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- INTRODUCTION. : ¢~

The first part of thls course deals w1th the derlvatlon of Maxs ell“s equa=
tlons from the fundamental experlmental laws of Coulomb, Ampere and Faraqayo' Hlstorn

*cally the derivatlon of the equatlons from these experlments was not p0331ble Wlthout

‘

‘1og1cal dlfflcultles and for this reason some authors* prefer to postulate Maxwell'c

equations 1n1t1ally and then treat the subJect as a set of examples 1n the solutlon
of Maxwell's equatlonse Although th1s approach offers greater freedcm from loglcal
difficulties;'it is not the one followed in this course, since 1t does not represent
the manner iﬁ nhich’phjsical theory evolves ln practice° We shall therefore ‘proceed
from the experimental facts, and as a consequence will have to draw somewhat doubtful
inferences, at various times, which will need further experimental verif_j}cation° This
approach is; however, the approach which is the most common one used in. the develop-
ment of any physical theoryo |

The second part of this course deals.with problems associated wlth the
theory of the electron. The problems are treated entlrely classically with special
éemphasis however as to the features and particularly the difficulties which have a
more general significance. The special theory of relativity is treated more thor-
oughly than is customary in a course in electricity and in particular.its experimental
basis is discussed, |

The rationalized MKS system of units will be used in this course. This is
a system which combines oractical electromagnetic units uith the”meter kilogram me~
chanical units. 1In this_system of units Maxwell's electromagnetic field equations
will appear in a form which does not explicitly involve the velocltyvof light as a
factor. The MKS units are rationalized in the sense that all equatlons‘describing

phenomena having spherical symmetry'will contain a factor of Lw, while all equations

% e.g. Stratton, Electromagnetic Theory, McGraw Hill, 1941



2
describing pbenomena having éylindrical symmetry will contain a factor of 2n, and
all equations that are expressed‘in general vector language will nét contain any
multiple of n., The reéson for adopting this syétem of units, in this course, isk
not that its superiority or inferiority over the otherlsystems is a matter ;f great
éignificénce, but - simply that the majority of modern reference books on the subject
are now written in this system of units., ’ ,

| , These notes ére the results of lecturés given 1947/48 and 1948/49. The
first edition was prepared ﬁith»the aid of Roger Wallace and Howard Chang, The
- second edition incorporates valuable corrections contributed by various aﬁ%hqrs;'_

particularly Richard Madey énd Lee Aémodt.

2.



CHAPTER 1 THE ELECTROSTATIC FIELD

The static 1nteractlon between material bodies can be descrlbed by two "
alternative methodss Either by formulatlng the action at a dlstance between the
1nteract1ng ‘bodies or by separatlng the 1nteract10n process into the productlon of
a fleld by one system and the actlon of the fleld on another systemo These approaches
are phy51cally 1ndlst1ngulshable in the statlc case 1f correctly formulated but in
the non=statac case9 1oe°,in the case of tlme varying sources one is forced to ascrlbe
phy31cal reallty to the fleld ow1ng to the finite ve1001ty of propagatlon of the 1nter—
actlont"We shall therefore even formulate the electrostatlc interactions as a fleld
theory and then study the exten31on of the theory to non«statlc casesS. A field theory
must satlsfy the requ1rement that the action on a glven volume V surrounded by a sure'
. face S can be fully descrlbed as a function of the field on § and thus be descrlbablev
Wlthout reference to the source.- | | | ’ |

o Fleld theorles appllcable to varlous types of interaction dlffer by the
number of parameters necessary to deflne the field and the symmetry character of
the flelda The electrlc field is a three=d1men31onal vector fleld, i.e. a fleld
definable by the specification of 3 componentso | | |

All vector fields are unlquely deflnedllf thelr.01rculat10n density and
source den31ty are glven functlons of the coordlnates of all points in space. Also,
all electric fields are linear fields which obey the prlnolple_ofgsuperposltlono
The program for deriving Maxwell's equations consists.of‘attempting.to obtain a set
of equations which will‘independently derive;the source and eirculation densities,
that is the diVergence and curl of the field vectors describing the-electromagnetic
fieldso

We shall first consider the electrostatic_field only in a vacuum. The

electric field is defined by the force which is produced on a test charge q by

)kEven'here”it is possible, in fact ‘sometimes advantageous, to replace the field
concept by the concept of "delayed direct* interation®,



the équation:_

t

(1.1) lim = - F test charge (Coulombs)

it
q—0 q

-

= force on test charge é (Newtons)

wd m ;o

e electric field defined by this
equation (Volts per meter)

The definition expressed by equation (1.1l) is a sﬁitéble one only if macroscopic
phenomena are involved, Thé fundaaental difficulty in equation (1.15 lies in the
finite magnitude of the ;harge of an electroh ﬁhich'does not permit the limit indi-
cated as g—>0 tobbe éxperimén£a11y carried ﬁo an indefinitély sﬁa}l value of the
| charge, On the other hand, thé'necessity fof'iﬁﬁroducinglﬁhe limit is that it is
assumed in the definition of an electric field théf;the test charge will not influ-
ence the béhavior of the éources of the field and that’for that reason the test
charge must be vanishinglj small ¢ompared ib all the équrces of the field, Tﬂié re-
striction therefore limits the wvalidity of this definition to cases where the sources
producing»the field are equivalent to avlarge number of unit e}ectronic charges.

‘- "Coulbmb;s expefimentally esﬁablished law for the force between two point

charges (formulated as an action at a distance 1aW):

o= A% T2 019 E;‘ 1\ 7, = the radius vector position of
h"k r3 Lk v charge q, measured from an arigin
o o r/ located "at charge q. (Meters)
> o :
(1.2) F, = the force on charge q, k, = (10~7/unc? Farads/Meter)
' . due to the presence _

of charge dy e

-é

‘7 = the gradient operator acting
on the coordinates of the
charge q2.

permits immediétely by comparison with equatibn>(iol) the statement:

13 T . _a Fo.o_a —>(1)

»
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giving the electric field E of a point charge q at a position given by r whose

origin is at gq. (g corresponds to q, en equation 1.2.)‘.Wé might note thaﬁ by the

-— \
vector r we mean the vector extending from a source point to a field point; unless:
: — :
differently specified the vector operator ‘7 operates on the coordinates of the

field point. In accordance with this convéntion:

— '? —y -»
(1.4) Vre=*rsygr= 3
-» -> ' - N
r = i(x - =X i R + k
( Field Souroe) G ) (

. -y ) Z_.. =Z \
Field * Sourcs Fleld_ Sourde

According to Gauss' flux theorem "

- -
(1.6) Eds = p=
) S o

*'Gaqss' electric flux theorem is a direct comsequence of Coulomb's law, since if:

Y
we consider an element of surface dS, as. shown in Figure (1.1),

> o . } ‘
dS = element of surface expressed as
. -a vector directed -along the-
outward normal to the element, ,
dQl = the solid angle. subtended by dS -

d.Se

%t the point p.

‘"’Figufe (1;1)

. = : A o B : o
~at a distance r from a charge g at a point p, we can, by taking the dot product
- . :
of both sides.of equation (1.3) with dS, secures
;—9'-¢ 1 | ) . 'q _
BedS = 7k %3' reds = e, - 4

{The'last equality comes from the expression (155):fqy the solid angle?

iod‘%) 1 TedS o

r Ar2 - rS»

(1.5) afL =
“*. Now integrating equation (1.5) over a closed surface which includes the point

ps Gauss' theorem~results, since;

Kdﬂ = 4n

S



¥
and using Gauss' divergence theorems

(17)[Eds=/[/°Edv

together with the fact thats

ﬁf(o dv = q F = the charge density per unit volume at
: . the point where the electric field is

equation 'v(l.S) can be put into the forms
- -

(1.9) v °cEBE = &
It further félIOWS from equation (1,3) and the fact that the curl of the gradient
of a scalar vanishes and from the principle of superposition, thats ‘

: > -

(1.10) YxE=0
The electrostatic field is thus seen to be solely derived from sources and is
therefore irrotational, It then follows from the theorem, that the curl and the
divergence of a vecfbr field completely define the vector field, that the '
electrostatic field is completely defined by a charge distribution. -

Since the electric field is irrotational, we may define an electrostaﬁic‘ ’

potential & given bys

- - . " '
(1.11) E = -V [ # = the potential at ‘the point where the
electric field is E. (Volts)

In Cartesian coordinates we sée from equation (l.11) thate

(1.12) Ex = _ﬁ sBy = ,Ez— -5‘2 (Ex,Ey,Ez) = the componentg of the |

vector field B parallel to -
_ the x;y,2, axes respectively.
and from the condition of equation (1,10) we haves: o

(1.13) OBy  SEg OBz~ OEx ) SEy

2z 9y ° ox ~ oz ? ay X

*¥Gauss' divergence theorem is'a geheral vector analytic expression holding for

for any vector field,

s
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o 7
which assures that the defiriition of # in squation (1,11) implies a unique potential
within ‘an additive constant, ' -

(Lo1k) ' Stokes? The&fém: o

N -3 -5 > > - ) ' ‘ -
o E( V xE) -dS = {E"dﬂ -~ dd = the vector tangent to a closed
C & ‘ path of integration.

when combinéd with equation (1.10) &iélds?
(1.15) ggﬁodl =0 | |
which shows that the électfostatic field is a conservative.fieldj tha@‘is'nO‘work
is done on a test'chafge if it is moved around a closed path in the field. There-

faore no continuous external sources of power are needed t o maintain an electro-static

field. Since the work done in moving a test charge from one point to another is in-

dependent of the pa£h9 we éan therefore uniquely define the work necessary to carry

'a unit charge from an infinite distance up to a given point as the potential of that

poipto This definition will not lead to any difficultigs_ifrfinite squréesvare:con-
sidered. If one considers sources of less than threé dimenéions, that is sources
infinite in one or more directions, then this definition will lead to difficulties
and avaiﬁt~bther'thén infinity has to be taken for a reference pdsiﬁionol From
equations (1.9) and (1.11) we can easily-dbtain Poisson's equation:

(1.16) vzng -

ko

and in a region of zero charge density, Laplace's equation:

1an g =o

b

The electrostatic poteﬁtial at a given point was defined inbequgtign (loil)‘
in terms of.the electfic field at that point. In order to obtain an expiicitleXm
pression fbr the potential due to a known distribution-bf-charge within a finite
region of spacé,ras-ﬁell.as in tefms ofH§Q¢ bqundary values_of the:pqtential and

.-

its derivatives, we make use of Green's theorems

(1.18) ]]f(;é vy -yy? ¢>dv=[[ (ﬁy ,yv’%g) . &
¥ | s | |



where @ and qj are ‘'scalar functions of position and are analytic with analytic

derivatives in the region of integration and are also analytic-on'its boundary. Let

1

us make @ the electrostatic potential defined in (l.ll)Jand let %J == the uni@

point’ source solution of Laplace's equation., Since this point solution has a singu-

larity at p (see Figure 1.2) we will integrate only over the region contained between

the surface S and the smaller sphere S', which

Figure (1.2)

encloses the point p. Noting that:

(1.19) 2—1=.=o ma O (L)
° v T v r/] 3
Thuss: »

: e >

(l,ZO)V | vzq) =0 and V\P B.s;.'%

We now have on substituting from (1019) and (1,20) into (1.18):

- p = p(xy,2)

-> >
r = r(X,y,z3x',yt,z")

(1.21) - ﬁ% v2 ¢'d§ .

v-v!

CRRrA (Cak i

K4



9
The minus sign before the second term on the right side arises from the inward
direction of the normal on the‘ sphere S' If we now shrink S until it is émall
enough so that ,Qf and V}D’ become essentlally constant over S' the second term on

the right side o*’ (1 21) becomes. _
(1.22) - + __ﬁ cast = g, [[ 2 . dS'
5 i ptd
S gt

If we now pass to the llmlt as r'—) 0, we haves

(1 23)  lim ((ﬂr + Vﬁ);ds—w

r'—0
Note that the term in vﬁ vanishes since it is of order r!'; We thus obtain on
substitution of (1:23) into (1.21) and solving for ;zfp. the potential at the peint .

(The integration is over the primed coordinatess)

p}
(1.22% yfps%&.— i—;'ﬂ/-@dv-r[ﬁ;% +.-.1.n_ﬁ).-,as_<
: v S :

The first term of (1.24) is simply the contribubion to'the potential by the volume

charge distribution within v, since by Poisson's equation; the integrand is the
charge d.eﬁsity, evaluated at the point of integration; divided by the disbance between

the point of integration and the point of observation, Note that the distahcs r is a

* We can formally obviate the necessity of introducing the sub=volime Vi by

writing Poisson's equation for & point charge using theé Dirac S-— functions

(1,25) vz(':':‘> = - 4:18(1')

wheres

g(r)=0, r#0
([[(S(r)dvé |

Eq. (l ?4) then follows dlreotly by substltutlon of (1; 25) ifto Green's theorem
(1.18), We shall have occasion to use this simplified procedure although its

justification rests ifi the above formal proof.
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function of the coordinates both of the point of observation, p, and of the point of
integration (x', y', z'). - )

' The second andvtﬁird terms of equation’(l,Qh)iare eurfacevtefms; that is-
they summarize the effect_of‘the cha;gevdistribution‘outside the ;egibn v which is
not contained ekplicitl&rih the integral‘over the'chafge;density“Of the first term.
We therefore conclude that the pdtential‘at any point within S-is. uniquely determined
" by the charge distribution within_S and bj the»valges Which ¢'andv§7¢”have at ail
points on the surfece S. In parﬁicular-the potential ﬁithin.a chefge—free volume is
uniquely determined by the potential and its normal derivative o%er the surface en-
closing the'velumeo ‘We have only shown that knowledge ef the potentiel end its.'
normal,derivative‘OVer'the'surface is sufficient to determine the potential_uniquelyv
“inside, but we have not shown that these two pieces of;informetion are'heceseary.
As we shall see'later, it is in'fact'suffieient=in a chargeefree region to have
either the potential or its ﬁormal derivative given,over'a'surfaee in order to de-
termine~thevpotential at every point ﬁithin the surfaee to w@thin“an arbitrary ad- L
ditive constant.. The reason for this sufficiency is the fact that g and;a @ may not

be independently :specified over the surface, since @ must be a solution of Laplace's

. equation.. The second and third terms of equation (1.2};) which define the potential-in'

terms of the boundary values will be interpreted later by stating that the effect of
any charge dlstrlbutlon outside of S is equlvalent to a charge dlstrlbutlon on S and
a dipole layer dlstrlbutlon on S, | | |

If we extend the surface S to include all charges in space, end'arbitrarily'
expand S away from such charges, then the second and third terms of»eqdatien (1.24)
vanish. This follows since the infegrands in ¢ and ;; @ vary at large distances'aé
least to the inverse third power. Since the surface of 1ntegrat10n 1ncreases as rl
both terms vanish ﬁe at leasf te order %o We conclude therefore that the potentlal
can be calcdlated 5yvthe direet suﬁerppsieion of the individual‘potentials of all

s



»

‘the volume charge distribution, but that we‘."c"en.’,'i;f we ﬁsh,replace any part of the

dlstrlbutlon by an equlvalent surface charge layer and dipole layer dlst.rlbutlon.

The volume ‘term of equat:.on (1.2L) can be looked on as being a partlcular

integral of Po,lsson's equatlon, Whlle the surface terms are complementary-lntegrals _

feid

of the differential equatlon in the sense that they are general solutlons of t.he ,

homogeneous equat.lon, that 1s, J-'ap'_l.a.ce's equatlon.

11
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CHAPTER 2 -~ . . FIELD SINGULARITIES

In the last chapter the solution of the potential problem was divided into
bouodary contributions and iﬁto‘a';olume integral extendingover the Source-chérges.'
These chafge integrals will not lead £o éingular values of tho poténtials if the
oharge distributions aré‘voiumé‘aistribufiooé;: If'the'oharges aﬁevoonsiderod to be

surface, line, or point chérges, then singularities will result asiéhown in Table 2.1.

Type of Charge Behavior of . ' Behavior of field
Distribution Potential near distribution | . Near distribution
Surface r _ _ Constant
Line ~log r , ' rt
Point . - p=l : r=2

Point 2" pole sl , r0-$

TABLE (2.1) =

Note that if either surface or line charges are infinite (i,e, the fields are con-
sidered 1 or 2 dimensional) the potential cannot be referred to infinity. Let us

now discuss in more detail the nature of the potentials oorfesponding to suoh singular

sources.,. .
The potential ¢p ; at the point p:
. q
. 1 1
(2.1) ¢( . £ el ——
P ume r(p,p') bk Vo (xex')2 0k (3eyt)2 + (2-2')2

due to the charge qp' located at the point b', ao in Figuro (2.15 haoAa first order
‘ siﬁéularity at.the point p' corresponding toﬁr = 0, Singularities of higher order
can be generated by superimposing onto this potential a potential corresponding to
" a similar charge but of opposite sign; displaced a distance ZX x¥ from it. This

process is equivalent to differentiating eq. (2.1) with respect to x'. If we denote
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g _ R =
differentiation with respect to x' by 2x' and call v the operator corresponding
- S
to V but referred to the source co-ordinates we 'see that in general for any function

of the relative co-ordinates only

{ [(X-X'), (y-y'), (z-Z')-_) -2 ( ((X-X) (y-y) (Z-z )]}
2xt |

and in general

(2.2) 'f = - V f

S:ane the derlvatlve of a solution of Léjﬂaee's equatlon is also a solutlon, the pro-
cess of differentiation with respect to the source point as physically dgscribed above
will generate new solutions with succes.s‘iv'e higher order singularities near r = O.

Suéh potentials are called multipole potentials.

" For a single differentiation we obtain for instances ..

. (2) | = 3¢(1) V= S;éx;v(x-xi') o cos 9 ‘, DU
(2.3) ¢ | A ‘hﬂker — = '(qAX';)Vh”kbrz _(See ?’1gur_e 2,1? )

and if we lets
(2.)4) qAX| .- p<2)

be the dipole moment of the distribution (positive 'from‘f to + charge) we can write

this as:

=>(2) >

.y 52 .1 S22 3) 1 S{ysf\_ 1 T
) Lk P V | hnk P V h"ko r3

, > - : .
Note the sign conventions regarding r and v discussed in Chapter 1.’ This solution : . .-

is the dipole potential.
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,(x,y;;)

?(x~x',y-y',zgé')

p'(xt,y',ze’)

L\

F'iigure (2,1)'
The potential diétribution and consequently the fields of higher multiples
of the charge, or multipoles, can be generated by the same method of geometrlca.l con-
struction. For example the potential field of.2 n+l pole is generated by taklng the
potentlal field of a 2@ pole and subtractlng from it the pot.entlal field of another
' 2 pole that is dlsplaced 1nf1n1tesimally in an arbltrary dlrection (or superp031ng |

the potential of the displaced ot pole with opposite 31gn__)o

The potential of a 2n pole will therefore have the genera‘i forms a

@% _ » 3" (1\ . (w3 1
(206) ¢ hnkon! ax' BYl_,g (r) hﬁkonl ' ax ay o (r)

where p(n') is the multlpole moment, deflned by t he recurrence relation

p<n) = np(n"’l) Ax' where Ax' is the displacement leadlng to the 2 - pole. '
In the special case in which.all the displacements are in one dlrectlon,_ we have a
linear 2n pole: |

(207) ¢(2n) (XQY9Z) ; P(n) an (‘l) " p.}(n)lpn(cos e?

Lnkont ox? r Lk pl

¢}

where Pn(cos 8) are the 'Legendre polynomials.



A few examples of such multipoles are shown 'in Figure (2.2). An arbitrary

linear combination of higher multipoles constitutes:.a general Taylor-Laurent expansion

of the potential. TFor thét reason one can state the theorem that at a large distance

from a charge distribution the potential of this charge distribution can be expressed

as an infinite series of multipole potent;léls. By a-large distance we mean a distance

that is large compared to any dimension of the charge distributibn, We shall see

later that the multipole expansion is actually equivalent to an expansion in Legendre

polynomials, and that the various orders of the Legendre polynémials actually'i corres-

pond to multipoles of various orders.

LINEAR 2 POLES.

(3
p ) = 31g (A X)B

FIGURE (2.2)
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FIGURE (2.2) (CONTINUED)
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The energy of a dipole in an electrostatic field is given by:
R - -) :
(2.8) U = ¢p « E R U = the energy of position of an already
' v R ' created dipole in' an electrostatic
field. (Joules)

which follows directly from the torque relation:
> o e T e e T
(2.9) L=pxE . - L = the torque exerted in such a direction
' as to rotate the positive end of the
dipole toward the field dlrectlon._
(Newton Meters)

of a dlpoleo The force actlng on a dlpole, When the relatlve orlentatlon of the dipole

o

and the fleld is not free to change, 1n an 1nhomogenous electrlc fleld is glven by.

(2,10 F = =T U = - v(=p~E)=(p 3 )E

Note that this force vanishes for constant flelds, as would be expected from symmetry
arguments.

| Let us now consider the 1nteract10n force and energy between two dlpoles,
such‘as those shown in Figure (2, 3), Whose moment vectors are orlented at an arbitrary

angle in space to ‘each other. Combining the force equation (2.10),
-y

Py
-
- ¢1 r
(due to py)<d—n 12
By

Py
FIGURE (2.3)

the potential: equation (2,5) and the field equation (1.11), we have for the force'F1

- ey - - - - ) - -y '
Mince: V(P +B) =px(V xE) + (P w)E=(P-V)ELL VE=0 HVxE¥0

e

an additional term is obtained.
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on dipole 1 in the field of dipole 2, or conversely the force Fes

. el 2.3 (0.2 VR R 1)
I RN O R A AT (r)
2> 5 - o - [ (> = [\
= ° = —L— pong o_‘ S ° .
F 4 (pl. Vl)El e v(pl Vl) [ vi(\pz vl(%)”

F2 gﬁi: (pz V) [62 {;1" 62&)}]

‘We can get thé 1ntéract10n energy between the two dlpoles of Flgure (2.3)
by comb1n1ng Equatlons (2.5), (2. ll) and (2 8). We have for the energy U12 of the
dipole 1 in the field of dipole 2; and conversely for 021. |

. ! v R o“.). _ (p1° ) l
(2.12) U12 =P, El —Z""'"‘l_[ P, Vl (;X
' ' > I 2 < T

N
(pl. r)(p2 . r)j

F=>
U, = +L ELpz
i unk

Up = Upy

These are general expressions for the interaction energy of two dipolese ... ..

_Surface'Singularities

We have cons1dered p01nt 51ngular1tles and Wlll now dlscuss surface 51ngu-
larities. A surface 51ngular1ty is another type of field 51ngu1ar1ty that is often of
interest in electrostaties. Usually surface singularities upvtq the second order »I
or dipgle form are the only oné; of interest. Surface charges or monopole distribu-
tions will be discussed later. Let:;'be théidipole~moment per unit area of a double
layer surface charge arrangement. The potential arising from such a distribution is,

given by:

S . a2 -
(2,13) ¢ =.% [[ T 3 L 4s
0
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. -5
This expression reduces, in the case when,qvAisﬂuniform and normal to the surface

over the dipole_sheetf‘when simplified by (1.5), to the relations

1) '[77J31d§> N I

(2.19) |8 |= &, || 5 ° &Eg

Here [) is the solid angle subtended by the boundaries of the dipole sheet at the

point of observation as in Figure (2.4). The solid angle subtended by a non-closed

' surface jumps discontinuously by 4n as the point of cbservation crosses the dipole

sheet, This means that in the ideal case of an infinitely thin dipole charge layer,
the potential function will have a discoﬁtinuity of magnitude |1~‘/ko, but will

have a continuous derivative at the dipole sheet,

observation
point

p ' ' ~dipole sheet
Figure‘(2.4)‘

On the other hand, a simple surface éhgrge-layer will not result in a
discontinuity in potential, but will produce = discontinuity only in the normal
derivative or the potential, the magnitude or discontinuity being 0"/k0 where O~ ‘
is the surface charge density of the charge layer. A comparison between the two
cases is shown in Figure (2,54 and B). Since surface charge layers and dipole
charge layers enabls us to introduce arbitrdry discontinuities_in the potential
and its derivatives &t 'a particular surface, we can meke

#& No generality is lost since & dipo_]se‘ Tayer with 7 not parallel to do°is
equivalent to a dipole layer with Y parallel to d§'p1us a charge layer,
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the potential vanieh outside a given volume by surroending the volume with a suitably
chosen chargellayer and dipole layer, This is a further explenationAQf the signifi-
cance of the surface terms in Eqﬁation (1.24) which was derived‘frem Green's theorem.
We see that the surface terms in that expression, when ¢ and §7'¢ are properly evalu-
ated on the surface in terms of a 1V and a g-, are pr301sely those terms that are
necessary to cancel the fleld of the charges inside the surface S in the region out-

side of S, provided that there are no other sources outside of S,

F—-+—Zlimits of : c- '
A | dipole layer . charge layer
’ + . * R .

g

\V i - S
Distance . ” : Distance - *
FIGURE (2 5A) o FIGURE (2.5B)

as can be seen by writing eq. (l 2l )ass

@) ¢p=ﬁz{f[v[ %* Kéf%g+ fs°"%§’

where T = k0¢

o=k 3f
° 2Jn

As an example of a combined surfaee charge and dipole layer distribution that will
just cancel the field outside a given surface, yet leave the field inside the sur-
face unchanged, consider a point charge q located at the point R = O, and the surfece

R = a surrounding this charge,i If we place a surface charge deneity'c’euq/hﬂaz'per

)



)

0

.4

unit area on the sphere R = a;, it will give a potentials

fo = = et R a

go- = - —d—IR>a
bk R |

' ’ ‘ » - - -
If in addition we place a surface dipole layer of moment T~ = fﬂl/hﬂaR per unit area

on the sphere R = a, it will give a potential:
*a

hﬂkoa

gT = o0 |R>a

The potential of the original charge q is:

R< a

g =

Adding those potentials we obtain:

(2.16) g =4, + 4, +¢“’-=¢u;:g,a R<a, f=0 R>a

The potential due to a dipole layer is therefore double valued at the surface al-

though this is|, of course; only strictly true in the limiting case in which th¢

‘dipole layer has an infinitesimal thickness; see Figure (Z,SA)Q For this reason

the case of a double valued potential at a surfgce&does not have‘é physical rea}ity.
This method of generating a non-conservative potentigl is a useful one invthe theory
of magnetic fields to be considered iater.. The electric field produced by a dipole

layer can be derived as follows: ,

The potential change corresponding to a displacement of the point of observation p

by a distance dx"as in Figure (2.6) is:

(2617) d¢p = E - ax

21



The change in solid angle, d {1, subtended by the dipole layer at the fiel@ point is

- .
the same whether the field point moves dx or the layer moves - dx» The latter case

is showns

added ares subtractgd area

FIGURE (2.6)

The change in solid angle is seen to be:

) Y ‘ , - -‘-> :
(2.18) dfL = f Cfex x dR) o r f(dQ p.S IB:’) ° d;:
o B o S -

The change in potential corresponding tc this sclid angle change from (2,1h) isze

(239) o, - T-an

Substituting (2.19) and 2.18) intc (2,17) we haves

(2.20) E d_: == (i %7) ° dx

We may remove the dot product since d&x is an arbitrary vector andn(2920) holds for

- - -
all values of dx. It would not be permissible to un-dot if this were not true,

(2.21) E - X L& T T f af, x 3(3:)
nk T
’ [&]

T &
Lk, - 3 L

22
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These expressions will again be useful in’ the derivation of the magnetic fields due .
to currents where the correspdnding potential does-have a multivalued behavior com=

pletély analogous ‘to the properties of the surface dipole moment.

‘Volume Singularities

We shall now consider volume distributions of dipole moment. The potential
due to.the volume distribution is given‘b& consiaering‘therpoiht dipolevﬁoment of

Equation (2.5) as a volume density and integrating over the volume?

1

) . . ,
(2.22) ‘127r 1\ av P = the dlpole moment, per unlt
p h“k r . volume, : )

~

This can be transformed to a form which is physically more interestiné by the relations

=i /3 =) = > =
2.23) oE:Ja P +P o 1
(2.23 ‘7 (r) Ve ‘7 r
Substituting the last term of (2.23) into (2.22) and using Gauss' dlvergence theorem

(l 7) we haves.

This expression»gan be interpreted as followss The first term, which is a surface in-
tegral, is a potential equivalent to that of a surface charge density, while the sec-—
ond term is a potential equivalent to.thap of a vqlﬁme»charge density. The charge

dgnsitigs which have potentials equivalent to thdse causedvby”the.volume.polarization

of a region of space are given by the expressions:

* =y ' s
(2025) o P EIC v R = the polarization surface charge
A P=-Y#® G
= the polarization volume charge
Co s _
These relations can be derived from purely geometrical considerations. For

example in case we have an inhomogeneous dipole moment per unit volume, (Dp will
represent the charge densiﬁy which accumulates from incomplete cancellation of the
ends of the individual dipoles distributed in the volume, ° CT%, on the other hand,

represents the polarization charge density on thé"surfaéé'producéd by.the lack! ::it

¥ o D 2. o . . = i
Since P = -V .P is a field equation the prime onV can be dropped without ambiguity.
The prime on the Y7 is only necessary in integral expressions, which relate a field
quantity to an integral over a source quantity.
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of neighbors for the dipoles Whiéh lie with their ends on the surface. It is evident
that - "Op will vanish in a homogeneous polarized mediums . In fact, it w:‘i.il vanish
provided only that the dipole moment per unit volume has avzero divergence, We will
thus have for the potential due to the two forms of polarization charges, when we

~

substitute (2.25) into (2.24)%

(2.26) 5 = 1 [ Gfpas R P
.>° P Lk, r / r
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CHAPTER 5. . . . BOUNDARY CONDITIONS AND RELATION .
— " “OF IMICROSCOPIC T0 WACROSCOPLC
FTELDS

The dipole moments per unit volume oonsidéred'in'éhﬁﬁtef 2 are speéiai‘
examples.ofisourges whiph give ;iseltg.electrostatic_fields\and can theréfore be
treated as speQial types Qf charge densities in_Poissqn's.Equation (1.18), Since
material media‘§3_én electric field give ;ise_to«such volume .dipole distributioﬁs,
the behavior of such media in an electric field can be described in terms of its
polarization, that is.its dipole mqment per unit volume., It is‘éustomary5 in
order to clarify the understanding of polarization, to sebarate'ihe total charge
that produces an electrostatic field into two parté;lnémely.a tr;e, free; ﬁoveablé;
net charge (D,:ahd‘a'ﬁbund, zerd—net,”polarization charge f%. This division ié toi
a certain extend arbitrary, in the sense that the polarization charge FE simply
represents separated charges which on the scale of observation being considered in
a particular experiment are essentially inaccessible, but if absméller scale were
considered would be considered separately, as free charges, If,‘fqr example, We
place a piece of metal between the plétes of a condenser, we cap'describe the
resultant field between the plates either in terms of the true charges produced. on -
the metal, or in terms of an equivalent polarization of the piece of metal, depending,
on whether we consider the charges iﬁdividually measurable or ﬁot, respectively,

If, instead of'%he’ﬁetai we iptrdduce'a piece of dielectric between the coﬁ@enser
plates, we are forced to describe the phenomena by a polarization charge, rather
than by}g}trugycharge, since it is assume@:ig the theory that Qbservation shall not
be made;pn an:atomic’écale,,vAn atomic scale observation Would,be necessary in order
to "reso}vef'the volume polarization into individual charges,. . .

It ;s_thgg seen‘that'pﬁe distinction bétween'f> and 6)p is an arbitrary one,
This arbitrgriness.willvin_no way,distrub the formalism used to describe the fields

produced by such polarization charges., Since we have divided the sources of electric
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fields into sources of the two types mentioned, the Poisson source Equation (1.16)

.becomes? A
(31 v2p -V :E-=L (p+p)
? : k'd P
Note that the symbol R denotes only the true free charge, at the point where the

divergencé-is-being taken. Lt we express f?p in terms of the divergence of the
* . - ! ‘ ) o .
polarization P, as given by Equation (2.25) we obtain from Equation (3.1):

.
E

—
(3.2) AVARLIN

If we define the dlsplacement vector D bys .
= e - e
(3.3) D=kE +P D = the electric displacement

(Coulomb-Meter™2)
the source equation becomes simply: -
=
(30)4) v « D =(-o
and alsos
(3.5) V-E -t |
o °E = O D
3¢5 - By [é;fﬁp:.'

o , . . -

with the corresponding integral relations secured from Gauss' divergence theorem

(107)‘by integrating over the volume containing all the charges?

N - ‘ | ‘ . . ,
(3.6) 17. D°dS = q q =q + q = the total charge ° -

(3.7) [ E dS = At ' _ q_p /f[ ﬁl _7dv : ~

kg ' A ’
{D thus represents a partial electric field, namely that electric field whose sources
. N
are only the true charges, Note that the relation (3.3) between D and E is basically
-

'r\

an additive one, the difference between D and k E belng the polarlzatlon P, DNote
also that the polarization, although deflned in a purely geometrlcal fashion as the
dipole moment per unit volume, h;s‘the properties of an electric field. 'Theypolari-

=2 o _ - _
zation field P is that field whose flux arises only from the polarization charges fzf
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The solution of an actual-field:problem involving polarized bodies will depend on
the manner in;whien'the~polariZation-depends on the external field, In most cases,
the polarization will be proportional to the electric field, This can be expressed

by an equation of the type:
- -> - .
(3.8) P=k, XE. - - T the aleotric .snsceptibility

Such a deseription excludes the consideration of electrets,” But electrets do not

= e m e m o m e o G e e W W o m e m @ e e M o e o G o mm e e G e m oo M w G e o e o

@ o o S o o D AN @ e e e o oh e en M Gr e s e M e e e OB M e s G em wn e e M we W em an e &

have great practioal importance, In case we do have a simple medium whose polari=
zation depends linearly on the imposed electric field as expressed by Equation (5 8),

then all three veetors9 DgnE and P, will be related by constants of proportionality

as given by:

- - = -
(3.9) D=koE+Pe=ky(l+ X)E

If we let:
(3.10) k.e 1 + X S " k = the specific inductive capacity
thenz .

- -y

(Soll) D = kkOE
and: .

- :
(5 12) P = k (k=l)E
Equation (5 8) preasupposes that the medium polarizes isotropieally, or that the
polarization properties of the medlum do not depend on the direction of the polaria
zation° In general this is not true and in fact it holds only in liquids, gases,
amorphous solids and oubie crystals° In erystals of lower symmetry than cubic the
relation between each of the oomponents of the polarization veotor and of the eleo= _

tric field veotor is still linear but the constants of proportionality in the various
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directions may be different, This means that the relation between the components
. N . .
of the polarization vector and - the components of the electric field vector are given

by a tensor relation of the type:

"(5,‘13) P, =k Z\j XiJ :Ej

The tensor ;K;j can be shown by ‘energy qonéiderations to be a symmetrical tensor,
and thgrefore it can be expressed in terms of principal coordinates by a set of
only three éonstants°

> :

The case of nonclinqar media, that is media where E and P are not propor-
fional and Eqnation (3.8) does not hold, will not be treated here, but‘the parallel
case will be treated in the discussion of magnetic media whereiﬁonflinearity is of”
more pracfical impértance, It should be pointed gut, hoﬁever, that the relétion '
thaf has,been‘given.betwegn-;>and;£?is not a fundamental one, but is only a special
simplifying assum.ption;r |

Maxwell§s field equations, to be discussed laterﬁ_afe a set of equations
whose sources are divided‘into accessible and inaccessible charges, :In'Order to
obtain a solution of Maxwell®'s equations the inaccessible charges must.be related
to the aécessible charges orlthe fields ﬁroduced by the accessible charges by addi-
$+ional relationships, The relations which évaluaﬁe the inagcegsible cpgpgansourcgg_
in terms of the external fields ﬁhich produce them are called the constitutife ;quaa
,tions, Equation (3,8) is an example of such an eéuation, The constitutive equationg
are, of course, not basic, and depend on thg properties.of the material in which the
1naccessible chérges arise, None of the equations (3.8) %o (3,13) are dependent
upon the homogéneity of the medium, only upon its linéar&tyofuThat.is the suscepti-
bility and sfecifié indﬁctiﬁe capacity may belarbitrary funétions of the coordinafes°
A case of much interestlis the one where fhg specifie inductive capacity varies dis;

continuously, as at the boundary between two dielectrics, In this case, illustrated

in figures (3.1 and 3,2), we imagine a small volume, whose dimension normal to the

/‘t:’«»
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interface is. smaller.than its dimensions éeréllel te’the.interfaCe'by an order of
magnitude, p@lbé ee'élacéd‘that one of_its'léfge‘euffaces lies”lﬁ'medium 1 and the
otﬂe;iig'ﬁealumzzlaea bofh are parallel to the infeffeee, lh.adeition we imagine a
smaill loop erected as in Flgure (3 2) w1th its major extent lylng parallel to the
‘surface, one 81de in med1um 1 and the other in medium 2, The little volume in Figure
(3.1) will be used to derive the behavior of the normal components of the fields
and the loop- in Figure (3.2) will be used to derive the behavior of the tangential

components of the flelds as they cross the interface.

¥

35 = the unit vector normal
oAA,mempd
surface S.

o = surface charge on the
surface = o

Figure (3.1)

Je have from (3.6) for the surface integral of D over the little volume in
Figure (3.1)s
. : - - | . y

(3.14) De d8 = q ‘ ~ S
As we shrink the: dimension h to zerog.q—ao<£§ﬁq and the contribution:of the sides
of the volume to the surface integral vanishes, so (3.14) becomess
- -~ >

(BL.15) “.:.n e (Dy =:Dy) =6

And if we may meke the assumption of (3.11) we. haves

(3.16) n e (keBp-kyE;) = kg o 7 . (kz v¢2”k1v ¢1) = - "—
We have made the assumptlon that [&A.ls small enough so that the flelds are

essentlally constant over 1t
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-
T,

R = unit normal to the
- surface s . _
- n_ = unit normal to the

loop of integration,
lying in the surface

l-'t‘q*

_* ’ o

dS = differential of sur-
face area of the-
integration loop,

Region 1

Figure (3.2)

, From (1,15) we have for the line integral of the electric fields
(1°i5) f"ﬁ’,d?=o | o ‘ I x
If we apply this to the péth shown in Figure (3,2) and let the ends of the path
shrink to zero,,, we ixa've: J | - |

-ty -

- > 3
(3.17) E2 °'.d‘Q =..El . al =0 -

-
Noting that .g_% - 3°x3 we hawes
: - e =
(3.18) noo?x (E2°El) =0 »
, - ' v : B
And since ?o can be oriented in any direction relative to E, and (3,18) holds for :
all of them, we may remove the dot product:
i s o : .

(3,19) Tx (Ezazl.),» =0 .
And hence from (1.,11).we havey:. ') . i v

- ' =
(3.20) D x (3% -p) =0

oy . .

We have assumed:that: / .42 is short enough so that the fields are essentially
constant over its length,

The relation.(3,20) could have been secured .from (1,10) and an application

. , ~
of Stoke&" theorem, but (1.10) is actually not necessary in this proof, The rela-
tionship (3,20) will hold true even in the nom-static case where VY x E is not zero
but is given by the Faraday law of induction: ' :
S ' ' -
(3,21) VxE-= = _3__€ B = the magnetic induction (Weber o

ot . Meter"'?)
Applying Stokeg® theorem (l;_]_.4) to (3.21) and carrying the integration over the |

- path shown in Figure (302). and neglecting the contributions of the ehds of the path
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we have:
(3.22) G F - d% /2on /i? [ _g_%ods
As we shrink. the integration path to zerc the differential of surface area dS vanishes
to a higher order than the differentials of path length d2_ and thus the term contain-
ing]?diops out and we have (3,19) or (3.26) again, Thus these equatione dre correct
expressions of tneiboundary'eonditions,‘even in the general non-static case,

v.If9 as we saw in Chapter 2, there is no eurface dipole layer, the potential

is continuous aeross the boundary and we have:

(3.28) Py = P,

We have‘theneforenboundary eonditions on the potentials and the fields on the two
sides of an interface as.given by Equations (5,15)9 (5,16)9‘(3,19) and (3,20),
These boundary conditions.provide for the oontinuity of.the field acroes-ano~pw
interface,” ‘ | - V

We first defined the electrostatic field in a vacuum, caused by free eharges
and then we introduced materiallmedia containing charges that are inaccessible to’
measurement, The behavior:of'these media has been described in terms of their dipole
moment per unit volumeo Gertain difficulties arise in the definition of the electric
field E in material media if one attempts to use a strictly phenomenological point of
view, A definition of the field might be made by one of the following three methods,
which will not necessarily be in agreement

(A) We may define the field E on an atomie eleetron soale where the

question of the polarizability of material media would presumably not

arise, Then for our macroscopio definition of the field we would take

the space time average of these atomic fields,

(B) we might consider that a hole be cut into the dielectric‘material

in the field and define the fleld as that measured in this hole in terms

of the force on a unit eharge as was used in the vacuum definition,
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This cavity definition of the field will make the field strength depend
on the geometry of the ca%ify and on its orienﬁation relative to fhe
direction of the field in ﬁﬁe medium, This will lead to a unique definition_
. only if the shape and orientation of fhe cavity are standardized iﬁ an

arbitrary menner.

(C) We may define the field as that acting on an individual molecule of £
fhe'dieléctric.
(A) Space Time Average Definition.. ' : o ¥
Consider a function £(x,y,23t) defined in a certain region of space during a
certain time intervai asvin Figure (3.3). The sbace-time average of £(x,y,z3t)
when the function is averaged over-é fime interval 2T and a region.of space of
radius a is then given bys ? - T ' ' -
©) T o (I o] g apeg
Lo T (,52_’_;?2_}.57,2S IaZ) . |
Figﬁre (3.3)
This integral is a linear operation and méy therefbre be commuted with linear
aifferential operétors, as for examp leg | | R
s 5 _ .
(3.28) {f = VA3 | _ X : : .

On an atomic scale an equation corresponding to (1.9) holdse

(3.26) V& = i & = the atomic electric field,

Pt = the total charge density in the
. -atomic distribution, :



Taking the space time averdage of P, in (3,26) we obtaing

(3.27)Y) 2 Pt

And from (3 25) e.gd (3 55 we have°
-
(. zé)v E Vr

* N . N - .
field § , even in the presence of dielectrics,

(B) Empirical Measurement of the Field in a Hole in the Medium Definition,

Consider the three shapes of. cavities shown in Figure (3,4}, From the
boundary conditions of Equations (3 16) and (5 19), the field measured in
the slotg whose boundaries are uncharged, in Figure (3 4A), whose maJor»

extent is oriented normal to the field is EE?

me WHEre E is the field in

the medium, The field in the slot in Figure (3.4B) whose major extent 1s
oriented parallel to the field is nig = E The field measured in the |

spherical cavity in Figure (3, 40), can be shown to be

/1;'—'/0{— 17)1{ 0—5/

Flg;ure (3.44) Figure (3 4B) ' Figure (3.4C).

(3.29) B =9°KEp . § B2 __L1
2k+l m. ko (2k+l)

7 by methods to be diseussed in Chapter 6 for the solution of boundary value

problems, For large values of k, (3,29) becomes:
-
. L3 2
3,30 BE ==
( ) : E |
The three types of fields existing in the cavities are shown graphically

in Pigure (3.5). The cavity definitions will therefore each give a definite

33

‘Hence the macroscopic field E is actually the space-time average of the atomic



34

value of the field provided that the geometry is standardized,

/)

Y | — s1lot & <— -—>'l Slot IF— ———>i " Sphere C h
| B
| |

KB, > T T~ ' 'I .:: :

n* KoUZerl) — |/\L_/ N\
‘Em———> —_— f————————— - ' | »

Field profile measured by the cavity technique on a horizontal line passing
through the centers of Figures (3,4A,; B and C),

 Figure (3,54) - ‘Figure (3,5B) . Figure (3,5C)

(C) Molecular Fields
Consider a diélectrié piace@ 5etweeh the plates of a parallel plate condénser,
as shown.in ?iguré (5,6), the_dielectric and eondenéer being sufficiently»}arge
"in the directioné parallei to the plates SO thét énd effécts may be neglected, f
C&nsider a moleculé within fhié dielecirico Let ﬁs draw a sphere of radiuS'a
about this particulaf mblecule, where this radius‘is 1n§epdqut9v:epg§sent_'
schemaficaily the boundary betweén‘the'microsedpic and macfoscopic::agge’qf
phenomepa concerning this molecule, The molecule.is thus influeﬁced by the
fields ar;Sing,from'the following chargess

(1) The charge pﬁ the surfaces of thé condenser plates,

(2) The surface charge on the dielectric facing the condenser plates,

(3) The surface charge on the interior of the spherical boundary of
radius a,

(4) The charges of the individual molecules, other than the molecule
under consideration, contained within the sphere of radius a,

Considering these pases:

(1) The charge on the condenser plates produces a field at the molecule in

-

question equal to:

-

S
E+£—
(o]

3
(3.3l) =— =
L

Tﬁ%

4
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(2) The polarization charge on the;surfaceﬂof the dielectric:facing the

_ - : T ‘ _
condenser plates, crp = P e-fi,produees a field at the molecule:
(3.32) =§
’ (o)

(3) The polarization charge present on the inside of the .sphere produces a
field that may be calculated as follows: The electric field at' the

.center of the cavity, Ep,vdue to the polarization on the surface of the

// G-.C08 @ ds

The differential element of surface charge is:

cavity, is given by:

(3.33) Ep

. ->
(2.34) o 35 = 2m® sin® cos'® 40 [F|
Substituting (3,34) into (3,33) we have:
B » . N - .
2
(3,35) E_= LE12mZ [:rsine cos® @ 46
p Mrkoaz ’ :

and integrating we get:

» E?
{3, 56) Ep | Sk
-
Note that Ep is not the solution of the boundary value problem of a spherical

cavity within a dielectric, as (3,29) was; but 1s the solution of the]problem
of a spherical cavity within a dielectric if the polarization is considered to

be unaffected by the presence of the spherical cavity,

(4) The field due to the individual molecules within the sphere must be obtained
by summing over the fields due to the dipoles within the sphere, We can
secure the potential of an individual dipole from (2,5):

(3,37) § = _1_ DoF
, S Wk, T

The field at a diétance f from this dipolé is:
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I‘ r.

5 28 -1 '6 p" -1 z 5(p r)r
(3.39) Tnkg “Ek, |pBT .5
Summing over all the dipoles within the sphere we obtain the spatial average

of the x component of the fie1d°

(S.SQ)E‘X = Ank Z(Px 3$PXX +ivxy+p Xz ))

Since we have assumed that the dielectric 1s isotropic, the Xy y and z directions

are equivalent and we have:

: r ' L
(540):: =y2=22='5—,Ty=’72=‘z_=0

Hence the field due to the dipoles W1th1n the snhere vanlshes.‘
Thus adding the partial fields of (3 31), (3.32), (3. 56) and the zero. fleld

of part (4) we have for the field aotlng on one molecule'

(1) (2) (3)
N

(3.41)E. .. =B +P -P +P =E+TP
of £ o macnae I
. K &, 3k, 7k,

The.magnitude of the field of (3.41), derived for isotropic substances ie
also valid for cubic lattice cryetals, but is not valid for crystals of lower
symmetry:‘ |

In order to describe the large scale behavior of a dielectric in terms of

the constants of the molecules constituting the.dielectfic; the specific inductive
capacity k must be associated with the polarizability of a-single-molecule Qo
This connection may be made by the use of Eqn. (3. 41) which gives the field and
thus the force actlng on a 51ngle molecule w1th1n the body of a dlelectrlc in
terms of the external fleld Therefore, if a 1is defined by the equatlon:

(3,42) T =a Eeff | D o= the'dipole.'moment vi‘ndu.ced in a

molecule by a field of unit .
strength,

* Note that these expressions consider only dipole-dipole interactions between
neighbors, This will clearly be 1naccurate for substances ‘having large
oriented molecular groups. :

A

»

‘.g:'
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N Ceh&eﬁseerlates” [ : 2.
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+
# -
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i . ‘positive fields) ’
+
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A

Figure (3.6)

Therefore if a is given for a particular material we may get P,

: > - >
(3.43) P=np = nak pe n = the numher of mo]ecules per unit

Ng ' volunme, .

n = N = Avagadro's Number,
Ngd _s' g = the density of the material.

P = Eerr : -

M = the molecular welght of the
material, .

Ccmbiningethis with (3.12) and (3.,41) we have, after the fields are eliminateds
(3.44) k=1 _ Nga
: k+2  3Mk,
This formula, known as the Clau31us~Mosott1 formula, gives the correct dependence of
the specific 1nduct1ve capaclty ‘on density for & w1de class of solids: and liquids,

For dilute gases, where k= 1, Equatlon (3 44) becomess

¥ (3045) k-1 = ﬁ__

0

which is, of course, to be expected since this relation corresponds to neglecting
the interaction between each molecule and its neighbors, The molecular polarizability
' will in general arise from two basic physical causes: (1) The lengthening of the

bonds between atoms, and (2) the preferred orientation of molecules within a fluid
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along the direction of the field as opposed to the random orientations brought about
by thermal motions. These two effects are responsible for the temperature dependence

of the specific inductive c¢apacity and therefors the»polarizibility.'

Ay

Ao

Ay
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CHAPTER 4 GENERAL METHODS FOR THE SOLUTION OF POTENTIAL PROBLEMS

We shall now consider the soluﬁiOn qf"sgve}éiétypgs“of potantiﬁl problems,
Unfqrtunately,.ﬁo general methods of solﬁtion‘aré?availéble Whibh will apply to all
cases and thersfore eaéh-individugi c&?e'demahdé,vﬁd scmevéxtent, methods of its
own. However, we. shall discuss certain methods which apply to.geﬁeral classes of
problems and can be discussed as individually characteristic of these classes.,

A theorem of great importance for the treatment of pctentiéi problems is the
uniqueness théorem, This theorem states'thét'if_a'sdlﬁtion éf a potential problem
is found within a givern physical boundary which gives either, a given potential
distribution on that boundary, or which corresponds to & given charge distribution
on that boundary, then this soiution within this boundary is the only correct soluﬁidn
of the potential equations, This theorem is the juétification for attémptingraﬁy"
method of solution if the resulting solution can be shown to fulfill Laplace's equation
in a chafgeufree'régibn} Thus no matter how the solution is obtained, if it satisfiés
these conditions, the problem is considered'sdlved.

The proof of this theorem can eaﬁi}y be given by means of Green's theorem. . If

we put ﬂfvﬁ into Gauss'® diverg‘ence theorem ('1,57) as the vector field, we obtaing

(4.1) [¢v¢~ds =//v (yfv ¢)dv=/[(v¢) A | \

The last term vanishes, from Laplace’s equatlon, if we choose our surface of 1ntegration
in such a way as to exclude all charged regions from the region of integration, It
may be necessary to employ surfacss_interﬁal to 8 in order to entirely exclude the
charges from S and from 'v, as ﬁas done in Figure (1.2),

Let us SuppOSe“that-two,different3po%eﬁtiais,Iﬂ; and @, are each a solution of

a given potential problem. Both ﬁ; and ﬂé are to satisfy the boundary conditionsj

Sw

hence on the boundary ¢i = ﬂ; or 20y If we substitute the difference

/ M
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¢ g for ﬂrln equatlon (4 1) we haves

@.2) B - 83T Gom )il [ [V(ﬂfl ﬂfz)]z

Either the boundary condltlon ¢; ﬁé or 22&_ %ﬁ&z assures the vanishing of the.
left side of Equation (4.2), and hence the vanlsh:;; of the rlght 51de. Since theA
integrgnd of the rightVSide”oﬁA(4,2) is positive definite, it mnst vanish in order
for this integral to fanishﬁ heﬁce throughout v,'we have?
(4.3) E;ﬂ& = E;ﬂ%, ﬂ; = ﬁg + Q"., C = a constant

Hence the two potentialé that were assumed to be different yet solutionms of the same
boundary conditions can differ at most by an additive consfant, which venishes when
the gradient ;é taken:;tperefpre these potentigls will give the same electric field
distributions, | |

..............

Solution by Green's Reclprocation Theorem

A,lgrge‘number of theorems that are qseful for the goluﬁion of electrostatic
problems serve to transform the solution of a kmown, presumebly simpler froblem, to -
the solution of another problem whose solution is desired, Of suéh fheorems, 6ne of
the most useful iélGreen‘svreéiprogify_théorem,.‘igt us conéider e set of point

charges where the potentials due to the other charges are given by a set of numbers

¢5 and let the charges on such regions be q30 The potential at-the point j is related

to the charge at the point j or on the region j by'the'éxpression:

.(4 41)A gy - En""
A Joamko Ty 4R

The prime on the summation sign means that the term where i = j is to be omitted

from the gummation.‘ If,.on the other hand, a set of charges qj' are‘placedvon the same
regions, giving rise to the corresponding ﬁé%entials ¢j', these are related by the
éxpressiong

S . fi ;' & 1,
(4.5) 7' ~mg, ;._Z
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If we multiply Bquation (4.4) by qJ’ and Equation (4 5) by qJ, ‘and then sum each

equatlon over the 1ndex 39 and note that r is a symmetr¢c.functlon of the coordinates,

iJ
we obtaing

: . - .ot e P X » ) | 9. o .

: S Sl o' 9y9stIan _ o' oqiqit g

(4.6) ga =g S = . Bat=) 2 -
] [ ? .
L3 )8 z‘if:ql |

ﬂ qJ 4111{ 2 rij Z ¢ qj i o 4111{

i=1 Cb.J=1 j=1 1=1 .

