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Abstract

Temperature inversion leading to a hot stratosphere have been observed in some hot-Jupiter.
Theoretical models predict that such a temperature inversion can be caused by the presence of
a strong absorber in the visible in the high atmosphere. Titanium oxide have been proposed
to be a good candidate for being this extra-absorber. Although the temperature in the day
side of these planets can be high enough to maintain titanium oxide in a gaseous phase, it
is not the case in the night side. In this work we discuss how the day/night temperature
contrast can lead to the depletion of titanium oxide in the high atmosphere of hot-Jupiter.
Using 1D and 3D models we found some constraints on the vertical diffusion coefficient needed
to maintain enough titanium oxide in the upper atmosphere to create a temperature inversion.
These constraints are similar to the ones given by Spiegel et al. (2009) for the vertical cold trap
but hold for all the planets, even the ones that are too hot to be affected by the vertical cold
trap.
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Introduction

Why do we care about Titanium oxide ?

A wide variety of hot-Jupiters have been discovered in the past few years. Most of them orbit
so close to their star that they are tidally locked : they have a day-side always facing the star
and a night side always facing the opposite direction. Day-side and night side temperature
have been measured for some of these planets. Values from 2200K at the limb of HD209458b
(Lecavelier Des Etangs et al. (2008)) to 3120K in the day-side in Wasp-18b by Nymeyer et al.
(2011) have already been measured. At these very high temperatures, components that are
usually condensed in planetary atmosphere can become thermodynamically stable in the gas
phase over some parts of the planet. It is the case for titanium oxide (hereafter TiO) : with
a condensation temperature around 1900K it can remain in the atmosphere of these planets.
Actually TiO is a well known coumpound of brown dwarfs ; the presence or absence of its
absorption bands sets the boundary between M dwarf and L dwarf stars(Lodders (2002)).

High signal to noise ratio spectra of the day-side of some hot-Jupiter atmospheres have
been measured using the Spitzer space telescope (Charbonneau et al. (2008), Knutson et al.
(2008), Deming et al. (2011), Machalek et al. (2009), Machalek et al. (2010), Todorov et al.
(2010), Fressin et al. (2009)). The spectra have a low spectral resolution, due to the small
number of observation channels of the IRAC instrument on the Spitzer space telescope. How-
ever, some of these spectra show a flux excess at 4.5µm, which has been interpreted as emission
rather than absorption bands due to a temperature inversion in the atmosphere. This kind of
temperature inversion is expected by theoretical models when a strong absorber in the visible
is present in the upper atmosphere (Hubeny et al. (2003), Fortney et al. (2006), Fortney et al.
(2008). Though there is no unambiguous direct detection of titanium oxide bands ( Désert
et al. (2008)), it seems a good candidate for being this absorber.

Vertical cold trap

The atmospheres of hot-Jupiter are heterogeneous and dynamically active. Therefore in some
parts of the planet, gaseous TiO might be stable whereas in some other parts it should condense
out.

Vertically, the atmosphere is not at all isothermal. In presence of a temperature inversion,
the hot stratosphere is above colder layers where the titanium oxide might condense and be
trapped, depleting the stratosphere. This vertical cold trap has been studied by Spiegel et al.
(2009). They obtain constraints on the vertical diffusion coefficient necessary to have enough
TiO in the high atmosphere to create a temperature inversion.

Horizontal cold trap

Several teams have been using the Spitzer space telescope in order to monitor the full orbit of a
hot-Jupiter in the infrared. This type of observations can lead to two very useful measurements
: the day/night temperature contrast of the planet and the displacement of the hottest point of
the planet east or west of the substellar point. The measured day/night temperature contrast
ranges from ∼240K for HD189733b (Knutson et al. (2008)) to more than 900K for υ Andromeda
b. (Crossfield et al. (2010)). The efficiency of the energy redistribution between the day-side
and the night-side depends on the dynamics of the atmosphere. Showman & Guillot (2002)
predicted the formation of an eastward jet advecting the energy from the day side to the night
side. Measurement of the eastward displacement of the hottest point of the planet confirmed
the existence of this jet and enabled its speed to be measured (∼1 km/s ). This eastward jet
appears in most of global circulation models ( Showman & Polvani (2011), Showman et al.
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The Cold Trap Effect

