentially  expressed in  either  cultivar  as  a result  of  post-

flowering drought (using an FDR of 5%). Corresponding expression data for both

gene sets were then filtered to include only the week prior to, and the first two

weeks of post-flowering drought (weeks 9-11). The resulting data sets were then

directly  uploaded  into  PMN’s  Omics  Dashboard  for  visual  analysis  of  metabolic

trends.  Enrichment analysis of  metabolic genes among leaf and root DEGs as a

result  of  post-flowering  drought  was  calculated  in  R  version  3.6.3  with  a

hypergeometric  test  using  the  phyper()  function  from  the  stats  package.  The
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background  used  for  this  enrichment  analysis  was  all  Sorghum  bicolor genes

(McCormick  et  al.  2018)  from  the  Sorghum  bicolor genome  annotation  v3.1.1

downloaded  from  Phytozome  v12.  Violin  plots  were  generated  using  the

geom_violin()  function  within  the  ggplot2  package in  R  version  3.3.4.  Statistical

differences between non-metabolic and metabolic DEGs as a function of time were

determined by two-way ANOVA followed by Tukey’s Honest Significant Difference

(HSD) test (p < 0.05) using the lsmeans() functions within the lsmeans package in R

version  3.6.3.  Pathway  enrichment  among  the  set  of  metabolic  root  DEGs  was

calculated  using  the  “Genes  Enriched  for  Pathways”  functionality  within  the

“Enrichments” dropdown of a SmartTable. We performed an enrichment analysis

using Fisher’s exact test and Benjamini-Hochberg correction at an FDR of 5% with

the  set  of  all  pathway  genes  from  SorghumbicolorCyc  (version  7.0.1)  as  the

background.

Cell type activity analysis
We downloaded and integrated datasets from 5 existing Arabidopsis root single-cell

RNA-seq studies. Briefly,  raw fastq files for 21 datasets derived from studies by

(Zhang et al. 2019), (Jean-Baptiste et al. 2019), (Denyer et al. 2019), (Ryu et al.

2019), and (Shulse et al. 2019) were downloaded, trimmed, and mapped using the

STARsolo tool v.2.7.1a. Whitelists for each dataset were obtained either from the

10X  Cellranger  software  tool  v.  2.0  for  the  10X-Chromium  samples,  or  after

following  the  Drop-seq  computational  pipeline

(https://github.com/broadinstitute/Drop-seq/releases/tag/v2.3.0),  extracting  error-

corrected barcodes from the final output for the Drop-seq samples. Valid cells within

the digital gene expression matrices computed by STARSolo were then determined

as those having total unique molecular identifier (UMI) counts greater than 10% of

the 1st percentile cell,  after filtering for cells with very high (20,000) UMIs. Cells

containing  greater  than  10%  mammalian  reads,  greater  than  10%  organellar

(chloroplast or mitochondrial) reads, or cells having transcripts from fewer than 200

genes were filtered out. Filtered digital gene expression matrices were then pre-

processed using the Seurat (v3.1.0)  package after removing protoplast-inducible

genes (Birnbaum et al. 2003), using the SCTransform method (with 5000 variable

features). All Seurat objects were then integrated together using the approach from

(Stuart  et  al.  2019),  applying  the  SelectIntegrationFeatures,  PrepSCTIntegration,

FindIntegrationAnchors,  and IntegrateData  functions  from the Seurat  R package,
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using  5000  variable  features,  20  principal  components,  and  otherwise  default

parameters. Cell clusters were computed using the Seurat functions, FindNeighbors

and Find Clusters, 20 principal components and a resolution parameter of 0.8. Index

of Cell Identity (ICI) scores were computed using a combination of existing ATH1

microarray  and  RNA-seq  single  cell  datasets  (Data  S3).  Briefly,  arrays  were

normalized using the gcrma R package, and RNA-seq data were trimmed using the

bbduk  tool,  and  mapped  using  bbmap  (https://sourceforge.net/projects/bbmap/).

Transcript counts were quantified using the featureCounts tool (Liao et al. 2014).

Raw RNA-seq counts were then normalized using the edgeR package (v 3.26.0),

with the “upperquartile” method. Normalized reads were then further normalized

with  the  gcrma-normalized  microarray  data  using  the  Feature-Specific  Quantile

Normalizations (FSQN) method (Franks et al. 2018) to obtain a dataset consisting of

both RNA-seq and microarray-based cell-type specific transcriptome measurements.

This dataset was then used to build an ICI (Birnbaum and Kussell 2011) specification

matrix using the methods described by (Efroni et al. 2015). This specification table

was  then used to  compute  ICI  scores  for  each  cell  in  the  integrated  single-cell

dataset, along with p-values derived from random permutation.

To map the single-cell data to metabolic domains, pathways, and enzymes,

we used AraCyc v.17.0, which includes 8556 metabolic genes and 650 pathways.

We used the pathway-metabolic domain mapping file version 2.0 (Data S8) to map

the pathways to 13 metabolic domains. To avoid biases introduced by small sample

size to the cell type specificity analysis, we only included pathways containing at

least 10 genes whose transcripts were detected in the single cell data described

above.  Based on these criteria,  198 out  of  650 pathways  were included in  this

analysis. To compute cell type specificity at the transcript level, we first calculated

the expression level for a pathway or domain per cell type by taking the average of

expression values for all the genes annotated to this pathway or domain within this

cell  type. The cell  type specificity  was defined as the cell  type(s)  for which the

expression level  of  a pathway or domain was at least 1.5-fold higher than their

background expression, which was calculated by taking the average of expression

values for all the genes annotated to this pathway or domain in all cells. Since the

expression levels of a pathway or domain per cell type could be influenced by gene

expression outliers,  we only included the cell  types in which more than 50% of
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genes associated with the pathway or domain showed higher expression than their

background expression based on a Wilcoxon test followed by a multiple hypothesis

test adjustment using FDR with a threshold of 0.01. The background expression

level of a gene was calculated by taking the average of its expression values in all

the cells  included in this study.  Heatmaps were generated using the R package

ggplot2  v.3.3.4.  To  compute  cell  type  specificity  at  the  pathway  level,  we  first

selected the set of pathways containing at least 10 genes whose transcripts were

captured  by  the  single  cell  transcriptomic  data  to  avoid  biases  that  could  be

introduced by small  sample size. Based on these criteria,  30% (198 out of 650)

Arabidopsis pathways were included in this analysis. 

In  a  metabolic  network,  isozymes  are  defined  as  enzymes  encoded  by

different genes catalyzing the same reaction, which are usually the result of gene

duplication  events. To  investigate  whether  isozymes  tend  to  be  expressed  in

different cells compared to enzymes catalyzing different reactions within the same

pathway,  we  analyzed  gene  expression  pattern  similarity  between  a  pair  of

enzymes across  Arabidopsis root  cells  by  computing  Spearman’s  correlation.  To

prevent having correlations between self, we removed enzymes that are mapped to

more than one reaction in a pathway as well as pathways that contain only one

reaction.  Spearman’s  correlation  coefficients  were  computed  using  the  function

cor() in R. Significant correlation coefficients were determined using an R package

scran v.1.18.5 (Lun et al. 2016). Distribution of Spearman’s rho was compared using

a one-way ANOVA followed by post-hoc adjustment with Tukey’s test in R. The box

plot was generated using the R package ggplot2 v.3.3.4.
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