" Since the indices i and j in the expressions on the right are summation dummies we

can trade them in one expression and get$
n
(4°7) Z J ! E‘Z—
We cen now generalize this theorem from a set of point charges to a set of ‘n conductors
of potentials ﬂj carrying'charges a3 this generalization follows by combining the
points of equallﬁs in Bquation (4.7) into a single term, EquatiOn'(4.7) thus applies
directly to such a system of cohductorso An appllcatlon of Equation (4 7) to the solution

of a potentlal problem is glven on page 44,

Solution by Green's Function

A great variety of solutions of potential problems can be generated from the
knowledge of what is known as a Green's function. The Green's function for a
particular geometrical arrangement is the solution ofithe'pptential prqbleﬁ édr
this given geometrical arrangement of grounded conducting boundaries, where the only
charge present is a unit point charge located at a point p. It should be noted that -
the grounded conducting boundaries may be at iﬁfinity aﬁd the. point charge need nﬁt

be surrounded by a zero poténtial surface at a finite distance., It may be shown with
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the aid of Green's Reciprocatipp:Tﬁéorem\thatfthe‘Green“s-funcﬁién fbr a particular
geométry is a symmetr1651 function of the coordindtes of the_unit charge located at
p} and the coordinates of the point of obserﬁétioﬁ Pe

Two general types of'pfoblemsAcaq be 301vedi5y.£he use of Green's fundfi;n.' One

type of problem is one in which thé potential distribution over a certain conducting

boundary is given, and the other type of problem is ome in which the charge distribution
in a region within a conducting boundary is given, The derivation of the solution
of both of these'problems can be given togefhéf’by“héans bfAGréen‘szhedfém: ‘ v *
(1, 18)[0&7 Y -y V ¢)dv=[[(¢vw \Vv;af)»ds
‘Let us apply this theorem to fthe geometry of Flgure (4 1)
#s
G =
1
=0
dnk,
Figure (4.1)
*’and‘ﬁpin#(iQIS) are arbitrary functions of position Whichlare'fééuired to be
non singular throughout v, ﬁéf;g¢befthé'&ésire&USOIﬁfibn‘6f~a”péf£iéﬁléf'bdﬁéﬁﬁidl ‘ R
problem and let q};-G Bé‘ﬁhe'Gréeﬁ'S‘function for the geometry of this problem,
that is the solution of the problem of & unit point charge located at r = 0 with §- A

grounded, G will be -of"th‘e* forms

(4.8) GBN‘ +‘)(=MP
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where )(lrepresents the potential dug t04ﬁhe iﬁduged charggs‘on_so X is hannpnic"
in v. G therefore has a singﬁlarity only at r = 0 and hence, as in Chapter 1,
we must surround p' with a small sphere 8' in order to satisfy the requirémenté
associated with Green's theprem for the non singularity of ﬂland w}. Hence

substituting (4,8) into»(l,lB) we haves
(4.9) /f/‘.(sv_zﬁ.; g7 %6 )av =£(G$¢ - ﬁe(}ydgé ﬁ;'(é?;y! - ¢{$G)Qd§‘

Since v does not include r = O,§72G = 0 throughout ¥. Also by definifion_G =0

~on S, The integral over S“:becomes, in the limit of very small radiuss

| , - > > ‘ 7= 1 " 2 " 4nr2_, ¢'
10) [ (T8 - v S Ay [ T i 0Bty > T

Hence?.collecting the non vanishing terms, we haves
\ (4.13) ﬁp; ==k WGv?ﬁdv+-'E¢s€7’GoE§]
" Let us now consider two casess =
(1) The surface surrounding the point p°® ié‘grOQnded,'making ¢é = 0, and
‘72¢'= - fyko, due to the presence of the charge aistribution () th;bughbﬁt Vo
Bquation (4.13) then reduces to3? |

(4,14) | g = =koﬂ 6V 2dav [f ¢Edv

This expression is, of course, fairly obvious, since it merely represents the

- principle ‘of superposition applied to the density of point sources within the

.volume v/, with esach unit source of which the deﬁsity“CD conéiéts, contributing its

share to the potential ﬂ;, by the superposition indicated by the integral,

(2) Let there be no sources of @ throughout the volume v,ﬁyzﬂ'F 0, but let us

* . .
A harmonic function is a function that is a solution of Laplace's equation (1.17),



44

assume that f is a given function g on the surface §, In this case Equation (4,13)
reduces tos | |
(4.15) yfp, = akoffp’ﬁsod-s’

This gives the expression for the potentia; within a given region enclosed by a’
conducting boundary where differént parts of the boundary are raised to a given

set of potentials. This solution gives the potential within this boundary in

terms of the surface integral of tthpoténtial’on the boundary, multiplied by

the normal derivative of the Green's fﬁnctiono -PHygiCally the normal derivative

of the Green's function represents the surface charge density that is induced on
the grounded conducting boundary by a unit chérge at thq point,pf, The solution
(4.15) then gives the solution of the potential problem corresponding to a given
.éotential on the boundary in terms of(the.intégral of this potential, multiplied
.by'the induced charge produced on the grounded boundary by a unit_charge flaced
_at the field point° if we wish to express (4.15) directly in terms éf the charge
1

¢ induced on the grounded boundary we note from Equation (3,16) thats

. > .
(#:16) VG55 =+ 5
and thus (4.15) becomess

an g, = - [

Theorem (4,17)-may also bgwderivedbdirectly by the use of Gfeen's‘Reciprocation
Theorem, (4.7). Let us consider for the two cases to be used in the reciprocation Y
theorems |

(i) Let the surface S be groﬁnded.and let a single charge-qp; be located at
the péint p¥, and let this charge induce éharges qlsibn the'jEEffegionléf the
boundary S,

(2) Let the charge at p' be removed, but let the surface S be divided into
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' sectibhé;'éadh at a'constant potehtial,AfHe”potentiél of the jEE.sectioh of 8

being ﬂg;," Let ¢£g = potentiél at p' in case (2).
Relating thése two cases by means of (4.7) we obtains
(4.18) -
+§Z; qu =_0 ¢'o
iR .

Note that the two_zerosvon the right side of (4,.18) arise from the fact that on
the one hand the potential is zero over the entire boundary in case (1), and that

the charge at p' is zero in case_(2)o If we let qpg be unity in the first case,

we obtaing

(4.19) ﬁp E'Z: ﬁasqlJ

j=L
This expression is identical with (4,17) bgt has been obtained, diredtly in terms
of the induced charges, in avway tﬁat is more obvious physically, Beveral examples
will be given later of ﬁhe derivation of Green's function forvvarious condﬁcting
boundaries. The solutions to potential problems, of the two types mentioned

on page 43, can then be written down immediately.

Solution by Inversion

The process of inversion is a special case, that is, valid in two dimensions

as well as in three dimensions, in which a set of solutions of one potential

.problem can be transformed into the-sqlutibns of another potential problem, The

inversion transformation is a restricted type of transformation, In two dimensions
more general classes of such transfirmations can be found, than the inversion,
) ‘ .

but in three dimensions more general classes cannot be obtained,

One of the methods by which the solution of a problem can often by trens=-

formed into the solution of a simpler problem, is the inversioﬁ transformation

on a sphere, as shown in Figure (4.2). It can be shown by direct differentiation

that, if ¢§-= #(r,0,f) is a solution of Laplace's equation thehlvp: =])(r',6,¢) =
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rg j?/{ (..r se,;z() is also a solutlon of Laplace s equatlon., Thls tra.nsfomatlon

of the po:mt r into the po:.nt r’s by the rela’clon rr“ = azg maps the po:Lnt
p(r;8,@) into its inversion po:l.nt P (az/r,,g 52,{)9 mov1ng the point along the

a.d;Lus vector from a positlon inside the sphere of radius a to a point outside
this sphere, or vice versa, Let a ch‘ar’ge'q’ ‘and a charge q"’be placed' as shomm in

Figure (4.2), The relatimsrr? = ‘a.z and 22" = a% cause the ratio, r/l' = ,Q/r'

a = radius

at
Figure (4.2)

to hold, and thus the triangles, rf d and rt f%d% are similar, Thus we have!

(4.,20-) F - iy o : : :

The . potential at p before inversion 18 ;Zf q/4nk d and the ‘potential at p* after

~inversion is ﬁ = q”/4nk d“,‘ so we haveg
B‘E" _atd gt X s._
(4 21) a'rq 3 b fr

A suitable law for. the inversion of charges must now be formulated, We can -

verify fhat the sphére of radius a will be;a‘t zero potential if a charge g
| is placed at a distance ,Q from the center and simultaneously a charge q° = ~qa/l
is placed at a point on the same _radrius vector and at' a diétance v from the center
such._ that ,UL*= 8,'?" Weknowfrom above .that zero potentiél sﬁrfaces trapsform

into zero potential surfaces.,. Thus the inversion sphere at zero potential under
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the influence of the two charges igto remain so after inversion., This is assured

if the two charges change places thuss

u.,-‘ i~ e s

(4.22) qI'=~q'atI;‘becomes'q’ = aq[Q at" az/ﬁl

B ary =__qa/2 at a%[ﬂ becomes q Ii = -q at,Q

'So 1f a sphere whloh 1s orlglnally at zero potentlal is to remain at zero potentlal

‘after 1nverslon about its own radius then we must use the relationg

for the inversioh of%céarges,:.lt is feltrthat ib-is more é$ﬁ§;£{e5£%fpf a charge
to retain.its ohiginallsign:ahd only changeaits magnitudefmhem.it'is ihverted,
although this is not necessary if all charges underg01ng an’ 1nver51on ‘are treated
in the same way. We now secure, by substltutlng (4. 23) 1nto (4 21) the rule

for the inversion of potentials,

(4.24) T : ‘i‘r = 'E , In ag_reement with 9’ y - %" fd(&‘r;@iﬂ)

The transformatlon equatlons for such quantities as volume or surface charge
densities can be obtalned by multlplylng the oharge transformation (4 25) by
the transformatlon of the appropriate geometrlcal quantltlesa |

| In an inversion transformatlon a point charge wull often appear ab. the cenber of
1nvere10nA1n the transformed geometry,- This p01nt charge arises from the fact
that the net charge in the orlglnal geometry had electrlc field 11nes that terminated
on equal and opp081te charges 1ocated at 1nf1n1tys and in the inversion, infinity
is brought in to the orlgln, | |

The main utilib& of theyiapefeiom;brahsformation is that it rectifies

spherical boundaries; ‘TWO freei& chabéea‘intemsecbion spheres may be inverted
into two 1ntersect1ng planes, and the plane boundqry problem is usually soluble

by the method of 1mages°
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Solution by Blectrical Images,

" The method of inversion discussed above justifies the solution of the problem
of a point charge opposite a grouanded conducting sphere, as shown in Figure (4.34),

by means of the method of electrical imeges, The sum of the potential from -a point

i— 2o —p — 28 e i—i% —
| TIEM D -
TR :i | | - bsa

N

N~ Circle of Inversion ™ ~
. . v

H
i

: Center of Inversion)— '
q2=-Qr | | qt 1='Q'2=Q1§%g'
chargevq Iocéted iﬁ ffee séace near a cénducting sphere bf redius a, and from

the charge that is induced on %his spherg by a, will be avpotentialidistribution

inuwhiéh thié Spﬁeré:is'én equal ﬁoﬁehtiallsurface. The uniqugness théorem requires

that fhe ééténtial Qutside é grounded cqnducting sphere, undérvthe influepce éf a

?oi#f éhéréc.qf ﬁﬁigh ié gecmetric%lly goincideﬁt with a spherg férmed from the ad
invéré&éﬁ of a gréunded conducting plane.under'the influence of_é chérge and its

electrical imagevin)thg p1ane,‘wi1} be identipal, ifvthé distan&es_of the charges from &
the spﬁgre ané plapg oﬁg& the‘rulé for-iﬁversiﬁn.derivea above. The poﬁential corres=

ponding té:tée:éoipf éharge.aﬁd-theAimagevﬁhich it makes in the_grouﬁded sphere is

therefore thev§;¥;ect}Gfeén's,fﬁnction in t%e region bounded byvthe poﬁducting‘

sphere and by infinity., By means of the method of electrical images and the method
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CHAPTER 5 -~ TWO DIMENSIOWAL POTENTIEL fROBLEMS

?oténtiéi;problems involving‘gédmetricai arrangements that méy be approximated
by a two djmen31ona1 geometry w1th an 1nf1n1te uniform extent in the third direction
are. frequently easier to solve than three d1mens1ona1 problems.A'Certaln méthematl-

cal technlques may be applled to them which do not exlst 1n the case of three

.“dlm;nélonal probléﬁsan The method of coﬁplex varlable potential descrlptlon combined
with confo:malftransformation is an especielly chafful method'df solution,

Ve éﬁall éhow that ih tﬁo dimensions any funéinn-WQ of a complex variable"
Zys which,is analytic will have real and imagiﬁaiy garts each of ﬁhich individually
s@tisfiesfpéplace's equetion in two dimenSions;' Thu§ 8 suitable function W = W(z,)
can compiééely describe the potential_éurféceéiand'the.field 1ineé caused by the
géometry'of a"particu1ar problem, i, &+ iq/‘=-W’='W(zi) = Wlx, + iy, ), we may
separate real and imaginary narts and obtain f = § (ml,yl) and W = ¥ (%1071 )6
The functions # and Y will be the equi-potential and'field line surfaces or vice
versa, .Tgéreforé any transformation from one coﬁpIQX\variable z, to another zg
will tnaégférm the solution of qné{potgntiaiﬁpf§b1em'described by the first variable
to theﬁsoiﬁﬁigg-of another pptential.ﬁfbblemvdeécribedkby'the second variable, In
.general_a wﬁole class of twq_dimensional pofgntiél-diétribution problems can be
solved bytgﬁé fbllowjnggprocesés" |

'(l)TOptain a trénsformation 2y = f(zi) which will transform the geometric
arrangem9§ﬁ of the 2z, éoordinate system infbfan:arrangemeht of the z; coordinate
system whi ch ﬁill bring about a'simplifiéatiéﬁ in the problem, This coordinate
transfonnatlon, zZp = £(z,) or z, = g(zg),- must’ be 80 sulted that it will cerry
“the complex-potentlal geometry W = ul(zl) of the or1g1nal problem into a °1v>ler

complex potential geometry W = W, [g(z¢)] = %g(zg),. e

.
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* .. ... 4. ... The new complex
"potenﬁia%“ﬁéimqst be that of a more easily soluble potential prdﬁlem;
vztkz)fﬁxgrQSS the potential solution g in the transformed zé'ﬁlane'in'éuch a
| Wgy'££at’¢_+ i\V is en analytic funétion of a cOmpiex variable. -
: (35 Traﬁsform this solution back to the original z, plane,
We_shali'now,discuss the justifibatioﬁ_forkthis’pfchés,, th;ider a function.
Wj=‘¢ + i?) = f(z } where z = x + iy, In order for ﬁhis functional relatianhip -

t6 be enalytic, § and ¥ must fulfill the Cauchy-Riemann differential equationss

By partial differentiatibh\of Eq. (5.1) with respect to x and partial diffg;entiAtion'
of Eq. (5.2) with respect to y and then adding the two reéﬁiting ;quatiéns;'aﬁd..
then repetition of the process with x and y interchanggd; foilowed by subtraction
we haves -
(5.3) Y2y =g = 0 B
Thus both # and Y are hamonic functiond¥. The functional relationship W = W(z)

* S R s e . : PRSI
Harmonic functions are functions which are solutions of Laplace's equation,

cen be demonstrated grapgically, as in Figure (5.1) by plotting the lines ¢'= constant,
. : > , L e

=Y -
$F7¢ bnnﬁn)

-

W =unit vector normal
to'ﬂ curves, . 1

; v t,=unit vector tangent

Ns . to # curves,

v -

Figure (5.1) %
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and the lines VY = constant in the z = x + iy plane, after the function W has been
separated i_’nt‘o‘ its real and.imaginary parts.
The @ curves secured-by giving a.succession of values. to W mey iiorrexa.mple :
represent the potentlal fleld of a problem, a.nd the correspondlng \}J curves
vrepresent the electrlc fleld *, but these‘ latter are usually peferred to as‘ the

stream curves,

#Yote that since the Punctions g a.nd\P 's":apis‘i‘y‘- the Cauchy—Riemehn relations

(5‘.1‘): and ‘('5.2) that the curves @ = constant and Y = cons_teint ar”e no_i’mel to ‘each

othe{rf.‘.:\-Thisi me._y.”be’; ea'-sily' seen, since if we solee' for the 'slopes_ of ;Zf =¢(x,y)

and ¥ =Y (x,7) we haves | L
| d 3L d '

- 9 X o L LQX . L

(a%)p' = censt., i _ﬂ-— wnd (-X)‘P = const. . P

ay co KER

Substltutlng the relatlons (5 1) a.nd (5 2) we see tha.ts

and thus at any common point the curves will be normal to each other, -

The £lux of the electrlc fleld Whlch crosses a surface S, as in’ Flg;ure (5 1),

B

ly:.ng along one of the equl—potentlal curves, . ﬁ = constant, between two stream, v

curves \Vl and ‘{)n, and of unlt helght normal to. the z plane is then- given by- -

(5 4)‘* @ \‘Vz LV:. é [E-dS ‘< | the electrlc fJTeld flux

cross1ng
*“The der:.vat:.on of thls equatlon is as followss ' ' " s
%_éf[ﬁ'ods =" ..V;d-ds = - f _..é > _ﬁdn
By substitution from (5 1) and (5. 2) we have° » o S

- [(a_;*-m)od-s [mxds).nl% ﬁgiww
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- A R
N o

Thus the difference between two streamefugcfio£s$V“¥aﬁa SV jf;bfeéehés‘ﬁhe ‘
electric flux passing betwsen the unit height rlght cyllnders generated by two
nelghborlng llnes‘y and W’za ThlS meens that no llnes of fofee cross the constant
HJ lines, This is “the. justification for calling HJ the stream function, 81nee.1n\w‘

hydrodynamic problems in two dimensions, the WY lines actually,do trace the stream

lines of the f’luido Since electric flux lines do not cross the etream lines, then

the stream llnes traced by giving LV different constant values will trace the

electrlc fleldg wben ﬁ lines are the equipotentials of the fleld If, on the other

hand,‘V had been assumed to be the potential, then ¢ would have been the stream

function, In fact, this trading of the meaning of ﬂ and Y ie frequently useful
in the solutien of twe dimensional problems, | . | |

The above_cbnsiderations;permit us to obtain immediately the capacity between
any two conductors whese boundaries coincide with two equipotential lines @ and p;;

and extend betWeen two streem lines 4)1 end-Lyz. The capacity is given bys

| 4 kb , | g
(5.5) C = "m B-W o @ E-dS = * %o from Equation-
o | (1.6) and the definition oi@,%:
C = electrical capacity
end since the flux @ is the change in the stresm function W between the edges

of the conductor surfaces being considered, this becomesg

Note that in,general the stream function is multiple valued if charges are present
in the field, The net flux from a cherged body is the multivalqedneés'ofwthe"“h
stream functioﬁ in ene circuit around the bod‘y° 7
Another quantlty which can be calculated froﬁ‘a known functlon of the form
W= W(z), representlng a partlcular geometry.as in Flgure (5.1), 1s the absolute.

magnltude of the field strength Con51der the moduluszof the derlvetlve qf Ws
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QF+i¥)ax  (F+iV¥) ay|
(5.7) |3z ° .ax}«"&% *'1""5'3’"
%':l —-g'dx+1=—idy+i—idx+—-£d az-\

(5. }g‘;*

. ‘ 2 _ ‘_*
The';égl and imaginéry parts of dW/Hz are thus respectively the x and y components »
of the gradlent of the potentlal and therefore the modulus of dW/az is equal to the
magnltude of the electrlc field strength,

We shall now consider the_solutlon of several simple potential'problems : ,
expreséeabés functions of a complex variable, 'A much wider group of solutioﬁ$ 
can fhenﬁ%é”oBtained from these simple cases by any complex variable tfansformation.

The Potentidl of & Line Charge.

' The Cbulomb'?ield around a line charge with a linear charge density q is foupd
by the use of Gauss' electric-flﬁx'theorem, Eq. (1.6), cérrying out the integratidh B
'over a c1rcular cyllnder of radlus r, and of unlt length, arranged coaxial with

the l;ne charge. This ylelds the fields

(5.8) E = 1 >
‘ - 2nkgr

The potential produced by the line charge may be secured by substitution of (5.9)
into Eqe (1,11) and then carrying out a direct integration of the two dimensional -

Coulomb,field, we haveg

| (5:0) F = = 'z'ﬁ{q; (1n r - 1n fo) -

Note that in two dimensional potential expressions it is not possiﬁle to arbitréfily
set the potentlal at 1nf1n1ty equal to zero since ‘the two d1mens1ona1 express1on
really: represents the potentlals due tovcharge distributions whlch are of 1nf1n1te

extent along the z axis*‘and thereforé~the influence of the distribution does not

z complex variable z = x + iye

"

o r'.‘v.
18 Corpa g g
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decrease:fowerd'infinity.»iconsequently‘another zero point than infinity_mﬁstgbe
chosen“fOr.ﬁhe poténtial base. ;It'must:bekremarked.thatla twoudimeneional,problem
can, at most, only be an'approrimgtion toophysical reality:sinoe:io really implies
an ihfinite‘chergejalong eny -charged object, since tpiggobject,extenés_ﬁo.ihfipity,
‘and thus infinite‘en.ergieso A physical problem can only be_treated by two dimension~-
al methods when it is possible to neglect end effecte arising from the .finite
linear extent of the physical arrangement, In equation (5.10):thegcy}inder sorround_
ing the line charge at a distance r, has been arbitrarily set at zero potential.

The' complex Dotentlal function W‘correspondlng to the 11ne charge potentlal

(5.10) is therefore seen by inspections Or a more complicated use of the Cauchyb _

Riemann equatlons to bez : - Lf " iie
' Z=vre
q =
(5. 11) W e m-o— (1n z-ln z) = = --1- (ln r 4 i -lnro) =g+ 1ty - 7o

~ where ¢'represents.the potential and Y , the stream function, 'Noté.thaévooe‘stream
_funetioo, as might oe expeoted from the axialjsymmetry of the arreogement; ie.;

' proportlonal to the polar angle 6, where 24 has been arbltrarlly taken as real

The complex potentlal functlon for any system of llne charges can be obtalned by
thersuperpos;tlon'of approprlate expre351on$”llke (ﬁrll),Jone for eech l;nevcherge,

The Potential of a Uniform Field.

The complex Dotentlal correspondlng to a unlform fleld E, dlrected in the #x

directlon can be seen by inspection to be?
(5.12) W= - IEI.} = - IEI (x + iy) = ?5 + l‘V

where the potential function is ﬂ : l I x, and the stream functlon 1sq) ' l Ve
The above two cases are the bas1c potentlals from whlch many more general cases

may be generated by transformatlons and- superpos1t10ns.

“Tho potontial § has beon aritrarily set squal to zero along the y sxis,
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we now turn to the enalysis of the- behav1or of curves 1n a small piecs of a

KR

complex potent1a1 plane when a transformatlon of the plane is maue.' Consrder a.

"transformatlon from the z, plane to the Zg plane ‘given by the equatlon 22 o f(zl);:

and 1et the transformatlon functlon f be analytlc, except at a flnlte number of na

":‘,, . i . xl'

"'51ngular1tles, At all non—s1ngu1ar p01nts such 8 transformatlon is conformal.

This means that the angle between two 1ntersect1ng lines in the z1 plane, ‘a5 6y - 1n

'Flgure (5 ZA), transforms into an equal angle between the transformatlons ofthe,.

two lines in the z; plane, as 6; in Figure (5.25). 'This can be demonstrated a8

/

followss . | s
A z, plane ' Zg plane .|
}r . " R ", r i N . N o
. 5'1 yz R2
az 'y
\: l\ N
Figure (5;2A)' e - Figure, (5.23)

Since'. all derlvatlves of an’ analytlc functeon of a complex varlable exist and are
continuous, the‘derlvetlve of the transformatlon, dzz/azl W111 be flnlte at allr

‘ ”p01nts,:except;pg the s1ngu1arit1es. Tak;ng the derlvatlvesézgzﬁz; = f'(zl) and
eemembering‘tﬁet.theﬁargumentrof a proddethisiequal te'thefsuM':of-the.e;guheﬁtS';
of the factors, we have for the argument of the dlfferentlal llne element PZQQ;

(5.13) arg (dzz) = [arg f'(zl)] + arg (dzl)

- and taklng the argument of PQRZ._

(5 14) arg (dz'z) = [arg £t (zl)] v+ arg (dz';)" -
. 1Subtract1ng (5 14) from (5 13), and notlng that the. angles 61 epd 92 are the
-At dlfferences in the arguments of the respectlve dz's we: haves '
(5 15) e1 2" |
- In addltlon the modelusﬂof.thevdeeltateve dzz/dz1 = f’(zl) represents the

scale factor by whlch all spat1a1 1nterva1s, in the nelghborhood of a p01nt,

4



,,,,,,,,

T are: multlplwed Thls may ‘be' seen by. notlng that the modulus Of a. product is equal

i :fto the product of the modull of the factors. Sogan ;nflnltes;malttrlangle will .

transform_;nto a 51m11ar 1nf1n1te31ma1ltr1angle-in the new system, Thus3

"1<5°1-6')‘~~» 'd',zz' f’(z)p * |dz,

: . The. s1mllar1ty of thls transformed. 1nf1n1tesimal trangle 1s an alternate way: of

'seelng-that_angles are preServedfln complex transformatlonso Thls means that. the

othogonality between stream functions and equi-potentials is 1nvariant under a -

complex variable transformation,

"Schwarz Transformation,

The\transfon@atibn required.to_reduce a coﬁplicated set.of boundaries in the

- zy plane to 2 single straight line boundary in the zé~plane,can be derived in-thea"

case of rectllnear boundarles by the use of the Schweirz transformation. 'The ..

Schwarz transformatlon will map the 1ns1de of a polygon in the Zy plane 1nto the

upper half of the zg planef This transformatlen will ‘be introduged by 111ustrat1ng

the bending of ene aﬁgle whose vertex is et‘the origin, as seep_ln Figures (5.34)

and (5,3B), Consider the simple fransformation? .
(5.17) 2z, =‘z25 i |

where B is~not'necessarily an integral or a rational number ., By this tpansformation,

..

\yl  z, plane ¥ - . .:”;f» ' L,;gni { Ve v ”z;'pléﬁe
=I°2 - . ) . ] ’ ; : ' [
"nﬁ“\\<\» |  zp%rpe’™ | zg=rpe’
-“\\\\\\\\\\\\ X1 %\\\\\*'\«\f\\\ TN >x2 |
Figure (5.34) R 'fﬂ S Figﬁre 6.3B) R

points lylng on the posmtlve real ax1s in the 2z, plane are mapplngs of.: the p01nts

- on the pos1t1ve real ax1s in the 23 plane Wlth the scale. along the axis changed
by ralslng the Xq ‘coordinate to the l/b power, or ét least a branch of the

transformatlon can be chosen Where thls is S0,

* 4 complementc~y transxormatlon can be derived which w1ll map the outslde of a

polygon into the upper half plane.‘(
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On thé: other ‘hand, for p01nts 1y1ng on the negatlve real axis in the 22 plane,
thet is if zzi='r2eln S z:L w1ll be complex, for by the transformatlon z1 = rgﬁelﬂﬁ

Hence . the negatlve ‘réal axis of the zz plane w111 be the mapplng of a. stralght 11ne

in the z1 plane, as is requlred by the conformal propertles of the transformatlon,
- R S "(.v-,ﬁ_»,‘a,,

but th1s 11ne will make ‘an angle ﬂp w1th the pos1t1ve real z1 ax1s.: lhe transforma-

tion (5 17) is therefore the transformation whlch maps the area of the upper half

A
of the z1 plane lylng between 61 & 0 and 8, = nﬁ into the entlre upner half
of the zg plane. . The transformation (5 17) has a branch p01nt at zz = O, but
-~
is analytic everywhere else,
Now let us cénsider the more general case. shown in Flgure (5 4) in Whlch we
have a number of p01nts bj in the 21 ‘plane which are the corners of a polygon |
whose interior angles'are ai CWe' w1sh to map the 1nter10r of the polygon 1nto .
4‘ ‘ Lt ’,” " . 7 ! . E - o o )
v z, plane | y Va2 Zg plane
b
N t Nai‘,"l o 4
ai < :
, - > . e >
Flgure (5 4A) | Figure (5.4B) ‘
the upper half of the z, plane, Consider a transformation defined by the'differentialf7':!!
equation? | e
(5 18) -"L'E C II (22=& )ﬁl o C, = a constant, possibly complex.
This transformation will by analytlc everywhere except at the’ poxnts z, = ai. Vﬁence} -

by the conformal properties of such’ a transformatlon the real zz ax1s, 2g = Xg,

will be the mapplng ‘of ‘straight ‘line segments in the 51 plane,. The angles Wnlch _Y

each of these stralght llne segments make W1th the real ax1s Wlll be glVen

by the argument of dzl/ﬁzz evaluated in the segment in questlon° If we take the
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argument of Eg. (5.18) we. gets .

T fagNer e '
(5.19) arg <-*1-> = arg 014y arg (zz-8;)+Ps arg (zg-8p)t--4p arg (ze-a,)

We may also expressg

dxy4idy,
Qzq
(5, 20) arg ( ) (dx2+1dy2>
When dz, lies along the real axis ;n the zy plane, dyzAQO, So Eqe (5.20) becomes,

:th

when evaluated in the iz 1nterva1°

dx. d .1 /[ dy
(5.21) arg --J-> = arg (a;iw 1d-x-¥i-> e Tan 1(3%) =8;

Now when zz lies on the real axis between &, and aj.q, the.arg(zz-ar< i)=0 and

i
the;arg(zzaaf>.i)=ﬂ&' So substituting these values and (5.,21) into (5.19)“we'get2"
(5.22)  ©; = arg Cy # (Bis1 * Byap *==*fy )N

Thus' all points of the real a*is"segment'ai*l-a.

; are mappings of a line segment

with slope 8; in the z, plane. Now subtracting (5.22) f;omvé similar eXpression

to (5,22) for 841 We obtaing | o |
- (5.23) e1+1 - 81 % =nfi4]

From the geometry of b1gure (5 4A) we see that thls angle dlfference of -n31+i

at the p01nt bj+1 is related to the 1nterlor angle as 41 at each p01nt by the

relations ‘

(6024) @, = n # nfy
Or transposing and changing the subscript by =1 we gets
. a3
(5,25). By = "':'1'_"’ 1

Hence equation (5, 18) becomess
(5. 26) d22 = C;_TT(zg-a )("'“" 1)

where the scale factor C, gives both the relative scale and the relative angular

. orientation of the two geometries.
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In general, the Schwarz transformation is a useful one provided that Equation -

(5.26) is 1ntegrable in terms of elementary functlons. Thls is true, whth the
exceptlon of “nec1al caseS, only When the angles are multlples of 90 “and not
more than two cormers are involved In case the angles are not multlples o 900

and more than one corner is 1nv01ved then (5 26) 1s usually not. 1ntegrable in

terms of elementary functions. Onezfurther d1ff1culty in the nractlcal epplication

of the Schwarz transformation is the fact that the resultant transformation is
given in terms of Zy.= f(zz) w1th the coordlnates along the real axis in the zg
oleﬁe as the 1ndenendent varlable, rather “than ‘in terms of the coordinates of

the zi>glgpe3<orfthelgesired‘polygon_as independent“variable,‘fThérefore, with .

the,egception,ef the most simple_cases,wcpnsiderable-computational labor, is p?teni“

necessery to find out what the coordinateseai of the mappings in the zé,plane ofz
the corners of the polygon 1n the zl plane actually are in tems of the geometry
of thefglyep&pygplem. Once the. 8y are determlned, the remainder of the solutlon
of the potential problem is usually Smele. Let us now cpnslder seme special

simple‘cases of the Schwarz transformation,

(l) Slngle Angle Transformatlonssa = 0 in each case.

a) a = The 1ntegrat10n of Lquatlon (5 ?6) glves.
(5. 27) z; = Clzz + c:,a |
This is simply a uniform translation end rotation and is of no physical intefesf.
(b) a = »n/2. The integration of Equation (5.26)‘gi§es: -
(5.28) 2, = Caza/? # ¢, B
We will omit the constant of translation Cze This will mep the first quadrant -
of the z,; plane 1nto the upper half of the zg plane., If, for example we assume -
that the complex potential in the 25 plane is given 5y<the.unifenn field complex
potential solutiong - a

(5.12) %<2 |8l o W g 4 1Y

o
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The W function (5.12) will transform with the relation (5 28) tos
g = =Cq ,E‘ (xl' - Yl )

\P@-c4 IE] (2xyyy)

(5.29) W= «C, |B| 295, W 44 Yy

, Cqo 2 2 o
W= -Cy |B (xlhwyi +21X3¥4 )

and w111 solve the problem of a charged rectangular boundary, see Flgure (5 5),

or also problems 1nvolv1ng charged hyperbollc cyllnders. ;i/\

P A

3
SN N Y O ) S UES N
A e R R EEL
‘F) L, . V 'l 4 ale L.
//////x////////f/ L TTTTT TN T T I 77T 7T 7777
Figure (5.54) o S  Figure (5.5B)

If the'complex potegtial in_the zz plane is taken to be #he'leéarithmic:
potential corresponding to a line charge, Equation (5.11), and‘lf £he transfermafion
(5.28) is then apﬁlied,;we obtain the‘twe dimensioneliGreen“s‘function.for an_'.'
inside rectangular corner, if we have translated the line eharge iﬁto theiuﬁéer.
half of the zg plane, This same transformation ﬁill give the Green's.functidn ;
for a problem having hyperbolic cylindrical boundaries, and #hus probleﬁs inrolﬁing
such geomefries are emenable to solution, | | | | - o

(¢) a = 0. Equation (5,26) integrates intos

(5.30) 2,. = Cxlnzy, + Cg -
Cmitting Cy; we haves
(5.31) z, = d51n22 = Colnry + Caify
If C5 is real, the real part of\z, is then Czlnry, and the posi#iveereal zZ, axis

is the mapping of the whole real 2z, axis, and ﬁhe upper half 2zg plane,maps into &



strip of width Can, as 1n Flgu*e (5 6).
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- The transformation can be visualized by

v | K l P
| T iy L. ] ST o e
' ) ' i Can 4 i >

— —
: — e | S p RN
I o Cl NN
1 L 4 \ J [ 4 ¢ , U L

Fi%ure‘(S.SA){

Pigure (5.6B)

considering the origin in theizz plane to‘be pushed to minus iﬁfinity;ﬁénd the

negative real axis“of the z, plane to be revolved clockwise to a'nosition varallel

to the pos1t1ve real axis but located above it a dnutance Cnn, a

(5 84).

rlane, of whlch the °trlp Czn wide is the flrst repeat

ThlS transformatlon tﬁus results in a perlodlc conflguatlon in the z,

plane is the manplng of the first strlp of this configuration in the 2, plane.

The lower half of the 25 plane is the mapplng of the strip lylng between Vi = Can

and Y1 =

chn in the z1 plane, and s6 on.,'

one in the solutlon ‘of potential problemS"invdlvingfgrids, repeating condenser -

plates, and other geometries that repeat in one direction,

(2) Mﬁltiplé'Ahgle:TranéfOfﬁatioﬁs;"

If two upward 90° pends are made in the real axis of the:z, planse at':"a,\i,'

then the z; plane will be the mepping.of the vertically oriented, semi~-infinite

strip seen in Figure (5.7A).

dz -1 2
(5.32) T = 0y (za-a)

-1/%

%

Cs

V 22-a?

Va2

- The differential equation (5.26) becomes?

seen in Figure s

The upper half of the zg5

- This transformation is a very useful -

The relation C, = iCp was introduced to rotate the figure 90° to place it in the ~

orientation shown,

: .1 [z
(5.33) z, = Cgsin 1 (éé), 2o = & sinf(

¢

Equation (5.32) lntegrates intog

EA..)
C =

‘\
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In Dractlce, thls transformatlon 1s malnly used as a transformatlon of the zl plane

into the zz_plane. If we con31der a unlform complex potentlal fleld W in the 2

plane°

(5. 12) W ]E] 3

:and 1f we map thls fleld 1nto the zz plane by‘the relatlon (5 35) then the cross
secthn is produced of a field distribution cerrespondlng to the potent;al around

_ageharged,eonduetingAstrip‘of width 2a, or trading potential and stream functions,

the potential.due to a slot, in a conducting sheet, of width 2a along the real Zg

ax:.s° The ma;or ax1s of the slot or strip will 11e normal to the plane of Figure

(5. 7B) Equation (5.12) into which (5,53) hes been substituted can be resolved

Lo . . 2, plane | | | 2= plane
7/ I
7 d
4 ] | ¥
by
4 4 | [
- I
4 ,
4 1 L 4
} .~
/] l | l L
Lo 7 + i < L
—2,.02 /] L : g ; S 2
TSI X3 THI 7T =TT T //‘(//7”/\"—;-9_/'/,/?—'}{'2
Figure (5.74) ' - ”:lf Figﬁre’(s.;;}\(slot or strip)

into its real and imaginary parts, and if the real part ¢ and the iﬁaginary part

Y are given a set ‘of constant values, they will characterize the equations of

‘the arrengement. These equations turh out’ to be the equations of confocal elliptic

and hyperbolic cylinders, as in Flgure (5 7B)

If for 1nstance the fields at each of a series of condenser plates ol

,alternat1ng potentlals are glven9 by an addltlonal zero angle transformatlon the

above solution for a slot can be used for the calculatlon of multlple condenser
plate end effects. There are a great many examples of cases where the Schwarz ‘
transformatlon results in 1ntegrable dlfferentlal equatlons. Frequently the

solution appears in a form which is deceptlvely 81mple s1nce 1t is usually
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stated in the terms of the coordinates of the complex geometry, z2,5 as & function
of the ‘doordinates of the 51mp1e geometry, zz, 'as 1ndependent varlable, rather

than the other way around. It is sometimes very 01fflcu1t to solve for the 25

coordinates as a function of the zl coordinates.,

Direct Solution of Laplace s uquatlon in" Two Dlmen31ons by the Methwdbof ﬂarmonlcs.

' Laplace's equation possesses a set of sepafabie solutions invoertaih coordinate
systems. By separable we mesn that the potential can be eypressed in tenns of

the product of functions of each of the coordlnates separately. Potentlal solutlons

: _ .
expressed in such seoﬂrable ‘coordinate systems are of course oartlcularly uoeful
in case the geometrical boundaries of the problem being'considefe&'coincide with
one of the coordinate surfaces in that coordinate system: Let us consider this
method in two dimensions. Laplace's Equation (1,17) expressed in plane polar
coordinates is:
2
2 (r 24 24

(5.34) #3T> r = |+ S = Q
To achieve separafion, we lets

(5.35) ¢=R(r) ®<8)

' Upon substltutlon of (0.35) into (5 34) and d1v151on by ﬂ'we get'i'
o rd aR 1 32®
(5.-.36) ﬁa.r — =0
» "® e’

Since Equation (5.36) is separated into two terms which are respectively functions:
of r and € only and thereﬁore'must be individually constant, we may arbitrarily
set the first term of (5.36) equal to kz\. This gives?

(5.37) 2 OR\_ % - >’® + X2 S T

) TSF \" 37 ) KR T 0s Y ky @=0 : .

Note that separation of the differential equation in general results in a set of
solutions that are characterized by a parameter knﬂo 'Tﬁese soiﬁtions.afe;obtained
: by 1ntegrat1ng Eguations (5. 57), g1v1ng.
km o sk . 6 s wnt &
(5.38) Ky, # 05 R = gn .;-_gr “, @, = A, cos kp® + B, sin L, 6
¥km=0, R, =G+HInr, @y=E+Fe

and hence a general sclution,
Al
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(5.39) £ = ZR ®., Z_(A cos kmO—I-B sin ko, e)(cmrkm + g“r-km) +
HE T 6)(G +H 1n r)

s obtained from a linear superﬁositionvof ;he individual\solutions.of Equations
(5438, . |

- That EQuation (5539)-is.actua11y a general solution and that,wé have
generated a completé;orthogonal‘set of-solﬁtions; subject to certéin condifions,
can. be shown by\a more general analys1s of the series glven in Eauatlon (5.39).
In order to apply g solution of the type of Equatlon (5.39) to the solutlon of a
practlcal problem we must first express certaln already known potentlal problem
‘5solutlons in the same form as (5 59), end then attempt to superlmpose on such
solutions addltlonal potentlals, w1th undetermined coeffic1ents, of the general
. form of (5.39). Then the coefficients are to be determ;ned‘by the use of the
boundary conditions of the”givenipr;blem; Y

Let us illustrate this genefal method by considering the problem of a 1ine
charge located at a distance r, from the axis of a_dielectric.cylinderiqf radius
a and specific inductive capacity k, as seen in Figure (5.8B). Let us first
express the logarithmic.fofential of tﬁe.line charge alone,}as seen in Figure E
(5.8A),'in the’éame form as Equation‘(5.59). This amounté to éhifﬁiné.tﬁe origin
of the logarithmic potential, Since (5.39) represents'the’genérél‘solutioﬁJof' |
Laplace's equation in plane polgr coofdinates and is in general nén-singﬁlar;

exceptat .r = Q, thé;potential of .a line charge from (5,10), with the arbitrary

Afieid point

new "origin~ riginal origin

- Figure (5.84)
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Gielectric T%k- (effective.

cylinder/

q (—-—hﬁ) (efféctive ch age 205, )

B Tk L
N\ /)

\ (effec{::.veu charge S _ ' o
. : ‘ oS

- \\

H

 Figure (5.88) . ..

charge for @) »

potential base, ﬁ%— ‘-lnro"',"omi'l;)'téd:' o T o

g e ) N R
(5049), - ¢ B - 'Zﬂko ‘ 1nR P S A b
cannot in gener_al.‘be expressed by a. single expansion of the type in z,v(5§a|39),‘"'v.but.ﬂ S

must be ex_pr_esse_d‘ in ‘terms vof.- two _different solutions,y one valid in the z"egion':.wh'e_re

r<r, end one valid in the region where r>r_.

——

R

* Note that the r, in the omitted arbitrary potentisl base of (5.10) is not
necessarily the same r_ as that in Figures (5.8A and B).-

These two différent expansions of‘ﬁ for the line charge mg"s_t fi‘fc:-v-togethez'* at.

r=r

o in such a way that:_ the. derivative shall -be-discontinious only at the point

where the line charge is located, but continuous at all other points, The die-

continuity is such that the total flux ehé'-rgihg' from that point corresponds to
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~ the value of the line charge per 'nnif: len’g'th‘;':

" The logarithmic potential '(5;40) of 8 lineé charge at the origin can be put
into the form of (5. 39) of an 1solated line charge. located at 6 = 0 and . r = r
as in Flgure (5 8A), by express:.ng the radla.l distance. R by the' law of »
cosmes, R= (r2 + rg - 2rr oS08 9) / , and then expandlng in a power serles in
r/r s for use when r<r s and in ro/r, for use when r>r, . This proce\s ‘vn.ll :
genera‘ce a Fourler-Laurent expansmn of the 1ogarithm1c potentlal for & line charge

not located at the ;orlgln». The serles will be convergent W1th1n their respectlve

;'ra.nv‘e'e of 'va.lid'i.'ty. Thus for the potential due to a line charge only we have from

the expans:Lon of (s, 40)

q Z l/{r\ .
(5 41) ¢o<r<r T??TE: ;,(}—-S cos m@ elnro

m=] 0
‘ oo o NV
. 3 I I 1l/rg L
: 'dro\cr coo ™ Tiky ; m(;g.) cos m® ~Inr

We will choose the origin of our polar coordinate system‘, for the potential

" of the line charge and dielectric cylmder oomblned, at the center of the dielectrlc
‘cyl:.nder ‘with the radius vector corre3ponding to. 6 = O passing through the cnarge.
‘ "'r""Thus the coordlnate system W111 agree mth that of Equa'tions (5 41) a.nd Wlll ‘be

i ag’ shown in Flgure (5 8B). To satlsfy the. boundary cond:.tlon at the surface of

s

the cylxnder r=a, we shall consa.der the 11ne charge solutlon (5 41) valld for

"O< r(ro, and superlmpose on 1t a general solutlon of the type of (5.39), mth

k”{= n and, with undetermined coefficients An, n? E a.nd F, to account for the

" effect of the polarlzatlon of the dlelectrlc cyl:.nder, and ma.ke 8 separation of

the potentlal 1nto two parts 551 and ¢2 to be valld outside and 1ns1de the cyllnder "

"respectn*ely. Thls separatlon is made in order to assure a flnlte va.lue for the

4’potent1a1 at the origin, and convergence of the second series 1n each expression:

TN (Baa2). gy = 2nk {Z () cosne lnrJ ZBr 60“m9+F

- oaKIKry

& = '2';112;' m (ro> -cosn @ =Inr,
o<rga m=]1

+ZAmr cosme-*E‘

mel
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Since the effect of the induced_polarl%atloh;charges.lntthe cylinder will be -
non-glngular, both at the orlgln and at 1nf1n1ty, the logarithmic terms of: {5e39)
have been omltted and only the negatlve powers.. qf r have been Jused in. the solution
% valid but‘s,;l;de, the cyll,nder,g. -&nd only-the positive powers of r have, bogn wsed :: ;
in the;solutlon_ﬁé valid inslde"thevcyligdert*;Usingjthe/bouadaryfconditions:5”--

(3.16) and.(3°23) at r = azh St T PN SIS b”;n“

a a o Lo ,‘;‘ ! e T ‘ - - Tt | - DR '\
(5 4:3) gl ﬁzs ‘-'ﬁ =Xk -_'%- » ) ke e e -
a r a Lo ': e : . L : SRR T W&b{ﬁ’ﬁf‘»“ﬁ [T
We' can evaluate the coeff1c1ents An, n’ E and F, by substltutwnw (5 4?) 1nto o
(54 45) and then equatlng the coefflclents of equa] order in 6 term by term.v .-

to zero, This procedurs is; Justlfled s1nce these Fourler series form a complete

Noad

orthogonal set, The resultant solutlon 1s°

(5.44) # =' {Z () 1.,k (2)m71ﬁ Cosme-lmo .

8.<I'<I‘

0(!'(

F’a-' m Z (-“) °°Sm9--"i-" 1o,

The potentlal ﬁa out31de the cyllnder 1s seen to correspond to an effectlve 11ne e

charge arrangement, w1th the role of the dlelectrlc cyllnder taken by two effective
11ne charges, and the cyllnder absent'these mnmlst ofan effectlve charge -q(}+t)

located at the orlgln, and an effectlve charge q(1+k) located at the inversion .

001nt of the actual external llne charge, and the actual charge. The 1nvers1on

> ‘
p01nt lles on the vector r, o at a dlstanoe az/ from the orlgln.v On the .other

O

hend the potent1a1 ﬁ; 1ns1de the cyllndelwls seen to correspond to an effectlve

llne charge arrangement Wlth the dlelectrlc cyllnder absent, of one effectlve
: [EINRE B

2
charge placed at the p051tlon of the actual charge but of strength, lik' Therefore

thls problem could have been solved by,the method of 1mages mentloned in Chapter 4o

This fact can be verlfled dlrectly by the use of the 1ogar1thmlc potentlals. Note Syt

that the correspondlng three-d1mens1onal problem of a polnt charge and a dlelectrlc

¥
4_! '} b :"' o V b Lo
u f o
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sphere doesvnotﬁﬁede a solutlon by*tﬁeimethodfof'iﬁegesé

Let usltake another example of the. solutlon of a problem in terms of cyllndrlcal
harmonlcsn”Cbn51der a wedge-shaped reglon bouded by grounded conductlng surfaces
1ncersect1né at uhe orlgln w1th an 1nter10r angle a, as in Flgure (5.9). Andj
consider a- 11ne charge of strength q per unlt 1ength located at the p01nt (ro,ﬁ)

within the wedge. The solutlon of this problem w1ll glve the Green's function

Figure (5 9)

for the reglon bounded byrthe 1ntersect1ng conducting planes. 'IfwisAagain qlear'
that we cannot hope to express a solutlon by’means of a single equation valid
throughout the region from r.= 0 to r =<*° since the derlvatlve of the potentlal
will be discontinuous at the point occupled by the line charge. Thus we must

again construct the solution out of twovsolutiohs,lone &alid in the region r«¢ r,

and the other valid in the region r>r_ . We shall join_these potential exgreSSions.
to eeeh etherxon the cylindriéal surface r = r, by the flux cohditieﬁ'correeéending
to the charge g. | | | -

Since the potential must venish on the boundary where 6 = O and Wher'e e=a

‘the angular part of the solution must be of the form 51n(}";) ' Thus in (5. 39)

ks = n.n/'a° In order to fulfill Laplace’s Equatlon we: set A =.E = F = G = H = O .

in Equatlon (50 39) and have for the: potentlals everywhere 1nslde the Wedge"

(5. »45) g, = Z_ cm(-n) sin --e

I‘(I‘
0

S, e YR
¢2 = DM ;.:- a ., sin Q- e
o=t Volioo oo T

r>ro
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The coefficients Cp, and D, must be eqoal in order to assure continuity of the

potentials across the cflinafioel'euifaoe-r = ro. Let us evaluate c, by 1nte-
‘vratlrb the’ total Plux from q over a anall surface composed of two cyllnders.
one . of radlus sllghtly larger and the other of rad1u° sllghtly smaller than r

- ¢ \.‘,

and two- radlal olanes c1031ng the ends of the cyllndrlcal arcs to make the

o?

'1nf1n1tes1ma1 surface completely surround the llne charge, as seen in Flgure
(5. 10) * The cyllndrlcal surfaces are to beflarger than the plane surfaces by
van order of magnitude so that theoflﬁx across the plane surfaces may be heglected

relative to that across the,eylindrical.suifaoes. we can represent the line

Surface charge
g Line charge

g

charge q by an equivalent charge density € within Szul

Figure (5.10)

From Equation | ('3 .16) we. have?
(".46) o*’- -k, (—g& _2;,_ o

ileferentlatlng (5 45) we obtaing

(547) _21. Z cm aro ( )( -lln—e.

. f-.é.Z‘z,,_Z c an 1 2”_9.) ('2'&*1) o
m e To\F )N e

=
The total surface charge within the surfaces'iehequal to the llne.cﬁargefq.
The surface charge den51ty distribution can be expressed by(; §(6 - p) where

<g(9 - p) is a Dirac 6 function defined to be equal to zero at p01nts Where
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& # g and to be infinite at points Where © '=:f, in :such a‘way thats = -

If we substitute o-= qf (8- p) into (5.46) and also substitute the difference
between the potential derivatives from (5.47) into (5.46) we can determine-the

coefficients Cp by multiplying both sides of the resulting equation by

| sinTe— 4o
and integ'r'_at‘ing from O to a. The or;choganality of the sine fﬁnotions' in the
regmn in ques stion will cause all terms except the term where n = m to %ranish.
The ix;tegral over t—he,J function can be .evaluated immediately, since tﬁe sine
function varies sloﬁriy relative to the‘vari ation of the 5- function end the sine
factor can be taken out of the integral when it is evaluated at 6 = ﬁ; The

equetion, characteristic of the J function, expressing this mathematically, is¢

(5449) S(x - c)f’(x)dx f(c)/i*o : accdb
We thus obtain, noHng that r = ro. :
ra S
mp 1 .. of mno’
(5.50) l $ (9 p)s:.n de Zkocm T T A sin <_v“ )de
Integrating and replaclng m by ns
, g\
. gq SN S f:719%
(5.51) Chp = T smn(a )
and hence the complete vsolut'i'on isg
! N1 -
, 1fr a nn nné
(5..52) '1%" Z ':'1-\?_ s:‘m‘?,jE sin=— s
’ r( r . 0 .

o0

q .\ 1/r \ T . m .vnnG
¢2 - ’TE- . E(’f‘—) s1n-—a§- SlnT

r (4 To o n=l
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This is the desi;ed.G;eegfs>fgnqtibn,&whgnEqiis§Seff§qﬁéi‘f§"&nf%§i - This method”
is & general one which is useful for deriving the Green!
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CHAPTER 6 THREE DIMENSIOWAL POTENTIAL PROBLEMS

The Solution of Laplace's Equatlon in: Spherlcal Coordlnates. ‘

t

Let us now consider the solution of some eysmples of three_ dimensional

potentla.l problems where Laplace s equatlon is separable,’ Laplace's equation,

' expressed in spherlcal polar coordlnates (r, 6, ﬁ), is given byg

(6- 1) 2‘9' ( ) sing ) T" o =0
°= _2-31' or rsmeae 08 résine g%
In order to achieve the separation of (6. 1) let us puts ' -

(. 2):‘3‘= R(r)Y(e &

where Y(e,ﬂf) is lmow{m as a spherical harmonic, - Subst'i'tuting (6.2) into .e'qu'ation

- .

(6.1) and lettings

L _ R
c.) noed) = 1 35 (23%

we obta,ix; the -,sepa;rated equations?

(6. 4) ar < ar>--n(n+.1..) R =0

(6 5) <sine—§-%) + ;;%——9- 32Y + n(n+l) sin 67 = 0
Ageln as in Chap'l:er 5 we have 1ntro<iuced a separatlon eonsta.nt n, This he.s been
poss1ble since the dlfferentlal operatlon of V on ‘[results in two terms Wthh
are respectlvely elther a functlon only of r or a function of € and ﬂf, and -
therefore must be ,1nd:|_.v:.t_.dua11y consjbant. The dlff‘erentlal equatlon for the

radial part of j; ‘(6..4), has the solutiont

(6.6) R(r) = Ayr? 4+ Br-n-l
The set of 'functions PP #) which’ are the solutions of (6‘75) have orth'ogonality |
properties that-are smllar to. the orthogonallty propertles of the Fourler series,

whlch we dlscussed in the chapter on -two dimensional ‘solutions, Thls may be

In Chapter 6 there are three similar symbols? gfls the potentials. & is the function -
used to separate varlables in fR(r)@ (6)§ ({5)3 and g is the angular coordlnate.
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demonstrated directly by the use Sf Green's theorsmy ™ :

(1.18) /@v 2y “W%d‘? - / (E'%W—W—v’gf)dé‘

Let S be the surface of a sphere.

R e .;t» ,;.-‘l:' e, 'i:-:',_._.','";"d B e
If we put_gz = RlYl and_ﬁ; = RQYQ for the two potentlals ﬁyand.VP, anpeerlng in

!

(1,18) we. obtazn.

(s 7). ﬂ(nl*rlv RQYE-RQYZV leYl )dv =[ (RlYlv RaYg—Rngv RIY,_)'dS

The left 31de vanluhes smnceﬂﬁ_and ﬂ; are solutlons of Laplace s equatlon.
Carrying out the 1nd1cated differentiation and noting that the component of the

- . e -
\Y; operator/that is parallel to 8 does not operate on’ the function Y, we haves

(6 8) (—3- -—&YYIYst-

If the two radial functions correspond to different values‘of the senaratlon L
constent n, they will have a different dependence on’r&end"thusftheir.logarithmic
derivatives W111 be unequal and therefore the 1eft tenn'Wlll vanlsh only 1f the ‘
integral vanlshes.- If this is so, then the two snherlcal surfece harmonlcs ?;: )
and Y, must be orthogonal to each other when. 1ntegrated over an: element offspherlcal
surface, or an element of solld angle. r"h:Ls proof 1s 1ndepeudent of the partlcular

A.,‘.‘

nature of the coordlnate system used, as 1ong as Laplace s equatlon is separable '
in this coord1nate systemiE We can therefore conclude that in general, orthogonal
functlons are generated in the solutlon of Laplace 8 equatlon.

The spherlcal surface harmonlcs can be further separated by 1ett1ng:

(m)mm=®m§m
This results”ln the follow1ng two equations, when m is introduced as-aiseparation

parameter‘

(6 10) a"'" [(1 2) d%_] [n(n+1) --'(If-—-i-z—) ®= 0§ p=.cos 8 .

_;The proof is general 1figils teken as one of the coordwnate planes.
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These equations are solved byg.. .. .. .. .-

(6:12) @= cnphm(;ﬂ * DnQnm(p)
?:Ecosmfdd—h"s&nmﬁ - : W‘henmilol".