T−P profiles for models of HD 209458b

and Condensation Curves

Gas phase

Condensed phase

40% solar TiO
Solar TiO

Figure 1: Illustration of the cold-
trap phenomena from Spiegel
et al. (2009). The blue curve is
the condensation curve for TiO.
The other one is the temperature
profile for HD209458b. The tem-
perature profiles crosses the con-
densation line for TiO at differ-
ent heights, leading to a possi-
ble depletion of TiO in the strato-
sphere.

(2008)) and is known to be a main feature of hot-Jupiter atmospheric dynamic. When TiO
is advected from the day side to the night side, it should condense and rain out leading to
a stratospheric depletion. This is what we call the horizontal cold trap. Depending on the
strength of the jet and the efficiency of the diffusion, TiO particles might or might not survive
in the upper atmospheres of hot-Jupiter.

Figure 2: Zonal mean speed in
HD189733b from Showman et al.
(2009). The speeds are given in
ms−1and are eastward. We can
see that the equatorial jet extend
from 1bar to less than 1mbar.

1 Settling velocity of a particle in the atmosphere

1.1 Stokes flow

The problem of a flow past a sphere in a laminar and continuous flow have been solved by
Stokes in 1851. The solution is described in Pruppacher & Klett (1978) and leads to a drag
force given by :

FDrag = 6Uaη (1)

where a is the radius of the particle, η is the dynamic viscosity of the fluid and U the relative
velocity between the fluid and the particle. We define the drag coefficient, CD by :

CD =
Fdrag

ρU2
∞πa2/2

(2)
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Using Stokes solution for the drag gives :

CDStokes
=

24

NRe

(3)

where the Reynolds number is given by :

NRe
= 2Re =

2ρUa

η
(4)

with ρ the density of the fluid.
Equating gravity and drag forces leads to the settling velocity of a particle in an atmosphere:

4

3
πa3(ρp − ρ) =

ρV 2
f πa

2

2
CD (5)

with ρp the density of the particle. That leads to :

V 2
f CD =

8a

3

ρp − ρ

ρ
(6)

For Stokes flow we replace CD by its expression from equation 3 and get :

Vf = Vstokes =
2a2g(ρp − ρ)

9η
(7)

We are using the viscosity of hydrogen given by Rosner (2000)

η =
5

16

√
πmkBT

πd2
(kBT/ǫ)

0.16

1.22
(8)

where d is the molecular diameter and ǫ is the depth of the Lennard-Jones potential well for
the atmosphere (2.827× 10−8 cm and 59.7kB K for H2). The validity of this expression is in
agreement with the experimental values from Stiel & Thodos (1963).

1.2 Cunningham velocity

When the density of the flow becomes so small that the mean free path of the particles becomes
of the order of the size of the particles, the continuity approximation used in the Stokes for-
malism is no longer valid around the object and kinetic effects have to be taken into account.
In particular, the no-slip boundary condition is broken : the molecules at the surface of the
object can’t be considered at rest. These effects have been calculated by Cunningham (1910)
leading to a smaller drag coefficient of the form :

CD =
CDStokes

β
(9)

where β is the Cunnhingham factor. This factor have been first determined by Cunningham as
β = 1 + 1.63λ

a
and refined later many authors. We decided to use the value from Li & Wang

(2003) which is the same choice as Spiegel et al. (2009).

β = 1 +KN(1.256 + 0.4e−1.1/KN ) (10)

where the Knudsen number is the ratio of the mean free path to the size of the particle :

KN =
λ

a
(11)
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and the mean free path can be expressed as :

λ =
1

√
2πnd2

(12)

where d is the size of the molecules and n their density. For a perfect gas we obtain :

λ =
kBT
√
2πd2

1

P
(13)

where P is the gas pressure.
The Cunningham drag from equation 9 leads to a settling velocity of :

Vf = VCunningham = βVStokes (14)

In the high pressure regime, the Knudsen number goes to zero and the cunningham velocity
becomes equal to the Stokes velocity. In the low pressure regime, the Knudsen number becomes
very big and we get :

VCunningham ∼ 1.656KNVStokes (15)

Using equations 11 and 13 we get :

VCunningham ∝
1

P
(16)

Figure 3: Cunningham veloc-
ity in function of pressure and
particle size. From bottom to
top the black lines correspond to
0.1 m.s−1, 1 m.s−1and 10 m.s−1.
We can see the stokes regime,
where the velocity is independent
of the pressure and the Cunning-
ham regime where the velocity is
inversely proportional to the pres-
sure.

1.3 Correction to the Cunningham velocity

As shown in figure 3, the Cunningham velocity can reach very high values for big particles in
the low pressure regime. We refined the model for big Reynolds number using the equations
of Probstein (1968). The velocity correction being less than one order of magnitude, we
decided to use the Cunningham velocity in the model. The derivation of the deviations from
the Cunningham velocity is described in appendix
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2 Application to falling particles in an atmosphere : 1D

model

In order to have a better understanding of the problem we built a 1D model of the equilibrium
between downward settling and upward turbulent mixing of particles in an atmosphere. Our
system is a vertical column atmosphere which is advected around the planet. On the day side
we consider that the TiO particles are gaseous and only vertical turbulent mixing processes
are relevant. On the night side we consider that TiO condense into particle of size a, so both
turbulent mixing and settlement are relevant.

2.1 Equations

The equation for the concentration of the particles is derived from the conservation equation :

Dχ

Dt
=

1

ρ

∂(ρχVf )

∂z
(17)

where χ is the mass of particles per unit mass of gas in which they are suspended and wVf the
settling velocity of the particles. This equation is a three dimensional equation for the particle
density. We will now assume that averaging over latitude and longitude, this equation becomes a
vertical diffusion equation. This is a big assumption : it is not obvious that the average particle
concentration should follow a diffusion equation and we should keep this caveat in mind when
interpreting the results of this model. However, Holton (1986) showed that this assumption
can be true when parametrizing the meridional flow. Then the 1D equation becomes

∂χ

∂t
−

1

ρ

∂

∂z

(

ρKz
∂χ

∂z

)

=
1

ρ

∂(ρχVf )

∂z
(18)

where Kz is the vertical diffusion coefficient. Using hydrostatic balance, we transform to P as
the vertical coordinate :

∂χ

∂t
−

∂

∂P

(

ρ2Kz
∂χ

∂P

)

= −
1

g

∂(ρχVf )

∂P
(19)

Using the perfect gas law for the atmosphere we get :

∂χ

∂t
−

∂

∂P

(

P 2

(

mg

kBT

)2

Kz
∂χ

∂P

)

= −
∂( mg

kBT
PχVf)

∂P
(20)

We can define the diffusive time scale as τd = H2

Kz
and a reference free fall time scale using

the stokes velocity τS = H/VStokes with H = kBT
mg

the atmospheric scale height and VStokes the
stokes velocity defined in equation 7. We note that τS is a reference time scale and will not be
equal to the effective free fall time scale for big Knudsen number. The equation becomes :

∂χ

∂t
−

∂

∂P

(

P 2

τd

∂χ

∂P

)

= −
1

τS

∂βPχ

∂P
(21)

2.2 Steady-state solutions

Although in reality air parcels will travel from day to night and will thus alternately experience
conditions with and without particle settling (on the night and day side respectively) it is useful
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to consider a simple analytic steady-state solution for the case where diffusion and settling are
both always present. Then the steady state solutions of equation 21 are solutions of :

P 2 ∂χ

∂P
− β

τd
τS

Pχ = C (22)

where C is a constant. When P goes to 0, χ goes to 0 and we assume that ∂χ
∂P

does not go to
infinity. Then the constant must be zero and we obtain :