(6. 13) §= G p’+ ST S, whenm'= 0
N ‘I'he. functions P m(n::os 6) and Q,nm(cos 9) are the associate Legendre functions of

the first and second kind respectively. Their mathematical properties can be found

in numerous. references.,

The Potentiaifof'e Point Charge. . -
Lot us now goﬁsider the application of these solutions o_f'_;L_aplg%,\.‘:S: .‘equaﬁcif?h’
mpfﬁp problems whose geometry has azimuthal symmetry, that is probleﬁé-foé which
m = 0,  The surface harmonic Y(8, #) then has the forme
(6. 14) ¥(6,6) = @ (6) = CnPn(}l) + Dyn(p) -
We may obtaln “the potentlal of a point. charge, expressed in terms of a series
expansion in the radial and angular functions obtained in the above separation ofl
the coordinates, from the Coulomb potential. (1 24), by expandlng the cosine law e
expression’ for l/h: D . -
| /2 r -1/2
(6 15) ﬁ"" i [(—- +1- 2-— cos% = —[(—-) 1 2;9- cos 9]
in powers of r/r -and ro/r. : . o |
n
(6 16) e —;- nao( ) n(p)=-r- zéb(i’) Py (}1)
¥ For the same reasons as were used in the solution of the wedge preblém in Chapter
5, we must use two potenfiéls,.one valid in theﬂregion were r¢ To ana one velid
'.,‘ in the reéion Whe‘f;e‘r>ro, respectiwfeiy. The physical 'arre.ngemen’e is showﬁ ’ih

Figure (6.1)s The two potentials ares

_(s'.lé) £ = TE.ro Z (—) P (,1)

r<r

| jg 4nk r EE:-(__ P gu)

.r>r



origin field point

“Figure-(6.1) -
The resulting potential of the point charge is therefore a Taylor-Laurent series
in r and o series of Legendre polynomials in cos Qe

The Potential .of a Dielectric ‘Sphere and a Point Chargea

The ;féet."b‘f point- sé"luti'oi_qs derived above:can be used to generate t_he _i___sqluti,o_ns.
of problems involving a number of point charges: and h’tv:.ng boundarles whlch |
possess ~nherical symmetry. If we consuder for’ eyample the -simple. problem of a
point.éhar-ge ahd“ 8 diei-ectric ‘sphere of radius a,. as. shown ifn.;Ij?ig.ufre“ ‘(‘6_,.___2 _}, w;th(
r, being the distanch from the center: of the sphere;t(\the. point charge,  Wo will

die.lec{:‘fié;'ﬁ : S e C g
sphere ey, \

R
. \._fiel_.d point

\\N source

ro ?\ . | ' P' 1

| Figure (52) l /

need three :expressions for fvmich are valid in the following “fangés of‘re

(6A.l7) o<r<a gy = Z A:rlrnpn(};‘)
=0

q © [ Fo)
) ro<r<t>o [3 = T4ﬂ ~ Zb .r_- .
n=
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The fit of gﬁ to g@ at r = a can be ca*ried oub ggbthélsamefway in which it was
in the two dwmcnblonal case, The fit of gg to.g; at r, = r is inherent from the
nature of the solutions in mquatlon:(G 156). Lhe factvthat the boundary conditions
(3.16) and (5 20) must be fulfilled for all values of the.anglé 6 and the fact
that the angular functlons are orthogonalg makes it possible to equate the terms
of the series separately and th;s equatlng of ga to‘p; will determine the
éoéffiéients An‘énd B#, The resulting solutioﬁ is identical ﬁo the solution

cbtained by the inversion process outlined in Chapter 4, for k =09,

The Potential of a Dislectric Sphere in.a Uniform Field,
As a second example of a problem with spherical symmetry, consider a
dielectric sphere, of specific inductive capacity k, in a uniform field whose

force lines are parallel to the x axis as shown in TFigure (6.3). The lines of

-
electric displacement D are showm, |

——“fdoo

‘1Wure (6 5)

The potentlal at 1nf1n1ty belng uniform is given bys

3

(6 18) gfoo = «E x = -E r cos ® = =Er Pe ~B l“Pl()l):u _

From (6. 6) and (6 12) we have, for the notentlals 1ns1de and out31de the  sphere,



by inspecti on,tha follow1ng expressmn

(6:19) Fy zkprP(}i) IR

~o-

. ZB -ne lP (P) ~B,r cos & 7. Dﬂ:

n=0

The nou.n.dary condxtlonsg ﬂ;_ ﬁ; and k (8 v ) (i) at r = a,must hold for
all values of the’angle e, We thereforo ovaluq te the constan S An end B, by 4

oquatjng the cocefficients of equal powers of cos 8 in the expansions and find that

. =35 L
\ = n = e o
(6020‘) A(“ = .OO v 0 - '%-1 o2
Y- \5 3 .
Ly =By =0 forn>1 - By = &:E%ézgﬂ_

This gives for the pobentials:

(B.21). 25_5 :%ﬁ%f cos 8

- %k-1) Boadcosd
2%; (2 ) ) = Bor cos 8

Note that the field Z inside the sphere is uniform, but is smaller than the fic.u
. outside the sphere at infinity by the ratio 5/(k + 2),  Also the induced field of

the sphere in the region outside the sphere is that of a pole whose moment isg

56 > - 3- k';]- g
(6.22) . p. kao a (EiT'{EO

‘Let a quantity L be known as the. depolerization factor feor a dielectric body,

défined asg
-> -
Izl =|E insidel

(6,23 L= “ (3.12) T =k, (k=1)B
(- “ \ ko lP inside v ) o )
For a sphere 'L = 1/5, for a thin rod oriented parallel to the field, L=O0 4

and for a thin disk oriented normally to the field, L = 1, Thus the electric
field within a dielectric body in a uniform field 'is always smaller than bthe -

field at a large di ance, w*lle che CWGlocLFWP dlSDluCBm“Qt is always larger,

The Potential of a Spherlcal Arbltrary Potentlal Dlotr bution.

As a thlrd example, let us consider a spherical urface, of radius 2, ove

which the potential distribution is a given function, gRa, €), of the angle 8
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Wo will have ‘two poten’tials from Equatlons (6 6) and (6 12), one valid inside

a.nd one valld outs:Lde the surfaces

624 "Pa(p)s - Bg=0
{ ) r{a nZ—OAnr n(}l) ? (Dn=By=Fr=G=H=0)
r{a. ) n=’b’ B-hr-n- Pn(’l)’ o 70

'Thé constents A, and B may be determined by equating the expressions in (6.24),

with r = a, to ﬂ(.g.,ﬁ), and then multiplying the resulting equality by Pm(p) and

[y

taking adventage of the orthogonality conditions

! __ s
(6.25) | Pulp) Bp(p)ep = ST $ o

we have$ : o
. (6».26) ‘2n+lf ﬂf(a,O)Pn(,J)d;J . Bn = a2n+lAn
So the potent:.als becomez |
o
' ' 2 +1 .
(_69,27) r%; '=;.-:0 zzn rBp (}z)f ﬂ(a,e )Pn(}x )d}l
E -]
ﬂ = : 224‘1 a.:n.'ﬁ'l «n-1 P (P)j j(a’ebp 9_11)(1}1

rya n=0

The Potenfiél of a Charged .Rlng¢

As a f'1f‘th exa.mple, let us cons1der the potential of a charged rlng, of

total charge g, possessa.ng a half angle 6o “at the orlg:.n, and located at a

_distence r, from the origin, as seep in Flgure (6.4). The poten'blal along the

I‘lgure (6 4)



80
z axis, the exig of symmetry, is.found by expanding 1/R in, the. Coulomb -potential,

F = a/snk R, by Equation (6 16)8

(6,31) ﬁ?zgo\ & 4nk ro Z ( Pn(cos 0,)

rL T, .
Oa - n+l :
g c
xﬂz”g’) = Ink,r E ?_) Py(cos 8,)
Ty, ¢ Z=0 ‘

The potential at a generai ‘point,,. not lying on the z axis, may be _fc_:u:;d,by multiplying

.(,.
the n""‘l”.l," term in the series by P {}A) and ‘_wrj{.ting r for z¢

o

(6+32) ji-(m@) = z‘;&%‘;g Zéé::j?n(cos eo)Pn(cos‘e). B
. ns . -

rery -

b

st 41 ST
F00) = g 0 () pueos o, )pglcos 6)
Ty InK,re T r LCOS eo nlcos

r5>r, 1=0
The urgiquenéss theorem 13 essential to justifj 'ﬁhélartgiﬁné"‘r.lt {cha‘l;' led to the sbove '
result,

&"‘;re shall not discuss problems that involve the associated Leggndré f-unct.ionsv
an(fl) which appear in the potehtiai explz.‘e's‘sio'h-s ‘>iAx>1 é‘ééegdo.f"“‘-é'z'_‘ii'mqi;hai ‘a‘;s‘ymmet’ry!:"
and_.we shall alsoc not .di scuss problems that involve ;the‘_ Legendre fL"l;n»C'tiOIiS‘v of the
second kind Q,nm(;afi Which.aré :siﬁgular at P ;" 1-‘,: théf 1salong thg,,;\pél_gtif{ axis,
The Legendre furictions of the second kind are used 1n prob]iemrsﬂ%uch as ‘f;lr‘ms? ‘
involving conical boundaries, where the z axis 1sexcludedfromtherange of
validity of the potentials, . |

The Solution of Laplace's Equation in Cylindrical Coordinates.,

Let us now consider the separation of Laplace's equation in cylindriecal

coordinates,, Laplace"‘s '.equaticn 3".1’1 (r,,d,z) ’iss .

| 1 1 9%
(6~333F’§?<*‘5‘£ “'z““"g' '—-‘?:-0
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Separating by means:of: tHe' product functlonsg _
(6.38) F(r f,2)i= R(r)§ (¢')Z(z - o

we obtalns , ”f o h
(6.35) &'a-r-<r E‘r’> + (k rz-nz)R 50
2
’ d—g + . nzi = 0
ag”

.42z

o - k%2 = 0
dZ§ .,

where k'and n ﬁr; the S??&?&tipnlPar&m6t6r§q“@The qharac?er éfiﬁhg 601gtion wiil
differ markedly whether n or k are real or 1mag1nery. If solutions-are'desired/
which are single ‘valued in the azimuth angle ¢ then the solutlon must be perlodlc
in ;zf':and hence n.must b__e\ rea;l. . If k. iss real, ‘the solutlon along the z axis will
bevekpoﬁential and the radial solutions will be in téerms of the Bessel's fﬁnctioné(
In and'Yﬁ.f The integrals are therefore of the forms o tT‘v' | -

(6.36) R(f) = Andh(kr)'+anYﬁ(kr) k%b'b
J””R(r) - Arn s R  ' Jv “ | - x=0

&(ﬂ) = Cncosﬁf "Dpsin nd . “nfOA -

e ._:. kZ'H“ - )
o 3) B R o
2(zy=B+F =0
If X and n are both zeror =
= (& 1nr + B)(CH + D)(Bz + F) ,

If the cylindrical solution is required to be éeriodic in the z direction,
then k must be imaginary, and the solutions of the radial equetion will be Bessel

functions of en imaginary varieble which are usually designated by I, end K o
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Let us 1llustrate the use of these Iunctlons by one, example.' Let ue_
‘oon31der a problem possessmng oyllndrloal symmetry wnlch 18 Unllorm radlally

and which has azimuthal symmetry. Thus m = C. In_general such a problem can»j

A
Lo

be solved by the use of integrals in place of a summation. - The 1ntegral W111

have the formg

(6.37) ) e2KZe(k )g_(kr)ak
Instead of determining the set of coefficients in the sum, we must determine the
value of the fonction f(kx). The potential of a point charge may be expressed

by this integral and is given with the é}d oflthefidéﬁti%&i'“uﬁ

‘ S 1 : /)"+kz Ca
6.38 = J.(k dk
( ) ﬁ "Tor % ol _?)

(Ihere the + sign-is used- for z<£0. and the - 51gn for z.>0 ) The Coulomb potential

gﬁq/@nkoﬁ ;ss
4k '
(6.39) f 4;nk ] o ZJo(kr)dk

The potentlal of (6.39) can then be used in combination w1th the 1nduced potentlal
of the form of (6. 38) to form the solution of a problem correspondlng to plane.;:_
boundaries normal to the z axis and under the influence of4’ p01nt charge locatoo
at the origin. This layer structure, shownvln Flgure (6. 5), composed of several

layers of varying spe01fic 1nduct1ve capacities, kl, ko etc., has the potentials

shown- in the figure. If we apply the boundary conditions at all of the interfaces,

and equate the functions under the‘lntegral sign, therevw1ll be a sufficient number

of equations to determine the functions, ahd therefore the solution.



"

7= é(k)ekz Jg (ker )dkc# /o;n (k)e"kz' Jo(kf U

ks Ps

/7= ég (k)e¥2 g, (kr Yak+ 'ﬂo h(r Yo ¥2g, (kr Yok

kz :¢2
o ' »¢1=sz£- /;--kZJ‘ (kr )dk+ / f(k)‘ekz'J(ki«)ék
k, ﬁi' - To‘o : 0- : , ° . -
- Rl - — — —>

Figure (6.5) -

The dlscus51on of boundary value problems glven in the last three chapters e
is 1n no Way a general one- and an attempt has been mede to glve only a few

examples of the methods used in thelr solutlon.
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Ay

CHAPTER 7 ENERGY RELATIONS 1 N :’EHEJELECTROSTATIC FIELD.

o

’fleld has~thus far “been - based -entirely

Our d1scuss1on of the electrostat

on a’ 51ng1e experlmental law, namely’chldmb' 1&w (1.2) for the actlon at a

i dlstance force between two pclnt charges.} The electrlcwfleld has been introduced
as an 1etermed1ate ageet whose purpose is to 31mp11fy the descelptlcn“cf.the
‘_Jnteractlon between charges. The questlcn of: the reallty £ the electrLc field

as an 1ndependent phy81cal entlty therefore does not arise in these con81derat10ns.
Mexwell attempted»to ascrlbe a 1arger;deg;eejof phy31cal-sealltymtc_cee;e}ectrlc
field ‘than W111 be necessary for our purposes. The fundamental reason for
attributing a chys1cal reality to the electric field Wlll actually not become
‘aoparent untll non-statlc effects are dlscussed However,llf We ‘assume the f‘
reality of Maxwell's electrlc fleld, 1t is necessary that‘e}lgcf the mechanlcal.':i
properties, of a system wﬁich is intefecﬁing'elecc;iceli§;:ceh.be cescficed'eithef?{u
in terﬁs of the sources which partake of the interaction or in terms of the fields
themselves which are produced by the sources,

This means that the detailed nature of the sources should not influence the
action of a field on a given system of charges. The description of the electric
field alone must be a sufficient descriptioﬁ to.determine what interaction occurs
if a number of charges are introduced at given points in the field. This inter-
action must be independent of the configuration of the cherges which are ceausing
the field, |

Therefore it should be possibie to develop a field theory in which we can
describe the overall mechanical properties such as energy, equivalently in terms .
of the charges which are the sources of the field, or in terms cf'integrals over
the field produced by the charges, The only criterion for the correctness of such
overall relations when expressed in terms‘of the field theory shali Be that the

results are equivalent to those which are obtained from a direct consideration

of the action at a distence interaction of the charges responsible for the field,
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Let us con51der a set of charges q; located in free space in reglons whcre
the potentlals are ¢;, The work done in the course of the phys1cal assembly a

i

of these already created charges, Whlch are 1n1t1ally located an 1nf1n1te dlstance

apart is given bys | - d‘;y1vrsi ;;i
(7. l) W= 1/22:1 i ¢1
R T

By assembllng these oharges we here changed the eﬁergy of the sySuem; and since

all of the forces are conservatlve, we can 1dent1fy thls expression for the work c
of assembly with the energy of the system. ThlS energy must be stored, somewhore.,-‘f
However the locatlon that one selects as the place of energy storage is a- functlonv

of one 'S p01nt of view,

For erample, 1f we' con51der fwo masses on the end of a compressed sprlng,
we have d‘system whlch possesses Dotentlal energy whlch w1ll be released if the
spring is allowed to expana. Iln the expan51on the masses w1ll achlre klnetlc :
energy. The physical location of the energy in thls mechanlcal system shen 1t.1s

in its initial condition is not necessarily in the spring. Peenomenologlcally

the masses may be con81dered to be 1n1t1a11y in reglons of hlgher potentlal energy
than they are An - after the expans1on of the sprlng. Equatlon (7 1) corresponds

to the latter Qolnt of view, T shall now try to trensform (7 1) to an expressxdn'
whioo would make it appear as if the electrical energy res;desrln the so to speak
Yelastic" quality of the electric field, as Would'be required in~order ﬁo”correspond
- to the polnt of view thaet the energy of the mass-spring sysbem res1des in the sprlng.
The expresslon obtalneo by Maxwell for the energy in an. electrlc field, ;V:

expressed as a volume 1ntegra1 over the fleld iss

(7.2) U= Toﬂ E? dv

The integral is carried over all space. We shall now. shOW'that the fleld energy -

U is in fact the seme as the: assembly Work W' In order to show thls let us
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1ntroduce the partial fields El, each belng the Coulomb fleld of only one of the
point charges that are respon51ble for the‘flela. ‘B and E2 are then glven bys

(705).3@}{_‘: gif B2 =§:_ Eiz'»ri-_ '—E)i°g.

3= i=1 =1 =1 J |

where the prime on the summation indicates that the-term:for'whieh i'= j has been
omitted from the summation, since ‘such terms are grouped separately in the first
summatlon. If p01nt charges are considered, the flrst term 1n the summatlon makes
an infinite contribution to the integral- over . E2 in (7 2) HoweVer,”th1S“1nf1n1te
term is 1ndependent of the relative p031t10n of the charges and therefore it nust
represent the work necessary to create the charges from en arbltrary zero p01nt ..
of energy. Although there is no obvious’ reason why thls energy of creatloniterm
shoold‘he infinite, the reason for 1ts.1nf;n;teness 1sw1rrelevaqt;s1noe‘thlsrhv_'ﬁ
energy“does not enter into problems of electrostetic3intereotion;:iwe,willﬁ

therefore de31gnate.

(7.4) Ug =-—[f zdv
1=1

as the self energy of the system, and assume that th1s term, for.reasons not
contained in electrostatic theory, will ultlmately be found to be flnlte.:~”he_

Maxwell fleld energy expre5310n (7.2)~then becomess

(755 U= U+— (((g(vtﬁa)dv

wherez ﬁ denotes the potent1a1 at the position of‘ the 1th charge due to e.ll

of the charges except the 1th

(76) Vo) =gV RAh T &

to perform an integration by parts, we obtaing - o

k, " n's n's .
o v -2 LffF@e -SF 3] o
_ _ i= J= 3= x

charge 1tse1f, Us1ng the veotor express1ont

i
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v -
and by u31ng Gauss' theorems. (146.and 1, 7), ‘and noting that: -V *E; -is zero except

at the pos1tion of the'1£§-oharge~se thatz:;Jiﬁn@yipeﬁremovedufrom.the_1ntegra1"

and the divergence evaluated 1n terms of the source,, We obta1n.

LY

(1.6 0 =17, '%{: K?({_’ﬁa) a5+ —52’-‘2’_ ‘¢1: k“l'
oo

i=1l
where ﬁio = 2::¢gtis.the§petehtiel'atfthe'izhseherée dee"to &ﬁe e%ser~charges.
The surface term cas be madé arbitrarily small by letting the*boundary'surfase.go’
to infinity, This is true since the fields decrease at least as»the inverse.é
second power, and the potential at least as the inverse.firsf.pcwer of the distence,
whlle the. dlfferentlal areea of integratlen increases only as the square of the

dlstance._ If we cons1der that the 1ntegral in (7 2) covers all of space where

there is a fleld, then thls 1ntegral, as a result of (7 8), reduces to‘
(7.9) U =0y _—'r_;‘/ziztyfi 9

The second terﬁ of this equation is identical to the expresslon for the
work of assembly of the charges from infinity (7 1), Whlle the flrst tenn U
is the self energy correspondlng to the energy used in the creatlon of the charéesl
themselves. Thls analys1s shows that (7 2) and (7 9) corresnond to the samev
energy,vhowever, (7 2) expresses the energy as e volume 1ntegral over an energy
dens1ty k Ez/é extendlng over all of space. No experlment can d1rectly ascertaln
Whether the energy res1des in the fleld or is assoclated Wlth the charge whlch “
nroduces the fleld. N “ |
Ie eese dlelectrlc eodles are present in the fleld, wevshall shes shat

Equatlon (7 2) becomes‘

(7.,10) ‘U = 1/2ﬂ BD dv

In the case of continuous charges, the self energy problem dlsappears.



88
Let: s ‘considet the ¢hange of ‘energy when a-smalliricrement 6f true charge
S (’ is added to the field,” The work donQ is g’;i“ve‘h byg? e

(7.11) 8w =M¢89 dv = ﬁp’é(VeD)dv = Kgﬁ(v 5D)dv

Using the vector relation (7.6) and" Gauss' “thésrenms: Weﬂ

(7.12) & =:.,fff§-7> ?(53¢)dv‘-f(§55:€¢dv-=(( 83¢fd‘s’g.ﬂ -83-‘3f¢!’§$fff :

Dropping.the surface term, as we did in the derivation ofp(?.Q),,we;obtain;;;~.

7.13) SW~m{({D'V¢dv= ﬁE SD dv

lhlS 1ncrement of WOTk usually cannot be 1ntegreted unless b is a glven functlon
of D If, for example, B and D are related by a dlelectrlc constant, as in (3 11),

L

which is a functlon of p051t10n but not of E, then the energy resultlng from the

' R .
integration of the work 1ncrement from D 0%toD=0D glves.

(7.14) U=5DSW= 3.5 dv=ﬁf -—ég?—'z—l dv =1/2ﬁkkEdv

= 1/éﬁ£: D av

which is the seme as we obtalned before.

The aseumptlon of a dlelectrlc constant k that does notbohange w1th tlme
and is only a functlon of pos1tlon 1mp11es that the process of change of fleld
is an 1sothermal process, since the dielectric constant is usually a functlon of
the temperature. If energy enterg the dlelectrlc 1t may heat the dlelectrlc and
cause g varlatlon of k with tune. In order to assure 1sotherma1 behav1or, the E
dielectric material in questlon must be in contact with a heat bath Whlch can |
abstract heat from it to malntaln a constant temperature; Thusrwe cannotNeouete

the increment of work donet

(7.15) ,SW = {g 26D av
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to the increase in total energy, since heat changes are also involved. The work

increment done, as glven by (7 12), does however represent the max1mum work which
can. be extracted at a 1ater time from the total electrlc fleld energy.
Thermodynamlcally the maxlmum work Whlch can be obtalned from & system under
1sothermal condltlons is not the total energy but is the free energy F of ‘the system.
This.means that in the presence of dleleotrlcs, the express1on U—l/?£7'E D dv. cannot
be . 1dent1f1ed w1th the total energy of the system, but cen only be 1dent1f1ed with
the thermodynanlc free energy. This dlstlnctlon, of course, vanlshes ‘when no |
materlals w1th temperature dependent dlelectrlc propertles are present in the field,

: —
In the_thennodynamlc sense the electric fleld E is analogous to gas.pressure and

the displacement'D is analogous ‘to volumec :
The other thermodynamlc functlons can ea511y be derlved Since,iif the total

energy. 1s U and the entropy S°

(76) F=TU-TS '; dr_z;du -TdS - 84T T = temperature

. we obtaln, since dU - TdS 1o dde”lncrement of work at constant temperature

—> —

dF = ) EedD' dv = 84T and dF .. = g{EﬂdD dv as before.

Tconstant

Hence. '

ST ‘= -T-g—-

‘7‘_ 17)U =gj .a—- (Tk) dv m--—-—- (Tk) av

The heat absorbed durlng appllcatlon of the fleld is thus:

(7.18) SQ = TdS =msogn —(ik-)dv

If for example, the SpGlelC inductive caoa01ty has the form$

(719) k=l+>(=l+A,/T_v ', ) A=conste.nt

which apolles to gases composed of molecules w1th a permanent dlpole moment, then o

Nl
"3 <0, and hence- § Q< 0 if §D >0, «}He.nj.c% ‘heat will be given off when the field

is:applied;;andﬁconverSely."“

From now on we w111 use. only the free energy density 1n our conslderatlons.

'Thls W111 enable us to eouate changes in the free energy dlrectly %o the mechenical

work quantltles respon31ble for them without maklng it necessary to 1nclude thermal

quantities in the energy balance. The free energy expression, applicable even
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iuyéuerp;esence‘oé Aieiectcicss _ .- “
(7.10) U 1/2% D dv
behaves in electrlcal probleus in.the same uanner as-thelchemical free energy does

in chemlcal klnetlcs, in the sense that a. reactlon w111 proceed untll the free

# é-ita

euergy takes on a mlnlmum‘value.. Iu the.electrlc‘caSe, char'ﬂs’ouhavconducto;—v
Wlll red1str1bu+e themselves in such a Way that the over all free fleld energy |

will be mlulmazed . We can sho%?thls dlrectly. Let us cons1der e v1rtua1 process
in whlch charges in equlllbrlum on a conducuor are dlsplaceo by an 1nf1n1t651ma1

emount a;ong the constant cotentlal conductor surfaces in such a way that the h
total charge remains unchanged The varlatlon of free energy 1s.g1ven by:

(7 20) Sv = 1/25[ kkoc\" (82 )dv =ﬁ E§ D av

u81ng aauss' theorem and (3 6) and 1ett1ng the surface term vanish, we. have.

(7.21) 6U mESD dv=ﬂ -v;d §D dv=ﬁ[¢v SD-V(SDp!)]dv
SU =Z¢lmg€ldv Jf&nﬂds Z;z( ng’lv=0 "

The summatlon_extends“over each individual conductor which, since‘if:is'afm"
equilibrium, is at constant potenﬁial»ﬁa{- The last term venishes since the»tgta},
charge on each conductor is unchanged anc thus ghe vafiation'of;fﬁeifree!energy
when a.system is in equilibriun is zero, :This theorem, usually kuownwas Ihomson's
' theorem, shows that the free energy'is actually an extremum atveguiligrium,}.

The terme >
BeD
(7, 22) U =5

is known as the energy dens1ty of the electrostatic field, It is_a>densitx in

L : : : : L :
More accurately, free energy density,

the sense that its volume integral gives the overall energy of the field, On
the other hand, in the same sense as it was 1mpos31b1e to localize the energy either

in the f1e1d, or in the source charges, 1t is also 1mp0351b1e to ass001ate energy

R



‘in'a deflnlte way w1th eech speeiflc volume of Tleld 1n @ menner which can be
Averlfled by experlment. ;::  ‘ | ’ |

In der1v1ng the energy expression,llt is assumed that the medium is held 8t
restvand hence no work 1s done 1n motlon aéalnst forces. ‘This 1mplles that the
virtual process of assembllng the charges 1n the d1electrlcs 1s & process wlth
particular constreints, Thevresultant energy express}on is nevertheless generel;'

‘51nce no nonnconservatlve forces are involved., In Chepter 8, we shall consider

jjthe more general v1rtua1 process permlttlng mass motlon! oo (76 14) will however

contlnue to apply since the final fleld energy is 1ndependent of hle+ory.
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CHAPTER 8 L FORCES TN THE ELECTROSTRI‘IC FIELD

We shall now dertive the force per unl’c volume that ac‘bs on a dlelectrlc body

when it is under the lnf'luence of an external elec’crostatlc fleld _ Thls me.y be ]

derived from the energy prvnc:lple. The varlatlon 1n free energy &'U When a um.t

volume of the dlelectrlc undergoes a v1rtua1 dlsplacement*iéax 13’: glVen 1n terms

of F 'bhe force pex" unlt volume by, ‘ S N L T .
(8 1) SU==KF o:yx dv.. _ ” __ i : ‘ *
If we are able to con81der v1rtuei d1s.p'lacenvlen’cs Wd.thln»i‘:he.dlelec.trle, tnen.in :
view of the‘ fact that the magn:.tude of the v1rtual dlsplacement Sx is an ar’eltrad‘y. e %
function of‘ space, we can 1dent11y the quantlty F in Equatlon (8. 1) Wlth the true :
volume force. Lo say this in a different way, if T is an arbitrary velocity field“‘“'
within a dielecfric, then tne,rate at which energy is lost by the field is g‘i'ven”bj;:
(8,2) %%f'-’-ﬂz:—u)dv |
Where ‘1‘?17 represents the volume force as given above, The total free energy of the
dielectric, e.nd the field outside the dielectric, is given by? |
(7.,10’) U= _({f E°D dv = & ﬁ kk av
If a virtualdisplacement of the dielectric is carried out, there are tv_vo factors
which can bring about an energy change., One factor is a change in the ‘.true‘ charge
densities and the ether factor is a change in the specific inductive capaeity'.
We can putbs,

(8,3) SuU-= )f(o ( ng

The charge dependent term is given by

(8.4) ( )5(3 Sg;dg(adv | | 3 ‘

as was shown 1n the proof of Thomson's theorem (7.21). In computing the term

that depends on the change' in the dielectric constant we must keep the total true »

It is assumed here that the virtual velocities ﬁorrespondlng to the virtual
displacements § X are sufficiently slow that the process iss &) reversible and
b) isothermal. Under these conditions the change in free energy csn be equated
to the mechanlcal work done.
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charge constant Tbusﬁbystgki g‘the;variation_oﬁﬁ( ,10) mith»reepect'to.k

we have?

(8.5) gl‘{’)&( . Kf o ﬁ‘"zgkdv +ﬂ B-SD dv

The last term venlshes since the volume 1ntegra1 of the product of an 1rrotatlonal
veotar:: and 2 solenoidal vector S'D 1s zero, This_fac?_may be dem0n§trated‘frcm
the fact that an 1rrotatlonal vector field may be represented by a scalar potential,
with the ald of Fquatlon (7, 6) The,fieldfggis'irrotational from (l.lQ).and the
variation of_the d;splacement is solenoidal from the fact that the charge is constent °
ane'the.relation (3.4)., Hence substituting (8, 4) and (8.5) into (8 3) and
equating to (8 1) we haves

{8.6} §u =ﬁf (;z!Bp—_—% Ezsvk_).d_v_ = -F -sz"g?dy.
and diﬁiding (é 8) By St we haves “

(8.7} E'K( (ﬁat L—n )dv =-f[f oudv |

We must NOW eXpress ‘bhe tlme dependent derivatives éf/bt and alf/at 1n

terms of the arbitrary veloc1ty field u° This can be done in terms of the hydro-

'dynamlc equatlons of contlnulty:

(8. 8) @u) + 5% =0 | ». . @ = the charge’ density -
(8.9) V°(gu) # %%’ = 0 g = the mass density

which represent respectively the conservation of ch arge and mass., In oréen.to
calculate dk/Dt we must associate the change in dielectric constant with the -
velocity flow, Since there is e,netitrdnsport ofjmateriglein a nelocity{field;

the change in dieiectric oonstent.cgn only be associated with chengee,in.geometry
if we coneiden the time history of:a Volumevelement that is moving with fhe
ve1001ty u. The totalxderivative of a particular quantity, such as k or g,»when '
evaluated 80 that the observatnon p01nt for thls der1vat1ve moves with a; chosen

volume element in a veloolty fleld, 1s known as the °ubstant1a1 derlvatlve and

' I ; s =D _
is related to the partlal derlvatlves and to the'Veloclty u bv ﬁho'relatlon'
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2£= Bk ;X ak ay . ak az ak - -"ak
(8.10) 5T = 3% at* 5y ot T 2z 8% T

Hence the desired par&ial$de§1vat1ves areg,.,
. :."‘-' - . o f '

= 3

3k Dk - D o
(611) 5577 V ks ppior 5‘%?*;‘7 S TR

If*wé‘have-a=dielectric*equatlon of state, that is a relétioh‘Which gives the
dependence of the dislectric constant on the density, such as the Clausius-
Mosotti equation (3.44), then the substantial derivative of the dielectric

*'sonstant can be expressed in terms of the substantial derivative of the density

<
bys
Dk dk D
(8.12) yr = 3’513%’
The assumption that the dielectric’ constant depends én the maés‘déhsiﬁy'dlbhe"‘”
includes of course the assumptlon that the v1rtua1 procesoes ‘are 1sotherna1 as
was discussed in uhapter 7. The substantial derlvatlve ‘of tha den51ty w1th '
respect to tlme in Equation (8.12) can be evaluated with the aid of (8, 11) and
the equatlon of contlnulty (8 9) g1v1nga
Dkdkéi"’ 'gdk‘* > = 95 & 2 >
(8.13) 5= ( 5% *Vs'u. T |Ve u-V <lew)] =-5 gV u
Substituting this into (8.11) we gete
B
(814)5"'=-=dg gv-u-V ‘u . ‘
And then,substltutlng (8.8) and (8.14) into (8;7) we heves . [
- """’ 2 ° — 2 [
(8.._L5) ﬂ [ F!V (eu) + E 3 gv u + B vV k u] dv )
Thiéléxpres31on must be brought into the form of (8.2), the dot producﬁ”of'dn '
expression and the velocity'it'in order to evaluate the volume force Foe The o
e ‘

first term can be put in this form by using (7.6) to infegréte it by‘pérﬁs,'hﬁd"”

assuﬁing that the integrals are extended dfef all 5péée{1
o) - f] BT = [ [T Tt {3 e - f e
=ﬂrfg3}5;:(iv
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The surface" term vanishes since the boundary surface may be asoumed to be outside
of the dleleCurlc, and‘therefore outplde of o reglon of charge uens1ty. Srullarly,
the second term 1n (8 15) can be put in ‘the desired form by 1ntegrat1ng-by

\

parts and dropplng the surface term' :

(8. 17) "ﬁ}ﬁg-‘-v ‘ud‘;‘f—'ﬂ v(E —-gu)dv-——ﬁfV(Ez g)adv

Co7lect1ng terms (8. 15) becomes v o

| dU nr = x ko 2 & 12,
(8. 18) d‘t M[ PE&--—-EZVIc-—z-’-V,_(EZ—a'—g—g) ] *u av )

and bv oonparing (8 18) and (8 ¢) we conclude thatu

(81) F =pE--—- E?V1<+--V(Ez g;)

is the volume force. ‘The first term 1n-(8.19) gives the"ordinaryfelectrosﬁatic

“rolume force in agreement Wiﬁh’(l,l).ﬂ The second term gives a force which will -

appoar whonovar"aﬁ inhomogenousgdieleotrid is in:an'electrio field,- The last
term;“known‘as the’éloctrostriction term,-gives-a‘volume'fofce on a dioleotric;,~
in an "inhor;ogenou's' electfic' field, Note that the mazmitude of the electrostriction
term depends expllcltly through dz (gg' oni the'elécﬁficél’equation‘of~5tate‘-

of the materlal. It is interesting to note that the Iosttterm wilizﬁéver’give a
net force.oo"é fihitéiregion of dielectric if We:integfate it oﬁér a large’

enough protion of dioléotrio 50 that its extremities are in e field=free fégion.
Under'tﬁis‘oohdition;:the‘electfoStfictionfterm, being & pure gradieit term,ﬁili
integraﬁe»out;' 1t iS’for;this‘feason that this term is'fféqoéntly omitted, siﬁéé
in the oaicolotionfofuover all total forces on dielebtrio'bodies;fit‘osually doos |
not ocntriouteg "In oéseo‘whéfe it can'bexomitted;*howevéf; an incorrect‘préssure
variation Within'the dielectric is'obtained, even though the total force is-

given correctly.

Maxwell.Stfesé Tensor

Before WéNconsiaopma@x”épeoifioiéxaﬁﬁiosvof-%hé‘épﬁlioation'of'thé”expression
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for the general ﬁolume:force_given'in Equation (8.19) WeJWilljreformulaﬁe;this

volume force in terms. of‘ité "spacé'Sfress",_ In/accordance with a _pure field

'theory it should be poss1b1e to calculate the net force on a glven volume element

R ' S (,f-.' v

within a dlelectrlclln tenns of the flela condltlons on the surfacevof thls volume
,element. Tuls 1mp11es that ‘the field is the stress transmlttlng medlum rn the
same sense that a string tying two welghts together is thé medium that trensmits

a force from one weightfﬁoéthe ocher.' Thls was a p01nt that was emphaslzed by
Maxwell in order to bring out the 1mportance and the phy81ca1 reallty of field
quantities, A.galn,J in a similar memner to the analogous energy ‘case that we dise
cussed in Chapter 7, we can only give-aﬁ'alternate descriﬁtion;of'the,wayvinr
whichfthe_foroes;act? ana cannot gireka definitevphyaical proofyof.thevvalidity,
of ‘the field concept, asﬁexemplifiédfby'Equation'(sv19),ucompared to.tue'acfiou at‘a
distance.conceut;;p; blnce the only phys1ca1 fact that underlles this entlre h
g dlscu531on 1s Couloub"s Law, the remainder of the discussion being mathematlcal,
ong cannot expect to obtaln any phy31cal concept regardlng the mechanlcal inter-
.action of. charges whlch will add any phys1ca1 facts beyond Coulomb's law.,-New
phys1cal;facts.based on thehfleld‘concepth111 arise only when tlme deoendent
. effects in. the present, theory are further investigated in 1ater chapters.‘

If we oon51der that the force acting on & given volume is transmltted‘across,

the“elementS'of surface boundiuglthatﬂvolume, then this-transmitting_forco can

be . formulated in terms of a’ quantlty known as the'stress tensor T._ The;iézh?A

jEh co@ponent

-compouent_'l‘ij of the stress tensor T is so constituted. that the i
- _ —» U
dF; of the force dF transmitted across afsurfaceﬂelement dShwhose-component in

the jEE-direction'is-dSe,_is_given by

J

.(8020) dFy =; Ty 5 085

Ly N

It can be shown by the cons1derat10n of the- equlllbrlum of a. rectangular SOlld

under surface stresses that the stress tensor T must be symmetrlc. we shall
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- (8.23) Fy =f[ Ti. ﬂ' Foydv.

and hence, by Gauss"theoremv(1.7) expressed in tensor notation?

97‘
adopt the so-called Einstein summation convention whi.ch ordinarily states that
a summation is to be carried out over indicies that are repeated in any single
term, So Equation (8. 20) can'be}written as? %

(821)'dFi T, .dS, | |

13775

If we integrate (8,21) to give the sth

component of the total force actlng on a
given volume, then this fOrce:is given by§ V . L o

(8.22) F; = ﬁTleSJ _ |
If this force is to be expresable.. in terms of a volume force, whose i&g,component.

is F_. theng !
Vi

.(8,24;)]][ 633 . [f'rleSJ

the relation between the stress tensor and the volume force is:,
Coe g - AT s
R
(8.25) F}i ij
Thus if we express the.volume force (8,19) as the tensor divergence of a . -

certain quantity T then the quantity T can be identified with the surface stress

tensor T that gave the stress transmitted by the field across the surface of the -

‘volume in Equation (8.20). Let us write down Equation (8.19) in tensor.not"atiqn;

éD- 'k

| _ : k |
. e p i _ S0 o3k o 9 dk
(8,26) Fyy = By 5% Efn, * T Bl (BsEse 37 )

If we lets o o
: g dk
(8,27) g = %.a"g'
end consider the tensor relations

ko 3 ko . OB ko ak
(8,28) Zax (EEI) Z ., aa-y‘f 2 B8

. and use the tensor form of ‘7 E = QOg -

. OBy JE;
(8.29) 57y = 37




W& have onfubstituting (8:27),(8,28) and (8.29) into: (8.26)2

3D 2B;  ky oy
3 = J s S BX
(8.30) Fyy = By e + D 5%, " 7 4% [Ejr,jxc(l-ﬁ)] -

which can be written agy

(8.31) Fyy =é‘%‘f’ (EiDj) 6; a?{'j [(1 -p) Eka}

By comparing f8,51\ with (8 25) we see thate ' -'Aq ”

.' . .,"AV S P "‘":Si, . ‘ T . gi' . -
(8.32) Tij - B, DJ =L (1,,,;,) Eknk = Xk, [EiEj - = (1-5) Ekﬁl,]

is the complete expression for the Maxwell stress.temsor, . Writing out explicitly

the matrix corresponding to this tensor, we obtains - . -~
/1 .
(8.33) 5 (Bx? - Ey® - Bz?) ExBy BxBz
4 ™ l oy ) ——yvl . | . :' b-ub
T = kko BExEy = (]Lyz - Ezz - i';'xz) ‘ ByEz
o™ ™, | l 2 2 ) 2
Exly ’ ByEy 5 (Bz® = Bx® = Ey )

where P has been set equal to zero, for simplicity, Note that additional terms
will appear in the stress tensor if the field is not irrotational as was astmed
: “above,' The Maxwell tensor is a symmetric tensor of the second rank and can

. Fherefore, be roduced to thrme components by +ransLormatlow to pr"nc pal axes

.

by the standard method The pr1n01pal values of the matrlx cen be obtained by

solving the secu’ev aetermlnantg

(8,34 .Tij - S 1jP\| =

A ” . N Ve i Lot .,
which gives twe equal and one unecual value for ;\. The pringiphl values of the

tensor, when § = 0 ares

kzo

- N 3' Lk .

.dﬁ:"u., ] 2 .

Therefore the Maxwell stress tensor TP when expressed 'in ‘terms of principals

coordinates takes the simple forms



(8.36) 52 0 o
Tt = Eo o -E5 0

5
0 I

The principal axes are so oriented that the coordinate axis corresponding to the

single root of the secular determinant ;\1 is parallel to &, while the two axes’
. L , : -

corresponding to the double roots ;\E and ;\3 are perpendiculer to B, This fact

is often expressed qualitatively by sté%ing that the electric field transmits a.

“tension kkoEz/é parallel to the direction of the field and a contraction of

megnitude kk E%/2 transverse to the direction of the field,
Let us choose a ccordinate system in which the x axis is parallel to the
direction of the field. so that EV = EZ = 0, In this coordinate system consider

the stress across a surface element as shown in Figure (8,1) whose normal makes

dS sin © = dSy

n = ds
d
; B
| > %
. _ kko 2 - .
ds cos 6 = ds/ } dF, =—%"E® cos 6. 48
\dF = - =2 £ sin & d5

Figure (8.1)

an angle © “with the x exis. The stress will then have two components, one
: __) o o - . : —_ -5
parallel to-E, end one perpendicular to B, lying in the plane of E end n the

3

b : N . ' . 3 f .
normal to’the surface. The magnitudes of these stresses are then the stress -
components given by the matrix in Equation (8,36), multiplied by the surface -
: h .
element components as indicabed in the figure, ' The resultant stress on 4% can

then be obtained by taking the vector sum of the two stress components as shown

in Figure (8.2)s It is seen that the electric field bisects the angle between
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Figﬁré\(S.Z)

the normal to the surface and the direction of the resultant stress acting on
the surface. This construction is freqﬁently a useful ome in the graphical
evaluation of the forces on a charged region if an experimental field plot is
availabiésfdf in the analogbus magnefic'cése‘to be discussed later, this
construction is useful for the computation of forces on magnetized materials,
or oﬁ currentmcarrying.condyqtor§.

In the special case of stres;”tfénsmiﬁted éCrGSS surfaces either parallel-
or nermal to the electric_field,,we havéhtﬁe.Simpié:sifﬁati;ﬁ indicated in
Figure (8.3) ﬁﬁéisfthémfﬁéiai£ranéﬁifé é)égli‘§f magnitude ED/2 across a sﬁrface

that is normal to the field and a push of magnifdde ED/2 across a surface that is

—

!

=

2N
NN

N

ANNANANNNANNNRN\G

NN\

\ Figure (863)

tengential to the field, A surface that is oriented at 45° to the direction of
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the field ag seen in Figure (8.3) will receive a force that acﬁs parallel to the
surface, also of magnitude ED/? per unit area, of the surface. . These relations

can be demonstrated -for simple cases such as the attraction and repulsion between

“two charges of opposite or equal sign. If we consider, for example, two charges

of equal magnitude, but. opposite sign, then the lines of force ars di stributed

ag in Figure (8.4).

Figure (8.4) ;_,f’//_ : -
If we integrate the stress tensor over thé éﬁrfaces of a 50& bne of whose Taces
ié the:plane of symmeﬁry between the two charges, consideriﬁg the cther faces
of the box to bekét infinity, we will get an ekpressioh that is in égreement with
the Coulomb attraction'(l.z). If we consider the two equal charges as ih

Figufé (8.5) and the seme box as in Figure (8.4) then the lines of force are

Figure (8.5) °

paraliéi;é%fﬁﬁé §1ahé,offéym@é%fyfbétweeh the charges resulting in a repulsion

whose magnitudé cén, by'inﬁegréﬁidn across the plans of symmetry, be shown tc

also be in accordance with the Coulomb repulsion,
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The Behavior of Dielectric Liguids in an Electrostatic Field,

We shall now turn to some applicatioﬁs of these expressioﬁ§”f6rfthe forces
in an-electrostatic field, We will first treat the behavior of é'dielectric liquid
in an electric field. If we consider an uncharged dielectric liquid acted on by
the volume. force given by Equation (8,19), then the pressure gfadient at an&
point within the liquid is given by |

. - , |
Lk =D koB™2 o =2, 0 - dk-
(83!37 ; VP = L‘V = e 5 \ X+ - —é-v (ﬁz g E-g- ’)

This can be written ass

’. -y og — - :": dk
(8.,38)  Yp =3V (E‘2 =)

o

and intégrating this, assuming a definite equetion of state of the liquid, we
obtainsg

(8.39) J; 2 -3 { E? 5 8% 5

1 2 1 .

This eﬁuation denotes the important fact that the pressure within the dielectric
liquid is a uniqﬁe funption of the electric field at a given point, the function
depending on thé elsctrical and the mechanical equation of state of tﬂe liquid,
Equetion (80595 élso iﬁdicates that‘the net pressure diffefence between two points
outside the région éf the electric field; resulting from electrical forces, in
a dielecﬁfic'liQQid Wiii}vénish;' A_situatibnjthat ihvolvés boundaries Will be
analyzedflatero |

If>W£ consider the ‘liquid to be incomp?essible, Bquation (8.39) reduces to$

. . - » S 2 .
gk dk: :
(8.40) Pz = Py % %— L?,za-g-]l . )

- from which the magnitude of the pressure difference can be estimated numerically
in terms of the Clausius-Mosotti relation or a similar equation of state, If

the Clausius=Mosotti relation is valid, BEquation (8.40) for an incompressible

/ 2 o .'M} - .
We are putting here F. = +V,, where p is the mechaniqg} pressure in the liquid
when in equilibrium with the electrical volume force Fye As a resql$ of the
pressure gradient a mechanical force Fv(mech)=‘ P is set up; thus F, +

= 0, which is the equilibrium condition, “v(mech)
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luld becomess

o , 2 a2 (e vz
(8.41) pi = pg = % l}.g (k”’_z)g‘] . [kog: Qc 1) ;kgz) ]1
. 1 .

Let us now consider the stresses that act across the boundary between two
dielectrics or simply the case of a boundary between a dielectric of specific
inductive capacity k and a'vacuum. We assume that the’transitidn‘frcm dielectric
to vacuum takes place in a continuous menner, as indicated by Figure (8.5).
Consider as an example a two dimensionél problem involving a pair of condenser
plates as shown in Figure (8.7) that dip into = dielectric 1iquid. If only the

net pressure difference from A to D ié‘desired, then this can be compuﬁed by

A

A

I T
— e of bomanry |
| |

N |
k4 _ — ‘:
|

(;field free

dielectric vacuum D

Figure (8.6) | : Figure (8.7)
integrating'only fhe'secohd‘term, the term that is pro?ortibnal to the gradient
of the dielectric éoﬁstanﬁ, of the force equation (8,19). The resultant electrical

pressure difference, which has to be balanced by hydrostatic effects is ﬁherefpret

D
. . k - ->
(8.42) P_A“‘sz"% ( E2v1<°dx

A

ors

D o
ko dk
(8043) oy -pp =% / (2% + Bn?) &
A



104

Treating the tangential and the normal ccmpoﬁenté of the electric field -

in accordance with.the boundary conditions expressed by Eqs. (2.15) and (3.19),

we, ootains

ol

]

. b . _ o' | 2 . 2 2
(8:44) oy - By = % ‘ Byp (1) + K'Bpp ( -

A

L ko(k=1) [ .2  ._2
-pA"P‘D=“‘:’z“‘)"‘ [E’c ”'kEn]

Note thaf the field quantities in equation (8,44) refer to the field inside the.

B

1iquid.- This'formﬁla will give directly fhé rise of the liquid in the condenser
plates, However, this'fgrmula is insufficient to describe fhe‘detailed pressure
behavior of thé»liQuiﬁ from A to D, since.the détailed preésure'Behévior alsé
depends on the elegtrostriction term. TIn fact, the pressuré change as shown in
Figure (8,8) from A‘towé is. actually of opposite sign from the pressure change
Affrqm_A:f@:?;f'ﬂsithe,figld decreases fr&ﬁ Bﬁto'pb the pressure decreasss below the
:Quﬁéide‘value atwA_by an.amount which'isvlayger than-thé pressure rise at the
sﬁffacé‘ﬁfB,; The net differénce computed iﬁ Fquation (8.44) gives only the
differeﬁcéwin'pféséuré séf%een.ﬁ.and‘D. The pressure which forces the liquid up
‘is actually exefted_at thé'region c Wherg the field is inhomogénéous and not at

the surface of the liquid, as is seen in Figure.(8.8). The physical reason for

A

pt

* Figure (8.8) x

»;



v

105

this is that the energy of dipoles in an electric field is loWer then their
energy: in' field-free space aﬁd therefore the dipoles in the liquid are drewn
into the regions of higher field in order'to satisfy the criterion for mechanical
equilibrium which requires a minimum potential energy. This action on the dipoles
takes place in the region C where the field commences to build up, This minimum -
energy effect is partially counterbalanced by the electrostriction drop at AB
resulting in a net pressure dropjas given by BEquation (8.44). This example'shows
that oonsiderabie care 1s neéessﬁry in applying‘the force équations in dielectrics,

Let us consider another.example which aﬁpaars to be extremely simple, but
which actualiy leads to an appafent paradox, If we consider a set of charged
conductors so arranged that fhey‘may bé*immérsed in a dielectric lioguid, then if
the true charges on these cohduc%ofé are kept const;nt as a liquid is introduced
between them, the free energy cf:the gystem‘as given by Eguation (7.19) will
drop in the ratio 1/k, since D remains constant but B is redﬁced, in this ratio,
1f on the other hand the voltages had beén maintained at their initial values as
the.iiéuid wa.s int;oégced, then the freevenergy would be increased’by a factor k, _
siﬁcé iﬁ £ﬁis case E:femains constant, while D increases by.a factor k, Of
coursey.theée:arguménfs énly pértain if alllof the space between_the conductors

and outside of them is filled with a dielectric liquid ., Otherwise we cannot

*,

At least all space where there are electric fields must be so filled.

assume, as i% implied iﬁ thé abdve statemeﬁts, that the distribution of B and D
reﬁains cohsfant as the dielectric méterial is introduced between the plates,
This means that if é‘éystem maintained at bonstant charge is totally surrounded
by a diéie;tric liquid all ﬁechanical fofces Will drop in the ratio 1/k.

This is thé reason“why a factof 1/k is ffequently inclgded in the expression

fﬁr Coulomb's law {1,2) to indicate this decrease in force, The physical
significance of this decrease in force, which is reguired by energetic considera-

tions, 1s often somewhat mysterious since it is hard to see on the basis of a
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field theory whyithe_interaction between two charges should be dependent upon
the nature or-conditibn of tﬁe intervening materiél, and therefore the inclusion
of an extra féotor l/k in Coulomb's iaw lacks a physical explanation,

Let us consider this problem in the simple two dimensional geometry of a
parallel plate condenser asvin Figure {8,9). Let.iqs be the surface charge per

unit area on each condenser plate and iqp be the polarization charge on the

/

-qg ‘a4 ' —-q, +qg
Figure (8.9) |

outer surfﬁge of the interveﬁing dielectric slab, Let the true surface charge
qs'belgésumed to be constanf dﬁring thefihtroduction of the dielectric slab; The
purely’electrical fofce acting on eéch cdhdenéer plafe will be the sum of the ‘
forcé’dﬁé to the fields produced by the chafges qg on the opposite plates and the
chatg%s-qp on'the twq $qrfépes bf the diélgctric,v.ihevfwé layers of polarizatiqn_
. charge will produce equal and opposite fields onjeach plate and their effects
will therefore cancel each othér. From the point of view of electrical inter-
action.alone; it is ﬁot obvious ﬁﬁy any change:in forbe at all is obtained when
the diélecfric'iayer is introduced; since theyoﬁly direct interactioﬁ between
the éhargés‘qs on thé plates; whi&h afé aséuméd to remain consfant, seems to be
unaffected by thé.introduction'bf the dieléctric.slabo  That is the force per

.

unit area remainsg

. qsz
(8.45) F, = 5=
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as long as the dielectric does not touch the plates of the condenser. Therefore
the decrease in force toz.

(5.46) T = 952
40) Fs T o

which is’ ekperienced when the experiment is performed with a liquid, that wets

._ the plates and also completely surrounds them, can not be explained by electrical

- forces alone. This apparent péradox can be explained by taking into account the

difference in pressure in the liquid in the field-filled space between the condenser
plates and in the field-free space outside the condenser plates.  By equatidn
(8.44), this difference in‘preséufe'is given bys

: ko _1_ ' ko 1
(8.47) pg - py = F, (1 - k) 'Dn2 =5 (-1 g°

The sum of the force resuiting from this preésureuand'the pure electricél force
given in (8.45) gives the total force given in (8.48) which was derived ffom
energy considerations. Thus the_depreaSé in force that is experiencéd between

two charges when they are‘immersgd in & dielectric liquid can be understood only.
by.gqnsidering the effgc# of, the pressure of the liquid on the charges themselves.
In accord&ncé with the philosophy of the action at a distance‘theory no change in .

the purely electrical interaction between the charges takes place.
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CHAPTER 9  4 - ... . STATIONARY CURRENTS

In the discussion of electrostatics in preceding chapters gll currents wefe
assumed to be zero. We shall now take the flow of charge, or currént into acdcount,
but shall assume that the currents are varying slowly in @img. This means that
‘the>current:f;Qijill depend.entirely Qn‘the glectric fields that are present
and will not depend on magnetic interactionsp_11n the absence of numerical estimates
qf the relatiye magnitgde of magnetic intgraptions and of the interaction of

.

currents’with the lattice structure of the resistive medium which gives rise to

eleotricél resistance, 1t is not obvious that a situation ever exists in which
currents dépend only on the electric fiqlﬁs, But if turns out that the magnetic
effects can be neglected Wheh=the fields véry at iowifrequeﬁcies,'provided that the
dimensiéns‘offthe conductors involved are small compared to the so-called "skin
depth" of the currents in the partiCular”éohductor. We willlalso neglect&an
additional effect, known as the Hall effect, which is present ecven at‘zéro
'fredﬁency;“and giveé‘riée to redistribution of the equal potenﬁiai surfaces in
& current-carrying éonductor, However, in all but very special substances, this
effect is extremely small,

The conservation of charge iﬁ the flow of current in a medium is. expressed

by the equation of continuitys
— af) - -
(9.1) Y/ °3 # =T =0 9 : j =PV = the current density within
the medium (Amperes/Meter?)
The current flow is called stationary if there is no accumulation of the dharge
at any point, This criterion is expressed by?
— >
(9.2) Vej=o0
In order to relate the theory of current flow to the theory of the electric field,

another equation is necessary which will give the connection betwsen the current

and the field that exist at a particular point in the conducting material,
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This equation-isg
(9.3) 7;*?0%; L - . 0= the electrical conductivity (Mho/Meter)
Bquation: (9.,3) is equivalent to Ohm's.law, This relation is an over all
phenomenological characteristic, and it may not be valid in many cases. The
rangé of current densities over which Equaﬁion (9}3) is wvalid isbcalied the
linear range of the particular material, and can be very large, as_in métals,
or very small, as ig a semi-oonductor.’ Equétion (9.3) impiies that the conduction
is isofropic° In c?ystals}wﬁﬂgé low symm§try (9.3) must be replaced by a'tenSOr
é&uﬁfioﬁ. | | |
>Nétatiohér& current flow is impﬁésible in a purely irrétatibnal electric
fiéld, since in Stationary current flow-energy is e%pended ét a rate :?°-E per
unit véluhé éna this,éﬁergy cannot be.prdvided by an ifrotational field,

Hence stationary currents are possible only in case there are present

additional sources of the electric field known as electromotive forces, which

are not irrotational, Denoting such non~-irrotational electromotive fields by
— ' '
B, the conduction equation (9.3) will therefore becomes
- = = : N -
(9.4) j=0(E +E")

Defining the electromotive force as:

- > ‘
-3 -> N 4 -y - je
(9.5) & = '{(E 4+ Bt )edR = fE“dQ =f§_£_?~_ , & = electromotive force (Vvolts)

—

Note that the conservative part of the field EEdrops out of the closed line

J
integration, This means that the current flow is due entirely to the non-
conservative forces, and is only influenced by the conductivity ana the geometry.,

In case the current demsity is nearly constant over major portions of the

path of integration, as frequently happens,:Equation.(9,5) can be written asg

£ aR -’ ' : o g ,
(5.6) C=JPsg = &R J = |3ls = the total current, a constant
' : for the circuit (Amperes)
R = the resistance of the S = the cross sectional area of the *conductor

conductor {(Ohms) where the current density is | j|.
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This is the form in which Ohm's law is usuall& stated. Note that in ajcase
where there is no current flow, we obtain, by integrating Equation,(9.4)dalong
& line between two. points 1 and 2 wﬁiCh tréverses‘all of the region in which

there is a non-conservative force or field:

2 - 2 _ _
(9.7) ,-{ 'ﬁedi ,=f'§'-¥d:€' =3§E>"-dl_f =& : , | -~
- 1

 Thie iﬁdicafeé that the dpen circuit‘electrostatic voitage bétween two points
is.équéiito ﬁhe total electromotive forcé.in the circuit;‘ It féilows,.in the
absenge df a‘curfeht fldw, fhét within a particular régioﬁ ﬁhere are non-ﬁogservative
fields-]gg = ;E, Thus? for example, Within a given boudary, the nonfconservative
fieldsv(e,g;,fhenéhéﬁical poteﬁtials)-afe exactly equal to the electrostatic field
Which‘is éef upvby the chérges on fhe‘ﬁbgndaries,vin the absence of a currenﬁ;
Formallyvééeakihg the current‘distribution aﬁa the field.aistfibution are
entirely défiﬁéa by the‘nonmédnsérvétive field and by the conductivity of-the medium;
Using EQuétions (1.10)5 (9.2) and (9;4) ﬁe ﬁave the following expressions for?g

- ‘ —
and j in terms of B':

C Dy
(9.8)V+3 = 0

- N

V= () V= @&

o . > :
In the region where there.are no non-conservative fields, E is derivable from a

i

e
° (OB) = -V °(cE'")

Lol

g

=0

‘ potentiél and hence in the case of sfationary-flow, the potential still obeys
Laplace®s equationg

-3 —_ - — 5
(1.17) E = = VJZ VeV g) = 0 or vﬁ = 0 if 0~ is constant,

i

The bouﬁdary conditions_are~changed,,however,lsince now the conductivities,
‘rather than the dielectric constants define the flux relation across a boundary,
From équations (9.,2) and (9.3) we have the rglation, in the absence of
non_conservaﬁivé'fieldsg_‘ o

rd .q a
(9.9) V*(0O°E) = 0
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Frém this we have for the boundary condition between two mediums designated by
the subécripts 1 and 2 respectivelys

(9.10) T (OoBe- o4B,) = O

R eV V)

And as before in Bquation (3.19):

(9.11) mx (Bp = EBy) =0

nx (Vs -Uth)

It follows from (1.17), (9.10) and {9.11) that the solution of stationary
current distribution problems is mathemafically identical to the solution of
electrostatic potential diétribution problems that have the same geometry, and thﬁs
all of the methods that were developed in Chapters 4, 5 and 6 are applicable to
these problems.. The only differencevbetwaenvthe static current problems and the
electrostatic problems is that the conductivity in a given region may be zero,
while the specific inductive capacity cannot become less than unity. This means

that the type of boundary value problems which arise in stationéry current flow

.may, under :certain conditions, be quite different from any that can exist in

electrostatic cases., As an example, if we consider that the region between a
set of parallel condenser plates is filled with a medium of conductivity o7,
. . N

then the current in the stationary current range will be exactly uniform over

tﬁe entire ares QfAfhe plates,,within the conducting medium, whﬁle in the

" analogous electrostatic case, the field distribution will be only approximately

uniform and will be disturbed by the fringing field at the edges of the plates.