∂χ

∂P
=

β

P

τd
τS

χ (23)

In order to simplify the problem, we will forget about the transitional regime for β from
equation 10 and use the expression :

β = 1 + 1.656KN (24)

Then, considering Kz constant we obtain the following solution :

χeq = χ0

(

P

P0

)

τd
τS

e
−

τd
τS

1.617kBT
√

2πad2

(

1

P
− 1

P0

)

(25)

As it can be seen in the figure 5, the equilibrium profile is either constant or decreases very
strongly with height. We thus follow the criterion given by Spiegel et al. (2009) : there should
be an abundance of TiO at 1mbar greater than 0.5 the deep interior abundance to create a
temperature inversion. For a given size of particle, a given diffusion coefficient is needed to
maintain this abundance. We plotted the values of the diffusion coefficient in figure 4. The
results we obtain are very similar to those of Spiegel et al. (2009) for the vertical cold trap but
are independent of the gravity and thus the planet considered.

In equation 25 we can see two different regimes : for small particle radius, the exponential
decrease will be dominant whereas for big particles the factor inside the exponential decreases
and the dominant term will be the power law. Thus to reach our criterion χlim = χ

χ0
= 0.5 at

Plim = 1 mbar for the small particles case we neglect the value of the power law term and get :

τd
τS

1.617kBT
√
2πad2

(

1

P
−

1

P0

)

= − ln(χlim) (26)

Choosing P0 >> Plim, replacing τd and τS by their expression and using equation 8 for the
mean free path we obtain a condition on the diffusion coefficient :

Kzlim ∼ −1.656
0.613

√
π ln(χlim)

(

kBT

ǫ

)−0.16(
kBT

m

)3/2

ρp
a

Plim
(27)

For the big particles we neglect the exponential term and the condition needed is :

τd
τS

∼
ln(χlim)

ln(Plim)− ln(P0)
(28)

that leads to :

Kzlim ∼
2

9

kBT

m

ρp
η

ln(Plim/P0)

lnχlim
a2 (29)

Again we note that these limits for the diffusion coefficient are independent of the planet
considered.
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Figure 4: Equilibrium abundance
of TiO at 1mbar as a function
of the size of the particle and
the vertical diffusion coefficient.
To form a temperature inver-
sion requires the abundance to
be at least 0.5 at 1mbar. The
black lines are the diffusion coef-
ficient calculated by equations 27
and 29. The blue line is the sum
of these two coefficient.

2.3 Departure from equilibrium

The very fast atmospheric circulation in hot-Jupiter might lead to non-equilibrium solutions
for the particle density in the atmosphere. We consider numerical solutions for the case where
moving air parcels experience alternately nightside condition (where TiO condenses and settles)
and dayside conditions (where it sublimates to gas phase and hence does not settle) We solved
equation 21 for a column of air which is forced to a day/night alternation of 24 hours. This
correspond to a column of air advected by an eastward jet of 3.3 km/saround HD209458b. While
on the night side, particles are diffused vertically but are also falling at the Cunningham velocity
whereas in the day side they are only diffusing. Figure 5 shows the vertical profiles of TiO for
a 10 µm condensate at each hour throughout one day-night cycle once the numerical solution
has reached a periodic equilibrium. We see that the profiles are not exactly at equilibrium
value and that there is a small day-night contrast. To visualize better this departure from
equilibrium, figure 6 shows the needed diffusion coefficient to achieve 0.5 abundance of TiO at
1mbar for the profile at equilibrium (corresponding to the isocontour of figure 4), for the profile
at the day/night terminator and for the profile at the night/day terminator. Small particles
fall slowly, for that reason the curve for small particles doesn’t vary during the day or the night
but never reaches the equilibrium value. Big particles settle more rapidly so the curve for big
particles reaches its equilibrium value during the night and the day/night amplitude is quite
big.