In general, if electrostatio methods permit the calculation of the capacity
between twoveleétrodes, then one can conclude immediately what the resistance
would bé‘betweéh-these electrodes if all of the space in which they are located
is filled with = homogéneous resistive medium., The capacity between two eieptrodes
1l and 2 is given bys

kkof Beds

2y >
r-[l.EdJL

(9.,12) ¢C = (C = capacity in férads)
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The numerator is the charge on each.electrode by Gauss' flux theorem (1.6}
and the dencominator is the potential difference between the electrodes. The

resistance between the two electrodes is given bys
2

S Bag

2.
o ff —E)}ed?

where the denominator gives the net flux of current between the two electrodes and

(8.,13) R =

- the numerator gives the potential difference betweern them. Comparing EQuations

r

(9.12) end (9.139) we haves

. 1 c
7 S -
1) 575 7w

o'r.: : o

\ kk o) )
(9.15) RC = =5

" Hote that'the product of the resistance and the capacity is a constant that
depends'only‘on\ﬁhe conductivity of the conductor and on the épepific inductive
capacity of the material-betWeéﬁ the condenser plates, and not on the geometry,
However, it.is not always p;ssible ﬁobfind en electrostatic problem which will bé
fufly analogous to the'corresponding stationary current problem, since the diffefence
in the range of dielectric constaﬁts énd resistances_mentioned above causes
different-field'patterns in the two cases, The formula for the capacity of a

parallel plate condenser, when edge effects are neglected isg

(9,16) ¢ = koS A = the distance between the plates,

L

”#%mﬁﬁ

S = the area of the plates

which when substituted into (9.15) givess

, 4 o
{(9.17) R = o : - A = the distance between the ends of the wire.

"t
%

the ¢ross sectional area of the wire,

for the resistance of a wire of known length and cross sectional aréa. The
formula for the resistance of a wire is of course applicable for large values
of lZsince the zero conductivity of the surrqunding medium prevents fringing of
the current flow lines, which is in strong contrast to‘the‘Shapevof'fhe field

lines that would arise from condenser plates that coincided with the ends of a
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wire of ordinary length,

fmeemmﬁﬁnofcmmhmﬁwt

1) PT84 -0

in combination wi th the conductivity equations
(9. 3) 3 -O’E

and the source equatlon derived from (5 4) and (3. 11)

(9 18). VE

can be integrated with respect to the time in case we are dealing with a homogeneous

dielectric or a homogeneous conductor, The integration givess
L ,

(9.19)  @=p, e T
where tﬁe chéracteristic time T is'given byf

(9.20) T = 1 /o - ‘ | |

ﬁr is usually known as the relaxatlon tlme of the dlelectrlc. Note that it

applies only in the case of a homogeneous medium, for if 1t were not homogeneous,
then the spatial depéndence of fhe con&uctivity and the dielectric constant would
have to be takén’iﬁto>aocount in the integ?ation of Eéuétioﬁ (9.1). vThe relaxation
tiﬁeﬁié auchafaétefistic>time Tor a medium in that it gives-an indioatioﬁ of the
time iﬁ'which essehtiaily stationarybcénditions will be'reached aftér the initiation
of a par%iculérvéurrenf flow. The éritéfion whiéh must be‘used to determine

whether or not the stationary current equations will be applicable in a particular

Pt

case is whether the time of observation following the inceptioﬁ of such currents -

exceeds the relaxation time V. by a sufficiently large amount,
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CHAPTER 10 . TYPES OF CURRENTS

/

e began the discussion of Electrodynemics with the treatment of steady
currents since the original direct experimental observations of the magnetic A :

T

"interaction of currents were made with‘éﬁéfenfs éf %his type. ‘e must hoﬁ
consider the additional modifications that must be introduced into the>theory
if non-stationary currents are to.bé ﬁféated.
We shall discuss currents in a vacuum in a manner that is similar to the one -
Yhich we used to treat chafges in a vacuum and will then dérive the magnetic -
effects thgt occur within ‘an arbitrafy médium. We shall classify currents in’
two categories, those that are true currents, that is may be idenﬁified'with
the motion of frue charges, and other currenﬁs_which-are associatedAwith the
mediw itself. This separation.which is analogous to the séparation that was
made in_ths electrostatic theory between the‘potentiéys of true charges and the
poteatialsﬂog polérizatioﬁ charges, Will lead us to consider two types of magneticv
fiel@s, one derive@hfrom t?ge currents, and one éerivea froé the combined effecté
of all ﬁhe currents whatever may_bé their origin. It is this_latter field,
‘ namgly'the‘magnetic'field of induction ﬁt which can be considered_to be the.space;
'time,averaée of the interatomic fields,‘ Before proceeding to discuss magnetic
intefactions 1§t us cléssify the typé of currents which we Will conside? in
8 mediuﬁf | | | | "

] : » - N : A \
l. True Currents - j - These currents are identical to the physical . A

transportation of true chargeé.
. T U
QP

2, Polarization Currents - <= - These currents arise from the change of -

2t

the polarization with time.

. -7
3. Magnetization Currents = jm -~ These currents are stationary currents

that flow within regions that are inaccessible to observation but which might
give rise to nét currents on boundaries, - due to imperfect orbit cancellation

on an atomic scale., We shall describe these magnetization currents in terms of
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the magnetic moment per unlt volumes _ _
- __) - K .,

(10.1) M = —-(r x 3 ) .. M= magnetization {(Weber Meter?)

corresponding to these currents. The magnetic moment of a particular volume

is then’

(10. 2) e [/Mdv=, /ff\rxgm) dv

Note that this is analogous to the expression for the mechenical angular momentum
in terms of the velocity of a volume when‘the charge dsnsity is associated with
the mass. In the special case of a single "stationary cﬁrfént"‘loop that encloées
a gilven area,:; becomes simply the product éf“thé current in.the'loop multiplied
by the area of the loop and directed normai to the loopiih a df;ection that agrees
with the righthand rule_fof the curfent oirculation.v This is in agreement with
the elementary definition of the magnetic momentjof a current loép. We shall
show later that? _ | _ ‘

(10.3) jm §7,L79 _ is the inverse of Equation (10.1)

4, Cpnveétive Currents: If a material medium in.motioﬁ containg charges of
varicus ﬁypes, additional currents will be obtained which arise from convective
effects. These conveotive»currenﬁs will be derived both from the motion of the
true and the.po;arization.charges contained in the medium, There will also be
chenges in the net polarizatién current due tovthe motion of the medium. The
convective currents will be discussed in & later'chapter;

Let us consider the second apd third souroes of current in more detail.
Phen expressed in»termqufvmoleoular ppordinaﬁes, § s the electrical momént,

-

ps of a polarized molecule is defined by:

‘; r.'J/K '}?dy =ﬁ? ;d'v, ?: P _g

If the charge density'(j'mdthin the molecule is changing in time, the polarization

N

(10.¢

will change in time by an smounts

R The time veriation of electrical quambities due to charge motions can be
described either by considering changes in charge density as a fuaction of time,
or changes in coordinates of fixed charges}) this discussion shows the equivalence
of the two descrlptlons.




-
: -
(10.5) 2r _ 9e av
Q0T t
Substituting from the equation of continuity (9.1) this reduces btol
N i \_9
(10 6) _a_P_.- -6, s ‘9) d ) : .
{ [ at - &Pu v ] .
Integrating by parts and dropping e surface term, which is justified by choosing -
. - . . - «"v\
the surface of integration so that it lies .outside the region where there are
molecular charges,we obtain?
. ~> -
0.7y 22 ey
: . at _
or on a large scalseg
’ > - S
(10.8) 9P _YlPuiv T -
R 3% ‘ Cu
av
. . —_— . " ’ . . :
Hence the quantity‘&EﬁQBt does represent. the space-time average value of the
molecular currents ceused by a varying polarization, ~
.Let us now consider the magnetization current., We defined the magnetic
_I* : ol - ': R '. -. K] * ‘- > >
moment m of a region by Equation (10.2), INote that this is purely'a kinematic
definition in the sense that it does not involve any mention of an actual inter-
action, magnetic or otherwise, This corresponds to the definition of the electric
moment of a region given in Eguation (10.4) which is also only a kinematic
description of a specific alignment of charges, although the net charge of the.
volume is zero. The magnetic moment definition is a description of a system of
currents which do not produce any net flow across a surface which is large enough
‘

to be accessible to macroscopic observation., - For a given distribution of magnetic

moment, Bguatiom (10.2) can be solved for the magnetization current (1C.3) which °

° L orea

éan then be used to compute magnetic interéotions.

As an exasmple, consider the neighboring current ioops in a réctangular
network in the X,y pleme and let us consider the z éompoﬂ;nt of thé magnetic
momenf of these current loops as seen in Figure (10.1). 1If the magnetizaﬁion

is inhomogeneous: then there will not be complete cancellation between the boundaries
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My (x+dx)

Figure (10.1) x
of the loops end a net current will flow, This net current will bring about
whatever net effects are ascribable to the currents. From the expression for

the magnetic moment of a current loops _ .
= the current in the loop.

- -> . 5L
(10.9) m=4J8s S = the area of the loop.

and the expregsionffor the moment of one of the loops in_Figure (10.1):
. —é _» : N
(10.10) m =M dx dy dz
we have for the current in rectangle 1}

(10.11) My ax ax az
: Jy ® dx dy

and using Taylor's expansion theorem, the current in the neighboring rectangle
2 ise oM

< e pA
Mz + 3= ax) dx dy dz
(10.32) Jp = -

dx dy
The difference between J, and Jp results in a net current in the y direction
along the mutual boundary of réctaﬁgle 1 and rectangle 2, that iss
oM, '
(10.13) J, = - > dx dz

This will be recognized as one of the six components of the curl and one sees

that in geheral: ‘
> = >

(10.14) jp, =V =xM
Expression (10,14) is the solution of Equation (10.2) in that it reduces it ‘to an
identity. Equation (10.14) gives the net current produced in a region of irhomo=
geneous magnetization, In e region of'diéébhtinuous‘magnetization, it is easily
seen that a surface current equal to the change in the tangetial component of the
magnetization will result at such a discontinuity. This follows when Equation

(10.14) is applied to a limiting transverse surface bounding such a discontinuity,

L4
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Thus in a stationary medium, the.totai current is given by the sum of the

three types of current. enumeretea on.pages 114 and 115,

(10.20) Jtotal ¥ Jtrue FY +‘:‘7 =

In order to conserve chargs it is neééésary‘thaﬁ this total current obey the
equation of continuity (9.1) If we. take the dlvergence of the total current,
we obtaing

(10.21)  Voog, o= Ve g 4V °(°5‘%')+ Ve (V)

Jtrue

Taking the partial derivative of Bquation' (1,9) with respect to time, we haves

Y. = [3E
(10.22) (—-—-— \ = ky (._.._
ot total © ot

Substituting (1C.21) into (9,1) we havel

N — ;> 2 ' e T B
- oF o
o) Vegg 0V - ($E)+ 3(z>total PV VR

Substituting (10.22) into this and using the relation (3.3) we haves
-—

§§ ~ g a;?> Neg = o> — :
(10.24) o * V(35) vx, THE 4 V - @) =0
—_ -

The divergence of the total current (10,21) is not zero. .This means that the

total current is not sclenoidal, hovever, the ouanulty.

] s o= 3 —-:-—- 7 = =
(10.25) ¢ Jtrue * SAVAE SR Jtotal T ko DT

generated by adding the temm koa}3491;to the total current is a solenoidal
current. The extra term which has been added to the total current to form the
solenoidal current Eyis known as the vacuum displacement current, The need for
the addition of. this term to prodﬁce a solenoidal net current vector was
?écéénized by Meaxwell. koa'—E’?&t does not have the significance of a current
in the sense of bging the motion of charges, We shall see later thatvfhe
magnetic effects of currents can only be formulated in terms of solenoidal

currénts, and therefore that the vacuum displacement current term must be
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introduced in ordef'to be abié,té'apély the formulas which Will be developed
for the magnetic interactidn of splenoidal currents to cases involﬁing the magnetic
interaction éf non-stationaryvéurrenﬁéF | |

The geomet;ic%lﬁéignifiéance of fhe ;ol;noidal current :?is“that aé points
where_there is an aéouﬁulation df chafge, the current is assumed to be conéinuous
acrdss the disoontinuity in.the.férm of thewrate of change of the field reéulting
from the accunulation of the charges on the boundaries of'the discontinuity. As
an example;. & battery bharging alcondenSer.préduces a clé;ed‘curreng loop in

-
terms of c,
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CHAPTER 11 - - THE MAGNETIC INTERACTION OF. CURRENTS

" The magnetic interaction of currents is best described in terms of an
experlmenxally establlsheq 1nteract10n in vacuum thet is analogous to the
electrostat]c Coalomb law, he mathematlcal generallzatlon of the ex norlment

of Ampere whlch éwve the force between two currenc«carrylng elements as seen in

Flgure (11 1) is glven bv the expr6551om.

- ' d ¥ | :
(11. 1) Fe = Z: dy da. f¥; dﬂz X ( 21 x tlgl- s Po = (4ﬁx10’7-Henry/Meter)

1"

dj{l / (d?l;)rlz')'

Figure (11.1)

- - - '
Fy is the force on the circuit that carries the current Js and that has the

—y o *
line element df;. Due to the geometry that is involved in expressing the
' o -ID - : :

relative dirsctions of Fg, 551’ d4e and r, this force equation appears to be
more complicated than the Coulomb force equation (1.2). Also it appears,
superficially, to violate Newton's third law of the equality of action and
reaction, The integrand of Equation (1l.1) is in fact asymmetrical as it
stands, However, when the integral is cafried out over two closed circuits

the resulting force is symmetrical in terms of the geometry of the two inter-

acting current loops., This can be shown as followss If we expand the integrand

¥
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by the double vector product rules
; — e T I S N e Y
(11.2) Aax (BxCc)=(A«C)B=-(4A+B)C

we obtaing

(11;5') ;?:2 = 4 Jdy da é&{(dngrlz)d‘@‘“ (dQ °d&)rl&}

r

> »*
Since the sz integrand in the first term is an exact differential, this expression

vanishes as the integration is carried out over closed loops, The other integrals

(11,4) I‘z = _,[ 0 §§ (dQJ_"d'Q )r;Lz lele

- igs symmetric in terms of loops 1 and 2,

Thé reason that we ‘are takinngqqatidn (11.1) rather than Equation (11.4)
as the starting point for the discussion of fhe mégnetic interacﬁions is that
Bguation (11.1) is in such é form tﬁatvthe interaction expression can be separated
into a field produced by loop 1 and a force éxerted by this field on loop 2.
Expression (11,4}; ohrthe‘othég ﬁand, which implicitly contains the cosine of'the
angle between thé;elementary current elements does not permit such a separation
and thérefore ﬁbes not lead directly to a vector %ield %qrmulation of magnetic
interactions, <The separation of Equation (11.1) into a'f;eld and é field force

can be carried out’by puﬁtingf

Jz f d—ez X Bz' | )

. - - Po g 1 - .
(11.6) . By = = ey fj in X §72 ;“—>‘ s Bp = the magnetic field of induction
. ‘ 1= caused by circuit 1 at the
position of clrcult 24

- f o ) (Weber/Meter? )

—tp
(11.5) Fy

where$

!

i -
B is analogous to E in the electrostatic theory in that it determines the force

7e??:eing the line integral of a gradiente[=>/1 >
VirF o dlp
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that acts on a circuit element. Equation (11.6) is a generalization of the
Biot end Savart law; It should be noted'éﬁat thug far we have no diffefentiali
form of this lawo. The'Biot and Savért lew when expressed in terms of volume

currents becomes?

(11, 7) f (= B)dv C o . -- o "
Yo | o | |
an

(11 .8)

Note that r in (11.8) is directed from the point of integration or source point

- - ard e
(where j is located) toward the field point where B is being determined.

.o
Let us inquire under what conditions the magnetic induction field B can
be derived from a scalar potentlal by the relat10n°
i d
_(11.9) B = “‘7¢Q‘Po

Lot us consider & closed loop carrying & current J &s in Figure (11.2)

-

Figure (11.2) e .

. . - ..
Let the field of the current loop be measured at a point p. If the field B were
derivable f}oﬁiéj§calar"magneﬁic potential g; and if the point of ‘observation

< . .
were moved through a distance dx from p to p', then the increment in the

 scalar magnetic pbtential ﬁ; would be given by:

> >
dx ¢ B {

(11.10) " af = - o
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which, using the Biot and Savart expression (11.6),becomess

e 4

(11.11) dﬂfm:-z%l-Jf = '(‘5x r),=-;_&-}Jj{“_ (d"sx.d L
e ) r L} N N .

r

The mixed vector=scalar product permits cyclic permutation, since it is the volume

of the parallelepiped whose edges are the three vectors in the product, REquation

(11.,11) is of course equal to the change in the scalar magnetic potential which

is obtained if the point of observation were held stationary and the loop were
. o R - S . :

moved by an amount -dx, as was discussed in the derivation of Bguation (2,19)

for the potential of a dipole shéet., Using the relation given in Equation

(2.19), the change in the scalar magnetic potential can be written ase

¢
(11.12) af, = 7
where d{l is the change in the solid angle subtended by the loop at the point
of observation brought about by an infinitesimal,displaoément -é:xbf all of -
the points of the loop..
This scalar .potential has the,saﬁermathematicalAproperties as the solution

of the electrostatic potential of the surface dipole layer discussed earlier,

‘as seen from the similarity of Bguation (2.19) for the static potential of a

ipole and Equation (11.12)_for,theimagnetic-inductioh of a current 1dop. In .
addition this meens fhat the scalar potential of a current loop is multiple-
#alued in the sense thal it appears to undergo a discontinuity of magnitude J when
a sﬁrface bounded by tﬁe 1oqp is-crossed. In the case of the electric dipole
sheet this surface has a physioal‘significanpé, however, in the magnetic case,
this surface can be chosen in any arbitrary position.“:Sipce the choice of the
sﬁrface?is arbitrary the magnetic field derived.from such a potential outside
the current-carrying region is nonnambiguoué. However, line integrals of the
magnetic field of a_current 1oop,Will be correct'only if the path of integration.
does not pass thrdugh the arbitrary surface;' The line integral of the magnetic

e , “ .
field of induction B around a closed path threading the current J is exactly.
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equal to the magnitude of the discontinulity in the magnebic scélar potential
ﬂh across the arbitrary{rgferende surface, and hénce we have:-

- - -
(11.15) Bedf = pidiotal
For a graphical rep resontatlon of the magnetic scalar potential of a current
lopp, see Figure (2.5A)., The dipole layer of Figure (Z.EA) corresponds to the
arbitrarilyulpcated sgrface of discontinuity of the cﬁrrent loop,

Equatiqn (ll,l$) is the integral representation of the differential relation
that gives ﬁhe tota1 circulation of the magnetic fiela vector in terms of the
current that Qauseé the magnetic field, Sinqé‘(ll.13) is valid for any arbitrary
closed path of integration, we ban_convert“it'iﬁto a differential expression by
substituting (11.13) into Stokes' theorem (1,14) ana‘reducing the sgize of the
surface of integration‘to a differential, fﬁus securing:ﬂ

(11.14) V x B }JOJ
We conclude that B cannot in general be derived from é-singlemvalued magnetic
scalar potential, The conceét of fhe magnetic scalar potential is of practical
utility'prdvidea it is bnly used to derive magnetic fields in the absence of
continuous current distributioﬂs.. However, the muvnetlo scalar poter lal ﬁ
cannot be used if line integrals are considered, which loo? current—carrylng
regions, r‘if_the field within cUrrentjcarrYing media are being consideréd.

Bqustion (11.14) defines the circulation density of the magnetic field
of induction aﬁ‘a particular pdint in terms of the current density at That -
point, In order to ‘completely define a vector field it is mecessary to specify
not only the circulation density but also the source density of the field, This
means That the wvalue of the 23 S;rmst be ascertained, To obtain its velue we
must maké-assumptions as to the nature of the sources of the magnetic field,

If we assume that currents are fundamentally the only sources of the msgnetlc
field, and that the magnetic field of such currents is only given by the law
of Biot-Savart (11,8) and (11, 8), then we shall show thatg

- =
(11.15) ¢ °B = ©
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This will follow immediately from vector considerations if we can show that
the specific form of the magnetic field given by the Biot-Savart law permits B
- :
to be .derived from a vector potential A by taking the curle .
s S :
(11.16) = B=V x A

If we re-express the law of Biot-Savart (11.,8) ass.

. . - _,.5 ) .
. = Mo 'x r “Po . fff >  —f1

* The operator \Yj in (11,17) does not operatezgn'the variable of integration but
A : . s
on the variable of field position so we cen take the \/ operator outside of the

integration sign. The current vector j'is a function only of the varilables of

-> - - —
integration so Y],(l/f)xj'= §7x,(jy%). This operation thus gives:

. > Yo 'dv .
(11.18) B =3¢ W /
-l .

Hence B is actually in the form of Equation (11.16) if we lets

o = >
> Mo itav!
(11.18) & =77 -—-r-
and hence (11,15) holds for all current-produced fields as a vector consequence
: , ' T =
of (11.16)., The explicit expression for-the vector potential A in terms of the

current is ﬁherefore'correctly given by (11,19). The expression for-the vector
potential of a linear current distribution corresponding to the expression for

the vector potential of a conbinuous current distribution given in (11.19) iss

(&
. - Jo a
(11.20) A= Il T
' : o : :
The fields produced by currents can therefore be computed by first computing
, . - A
‘the vector potential A, using (11.,19) or (11.20) and then obtaining the magnetic

: ' C v ' -
field by the relation (11,l6). The vanishing of the divergence of B follows

e
from (11.16)s ° : . : . T
*Equatlons (11 14) and (11 15) can also be derived by dlrect dlfferentlatlon of

Bq. (11, 8) | | A
c vx B-—— m, vx‘: (ﬂdv'— MI’g {-—) <—]' (3 V)V( )} dv_’)‘
1 —‘pog since :7 = = 4§ (r) and the second term vanlsyéf 1f§7'-3 = 0,
V' | g v - J‘ ’y\?)] “dvt = zn*ﬁ %7"[?7@' =0
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CHAPTER 12 MAGNETIC WMATERIALS

Thus far Ionly magnetie fields in a vacuum have been treated. If material
media are introduced into the magnetic fields, then the current ?in Bquation
(11.14) mgst be replaced by the total -current inoluding the magnetization and
the poclarization currents, as given in Eé_[uation (10.210).‘ Sinoe e have shown‘
that in vacuo that .5 _B.> is proportlonal to tne total stationary curren'b dens:.ty,
' - = -
the relation {Yx B = )103 can only be generalized to non-statlonary cases if either
the current remains solenoidal or if the relation used in deriving the magnetic‘
field frt;m the current is modified, The choice between these alternatives made
by Maxwell was to retain the relations that deriv'-e the magnetic field from theé
current, (11.68), (11.8) or {11.18) but to use, in the general case of non-
stationary fields, the general current -c-:’in Equation (i0.25), which includes -

the displacement current and which remains solenoidal, The total current —c’for

media at rest, in terms of all of the components, is thus given bys

> _ = = 3D > P - QE
(1?'1), C7 Jgrue TV ox M4 ot = Jtrue * oF +v x M * % 5%

Q

: -
and hence for stationary media the equations defining the vector field B are$

- —
(12.2) VB = 0O
and using ¢ for J in (11.14) we haves
A - = . —> a‘g —> p =
= . oF oE
(12.3) V=B Po (Jtrue VRS M ) Po <3true at v x M * ko 61:)
Note that each of the four terms on the righthand side of (12,3) has a distinct
> -
P ' 0 i
physical meaning, The polarization current term %‘F and the term kog% have a
superficial similarity snd their sum is equal to the displacement current g% .

However, the polarization current represents a space-time average of actual charge

motions within a polarized medium, while the term ko%-? is a mathematical supplement

which is nécessai‘y to bring Equation (12.,3) and (10.23) into agreement with the

equation of continuity and does not represent a current having a physical feality
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in the sense of chargé motion, The similarity of these two terms has led to a A
great deal of speculation as to whether some motion of charge might not actually

: : :g , : o

be involved in the vacuum displacement current kb%%-, but such charge motion
could only be measured by its magnstic effect and it is therefore unnecessary -
to introduce such charges as a physical concept. &s will be shown later, by
relativistic considerations, it is not possible to measure any properties of

the field~carrying medium by physical means, and therefore one cannot ascribe

any material significance te the vacuum displacement current. term,
In the treatment of the polarization of dielectrics in Chapter 3 it was
found to be mathematically convenient to separate the field whose sources were

true charges only, from the total field whose sources were the true charges

‘plus the polarization charges. In a similar memner it is convenient to separate

the magretic f1e16 whose circulation den51fj arises from trusé currents only,
from the total field whose circulaticn density-ariseés from true currents plus

/

atomic magnet;zatlon currents, fherelore if we write Bguation (12 3) 1n the formg

.._>
(12,4} Y = (B - FOM) Po(jzrue * kt)

and define a new field H bys

QRS 4 1 / B4 : e 4 . ' e
(12,5) H = == \B - rDMJ = —-- M . H = the magnetic field inbtensitys
P _ Pb _ S (fmpere=-Turn/Meter )
then (12, 4) will reduce to
_‘? ‘,'aD
(1? G)VXH Jtrue 5T
. . ->
?quatlon (12.6) means that tha circulation dcnswty of H arises fron the true

current Dlus the tot el displacement current 5—-. By the total dlsplaooment we

mean the sum of the polarization current %—-Qnd the vaccum displacement current

koif : Under.stationaryvoonditiqns or quasifstatiqnary'conditiqné‘ we haves

"Here we consider quasi-stationary conditions to be those in which . the magnetic
effect of the displacement current is negllglble compared to the magnetlc effect
- of the true current, :
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R

3D o = |
(12.7) 5T 0 -V x

and in integral forms

(12,8) j(; dI: J

Note that in the sense of the separation between the effect that is produced by

true

the total and the true charges and the total and the true currents respectively
> L= = - -
that B plays a role that corresponds to E while H plays a role that corresponds -

to D, as we can seé by comparing Equations (11.13) and (12 8) withe

- q
(12 9) ffEdS t°ta1

- — = '
) °dS qtrue .

‘The discussion of dielectrics in Chapter 3 was limited to the case of linear

media, nemely media in which the polarization was proportional to the applied
electric.field, In ferro-magnetic substances, however, the case of nonlinear
behavior is most common and therefore we must discuss some . of the properties of '
the magnetic field which arise in cases when the magnetizationfiiis not a linear
and often not even a unique function of the externai fieldsw At firsf we wili
assume‘gito be a glven functlon of the material: medlum 1ndependent of external
flelds° In the most éxtreme case, that of a permanent magnet, there will be a
magnetie moment<;?per unit volume, even in the absence of any true currents. In

this case, as we see from (12 7), H will be 1rrotat10na1 and will therefore behave

-
mathematlcally 11ke an electrostatlc fleld, whlle B remalns, of course, solencidals

' - — —_> = - =
(1;2.,-1_0.), VxH=0,{/xB =R, V= M# 0
However, the magnetic field will have sources as we see by taking the divergence
of (12 5) 'and ‘using (12 2)«
—9 : : . ’ : : .
(12 11) §7 BE (%n . fin = magnetic source density

e
- I ERYAVR)
\

[} - /

——> .
The "magnetostatic field" H can therefore be derived from a magnetic source

./’ »
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density*(om‘which is equal to the negative divergence of the magnetization, One
unit of this equivalent maghetié_charge density is usually Xnown as é‘magnetic
péle; In'férms of this deécription aimagnétic pole haé no‘physical feality other
than thet the mathematical désdription of the resultant‘magnefic field of a |

permaneht.magnét is formally the same as the mathematical description of the
—_—

 resultant electric field of electric éhargeso Since the magnetic field H of a

permanent magnet is irrotational, it cen be derived from a magnetic scalar
—

'poténtial ﬂ% in the same ﬁay that E may be derived from the electrostatic potential

ﬁo If we puts
» — =
(12,12) He= = §72;1 |
then the resultant scalar potential, in terms of the equivalent volume and surface

pole densities, is given by°

Mods [[[ Vo

The field of aipermgnent magnet of a given magﬂetizatioﬁ can also be described

(12,13)

- : : _ . ‘
by a vector potential A which is derived from the equivalent surface currents

end volume currents within the magnetized body,
We saw that the,surface;current at a boundary equivalent to the magnetization
' \ ' - —>

is given by the tahgential component of the magnetization, -n, x M, and the

equivalent volume current is given by the curl of the magnetization, as was shown

in Equation (10.14)s. From'(11°19) the vector potential of a>magnetized body is

thus given by‘x _¢ -
- ;
(12,14) A= ZE‘ JI( dv flr- == 45|
fram which the magnetic induction field can be derived by'thé use of (11,16),
- In the case of a uniformly magnetized medium, all internal curremts cancel
and hence the equivalent surface currents are»the_ohly'ones present, A cylindrical

magnet magnetized in a direction parallel to the axis of the cylinder therefore

has a magneticvfield equivalent to the field of a solenoidal coil, carrying current
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on the cyliﬁdrical face of the magnet with the current flow lines lying in planes
normal to the axis of the cyllnder. This situathn can be‘described qualitatlvely
by notlng fhat for a_permanent magnet,?;.can be thought of as arising from a layer

of equ1valent pole charges located on the magnet pole faces in the same manner

as an electrostatic field would be formed by charges so placed, On the other hand,

—)
B arises from an eoulvalent solen01d which can be thought of as being wound on

the cyllndrlcal surface of the magnet in the same manner as a vacuum current field
arises. B/yo and?g are identical outside of the region where E?has a finite
value, but they differ by-i?inside of the magnet; Note that B and H in Figure
(12, 1) are actually in opp051te dlrectlons inside the magnet, és is obvious from .
the fact that the line integral of E?must be zeroc around ‘any closed path.

quivalent charges Equivalent coil

"Permanent
magnets

uniformly
megne tized

Figure (12,10)

e | s U '
§H°d =0,/° H7!0 (on surface) : fB"d,Q 7{O,V°B=O (everywhere)
- = ' v
(B and H fields of a permanent magnet)

Equations (12.13) and (12.14) describe scalar and vector magnetic potentials
in .terms of the equivalent pole or current distributions. The potentials can,
of course, be described in terms.of the integral over the potentials of the

individual magnetic moments themselves. If we start from the vector and
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scalar potentials of a current loop, we will then obtain the expressions

(12, ,15) - -_> };‘i _]X_; x —5 <’3T\) dv!
and : S : L

(12.186) K ( ) dv! : .

By means of an integration by parts theése expressions can be shown to be equivalent
toe(lzols) and (12,14), The fields derived from either>expressien must of course

be the same.  We tan show, be vector identities, that the field due to a magnetic

: - -
dipole of moment m.= Midv® isg

- - = - Mo Po S 1
(12,17) B=yYx A= [Ux mxv W(m'V)V v G
The las%lterﬁ venishes except at r = 0, Fronxﬂz 16) C
e 1 = > =1 : -
(12.18} Hs-v¢m=:;;[v_mov()n~ -(mv)v<> (4):L
The two fields differ only at r = O. |
Thus we have seen that permanent magnets may be described equivalently either

in terms of:"equivalent currents" or'"equivelent poles.," Since the entire.
description of magnetic fields has been based on the premise that they are produced

by moving :charges;* we are led to believe that the interpretation of the field

* There exists no basic objection to the existence of magnetic poles}; their fields
are simply not considered here since there is no experimental evidence as to
their existenée, If single magnetic poles did exist, all the above equations
would have to be supplemented., It can be shown quantum mechanlcally that if
magnetic poles did exist, the magnitude of the "elementary" unit pole would

~have to be related to ‘the elementary -charge by a constant factor. .

of a permanent magnet in terms of the circulation of atomic currents is a more

fundamental one than the concept of magnetic charges, and that therefore B which

-9
arises from currents is a more fundamental field than H which :arises from "magnetic

charges,” " However, the description in terms of H is more attractive from a practical

point of'view, since it reduces problems that involve permanent maghets or problems
involving ‘magnetized pieces ‘of 'iron whose magnetization can be determined by

n

other ‘medns, to problems in electrostatics.
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The question mentioned above as to whether B or H is basically the more
fundamental field can be formulated in a different way. If we ask the question,
"consider & charge q moving with a velocity v in a magnetized medium and let us
-
).

. . b - .
suppose that the force acting on it is of the form F = q(v x Then should we

use:gfor-gjfor-iz or use a combination of them?" This question has been tested -
experimentally by“Raséetti by measuring the defiection of cosmic rays in maénetized
iron, and has been studied theoretically by Wannier by analyzing in detail the
motion of charged particles in magnetized medig° The answér is essentially'this:
If the motion of the charged particles is truly random relative to the magnetized
material, that ié,.it‘ié'not affectéd by the pfgsende‘of the magnetized medium,
to a first approximation, fhen the quce that isvexerted-on a charged partiCie_
corresponds to the use'of;z?as the magnetic field in the force equation._ If, on
the other hand, the particle is moving slowly and its ﬁotion is substantially
affected by the magnetized medium, then the particlé is effectijely preveﬁted

~ from passing through the insides-of the equivalent atomic current loops and in
this case, since the individual current loops act like impenetrable dipoles, the
averaging process favors a deflection that cbrrésponds to the use of-;rin the

force equation, Rassetti's experimental results actually indicate that the

deflection for very high speed particles corfesponded approximately to the use of

3

B in the force equation, In order for the results to correspond to the use of

- o o
H it would have been necessary for the deflection to have been in the opposite

direction, ' The answer to the above question can be given precisely in.the limitsg
o :

>
X(V"‘*C) = Be
Thus far we have considered the case of magnetic media where the magnetization
_> )

Mis a given function of position as in a permanent magnet., We must now investigate
the case in which we have an ideally permeable medium, that is a medium which has

no magnetic moment in the absence of external true currents and which gives rise

N
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to a magnetlc moment which is proportional to the field that is produced by the

.external true currents, The field equatlons are thene
- -
.(12.2). -Vo-B = 0

(12.8) f &+ af = It rue

— - ‘
and 1f we assume that M = 'XmH we get a relation that corresponds to Equation (3 11)

in the dlscusslon of electrostaticsg
-

(1"2;1"9)"—8,?,1 Fo B pE% +1=the permeability i, o
| a ' %, = the magnetlc susceptibility . .

By means of a dérivation which is completely analogous to the one used in
Chaptér'S}Ttg'defive the boundary conditions forfghénd D, the bbundary.ponditiohs
forfgrgﬁaﬁszrblinear media may bé shown to bes

(12;20):iNormai Componehts) .£.¥ QMg S

_n-,l f.(g - 51) = nl }"(}12 Hz "}>11 H1

(12 21) (Tangentlal Components) K the true surface current on the boundary
between the two media,
e T — — ~—é 'E ?? -
ny, x (Hy = H,) = n, x - = £ .1 K
o G- 5 G T BB

Note that the ggqgtions'(lz.Z), (12,8) and (12,19) are mathematically identical -
to the equations governing_stationgry current flow in‘a gontinu¢ué_médium in the |

presence of a non-conservative electromotive force!
—

—?
(9.2) Ye+j=o0
- — -
(8.8) j= OE
(9.5) jgi? o af =E

which led to the expressions

(9a17)" R = c{ls '54.—
1

for the “resistance” of linear conductors in series. This analogy gives rise to the

concept of the magnetic circuit, namely the solution of linear magnetic media
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problems given bys

' , - = g . ) o
(12,23) é = ﬁ B*ds=7— |, 'R, = the magnetic "reluctance" (Amp/Weber )
m Ry ‘ etic 'red
of the circuit,

(12.24) R =z;_ Ao 57

Note that this solufion is béséd gnly‘on the‘cbfrespondenée of ﬁhe differential
equations for linear'magngtization prgbiéms;to %hé differential equations for
éteady current problems, and thgt the solutions themselves will.actually correspond
only ip case thé'boundary COnditiéns for the magnetic and current problems are
identical, This cannot be true in general., .In fact, it can never be completely
aécurate since the conductivity of free space is zero, while the permeability of
free space is unity. Tﬁis'meaﬁs'that.thenmagnetic circuit solution will only be
‘valid if the permeability of the.media:being_coﬁsidéred is quiteé high compared to
1, ‘or at least if the regions OTLSpgce that afé‘acééSSible to the magnétic field
in which the permeability is comparable to 1, are small compared to those regions
in which the permeability isvmuch 1argef than 1, ‘The set of solutions (12.23)
and (12,24) do, however, form the basiS‘of indust;ial magnetic machinery design,
since they permit:an approximate treétment in cases ﬁhere direct boundary value

solutions aré impractical,

»

¥
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CHAPTER 13 MAGNETTC BOUNDARY VALUE PROBLEMS

In: general, boundary-value problems: in the presence of magnetic media can
be attacked eithér by the use. of the magnetic scalar. or the véetorvpotential._
Problems involving magnetic media, located in external fields, where true currents

do not. enter the region of interest, are best treated by the use of magnetic

'scalar.potentiais., In this case, the magnetic bounddry conditions (Equations

(12,20). and (12.21))>expressedlin terms of the megnetic scalar potential are. .
enalogous to'the electrostatic boundary eonditiOns given in Chapter 3 if the
relative permeability repleces the specific-indnctive capacity, and the absence
of any quantity corresponding to true?surface charge.and,the possible presence
of a true'sunface current are taken into account, ,Wé have, for the boundary

conditions in linear mediag

’(Normal Components )

'(13'.‘1’) ':nl: ¢ (Dy = D;) s'ny ° (kzko Ez - ky ko E;_)'-’ o (3.15)
e e o o
(13 2) n,“lo(sz2 lel) = nl . (Bz -B,) = o . (12,20)

(Tangentlal Comnonents)

(13.3) {k—ﬁ- klko = nl X (E2 - El) =0 - «(S-.ls)’

. —9 - ' ‘ -
—> - D B B - '
(13,4) ny x (Hy = Hy) = L -2“ o= ) = § C (12.21)
o | Fo *\Po " R
where K is & surface boundary current, ‘ ' '
Fonfexample problems involving magnetic shields can be. treated by electro=-

tatlc boundary value problem methods. The only additional'complicatien which

enters 1n the magnetlc problem is. the fact that in practlcal cases the permeablllty

P for a partlcular materlal is not constant. Thls is especlally true in cases

when the flux den51ty W1th1n the penneable medlum becomes hlgh In such cases

of high flux den51ty or saburation the method of success1ve approx1mat10ns may be

used. In this method & solution based on the assumptlon th&t}lls ‘constant is
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first obtained, Then the résﬁiténtvfiﬁi\densitx,is cémpufed,and the perméability:“
is secdured from it. The problem i; then repeafed using the new permeability,’
This meﬁhdd;will give en -accurate solution to problems where the field inside - .
the permeablé medium turns out to be uniform. ‘The problem of an ellipséid of -
magnetic-material'situated in a uniform magnetic field is.suchva problem, For -
this reasbn?~thé torquéfacting'oﬁ an eliipsoid suspended in a uniform field can'.
be used 4s & measurement of the permeability of the material of the.ellipsoid as
a function of thé external field,-aProblems of the behavior of‘permeable media
in high fields-Whereuthefresultant magnetization is.appfeciably'nonhuniform are-
essentially impossible to treat by purely analytical . methods, R ‘

Problemsin which currents are present must be'treafed by the use of the:
vector potential unless it is possible to introduce an equivalent dipole sheet
in place of the current, The vector potential obeys uniqueness conditions. that
are similar to those .obeyed by-the scalar ﬁoteﬁtialo' We can show'this‘by a proof
that is vefy §imilar to the proof used~in Chapter 4 for #ﬂe uniquene#s of the scalar
potential, We will use the vectof form of Gféeﬁ's*theofem.of Gaﬁés’ divergeﬁcé |
theorem in our'propfo If we substitute: | 4
(13.5) ?’='Ex (6 x ﬁ) T I?, 7 and V_Vba;re':arbitrary vector functions.

into Gauss® divergence theorem (1.7):

k;13‘,6) K(‘@’Jfav =Jf Yo as

we obtaing h

(13.,7)/[“6:(‘\1_?))”({7)7:?) U V x (v xﬁ)] dv =ﬁ Ux (V x W)‘dS

Let us now consider a region in space that is bounded by the surface S and has a

volume ¥, within which thére is no current flow. In order to accompllsh this
C it may be necessary to choose subsurfaces which w111 exclude the reglons of current_

flcw. Thus, for all p01nts Wlthln v, 1f we 1et’
' o S = e Ty
= O gWBA ’U’=A.'~

.(1308) Jtotal

7
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and us1ng the field equatlonss
(13 9) v x B : /uoatotal K FY =Vxh » VxV{YxA =)J0Jtot\.a_1

'vSubgtitut;ng into Equation (13,7) we obtaing

(13.10) [{] (Vx A)“dv = (AxB) eds = (A x B e nl) as
which can be put into the forms ' _
N G - L B, = the tangential
= = S = > - ¢ = the tangentia
(13,11) [K(v x _A)zdv '-'-f (Bxmn,) * AdS =[ By * A dS, _ component _o.f.?i
. S ' parallel to the
- ' surface and per-
. pendicular to S.
Now let us assume that A in (13.10) and (13.11) represents the difference between
alternative solutions corfesponding to the same boundary values of either the 3
tangential component of the magnetic field of induction B, or the vector potential
Ei ;The&righthahd side of (13.11) then vanishes since it is évaluated on the
boundary where the altérnate solutions are equal, on the other hand the left hand
side of (13 11) is pos1t1ve definite and hence its integrand must vanish., So
—_ - —_— — —
V x A must be zero throughout v and hence the field B = Y7 x A is unique,
This means that the tangential component of the magnetic field or the value
of the véctor potential on the surface S uniquely defines the megnetic field within
the volumé'boﬁhdéd'by this surface, This is equivalent to the analogous electro=
static consideration in which the value of the scalar potential on the bounding
sufféce or the value of the nomial electrostatic field defines the electrostaﬁic.
field in the iéiumé‘boundedlby this surface, It is possible of course to carry
the analogy of this procedure still further by writing the vector potential
within v explicitly in terms of the currents j within v and the boundary values
of the field over S which are chosen such as to make the field outside of S equal
to zero, The sufface terms will then correspond to the complementary solution
of the differential equation while the volume integral of the currents will

corfespond to the particular integral of the differential equation. We shall
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not carry out the details:of:this process hereX We shall, héﬁevér, dsféiﬁ”fhé
particuiar integral which can behmdde equal to the general solutién in cése ﬁé:
let our boundary expand to infinity in a manner similar to theielectrostatic case,
that is, ‘the solution which cérresponds:to knowing the soﬁrces over all space,

The differential equation whose particular integral is to be obtained must first

be. derlved frcm the field equations (15 9) by the use of a vector 1dent1ty for

- the double curl. ThlS gives usg

(1312) V (VXA)V(V°A)”V A-/qu

Some care must be used in the interpretation of the operation of the symbol K]z
‘ ' ' ' 2>
when it is applied to a vector., In a Cartesian coordinate system |/ A means a
| th P . . . .
vector whose i=" component is |/ Ai. In a non-Cartesian coordinate system it
means & vector whose iEE-component must be evaluated by the use of the identity:

(1313) v A=~V (_xA) V(V‘A)
The choice of ‘7 A thus far has been left arbltrary since A'was only defined
in terms of the equation:g =f§7,x,A,v It is here convenient to takeg

: - ' ' : .

(15914) 4 V* A=0
Thisrdoes.pot in&olve any pQW'physical assumptions, 'Wé'shall find later Whén
Wé %re cqnside?ing non-stationary'currénfs_that\a more complicated expression.
must be SﬁbétitUted for (13.14) in order to preserve symmetry betweéen the electric
énd tbe_magnet?c'casé,.aﬁd in thé more;general appiicatibn to obtain_reiativistic
covariance of the resultlng equatlons° Assuﬁptibn (13.14) reduces (13.13) tos

(1515)VA==}13 |
This is the yector form of Poisson‘s equation, The'particular.integrai of the
sca}a?rPoisson equgti;n is the Coglomb potential, and since (13,15) is the |
suﬁerposition of three écalar'Poissqn equapiqns, the partioular integral of

(13, 15) isg
(13,16) ._A. Jﬁ 41-—-—-—

*
Stratton, "Electromagnetic Theory", McGraw-Hill, 1941,
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which bocomes the general solution if the integral extends over all of the"
currents that contribute to the field.

“The “solution of (13.15), subject to arbitrary boundary conditions, is usually
considerably more complicated then that of the corresponding scalar potential
equation (1,16), The reason for this is that Z?aotﬁally does not have three
independent componehts,‘but only two independentlcomponents, which érises from

the'féétriction'of (13,14). This means that we cannot expect to expand the components
— :

" 6f A in normal orthogonal functions and then have a sufficient number of boundary

conditions to6 determine all of the coefficients since there are too many functions

to be fitted,

There are several methods whlch can be used to get around thls dlfflculty |

and solve the equationss
- — : —> —>
(15.17) T Gz 4=0 , Yeh=
We shall mention one, which is more fully discussed by Smythe?‘
For example, if we express A in terms of two scalar functions U and

Ty

Wy each

bof-whichAobeys Laplace's equation, by the relation

(13.,18) A= YU +V x (a; ®) ' (a; is any unit vector)

" then equa%ion‘(13;14)'is automatically satisfied by (13.18), as can be verified

by inépéotioh. The number of neoeésafy'bouhdary conditions is thus reduced from

- 6 to 4 and orthogoﬁal expansions cen be used for U and W,

In two dimensional problems, a simple use can be made of the vector potential,
In a two-dimensional problem we assume that the fields are not functions~of the
z coordinate, If also, all current flow is parallel to‘fhe 2 axis, it follows
from (13,16) that the vector potential has oniy a é component. If thls is so,
then the magneolc fields are derlved from the vector potentlal by the equatlons:
aAz ' DAy

(13 19) B' Y e Byé 5%

*ﬁ&nythe, '$tatic and Dynamic: Electricity," McGraw-Hill, 1939,
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and Laplace’s ecquation becomes?

(13.20) v2 A, =0 o B : |
Equation (13,14) is then satisfied since-zéhas only the z component Ai which is
not a funétion of z, Since the z component of the vector potential obeys the two
dimensional Laplace's equatipn (13020) we can make it either the real or the
imagingry part Qf a complex potential, The only difference between this case and
. the analogous two-dimensional elegtrostatic case that was discussed in-Chapter_5
is that the z component of the vector potential A, corresponds to the stream function
LH’i.n.“t_he electrostatic case, That is, Equations (13.19) and (13.20) are the same

mathematically as the equations’ = which related the stream function to the

'*ThesserUatibhs'are (5.,3) and the relationg

(s.y_) .. Y /3
de .a.x_ay

found in the footnote on page 52. It may be seen by dividing By
(13.19) to get the slope of a B line, that the B line corresponds to a\¥ = constant

‘by By in

line ‘or & stream line,

corresponding eiectrostatic field, Since the form of the Coulomb potential for

each rectangular component .of the vector potential is the same as the scalar

Coulomb potential, the vector potential of the line current, in two dimensions,.

will take the logarithmic forms _ o ' ;
1y a2 lo g

. (13°21) Az‘ 2n Jﬂn Ty

and the.corresponding complex pgtentialvis given bye

. PRRN
(13.22) W=g+1Y =42 J.Qnt%)
Thé imaginary paré ofgws’the stream function LP,'is the vector potential, There-
fore we can use all of thelmethbds'develdped”fof finding the streem function |
in the solution of electrostatic problems in two 'dimensions for the solution.of
two=dimensional magnetic boﬁndary value problems.

An important method of solution is the use of complex transformations, such

P
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as the Schwarz transformation, to transform the solution of simple problems that

involve currents in the neighborhood of permeable media having rectlinear boundaries

‘into morexoompiicated configuations. For example, theproblem of a line ourrent

located at a glven distance from the surface of a semi~-infinite permeable me dium

is soluble by'&w method of 1mages* and tnerefore the solution of various

'problems concernlng slots or gaps in permeable materlals wder the 1nfluence

of magnetlzlng w1nd1n gs can be derlved from this slmple 1mage solution by means
of a sultable Schwarz transformatlon.

A ohree dimeneional case capable of analytical treatmenf and also of practical
impoféence ie the'ceselof cyiindrioal symmetfy,,i.e; current flow iﬁ coaxial
cifcles‘onl&,‘ in cylindrical coordinafes the differential equation obeyed by

—>
A¢f the only component of A, is?

15,25 = ]y - I o )o%ﬂ’ aj - - poly

This =eparates into solutions of the form:
(10.24) “Ag = cos (k z +3,) [Ak I, (k)o) By (g )] ors

(15,25)__1&35”= o7k [Aq Jq (kf) + Bk 7, (x )]
Solutions can then be obtained using the boundary conditions on an interface of

constant fD‘bctween regions (1) and (2):

(13.‘-2'6‘)“ é/) éz) . ends

W, 1 5 .
(15.27) molis! )"}T(Trff_(f’%/_)”sﬁ
corresponding to‘§7 * B =0 and. §7 x = J, ‘respectively. Since only one component.

of A is to be «calculated, the solutions are similar to the electrostatic case.,

® The image current here is of the same magnitude and sign as the current in the

original conductor.
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CHAPTER 14 - MAXWELL'S EQUATIONS

Stationary Media»\

In electrostatlos, the eleotrlc field was conservatlve, that is, we had'

(1.0) G xB=0 |
We he#e'seen in‘Chapfefvé‘thaé there‘muéi be eiec%ric fieldé, suchlas-gz in | 7 oo
Equation (é 8) wﬁichAvioiete this cohdition.in ofder fo prodoce statiooary ourrents.
It is found eioerlmentally that ; non-conservat1ve electrlcvflold is actually |
observed in the presence of varylng nagnetlc flelds. The law which descrlbes this
situation is usually known as the Faraday Law of Induotion aﬁd can be formulated
ag’foliows:: Con31der a 01rcu1t of re81stance R carrylng a curfent J and containing
an electromotlve foroe é: If the magnetlc flux &nf’whlch links thls current,‘
deflned by° o | |

(141)$ [B~ds

ohanges at a given rate, it is- found experlmentallv that' N

{(14.2) JR-E?- dj’-“— |

ihls means that the ourrent whlch flows in the c1rou1t differs from the current

predicted by Ohm's law (9 6) by an emount whlch is equlvalent to an addltlonal

electromotive force equal to the negatlve time rate of change of flux through

the oircuitg_ Note that (14.2) is an independent experimental law and is in no

Wey derivable from any of the relations that have beenfpreviously»used; in

particular, contrary to the statement that is sometimes made, Feraday's law of - ' -
induction is not the consequence of the law of coneervation of energy applied

to the overall energy belance'of currents in magoetic fielde. >EQUation (14.2)

is- formulated in terms of the total flux bassing fﬁrough the given circuit. This
flux can change for several reasons, It can change because of changeé in the
external field with time. It can change because of motion of the circuit itself .
or parts of the eircuit. We shall oonsider {(14.2) to be'an experimental law,whioh

holds for all such cases, That is, we shall expect that (14.2) will also hold
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for currents in moving media,*viﬁiwas_recqgﬂiéed by Maxﬁell that thé’Faréday
Law of Induction had a wvery much‘more-general significance fhan thé case ‘actually
described by Equétion (14.,2) would indicate, Equation (14;2) can be written in
the equivalent forms |

(14.3) f'—’ = - —-"?1- ~JR-£
whlch indicates that in order for (14.2) to be valid, there must be an electric
field albng the wire whichis nohAéléctrostatic. ‘However, from the boundary
condition (3.19) that requires the tengential components of the electric field
across'the.boundary of a wire to be continuous, we can conclude that (14.3) is
also valid in the region that is immediately adjacent to the wire. Since the
’dhérécﬁeristidSQOf the wire, namel& its résiSfance and its electromotive forces,
are not contained in the left hand side of (14.,3) it appears to be likely that
this relation is in fact independent of the'presence of a current-carrying conductor
and is =a general physical law relating an electric field in vacuo to the rate of
change of a magnetic field. If we make this 1nduct10n, then (14, 3) can be
transformed into a differential form either in the case of free space or in the
case of a stationary medium. In either case, affér substituting (14.1) into
(14.3) the total derivative of the flux integral can be Writtgn»aé ;n integral

of the partial time derivative of the magnetic field, givings.

-

3B >
(14.4) ;.«.o ---g BdS=- 5T 48

and, using Stokes' theorem (1. 14),we have.
TP e an ' -
(14,5) Y xE==-3%

Equation (14,5) expresses the modification which Faraday's Law of Induction
introduces to the condition of irrotgtionality_which was valid in electrostatic

fields. Therefore we now have expressiépS'for both the source densities
(divergence) and the circulation densities'(curl) of both of the basic field vectors
B and B, From (3.3)s (3.4), (11,15), (12.3) and (14.5) we haves
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—_— — _1 - —_— —>
(14.6) (1) V= E = o fiotal k, 1(f%rue A P)
(2) N ?-o |
LA
= )
(3) K?:x E= = 3
— —
— — P - ==
OIEERROMES AT EENTE

Equations,(14.6) are the.formulation of Maxwell's Electro Dynamic Field Equations,
~ valid for media at rest, The restriction to material media at rest arisesvfrom
the omission of any convective current terms in Eq. (14.6) (4) and in the trans-
formation from Equation (14.3) to (14.4) when flux changes due to motion of the . .
medium were ignored. .Equations (14.6) are written in terms of the equivalent
vacuum .charges . or. .currents which give rise. to thé fields and contain the expressions
for the equivalent current and charge densities explicitly., If the additional
- — '
.field vectors. U and H are introduced by the defining equationsg
— — = V
(3.3) D=k E+P

(12.5) B = 2m = W
. Po

then“MaxWell’s field equations become g

(14 7) (1) V D= ,otme |

'(2)V°B=o'_)
(3) Y] x E fg%;“

The form of the field equations in (14.7)‘appears to be simpler than (14.6),
- e N
but it is actually more involved physically. The solution of these field

equations is only‘possible if additional constitutive equetions are available

connecting D to E, 3 to E, and H to B, such as.
. —> e R B ,
(14 8) Jtrue =08, D ke E’ H glﬂpo

for a 11near medlum, or whatever forms apply for a non-linear medium,.
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Moving Media

It is necessary,to use coﬁsiderable Qaré in exﬁeﬁdigg'the field eQuationé
to the more'géneral'casé whén the media in which the fielﬁs are beiﬁg neasured
are considered to be in'motioﬁ.' Wo must first defive the'suBsidiary theoremvwhich
expresSes'thé total time rate 6f change.of the flux across a given surface in |
termé:df a surface integral qf'the vector fuhdfion-gt éyen in case the surface
itself across which the flux is being evaluated is also in motion, Letain“be

S S , —p ' ) o ‘
the flux of the vector field B, across the surface S. We are looking for the

. DB . .
function Fg defined by:

(149) gg§ T(B"ds[/
D

-In order to evaluate e conslder the surface in Flgure (34 l) in a p051t10n 1,

at a time tl, and in a pos1t10n 2 at a tlmg)tz. By the rules for differentiation
as :
1

-
Bt

Figure (14.1)

‘we have$

o 1 - = = -
(14.10) ERECE At || (Besat * 882 = By ° d5;)
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If we apply Gauss® theorem at the fime t to the volume enclosed by S, and. Sp.
and the traces of the edges of S, we have: v ) ‘ o

(1411) f[V-de [(Bt"dSze-BtodSl)-: Bt°(udt.xd,Q)
Note that the flux change across the side surface generated by the motion of the
boundary of S is 1ncluded 1n the last term of (14, 11) Also note that the flux
across the surfaces S, eand Sz in Equatlon (14.11) is considered instantaneously
at a given time t, since Gaués'.theorem only applies to instantaneeﬁs values of :

oy, 4 .
the vector field B, If we expand the value of B on Sy by Taylor's theorem to-

get the value of B at the time t # dt in terms of its value at the time t, we getys

-~> -> BB
(14.12) B‘C'thgBt"*atdt*"'"

Substltutlng {(14.11) and (14.12) into (14 10) and pas31ng to the llmlt, we obtalnt

(1415) "'SE'ﬁBodSl:/———odS_,_ (Bxu) d“e,’_[[v de,

and using Stokes® theorem andg

—_ —
(14.14) dv =y - 48 dt

we obtain the des1red relations

(14.15) g{ S’E +—<7->x (B x_: + (V . B) u

The first term of this expression represents the change in the flux through S

that is caused by the time ver;atlon in the wvector fleld° The second term

represente a change in the flux that is caused by flﬁx loss across the beundary

of the moving surface, The thirdxterm represente the change in the flux that is

caused by the passage of the surface S throﬁgﬁ enbinhomogeneeus vector field,
Let us now use Equation (14,15) to express Féredayfs law (14.2) in

: A - _
differential form in a moving medium. <Since B is always solenoidal, we have

¢

from (14.3) and (14.15)s

(14,16 ) sgm ol - - fi‘l‘.; ,g{%—% f{y’ (Bxu)] Y

ol
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We have designated the field by B around the circuit since E' is to be measured
in the'mOVing frame oft'reference because Faraday's law applied specifically to
the current measured in’£he%wire?through-which the flux was changing, no matter
what'migﬁt be the(Cause'of thé flux change, By Stokes?! theorem, (14.16), when
“the integrand is taken out of the' integral, becomess. -
= .ot 358 — o -
(124,17) - Y xEV= = T;E. -V x (Bxu) .
wheré E' still represents the field measured in the moving medium. Bquation (14,17)
can be written in the foiw: :
—5
L= — - . OB
: ST = gL -
(14,18) V * (B u ,c_?) -%—a
e C - ] DR : . S >
We shall now show that the argument of the curl in (14.18), E¥ - u x B,
acﬁoelly represehfe the field which is measured by a stationary observer. The
reason for this is that éh;coeefver:carfying a charge q thTOugh a magnetic field
e o
B with a velocity wwill” experlence a Torce, -q(u x B), in addition to the force
© of the electric field'E whichlmaY‘also éé pquéﬁt. Hence the electricvfield

observed by & stationary observer is eoual to the electric field E! observed by

—
the mov1ng observer, minus the effective field u x B and hence, in terms of the
field'f obeerved by a statlonary observer, Bquation (14 18) becomcss
> 3B '
140:} VX“‘--3+

Thisuﬁeanslfﬁet the differentiei formﬁlation of Fafaday’s ﬁaﬁ of In&ﬁction is
indeéeﬁdehtuoftthe mo+icn of the medium insioe of tHe field Thls is as 1t should
be, since (l4. 5) is purely a fleld relatlon in terms of the equlvalent va.cuum
fields-;'andjg, and should therefors be independent of the characteristics of
the medium, inbluainé'iﬁs mofion;

However, the electric field observed by the moving observer doee contain
o terﬁs; ﬁeﬁeiy theﬁ"iﬁduced field“ Dfoduced by the fﬁne.fete of¢c£ange of"
the -external magﬁetéczfield;.and fhe motlonal f1eld" ;?x B, produced by the

motlon of the observer 1n the magnetlc fleld Note that 1n thls d1scuss1on it has
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been assumed that the.electric field-proper is not affected by the state of
motion of the oﬁserver and that only an additional equivalent electric field is
introduced as a result of the motion of the observer in the maghetic field. This
assumption is actually justified only in cases when the motion of the observer

is small compared to the velocity of light, as will be shown later by a relativistic

2

analysis, and therefore all of our conClusions~ﬁhich we shall'draw concerning
“‘Maxwell's equations in moving media will only apply when the velocities of such
= ' _ »
media are small compared to the velocity of light.

We have thus concluded that the third oflMaxwell’s‘equations in:the form

of (14.6) is not‘aff9¢ted'by the_mpfiqn of the medium in which the fields are
meaéured. mibe first and §eggnd equations'are‘not affected by this motion either,
sinpg_npnj¥elatiyistiCally the charge density of the medium is not.affected by
the stgte‘of @otion,of the observer, ‘Thévonly modification which must bé introduced
is the addition of tgrms_to»the currents that aépéar in the fourth of Maxwell's
equatiops in,(1456).» Two gdditional_terms<are necessary, a conﬁective term and
a correction ferm1to the polarizatibn current, The convection current, due to
the motion of the charge density and equivalent polarization charge is given by
— - — ' &P P

u ( Ftrue.' ‘7.'P)f The correction term which replaces the term E;E- is Dt
which takes into accou?t the charges lost due to the change of the polarization
flux across the moving surface., To enumerate the various_curfents appearing in
'thertotal.cqrrent ﬁhiph gives rise to magnetic fieldss

.t N _6
(1) True currents j.

‘7

(2) Convective currents of true and polarization charges'given by
- - — ~
u ((Jtrue -V P)‘ ‘
(3) Currents caused by the rate of change of the polarization and the

motion of polarized media, in analogy with (14,15), are gi#en bys .

Y — -
D R ‘
5%=%€'+_V>x (?xfl‘i’)_f (6-?)?

* See Equation (14.15).
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A\

o ) ' OF ‘
(4) Vacuum dlqplacement curr ent koat . ’.‘Lhe other parb of the alsplacement

current is ﬂontalnea in (3)

J»Imrell‘s_ equatlons in a nonumagnetlzed medium moving with a velocity u, slow

. compared to the veloclty of 11ght, are therefore clven by° |

(14.19) (1) V (otrue

(2) v ° B _

O VxE g Dtrue T lirne 9 P TR DG
s - o S e‘
7. > "’,GD.—‘>—>7‘>\
v:& B =‘)10> _EJtl*ue * (Otr'uc—; vt ST +Vzx (Px u]
The constitutive vequations which give the ‘true currents in the moving medium '

+

and the polarization of the moving medium are derived from the fields measured

in the moving medium, and are givehv by s L
(14.20) j'= o (8 + ux B).Zo-B"

3

?= ko (k-1)(E '+ x?'}

>

If we consider a non-charged dielectrics Maxwell's equations can be written in

the form?
(14.21) (1) §7 °_D>
(2) ? _B—>" 0
@)V =Em-%
— — - = o
(1).V x —}10?_? u:] =}1C%75

This shows from the macroscopic point of view that‘a moving polarized dielectric

“1§ eéquivalént to a magnebtized material of magnetic moment
& & Lo

= —->
(14522) mq =P x

This can. be ¢asily understood by considering a polarized slab’ of material moving

at rights aﬁgles to the direction of polarization.. Under these conditions there

is an eduivalent positive current.moving in one direction parallel to the .direction
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ofr motion, and another positive current éiSplaced from the first currept;vdue
to the motion of the negative charges, moving in the opposite dirqctiog.‘:These
currents give rise to a net cufrent loop and thus a magnetic ﬁoment. Hence the
moving polarized dielectric wiil give rise to a magnetic field which is indistinguish-
able from that of a magnetized mﬁterial. This has been demonstrated by thg experi’ —
ments of Roentgen and Bichenwald and others,

As an example of theée considerations let us consider a conducting bar, as
seen: in Figure (14.2), which is infinitely long and hag e rectangular cross
séétign,‘andwi§ m6ving ﬁith a félqcity u reiatiﬁe to a constant magnetié field
§j which is direc?éd'at right angles to the direction of motion of the bar and

which is constent in time, Two sliding contacts touch the conducting bar at

stationary sliding contacts

-~

points which are on opposite sides of the bar écross a line perpendicular to the
direction of the magnetic field and to the velocity as shown., Let us investigate
how we can reconcile the phenomena obseffed”with our previous considerations,
Phyéibélly speaking, one would ekpect a current to flow in the external stafionary
loop. If an electron moving with the bar is considered, we find that an effective
- > — ' SR
field given by E' = u x B will act on the eleectron as a result of its motion in
o > o : '

the magnetic field B, and that a current through the contacts will be produced

. . S . . B - > o .
which will be meazsured in the external circuitbya statimary observern VVxE must vanish,

S o i s - =, . cos
since B is not changing in time. Whether the source of B is stationary or,is in
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motion'iéwéhﬁifeiy'if?élevant, éihb@ﬁaﬁy observed phenomena which depend on &
fi.v;eldv‘ descfiﬁt{oﬁ 'musﬁ be describa‘piie in terms of the behavior .x’of the field
quaﬂtitiés'albhé; éhdepgndegé'd}'the'hatﬁré of fheiﬁééhaﬁism{wﬁioﬂiérbddcés*tﬁez .
field quantities, ﬁencé a station;ry observer musé observe a ﬁield that hagza
va;ishing curls if, gé éppears logical.by the abové_electron argument, there is
an electric field, ﬁhén*such a field must be irrot;tional, i.e., electrostatic.

: The effective éléc?rio fields within the moﬁiﬁg bar will 6ause a currenf to
flow within the bar”céusing chargeé:on the bar to move to the faces andhthese.
charges will produce the observed exteynalvelecﬁro;taticufield; On the other
hand, the same charge displacement will exactly cancel the effective electric

p\fiehi;?)c??produced‘within.the bar aﬁé therefore if we-consider an integration
path partially contained in the bar ahdlpartially outside of the bar, connected
by the sliding contacts,. then we shall have a circuit over which the line integral
of the field will not vanish since we have a contribution to the line integral:
in the stationary part of the path and none in the bar., This result is therefore
in-agreement.wiﬁh the physically observed result that an electromotive force of
magnitude uBiL is measured‘across the bar, Note, however, thdat ifithe electric
field were measured entirely by a stationary circuit;~then~this field would .
actually be irrotational, that is, purely eleqtrostatic;
“If we imagine a small hole drilled through the bar transverse to:;%and.B
) Hénd consider .a charge describing a loop threading this hole, no work will be
—_ - , :
done -on the charge since the u x B term produced by the transverse force on the
charge exerted by'its neighbors is now missing,
If the galvanometér‘link is moved relative to the bar in the field—g,again
the EMF Bufl_‘is observed; since the role of the link'and the bar are simply
interchanged in the above integration. The following table summarizes some of the

cases of relative motions.
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-6§tion of; Electréﬁotive force
S - - : {measured by the

Case Bar Source of B Observer observer

Case 1 1w o | | | lo |t

Case 2 :bl\ i 10 o u i OH | 0

Case-s'x o 0 o u '_‘ | u | uBf

Case 2 | | R o uif

Case 5 R Cv‘ o 0 | u' ﬁ%ﬂ

Case 6 . ::" v . A,j O:-,ii,_. o u!" R Y

The results in the above table dre characterized by two salient factss
(1) The state of motion of the source B is irrelevant as long as B is uniform.
A (2) .Absolute motion cannot be detected in this arrangement,
- -, The latter fact is an indication that Maxwell's equations, if carefully
interpreted, are in agreement with relativistic principles. This will be shown
later in greater detail and generality.

.

" The situation is more ccmplibated in case there is in addition to anvexfernal.
maghetic_field 5i a field caused by ﬁhe magﬁetic moment‘i?of the slab, either
induced or. permanent., Our conclusion that the eléqtric field observed in.a
stationary loop will be a purely electrostatic one still remains valid, However,
the séﬁrdeuéf the electrostatic field will not become fully clear until permeable
media have been introduced into the equations for moving media, This, unfoftunateiy,
cannot. be done in a reasonable way without introducing.relativistic considerations,
However, the result is physically clear, since the source of the magnetic field,
provided_i% is -.constant in time, does not effect the considerations.. The force
which acts on a.moving electron within a moving bar will be independent of

whethér the magnetic field that produces that force is produced by an external
magnetic field or by the magnetic moment of the bar itself, Therefore we should

L : -
expect to obtain an electromotive force, given by u3.f as before, where B is the
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magnetic field in the moving magnetized bar, We would also again expect that the

(.r,.

only part which appear; still. to be paradox1cal is that the effect of a mov1ng

'materlal should be describable in terms of the sum of the effects of 1ts atomlc

components,’ and since ‘a ﬁo§1ng magnet ‘is essentlally an assembly of current 1oops,"

we would therefore conclude that the motion of the 1oops carrylng a’ steady currentA

gives rise to an electrootatlc fleld This, as will be shown later, by relat1v13ulc

con31derat10ns;‘1e 1n'fact’tree. He shall show>that in‘éeﬁerel 1f the medlum o
DI - - . :

s oL S : : ’ iy o
of magnetlzatlon M is observed by an observer who 1s mov1ng W1th a veloclty u felatlve'

to the medlum, then the observer will observe an equlvalent electrlc moment,

given bys

e -2 1 = -
(14.23) P,q = 7 ouxk

and therefores —

P
(14.24)  « B = = Vo

will define the sources of the field. Note that this effect, although it appears
deceptively similar to the classical effects

—_ =S =
(14.,22) M_ . =P x u

eq
is actually only_explainable in terms of the special theory of relativity. It
is caused by the fact thaf a charge moving in a circuit appears to spend a
different-amount of time, traveling in the direction parallel to the relative
motion between the circuit and the observer, from the timelthat it spends moving
in fhe antizparallel directien. This gives rise to aﬁ effective po%arﬁzation
that is perpendicular to the direction of motion and lies in.the plene_of the
current loop; We shall discuss this effect in detail later.
 If the length of the %ignetized slab 1is finite, then the field_5>iS'no

longer irrotational since g%;;ﬁ O in the rest frame.
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In.fécfz '
—> ?_ SB—> R i el s e N ST
VX.Q—-é'_-E""'\'u? ) B= u ‘B)"‘v,x (u x.B)
“fs — ;¥>
= -Yx (ux B) .
" v

-3

(Einqe:§7,!.B = 0. and singce temporal and spatial variations are connected by
- . R
3¢ ==

<ll

——)\
-for uniform motlon U)e

Hence 1f B is no longer unlform, then E is no longer 1rrotat10na1; 1ts curl is

Sy -
hOWever 1dentlcal w1th the curl of = (u x B) Whlch is also the effectlve electrlc

field actlng in the moving medlum.
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CHAPTER 15 ENERGY RELATIONS IN TEHE ELECEROMACNETIC PIELD
AND FORCES ON CURRENT SYSTEMS:

We shall now consider some energyarelations that are -associated with-

- electromagnetic fie;ds; bin_ﬁheddiscussieh offfhe'energy relatidns in electrostatic
fields in Chapter 7, we succeeded dn associating an eﬁefgy density with the
electric field by conslderdng a spe01flc pfecess; namely, the assembly of charges,,
in Whlch the work that was done and the changes in the fields could be calculated

It was p0331b1e to obtaln affree energy den31ty of the electric fleld, in the

thermodynamlc sense; by balaﬁc1ng the Wor? and the energy tenns. In order to
treat the enefgy of a magnetlc field 1et us sfart by consnderlng a érocess in
Wﬁich'a battery-whieh produces.a non-electrostatlc fleld-:’,.ls feedlng energy
Bofh.isto heet iessesvaﬁd dnto'a maghetic field. If We take'the sealar producﬁ

—. S
- of j and the equatlon°

B -

(9 4) j=07(E +E")

: ﬁe obta1n° : | |
. e e 2y e
(151) B g - %:-Eeg

The lefthand s1de of (15 1) represents the time rate at which the battery does
work the flrst term on the rlghthand s1de represents the Joule heat loss in
the - current-carrylng medlum9 and the last term on the rlghthand side we
tentatlvely identify as-the rate at whlch energy is fed into the magnetlc field
proddced by the‘cﬁrrents; If we consider the fields-to be slowly varying, that
is, qdasinstatienary so that the displaeemeht current terms need not be taken
into account, We.obéein.from Mexwellfs'Equation (14.7)(4)5

(15.2) $x?=? | L |

if we.substitute (15.2) into (15.1) and integrate over all space, we -haves

(15.3) jf—&; . (ﬁ x H)dv sﬁ V;H)Z av - B .‘ﬁx?)dv
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Using the relationg

B e

(15.4) V- "(BxH)=H.\J xB=-E-{ xH

to integrate the last term by parts we obtaing

- = —> — >

— —
C(18.8) fff e Y x H av H*Y xEdv - f[ﬁ’o(ﬁ'x H)dv

'EstHdv -jIrH,_o-é—;c—vaf[Emeds

and aroppln” the surface term and oubstituting back into (15.5), we gét:

b}

n

(156)Kfn.~yﬂdv, [{[(VYH)Z [? at av
Ci__ <i,_(Rate of Joule. <i~

(Power expanded (Rate at which energy is
by the ba.’c'bery) heat loss) fed into the field)

'Wé‘éan neglect the surface term generated in the integration by paffs, siﬁoe
?gzggé‘eéfies a£ leastiaé 1/'r5 in.electrostafic and quasi-ctationary magnetic fields,
and £ﬁereforeuéhe resultant integral vanishes at least to the order 1/r ; Note
however, that this will not be true in case-i?andjg.represent radiation fields .
which fali off as 1/}, he surface terms will then represent a coﬁstant radiation
energy Iosso Since we neglected the displacement current term in Equation (15.2),
We are justified in neglectinv any radiation coﬁtribﬁtions'at this point éubject
to further study of the energy balance when radiation termo will be taLen into
account - The _same thlng appllos to our electrostatlc field energy studies also.
In this analys1s we are using, separately, energy relations in electrostatic
fields oﬁ the éne hand, and quési stétionary current magnetic fields onvthe bther
hand, ﬁb-shall éee iatér how these concepts can be modified in a éongistent
way‘to obtain théwgénefaljenergy éxpreésionsf From Bquation (15.6) the variation
in the magnetic field eﬁeréy’ th can therefore“be givenuby; |

(15.7) Sum = fﬂ?‘gB—)dv |

This is analogous to the electrostatic expressions

(7.20) U= f[ E - SD dv

1P the term g?had been retained in Eq. (15.2), a term S_E?Q- dv would have appeared

"in Eq. (15.6), correspondlng to the rate of increase of energy of the
associated electric field,
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Ty répfeéénfé only & free energy ‘term-as was ‘the case With U, In order
to ‘put (15.7) into £he' form ‘of an integral over the magnetic field ‘energy densitys |
the express1on must be made 1ntegrable. ‘That is we must assume a functional’
relatiéﬁship:bétweenfﬁéﬁndfgi In case the medium megnetizes linearly,'(15;7) ]
can be integrated in the seme mamner.as in the case of (7.14), givings |
(15.8) 7t U, = —ﬁ( B av
“ﬁuih'ﬁon41inear materials such &s férfdJmégnets;'(15;7)'can only be integrated
between définite states end the answer will in generél'depéﬁd on the pasﬁ”histdry
of the sample of iron that is being ccnsidereé' In the case of ferro-magnets: the
cyclic integral of (15. 7) is - in general -not zero, but has a finite value when
gélsaevaluated around;a complete -cycle; as in a fleld.produced-by an alternating
current,. .The. cyclic energy- loss is.given_by:
- (15.9).. . Kf § H.e dB dv
Baquation (l5,9) says .that the energy. expended.per unit vélume when a magnetic . .
material-is carried through a magneﬁization-cycle is equal to -the area of its
hysteresis loop, when plotted in the H -~ B plane,

. Bguation (15.8) gives directly the energy density in terms of a volume
int@gralzqver ﬁhe,fieldso._lf ingtead we wish an equgtion for the energy expressed
as a volume integral over the current sources of the field we need only to- -
expresslgbln terms of the vector potentlal A, and-ﬁﬁln terms of the stationary
current field equation (15, 2) Thls givess |

(15.,10) Uy = gﬂ H j?ff(V;,x _A)_'-e;iv-
and integrating by parts gna droééing a surface tefm as ﬁés done in (15.5) we
Obtéih;?‘ A o S e : ‘ S _
b(iS;ii)a'h" Ir' Jj* dv N
Thls ex presélon is analogous to thé express1on for the electro;tatlé energy in

terms of volume charge den51ty and the scalar potentlal.,,'

Loy e
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This expression. and Equations (15,7) and (15.8), although derived by a .
;peptioulag."virtua¥~érocessﬁ, can be taken to represent the general expressions
for the energy of the magneﬁic field expressed as a field integral or a matter
iﬁtegral5;eepect}yely,;sinoe the expressions depend only on the final fields,
and not on tbevnatuge of .the process,
The factor 1/2 in (18,11) is similar ‘to the factor 1/2 in Eq. (7.1) and is

@ge po_the gecﬁ;that the yector potential‘A_includes the»fields of_the currents
- ’ T
J.themselves., The interactlon energy of a system of currents and charges in an

. —
exmenneluﬁield”of potentials.ﬂ and Avrespectively is given bys

2 “
(15 12) 1nteract10n Joe external F ﬁexterna%}

47 e will néw use the energy expressions for two purposes; first, to derive
expressions for the forces between currents in terms of . the currents themselves
and suitable geometrical parameters which depend on the location of the currents?
and second, t6 éxpress the variation of the magnetic field energy.in.terms-of e
variaﬁion*offthe~currénts‘that'produoe the magnetic fields and the variations in
the geometrical coordinates.,

Lét*us‘solve this problem by analyzing a system of n geometrically linear
“gircuits oarrying*ourfénts‘Jk; ‘For thesewliﬁe eircuits, -the energy expression

(15.11) reduces 103

(1523) 7 U = %—f_ Iy § ?-fd?k ' lf: Jkﬂ (V = A) o dsk
. k=1 k=1

=-¥_ JkgB'dsk 1§:Jk i

where the transformatlon from the vector notentlal line integral to the fluxes

q?k linking the kth circuit has been made by the use of Stokes theorem, (11 16)

and 14 1) To derlve the forces, 1et us cons1der that the 1th 01rcu1t is

i -
subgected to a v1rtual, 1nf1n1tes1ma11y slow velocity Vie Then the rate at
—_ .'J:"\ o Y .
which an external force F acting on the 1th circuit is doing Work is equal
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TP .. (Rate  of, mechm -{Rate, of
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—> : _ . ‘ o .
Fi"‘az. - The rate of energy change must be pa}énpqdmpetween‘tpe.follpwing;l

to
four quantitiess
(1) Rate at which'ﬁeohanical work is being done by.the external féréés.
(2) Rate of change of magnetic field emergy. “ |
(5) Rate of Joule heat 1osses. - |
-H(4) Rate ag whlch wofk‘ls belng done bvlthe eleétromoflve fofcesv

Jﬁ'Wlthln the c1rcu1ts.

Equatlng the overall rate of energy ckange to zero, we obtaln'

T sod : -

(15.14) | oo +/ T Q’

~.(Rate of Joule. (Rate at which

‘anical work) .chenge of" heat loss) battery does work)
eyt o oo magnetic fiedd ' - Co T

S  energy)

We are aééuming'tﬁaﬁhﬁhé”hégﬁéfic field energy Uﬁ.is éxplicitly ekpressed as a

function of the coordinates xj. of the ko current loop and of thehéuffént Jiv

fléwing in the kth loop as independent véfiabies. Note that because of the

different terms in Eq. (15, 14), it is not Justlfled to 51mp1y equate the force

5&

on the;i?hqcirguit¢Fi:touthe negative-gradiept of the field energy qn'at»constant

current, a conclusion which would -be justified only if no other energy terms

than T, were presenﬁngw S

Let us nqw consider.a_§pecialltype of -constant current process, namely:let

the external electromotive fb;ces be adjusted as a function of the virtual velocity

N

—>
uj corresponding to the rate of a single psrameter X35 SO that the currents within

.the system remain constant. In this case, if“waTsubstitute'(15.13)-into (15.14)

and use Faraday's law (14.2), we obtains

> s & % o2 &
'Fi"‘l*'f;l"k‘d‘*? " 7O
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orsg . . —_ ey m .ol
(15 15) F. o w, = « === = =y -
i ot Xs ul
* o%; J constant
¥ constant; k f

e
Hences ..

e
(15.186) Fi = 5 R

Jd constant
isg the force exerted _Z.the fleld on the 1th conductor, Note that the opposite "

sign has been obtalned from the sign Whlch would be expected from elementary

cons1deratlon if the other energy terms were neglected | Thls means that in order 2
to maintain a, constant current in the 01rcu1ts; as the veometry changee, them |
external oatterles mustvoo exactlywtnlce the anount of work that is done by tne
externa1~foroes?“;n_eddltionftof§u9P1Ying the Joule heat losses.' qu ation (15. 16)
is ;e;§ ueeful‘whenjit is deeiredhto calouiate’tne foroes av.'ctli,n*T on‘ourrent
carrylng 01rou1ts 1f the magnetlc fleld energy is exDre331ble in terms of ther'__
current produ01ng the fleld | o | .
» To express the magnetxc fleldnenergyu » : » L
(5. 13) | _U Z Jk§
a§ 4" function of durrent and geometry, it is useful to”introdnce‘the coneept"
of industance. The f£lix through the E% i reuit is given by
(15 17) @ gB°dSk [(Vx A)-dSk A-dﬂ.ki'
A in. turn can beevaluated by writing the ‘integral of the vector form of . =
" Poisson's equation (13,15) in the forfis ssimilar to (13.16) but. expressed as a "
T 1ine integral: = e e s
U (15.18) a?(:‘ck.) = g’- :

N

Substituting into Eqs. (15.13) and (15.17), we obtain

(15.19) & Z Ly dy » e

2L
(15.20) U, -Z—Z %Lik J; Jy
R

% This equation is written in terms of force comﬁonents, xs here s1gn1fles anyone
of the possible geometrical parameters of the ith circuit,

n
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where

' di »dQ
“sth

is a purely geometrical quantity,-oaiiéd’thé‘mutuai inductance between the i

and kB circuit, The force acting on the i'™™ circuit is thus, from Eq. (15.16)s,

L L ;r.v-"Wés arﬁ:.‘ : 1
' - J-congt

Note that in the sums of Eqs., (15.20) and (15.22) each term for which the tﬁo
indices are different occur twice, while for equal indices, the térm.occufswonly
once, Ihe mutual energy of two circuits is-thus:

(15,23) Um-‘—- Jl Iz le
while the self energy of the_clrculbs is'.

(15.24) Um”= -21- {le L, + JZZ Lzz} R N
where the Li3 are called the self inductahces; ‘ ‘ ’ ‘ |

The force expression (15.22) isvin~agr§§ment_with the orig?nél.magnetic

in?graptionrezprgssion_Eq.f(l;,l)& If we substitutg'"Négmann’s férmula" (15,%1)

into (15,22) (applylng to two c1rcu1ts) we obtaing
- 27 (&= L)
(15.28) B =2 g J,a_ (d,Ql, VP AVAN o

3

(15.26) Q—%_Jl Iz f§r12 <‘m - d’Q ) o

which is identical With-Eq. (11.4).

[t}

The forcevequation,(IS.lﬁ) can also be written in the simple form?

U ”ﬁ.'a -
(16.27) ~ F, =35%; =1/?2:J k 6x : JZJJ ax
LE . © - {3 const, JK :

the Iést'step follows since only théﬁterm for which either j = i or k = i depends on

R andnges ndén-zero-.deérivatives, and since LlJ Lji

sis (15.27) can be written ass$
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2%,

(15.28) F; = J; 3%,

J const, R T

th

-y
"4

where q§i is the flux linking the i ciréuit. ThlS express1on ig-in ev1dent

agrggmegpgwighﬁﬁﬁgsngmentary fgrcg relationsg

— - —
§15 za) rdF=JdR x B

These considerations enable us to express the general variation field energy "
as a function, independéﬁ%iy,“éf'éhé geometrical pa}aﬁete;s~x£ and ‘of the currents.
Slnce. | o B N ‘ _ » ’ ' ' »
(15 so) U = 1/222_ L.. J, J,
Y am < 3 2. T lJ J
we have (note each term occurringitwice)s
-
U, =2:{K?Z: Lﬁj J.> zz: 5; J J
Hence, from (15.19) and (15,22)3 | e
(15.51) z@ §s +x, 5 }
where‘@ is "the total f£luk llnklng the 1B ircuit, Nobeé that "'z’;"o'siti'ons and
cdrrents nlay the roles of exten51ve variables in the termodynamlc sense, ‘while
the forces and the fluxes plgy_thé roles of intenSive variaEles.
Note also, direct from~(15.14) that the "Back B.M.F." terms can be ignorsd
in force caldulations if the flux linkages are held constantj it follows then
directly that? i
3y~ ; .
m -
(15.32) Fy To9xy § in contrast to Eq. (15.18) - «
' constant R o e
~The sélf?{hdﬁctaﬁcéé'andnmutdal inductances -can be calculated by several .
i

means other than~Neumann s - formula.' One method 1s to use the deflnlng equatlon

(15.19). The flux llnklng the J 01rcu1t due to the current in the 1th circuit,
<~ can. be; evaluated directlynﬁmom the -known field or vector potential of the‘ith

6ircult, «A:second“methoq which is.particularly useful in case continuous current

distributions and therefore partial flux linkages are involved is a éomputation
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which uses the magnet{c'field‘epetgy ddfeetly,.hémely‘by‘use“ef Equatione-(I5;8)

‘and (15.20)3 N

(16.33) 1/2 i f_' Lij 91 95 =_:;>1/2m?- B av

i=] J=1
-Eéadd:??;aycbe”eompﬁted bj:methode'that have already been discussed. In this
case,rthe ealeulatieﬁvef ihductenees ie then‘eafried out by‘the evaluatien ef
certegﬁjdétegreis ef‘the‘soiutfeﬁe‘of Boﬁﬁdafy value prdbleme.a
. Eiﬁﬁéhé calcuietioﬁsvef the”iﬁductaﬁees of'current-carryiﬁg eonddetefs, it ie

usuall§ edvaﬂtegeode te;setarate the'proﬁiem into two péftdefiret,'the;eelculation
of the external inductance, that is the inductance associated with theifieid outside
of the wirej and second, the calculation of the contribution to the inductance by i
the fleld energy of the field 1ns:de the wire, It is necessary to make this.
separation since the inductance due ‘to the external field cannot be computed by
using the assumptlon that the conductor has a zeto radlus, since this’ w111
generally 1ead to a logarlthmlc dttergence of the lntegral 1nvolved A lower
"limit must be put on the coordlnate in the 1ntegral representlng the flux or the
energy in the external fleld and then the contrlbutlon to the 1nductance by the
field within the wire must be codputed separately. Thls latter calculatlon
generally gives a term Whlch w111 depend on the permeablllty of the w1re. At

high frequencies this term becomes negligible, since the currents do not penetrate
into the wire. At lower frequencies, and particularly in case the current-carrying
condﬁetefs efe fefro-meghetic, this internal term may giVe an appreciable

contribution.



CHAPTER 16_ . FIELD FORMULATION OF THE ENERGY AND MOMENTA
’ ) o IN THE GENERAL ELECTROMAGNETIC FIELD - '

In Chapter 15 we have calculated the forces between current systems in terms
of the currents within the current ‘systems, and the necessary geometrlcal
quantities. T@ese ferces‘are, of course, eas Woul@_be expected, re-expressions
of the QriginelﬁAmpere interaction law giveq_in_Eguatien‘(11,l)r_:We cen, in

analogy to the electrostatic case, derive an expression for the magnetic body

force per»pyit_volume in terms of the field, the permeability and”the current at

. e given point, In the electrostatlc case such a body force wa.s deflned bys

L (8.2) Fe fff E v ar

The expression for F the body force wass

Co s '—) ko ko —>. A
~N HE e . 2 :dk
(8.19) F pE- = E Vk+—2—V(E-. 'é'g'%)

Under the follow1ng restrlctlons.

(l) The medlum 1s llnear, that 1s, 1ts permeablllty P is not a functlon

S

of the fleld
w L — ‘
(2) There is no Uermanent magnetlc moment M present
a o
(3) There is no magnetostrlctlon, that 1<‘EE-= 0.

We can derlve for the magnetlc bodv force the express1on'

[8) By T —,:- V)

. It is again possible, as should be the case lg a satisfactory field theory,,

to derive the total force on a volume element, bounded by a given surface, in

terms of the value of the field on the boundary of this volume. That is, it is _

also possible in the magnetic case to define a stress tensor from which the volume'

force is derivable by the tensor divergence relation (8.,21)., The form of the
Maxwell tensor in the magnetic case, in the absence of a magnetostriction term,
can be shown to bes

= - 2i
(16.2) Ty5 = H; By - > H By

he



o

165
Thé Einstein summation cdﬁ%%ﬁﬁion‘mentioﬂea.iﬁ Chapter 8, has been assumed’
here, The geometrical interpretation of this tensor leads to the same éénclusioné

about magnetic forces as were reached in Chapter 8 about electrical forces,

These are'that the direction of the magnetic field bisects the angle between the

norrial to s surface and thévdifeC£iOn of the resultant magnetic stress that acts -
'Sﬁ‘ﬁhis'sﬁffacé; The mégnitude”of the magnétic~stress normal to the magnetié
field or parallel to the £i61d is given by HB/%;'

Thus far we have considered themelecprogtatiq field and the magnetostatib"
field, or quasi-stationaryiéﬁrreﬁt fields separately. We considered energyvand :
force gfpblems,Separately for the-tﬁo cases, deriving expressions for thefeléctric'..
and magnetic energy densities separately, If-we:nOW'cohsider the general Casé |
in which no’restfictiéhs:as to. the fime rate of variation of thé.fiéld‘quantities
are :imposed, then we mustfinquire as to which of the énergy,“forée or ﬁoméntum
expressions will; need modification, and which ones can be taken over in the more
genéral'theory:without_modification;~ We shall restrict our ‘considerations. to
vacuum fields or nen-permeable conductors, since no additionél information of

particular interest will result if this restriction were not imposed,

Maxwell's equatidns in vacuo were shown to bes

" —
(1.7) " (1) YV D=L
—> —>
(2) V = B=0
(4) v x H = J‘brﬁ_e,fb_'E'

Thé'se ééﬁations'cdmpletelyfrepresent thé'behavior of electromagnetic field when

they are .considered in combination with suitable constitutive eguations and

.boundary conditions. This is true even for rapidl& varying fields, or at least

-no internal.contradiction is present if an arbitrary rate of change is assumed,

Care must.be taken in case constitutive equations are to be used, since generally
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: thg;mate;ial_ponstants are dgpepdent_on the frequency of the_fields. :W§ will
_;requntly rggﬁricﬁ ouselves to vacuum Qonditlons ip_o;dgr to avoid unneces sary
complicaﬁiqps dgevpo such special propertigs qf the constlﬁutive gqqations.'

. An energy integrglﬁgf,Maxwell's equations can be,obtgiged by taking the dot
product of, the _third and fourth equations of (14, 7).With‘ﬁ?and-ﬁarespectively.t
Subtractlng +he two equatlons that result, and using the well known vector 1dent1ty.'

e e T e S S I e

(15.4) V * (B x H) = H°(VxE)-Eo(VxH)

we obta1n°

.2 T B o - = - 3D
(16 3) §?_ (Evsz) - 3% *H-E*j-B * 3T .

'Takingpthe volume integral of (16.3) and-usinggtheglinear‘relations B=pp 1,

55' kkq E and the divergence theorem, we haves$ : ' R

2 (16.4) « (f; (?. ?4’ Fo—l)-))dv f °?dv +K(?X‘E3'- d?
The-left—hand_31de»of:Ll6;4)'repreSents the rate of decreaée of the sum of the -
electric’ and magnetic field energies (7.19) énd (17.3) that were derived in the
static cases, = Using Equation (15-.1),fthe first fem on the right-hand side of"
(16.4) can be written as‘:f' - R SO o : R

(165)[F'3dv=ﬂ( EE)'”-_?)dv" o . e
Bquation (16.5) therefore represents the sum of the Joule heat loss and the :
negatlve rate at which the electromotlve_forces:are doing work, (E' is the

electromotive force field.) Thus (16,.4) becomes‘

(16, 6)(; at ﬁ 1/2(EeB+E- B)av ml— dv ﬂE"J v+ K(m{) as

(Rate of change of electrlc - (Rate of (Rate of work (Surface rate
and magnetic field energy) . Joule heat .by sources of of‘énergy
: loss) electromotlve transfer)
: o " force)

The third term on the right-hend side of Equation (16.6) is & radiation
enéfgy term which has pféfibdsl&'Béen néglectéd, since for static and quasi-étatic
fields it can be made to vanish if an arbitrarily large enclosing surface is used -

fdr'ﬁhe:ihtegratioh."As.We shall ‘See later, the electric andwmagnetiéjra&iationl
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fields-of charge motlons and ‘currents fall off in general only as 1/} at 1arge
‘distanoes and therefore the 1ntegra1qu (E X H) . dS will approach a constant
valoe when evaluated for an arbitrarily 1arge surface and thus may contribute
to the energy balance,

The vectors

(16 7y N T x H

is known as the Poyntlng vector and in terms of Bquation (16 6) it can be con31dered
to represent the electromagnetic fleld energy flow per unit aréa per unit tlme
across a glven surface. It must he noted, however, that only the entire surface
integral of T contributes fo"éhe eﬁefgy balahce ana since qeestions of localization
ofkenergylcennot.bemdecided uniquely byvexperﬁnent?.paradoxical results wili often
ﬁ_pe_obtained_if one tries to identify the Poynting vector with the energy flow per
unit aree‘at,any particular poinﬁ.; Among other things, since only the surfece
integrei=of tﬁe ?oynting_vector contributes to the overall energy'balance, the net
energy flow in the eleotromagnetic field will always vanish if fhe divergence of
the‘Poynping;vector is;sero, s;f, for example,»we have static superposed,electric
and magnetic fields, we may have noe—zero values of the Poynting vector at various
points in space, but the divergence of the Poynting wvector will vanish everywhere,
implying ‘that radiation does not contribute to the energy balance in this
"specialvcase.

Bquation (16,6) can therefore be considered to represent the overall energy
balance.between the electric and thevmagnetic energyvof the fiela,'the loss due
to resistive heating, the work done by soorces of electromotiﬁe force, and the
radiation loss. Iﬁ abpeafs therefore eﬁen in the case of time-verying'fields,
that weicansreﬁain_fhe expressions derived for.the energyvdensities_of the
"eiectrostaticeapo.the magnetostatic. fields, The. only additional consideration which
hes boen introduced in order to conserve energy is to assune that radiation fields
may carry energy in or-out of the volume of integration at a rate that is given

by the surface integral of the Poynting vector,
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_ Let us now apply a similar qonsideration to the momentum_bglgngeﬁin the
electromagnetlc fleld* Lét us inquire as to whefher the”tenséf aivéréence of
the tensor formed from the sum of (8 32) and (16 2), the complete Maxwell stress_

tengor'

(15.8) T;4 = B; Dy - 1/2 5ij E_ D, + H, Bj - 1/2 Jij H, B

A
will still give a volume force which is in accordance with experience, If the
tensor dlvergence of (16 8) is taken, we obtain? .
3 I a2, 9k Q :
16 9 F By + Ds - 1/2EB* % %=~ D,
( ) :T—" KJ Jag;: _/' Yo X3 R
OB, SH;
’ ._;l
DI P BV
“EQuatiéﬁ'(iéfg)’éaﬁ“bé eipréssed in vector form by using Maxwell's first equation
(14.7) on“thé first term, noting thet the third and seventh terms involve gradients
of k and }l ‘resnectlvely, noting that the second and fourth terms become,
é
: B
‘aD‘ x“(v % E) which by’ Maxwell®s third equation (14.7) is equal to D x g’c s
e e e o - = =
noting that the sixth and eighth terms become, =B x (K] x H) which by Maxwell's
oF . th
féurth squation (14.7) is equal to -B x (Jtrue + 3T )s and noting that the 5
A = = :
'term vanlshes since V°B= O,
2 = -vtko'z—{ Fo 2—*v - - S =
(16.10). Fy = B Pprye =3~ BV k=7 E T p-BX Joue + §f (OxE)
The entire volume force of Equaﬁion (16.10) may be expreésed as the sum of two
terms? e . : o : : R @
= = 2 > >
(16.11) Fv = Fev +5¢ (D x B)
where ‘the first terms = o : - -

N B LT LS 2 o .2 > >
(16.12) Foy'= B Pirye =3~ BV k= 3 BV p =B x jp.
is the ordinary véiumé“foréé acting on material bodies in a quasi-stationary

"'eledtfdmagnetid'fiéId;”ﬁThé Yolume force resulting from the presence of true charges

[

*TNe;are neglecting the electro- and magnetostriction terms.
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orE{nﬁ;ﬁbgenéoasa%i;iéégfic§ iﬁ“an éieé%fic%}{éid 6r of true currents:or’inhomo-
geneous permeable material in a magnetic field is fully accgunfed for by (16‘12).
The second term in (16.11) is new and is proportionalbto the fime rate of‘chénge

of the PSyﬁfihg vector, The volume fdrce (16.11) may be expressed'ast

: — “—>, a(E x H) kn aN
(16.15) Ty =y # Mooy g = F, *kkoPPo A o2 ot

where

1
(16.14) pok, = 5

AT SR R

—>
Foy 15 the volume force whose existence is dependent upon the presence of
material bodies carrying charges or endowed with dielectric or permeable properties.
On the other hand, the secondvtefm in (16,13) does hof vanish even in vacuo and

therefore it would superfiéially suggest the paradoxicel idea of & volume force

(éﬁvéﬁé %é&ﬁuﬁ; This term haé'é&oked a;gréét deal of speculation and does fit

into dn ether fﬁééfy i which ‘vacuum is supposed to be endowed with various
'mechéﬁiééi'bfépérﬁ{es;Whichg amoﬁg other things, enable it to transmit elastic
waves and ‘which also enable it to sustain body forces., The body forces can be

%féﬁSmi%tedvfrbm the ether to matter across the boundaries between the matter

“and thé éther, The only Wéy that such an ether force could be measured would be

bjhmeans<of'the action of the ether on'matter.'

Lccording to Loféntzb'électfén'thedry the only force which has.physicai
existencé is & resultant force whiéh.arises from the space~time average forces
acting on material charges and currents, namely, forces obtained by averagings

(16.15) F=p(E+ 7 x B) | |
Also;:écdordiﬁgwfo the special theory of relativity, no measurement can be devised
which can determine the'velocity or other properties of the ether and therefore
its existence cennot be establishsd experimentally, and mno ?hysical law can be
contlngent upon 1ts ex1stence. ‘Theréf6¥é‘if'wé adopt the'point of view that the
only.. volume force Wﬂlchrﬂas a place 1n a phy51cal theory is a force which is

derivable‘from‘the Lorentz force” (16.15), then the second term of (16.13) must
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be subtracted out Wé then have for the volume force, when k =}r = 1, which is

equal to the Lorentz forces

Gsae) | oreglod

If we apply this equation to a volume containing both matter and radiation and

bounded: by g’finite'surface, (16.16) can be written in the forms

* 1 9
(16.18) F; = [fTij de - :2-8_1:-[ N; dv

Since the body integrated force F; represents the total rate of cﬁange of mechanical
moméhfﬁﬁﬁﬁg}Jof the volume, (16.18) can be written ass

g;_l(e’,}isl)i o, T [Pi + ;5[[[ N; dv :1 =.KT
This equqtipnvstates that the sum of the rate of change of the mechanica1~momentum,
of a particu1ar volune, plus a term equal to the'yolume integral over this volume,

of the Poynting vector divided by c?

s 1s equal to the surface integral of the
totaltM§x§§%¥:§tregs transmitted across the surface, surrounding this volume.
If %tfwgyefggs§ible to qhoosg a surface that wasvlarge enough so‘thatiit was_inv_
field;fpg§.spgce, then the sum of the mechanical momentum and the‘Poyntigg vector
vqlwng_}ptesral term woqlq,be constant in time fﬁr there would bé no stress trgns-
'mitted across the integration surface to change the momentum of the system. Thig
implies that’ﬁhe:corfectiqn term,‘whose introduction into (16,16) was demandedvby
+ the physicaljreality of only t@e‘vqlume force on matter, mngS‘a change in our .
concepﬁ of momentum necessary.

In the absence of measurable physical properties for the ether we are forced
to modif& the law of the conservation of momentum by having it not only apply to

the momentum of matter alone but also to include a momentum density of the

electromagnetlc radlatlon field which is equal to the Poynting vector divided

We have omitted a term Whlch: in matter, is glven by L; L ot ﬂ Nj dv

Whlch is actually a matter term present ‘when an electro-magnetlc wave travels
through matter. Its net impulse due to a finite wave-train always vanishes.,
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by the square of the veloclty of llght° 'The:?oyhting vector therefore éﬁpggrsh"
in a dual role, both as carrylng energy and also as carrylng momentum.‘ It w111
turn out in the speclal theory of relat1v1ty that the property, Whlch transfers
the.energy, also corresponds to a transfer of mcmentum in the proportlons that
have been derlved here. Actually; thls is a ‘more general property whlch must be
ﬁtrae oflalllfonns.of energy flow°

A new:consequence of the 1ntroduct10n‘of the eurface term 1nto the conservation
1aws-1s the;p0551b111ty of balanclng energy ahq momentum.over part of.a system
only. In the case of balancing‘ehergy the surface ihtegral over the Poynting
vector-permlts.obtalnlng conservatlon even over parts of a system, whether
raalatlve'processes are present or noto To 111ustrate this point, cons1der the
81mp1e process of a battery (E ) feedlng a current (3) to a re51stor (0‘)

v

Flg, (16 1) Con51der the energy balance

>
J o
g
Nof™
_é
1 s |
. —p— . L_

FIGURE (16.1)
over a volume V boundedkby a cylindrical surface S of lenth 2 and radius a

as shown. By elementary considerations:

_-‘— ry . = }. 3 = d
(16,20) B = 5/~ ; H 53 a s N=sz @
-3
where N is directed outward. ,Hence:
- 22 (T ;2
(16.21) SSNodS = -;-l—_-(l%_"l-@ = -Jﬁ% dv. = - Joule Heat.

Energy is thus balanced considering the field as "feeding" the resistor via the
Poynting: wector, without explicitly introducing the source of the energy, i.e., -

p.
the ba;t:c,e-ry;\.@!’)_o.. -
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CHAPTER 17 . R.ADIATION PRESSURE

We have seen that the ether theory and the Loteetz electron theofy or |
specielttheory of relat1v1ty dlffer in thelr points of tlew. In the ether ”
thecr&, forces ‘are actlng on the ether and the ether is actlng mechanlcally on
matter, whlle in relat1v1ty theory no forces.are actlng on the ether. In fact,
'tﬁere:is ﬁciethér.v But in the relativity theory electromagnetic radlatlon carr1es
momentum which in addition to the mechanical momentum of “the matter 1nvolved 18
U conserved, Let'ﬁs'{nﬁestigete how these considerations effect some explicit
cases of the interaction 6fv££diaticn'ﬁith;matter. |

iﬁet;ﬁs:firsttccnsidef eiplane polarizedbélahetwave incident normeily upon
a slab of materlal whlch absorbs the momentum of the electromagnetlc wave fully
w1thout reflectlon.r Let the v coordlnate be parallel to the electric f1e1d of
the 1ncldent wate, and the Z coordlnate be parallel to the magnetic field of the
incident wave with the wave travellng along the x direction. The Maxwell.stress
tensor is? ; :

e 8
(16°8). Tig = B DJ + H BJ [:Ek D + Hy B k:]
The stress tensor:has‘only three nop-yen;shlng componegts which are all IOceted
on the major diagoeal of the metrix, These terms are given bys

1 v .
(17.1) Ty = =3 [Ey Dy+Hz Bz] ,

D

tlj
Nll-'

T =

vy [: Dy + HZVB;] = Ey Dy - g»

[ED"'H B}.:BHZBZ,g

This results in the matrix:

NII—'

Tpz =

-g . 0 ‘ 0.
T= [ 0~ (ByDy =g) = 0
o . 0 (g8, -g)

The_force derived-from this stress matrix, using the correction term in (16.13)°

which mekes the volume force agree with the Lorentz force in a material medium,
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u31ng (16 16)8

(17.3) Fvi 5T

The three components of the force areg

',-.(_,,-1.7’4).-*-.1?“ = - 1/25—_ [E Dy + Hy Bj_ '%%[EYH’Z]
Fvy’ l/za_ﬁy_[:Ey Dy . Hz B;J = 1/2.5637 [kko' Ey2 - )‘}lov HZZJ |
i z,é 1/2 (-,;-;;[Hz B, = By Dy:’ = 1/2%[}‘1}10 sz kk EyZJ

The' y and .z components of the force will vanish over the slab of material .upon

Which'thefE and'gffields,are impinging, since the fields are not functions of y

or z.  The Poynting vector hQS”no'y"6t;2‘componénts,' The x component, however,

... -does not vaﬁiéh, and in fact can be integrated, giving a total'time‘averagev

pressure on ‘the slgb'of’materialgv>'v' ST |
(17.5) -I:r-;[- Fop dx = -.1/2 [kko'.éz '}-}1}10 Hz]

which is exactl; equal to the negative of the energy density of the incoming

radiation field,’

.’ The term depending on the time has been omiﬁted for the reason thaﬁ)if Ey

Y;;d H, of fhe'inédmiﬁg'wave_varylsinusdidally)ﬁheh'When the time average of the

pressure is taken, thgztime’derivative term would only contribute & transient

variation, while the energy density;ﬁérm,“Will give a secular variation, This

means for a suff1c1ently large averaglng period for a contlnuous wave traln, that

the tlme-dependent term does not contrlbute to‘P‘ If we are con51der1ng the net

1mpulse that is transmltted by a wave train of finite 1ength, then the pressure

must be 1ntegrated from tlme equal to minus 1nf1n1ty to time equal to plus

1nfiqlty, and in thls case the t;me»der;vatlve tetm will also ;ntggrate out,

The only case in %hich the fimemdependeﬁt Yorm will contribube is'%o the instantaneous

value of %hé pressure dufing ﬁﬁé‘ébééfpiionfof a wave train. The timé;depéﬁdént

term will giVéﬁéisé to a fluctuation term Wﬁiéh’repréééﬂis the fluctuation of
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the momeﬁfum of the radiation field, The addition of this term therefore‘does_
not result in any experimental differences in the radiation pressure from the
value that it would have according to thé ether theory where this’térm is assenﬁ,

We can summarize these results by stating that the phenomené of radiastion
pressure is in accordance withﬂthe-concépt of momentum‘of‘electromagnétic waves
and the more- general concept of momentum carried by any energy transmitting
process. Howe%er, the radlatlon.pressure cons1deratlons do not disagree with the
results of phe-class1cal prgrelat1v1ty ether theory, ' Since the radiation pressure
that hagqbéénvcomputed here by general considerations must be identicai with the
Lqrenyszqrce,;it'must Be‘possible to compute it directly by calculatihg the
induced. currents, in the medium that absbrbs an electromagnetic field, if a
partic@lg;%mgdq;;ofgabsorption is used, such as, for instance, finite conductivity.
~This célculation can be carried out easily and in all cases does give a value
for the radiation pressure that is equal to the energy density of the incident
radiagipn,..

As a second exemple let us cdnsidgr the radiatiop pressure produced by 
radiation‘tbg#:iﬁ non~polarized gnd‘traveling in_a‘random direction Wheﬁ it strikes
a maferial'medium. . By symmetry the only non-vanishing component of the volume
force_(17,3) is the component. of the force normal to the surface whicﬁ.we shall.

designate by the subscript ;. It is given by:
- R Y
(o) T =50 5% [El D, +H By -3

whlch can be ertten as.

(B D # ﬁ'k_Bk)‘J

ar.m R e { ;—-— (21 52) + ix- (= Ea)} )‘Po[axl
3 2 2
(Hl Hz) #+ (HJ. Hs)} 5K, - gil

Due to the fact that the ith_and the j ) gdmponents of the electric field are

uncorrelated, the time average value of all of the cross temms vanishés, }
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B & ©E B ., ,
JE.2 _ Xko 9E2 . 3H,2  ppo am?

Also sifice in ‘the rendom orientation of the fields the sqdére of each component
has the same a Eriori probability, we haves

(17.9) E.2 = 1/3 E?

Therefore the wvalue df the normal force become83 '
- B3 f =i =il ra. ”
(17910) Fl = g}’(';{kko B [3 o= 2} *)1}10-  H 7= 3 S - 653{-; kko B

whére U'is the eheréj dénéfﬁy of the incident radiatipna 'Intégratiﬁg from the‘

absorbing medium into fisld-fres space, We obtain the result that the.tstgl |

radiation pressure is equal to 1/3 of:thé:eﬁergy densifyvAf the inciaent waves
(17,11) P=1/3U

This‘theorem gives what mighﬁéée,calied;angéqugfion of state for radiatioﬁ in a space

bounded by absorbing walls., This equation of state forms thé basis of thermodynamic

derivations of the Stefan-Boltzmenn law and the Wientdisplacement laws for black

body radiation,
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CHAPTER 18 ELECTROMAGNETIC WAVE EQUATIONS

o

We shall now con51der the form taken by Maxwell's equatlons 1f they are'
reduced from a system. of four flrst order 11near partlal dlfferentlal equatlons
toQg_systgm of two second order .linear partial differential equations, Maxwell's

equations are?d

s
(12.7) 1) YD = Pirue
, A =
(2) V e B=0 .
(3) vxg: 35-2
: — o 3 a}?
(4) v X H = Jtrﬁe +-5—t—

Consider a region where theré are no tfue chérgeé and no sources of EMF so that
(Dtrue O, andrE' = O and where k and,y‘are not functlons of the coordlnates.