3 Application to falling particles in an atmosphere : 3D

model

In order to get more realistic constraints on the TiO abundance in hot-Jupiters, we decided to
use the full 3D global circulation model described in Showman et al. (2009). In a first step, we
concentrate on the case of HD209458b as a proxy for other hot-Jupiters. Even if for the specific
case of HD209458b, the vertical cold trap might be of greater importance than the horizontal
one, the lack of stable model for hotter planet motivated our decision to use this planet as an
example. We turned on a package modeling passive tracers in the atmosphere of the planet
and modified its source term in order to take into account the settling of the particles. We
assume that the diffusion due to the flow is greater than the molecular diffusion and that the
resolution is good enough to capture the main feature of the tracer diffusion. For that reason
we didn’t add any diffusive term in the tracer equation. We artificially define the day/night

9



(a) Kz = 10
8cm2/s (b) Kz = 10

9cm2/s (c) Kz = 10
10cm2/s

Figure 5: Abundance profiles for each hour thought a day-night cycle. The curves in blue are
the night side profiles while the curves in red are the day-side profiles. The black line is the
equilibrium profile. The two horizontal lines represent the 1 and 0.1mbar levels.

Figure 6: Diffusion coefficient
needed to maintain an abundance
of 0.5 at the 1mbar level. the
equilibrium case is in blue, the
day/night terminator in red and
the night/day terminator in blue.

boundary as being the limit between gaseous and condensed particles. The model only run for
21 day for the moment and some improvement have yet to be done but the first results are
presented in figure 7 and 8. In figure 8 for a 1 µm condensate, we can see clearly that the upper
atmosphere is depleted in the night side but the particle transport seem sufficiently efficient
to maintain a high abundance of TiO in the day side. What can be seen in the two figure is
that the vertical transport of the tracer seems more sophisticated than a simple diffusion, what
should be understood in order to compare the results from the 1D model with the results from
the 3D model.

Conclusion

We developed a one-dimensional model for falling particles in an atmosphere. We show that
the day/night cold trap in hot-Jupiters can be as important as the vertical one for the depletion
of TiO. We give constraints on the diffusion coefficient needed to maintain enough TiO in the
upper atmosphere to create a temperature inversion. These constraints are similar to the ones
given by Spiegel et al. (2009) for the vertical cold trap but hold for all the planets, even the

10



ones that are too hot to be affected by the vertical cold trap. Now we need to continue the 3D
simulations in order to have a better understanding of the influence of the dynamic on the TiO
abundance in the atmosphere.
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Figure 7: Horizontal slide at the 0.15 mbar level of TiO abundance after 21 days of integration
for a condensate size of 1 µm. The arrows represents the wind speed and directions. You can
already see the eastward jet forming.

Figure 8: Vertical slice of the atmosphere of HD209458b along the equator. The condensate
size is 1 µm. The abundance of TiO is represented by the colorscale.
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A Appendix: Departure from the Cunningham velocity

The Cunningham velocity is the equivalent of the Stokes velocity for low pressure environ-
nement. Therefore it is not valid for turbulent flow and other expressions may be used when
the Reynolds number increases. Here we derive better laws for intermediate and big Reynolds
number.

Low Knudsen number

When increasing the reynolds number, the non linear terms of the Navier-Stokes equation
becomes more important. We used tabulated values of the drag coefficient in function of the
Reynolds number given by Pruppacher & Klett (1978). We assumed that CD = 24 when
NRe

= 1 to stay coherent with stokes flow and that CD reaches its asymptotic value CD = 0.45
when NRe

= 1000. We obtain :

log10(NRe
) = −1.215047 + 0.923242 log10(CDN

2
Re
)− 0.031293 log10(CDN

2
Re
)2 (30)

Then we follow the same method as Ackerman & Marley (2001) noting that :

CDN
2
Re

=
32ρga3(ρp − ρ)

3η2
(31)

is independent of the velocity, we use the fit of equation 30 and extract the velocity :

Vf =
η

2ρa
10

−1.21+0.92 log10(
32ρga3∆ρ

3η2
)−0.031 log10(

32ρga3∆ρ

3η2
)2

(32)

High Knudsen number

In the free-molecular regime, calculations have been made by Probstein (1968) leading to an
expression for the drag coefficient :

CD =
2

3sa

√
π +

2s2a + 1

s3a
√
π

exp(−s2a) +
4s4a + 4s2a − 1

2s4a
erf(sa) (33)

where sa is the ratio of the object velocity over the thermal speed of the gas (VT =
√

2kBT
m

=
√
π
2
c̄) and erf is the error function.