, -
Take the curl of Equatlon (14 7)(3) and substltute/ﬁu H for B:

(18 1) v x (Vx E) = - —-—[v x (p}l H?]
Substituting from (14. 7)(4), we have..

, ('l:8,2-‘)“;, ; V x (gx E) = = g 5— Jtrue _ kko-—-)

'Est1ng the vector relatlons

(18.3)° U x (Vx E) = v(v E) -\7 E

—

Since {/ * E =0 in the charge—free field, and using (9.3) we obtain from (18,2):
-) 4
- oF
=
(18.4) VE- cz atz "Moo 3T "0

wheres
(lo4 }loo c2
Bquation (18.4) is known as the general wave equation. Usually only the
second or the third term individually in connection with the first term is used
in the solution of a particular application of this equation, In a non-conducting
medium the third term vanishes, giving rise to a wave equation for waves that

travel with the velocity v = l/g/ ryokko « In a conducting medium, the second
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term ‘-‘ié'uisua'l'lj?" negligible, and‘we dre 16ft with the differential équation for -
heat ‘conductich or diffusion, The relative magnitude of the two terms can be -
easilyiesﬁimaﬁéd“By'asSuming thet thé field varies sinusoidallys
| (18.8) B = BeiWE |
When this is substituted iﬁﬁb'the wave equation (18,4) we get:

‘18.6) VZEO' # i%‘- E, :-wz*-‘:';;;ioo-"o‘oiz =0
We ban:ré-expfesé'the'6deffibiénté"iﬁ'€ari5ﬁ§'WaYs; .If; for example, we introdice
the wavelength, divided by 2n, in free space A_, and ‘X in the medium, then we
nave the' ¥elationss - |

(18 7) (1Y In free spece, n = k=71, ;(o et
- AD.

(2) Tn & mediumy p # 1,7k £1, = "="%= where u = the velocity

Lo
| X
" of the' electromagnetic wave in the medium.

@) T

' The relaxation time of'thé‘dielecfric,vwhich_ﬁe discuééed in Chaptér 9, iss

(0i20) T =2
Substituting ((18.7)(4) and (9, 20) into.(1846) we haves -

(18, 8) \V/ E [1 "W]

Hence, if the relaxation time ’T‘ls 1ong coﬁpared fo the perlod 2n/b) of the
sinusoidal vibration, then we have essentially a propagation equation, since the
imaginary term drops out On the other hand, if the relaxation time isvshort
compared to the perlod; then the 1ﬁag1nary term 15 largé compafed to unlty and we
have essentlaliy a dlffu51on condltlon° o | o

"V.For all pure metals the relaxatlon tlﬁe is of the order of 10 -1a seconds,
éso that the dlffu31on type of equatlon is val;d from zero frequency all the way

1nto the optlcal frequency reglon. Thls means that in metalllc conductors even

-
% ‘
in the ultra hlgh frequency radlo reglon the propagatlon term &Egﬂ-*- can be

omltted from the Wave equatlon (18 4) To put 1t in dlfferent tenns, ‘the
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disp}acgggnt current is_negligihlejrelatiye'tq the conduction current in metals . .
at thg highest frequencies that are theoretically attainable with maqroscopiﬁ,icu
oscillators., In the_opticalifrequenqy.regiog,_bqth,terms,may become important,
due to the fact that the displacemept current term and the conduction current .
term become of the same order of magnitude and therefore indistinguisﬁablg.- The
binding and the inertia of fhe electrons iﬁ;the:metalrintrodﬁce phase lags beﬁween
”tﬁe_ﬁ¥ﬁftr99i9 gotions‘and‘the incident electromagnetic‘fields. Thé’tﬁp,terms
do,pp?ﬁg@ysicg}ly represgnt.different phenomena in the optical frequency ;egién, .
but simply represent a current with one component iﬁ phése with the field andl
another component that is in quadfaturg with the field.. The quadratiure current
component is physically not a displac;ment current term but it effects the
propagation equations in:the,saﬁé;way as. 'a disﬁlacement current would, In the
optical region therefore, the distinction between the-dieléctric constant and the
conductivity is a purely formal one. They represenﬁ res?ectively»the real and
vtﬁg;imggiggry parts,of”a_comp}exvdielectric constant,

fhe ratio between the magnitﬁde of the conduction current and the<magn;tuQe

- of the displacement current can be reWritten from the relations of.(18.7)'as:¥'

(18.9) 1 c— & X PEo , / .
~ o wkko”la«:oi‘”'x Kk, =°”>tRo'}1%'

wheres ‘ : -

(18,10) 'R, jl_ﬁ_?_

is a ré81s£ance whose ﬁumef;cai value is 376.7vohms. This nuﬁben is sométﬁnes
callea the charactérléflc 1ﬁ§edance of free space. It caﬁ be shown that a :
conducting sheet whose resistance is Ro‘ohms per sqﬁargk-has exactiy theiégme.
reffécégng conditioﬁsloﬁﬁthe inciaéﬁt‘ﬁévq és hds freé space iﬁself, proviaed &
refiéétor is pla;ed.a.quarter Wavelength Behind such a sheet so as to éffectively
make the 1mpedance behlnd the sheet 1nf1n1te. Such concepts aré, of coﬁrsé,

.

useful in practlcal cons1derat10ns, but we shall avoid exten51ve dlscus51ons of

,'The res1stance of & square sheet is’ 1ndependent of the dimensions of the sheet.
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such analogies,in-ﬂa;;; of:-considering the characteristics of the electromagnetic
fields themselves,

Thé significance of the ratio (18.9) might.be'statéd by sayinguthatfiflﬁﬁé
reéistance of a cube of a medium, whose edgé is ;{ in length, is larger- than RO’
then in such é mediun the displacement current is domiﬁant,iwhile if‘thejreverse
is true, the conduction current governs the behavior of electromagnetic fields in
;_thls medlum.:_w.:,‘ . | ' _
| Let us. 1ntroduce the sympollc operator[::} known as the D'Alembertlan,

fr

deflned bya . - . 2f' "
(1811) D V )ﬂ—‘st

The: wave equation (18.4) if then reduced to$
. > =

~asae) [JE e - 0.
An identical equation -can -be shown to hold: for _I?by taking the curl of (14.7)(4)
and using a process that is analééous to thejone'that was used to derive (18.4);
Let us now re-express these equatlons in tenns of the potentlals of the electro-
magnetic field., Due to the relation expressed by the induction equation (14. 7)(3),
it is ho: loWger. possible to derive the electric field solely from a scalar potential
g, but the magnetic field as a result of (14.7)(2) is still derivable from a vector
potential by the' equations | |

(11,16) ?=6 x—z
~ If Equation (11,16) is assumed to hold, then the electric field can be derived
from the sum.of the gradient of a scalar potential and a suﬁpléméﬁtary non-

cppsngatiye contribution from the rate of. change of the vector potenfial. - That

-
is, we may derive E from the scalar and the: vector potential bys
. -
- = o A
(18,13) E= -V f 5% . - L

which makes E conform to the relation (14.7)(3). As before, the divergence of A

remaing undefined, or at least remains undefined within an additive arbitrary

o Do
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. — :
function of p051t10n. Let 'us now define the dlvergence of A by the so-called- -

Lorentz condltlon;

(18.14) - :7 A+&1£§ STorpp o g=o0
whlch 1n free space becomes’

(18,15) v e -%—- %—%s '

' Thé Lorentz condition appears to be a very arbitrary. introduction of 8
éubsidiary relation., As we shall see, it has the advantage of introducing éompiétg
symmet?y"Béfﬁeeﬁ'fhe ééaiaf and the vector potentials, namely, it-makéé“théjsbalar
and the vector potentials obey the same differential equation (18,12) as those
obeyed by the fields, It turns out thaﬁ the:Lorentz ponéitioﬁ aSsureE-a:félétivistic‘
coverient relation between the scalar and the fector'potential. Ifiwevint;oducé'
‘the defining equations (11.1_6) é.nd (18.13) and the Lorentz cbndition into the wave . -

eqautlon (18 12) .and - 51mp11fy, we -obtain the symmetrlcal set of equatlonsg

(18, 16) VA -1 EZA @fa_sﬂ R
‘02 atz PFO P}‘o
ke % N |
(18 17) V 55 o2 _5;%")‘)“0 _Z""k'k&o L )

— — —
- Here j'! represents a current given by 3' = O‘E', that is, only that part

;.9f<ﬁh¢.9urrent»den84ty which 1s produced by the,electromotlve forces and does
not contain any part of the current that is induced by the electric fields in
the conducting medium itself, In free space these equations become Simply:u
' - - ‘ ‘ ‘
(18,18) D‘A = =R it .
” RS - (o) -
(s.a9) [lg-- £
gx P T Ty
o | - | : ’
whiere j! ‘and f)are‘the sources of the elsctric field and are produced by exteérnal
agents. These equations aré known as theé inhomogeneous wave equations. Their °
complementary solutions, hamely the solutions of the equations?
(18.20) ,D-_A =0
(8.21) [ g =0

will be shown in general to be wave solutions., The particular solutions of
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Bquations (18,18) and (18 19) are: ‘expressible in’ torms. ‘of integrals over the charge
and - current dlstrlbutlons. We are therefore interested in obcalnlng both the l
homogeneous, ‘¢omplementary solutions, and also the pafti@ulér'scufceﬂseiﬁticns,
of Equations (18.18) and (18,19).
By inspection of Equetions (11.16) and (18,13) ‘it can be Seenvthat the fescltant

electric and magne%icIfields'&re unchanged bj trensformations of the ‘types - |

(16.22) At =KUY

(1&}?’25_} - gr=y f*ﬁ’%‘g CET

where q) 1s

'““functibn'cf-theycoordiﬁateé and the time, This means that if any
phys1cal law ;nvolv1ﬁg eiectrcmagnetlc interaction is to be expressed in terms
of the general electrodynamic potentials ;?and ﬂ then such a physical law must
also be unaffected by a transformetion of the type (18.22) or (18.23).. These
transformations are usually kno%ﬁfae geuge fransformations and a bﬁysical law
that is invariant under such a transformation is said to be gauge invariant,

The property of gauge invariance, 1f-possessed by a phys1cal law, 1nsures that
thls phy51ca1 law w111 not lead to consequences that cannot be formulated 1n

‘terms of the interactions of charges and currents in terms of electromagnétic
fieldse

Note that ﬁhe‘;elcci%ymc::JL/YGZQES of‘electfomaénetic waves in vacuo
enters into the equations as a characteristic constant ofvthe theory per se,

not as a constant describing a particular physical parameter entering the theory.
This is a feature of Maxwell's equations at variance w1th the laws of clas31cal
mechanics which contains no characterlstlc ¢onstants, Cla551cal mechanics can
be scaled freely with respect to all phy31cal quantltles, Maxwell's equations
can be Scaled 1n relatlon to length and time individually but not as to veloclty.(

It is thls fact which 1nd1cates that the laws of classical- electrodynamlcs are

actually relativistic in the sense of introducing a characteristic velocity.
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 CHAPTER 19 . . SOLUTIONS OF THE ELECTROMAGNETTC WAVE EQUATIONS . .

Plane Wave Solutions in Stationary Media

- .Let .us consider first the solution of the homogeneous equatlons.

(18.20) D_}ra 0
~8.21) Dﬁ."'_‘- 0
in-the case in ﬁhich all fields are-fﬁnotions only:of thé'distance'of a given
plane from the origin as in Figure (19.1). If thls dlstance 1s.§ and if T is

the radius vector from the origin to a p01nt on the plane, and if n is a unit

,(All'fieldslare‘constant'
on such plane surfaces)-
. . . v . .

Flg;ure (19 l)

vector normal to the plane, then all operatlonal derlvatlves are functlons ofié
—

only and the §7‘operator becomes°

(19.1) v——ﬁ?éﬁ-

and Maxwell's equatlo%i (14.7) in the absence of charges, become:

s, 2) (1) 2. ‘?%D =0
v a ? ’
-,9
(2} n.* =0
B P % :
L = =
o 2
(3) 2, S E_ _ 3 B
- E ot
‘(4) nx a % =34 St
If we téke the scalar produst of m and the fourth equa.tlon of (19.2) and use

the relations (3 1)’ and (9 3) we have-u

> - Liemr -~ b=
(19.3)-.n° [kko*% D=0
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Equations (19.3) and (19. 23(1) 1mply that the 1ong1tud1nal components of D and E,
that is those components that are peroendlcular to the plane surface in Flgure
(19.1), are independent Oféé.ﬁnd that their time dependence follows an exponential
decay law in!gccordanCe_With_the characteristic relaxation time of the medinm. Thus?$:
y _ct
= 7 ko
(19.4) " E, =By 0 /Y =E e °°
This means that the only 1ongitudinal solution of the field equations is an
electrostatlc solutlon and that, in the presence of flnlte conduct1v1ty, the

electrostatlc solutlons W1ll vanlsh exponetlally 1n time,

Performing the same scalar product operatlon on (19.2)(3) we haves

L=
(19.5) —3~-§-—=o

Equatlons (19.5) and (19.2)(2)" shOW'that the only solution compatlble with -the

_~
fleld equatlons, for the magnetlc field component normal to the plane surface

»ﬁln Flgure (19 1), is a statlonary unlform magnetic field,

If there 1s a non—statlc part of the wave, it must be composed.of.trensverse
..fields or flelds whose vectors 11e.parallel to the plane, The veloc;ty with which
;this trensverse Wanebis propageted in the direction'R; ifg—= 0, is_giten by

.
(19. 6) u = ==
Each transverse wave component obeys the one—d1mens1ona1 wave equatlon.
2 ! . -
_ a E 1 45 E
which may be derived by eliminating H between (19.2)(3) and (19.2)(4), securing

4 1] N - - .
the Telegraphers' Equation, and then setting ¢~= 0. ‘The general solution of -

(1997),i§ﬁ:ﬁ

. (1848) Br= g(f - ut) + £(&# ut) R

where g end f are arbitrary functions. - If-g?isgassumea to have a sinusoidal'time
variation, the solution of (l9°7)«i5‘ﬁ o N , \

(19.9) E =5 o *&s ¥
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whene K is given bys

, e I 1l u W _ 1
(19.10) K= Sw= =5 »K=T=%. J

‘"“B&"genéral”theoremsﬂin'Fourier{analysis;’the"éene}al solution of the

?ﬂ”nomogenéous‘Wave'equation'can-be'expanded i terms of Fourier integrals over the

three components of the wave propagation vector K, which is related to the

frequency by the relatlon (19 10) The Fourler 1ntegrals are taken over all

of the n031t1ve and all of the negatlve values of each component bf;ii In
addltlon, the resultant flelds are summed over-all p0851ble polarlzatlons. This‘v
glves the general expan51on of the”solutlon of the homogeneous wave eduatlon in

terms of a super-p051t10n of plane Waves. Thls expan51on has the forms

1(K.r ~wt)

The xJ are unit vectors in the three coordlnate directions. The aJ are amplitude

(19,11) - -E?= Z
j=1

functions of the frequency for the three coordlnate dlrectlons, whlch may be complex
to glve arbltrary startlng phases. a

| In & s1m11ar way, 1t is also pos31b1e to generate a solutlon of the homoéeneous
wave equatlons in terms of an expan51on in spherlcal waves, or in terms of an’ “
expansion in cyllndrlcal waves, that is flelds whose magnitude is dependent only ]
on dlstance and a21muth relatlve to a glven axis. Wh1ch of these expans1ons ls “
the more convenient one to use depends on the symmetry*properties of the problem
being considered,’ B

Plane Wave Solutions. in Moving Media

Let us now consider a plane wave solution in one dimension in case the medium
in which the electromagnetic wave is being propagated is in motion with a telocity
;?relative'to*the'obServer. The phaéé telooity of propagation that results under
these conditions was measured in the Fresnel-Fizeau-convection coefficient

experiment. The experimental result was that the phase velocity was given by



185
an equation of the types$

1 — >
—— n

nz )_'V .

18,12 fu s ug (1 -
n é;{?ﬁi;=;the index of refraction of optics
uo' —il—-v= the'feioélfy.of tﬁé wave in the médlﬁm 1fl;he medlum
‘Pk is at rest, vV =0, ' ‘
?g = ﬁnlt vector in dlrectlon.T? . ‘ .
We shall row show that Equatlon (19 12), whlch W111 later be derlved relat1v1stlca11y,
. is also in agreement with Maxwell's equations in moving media, prov1ded that we
1nterpret the veloclty';?as the relatlve velocity of the medium to the frame in
'Whlch ﬁé¥%eil's equatlons are valld, i.e. to the frame in which thé free space.
%elgcitf would be C. Maxwell's equqtlons, in the absence of permeable materlais
and in the absence of true charges and currents, in moving medla frém (14, 19) are.
(19.13) (1) ‘7 . D =0 |
| (@) Y7 . B = 6

-

(S)VXE’--a—g - B
o ——>
(4)VxB=}10[ jko EVVX(vaﬂ

The polarlzatlon is given by the effective field in the moving frame by:

(14.20) :'P:=:ko(k—1)(E + v xfg)

Note that aml’Offthe fiélds-in (19.13) end (14.20) are the fields which would

be measured in fhe stationary ffame of the observer, Noﬂe-also that any results
derivéd here will be carried out only to théffifst order in V/E. Let usbsubstitute
P the polarization field (14 20) into the fourth equatlon of (19 13) and using

(19 13)(3) we haves

= e SE .y OF . = 3B = — -
-(14?*;14% V x B = pol ko TF * Kolk-1) JEi#ko(k-1) {v x5t tvr Exv }]
-
B

-
B
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For & plane wave solution using (19.,1) this becomess

i 2255 15[ 9 (e )]

Note that';?is independent$p£ the:cccrdinates. _Expandlng Ege trlple cross product,

- JFE
and, since the wave 1is transverse, omlttlng the term n ~‘9é,, we obtain, by

taklng the curl of both s1des of (19 15)

> . =2 JB

5
(19 16) - 8%2 —g nxg?{;t ( —>2(v'n)a?
»‘Let us make the addltlonal approx1mat10n that in the last term‘\ A

whepe‘ppe:velocltyﬁoi’the wave‘wcdld Bé uo in the medlum if the medlum were at N
es; th;svapppoxdddpiop 15 Justlfled since we'are oniyvlntepesped in the correctlon
term tc the ve1001tjo U31ng (19 17) we have..‘1'=~¥»ﬁ PASTL L T TRy

AR e "...‘..‘;_,‘ b R e e A DT e T

(19.18) - 2= B, --—----,")2B 1 ( l.) AN
° 3§72 u, 2 Q2 k u,

which is the wave equatlon that corresponds to the propagatlon veloc1ty°

LBa * 1 - i'c" v *n

which agreeS'touthe;crder»v/p with the Fizeau result given:in (19;12).:'The=w

physical interpretation of (19.19) is that the phly‘paré}pﬁgthe_propegation-velooity
of the wave. which:is affected by the motion of the mediuﬁxthrough which the: wave-

is:passing is.that.part which is:preportional tog. . ,....& ;"

(1_9‘»920)' 1 "1'5 =

This fraction isfproportional to the ratio of the'polardzation_pugpent tpg}he_lé
d;splacement current. Since a polarization currentjdoes ectually correepond to
the:ﬁotiop'ofii' o d;pcieei”i%eTE'é&ftej%easénéblefﬁofeseuﬂe“that ﬁﬁatfpért’f
of the wave whlch corresponds to these dlpoles w111 be affected by the velocity

of the medlum. The effect of a medlum on a plane wave is.in’ general 31mply that

# We have also omitted a term n(ve 5~f); this term will vanish in the next
step Bg. (19.,16)) due to the B x opération.
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thé medium is polarizéd by' theé incident wave -and that the resulting dipoles retard
the wave whichfisfcoherentﬁwithfthé‘incident'wave‘guéh;thatﬁthé eombinéﬁibﬁﬂﬁitﬁ
the‘*pﬁimaé&awave;. corrésponds o -the.,éveraii phase!¥elosity, locity. "It is this
coherent retarded component which ‘is being radiated from a moving source in’ this:
casé; end’ which gives rise to thebFresnel-Fizeau coefficient, Note that all these
results are consequences of the classical non-relat1v1st1c electromagnetlc theory.
We shall 1ater show that these resu1t§ are also in accordance with relat1v1st1c
principles,.: We shall not-discuss other examples of problems involvingtplane wave
‘propagation; such as boundary value ﬁroﬁlems, propagétion.in noh-isotropic‘solids,
etc., These problems are covered in optics--courses, . |

Solution by Fourier Analysis

Let us concern ourselves with the integration of the inhomogeneous equations
and let us 1nvest1gate only the partlcular solutlons. The'inhomogeneous wave

equatlons, for the vector and scalar potentlals, in free space are.

(18.18) [:]Aﬂ= - Po f
(18.19) Dyf = - f':'

subject to the free space Lorentz conditiong

(18.15) V A+—-—§—% = 0

c?
fromwvhlch the flelds are derlved by s

(1€.13) E - 'Vﬁ'at

(11.18) ?= ﬁéx?
iLé%'ﬁé féviéﬁ'théqsolution of the analogous static problem; 'iﬂ'the static case,
' (18.19) redliced to Poisson's équationf'

(L;‘é)"vzﬁf -- £

whosgé partlcular solutlon was.

(19 21) ¢(p) Tk, W%
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;Npte;thay.the intégrand.is a. function both of the point_of;observation_p:andvthe:
pgithpf,iptegration p', and that the time does. not -appear eiplibitlyiu

., . We.are looking for a-solution of (18.18) and (18@19).that~is;similar3in;form |
to (19.21).. We wish to. study the,m_odif“i.cai.:ion'; of .the solution of (1,16) that. is
;caused by the presence,of¢the:timefaependent\term?in (18.18) and (i8.19)i Both ..
,of- thesesequations have.the,general.fofm:a'?tf3-?v-' |

(19322) LH;_(p,t)-,,?;-'- glpst):

. ‘ N2
Let us.assume .that the source function g(p,t),can.beqana}yzed_by,the Fpuriermzrv

integrals ... - S
-iwt

(19.23) g(p,t) [ gw(p)e cw o Qe i

whlch has the Fourler inversions

‘ 1.ﬁf” . +1wt v
(19 24) ga)(p) oy g(p,t)e dt
. o ) P i . R . ) N I
Let us assume s1n11arly that the general potentlal %’(p,t) can be analyzed 1nto

Fourier components by . _
| oo -1 Wt
(19.25)  Y(p,t) = [ Y (ple dw

. - 0
with a corresponding inverse relations

Hiowt

(19.26) ¥ (p) = Zn/ Y (pst)e  at
) vo CE
By substitution of (19,23) and (19 25) into (19 ?2) we see that the Fourler component

Y (p) obeys the dlfferentlal relatlon.

2 ‘
(19.27) VZ‘V W= - Bw

which is similar to Poissgnfs equation. Let us synthesize the solution of (19.27)
out of the superposition of a set of unit pgint_sqlgtiops;§qﬁre§popdipg to a source
at the point p', with the source g, (p) = éf(p-p') whi ch obe&;tpelequation:ﬁ
afi ' 1 L
(19.28) V2 6(psp*) * 2 G(p,p)=-5(p-p) . .
where § (p - p') is the Dirac 6‘functlon deflned in (5 48) and (5 49) The

]

resultant unit source potential G(p,p') will be’ a,functlon.both“of~the péiﬁtéfQ
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p and..p?,. The. partial solution. corresponding to the frequency gy of the total

source is.'then given: by the superpositiong-.

(19, 29“)‘ “P [[few(p ) G(p,p )dV'

If we let r represent the dlstance between the point p and the p01nt p's the ‘l

'

resultant solutlon of (19, 28) w1ll be soherlcally symmetrlo in r, and hence the
solution at every point other than T = O will be the solutlon of the dlfferentlal_

equationg

(AT w
(19.30) ry

9 (rG) + K26 =0 K =

'whlch 1ntegrates lmmedlately intos

(10.31) ¢ =2 & |
The solution is valid everywhere except atbr'ﬁ 0. To evaluate the constant A
1et us oons1der the volume 1ntegral of the dlfferentlal equatlon (19 28); Wlth
the deflnltlon of the é~functlon (5 48) We obtalns

(19 sz)ffv G dv. + Ksz Gdv=-1

The second 1ntegral vanlshes, as the 1ntegratlon volume is shrunk to zero, s1nce o

the s1ngularity of G at r ?_O is onlv of_order l/}. The first term can be trans-

‘.formed by means of Green s theorem to gives

(194 33) HVG . dS = -1
—;é B N v . - )
Operating on,the;solutionv(lQ,Sl) with the \/ operator, and then substituting

into (l9.53) We.optain:

T .7
(1934)(] -—3- f 1—5 AKX

which in the 11m1t as r——>O becomes' :

(19 35) ,-zmA 1

SO: +1Kr

1 |
(19 36) G(p,p ) e is the solutlon of (19 28)

Substltutlng 1nto (19 29) we obtaln;

’ "' K ( ’ ) /‘
(19.57) kPw<p> U% et
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The effect of the second term in (19.27) is therefore:the introduction of the -
exponential factor in the Couiomb.type integral (19.21), .. If we use (19.25) to "
resynthesize the time=-dependent potentlal functlon 1n terms of 1ts Fourier
components we have? - | -i(&)t*Kr) ; “"““*54“ o
Qs 58) Qi’(p,t) [%;é):m d4>= z;[[[ i(—"Tr‘;,p o dwdv' - .
If we 1ntroduce a new tlme deflned byz R
(19 59) t'(p,p Yot * -;' b * w’: whore o = -KUQ
The new time t' corresponds to shlftlng the orlgln of tlme by an aﬁount equal
to the time that it takes a llght signal to be propagated from p01nt p to p01nt p .

The Fourier transformation can be evaluabaiby using (19. 23) glVlng.

g(P st ) )
(19. 40) (.P (prt) = '4,1([/ — p’p av'

Note that ‘now’ the p01nt of observatlon P is contained exp11c1t1y.both in the 1/%
term and also by means of (19.39) 1n the tlme at whlch thé tlme-vapy;ng_currents o
or charges are introduced into the integration. “Mefhemeiicaiiy, bbtﬁathe'piﬁst
and ﬁhé'minS'sigpzih'(19.40):are valids hdwavef;rehly tﬁe“mihus'sién"eppeafs to
hévezphysiCai*signifiéapée;' Thelﬁinhs"sign eefrespoﬁasvfb the:ceﬁse‘pfoduciﬁé‘the
effect preceding the effect, which is presumably neééSsefyvip axphysinIIy_ﬁesﬁingful
. "s’bepry<a:{};§ég.& +{19,40)with- théminus-s 1gn19niyknoknown Y theiretar d“‘egig_‘,_ pgtentl al -
solution“e% %hewiﬂhemogeneoﬁs“waﬁe eéuetion: The”selhtieﬂ with thé'ﬁius Sign is
known as the advanced potential and appears to have no phys1ca1 s1gniflcance,:
although at various times attenpts have been made to use the advanced potentlal
to explain certain difficulties in electrodynamics. |

A retgrded potential might be visualized es;foiipws;  Consiaer.ap:opser§er
located at the point p in space as seen in Figure (19.2) and ieﬁ'amgphéfé'hhése
center is at p contract toward p with a rad1a1 veloclty c such that 1t has Just
contracted onto the p01nt p at the tlﬁé of observatlon t. The tlme at whlch thls

information collectlng sphere passes the source of the electrlc fleld at the

A



. to be:

-- e
(Sphere reaches P, : s
Cetbiine ) TN

O .

., (6bserver)

(1nformat10n collecting
sphere)

(sphere passes source

at time t' = t - I) -
c’

) :
)

;":).. T P . '(:' Figure (19.2) o

point p! is then the tlmelét»WE&ch'fﬁe source'produces the effect which is felt

~at p at the tlme t. If we denote by the rectangular bracket symbol[_ :]that

the varlables contalned within the bracket are to be evaluated at the retarded
time t', in this sense, then from (19 40)fthe integrals of the inhcmogeneous wave
equations (18.18) and (18, 19) corresoondlng to a current dlstrlbution J(p ) and a

charge distribution (p ) are.

(19.41) 'K(p,t5= [/-L?-‘E—r%—
(19.42) o 4uk/[]M

If the time variation of the scalar and the vector potentials is aésumed
— -n.wt : . " -1a)t

(19 45)‘” A(Pst) =.A (P)e R R ﬂ(Pst) =, ¢ (p)e
Then a single sinusoidalfcomponenticf the'solutionSv(19.41) and (19;42) may be
writtens

(19,44) - A
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Only the real part of eithef the poteﬁ?iaIéVB;m%ﬁ;ﬁéﬁérgg§ ré@réseﬁﬁé tﬁé“aéfual
physical quantity, Wéjwil;,usg&thgfb;nvention of a negafiﬁéu%maginary‘exponent
in the time variation. Obviouslx?fhew§j§n of 1 couldtﬁe revefﬁed without changing
the physical quantities. The eléctromagnéﬁiécﬁi?iﬁs can be derived from the potentials
o e . e e P
(18.15). E - -?7 - -'3—-

j;

(11, 16)

[T PR )
The gradient of the monochromatic‘scalar'potentig?m(19;45) is, after commuting

e — ¢ . .
theiy operator with {3, changing it to K7 to operate on the coordinates of the

WG?’) =

source point p', {(omitting u)from j eand (’)3

| iKr(p,p* ) R 1
(19.46), —Vﬁf w(P) pr T [{[ %(p,._pi ., 4 = - Ik,

L:j éfK; e e

The electrlc fleld therefore becomesg (31nceéFE > - 10))

PR e W‘ﬁfev(""‘) s B /ﬂ -

And the magnetic fleld in a 31m11ar manner can be. developed from' : ',i' Cel

(19.48) ﬁow e vf[il___ . f ?7( )dvn

A change frmn§7 to :7 ,was made after the vector transformatlon has been made

.ﬁvgow(p)

. - —
in terms ofithe Y/ dperatdr,»noting'thatA§7:does not operate on ‘js

We have seen under the modification of retardatlon, that the Coulomb field
integrals do not contaln‘theuéperator i; operatlng on l/} only, as is: the case . -
in the non-retarded-éxpréssion; .but operating on: o /% ‘instead, . When the..
differentiation indicated by the gradient operator is carried out oﬁ éiK;/%’

two terms will be secured, One term will vary-as 1/¥:andjﬁheiotﬁer term will - .

vary as l/rz. This will be true both in the expression for the electric field

 and the magnetic field. -

~&
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- contribution in terms of the surface integralof the Poynting vector, and that it

therefore represantsﬁé net.radiation*énefgy 16ss% The zone in which- the 1/r term
is dominantwis,khaniasithé‘Wave‘zone,‘6? radiation‘fiéld:zone'ef the‘SYStem of
radiating charges and currents, while the zonesfefvhigher_orde; radial dependence
are known as the quési-statiOnary er.indﬁétaneevfieid'zones.

The expression (19 48) for the magnetic fields, permits ue t0'cdmpute the

: total energy loss by radlatlon for an arbltrary current dlstrlbutlon. If only

the 1/r dependent radlatlon f1e1d is taken 1nto account, then (19 48) can be

wrltten as'

L Jikr . =
(19 49) )xofi’ 5 * = EEQ—[[ = rl) r . dv', 'r>1 3
" rad '

T

- The rate- of energy loss from the radiating system can then be calculated ‘explicitly

~-in terms of the current distribution. It is seen by comparing (19.47) to (19.49)

‘ , g , . :
that in the radiation field, E and H are at right angles to each other and

that the ratio of the magnitudes is given byi

ARl LB
' Ry =1 %
The time average of the Poynting vector is therefore given bys .

TR — xH 1 [po 22
(19.50) N = "7 =79k, HT

where the time averaging of the_Slnuseidal components, which were assumed in

“(19.43) has produced the factor of two in the dénominator, Substituting (19.49)

into,(19.50), we dbtain for the time average of the Poyting vector as a function

12

r ' .
(19 51) KL(;: 3? n g(J x rl) = ‘:'_4: -;:.

In general this fonnula does permit the calculation of the rate of radiation
fromtaﬁgivehKSYStem:of eurrents;"lf'thetﬁoint of observation is at a distance

5 of the radiating system, as is the case in

f’mf;ffem-ateﬁ;e?qbérge‘eystehs;'theh:the Tgnction 1/};ihtthe iﬁteérel N

is a;slewly varying funetiok'eempated to the remaining functions, and the rate
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of ﬁoﬁgl;energy:radietionmoanfthen¢be expressed as.an integral over.a sphere of:
radius: r which reduces to.an -integral over the. solid .angle L) subtended at the.: .
poipt{pfgrediation.g The final relation for,the.ratewof'totai energy radiated . .-
by & radiating system is then?

(19.52) /[Nd? Rd{zf[ (Jxr1)6 Tavt | el

°dS
where dil —1-5—
r -

TAIf the rédiaﬁiné'evsteﬁvie'émdilAin.%xtent, not only oompared-to the distance

from %ﬁeﬁfédiéﬁfﬁédsyétemfto the ‘observer, r 5 Ri; but also relative to the

wavelength of the radiation X > Rl, -then the factor elKr w:Lll also be a slowly

. u
} Lo

varying. function “and cherefore 1t can be expanded in a power serles about the
yioquer of Lhe radiating system. The var;ous terms; in §uoh;a power series. expansion
will hdveenergy ‘losses that depend on rsuccessively higher powers of the fﬁequenqy.
We shallc;nvesgigate;this;expansion_equation\(21.16),in‘more-detailklater‘:'The
various terms of this expansion represent the so-called multipole expansion of

the radiation, This discussion has not includéd’the induction field contribution
at all, and in fact we have not proved expllcltly that the 1nductlon fleld does
not contribute to the radlated energy, but have only proved that the 1nductlon
fleld cannot contrlbute to the energy that is radlated over a surface of very
1arge‘radius; since its higherforder of invefse radial dependence causes the\(u
sdffeoeiintegfals'oélthejinddoﬁioﬁ fieldiﬁo vanish;”‘fhé eveluetioh'oflﬁhe‘ﬁojﬁting
‘veéﬁbfﬁoverfazgiveh'surfeoefwﬁioh does take into‘acooUnf the inducﬁion‘fieids'
would actually give a zero time average'contrfbufionvbut'a'don—zero iﬁstahteﬁeo;é
value to the energy flow, which: implies tﬁatiihefindUCtioh ﬂieldé.give rige"tolﬂ'q
energy,fluctuatlons in  the radletlon fields: ' In oartlcular oif We“hdvefa';adiating
system%;whose,OSCillatioge4ave_pon-s%nusoidal;rwhidh]undergoes-glnet,chenge,in

its coﬁflgpratlon “thén net energy can be’ trénSferred intoithe induction field,

% Egs. (19.51) and (19. 52) give the radiation rates corresponding to a given

Fourier: components, Tt will be shown (see Eg. (23, 22)) that the t tal rate: of |
rad1at10n is glven by 4’n'fmllaydw or: (l’) 52)° dW R K [n”] o x T)eikr dv" dfidw.

-
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CHAPTER 20 , THE WIECHERT~LIENARD POTENTIALS

Léf us now consider the application of thé retarded potential- expression-
(19.42) to the computationvof'the radiation of an electron. In this application,
s certain difficultylimmediately arises. In classical electrodynamicé the only
thing that is known about the electron is the fact that it has a certein total
charge and any calculation of itsvradiétion field cannot invelve any details
of how this charge is distributed geometrically in the electron, On the other
hand, it is ﬁnpﬁssible to éssume that this charge has a zero physical extent, since
various dlvergences will result, Also certain features of the radiation field
are actually 1ndependent of the radius of the electron, provided only that it
vlS small comparea to the other dlmens1ons‘1n the radiation field, In our dlscu551on
of éhe electron and its behav1or, we shall assume«that it has a finite radius,
buéiﬁelgﬁaii ésdfibe physical significance 6niyvto those properties.of the electron
which '_aret '_indéééndent of the magnitude of the.radius.

ub&;.imﬁediate difficulty ariseé in the application of the retarded potential
concept to the radiation of a system whose total charge is known , If[ﬁﬂis
‘ the retarded charge den31ty within the charge system, which must be substltuted
llnto Equatlon (19.42) in order to secure the correct potentlal ﬂ(p,t), then it
does not follow that‘ﬂ]T:P]dv represents the correct total charge of the charge
system,. Ihe reason for this apnarent paradox is that the various contributions
to the inteérand éf g7t}{]éV'are evaluated at different times and that during
fheufime that éiapses between the measurement.of the charge at the various parts
of.fhé sfétém és fhe information,collecting sphere of Figure (20,1) éweeps over
thé éﬁarge.vthe cﬁarges hay'move-ahd appear more or less dense than they should
to give a correc£i§a1ue for fhe total charge. We can illustrate this system

best by a detalled cons1derat10n of the information collecting sphere, Consider

the sphere of Flgure (20 1) converglng onto the point of observatlon p with a
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velocity ¢, and let it gather>information’as to the charge density within a

3

Flgure (20 l)

certaln charge syeteﬁ as 1t‘sweens across the charge sfstem, The sphere‘arrlves

4Aatup at the tlme t If the:charge systemvhas an average ve1001ty eompoﬁeht-ln

the same dlrectlon as the motlon of the converging sphere, then the\volume 1ntegra1

_’Jof the retardeémehefée density Wlil glve a result that is in excese ef the total
herée, If'khe~eharge dlstrlbutlon has aﬁ average veleelty compoeeﬁt in:‘ |

zoppos1tlon to the veloclty of the contractlng sphere, then the 1ntegra1 w1ll »

give a result that is, 1ess than the total charge of the system. | -

Thls 51tuat10n is analogous to the problem of taklng a census‘ef the
popﬁlaflon‘of a countrj;r° Let us assume that a group ef census takereuoonvefge
upon the 1ﬁfermat10n center w1th a>cer£a1n speed° 1et Us assume that they measure
the populatlon den81ty at each p01nt as they travel The cor;ect populaflon W111
dlffer from the total of the census takers' 1nformatlon dependlng on whetherl
the populatlon had a net mvgratlon trend w1th the census takers (1n whlch the
true populatlon is 1ess than the sum of the reported den51t1es) or agalnst ther

’

‘census tekers, The retarded potentlal of an approachlng charge w111 be 1arger
than tﬁat ef a recedlng charge at'the same.dlstance from the observer*51nee tﬂe
approeehleg eharge steysjlonger‘wlﬁh the 1nformatlon collectlng‘eehere.v Let us
coneide: tﬁe radietion-field of:aﬁ electroﬁ whoseHQeloeitixieveeeﬁe;able to Ce

We shall assume that our electron is a system about which we knows3
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(1) The total charge of the eloctron is e.
(2) Within a certain volume V, all parts of the electron's charge»are
systematically moving with a velocity‘;i:

iet.us now consider the sphere sweeping across this electron in Figure (20.1).
Let‘;?be the radius vector from fhe,charge to the point‘of observation to whgch
the sphere is converging. - If the-chapgebsystem is at rest,'thevamount of eharge
which thiS;sphere will cross duringjthe.time dt.as.the,epﬁere*shrinks'in radius
dr is given_by'[f{]dAdr,.1On:§peﬁother.hand,,if the charge system is moving with
aAveloei:X;gz a quentiﬁy;ofueherge~which_is less than [({]dAdr by fthe amount
[F]dA Zgz‘dt will be crossed by the sphere, The total charge crossed byvﬁhe
sphere in terms of the retarded charge density [fa whieh is obserwved by the

information collecting sphere, is therefore given by.

(20.1) de = [laser - [e i T g
But ‘4t ‘and dr dre related bys R
-(20.2-) R g_r- Cand
(26.3) 7 dhar = dv

givingérlv"
-

(20.4) EP] av? - TLa

Soiving for the retarded charge‘density; ‘we obtainsg

(20. 5) e L

T o oo

R . er o 4
Jdv' de
) (2006) S E—-—-— ;:—E-_?_

Hence an abproachlng charge anpears to have a 1arger effect, measured in terms

of 1ts effectlve retaraed charge.

(20.7) ﬁf [pj dv

than the true total charge°

(20, 8) f[ de

has, If we substltute thls retarded value of the charge density and volume
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element expression into the retarded potential expressions, (19.41) and (19.42),

we obta1n°

(20.9) ¢ = Ink [H ' d?i.;i

which' are known as the Wiechert-Lisnard potential of a single ‘electron, At the
1imit'df*é?peiﬁt”ehérge;Vthe'distance dependent terms are slowly varying and
can be ‘taken outsidé of the integral sign and, sinbe;zz7fde-= e, the known

electronié charge; we obtain for the potentials of & point charges-

v L e
20011 i = : . . .‘ 3
( ) ¢ 4.111(0 -I?O'V'
r o= ==

> JFo o
an ?o?
P o —
c

which should be velid for all values of the velocity. Note thgt‘these expressions
are independent of the extent of the electron and are therefore independent of the
detailed model used, The fields of the single electron can thep'be derived frdm
these potentials in the usual way. The details of the field calcuiation Will be
taken up later, In general, since the relation of the retarded" p031t10n to the
"present" position is not ‘always known, if the charges are accelerated, the
Wiechert- Llenard potentials permit an evaluation of the potentlals and flelds‘
only in terms of the retarded positions and velocities of the charges; If the
charge is in uniform motion, it is possible to a1s0:exgress thé:bttentials and -
the flelds in terms of the present" p051t1dn of the charge since in this case,
computatlon of the relatlon between the retarded and present Dos1tlons 1s'poss1ble.
Consider an electron as in Figure (20,.2) that is mov1ng w1th a unlform
velocity ;?1n the x direction. The potentials of this electron at the retarded
.pOSition.[Eij are given by the Wiechert-Liénard petentia1E;w Let 6 be.the'angle

_— — L .
between v and-;;, where ry denotes the present position of the electron, Let

R T

L
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us evaluate the Wiechert~Lienard denominator 's = [:r - rwv/é] in terms of the

present position of the -electron. The square of s can be written ase

(20.13) ([:] Lr]"’)

Y
and since, by the geometry of Figure (20. 2), ro X v = [-] X T, s can be

retarded o present B '
+ position < T ey T p031t10n 2
=

p' :

observation
peint

o
- P
' Figure (20.2)
transformed intog
2 2 [Tox%
(20,14) s = -(———;—-—-
Hence, expressing s explicitly in terms of the’preéent position coéordinates,

Xoo Yo Zgs We haveg

) ——
. 2 2 2 v 2 2
(20.15) s = ‘/xo Yt Ey - (y © + Z, )

s ;»/"vxozv*_-(”l‘i - 3?)$y02,f 2 2) o .

)/3 =B s1n2 e -

wherée: : - -

o’|<14 -

) ::j

(20516) 7 -
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The Wiechert-piébard.potentials’for.the uniformly moving electron in terms of

s are given byg

(20.17) g = 5‘%;5
T
(20.18) A = o2
The fields are;eesyito compute explicitly in‘this case.rlTbe eleobrio‘field v
“-isgiven bys %_; |
(18,13)‘;"1‘ =y -V ;zf - —% . ¢
_The time deravatlve caﬂ be evaluated in terms of:bhe spatial derivative by noting
that the field must be carried by the unlformly mov1ng charge thet 1s producing
the field, A statlonary observer w111 observe the same change in the field during
the time dt at a{glven pos1tion that an observer who moves & dlstence -vdt, from
the position of bhe'stebiobary observer, will observe with the time beld consbant
ourlng th;imove. Hénee time derivatives can be replaced by
(2019): a;‘-v-sa—};-
Note that the sign in (20.19) causes the fiel& to be the same at e.time'dt_iater
as it was a distance vdt behind at the, start.. Substituting (20.19) into (18.,13)
the components of the electric field becomes . |
Ay = A, Ay =A, =0 |
‘ eXy
(20.20)  Bx = gy (- p%)
oy - . - , .
(20,21) Ey = Z;%i;g- (1f_ ﬁZ)ero : :”.WJ: , : | “.»b '= r_"‘ , A T
. | ez 2. - | ) ‘ . . ‘
(20.,22) EZ‘=A-__4nkoss (1 - B°) . | o,

— - o :
Although A has only an x component, the electric field is symmetrical in its
- three components, . Note also that the electric field is directed toward the
"present" position of the electron, using a negative electron, of course, and-

not toward the "retarded" position, Hence vectorially the electric:field is
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given by B PEIE 1
> o |- 82) L ere . . (1 - %)
(20,23) B = == ‘ 3 2512 2
: RN S 4‘1’11{055 Sl T '4n'k0r0 (1 - p sin 6)5/

Note that for low velocltles, p-—éo, s——er, that (20 23) and (20 24) reduce to ﬂle

Coulomb (1 5) and Blot-Savart (11 8) flelds of a s1ng1e charge. For hlgh
velocltles, p—>1, the magnitude of E depends on the angle between the dlrectlon “

o As seen ‘in (?O 23) the

e oy : PR

of motion of the electron and the radius vector ;?
fleld de dnereased 1n}a dlrectdoe et rlght angles to the dlrectlon of motlon 1n
the ratlo of l/cv 1 - p s whlle 1n the dlrectlon of motlon the fleld 1s decreased “
in the<ret10 (]_; pz> Therefore, at very hlgh veloc1tlee the field resembles
more and more the fleld in a nlane wave . For a short tlme, as a high veloc1ty
electron passes an observer, he sees a purely transverse electrle andvmagnetlc

field, Note that the field of a uniformly mov1ng electrcn is a non-radlatlng

field in the sense that it does not representran,energy 1QSSw This can be shown

by a direct evaluation of the Poynting vector corresponding to. the fields‘given :

above,

- The, Mliechert-lignard potentials (20.9) and (20.10), and the consequences

derived, from them, were obtained as integrals of the inhomogeneous wave equations

5(18.18) and (18.19) which in ‘turn were derived from Maxwell's equations. (14.7).

In maklng thls (Gerivation, it was 1mp11ed that even if. the charged system was moving
at a high welocity, no change in the basic eqﬁa@ions would result. : Whether this

is aetgel}yyegﬂyill_depend:anen_examipationvof”Maxwell's equations by relativistic
princ@plegtrigt.ﬁprps;gut:phatlprevided_eertaipainterpretations;in the meaning

of the mechanical quantities arelmade!.that>Mexwell's equations do conform to ..
relativity principles, and that all of the consequences that have been derived
therefrom, including the Wiechert-Liénard potentials, remaiﬁ'valid,'ewen dﬁ:high

relativistic velocities,
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CHAPTER 21 THE HERTZ . VECTOR METHOD OF SOLUTION OF
' THE WAVE EQUATIONS

’Siﬁéégéhé§é251a£‘aﬁd‘£hé vector»potentlals are not indépeﬁdenf, but in
vacuo are connected by:the: Lorentz condition:. . -
- = S o : o

(‘18.14) v c A+ ‘%’2' g’% =0 o S o
iagd, since the ;harges and the éurrents cannot be 1ndependent1y speclfled, but
are connerted by the equatlén of contlnulty._w o o o o | 3

(3. 1) ?3??'3>+ %H? =0 |
to calculate tﬁe fleld of én arbltrary current and charge dlstrlbutlon for all
zoﬁ;s,'rnclud;ng theilnductlon fleld, 1t is usually advantageous not to derlve.
the fleld frgm the scalar and the vector potentlals.' In fact, 1t can be ea81ly
shown that ;f the retarded potentlal forms of the vector potentlal and scalar

ot

potentlal solutlon.

(1'"9.;41‘) A(p,t) = [/f %ﬁy av

. 42) ¢(p,t) - 4ﬂkjf%épp§

are ‘assumed, then the Lorentz condition is a direct cénsequence of the equation

of continuity and vice versa,

“In order~to”derife‘the'radiation‘fieid'it is adfantagebusifb substitute a
single>funct10n:t0'repreSentVthe’currehﬁ distribution and the charge distributioh,
which ‘is chosen in such a way that the continuity equation is identically satisfied,
“«and- to represent thé radiation field by a single potential which is chbsén in
such. a ‘way that the Lorentz condition is identically satisfied, The former
condition .is met By deriving the éurréntadénsity snd the charge demsities from
a single vector functidnrg(p‘ﬁ; known as the polarization vector, which is a

function of the source point pf, by the relations:

N . - =3
@D oy Y
Ce 9P ]
(21.2) - Jtrue 3

ot
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It is seen by inspection that the eqeatioh of continuity is satiefiediby.this -
choice, but that an otherwise arbitrary current distributioefcanibe;re@resented.
The polarization vector ;»is related to the true charges andithe true cgrrenﬁs
in the same way that the dielectric polarizationﬁE?ie related’to the polarizapion
charges and the polarlzatlon currents.A However, this is only a mathematlcal
parallel and 1t should be empha51zed that 3 andc: represent the true charges
which eenstltute tbe externa;lsogrcesgof»therfreld,‘and that tnereforeag is dlfferent
from eﬁeweréiearyJeoiarizafion véct§£-§? .Arvector which combines in a similer
way the ootentlalsjzband ﬁ and whlch at the same tlme implies the Iorentzb

condltlon, 1s the vector n whlch is deflned by'the equatlons’

AN

— 1 . L : . .
(R1.3)  A==% 3% ~» g = -@4?
C

A ié'kneﬁn ass the polarization potentiel;VOr Hertzian vector;* Since the
operation “indicated by (21.3) isriinear,;?mdll obey‘the homegenboﬁs:wave"
equation in éoﬁrceffree.spaces“ S |

(21.4) D?= 0 7 |
By combining the definitions (21.1), (?1 2) end (21 3), we f1nd that the Hertzien
vector obeys the same 1nhomogeneous wave equation, W1th p as the source, that
the ordinary potentials obey with the Current and eharge densities as sources.

That is, we haves

R N =
(215)D v".-—l-z- a“:_l-{-f-’-

The retarded potentlal solution of (21, 5) is therefore glven by.

(21, 6) R(p) = ok m;ﬁ%ﬁ% av?

for arbltrary tlme variation and ‘bys

1 K 2(p )elKr(p,‘p ")

(21,7) wa(p) T Ink r(p,p')

for.sinuséidal timé veriation. The fields can be derived from the Hertzian -

dv?

vector by the ‘use ‘of thefde?fhiné equations (21,3), If we lets

(e18) T=Txn
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then the magnetlc fleld is glven by.
Sy XM
“(21,9) "B =
(21.9) ch
and;the'efecfrie;field’is.given b&$ '
—_—
(21 10) E §7 x Q
The calculatlon of a radlatlon fleld therefore reduce° to the calculatlon.
- : =
of the n vector from a glven oolarlzatlon vector p by ‘the retarded potentlal
1ntegra1 (21 6) and then the derlvatlon of the fields from equatlons (21 8),

(21 9) and (21, 10)

Weﬁéhéil apply this method to the calculation of the fields of a current

end charge distribution in a case where we are Observing these fields at distances .

from the sources that are large compared to the extent of the charge source
distribution, and also where the extent of the charge distribution is considered-
to be reasonably small compared to the Wave_length of the outgoing radiation,

as shown in Figure (21,1). To put these assumptions in .other words, the

p'(i’,y',z')

-p(x,&,Z)
: é(observation point)

(charge and cﬁ__rrent dietribui:ion)-

Figure (21.1) |
retardaﬁion_ever_themcqrrent and ehgrge,distributien_is smgil compare;.tovtheﬂ
retardation that ariees_as the signal is prepagaﬁed from the charges to the

observer. For example, if these restrictions are applied to a nuclear system
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whose radius is of the order ;fwgggﬁéiectfon rgdi;s,jthis would imply tﬁéﬁé:'
(1) B rep) |
O mOeN&R

‘When the above approximation holds for a radiating system, then the function
eiKr

r

is.a-slowly varying function. relative to the‘Vériatidﬁ-of'gbitseif in the
integrai{kéla?)é-'It’is therefore natural to expand this functidn”in é‘powervééries
abouf the‘origin of fhe charge distfibution in terms of the‘distancé'Rl(p')vfrom‘
this origin to-p' the source point, . and onuthe;bther hana, to considér the'v
asymptofic behaviorlof this expansion for large distances R of thg observation
point p from the cénterléf fhe charge diétr;bution{’ The parameters of expansion
will in a na%rual Way,bé taken éé'rgtioé té:fhé‘wavélength ?T<= %f;

il can be derived by considering‘thé expansion -

Such an’

expansion 6f the: function’Z

~relative&€o-auShifted*origiha

ikr 4

,KQIJIZD»-Aer.; g?é RRl n-o-€2n + l)P (cos e)Jh+1/% (KRl)Hn+1/2(KR)

i iKI‘ N
= - in terms of a parameter R which represents

whichae%g;es;eswtheifﬁnct;on_e
the a;staﬁ;e’from the point of ébservation to the origin, and a parameter R,

which represents the distance of the source point from the origin as seen in

Figure (21.1). In accordance with the approx1mat10ns of (?1 11), we are interested
in the values of the function dependlng on R, for small values of R, and in the

values of the‘funCtlon dependlng on R for large values of R, For'values of KR1<< 1,

the Ri%dépéndéhﬁlfundfioﬂ is given bys

* . 62 o . .
- Sinee BIUUA.ZEEEEEE for a nuclear. system, this restriction is azdeflnlte

energy_limit'for,the outgoing radiation, sinces

..‘, '.‘ 21 ﬁc
4nk mcz <<>(= —,= _
dh : . . _ _
E <K o2 > me? = .70 Mev

where B is the energy of the outgoing radiation,
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T oo
| [2y " Zn! (m m+1/2
(21._,15) ] ‘{nf-l/Z _ﬂKR;)‘*” n et ™ 1~’1(21(1 +l]).)!

while the asymptotic value of the R dependent function for RK>>1 is given by

(2l14) Hpyp

where the asymptotic phase shift terms are being neglected since they do not
olKr
r .

effect the magnltude of the fleld at large dlstances. The expression

‘thus becomess .
’ iKr IKR 2n n°

(21 15). Pn(cos 6)(KR, )*

n=O

Using thls expansion the n . ‘vector of Equatlon (21, 7) will bes

el . :' 2 nt
(21 16) n (p) 4nk R[/mo -(—'yr P (cos 8) (k)" pw(p Yav?

Note that th1s expans1on expresses the radlatlon field in terms of a sum
of moments of various orders of the polarization vector of the charge distrlbution
and that the Legendre term automatlcally deflnes the angular distribution of the
field oorrespondlng to the various moments. The relatlve magnltude of the
contrifution of the various moments Wiil depend on the symmetry properties of
the charge distribution. -

-
The ZeroEE.term,-n = 0 gives for the n,, vector,

(?':1."17').'?0,( | 4nk Rm_é(p )dv = %xﬂ?mﬁ i
where P1 Jiy p“) v' is the total dipole moment of the dlstrlbutlon. '52 1s
‘the seme as the dlpole moment dlscussed in Chapter 2. The next higher order -
‘terms will only become 1mportant in case the dlpole term vanishes, that 13,
if the distrlbutlon does nothheveva net oscillating dlpole moment, but has -
osc111at10ns of higher symmetry. Let us first consider the dipole radiation
‘field in detail. In order to obtain the radiet;on field from.the poiarization
potential (21.17) where we assume.gz to be pefeilel tobthe z axis, we must

.'..> .
calculate the Q vector defined by (21,10). As seen in Figure (21.2) the

)
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components of the.?ﬁuu vector 1n spherlcal polar coordlnates ares.

pl cos o oiER

{21.17a)ng = Tow. | cos @ = _, 4nkoR
o ,,;ﬂpl sin: G IR
ﬂ¢=O I R S S PR=;P1 cos 8.
o ‘
k{’ﬂ

Figure (21.2)

The components of the Qou) vector ares

> - 1 , | - ang
(21,18) Qg = (V xn)R = Ksin o 'é"é* (Sm G“ﬁf) - 37
,Q.je_% (V x “>e = I-f sin 6 aﬁ" S R (Rﬂﬁj

' AR A [%(W al_]

The only nonvanlshlng component of the Qoq)vector is therefore the azimuthal

<

component wWHose magnitude, by (21.A)iss =

Py sin & .1 ._ iKR
(21 19) Q¢ 41.‘1( R (R- - 1K)e
Therefore the oomponent of the magnetlo field isse

i 1 K\ 4
(21.20) Hy = — e R (;- %> SIER
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and the components ‘of the electrlc fleld from (21.10) are:

1 cos © 1. iKR
(21.21) By "R ome 56 ae (sm 6 ag) = J"“""“z T Re ("" 1K) °

Noteékhat‘thofmagnetic field has two terms, the first is the induction field,v
‘and the second term isﬂfoe radiation field. The 8 component of th; electric field
has three terms intité.the first term is the stétic dipolo field varying as the
inverse cube of the distanoe‘ffom the dipoie; the second term varies as the inveroo
square of the distance and io called tho transition field, The transition field

will notﬁoontribute'to thefradiaﬁed energy but it does contribute to the energy

storage during the oscillation, The radlatlon field alone is simply given by$

' wWKp, sin & KR
(21.22) Hﬁ = + 4nR
2p, si iKR
(21.,23) E,_ = K°p, sin 6 .e

e ~4nk R
whlch As-of course purely transverse, and where the ratio of the electromagnetlc
field vectors is the same as that in a plane wave,1/ The radiation fleld

only can be put in the vector form.

“,"
(21,24) E = 4kR5 l:(plxR)xI%]

_é
The Q vector can be interpreted simply in terms of the equations of the lines

of force of the radiation. The équafioﬁs’of the lines of force are defined by
the differential equationg

(21.25) . -§§ (RQ sin ©) dR + === (RQ sin e)de

The solﬁtioo of (21 25) valid in all cases when the current flows along the 2z
axis, is?

(21.26) RQ sin @ = constant
Upon substituting the expression from Equatioﬁ (21.19), we obtains

(21,27) R7! sin® @ cos (KR - Wt + tan"l KR) = constant

)

g
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This is an exaét equation applying both in éhe,radiation»and in thg ihduction,y
field., When we consider the'radiation field alone‘and include the.fimg Ya;iqtipn'
that we have omitted so far, we haves |
(21.28) sin® © cos (KR - wt) = constant
which is the desired:éqﬁation of thé lines of.force. The lines 9 = 0 are rédial
lines. The flela 1s per10d¥ca1 radlally Wlth the radlal spa01ng correépoﬁdlﬁg |

7 ire

- - . ‘*l .
to the Wavelength j\. The llnes of force are sketched in Flgure (21 3)

iFiguré (21.3) " (electric field limes are
, R shown)
Nearjthé’source a complete expression for Q must be used which indicates how the -
equations -of ;the lines of force grow-ffbm‘the static case into the:field of the
wave zone pattern, Lines 'of force in successive states of the radiation are:
shown in the figure.

Let us now consider the -significance of the higher moments that ‘contribute

-— i e
to the n vector. ,-Consider the term for m = 1, in the:general expansion-(21.16):

%*True for large values of KR only. ror small values of KR the apparent phase

velocity of the wave front is. > c.
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(21.29) - ﬂr f.‘ & SS"KR-“p cos 8 dv'
4TkOR 1 N

whlch can be wrltten as:
— iKR

, _ e K\((=> = :’ '

(21.30) Trlw " FEXR ggsp(ﬂl R)dv

Let us wrlte the 1ntegrand 1n tensor notatlon. Let the components of the
‘Q‘ ’

vector Rl be Xs

-,
1' and let the components of the radius veotor R be x5 and let

the oomponents of the polarlzatlon veotor be. Py In tensor notation the 1ntegrend
is then given by p.(x.!x-). Th;s_ls a funotlon of two sets of parameters of

the dlstributlon namely pJ ano kl’ﬂ' The dependenoe’on~these two parameters'

is generglly not a symmetrlc one and it is therefore conveniént to break up the
tensor express%on into two-terns .one of which is symmetric and one of which

is antisymmetnic. That 1s, let us putt

(21.51) ' p.(x. x,) = PiFa' *Paxitxs ¢ (pyxs' - ps xj')ws

\

This processfis ana10gous to the nnoceSé.that-is oftennueed in ﬁ;e mechanics _
of continua, nehely of?eeparatingva general}Etrain of_en elastic solid into the
sum of a puregétrainlfepresented by:e symmetrionfennor and a body ;otation
represented by an"antieynmetrio;tenSOn.y Puttiné this separated tensor back into

the vector notation, the integraluoan be written as:

1 > > =7
- (2152 Eﬁ{[lf AR REOEE "j')} o

- -
Let us. consider' the significance of -the antisymmetric term first. Since R is.
not.a function of the primed variables of integration-it can be taken outside
of the integral 'sign, making the integral of the first terms
1> - e 4
(21.33) 3R xﬁ(p x Ry Jav!
The -significance of 'the integrand can easily be recognized by replacing the

\ L . . < ->, R
polarization wector by the:current. Since p = = j/&aa‘for sinusoidal time
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-
\

i
T U
variation, the'iﬁtegral becomess =

(21.34) = fﬁ’(J ¥ Rl)dv, -
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fThe 1ntegra1 is exactly equal “to "the magnetlc moment m =._J[ij1 x 3 dv'““ L

of the current distribution”end"hengeﬂthegihtegral becomes finallys

- =
(21.38).. -—%; Rxm. )
.._)

and the corresponding ﬂ;vectprﬂfor‘the.ant;symmetrie‘part only, becomess

. - =% -

BT ss) * L ‘ X

... enti- %WkoR%iﬁJ,¢
I RN S Sym. .A " . A

The field can beé Gomputed -directly. If we omit the induction terms, we obtain,

by calculating the Q vector and differentiating with respect to times

>
- 1 28 _ umﬂ[Rx mxiﬂ
(21,37) .. B. = =
SUTTA S Tantie o 62 ot ~ .~ 49r°R3 -
Syme

whlch can be reduced tos Lo . .
i 4 2 m

U igeed —é
anti- = 4:R3 [: x m x Ri] (1gnor1ng phase)
: o Syfn.‘ '. . ! . X . .
Note that thls is exactly the same mathematical form we had in- (21 24) for

(21 38) H

the electric field in the case of the electric dipole radlation. The radiation
fleld descrlbed 1n (21 38) 1s known as e magnetlc dlpole radlatlon fleld and 1t ‘
is exactly the same as that of the electrlc dlpole radlatlon except for the
fact that“the:pe}e of.the‘electrle,and_the_mggnet}c,vectors.a;e';nterchangedﬁ
Magnetic dipole radiation‘corresponds to a eurrent distribution which ﬁae no net -
electric oscillating dipole moment but which has a sinusoiQelly.varyihg circulation
of the charges. - a

Now let us con81der the phy31cal 31gn1flcance of the symmetrlzed term that -

was dropped from the dlscu351on at Equatlon (21 32):

Ke ikKR

(21.89) 5 W yisym =2 ZL | Apy x4' + pg x ')dv'
4T R2 ) 7

DU I TN
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The symmetry of (21.39) will become clearer if we write it, instead of in terms

harge density

of the components of the polarization vector p, in terms of'the}v

f>(p ) and ﬁhe coordlnates of the charge density.. Conslder a quantlty deflned byg

. .9 Pk . . _ .
(21.40) Q Kf(o x3 " th dv' -ﬁ-gxt’. x;' xj' avt

which is known as the electric quadrupole moment of the charge distributions ~ If ‘ ;g
we express fhis in terms of the polarization vector and integrate by parts, and

omit the integrated out parts by the expedlent of hav1ng the volume of 1ntegratlon

Y

extend outside of the charge distribution, then in terms of the quadrupole moment
; N ‘
of the charge distribution,. ﬁheﬂﬂTivector of the;rad:atlon becomess

iKR .
(21.41) T35~ =X

: ______75 Xi;Q
sym 8rky R

ij
Note that this prOcedure is 1dent1cal “to the procedure whlch we could have used
.in the dipole case, namely the quantity Py is given by:

(21.42) plj =[j(o xj' dv? =ﬂ(_v '?)xj dv? ?ﬁ gzl xJ' dv? =f[j Pj dv!

which is the expression used in (20.17). Since the quadrupole moment is repreSented

by a symmetrlc matrlx-

(2143) 13 f[f‘o(p)x'x'dv'

it ‘can’be represented by & famlly of quadrlcé derived from the quadratlc forms

(21.44) xi xj Qij"= C = coustant 5
In tefms of thée parameter C of this equation, the ‘J] vector can therefore be

wriﬁtendagg' A et T ’ P ' - a : ]
. T, L aweiKR. == . .
“(erias) MaZe 7 ¢
8k R -
1ndlcat1ng that the dlrectlon of the TT vector is everywhere normal to the ¥

quadrlc surfaces deflned by the quadratlc form of the quadrupole matrlx. Let
us calculate the components of the flelds that correspond to a general quadrupole,
Let us choose a system of axes X, ¥, :2y ,that correspond to the principal axes of

, S —p . ‘
the quadrupole quadric, The components of the W vector are therefore given bys
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iKR L T e
I'T 'Mf,‘ RN :_.rv'_;"._-" E R TS R S
(21 46) x 8’T’k = sin '8 ok g’{Qxx |
NSNS PN R RO S ST S RS e St N A ¢
eiKR , : et e
. (N ﬂ'y*am se¢sin: 6y siny ﬂQy_yr e LA R R SRR
ol mmddor Uy oplt e by oetees moalbaoaer b retioir o nw s T a0 e R e
, AR ‘ : :
ok Lo 'Trz ot 8:|i kR 208 6 Q
I »
If we take the curl of these expresslons, we w111 obtaln the components of the
> :
& Q vectors: :
1K261KR o
(21-47) Qe =W sin © sin 2¢ (Qxx - ny)
_ iKR%eiKR [ | | ‘]
Q = TRLE o0 20 | (Qex * Qpy = 2Q,,) = (Qpy = Q) cos 2/
-5 ' :
And from Q the electric field components ares
3 oiKR | ] |
: _ K e . ‘ ) _ L -a.
(21.48) Ee —m— sin 20 [(Qn + Qy.y Zsz) . (Q,yy QJCC) cos 2¢
- Ks eiKR . s
E¢ = m sin © sin 2¢- Qy_y Qxx
while the magnetic'field components ares
' K2 SRR . ' T
(21.49) By = -@££¥ﬁﬁfir—-—-51n ® sin 2¢ ny.- Qe
o w2 G1KR ‘ ‘
= w_—-———-— y} [ - - - . .
By TR sin 26 (Qxx + ny 2Q;2) (ny Qxx) cos. 2¢f
Note that the fields depend only on the differences in the quadrupole moments .,
There are no radial components, and only the radiation fields are given.
. . | ‘ :
Two features of the quadrupole radiation fields can be noted by inspection.
First, in case two of the moments are equal, that is, if the quadrupole is a
t | | »

spheroidal distribution, then if the polar’ axis of the spheroid is taken to

. . . . _—> .
be the z axig, then the only non=-vanishing component of the Q vector and hence
of the magnetic field, will be the azimuthal component given by: |

x2 iFR /
(21.50) qy ='-;%-1Fk$—ﬁ—- sin 28 (Qux = Qz5)
3 - 'z
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Sécond, in general, the distributiqn will'pgvegtwp.nodgl °9ﬁ§éﬁﬂh5refthe?%uis,
zero field, compared to a single nodal line in the case of&;fégéblé distribution.
Physically the quadrupole distribution erises from & ‘pulsa’c;:'_L:;g:i@arg“_‘é-'*distri’bution
of such symmetry that the dipole moment remains. zero duringfthé pulsation. The
simplest example éf aIQuadrupgle is.two dipoles oséiiiétiﬁg:iﬁ”dpposifion, buﬁ

displaced a slight distance from each other,

L
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CHAPTER 22 - . . . - TI;IE»COTTVEC"i‘IVE‘POTENTVIAL

| In Chapter 20 we derived the Wiechert-Llenard potentlals:

(20 11) da e
. 411".k°vr\,- . _ 47rk° t -
‘ 7 ?’ ']
(20.12) A= 1 ew

ITk, o2 .-""'."'-='-‘4“'k° E'ﬁ-*:)
=TT O

which give the potentials due to a point charge moving with an arbitrary velocity

v = OP. From these potentials we obtained the electromagnetic fields of & uni-
formly mov1ng charge and in particular studied the angularfdlstrlbutlon of the

fields for charges_moving w1th hlgh veloc;ty. ,

Cons1derable care must be exerclsed in applying these equatlons in such cases.
The Wiechert-Liénard potentials were derlved from the retarded potentlal solutions

of the wave equation, (19.41) and (19.42) and the wave equation in turn was de-

rived from Maxwell's equations (14.7). The wave equations (18,18) and (18,19)

represent, as they stand, correct equations in one particular frame of reference,

’ :which clessicelly\was called the ether frame. Or to put it in other words, the

velocity of propagation of electromagnetic radietion.would only be ¢ in that

particuler frame in which the.wave‘equation is wvalid. As can be seen by substi~

tutlcn of the Galilean transformation relations:
(22.1) x' = x - vt
| tt =t

into the wave equation,the wave equation in the x't' frame is not the same as in

the xt frame and no longer represents ‘propagation with the velocity c. If we take

-these conclusions at face value, we would therefore conclude that the velocity v

which" appears 'in the Wlechert-Lienard potentlals represents the veloclty of the
electron relative to an observer at rest where by rest we mean at rest relative

to the classicel ether frame in which the wave equation is valid. With this
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definition of.;: no restriction that g;ibe small is necessary. Acﬁﬁéllf;lfﬁis
restriction W111 be removed later by the Theory of Relat1v1ty in whlch the Lorentz
transformatlon is substltuted for the Galllean transformatlon and 1n whlch the
wave equation remalns valid for all‘fr;mego ‘We shall show if the treatment is
carried out re1g£ivistically>£hat the Wﬁe;herthienard potentials will {emaip in=-
tact and that all conclusions derived théfefédﬁfﬁill"¥éhﬁinA;;1id pfo;idéalfhat
the relative velocity befween an electron and éﬁ observer is used, rafher than
the velocity of the electron relatiﬁe'té'a'sﬁétfaﬁafy ethé;;'nE}eﬁ t%%qgﬁ fp% con=
clusions which we shall dréwlfrog the Wﬁééheré-iféhérz po£éﬁ€i;1§(énd”£hé“wave
équations éﬁpear to be limited in"fﬁctjso 1imitédfthat théif'éiféﬁ;iée ﬁse ap-
pears to be ungustlfled we shall derlve our conclu31ons w1th the understandlng

that we shall later show relat1v1stlca11y that all conclu31ons obtalred here will

‘remain vaiid provided the change in'the inférprétatibn of thé'ééibéity ié made as

indicated.

It is instructive to ses how our cdﬁclﬁ;ions régdrding the field 6fba hﬁif
formly moving chargé'can be derived directly from the‘inﬁémbéeneous wave ééuationso
The inHQmogéneous wave equations (18,18) and (18,19) afe'subjeét'to the subsidi-
ary condition (18.15). If we consider'tﬁe field of an electron whichbié-ho§ing

with a uniform velocity, then the time derivetives and spatial derivatives are no

“longer independent because of the fact that the field must be carried convec-

tively with the electron., This fact can be expreésed ﬁathematically by£‘

- —
(22,3) = 3 = =v oV

9t
This expression indicates that, any. field parameter at a given point changes by the
sameLamount in a timeé dt that it would change if at a fixed time .one would com=

pare it to the same field parameter evaluated at a distance =-vdt displaced.in

_the direction of the motion of\thg'eléctron@ Let us write one.component of the

inhomogeneous wave equation (19.22) ass .
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oe2) OY @ e-e) o

_and let us take thé~velocity'parallel to the x direction. Using (22.3) the in-

homogeneous wave equation therefore becomess

(2245) (i-pz) YW + 929 4+ 32Y - -g(x,y,2)
S a‘yz Y )

which by the substitutions
(22.6) xl = X s V1=Y ;s
/1-_.52

can be reduced to e simple electrostatic Poisson eqﬁétionz

_,

- (22.7) Vlz‘l)= -:g (Y1 - @2 xlls__}’p z1)

the soluﬁion‘of1Which is the ordinary Coulomb potentials:

(22.8). W (py) = L [ glpry)avty

ATt )

Transforming back, this becomess:

(22.9) * W) = __1__/' g(pt)av’

.8

wheres: , : : '
(2210) s = v - +-8Y [G-vyP + G- 2)? ]

Note that this is the sgmg_potentidl which we obtained from the Wiechert-Liénarg

potentials. However, in this case the Queétion regardiﬁg the propagation velocity
of the corresponding wave and the relation between present énd_retarded poten-
tials does not enteé, since by a suitable transfgrmation'ﬁe'have succeeded in
trﬁnsfofming the equation to be solved (22.4) to a static equation (22,7). As
we shall see later the purély-mathemgtiqalvprocéSS'(ZZ,é) is in reality a Lorentz
transformation’iﬁ'which.wevtraﬁéfofﬁ fhé.obsérver's'posiﬁion to. a frame at rest
relative to the electron whose field is to be compufed; .Note also that these

fields’ are.non-radiating fields. This' can be shown directly by evaluating the

Poynting. vector over a. spherical surface enclosing the charge. It can also be
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shown by noting that the electron obviously does not radiate ih,ﬁhe primed frame
in which it is at rest and therefore presumably will not ‘radiate from the sta=

tionary observer's point of view in the unprimed frame, = -

The scalar and ﬁécibflpofenﬁials of the .charge’ can therefore be written in

the symetric .formse e
(22.11) - F=oe ,
4wk,s l
- - *
(22.12) A= ep
.41'\"kbcs
from which the fields can be computed by the method described earlier, It is
instructive to calculate the force which would be exerted'%&'theSe'fields on -
another electron which is moving with a velocity v pgrallél»to the original
electron producing the field, This force is given by the Lorentz force expres=
sion (16,15)2
— _ - = ~
(22,13) F=e(E+vxB) " o
which, using the potentials (22.11) and (22.12) and Equations (11.16) and (18.13)
becomes & ' Lt
- S I PO T - - 2
(22,14) " F=¢e(E +vxB) = e -v/1 +-<(@' AV )_(3_ + @x (v x»_@_:).
: . : - 4T kg s| 8 : s
ﬁhich~by_expansion of the vector product becomess
: N | T R
(22,15) Fe=- o ‘v9 1- p2
- 4Tk, s |
[
which can be written in the forms
B - -
(22,18) F = "’V\V
. i #
wheres -
(22,17) Y =21 - 82)

4T kg s
is called the convection potential, -The force of one electron on the other is

therefore derivable from a scalar po&en&ial,}v‘sfbut this scalar potential does
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not have spherlcal symmetry about the position of the field-ofiwinatinr elec—
Ftron. In partlcular, since the d1rect10n of the force must be perpendlcular
'ﬂto the surface of equal convectlve potentlal, we would conclude that the force

Fz exerted by the electron o, at (xly1 1) on the electron 62 at (XZYZ?Z) is per=-

pendlcular to the elllp301d~ ‘
1(22‘.’.1.8)_ . j(xl - xz) + (1 - (B ) {yl - yz) + (z - 22)} constant

shown in Figure 22,1._

s = const. surface

Figure (22;1)

On the other hand, the reaction force.EZ on the electron e, is perpendi-
cular to the corresponding ellipsoid (shown dashed in, Figurevzz.l) referred
to the co-mo#ing electron ese Hence, except when the line between the elec-
trons is parallel or pefpenéicular to the direction of motion, the forces of ac¢-
tion and reaction do not appear to be co-linear and therefore if fhe two electrons
were cgnﬁected by a rigid bar, there ﬁould be a couple aéting about the axis
perpendicular to. the line between the electrons and the direction of motion,
Such a couple should 5e_experimen£ally detectable. Trouton and Noble attempted

to measure the torque on a suspended charged condenser at various parts of the

year, when presumably the velocity of the condenser relative to the "ether"

would differ by an amount of the general order of 30 kilometers éer second, which
is the magnitude of the velocity of the earth in its orbit about the sun., Actually,

no such effect was observeds This null effect can only be explained correctly



.220
by the theory of relativity, We can see immediately that if we interpret the
veloc1ty as being 51mp1y the relative ve1001ty of the. observer and the co-mov1ng
charées, then since the observer 15 at rest relative to tne susnended condenser,
no effect Would be expected vOn the other ‘hand, if we would observe the condenser
from a fréme which is also in motion'relatlve to.the.suepended condenser, then
we should.observe such a couple, - Howevers the - qnestion arlses ae to how euch a
couple would be observed, and the answer is by.either otserv1ng an angnlar accelera~
tion or by balancing the couple with another known couple such as a torque in an -
elastic suspensionor We shall findAthat not only the magnitude of the electric
torque is changed, but also the magnitude of all mechanical torqnes is changed
by exactly the same law (Eq. (22.8)) as a function of the velocity of the observer,
Therefore the stete of eéuilitrinm iemains invariant independent of the ooserver's
VIEtate. Hence'relativistieally We‘nould‘ootain e zeio toroue.eithen.in a frame

moving with the electrons or not moving with the electrons,
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RADIATION FROM AN ACCELERATED CHARGE

" Let us calculate the complete electric and magnetic fiélds from an electric
charge e which is assumed to be moving in accordance.with the'cbndition:, &
(2341) . x3' (%') = given

whéreuxi' are the coordinates. of the éHarge_and tt is the time of emission of the

~ signal emitted gtﬂxi’thiQh will arrive at X at time t. Note that this statement

assumes the existence of a universal time scale which can be established by signals

travelling with infini#e velocity --'strictly a non-relativistic concept., Never-

theless, this procedure, owing to,the fact that ﬁé are treating‘the process only in
one frame in whlch the wave equatlon is valid, leads to relat1v1st1ca11y correct

results as w111 be shown later.

The ve1001ty and acceleratlon of- the charges.

(23.2) 2.3 2. 2
ot atvz

are thus considered as giveﬁ,‘by virtue of the influence of external fields or
possibly by the. influence of the field of part of the charge on the other part.

We shall discuss this p01nt later.

The Wiechert-Lisnard potehfials thus reﬁresent the following functional re-
lationships:

(25.5)  flxg,t) = _e_ 1 - o 1
T R T m L O TR

Z(tv) e
41]’k ¢ s([‘x - Xs ’(’c')] @ (t')} Mr'ko sc

[

(23.4)' Ti(zi,t)

where (xift)'refers to the field_polnt and,(xi',t') to the source point. The
field point p(x;) and source point p'(x;y') are connected by the conditions

(28.5) + r(p,p') = [sf (x '>2 2 L ot - 11)

and s is glven bys

(25.6) s—=r-’é.r
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— —_ -' i a )
When we derive the fields E and B from the potentials (23.3) and (23.4) by the

regulationss

_ - = -
(11.16) B=Y xA
— -a» -
(18.13). E=-J/F-94
3 S0 e Cao
we must notice that the operator \/ " is a vector operator whose components 8

. x5 <
are partial derivatives at constant time t, and therefore not at constant time t”
Partial differentiation with respect to x compares the potentiais'ﬁat neighboring
points at the same time. These potential sigrals originated from the charge at

different times. Similarly o means & | - and hence réfers to the

‘ ot EE: i—constant .
comparlson of potentials at a given p01nt over an interval of tlme durlng whlch

the coordinate of the signal originating charge will have changed° Since only the

.

time variations with respect to t' are giveﬁ (in the original déscripﬁioﬁ of the

to expressmns in terms of 9 o
- i ) RS il L

problem)g we must transform 8

p(x »t) (fleld p01nt)

3 7§ o 8 ]
(virtual present position plxttsty )(retaggigion)
when v is assumed P

to be constant)

" (true present position) v

Figure (2501) | . ~ a
Note that it is in genefal impossible %o expréss thé fields in terms of the
"present -position®™ of the accelerating electron as it was in‘Chaptér 20 in the
case of uniform motion, but that4theVdiStangef;?refefs.to the retarged pOSition.

p? of the charge, as seen in Figure (23,1). Note thats

¥
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(23.7) dr
' at
x;=constant
and, vectoriallys

3 q . .
(23.8)° dr =-% dr =-
- dbt dt'z

. & ' - . :
To relate & to é O _, we note that explicitly r is given by the functional relations

ot ot

(2349) r= £ Ecl, xi'(’b'] = g[l, ]

and, functionally (23.5) can be solved for t' in terms of x. and t, since xi' is a

1

\
given functlon of t! ;" hences:

(25.10) r=g [fi’ tj] =g [_1’ h(xl,ti]

where t! = h(xi,t). And thuss

(23.11)% or = c[ - ] a:é B4t = - F - T A
o |

ot 9 ¢t r 9t

or, using (23.5),{(23.7)-and (23;8)&

(23,12) ° 3t'=_ 1 =1
at 1l - . ]
s re

" Similarlys

-?o_v"yﬁ’t'
LY

23,1 r=-o b = Ot (r) + P
(23 3)  < V, BvALLY girv

ﬂld&

where by"§7' we mean differentiation with respect to the first argument of the

function g in Equation (23.10) onlysy that is, differentiation at constant re-
tarded time t', Therefore:

(23.14) = Yt =-~-1r

and we haves

(23.15) a' =

for the féquired transformation of the differential operator from the field point

X Note that & inmplies differentiation at constant x; but not at constant x;'.
p —

EX
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‘coordinates to the radiator'’s coordinatess

From (18.13), (23.3), (23.4) and (23.15), we haves

L
(23.16) 4'TkoE—1 vs=s@~1v ?és-i.‘?+r@'as
=z 3tsc 2 33t 22 5
- - ‘
" Using . V’s =r - f, and using (23,7) and (23¢°8) and a series of vector iden-
r » R Co R R

tltles, we obta1n°

(23.17) ﬂ§= % (r - r»?)(l-= ﬁa)'?_'i’__zf {E?x B?;ﬁr)‘%ﬁ} |

e . 8% . .o .os%
Similarlys S L o
- - . .
. - - e -5 ) —_ . 2 \
(23.18) ____MrkOB =.1VX(_)= =l (rxvw)+ éx ril +.1j Eo 3-4‘1 ?or-')-@z
e c - ) s2¢3 o . g%¢ |t s\r _ :E
I T NN S
4¢rkoB==rxv+?vxr1=@2+ro?. v
) s%ed 5302 : '
- -
4/"vk°?=vx?(1“£2)+ -rP r-r )xv
e 243 - 5
¢} c r

and after simplification and comparison w1th (23 17) we see thats
- = =
(23.19) B=rxE
re
Hence the magnetic field is always perpendicular to E and the retarded radius
- ' '
vector r,
The electric field is comppéed of two'separéte terms. The first term in
Equation (23,17) varies as 1/r? for large distances and is formally identical
. ’ ‘ >
with the "convective" field of a uniformly moving charge, We might call rvé;Lrp
= (337 (see Figure 23.1) the "virtual present radius vector", i,e. the position

the charge would occupy “at present™ if it had continued with uniform velocity

from the point p'. The l/r2 term is thus simplys

-> -
(23.20) Einduction = ¢y (- 62)
4Trkosd

This is 1dentlca1 w1ﬁh the fleld (20 23) of a charge in unlform motlone This

fleld is analogous to the qua51 -static or 1nduct10n fleld which we dlscussed in
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. connection with the radiation from variable current and charge systems in Chapter

20.'AEquation (23.20) does represent a ﬁon-radiating term in the sense that it
does not éonfriﬁﬁﬁe to the energy fiow.o;er an infinitely distant surface; it may
however contribute to the net energy loss of the electron. The field is neither
static nor convective and in geﬁeral a net change in field energy will take place
which must be supplied. This eneréy loss ﬁill>cause a reaction on whatever out-
side féfge»is'reséonsible for the electfoh's motion. Detailed calcuiations -
in the next chaptef‘show that this reaction force'wiil bé prqportionai to 4%}
and theréfore has the charaéter of an inertia‘or "electromagnetic mass.“

The segond_ferm in Equation (23.17):

- .

- o 2
(23.,21) Bpg = e rx (?V x v)
: ' 32 ‘ '
41ngs c

is of ordér'l/% and therefore does’fepresent.a radiation field in the sense of

confributingvto the energy flux over a large sphere, Similar conclusions hold

for the two terms of (23.,18). Llet us now consider several important cases of

‘this radiatign fields

Case 13 Radiation at Low Velocity .

~y Lo

. P ae =
In this case = ry, s =r

- . : | . |
(23.22)(a) Epag = © Tx (Tx :r’)]
' 4frkoczr5 -
() B = e (Q?x-?)
rad —————
"4ﬂ'k°c3r2

Equations (23.22)(a) and (b) represent a field that is formally identical to the
field of a radiating dipole (Chapter.21) of moment Ei =7 o/l The angular
energy distribution»shown in Figﬁre-(ZS.Z) of the radiation .is theréfore simply

the‘sinze distribution discussed there.

\
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“"lines-6f equal ‘field
intensity

' Flgure (25 2) L S | »
Integratlng the Poyntlng vector of (23 22) over a sphere, one obtalns for the rate

of energy 1oss from the accelerated ch,a_rge_: : o ‘ S »

(23.23) * -aw = e2 ¥2

dt*
G:nﬂkc,c3

@ e er G am o D o G am O e O GO G W e op e G @ &5 s G gn @ @ o o8 @ o we e @ oo Gl O W W e e o=

*  «dW = 202 ¥2 in Guas51an unitsg all remalnlng equatlons in Chap‘cers (22 - 25)
at’ 3 ‘
3¢

)(Gaussz.an)

are written so that they can be reduced to Guassian units by puttlng[
‘ 4k

€ e o Or wm M e e GO D e o we m an S e oo mn on TP mn oo es Se en en on 8% we 9% wy G ou Ce me e mn e en 48 &R

S : - -
Case 2z Bremsstrahlung, if v || ?.*.

©

In this case, ?is not necéssarily small, but ¥ and ?are pa..ralle'lo Under

these conditions, the fields are simplys

, - N N
(23.24)(a) E e rx (rx v)] ‘
4T ko s®
. °
(b) B = er (Tx7)
‘a:‘Yl'lcocgsg
' 3 : ' - ' . i
which differs only by the factor r_= (1 @ cos ©) 3 prom the slow electron ¢
3 ' _

(dipole) case of Equation (23 22) The qual‘i'tafivé effect of this factor is %o
increase the radiated energy in the forward: dir‘evc;tioﬁ,'{compar:ed to the backward 4

direction, as shown in Figure (23.3).
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lines of equal
\field intensity

R

Figure (23.3)

To caloulate the angular distribution of the radiated energy quantitatively con=-
siderable care has to be taken in the definition of what is meant by "the rate of

radiation" of the charge., We shall compute the’amount of energy lost by the

-~ electron per unit time corresponding to a tfime'inter_vé.l dt! during emission of the sigm

~ that is, the rate of energy loss =dW of the electron itself. At a given field

T | .
point, the Poynting vector N represents the energy flow per unit time. Therefore

the rate bf'energy,léss of the electron into a given solid angle dLis given bys:

(23.25) -dW (e)dﬂél‘ﬁl_g% r2dfy =
att d

\ExH]dt r2afl
dt?
= kooE2r2 dt dfL= kocE s r2d{l
at? . r-
from (23,12), Hénce the directional rate of energy loss for the accelerated

ebchﬁnisx

i

(25.26)  -aw(e) = ¥3[ 2 |  sin%e
- T o®[16Tk| (1 - B ocos 6)°

~which is the equation giving the energy loss for the situation shown in Figure

(23.3).

‘The'oorrectionvs/Q from time of sighal arrival t to time of emission t! can be

" . physically interpreted as follows: The energy emitted by thé electron in a time

dt' is located in the volume between two spheres, one of radius r about a fixed

N

point p' and the other of radius r#cdt' about a point p which is a distanpe-?dt'

. from the first point as seen in Figure (23.4).
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- =

PR . . °v
dr= cdtie Srvag!

. N i %=
: . » o =l o XL ?
Figure (23.4) ‘dr—-E; T |db

' Consider the element of this volume dV subtending a solid angle dI1.= da&
_ : S w2

at p's ' By geometrys: T

(23,27) ~ aV =& (o = 7o ?)dtv = o5 dAdt?
r r
and the energy dWd{L contained within this volume in the solid angle an isg
_ _ 2,2y . o 2
(23.28) awdl = (koE” + poH ) o5 dAdt® = kE° os dAdt!.
’ 3 T ' r

in agreement with our former energy lcss considerations contained in Equation
(23.25), |
The principal application of these considerations is to the calculation of
the radiastion from an electron which is retarded along its own'direction_of
motion (Bremsstrahlung)o For en exact classical calculation, it would be-neces- | *
sary to put the exact variation of acceleration with time into the equatibns, using

the stopping power of the material upoh which the eléctron impinges.,x For a

@ @ o om W wn an W a0 s M@ an 63 A on Oo o M e m 0D OO @) am oo 0 O O on o O e e om 63 oD em an  ae en

€ 2

, N \
simplified discussion, let us assume that v is constant while the wvelocity de=

creases from v, to 0, This gives a resultant “pulse®™ of radiation of energys
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(23.29) aw = - ezsinze_l‘.-‘?{ Tdtt Yok
’ | (41r )2k ye® (1 - p cos 6)5 '

- = o®3in® l:'r’l 1 ’
2y 2. on - z— 1| 4L
64M“k c“cos 8| (1 - 2}005 e)
The angular distribution is again tipped forward, in the direction of motion.
The radiation is polarized with the electric vector 1ying in the plane of the
: =
radius vector and the direction of deceleration ve Equation (23,29) can be used to
estimate the total efficiency of an X-ray tubes In practice, however, both the

angular distribution and the polarization of the outgoing radiation are greatly

modified by scatﬁering; of the electrons in the target material.

The fr’e.quency spectrﬁm of‘ the outgoing radiation can easily be obtained by
Fourier ana1y51s of the outgoing fleld. Lot us assume for simplicity that a change
Av in the velocity takes place in a very short time At' and thatﬁ(( 1. During
this tlme 1nterval the radiation fleld ise

(23430) E(t) =e sin® /Av = e sin 6 AvS(t- o)
4T koo2r At' 4Tkyo?r

where v = Qv , and we have ekpressed v as a'g function, ¥ = g(t-to)[)v

Etl

00 ‘ - ‘
[ vdt = Av, where t, is the time at which the radiation tekes*place.
=00 : S : .8 :

If we puts .

® L Liwt
CE(t) =/ E,, 0% aw
thens
(23.31) B, = .ﬂ,l fb B(t)e™ WP g4 - e sin 0Av 1wt
o ' Lo 82k cr .
which, except for phase, is independent of W . The frequency spectrum of the
energy loss, correspondmg to a f‘leld whose Fourier components are Ew can be

, obtalned as follows:
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L

W= -G gy f 22

=00 .

oo . Lo ' . ..“'
(23.32) f E2at =[ a4t [/ By, ei®?t da)][fn E, et aw']—

=00 _-‘00 =0 L . "’@_‘__‘r__( A B ‘ §
__.f f EwEw:[/ el(’(‘%*!;) ) ﬂdwdw D s
um =00 . .aoo
GZT[ ‘ -'EwEw‘ghﬂﬂbdwdw
: ‘ " S .o 5
ZTI"/I’-\E“E_.wde— 4’ﬂ'f ‘Ew\ da)
) =G0 . o ayn 9o s 3

Ew*o ‘Hence ‘the energy loss corresponding to a given frequency

il

‘since B
s e "

band dyiss C S TLAL s e T
‘(23‘,3'3) : owdU—‘lL'Y&rkoc[-nfszEw)w ds] qw

Hence for our specific spectrum {23.31)

23,34 - = 2 2 .
( ) ”wdw — 0@—2) dw s,:"Ln2 € sin © de
41 kge c -y ' .

O-.

o2 _(avY w0 S J
3wkyoe\e ) T . T S .

The spectrum is thus 'constant‘on a fiéd_’uénc‘y scaiwi'e'o._"..Ac’cualtly the spectrum

!

will be cut of f at the p01nt where the- klnetle energy of the electroncﬁ*
(23.35) . K.E. = - 1/2 i = hv ' “"‘_ "
The ideal spectra on a frequency and Wavelength. scale a1‘~e sho;miln Flgure (23 5)
Equatlon (23 34) can be expressed in terms of the nu;nber of quanta dI\T ="

=W, AWM w which are shaken of £ durlng the veloc1ty change. This givess:
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: 2 ) N\
ay, =__o . 2 (AvY dw=1 4

'The number of low frequency quanta diverges;although their energy ig finite. This _

feature is also true in the more exact treatment.*

Energy : ‘ - Energy

M vmax
Frequency : : ' Wavelength

Figure (23, 5)

Case 3¢ No Restrictions on the Accei‘erativon or Velocity

In this caée,’ ‘#is not necess’ari.ly small‘o'r parallel to ~:7. The general
radiation field (23,17), in combination with the rate of radiation considera-
'tidns that lead to (23.25) give the following genera]: relation for the directional
‘:rate of radiation: | |

B0 @ e G [raq
16'“‘2]{085(:3 S '

It turns out that, when integrated over the total solid angle, this leads tos-

(23.37) -dW = 02 j[ - (B}x v)z] | , ~

dt? 61‘\’1{005 (1 - PZ)S

L4

Y

for the total rate of radiation. TWe shall see later that this expression can be
’ 'derivéd by a éimple relativistic transformation of Equation (23,23) to a moving

frame of reference, <

Iet us_now congider the practically important case of an electron moving in
*¥Even classically the extent of the spectrum to high w is only due to our simplifying

@ssumption of zero collision time. A Fourier analysis of a finite collision time
‘process will automatically remove the high frequency components.
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a circle of radius a W1th a co*lstant angular velocltyw as shown in Figgre (23.6)

p“_ v- aws cﬁ;'.s

Py
Flgure (23 6)
Since ;?,Q?gr« ? o F= pr cos €3 PP ‘sin @3 we haves -
(23,38) | [xj x (r ‘x v)] [(r - @r)rv sin & - ?rz(l ~= cos Gﬁ
, - 32,4 [@"" cos eﬂ '
So we have s AT
(23.39) m% (6) afr= - L - (B - cos €)°° - a_Q. ‘
: : 1v6’IT koe? (1 = @ cos, 9)
The r.eéultant‘ pattern has zeros at € = ’cosblg o For 4'1‘21:14ge g; _the pattern
is very much more intense in the forward direction than 'in the backward direc=
tion as is shown in Figure (230'7).0,_ As @ =>1, the vr‘ladiation becomes a -sharp o
forward ray. g '
e+ e s
*
‘ X

P
- Pigure (23,7)
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The total rate of radiation becomes, from (23.37) or -integration of(23.39) %

(22,40)% =aW = 32;,2 . 31 e ezaza)‘lz o 1 }1 R eza2w4/£_)4
B ke’ (1627 6k’ [1-(aw/0)Z]F 6rkye®\n,

- e wm = W W - - s wE G e M8 W E e L ER  w M e Sn am W ap Em e AR e wm e e ae

the rate of radiation is proportional tofW )4 for high velocities at constant .
: ' ' W
, _ . 0. , . L
radius and to(w )s'fm a constant magnetic field but with a variable radius.
, 5 A

Wy = moc2 where m, is the rest mass of the electron, W = total ehergy of the

radiating electron,

In the general case of arbitrary direction of -v?and 'x?, the position of the nodes

cen be constructed graphiéally, as shdwn in F_igure" (23.8). Since the radiatién
- . N . |

fields venish when ri= re @r is parallel to ¥, we can find two points A and B
lying on a circle of radius r about O and which lie on a straight line parallél

LA > P L
to -{r.vxihich passes ‘through a point Q such that 0Q=r@ « OA 'and OB are then the two
) . ’ .,
nodal lines; the nodal lines are always in the plane defined by-v‘and .

Figure (23-8)
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~Classical Cross”SectionwforfBremsstrahlun

w__,___-:“m_aaa Coulomb Field -
- At low energles Eq° (23 29)(due to Sommerfeld) glves the approximate yield

of low energy xSrays if emplrlcal values of 7. are usedo At hlgher energles and

I .partlcularly for heav1er targets, the x»ray yleld has to be considered to be due

to radiation in deflection cffthe:eleetron 1n,nhe,Coulombsf1e1d ‘of the nucleus.
We can make a simple classicalvcaléulation'whicn?cpntains"essentialgy,all of the

phys1cal features of the ‘more detailed treatmente ,

.

Consider ‘an electron of veloclty v pa351ng a nucleus of charge Ze at 2

. wooa

distance b. - The- electron will suffer a transverse acceleratlono
5 ,

Ze b o
sk (524 v2 £9)2

In order to calculate the radlation loss and the spectral dlstrlbution using

@

(23.41) v=

Eq. (23 33) we have to Fourler analyze 'Yo This gi'ves°
‘ 2,; e - _ e
' : 1 _[22e%b cwwt
. 3 t‘i
(?3°42>. 2y zw[ “’) "3 (wkamj f TF‘WB/z an
_ 1) Ze 20 Ky wb
270 [m‘ko m _VE ‘

The function Kj (‘” b) has the property that Kl( wh) m e for W, .1auix.K1€§:’?)

decreases exponentlally for large values of the argument. We shall therefore take:
. . 2 '
1 Ze i - E v
(23 43) =% ZWkom vb. W< b

- | o Y

The radiated enefgy/unit'sclid angle is thus, from‘Eqﬁ-(2B°33)g L
(23.44). Wy dw ans Exp, <-.sr.-) 228108 gy dn.
2 . ﬂ’z ~{vb WOG .

Here ro= Z?""-g is the c13351ca1 electron radiusa This can be expressed as

a . cross sectlon for emlttlng quanta of energy'hwc

| 2 v Yl .
(23.45) dw. @Z 21"’ <{san3ede> .db (m} 16 Z l°g(ﬁ’ﬁ'ﬁ> (%;)

WE el
bnin
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The limit b, is defined by the effective limits to the Coulomb field.due to
the "screening" of'ektra'nuclear'eléctrons.‘ The limit bpin is defined by the

fact that the electron 1s localized only to a disﬁance of the order of #i/mv, This

same limit also puts the cut-off of thevSpectrum at'ﬁui=?nw2:£>kineti¢ energye.

This classical calculation is of course approximate. The approximations
made here are: 1, Unly the transverse'acoelerations'are considered. 2. Relativistic
considerations are ignored, 3. The quantum cut-off is introduced only in order

of magnitude,
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ENERGY AND MOMENTUM BALANCE .- RADIATION REACTION: ..+:

Tt was Shown in Chapter 16 that the law of conservatlon of mementum could
"be reconc1led w1th an electrlcal 1nteract10n of the forms e
'_9 - CTo L P AITEY LT Rt LTINS SRR

(24,1) "~ F = o(B+v x B)

bnly‘if‘é.momentumg

L™
(24.2) g =

X

-
N =
2

is assumed to. be contained per unit volume of the electromsgnetic.field,
Similarly the electromagnetic field carries an energy density of the amounts

(24.3) Uy, =E °D+H°B

in order that the law of conservation of energy of a closed system containing

both matter and radiation be obeyed,

If we éttempt to apply these coﬁsidérations to thevradiation field of ean
electron, we are led %o the following conclusionsg

1. If an electron is in uI'x:"Lf’c)lrfn.mo‘c.."ion.9 its field will add to the momentuﬁ of
the electron, since fo%'a small virtual change in velocity, the momentum of
both the particle énd the field ﬁbuld changé simultaneously.

20 Ifﬁgn electron radiates by virtue of its acceleration, produced.by M exe=
ternal force, the external force must éupply both the radiated energy‘and
the momentum required by the qhange.in fields. The only wey the external
force can subpiy'thé energy is by a reactionrforée of the ele ctron pro=
duced byiactibn-of the radiation field of the electron on the sléctron

itself,

Let us examine these two conclusions in somewhat greater detail, Let us
first consider the electron in uniform motion moving with a velocity v < <e,

If the velocity is changed by a small amount 85% the magnetic field chenges
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by an amounts; |

- '(_24.,4)‘1 - J-B’= Yo 297 x ;}
: ' 41\’—?—_ :

Consider ﬁhevmagnetic flux passing through an area in a narrow strip normal

' to‘SR?and'passing from the electron to oo as shown in Figure (24,1).

0o ,
] TRt e e SZ
. v r | | T+ ++
Ao S ' : : ' ++4r+
s ‘ _ : v Paa—_—
: : S _>..++++$ —_—
_ ‘ : e b A
Figure (24.1)
The flux change thus produces & net voltage around the path indicated. At é
point near the electron the field is given by -a—;;_ St _and hence the impulse
received by the éharge due to a change .87 in veloeity is of the order:
: r = =e [ - = 2 £ "
(24.5) Se: o E, 5t =e f fpars o 2
. We. see immediately that this impulse would
be infinite if the electron were a point electron; if the electron has a finite
extent of order r , then the maghetic field would react its meximum at r, and
then go to zerb at the center of the electron, For a finite electron WG'womld
. have .apprroximatelyzg ,
. (2406) §BF__o% &7
. © 4qrkareo?
‘which as far as the déceierating; force produciﬁg» §? is concerned is equi-

ﬁaiént ‘to an effective ™mass™ '.‘oi_"‘{-th;_‘e orders

(24,7 m® P
) 7 2
41rk°r°c
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This mass expression was derived by directly computing5ﬁhé'iﬁér£ié1"reac-

tion of the field on the driving force. By théié?ne??f'éd@sideréﬁidﬁg -
- ' eeion ' > > -
expression if we integrate g = E x H .
S ‘ Doy .. 0 P ".: 2
' c

Chapter 16, we should also obtain the same

)

over the field., Again, if we take the.field to be that_of;aquintiﬂﬁarge, the

integration will diverge so.that. a 1owér 1imit cérresponding to a finite radius

y

r  of the electron must be introduced {ptd‘thé region.of integration., For small

values of 6 s, this integration qén be,dérried out easily, using the fields of
Chapter 20, Equation (20,20) ff.’ The résult is*, taking s ¥ rg
L e Ay R

-> e . '
(24,8) G =-f ?dv =4 Uo %
' To 3 cz N

D e @ o mm en Gr e es @ 0 G) en. O GO @0 o0 e e em OGP M oo e Gy GO M as or G5 ap OO M wn  on @ onp €2 £9

wheres

S S
(24.9) U, = 1[ E«Ddv¥ 1. o2 .

Bﬂ?ké r,
is the electrostatic fielé energy. of a point charge e of finite radius roo.'With
. the exception of the numerical factor, this expression is again in agreement with
an.électromagnetic mass of the orderg
- (24,10) ¥ - e

490k r G2
as before. The agreement between (24010) and (24.7) is*bf‘coursé‘requiréd by

R

the general considerations of Chapter 16;:“

At high velocities (@-—*1) the fields of Qﬁapter éonmust;pé-gsed>with
s %fro The resultant relation beﬁw;en‘momentum'gﬁd vqléqity depends_gnvthe
assumption that is made about the béhé&ior ofvthé-shapé o£Vthe e}égfrgn on.its
motion, It may be assumed that the shape of the',‘é"i‘e'c?c}on remains rfigi.c‘i, inde=
pendent of the motion, as in the AbrahamLeiectrqh,.og conﬁraété,;aé was as=

sumed by Lorentz, in the ratio»{lm_ez in the direction of métipng If this

ﬁJ



latter assumption, which is plausible today by virtue of relativistic arguments,
is made, we obtain:

UO 'S

RECEDRS B I a2

where Up is given by _(24.9) . With the exception of the factor 4/3, (24.11) is of the

, - 5.
general form: |\ G=mv o o no= electronic rest mass.
(24012) | m= 0 :
71 - B2
Uy= mgc?

which‘we shall later prove are thercorrecﬁ relativisticrexpressions relating mass,
energy, and moment&ﬁ."The extra-facﬁor 4/3 is however, significant and indicates that
the pureLy "electromagnetic mass" calculated here is too big by this factor.* In order
to make the total mass a relat1v1stlcally correct quantity, an addltional mass ggE
must be present, whose origin is not electromagnetic, - which will lead to the overall

observed quantlties which obey the relat1v1stlcally correct relations (24 12). This

extra maSS-(or energy) -U°/3c presumably‘represents the non-electromagnetlc‘blnding

-'which must be present to make thée charge system of the electron stable,

*Note that the ratio of electromagnetlc momentum to total field energy is 1ndependent

~ of v, and hence independent of & any of the .approximations made_in the fieldg,

" We have considered how the momentum of - the field affects the effective mass of an

electron and also how physically this mass term is due to a reaction on the force

which tends to change . the velocity of an electron which is in steady motion. We now

would like to obtain the reaction force which must be present if the electron is

> .
accelerated with:an acceleration v, giving. rise to a rate of enhergy loss:
2.2
23.2 =d¥ _
(23.23) dt! ~ 6Trk cg

where we are taking £ to be small¥*
*¥*Phis restriction is not basic since, as will be explalned later, it can be removed
by a_relativistic transformation,

Thls reaction force should be given by:.

e T2
61rk c3 -
Thls equation obviously has no solution for F which can be instantaneously correct

= 0 .

- =
-(24,15) F ev +

-> g :
for'all‘time,‘since v and v are basically uncorrelated. It is
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therefore not possible to solve (24;15)vinstantaneously put'éﬁii ﬁﬁeﬁhgégrééed

over a large enough period of time. This mean;¢9? ¢6ursé2thé£ we aééﬁﬁgé}balanc-
ing eriergy between the force and the rad;aﬁioﬁ fiéld;}nsﬁégﬁéﬁébuéiy”ﬁuﬁufﬂét an
‘extra fluctuation will be available which will be storéd in the induction fields

On this basis, Equation (24,15) becomess

tz . ) .tz L N R T
B . - - ) _
(24,18) f (g . v)it” + _ez_v A vzdt,' =0
' _! e tq - Gﬂ'ksgg ‘ . '
‘ 1 : - :
- Integrating by partse i
- B, - , , . . .
: 2 .
(24,17) { F - _ez? S ?dt' +].° - ?vo ?) =0 .
tl 6rk,c 6W]§oc

The integrated term is thevffluctugﬁ%on",fermfreferred to above; for a periddic
: m§tion or an accelerg#idﬁ oqcﬁrfing 6ve£-abliﬁi$§d fimefit‘will.nbt;éffeétwgﬁe
bintegrated energy ba_1anceo .On the average,ueﬁergy:will be preserved-if. we puts
(24,18) ‘?':ad:-_ﬁ. K
GTrkocs
as the radiation reactionrforceo The total reaction caused by thé intergction
of the fields of the electron on itself deﬁ;nded by conservation of energy and

momentum is thereforesg

. Y :
. 2 2L 7
(28019)  F= e VMg g, ¥
e kyed |
whereg
(24,20) Uo ¥ e*

m 1 = 4 L
e omago o otz R el
3 c? GTTkoc?ro

Note that we have arrived at this reaction force from the point of view of the .

conservation laws rather than by consideration of the direct interaction.
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It will be instructi;re to alsb study thye'"'dir‘ect computation Of., (24419), which
£ was originally dugf’ﬁo Lo?entz,b in _which?is deriv‘e‘d_‘by direct integratibn of the
interaction ofl‘;'t"h_e_» radiation fie.ld, of part of the elé'ctron, on the other parts of
the eleetron.‘vThi_s céiéuia‘cion very olearly shows the iimitations of the theory.
In méking the-v; calc.ulatioﬁ"we ;hall make the following four assumptions,

(1)e We she.:’ll ohoose a frame sﬁch \that the element de of the electron on which

another element de' acts, is at rest, ?(t),de =0

. . . o o .
(2)s None of the quentities ¥, v, 'xr‘etc'.'»:cha.nge greatly during the time it takes

for an electromagnetic signel to cross the_‘eiectron,.' This is equivalent tos

(24.21) . v<e o
(24,22) vece o®
Yo
[ X3 4
(24.23) Fee Ve otc,
T}}Ae_,;,solution ‘i.s_’ effectively a power 'i'sex"‘iqs expension in T’o = rg e ol *
* 1’0 = o2 in Guassian uniﬁé.

(5) .‘ V'I‘he‘ ﬂfie]..dé bégea on the {N'i.e“g»hert—Lién;a.rd. ppte‘nt.i;a.lvsi ﬁll be us“ed‘ even if
’chelr cor?ect‘nelsé at dimensions ‘oﬂ the order i'o is doubtful,. Therefofe,{ only
tevx.'ms“r,xqj_: 'Ql(?l;ltéi'nlixig ré' explicitly Wiﬂ be. cons‘ﬁi.cvler:ed _as‘hav'af.ng physic_al siﬂg;xifi-:
cance., | “

(4).  The electron distribution hes spherical symmetry.,

Consider an element de of the é’hargé .at'p affected by the elem'ent‘de.', at p'_‘.,'

as shown in Figure (24,_2).

-



242

> gource  point

(field point;

Figure (24 2)

Using Bquation (23.17), the electrlc field at p is glven byy“

i'_f?%%) 4TI B () = i__g_}_ : ?x[(;’ v(te)r < v(t'] <_ , xt%r» 24 )5

Note that the field is expressed in terms of the electron s oondltlon at t' and
hence for totally arbitrary motions, the problem Woﬂld be 1nsolub1e‘w1thout
knowledge of the electron's entife past. It is only the restrlctlon (2) above
v'whiﬁh'permits’discuséion of the Prébiem at'allo In order to allow 1ntegratlon
of (24024)vovéf»the entire electroﬁ, 411 vélocitles and acceleratlons must be..
réferred %o‘the‘séme time of arrival t of thé signal at p. Uéingﬂa§SQmptioh

(1)9-$(t) = 0, and assumption (2), we haves

(24.25) ‘%”(tv) = ‘%(t) - r“x’r"(t)
(28.26) ) = mv(t)r . v(t)(ﬁ)g
C
(o) 5 =1 @) T s (B oD
| T2 2\ B

Let us carry terms to l/c;5 only$ to this order vz/c2 = 0(1/54)>will be neglected.