Low velocity limit

When looking at the limit for low velocities, one have to use an equivalent of the error function
in 0 :

erf(sa) =
2

√

(π)
e−s2a(sa +

2

3
s3a) + o(s4a) (34)

When using this equations inside equation 33 the term in e−sa goes to 1 and the terms
proportional to 1

s3a
cancels then :

CD ∼

(

2
√
π

3
+

16

3
√
π

)

1

sa
(35)
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Using the expression for the thermal speed and noting that for low Knudsen number the
viscosity can be approximated by (Chapman & Cowling (1970)) :

η ≈
1

2
ρλc̄ (36)

we obtain :

CD ∼

(

2
√
π

3
+

16

3
√
π

) √
π

2

2η

ρV λ
(37)

which is :

CD ∼

(

2
√
π

3
+

16

3
√
π

)

2
√
π

1

NRe
KN

(38)

Then the limit for the drag coefficient at low Knudsen number is :

CD ∼
CDstokes

1.61KN
(39)

When comparing this equation with the limit of equation 3 for high Knudsen number there
is a remarkable agreement between the two expressions.

High velocity limit

When sa goes to infinity, the limit of equation 33 is :

CD ∼ 2 (40)

General case

In order to simplify equation 33 with decided do use the following expression for the drag
coefficient at high Knudsen number :

CD =

(

2
√
π

3
+

16

3
√
π

)

VT

V
+ 2 (41)

CD =

(

2
√
π

3
+

16

3
√
π

)

√

2kBT/m

V
+ 2 (42)

Our approximation fits correctly the exact expression in the limit of low and high velocities.
In between the difference between the exact expression and our approximation is at most 30%.
Replacing CD by its value in equation 6 we obtain a second order equation for the velocity :

2

(

V

VT

)2

+

(

2
√
π

3
+

16

3
√
π

)

V

VT
−

8

3
ag

∆ρ

ρ
= 0 (43)

which leads to :

Vf =
VTA

4

(
√

1 +
63

3A2
ag

∆ρ

ρV 2
T

− 1

)

(44)

with A =
(

2
√
π

3
+ 16

3
√
π

)

.

We can rewrite this equation in term of non-dimensional quantities :

Vf =
A

4
VT

(
√

1 +
96

A2
√
π

Vstokes

VT
KN − 1

)

(45)
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In the limit of small speeds (Vstokes << VT ) we obtain :

Vf =
96

8
√
πA

KNVstokes ≈ 1.61KNVstokes (46)

which is in a good agreement with equation 15
In the limit of big speeds (Vstokes >> VT ) we have a constant drag coefficient CD = 2 so we

obtain :

Vf =

√

8ga∆ρ

3CDρ
(47)

Velocity plot in the pressure-size plane

Figure 9: Validity of each solution for the velocity
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Figure 10: Terminal velocity for particles in differ-
ent size at different pressure. The plain lines repre-
sents contour of 0.1, 1 and 100m/s respectively.

Discussion about the velocity

Figure 11 show the ratio of the cunnhingham velocity to the velocity laws derived before. The
difference is noticeable only for particles of the order of 100µm on top of the 10−4 bars level and
below the 1 bar lever. This difference is always less than an order of magnitude and concern
only a tiny portion of the parameter space. So we decided to neglect it and use only the
Cunningham velocity.
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Figure 11: Relative difference be-
tween the Cunningham velocity
and the more sophisticated mod-
els.
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