¥
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Substitutings
, = <> > 8 S o > - -~ =
(24028) 4Tk,E = de' | 2(r « ) =F e oK) + T 4r o Ir(ver
R Sl S S M 5
- P L x4
+ 3 r (v r)_+, vy - v
2 G3p2 0%n 203
%l’ . .
: - b =D - - v
= det| =2r(¥ e r) +}_?'\-r:’° r) +r + Y
) i R r2c8 rd  2¢5
AL ) C
In averaging this expression over a sphere, let us write (24,28) in tensor notations
. E Y ’ XY (Y}
- (24.29) dB; = de* | =2rj(virs) + 1 ri(rsvs) + ri + vy
T T am | T e B
When averaging over a region of spherical symmetry, we have7F; =0,
riry = 1 rzSij, and hencery
3 :
» . . . L L b 1
_(34.30) , GB; =de' |-27v +2 ‘ﬁ
4k, B o2p 3 43
" Integrating over de' and de we obtain for the self-forces
- L -
(24.31) F = ot - mel.mag.%” -
' 6 ko0 ‘
wheres -
‘ . = t =
(24.32) Mel.mag. 4 f de_de LUy
o - 32 J)) 8fker 3c?
where U, is the electrostatic energy of the electron in its own field. This is
in complete agreement with the results (24,19) required by the conservation laws.
40, . . ) o
Note that the ;}term_in (24.30) is independent of the extent of the elec-

tron and therefore.presﬁmably indé?éndéﬁ%‘bf the detailed structure of the

. [ | : .
electron. The v term, i.e., the mass term, is structure-dependent, but its re-
lation to the electrostatic energy is not. It is clear, however, that the

eledfromagnetic mess is at least of the order of the experimental mass m. It
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would be useless to carry this calculation to higher order, since the ‘following
terms would form an ascending series.in r, aﬁ@>ﬁéﬁid§therefbfe:béistructuré*

dependent and‘presumably not ofﬁpﬁysicél'signifid;ncé@

The preceding discuss%oﬁ?shéws;that.théré‘are%the ?Qilowing unsolved'
difficulties in classical électronttheqryz |

(1). The thédry gives a ;eiéﬁion betweeﬁleleptfoitatic field energy and
mass,'bﬁt does not inaicate why eiﬁhef‘of;them should be finite
for a point field source, |

(2). The.electromagnéfic_ﬁaés'of th,élééfroévis;inéufficient to aéédunt
for tﬁe entire mass; the electron musﬁ‘h;ve non=-electromagnetic
mass;of uﬁknowh ofigin to account for ité sfabili%?;, o

(3)o The condition (24,23) which was necessary to éefmit’fﬁeyrédiation :

calculation is equivalent to putting:

: ’ 2y SN
(24.33) 'mx‘rf}» ecy ro -F':ad
: Squgc ro, ¢

This means that there must be an external f§fce largé compared to

the radiation reaction force in order fof thé‘%héofy to be'Qéiia;

Hence, the force equatioﬁs derivedhere do not apply:to a free electron

but only to a bound electronev If.(24°31)‘were applied to a free.

electfon, we wouid have a‘aifféfenfia1 e€uatio£ of the types |
T :

(24.34) ¥ =F=0
kT T o o2 ¥ 10725 geo. .
4 Tk med
which leads to an integral involving terms in éﬁ/ﬁ‘o which leads to
an extreme instability of pdsition for a free electron which is con=-
trary to fact. B
Quant;m mgé#g#iqsihé;jgggj;o?feé‘ﬁﬁéséuéifficulfie;, but has in_fgct addéd

"

others to them, which cause similar difficulties to exist for the charge as
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they do classically for the mass/cf the electron. The experimental values. of &
and m can of coursé be7us§ﬁ,§s;béfofé'to describe the external behavior of the
.electron; the real problems corcern themselves with the detailed description of

,thé éleétron itself,
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'CHAPTER 25 -
 RADIATION FROM -A BOUND ELECTRON -

Sl

' The t"leory of radlatlon reactlon dlscussed in Chapter 24 can vuth some con-
fidence be applied to radiation from a bound electron, prov1ded that none of the

conditions given.there are violated, : : , ¥,

Transient Vibrationss

- o
Consider an electron bound to & center of force with a harmonic force F=-kx *
correspondlng to a natural frequency (A) k/me The equation of motion,.includ-
ing the self force of the electron, is thens*
(25,1) X+ a)ozx =. &° X = 2 T %
6 ko com 5 ©
In accordance with Eq. (24.33), this relation is valid only if the right-hand
side “is small, If this is true, we can writes
uo — 2 B :
(25.2) x wc
o 2 N
and hence if we let P = 3 T’ow 2 = ¢ e woz‘ s we haves
’ oe ° 32 6‘1Tk005m ’
(25,3) x+ VX + W x=0 :
whose solution forrsmellv‘Y iss
(2504) % I: Aeiwot e"(Y/Z)'b
(25.4) corresponds to a damped wave train after & given amplitude has been
excited by an external impulse. The energy of the wave falls off as

(25.5) R4

and hence Yﬁl is the mean duration of the radiated pulse when averaged over
energy. This is the classical gquantity corresponding to the gual tum mechanical

"]ife-time™ of the excited state produced by the external impulse.

The condition for validity of Eq. (25.3) is that

mgamnﬂmauﬂag_‘-mu-—um—um—nmm-‘-—’-—_-'—u—--m

n.@c:.mmﬂmummnm-lx—m—--_m——-m-’_n‘—:-:--9--——__--,@
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Y
“o

- """:<<13, or w°.<<-1.°<'1__:‘

or in terms of the quantum energy of the outgoing radiations

(25.6) & wd«<4rrko'h¢)moz = 137 me?® % 70 Vev.
) .

This limitation is. therefore entirely unimportant in the optical or X‘-‘ray fre-

quency regions,

| Thé 1“ine'-'width of the emittéd radiation can be obtained diréctly_ By Fourier

"ana.lysis of Eq. (25'.4)‘. Ifs

- o | .
B =,/ ot WE = Eoeiwot e""(_y/z)t

By
00 .
o P ' . - (= ‘_ i ‘
E,, =Eo [ eiwpt o (Y/Z)t . j et 5
ory -

Eﬁ' i‘(w:-wc;) + Y

Corre‘s?on’din’é 0 an infensitjs

(25.8) Ip =LY RS
21 We-w )e + y?2

Normalized such thaty

.(250'9) ‘ : IOO e o

’ . ’ dew - IOA

_ oo
The full v&id’th at half enerpy is therefores

(25,10) Aw= Y %frow_o |
Gorresponding to & width in wavelengthy -

(25.11) AA=200Wo =2% « 20T, =4m r'ovku 10-32 on,

w2 '3 3
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Note that this width is constant, 1ndependent of:the frequendy USédm~ In practlce |

this is of course not the only source of the w1dth of a spectral 11ne, since in-
terruption of the wave traln due to 1nteratom1c collls1on and Dopplef fréquency

_.,,_,y ('

e ‘( ;’{;’y,f sk :‘}“““ LA ‘2 l
shifts also contribute to the' 11ne width, - P
. The ‘relation between line width amd’méan‘life")’?lg'"“"57'7‘*55”5" ~f_f‘ g
(25.12)  Awyt =1
which follows from the abové relations, is of course equivalent to the relations o

(25.13) AEAt~
where AE = 'ﬁ[&ws corresponds to the quahtum mechanical rélatioh between the lifew«

time and the energy width of a state.

Forced Vibrations

\ .

" The previous equatiqns.giwefthé-mdtiqg and the cogsequent'radiation of a
boghd electron fqlloﬁing a transient disturbing imﬁuléé; thi;'is the classical
‘uthebfy‘bf speqtréi emission., Let us now éoﬁsider the steady'state motion 6fvan-
electron in a sinusoidgl external field; The;#esu;tant_radiatipn will be coherent
with the external field and will, in géne;élgiihéérferé.With it. The felations'
that result from this consideration wiii zgive the_cla§sica1_tﬁeqries of light

scattering, absorption and dispersion.

The equation of motion of the bound electron in an external field

-2 = l
E = Ebelvot of angular frequency W is: : . S &
‘.‘?—* _+5 ‘
(25.14) X + Yx +- a) x i) EoélLot

=

where Y is the same as it was in Equation (25.3). The resultaﬁt steady state |
motion is given bys
o -

(25.15) X = B,

gle

Let us analyze this golution as applied to several wcases. -
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1. Free Electrony (a) Scattering by Single Electron (Thomson Seattering)
The displacement and acceleration become, for the unbound and weekly acoelera- 

ted electrons

Lo - . . —) Y ._’ - -
(o) Fe-_E F:E ;wFo ; v¥o
Wom T -

If X &eo, Equation.(25.16) using quation (23,21), gives rise to a radiation fields

(25.17) E'= o(sinat) ¥
S aWkgre?
o . . - e '
where oL is the ‘angle between E and r’as seen in Figure (26.1).

p (field point)
El. .

(Incident plane polarized
: wanresJ S

: } (directibn of
- incid

(free electron) . 3

7

Figure (25,1)

The rate at which re-radiated energy crosses a unit area isg

2

(2-5.18') .\NI = fl?o'sﬁi'%l'_f;
: REETE : :"Pou4TFk°rez |

(26419) 'N, = r 2 sin2 &(IO)

ré

where r = 2 . is the classical electron radius ands

.411' kme
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(25,20) (a) I, =%7 ko E,2

is the primary intensity.

(20019) is better expressed in terms of the scatterlng dngle © and the polari-
zation angle Qﬁ which are related by:' (See Flgure 25,1) .
cos ol=.cos ¢ sin &

i.es sinol = 1 = cos? g (1 .f".?ﬁcd.sz.."e)ﬁ?' R -

If the primary wave is unpolarized, (i.e..randomly polarized). we have,

_averaging over @

(25020) (b) '\ ) Sinz&. = _]; (1"'0082 e)
sinces
Sos? g =1 ‘
-7

The total rate at which energy is fe.—radiated is therefdrfe.-;:

-{f rénaf. - a_ﬂ.= sin @ d8dff

(25021) daw
atr

W = = Ior 2 (1 + cos? 8) o 2qrsin © a8
TT - ° 2

(28022) ¢ aw=s8wrIipr?
qEr T3 )
This corresponds to an effective scatterlng cross-sectlon per electrons
= 2 3 »
(2uc?5) . 6’0 81r I‘o ‘ ‘ ’(\\0((\ ebx v h

3

‘md a differential scattering cross-section per unit solid anglesg

(25.24) : ; "dc;:) = I'02' (1 + éosz"ﬂ ‘6.)
an 2 :

This cross=-section is shown graphlcally in Figure (25.2)s Note that classically
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theﬁscettefing ie'symmetrical in the forwerd and backward directions,

1 deg o
ro? d.O 1 {classical)
1
2 .
| (quantum mech-
anical for;
o # w=0,2mc?)
0
-9
1T’v

Figure '(25 2)

Quantumrmechanlcally* ‘the scattered radlatlon is more concentrated in the for=-

ward direction, even for relatively moderate,energies. (See e.g+ the case_of
scatterlnm at 100 ¥EV in Figure (26 .2)

(b). Volume Distribution of Free Electrous..

This case applies to the Tollcwing'cases cf prectical interests

1. Refraction of X-rays.‘ o

2. 'Reffecﬁion cfrelecfromegnefic waﬁes in ﬁhe.ionosphefe.

3. Re-radiation by a "plaéme" in anvelectric discharge;
If we have N electrons per unit yoiuﬁe, eech electron, when effectcc-by an in-
finite incident plane wave will scatter'the radiation in accordance with the
Thoﬁsehlecéttering formula. This ecaftered radiation will combine ccherently
into a plane wave which will 1nterfere w1th the 1ncldent wave, thus modlfylng
the effectlve velocity of the wave,” The case could be analyzed therefore by
analyzing the superposition of Thomscn scattered wavelets, It 15, however,
simpler mathematically’to tfeet fhe reeradjaticn’auetpcertainpolafizetion‘;gfrom
an entire volume element rather than~tﬁet from a single electron of displacement:z.
These two quantities are related By:

N
(25.24) % P = Nex
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\

The effect of the polarlzatlon is to add the polarlzatlon current QP to the 7

. : 3t
-
vacuum displacement current k, dE as a circulation source of magﬁ}etlc field.
a 'b . - PP "" ] )
Equation {14, 6) becomeS° - B h e ; AR
esiEs)y © N xB= %OQE + ap] - .
This equatlon when comblned W:Lth the equat:mnv ' '
uamw)ﬁ L ‘VxE -35
in the usual way, yields the homogepéous wave equationss
| R - ey
(-?4:026)‘ | VE.«.L a"E=O;"vB°L S?B=O
wherez
(25,27) - v=e
'n

is the propagation velocity ands

(25.28) . n-

is the refractive index, The local field (see Eq. ,,41) is .g"iv'en_b'y;
(25.29). ' E»Q = E P
. ' lc
- = o
in isotropic dielectrics and simply by E'Q = E in dilute 'systems.
Wer have the.refore for effectively dilute systems (always true in the frée

electron case)y

(25030)- - .’ k =‘ n2 1 +vNe|.—>>l

fl

[¢)

and f‘rom' (25016) &

(25,31) K=n® =1 Ned
| kg, Wm "
If we put X = ¢ _for the reduced wavelength aﬁd"‘ro? 6%

w ' PR a/—l_ﬂ’komcz
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. for. the, classical electron radius, this can be written ass

. e L o
(25432) - -k’-nz—bl-_‘l‘ﬂ"NroK

The index is therefdre less than unity_and thus radiation penetrating free electron

matéfiéls;can-ekhibit the pheonmenon of total reflection,

r

Note that the reffactive index, béing‘a measure . of thé net'phase velocity
caused by interference df the primary.wave'and the induced polarization radiation,
is ééﬁéitive'to‘the“Eiégbbfithe scaﬁtefed wave amplitudeé,AWhile the-meéSUrement .
- of scattering cross sections is not. Invesbigations of the refractive index
therefore yigld more information about tﬁe binding of the electrons than do
scattering ﬁegéu;éﬁenfs;;‘Thié has ;eéently beeﬁ démantrgted in analogous éxperi-

ments on scattering vs, refraction of neutrons in crystals,

2+ Bound Electrons

" (a) écaﬁﬁéring by a Bound Electron

The radiation scattering cross section of a bound electron becomes, for un-

polarized primary radiationy .
(25.33) o=, Wt

. B " N

(W - WP+ (v w)

where ¢; = 8 r°2 is the Thomson .cross section. The angular distribution is

the same &s in the free electron case. For strong binding; i.e. §Wo>>W
g e | Y << W,
this becomess *

(25.34) oC=c/w ,)4
(o} wcl_

o,

giving a cross sectiop.depenaing on the inverse 4th ﬁowef of the incident wave-
1¢ngﬁh. Equation (25.34) not only:holds for scattering by individual bound
electrons but also for scattering by small polarizable regions if they are small
compared to the incident waﬁelength. This is the case in scattering by small

regions’ caused by .density fluctuations in the atmosphere. Equation (25.34) then
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gives the Rayleigh scattering of a gas'of fluctiating density, which'is respdusi-

N

ble for the blue of the sky.

The scattering cross section can become very large if y 2w (resonance
scattering). - In this cases

(25,35). - o 6= 0"(; (‘%)Z
Y

which can give a cross section greatly in excess of the classical area of the

electron,

“(b)e Index of Refraction of Material Containing Bound Electrons

For bound electrons, Bquation (25.30) becomess

(25.36) B =k =1+ el 1

In the high density case, if thes distinction between local and external field
becomes important, this becomes- (since Ej in Eq. (25.15) is now to be identified

with the local field EQ_ given by (25.29)k |
(25057) 5<k - l)"‘ 3 112 -1\ = ) 4'{TNI'O -
_ k+ 2 o .n2.. + 2 /. K02 - K9 4 ik

Wherer= o;K=%{=;.P=Y°

C

If not all the electrons have the same binding or damping but only a fraction
fi haé“binding wave numbers Kio and damping width (in wave numbers). TE} we obs=

tain for the "Molar refractions

(28.38) El(nzﬂ 1>= arowrd,
& \n? 3 i TE A e
| ' Kyt F K+ [

n~+ 2

;NO ;1Avogadro“s.numbéra.,
wheres .. M- = Molecular weighte .~
{ g+ = densitys-

This is~the.genergl:dispersipn,formula whigh gives both the real index of re= .

fraction and the absorption coefficient,
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 GHAPTER 26 -

THE EXPERIMENTAL BASIS OF THE SPECIAL THECRY OF RELATIVITY

The veloclty';?appearlng in the formulae for the radiation from a moving elec“

.tron, as derlved in the prev1ous chapter, denotes the velocity relative to a frame

of reference in whlch the wave equatlons
26,1 2g - g ' o
( * ) Co v ¢ l = g(xay:zit)
c ;;t .
ie.valid. Sﬁbetifution of thevGalilean‘transformation for wmiform translation
pareliel to the x_axiséﬁ

B

= X
y'=yvy
gt =z
tt = %

will not preserve the form of (26g1);‘electromagﬂetic‘effeets Will therefore no?
be the samé if observed from different'framee moving with a coﬁstant velocity
relative to one another. Specifically the velocity of prépagatidn of a plane

wave in ‘vacuo would not retain its value c = LﬂV,&;é. If we accept the basic
correctness of Maxwell's equations and classical.kinemetie iaws, then there exists
a'privileged,frame of reference, the classical Mether frems", which is the only
cnevin Wﬁicﬁ Mengll's eéuations are valid and in which light is propageated with

the velocity c. .

‘The concept of a privileged frame is foreign to classical mechanics. The
basic equation of motion of n point particles interacting with potential func~

tidns V. dependlnF on their separatlon-

(26.3) | : V [v(x1 - s )-)

is not ehanged by s substitution of the type (26.2); This invariance of the
lews of mechanics is only true for transformations of the type (26.2), repre-
senting linear translations with uniform velocity and non-accelerated reference

fremes. A freme in which a body on which no forces are acting is unaccelerated
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is called an "inertial" frame; we can therefore formulate the invariance: of the

laws of mechanics under;the;transformatipnsZf2§°§3 byiﬁayipgiﬁhgfiéﬁ\classical

.. mechanics all inertial frames are equivalent.*.

" #The ‘definition of én "iﬁértial'ffaﬁb" givén above is at best véry ﬁﬁéatiéfacfbfy,
since the absence of forces can 5nly be detécted by the abséﬁéé‘bf‘acéélefafioﬁ;
unless the sources of the force are known.. In a’fiéld théoijan“inertiailfréme
is therefore undefinable and a forqe field and é st%tg qf-acqele;ation of a frame
are»bééicaily iédisﬁingﬁiéhableo Thié factvis-oﬁly recégniéed in the geﬁeral.

theory of relativity; we will assume here that an "inertial frame™ can be realized.

This statement is sometimes known as the principlé of Galilean relativity.

Thereépres we have.seen'ﬁhgt5the principle oijalilean:relativity does. apply
%o the:laﬁs of mechgnics but dpes:notiapply;to electrodynamics. TWe are therefore
forced”ﬁo chqosevbetween the following_alternativesz

(a Yo A principle of réiaﬁivity exists. for mechanics, but not_for'electro—

dynamics. A preferred inertial frame (ether frame) exists in'electpodynamicso;

(b), 4 principle ofvrelétivity exists for both mechanics and elecﬁrodynamics,

but eleétréayhamics\is not “correct in the Maxwell férmuiation.o’

(¢). A principle of relativity exists for both mechanics and electrodynamics,

but the laws of mechanics in the Newtonian fofm need modification;»

The choice between these alternatives can only Be made on the basis of ex-
perimental results, We shall see by analysis of the relevant experiments that
alternative (c), in the form of the spécial theory of relativity, is essentially

correcte.

. The.experiments in question essentially fall into three-classess
(a)?n Attempts to locate a preferred inertial frame for the laws of electro-

dynamics,
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(b)e. Attempts to obtain. deviations from the laws of classical electro-

dmamics ..

1.

71

10:.

11;f

(¢). “Attempts to observe deviations from elassioal-mechanics.
A reference list of relevant experiments is givén‘beiowr

REFERENCES ON THE EXPERIMENTAL BASIS OF THE
SPDCIAL THEORY OF RELATIVITY

Miller; Rev. Mod. Phy. 5, 203, 1933,

- Discusses in detail Mlller s small p051t1ve effect on the ether drag

experlment.

/ AKennedy, Proc, Nat. Acad, Sci., 12, 621, 1926..

- Michelson~-Morley experlment using step mirror technlque. Nullvresult to

*2 km/%ec.

Illingworth; Phys. Rev., 30, 692,.1927,

" Repetition’ of Ref. 2. Null results to * 1 km/%ec.

Kennedy and Thorndlke Phys.. Rev., 42.. 400,. 1932, .
Interferometer w1th unequal arms. Null result to + 10 km/%ec.

Comstock Phys. Rev., 30, 267, 1910.°

::D681tter, ‘Proc. Amst, Acad., 15 1297,. 1913..

16 396, 1913,
Spectroscoplc work on blnary stars.

"Tolman-’Phys. Rev., 31, 26, 1910.

Thomson, J. J.; Phil, I hag., 19, 301, 1910,
Stewart; Phys, Rev., 32, 418, 1911. '
Emission theories; new source theory and ballistic theory.

Ritz; Ann, de Chim. et. Phys., 13 145 1908
Original source emission.theory,. -

See alsos Tolman; Phys..Rev,., 31, 26, 1910

35 156 1912.

4 Majorana; Phil. Mag., 35, 163, 1918..

37, 145, 1919,

Moving source and mirrcr'experiments.

Mlller, Proc. Nat Acad.,_li 306,. 1925.
M, M. 1nterferometer u51ng 11ght from sun.

Kennedy;- Phys. Rev.,.éz 965, 1935.

Critical discussion of geometrlcal effects of high order in Mlchelson-

Morley experlment.

H, E. Ives; J. Opt. Soc. Am,216 (1938). = Doppler Shift

THis 1list covers only some.of the basic early work. For further references

seey
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1. _Tolmanw "Relativity, Thermodynamics’and Cosmology."

v2° Paulis “Relat1v1tatstheorle " Encyclopaedla der Mathematlschen Naturw1ssen--
schaften, ‘Vol, V (special reprlnt) ,

3. Bergmanns: "Introduétion'to the Ihoory‘of Relativity."

Lot us firstAcoqoidor sogoiof,the experiments Whichvhave a bearing on the
question of an absolote ether., frame... -In Chapter 22 we have already dlscussed the
exp@rlment of Trouton and Noble on measurlng the torque on a suspended charged
'oondenserod Suco a torque was predicted on the basis that the wave equatlon, and
thereforo_the rotardeo_potentigl‘solutions;Taro valid'on1y in,a.givonJother;frame,
and osooﬁiog ohaﬁ.the-earoh's.orbital motion would assure that thé'egrohIWOold
not always move wifh this ethor frameo‘ ﬁooner, when the:o#périméhf was éo?;

formed, & null result was obtained.

Another attempt‘to'ldcalizé’the ether f:éﬁe was the Mibheisbﬁ-mbrléy“experi-

ment shown in Figure (26,1). Eight from:ngOﬁroo L»ié~sp1if info twovpathg By a
half=silvered mirror at P, The splitlbeamsdare-reflected at mirrors,Silandgsz
respectively and return.through the half-silvered mirror'to\anvobserving tele- , .

scope at F., Interference fringes are’

~Viewing ielescope

(Half silvered side

/// .

5 Figure (26.1)

%
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obseffred at 'F. Let us assume that the 1nstrument is mov1ng w1th a veloclty?
parallel to SlP relatlve to a statlonary ether. Classwally the time for the
beam PSlP to complete its passage ise _ _
(26.4) by = ,Ql 1,1 =24, /c
. . ' o ) c=v c+v o
C o . : 1 -_@

The time for ‘the bean PSZP must be corrected for thé fact fhat P will have-moved '

by a distance J (see Flg. 26 2) durmg the time llght travels from P to Sy g is

.glvep byz. L
(26.5) . d | (-f= | B £,
| VaE+2 ﬂ ,.;V/—'_/s o

we

' Figure (26,2) \ ,

(26.6) " tS =

énd hences - -

The difference /\ in optical path is therefores:

(26.1) | A- 2 [ ﬁ; | - 1

If the instrument is rotated through 90° (j‘_,e.‘ )el and ‘QZ interchanged), the

number of fringes N that are expected to shift. is approximately.

- (2648) (,Ql ﬁ.g) ﬁ

The-experiment was originally. perf'ormed by Michelson .and Morley with a null

result accurate to + 10 ,k:r_n/sec. . That is the velocity of the earth relative to
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any “ether frame must be 1ess than + 10 km/sec° Later experlments by Nlller(l)

gave a p051t1ve 1ndlcat10n of a ve1001ty of 10 km./seca (Whlch 1s ]ess than the

z.,

earth*s veloclty of 50 km./sec° in 1ts orblt') apparently dlrected toward & cer-.

tain pdint in space. The accuracy, of the experlment was greatly 1mproved by

(2)

. . L
Kennedy and Illingworﬁhé‘)5qusing a stép;mlrrorztechniquef the mirror Sl
is divided into two hglvesﬁbf slightly different, thickness; the telescope is

focussed on the mirror., The field then has twonhalves whose intensity cor-

responds to two slightly displaced interference patterns, as seen in Figure

(26.3), v : o -
A B STt s © C e T
- LT -
I
;.\
A - Balanced intensities - ," Ut . e . <.8plit Field of
B - Unbalanced intensities o - } Telescope

Flgure (26, 3)

.

The field is balanced for frlnge p051tlon A, but not for B? 31nce the match g

occurs on the steep sides of the;iﬁxansity curves, much greater sensitivity
Q«al/ﬁOOO fringe) was attained. ”Kennedybobtained a null result #Q?i Zwkm/%eo,
and Illingworth to + 1 km./secc We can therefore accept the null result with con-

fidence,

bee sea;g?‘ﬁpr a prefgrred framq4£or‘electrodynamics"without further modi—.
fication‘éf‘electrqdypéﬁipg or mechanics therefore appears. to-have been unsucf-
cessful, An attempt to .preserve the concept of the preferred ether frame is con=-
tained in the Lorentz-Fitzgerald contraction hypothes1s which proposes that
motion;relative. to the;stﬁtiqnary=ether:framexcowtracts-all”bodies’infthe'ﬁatio

y 1= (BZ;in,the;direction;0£imo$ionowJ;erin>Fig° (26;1) is thereéfore given by -
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: {1 - and JZ SL .; where jz is the length of 12 when at rest

relatlve to the ether. Hence (26, 7) becomesz

e Ana]

. A . . ! . - o .
and no fringe shlft 1s obtalned on 1nterchang1ng arms. If 121 ¥ J22°

» &s was the

case 1n the experlments mentloned no frlnge shlft occurs as & function of veloclty.

If ,Q % ,Q , then even with the Lorentz contractlons a fringe shift ofs

(26 1o) | ['Ql - 'Qz ]( /‘5’2'
o - ff———E:——-—

is expected from the veloolty change due to the term (‘?2 - (3 ) Kennedyv(4>

constructed an 1ntcrferometer u31ng a path dlfference essentially as long as co=

herence of the source permitted. The square of the veloc1ty-of'the instrument is

presumably glven byn

(26.11) ¢ ‘? =rceloéity'of earth‘in) surface veloclty velocrt)
e ~orbit around sun of earth of sun
2,2 _ o
¢ = v_ + v +
e = E - R 'vs
which Shduid.chénge bys

eﬁery‘IZ,hours‘anq bys . o ,
every sixvmoﬁths; Neither 'effect wa.s ﬁbserved,_in contradiction to the Lorentz

éontraction-hypothesis. S

i“A'furtherwaitgrnétive-in’WhiéhifheTCOnbépﬁ of:thgbeﬁhef ¢ould be'presefvéd
would be o consider '-the-:'ether frame‘ aslat’cached t§ ponderable bodies. This
wégld autéﬁatlcally glve a null result for terrestrlal interferometer experlments.'
However, the assumptlon of a local ether is in dlrect contradlctlon to the follow-

1ng well-establlshed experlmental factsr
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(a). The aberration ofl"fixed"}si‘,arso o 1 -'““-—“;Wiif _

(b)~ ' The Fizeéh oonvectioﬁ.eoeﬁfioientﬁh519ri2j agrees‘wifg a con%eotionzﬂ

of the SP/a't; term of the magnetic field ‘sources only, but” the k aa-% term

remains unchanged. If the ether moved w1th the mediumg the velocity would

simply become c$u. Vote that the 1dea of en ether attached to ponderable

"vbodles leads o dlscrepancles in the first order in F

These con51derat10ns appear to make the 1dea of a preforred frame unacceptable
even 1f 1t is attempted to have such a frame not generally statlonary but only.
locally stationary, We are therefore.led to tbe conolu51on that a prxn01ple of
relat1v1ty is also wvalid in electrodynam1c5° this 1;4p0531b1e only by elther modi=-
fying the ba51o postulates of electrodynamics or ihe bases of mechanicso The
types of modification of eleotrodynamics considered are the so=ca11ed emission
fﬁeoriesziﬁ_whioh fhe veiociéy of a light wave"rehaios associaéed with the source
rather than with a local or universal frame. Such an idea does_nof admit a field
descriptioo since‘the effeotsvatie:fieid'ooiofﬂoaﬁnoeibeumaoe independent of;the
source, As another alternative, we can consider the special theory of relativity
which modifies the kinematio desoriptioﬁ of meoﬁénidslsﬁch that a priﬁciple of
relativity applies to both mechahics and electrodynamics. Let us fabulate fhese

comparative idease.

Theory : ' Classical Special Theory of
~~— Emission Theory. Ether Theory o Relativity
Properties > ' R N
Reference " No reference , .Statlonary ether No reference
System .~ system. = ' las'reférence - 'systemo
o . system, L L
elocity Velocity of light [Velocity of light Velooity'6T Tight is
Dependence | depends on motion |is independent of independent of motion
of Light of source motion of source. |of source.
Space=-time: Space and time ~ |Space and time are |[Space and time are
Conneection - are independent. independent. . interdependent,

Table (26 1)

Let us briefly dlscuss the emission theories, All emission theories pro-=

g e
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pose that the v61001ty of llght remains. ¢ relatlve to the orlglnal source inde=

pendent of the state of the transmlttlng medlum. The only difference between the
emission theories is the change in vequity which would occur on reflection from
moving mirfors. Three alternatives exist heres .

‘1. The,veloéity remains ¢ relative to the original source,*

# This theory, proposed by_Ritz(7); wﬁs developed to a’fair degree of completeness,

Ritz retained the two Méxwell'equationSﬂ__

EVAEE
- -
_6“
e . - - = =
with E and B derived from B = Vx&
' R s =
E = §7¢{_ SA

while the other two equations (the source equations) are replaced by thb'requiré-

ment that

', 41rk

f [ ] [t - r/(=+v)] av
r

where v is the‘velocity'pf'the source relative to the ether, This equation

replaces the ordinary retarded potential solution. In this way fields due to a

moving source are definable,

- e G e W e e e G E w W W en em ER e 4 ms SR B Gm A e W R e A e T s W e TR M em e

24  The velocity becomes ¢ relative to the last mirror from which reflection
becurred.

3.? The velocitj relative to its mirror image remains ce

The first theory was,proppSgd_by_Ritz[aﬁdiisﬁthe only thgory which dbes not 1eaa
fb‘cohereﬁée difficulties concérﬁiﬁg tﬂé refiected iight, These three theories
will give differeﬂcés in the firsfsorder'ixlf? in experiments on thé interfer-
ehice between 11ght beams reflected from mov1ng mirrors such as those of Thompson,_

(8 )

Majorens 7, and Stewart. All these experlments gave results in disagreement with

£
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%he’theoriesgz,and'59 bgt'in,agreementg withinvexperimEntglFefrdﬁf”Wiﬁhiﬁhé Rits.
theoryo,_The«reason,forrﬁhig agreement>isvthat.in.aﬁy cloSédfsy§ﬁemﬁdflinfeffer—'
ing beams, the Ritzitheory'will differ bnly by tgrm;uof?ﬁhé sécond “order inifg'»
from the results obtained_at constant’velocityni*ff;=es@£5=light travels from‘a
statlonary source, to & mirror mov1ng with- veloclty v and returns then the effectlve

ve1001ty remains c, as 1t does relat1v1stlca11yo

If the source is mov1ng with veloc1ty v, then u51ng “the’ orlglnal source‘a”r »

theory, the time required for light to cover a given- dlstance JZ on the forward

trip is Jl while on a return trip after reflectlon from & mirror, it is Ll 3
. cﬂv : H -,' c+v
combined, these give a times e :

(26,14) At = 1&( \’ B
' - B2

[+]

which differs. only by terms-in. the second order from the constant light velocity:
expression At = 2.4 . Hence any terrestrial moving source and mirror experiments
' c T B

fail to give a first order contradiction to the Ritz emission theory.,

There__,ar.es‘.howgve'.r9 two. extraterrestrial experiments' which contradict any -
formvof Qmission theory. One of;ﬁhese.is‘the obsérv¢d-dynamics:ofteclipsing
binary staFS'by'DeSitterej If.light9 emitted by a star from the approaching and
7 receding leg of the orbit, travé;led with different velocity;then the time- interval
observed between successive eclipses of binary stars would become ‘highly asym=
metricalo Actually no such effect is observed; in fact DeSitter comcluded-that if b
vlight =¢+ k Ve tar then k €0,002¢ The. second extraterrestrial:evidence- is the
experience of Miller that the Nlchelson-Morley experlment does not exhlblt any ‘ »

change in result when llght from the sun is used 1nstead of terrestrlal sources.

..This outline of the experimental. basis shows that experiment contradidts
any . reasonable alternative to .the theory of relativity, rather than any single

experiment proving the theory.  The experimental tests are summarized in Table
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(26»2), For the sake of comnleteness, experlments are 1nc1uded which have not
been. dlscussed here and whose bearing on the subject w111 not become evident

unt;l‘the4theory of relatlvity-has beentdiscussedvin more detail,
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EXPERIMENTAL EVIDENCE OF THE-SPECIAL -~ -~ -~ *% i}
THEORY OF RELATIVITY ' ) - o
” CTable (26,2). - R
Light Propagatién Experiments from
Experiments . Other Tields
.
Experiments o g
v 3 2
w (0]
el L] B
. b ow O | >»i| © [y}
oo o] © 1] 2
-+ 1 -~ [ | ] LW . -
o o ol o ° o1 ™
o IS I L | e o~ = a-| #
ord wil o Lo g & S e
© il oA O RO B OO « &)
ot o] M. o [ Y TR T e ¥] (o]
G £ |~ = O]
G 47l O Ha 1T o < : (]
© od <1 ot < o+ fca I BREES O =
8 =SB HE | ol Bl 8] <
, gl e1=hal 25 &) 2
- L1 8 & =|lwl 81 o] Bl = -
R I o sy ol 8 g4 o .
EEE -2 ool owme] P i o 3 g4 L]
ol R T A RN | Dau I <1 B < A
R ;?'-19 g 0. & ‘.;zaq Sl al H &) siB
g g1 1 Sl o e | T 1o |- R
St ol = Bl ol Tl g gl S & g o1 &
—l ] © 0. 0| w|{ o:f o 1 & ol o© ]
- iow > M o jwajlal — ~] 4] & o
o = S| wf L=l P & o) ® | o
4 gl o o g Pl ol s < & @ g} £
B0 S o gl | At gl o} v} A0 3
, S a3l Bl 5l sl R talE] 8 8 T o] &
_ N < mlE| A xlETAa]Er] o] B & E'EA#
Stetionary ether, || V| V| ¥| w| w{ V|V |vfivjo| w| V| o} x|
no contraction : . : :
Lorentz contr. and{l V| V [ V| 8| w|{ V[V [V}{V]|o|® Vv|{ol]V
stationary ether . -
Ether attached to || N| N |V | ¥ V| V]V {V{x|o| o] o|o]|V
ponderable bodies : _ . 1 ; b
Original -Source Vi VIVl V]IVIvInllololol nlofo
Ballistic ViofvV|wlvin]nw|xjlololoel wlo]o ]
New Source Vi o V| v V| x| |V]olo]|o 0ol o0
Special Theory ‘ Rt
of Relativity V] VIV V]V VIV VIV VIV VIV VY |
‘ V - agrees
N = contradicts : S
0 = does not apply - R ~
The experiments outlined above presentievidence thatyg
(1). The presence of an ether, either stationary or convectively carried, can-
not be established,
(2), Modification of electrodynamics of the emission theory type is untenable.

L : - [P S e e LTI e s et o ey L g e e e T e BT 3 e TR e o
B I W e it e P e vt ey 1 T e e, TG e IR g ‘*:T”T‘?”‘\”(«.’"‘"‘W T el P ‘,f-.,,. e 1T L L e T A
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The conclusions then make»it plausible to look upon the basic laws of meohenios ‘
as in need of modification._l .ib - _iw :

In 1905 Einstein proposed as a solution, oompatible with the experiment faots
known et_that time, thevfo}lowing postuletes; , -

(1), ALl laws of electrodynanios (inoluding, of course, propagation

of iight with the velocity“o innfreesspaoe) snallfbe_the same in all

inertial frames, as are tho lams of mechanios, | |
(2) It snall'be impossible to devise any~experiment defining a state

of absolute motion or to determine a preferred inertial frame having

-speclal properties for any physical phenomena.

It is olear that-if the'laws of'physios obeyedvthese postulates, all the
experlmental facts outlined above would be in agreement with these postulates,
We must now examlne ‘the consequences of these postulates, known as the postu=-

Letes of speclel relativ1ty.
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CHAPTER 27

RELATIVISTIC KINEMATICS - '+ - F% = 7 &

.....

We have -seen in Chapter 26 that miuch experlmental ev1dence exlsts that a

' pfinciple of relativity exists for all fieldé_of;phyéiﬁs;'ithﬁdiﬂg electro-
dynamics. This implies, that emong other thfngégfﬁhé”veibcify‘b?:ﬁiobagétion,

¢, of plane‘electromagngtic wavesj;ﬁ‘freefé?é§é mpSﬁ Béﬂfhdeﬁénéénf of the’
pﬁrticg}av obser&ef's inertial frame.* Thish$té#ém¢n£;‘plaqgiﬁieyésHi% ﬁay_seem,
L o semeion b stem Ssbend g s St e Siomtie aLeblone oy enen.
to the veldcity.of‘propagatibn of ‘sound or dﬁy O%her“véioéity;”ufhévfeasbﬁ is that
the velocity of sbuhd;gggi reqﬂifé a’material'megium for its‘brdﬁagatibﬁ‘and

therefore does have a preferred-reference system, .~

W s om a0 e O am w OS en Gm ap 0 oo oy &8 ST e e mm ma e G0 o oE M0 es S5 em o0 et we e en me Om an e o3

runs“gféssl& cont;ary to oﬁr 1n£;1t10n9 Con51def;for e#améle a Tight pulsé stért«
ing from.a p01nt P ~and cons1der‘£h1$te§ent as recéfded by observers stationed

in two frames, one frame gonta;nlng'P at the qugln, %hlle the othe;jframe mé%es
relative to P with»arveloc%ty ?i Let the Qriginsrof the two frames coipcide at

the start of the pulse, According to the statement above, both observers must

see the light-wave propagating as a spherical wave centered at their respective
origins? If we cdnsider the position of the wavéfront.tqepe an event perﬁitting
description independentlyvin space_and“in‘timg? then this statement cannot be
true. The-independence of the velocity of light of the particular frame there-
fore requlres a revision of the accustomed 1deas of the possibility of spe01fy~

ing the position coordlnates of an event referred to a particular frame, but
specifying the time of the event by a "universal" time scaleo The above paradox
would not exist if.there‘were no such universal time scale, but if the simultaneity
of the wavefront passing thrbugh two points was an observation which was not :
independent of the frame of the observer, If such a disagreement as to the
simulténeity of}fime of passage -through a set of points was permitted to exist,

then presumably a kinematics could be constructed in which a spherical light
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Y

wawve would be seen in both frames of references,.

Thefefore, we are led to fefgxaminé £he concept pfiéimuitaneity. If ﬁe musf
_abéndon the exisfence_ofla uﬁiverga}.tﬁhq as not cofrespondingrﬁo reality; then we
must estaﬁlish‘a mbohanism whereby simultgneity ean be:estabiished in a given frame,
This mechanism must be such'that g,megghpement of,the,veiogity_df light in the
particulérvframé using its time and distance secale W“S? give o, Thisvmeans'thgt
 the only way in Which_simultaﬁeity’qap be ‘defined is by means of the Velbcity of
light iﬁself}i This cppq}usiqnvgives c a'much more fundamgntallsignifioance than
Just theufelpqity of propagation of e?éc@;omagnefio waves; if_int;odﬁces qvinto
.all the rélatiqns of physics, Among other things, the utilization of o'as the
defining element of simultaneity precludes the existence of the "ideal rigid body"
of ' mechaniesy if there were suéhfa bﬁdy,-itslends:wculq move simultaneduély as
-observed by eny ffgme and it would theréfore be used as a means of establishing a

"universal time,™ in violation of our former conclusions.

- We therefore'oonsider two instants of'timeffﬁiand té observed at two points

x, and X in a particulaf frame aS'simgltanéous if;
(8) A Yight wave omitted at the geometrically measured midpoint
between il and Xo arrives at the tiﬁe.tl and Xq and at the time
%y at xp,
Or ifs ' '

- (b) - A& light wave emitted at x, at the time &, arrives at %, at a time

TXo = X

- The first definitiopqulsimuitgneity Wi;l automgtiéally aésu;e that a light
pulse emifted at the origin will reéch’a1l_equidistant points simultaneously and
“that the wave'surface is fherefore a sphere in a particular>refefende frame,
Siﬁultaneity of two events at two spatially séparated points therefore does not

have a significance independent of the frame. The relation of the time intervals
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cbserved by two different frames is therefore dependeﬁtjbh”fhe_spefiai iﬁ%é}vai .
between the events; the Galilean transformation Eg. (26@azswp;ehLﬁrgn§§9;w§d{.
ﬁe%éoral inte;vels as‘observeévby_twe frames in@ependent}y;eflipet;e}lepqu;:‘,
ﬁateertherefere cannof be iﬁ eéreement with the simultaneity definition.in terms
ﬁoftco Tie must therefore attempt to derlve ‘the correspondlng transfornatlons from
an - (xsysz t) frame to a (x yfpz9;t3)>freme which will supersede thehGalllean .
transformatlono Such a transformation must remain 1;qear,:ﬁe assure mathematical:
equlvalence oflall polnts in space and time, but the spatial and temporaljeoordi-

nates need not tranSform.lndependently0

Thevdesired.tréﬁsformation giveS't 16 relation beuxeen the space-tlme coordl--
nates of an arbltrary event (x,ysz t) as observed in thezzj frame and the space-v
time coordinates (x? sV s z? t?) as observed 'in’ theEZ: frame. Thls transformatlon
must ‘obey the postulates of “special relétiﬁityr(seefﬁhapo 26) for<an event of

any type. We shall therefdre construct a set of "Gedéﬁken;eipefimente“* eechief

@ @ v @ > G mm G GD M em @r on 7 ao G Mmoo M o8 08 D oo W G0 e e an Gr On SO on M s WD s e e ms o

@ G e @ e @ e oo m me mm @ Lm0 o G o G0 ae mm M o3 o e em e e ow me e on e e e e e o e

which will incerporate only one additional feature of .the transformation in
order to indicate. how the basic postulates of relativity necessitate the nature

of the transformation,

Experiment I - Comparison of parallel measuring sticks oriented perpendicular

to their direction of relative motion. e

§?= velocity of ;Z?

system measured in® E‘

il o , . o L ﬁbﬂ‘ /

0 .. x .0t g

Figure (27.1)
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;Let us. assume that it is p0351b1e to brlng the framesiil andE::of Flgure (27 1)

‘tO‘relative rest-and'to adgust'the two measurlng sticks tO'equallty. It is assumed
TQexpllclty that the propertles of .a given body of spe01fied structure are inde-
':pendent of 1%3 past hlstory when observed in a frame where that body is at rest

W(called the proper frame )*, 1t is therefore not essentlal whether the adgustment

FL I ] .‘------_-_----’----’----,—-- --------- -

-~

#* The 1ength of & ‘rod when measured in a frame in which the rod is at rest is

@alled its "proper length".

wof lengths referred to is possible or not; it could for instance be specified
sthat the length ofAeéch rod should bedaigiven number of wavelengths of a speci-

ffied spectral line measured in each frame,

‘Let the two systems approach each other such that the midpoints M and M'

@oincide."tebrlight signais be eent_from 0 and P at the time when’Q'and P coin-

. icide with the y' axis, Sinee OM' remains equal to PM' during the motion O and P

will appear to cross'the y‘daxieveimultdneously for both systems, and similarlyi
o' and P* will cross the y axis simpltaneouslyiin both systems. We therefore
&onelude thet along a direction perpendieglar_to the direction of'relative
motion simultaneity will be the same in both systems, Both observers can there-
Fore compare the pos1tlons of the end markers at tlne of cross=over and arrlve
&t the same result since the time of obsorvatlon for both ends is defined 1den-
wlcally in both systems. Hence bgﬁ&lobservere would conclude elther OP 2 O'P!,
br O'P' =z 0P; since_both systems,are_fgllylequ;valent as to their state of
motion, an asymmetric solution”would‘provide\e meaes of determiﬁing absolute
Veloeity, which is ruled out bybthe'pesbelates. We therefore puts

(27.1)  y' =y
ébd eimilarlys

(27.2) 2! =z

0
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Experiment II é‘Compériéom;of Clock Rétes ‘ o } o
In conparlng cloc& rates among mov1ng systems, we are faced w1th a funda-:
mental dlfflcultyc vlt 1s 1mp0351ble to compare one clock 1n.§:_w1th one clock in
. : o - e

E: since they'w1ll not stay in c01nc1dence- we must compare two clocks 1n§£;'w1th
one clock 1nz and Synchronlze che two clOcks 1nz by llght 51gnalso : Conslder
: . i *
that 1112:-at the clock posltlon a llght 51gnal 1s emltted normal to v and re-.

flected at a mlrror normal to the z? axis at a dlstance z'from the clock and re-

turned. to the.clock, (Figure 27:2)

1

2P

clock clock
vzlt

Flgure (27 2)

Lelock and’
. light source

E::will dcfine the time interval between sending and receiving of ‘the pulse assg

(27.3) N tto= 2z S o . -
'iz: can record the time interval Z}t betveen the same events with two”clockc

-

spaced vAL apart Ez:concludes therefore 51nce ¢ is independent of framea
Y 2 fedt)?
(27.4) cDt =24 (2) .*éf—g-
(27:8) . At=2z .1
T ® *1'@2
or, from (27,1) and (2703)m
(27:6) Ot = At (A+t" is the proper time interval)
. ‘Z;f??ﬁ
Note that the dppafcnt asymmetry causes no ‘paradox, since this is nof a symmetrical

situation, [lt” is the time interval between two events occurrln” at the same
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place in théz freme . 'At" is called the "proper time interval® between the

two events. At on the other hand, is not & proper interval sm&?ﬁit is measured

by two ‘olocks a’c differen’c places,_ L proper- tlme 1nterval, simllar to the case of
& proper length d:.scusseq;\abovq, ok 1a~ddefm1ta e tion of HHe ""ﬁhyé“icaf natu:‘e
'-f’fo the _olocky\e.ge. & pArticuler radionctive: devmprocmstant o e tiral Sreduency
.gf;Qipry§§gl;q£gsp€9i£i§&;prppgn;dimsngignsqi@pg>d§§§%aﬁiginékﬁéiffaﬁé‘%ﬁé95“§héﬁ
time, intervals are. observeble: at & singleipoint}. e, inca ‘Priams wWhere' suoh s’
"olook" ig at reste e o Tlonelton Senefenon o
-, Note therefore that Z_will find that:his (not" proper) ’cime intePval is h
_l.gmg_ then.- the. mg_z; time interval, measured: inz This phenomenbn 15'1tnown
as- time dilatn.one : cannot judge the rate of the chocks, but as we shall see

.------.-------(ﬁ-—--n------l--”-ﬂ--------—.---n--

* The lifetime of a high velooity meson disin‘aegrs‘bing in*flight apﬁéaré léﬁgthen-
l

ed to & ground, o‘mse:c'vez‘a‘“J The,lifetimesing ‘cheupropfer (1404 Sthe* meson‘s) frame 1§

invarian'&. T /a e z“ﬂ -0 the wesa of the dng Lol Huv s ve sharl

o PR . s e e e v e =
T St e At . SR V) ') [T R ,4_\ o L L
feieberraein FOTL 6ok

la‘cer would consider 'bhem ou‘t of synohronism, wh:loh 13 reaaonable since simul- '

~

fra . ey ¥ ey
\_‘.,e_» "‘, -{‘ (1 ‘\L;\?;- o iy ,_-,‘._,.' -J)»»wv» —_

tanei‘by ‘be'tween two even‘hs displaced along the x a.xis 18 not an invarient*

Cpkoperty. . e e e e

- - om omom - - mem oo w ww - e A e de e W e m owemee e e '-"-’€- - . .

e shall use the word “invarient".to meari_“lhdelpehdéht' of ‘cholde of inertial
frame",. .

. '£u., ot [a] L) IS \Jn '] (._\.,._-.L_:M.

Experimen‘& III - Comﬁe.rison of Len;‘bhs Paréllel ‘co the Dlreo‘ticn of Motion

Lot us corsider & rod which has a length x' in the i‘rame : ln whioh it ia
et reat; i.e., le‘b its proper length be x' In the: fre.me 1ts length x would

be the dis'bazqu_e_be'l:ween the ends of tho: rod. meésured “eimultan’eeueiy" o Ik

the sense of the simultanelty definﬁ.‘ticn in: terms of‘ oy To sepé.rate the leng‘ch

compe.rtison from the simultaneity oaloula‘bion, lﬂ’c us ?cnsidez‘ 't:he following

eventy let & light source S! at one end of ' the rod gend & li_gh'b pulse %o éf* '

cowe s b
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mirror M! at the other end where it is reflected back to the source,

. , X’ '. %i A /
o i >

¥ —— ——

]
=
o
=
-

So IF?J
Y 3¢ 3¢ S CS— 4 2 ;\?

x — ]

7 Figure~(27.3)
Let [;t' be the time ihter#&l-betWeeg thé fimg.d? emissiqn and tﬁe time gf
arrival 6f.thevsignal. Ngte that A\t! isva'proper time interval, being ob=-
servable with a single clock at one point. Evidentlyt. |

(27.7) At = 2x¢
. B

In S:'these same events-appearvﬁo 59 more complicated. At the time of emission
the source.sﬂ wasvat S, .and the mi?ror M gt MO°‘ (This»statem@nt hés only
uniqge meaning‘When referrgd to Z:i;) At_the time of rgfleotion, the mirrof,M'“
has mecved to,M'énd the PulseAreturns to the source St when it 1s at Si, Thé

time interval At is thus measured between the points SO and Sl with two clocks

(At is not proper) as in Experiment II. Tquation (27.6) therefore applies

) “
here also. By definition, we mean by x the'distanoé*SOMoo Since EO has moved
to M with velocity v while the light moved fromSO to M with velocity e, we
S
havesg
(27.8) - S M=x+ v M, S M= __x

c | 1 _B

and similarly since the source has moved from 8, to Sl with velocity v (where

SoM = x) while the light has treveled from M to 8y with velocity cs
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(27.9) My = x -yus; : MSy = x
Hence s | B '
(27.10) At = Sl + U5y = oy

o o(-p? )

From (27 6) and’ (2'7 7) this becomesr _

(27.11)  x = x'Y1- 52

' 'l‘his rela’cion, called the Lorentz coﬁtraction, again is asymmetrical in x
and x*, since it glves the relatlon between measurement of‘ a proper 1ength x'
(at rest) in E-_ and an improper lengtn x not at rest 1nz The '1ength x inZ’

wa.s definable only by assuming the constancy of the velocity of light,

Experiment IV - The Sv;\;nchroni‘_z,atio-n_vof Cio‘c.ks

By. proper design of E_xperiﬁepts .II 'and 'IvII,_ weuhax_rerpeen_eb'le _:to. derive the:
transfofmétion of temporal and spetial :'Lntervals ffom_ ‘proper fo ﬁon-proper fr.ame‘_s
without calculating expllcltly the error in synchronlzatlon 5 (whlch 2__Would
conclude to exlst) of two clocks separated by a. dletance xt! 1nz which appear

synchronized in z o

Consider two clocks synchronized in z ar_lid__locaf:ed'a distance x' apart,

as seen in Figure (27.4). Let ‘bh‘ere be a sinrrle cleck in thich Will record

the tlmes, T and Y1 when it passes the ends of x'- ‘the correspondlng tlmes

1nZ are recorded on the ’cwo ‘clocks in Z_and are denoted by t T and tl' »

Figure (27.4)
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Since tl = to is a proper time interval inZ, we can apply (27.6) in r;e:verAse‘,'
givings

, 1 = %
(27.12) IR P S

A1-6° o o
The observer'cn1§::cou1d apply the dilation equetlon (27 6) to the rates of the
individual clocks at the ends of x' but would conclude that they are out of step

by an amount g $ lo€os = .
t}_v W <toﬁ + g

-7 .

Both observers have to obtain the same value for the relative velocity vibetween

(27.18) by = %, =

the frames since if one obtained either a larger or smallerwvealue, the frames

would not be equivalent., Hences

’ ? - 0 = 10
| (27.14) 12 5 %;r”

(27016) -t -ty = x
v

but since x9 is a proper 1epgth.j4;§:, we obtaing

'('27;11) | x = x! ’]/15 pz‘

combining (27.13), (27014),‘ (27.15) and (27,11), we haves

(2'7018)' | cf_a é

The negative sign 1nd1cates that in the oplnlon of Ez;the leadlng clock (t ')

mnﬁzr should have 1nd10ated a larger tlme* in order to make the elapsed time

a0 @@ o e3 e D O M o e W3 @3 G Cm on O LD G am ey o0 OU OO0 08 e £ OB SN ap W 0 wy A es mn S e @ oo @

@ e® O @ ep G 0 o7 on €D e Gw OGN M En G OB e e 0 ms O3 6 00 op W €3 o3 P e GOm0 & e em Gm M e &5 e

between t,? and 47! as observed byﬁz: smaller,

These four experiments have thus demonstrated four kinematic relaticns:
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I. Distances transverse to the direction of motion are invariant.
II. A time 1nterval [}t measured 1n 2 frame mOV1ng with veloclty 2v relative

to a frume in whlch the time 1nLerveJ.£§'r between two events is proper (i.e,

the two events occur at one place) is glven byr

(27,19) At= DT
o Yl-@"‘j_ﬂ

III. The length ZXx of a’'rod measured in a frame moving with velocity *v relatlve

to a frame in which the rod is at rest_and has the proper 1ength‘»£§;\ is given

byr L
(27.20)  Ax=AA1- B2
IV, Two elocke? synch;onoue in a giveneframe, an@”éepareted by a distance AX

in thet frame appear to be out of synchronlsm as observed by a frame moving
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‘CHAPTER 28

THE LORENTZ imsrommzoﬁ_ y
In Chapter 27 e dérived a series of _vsﬁtr—:-c‘ia',ll 1?_‘5;11'8?“&‘%'5-._,@'91330135 froz“{; the
funéamental postula‘;es c‘af‘_spe_cie}l rg}aiciviﬁy? v_gs}ch ei_’fegﬁ appli;edv to_g g.;:"n.ven ;et'
of con.ditions»arranged such {u:haﬁ iny_-;)ge_ 7__effe”c_t_.a_ppl_i_e_d. W_e shall now combine
these "effects" to give the general rgiatipn betﬁeéhi ‘gﬁe tifneh 4and space c,c?ordinates +

of a particular event as observed from inertial frames in relative motion.

Considéer a point event at a point P moving with the Z frame, as seen in /
.- ) - . o l B .
Figure (2801)3 Let this event occur at time ! inZ and let the coordinates
of P inZ be (x', y', z'). Now consider this same event observed from a framez
in motion relative to with a velocity | v |y ILet us choose the x and x' axis

y o ~ y!

x?

v"“"— Xl‘—'B-!

PRI s

Figure (28.1)

as the direction of relative motion and let the origins and the zero point of '
time be so chosen that at t = t' = 0, the two origins coincide. By the time
t or t' respectively, we mean therefore the time elapsed as measured by an
: ’ |
observer ini or z respectively since the coincidence of origins. Let v

, ¢ :
be positive if the origin of Z moves along the positive x direction inzo
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From theZEZ:point of vien; 00' vt but x! belng a proper 1ength 1n§£;
is shortened by the Lorentz contractlon. Henceo |
(28,1) x=vt+xtfl-g2
and hence:: '
(28,2) xt =
| v 1‘P2 ,_ o
Again from the Zpon.nt of view, clocks located at P and O' (and thought by an
obseryer ing:'to be syychronized) are out of synchronism by an amountr
- (28,3) - ' zxtv'=-§ig" | | |
c?
The clocks at 6 and 0" were. synchronons at t t'l=_0._ Slnce ‘that tlme;‘accord-
mg to Z .the Z clocks have been runnlng at a- rate Whlch must be dilated by
1 {1-@ to make it equal to. the rate of the. clock onz ‘C‘Ombining; these two
effects, we have°'; _ | |
.(28,4)‘_N o= t!o+ox v/b

91— #E
This, by the use of Eq. (28,2), can ‘be 'r__e'duced‘ tos
(2845) £t = t-xv/c?

Excepting for the sign of v, Z end L. are equlvalent in agreement with

the second postulate. We can also show from (28°4') and “(28;@2) thats

(2846) - x = x! -+ vht
;1—‘@2

: agam in agreement wa.th (28 2) except fOr the s1gn of ?r? It also foll ws_from

the f:.rst "experlment" of Chapter 2'7 thats
(28,7) y=y'
(28,8) z =zt

Equations (28.2) to (28.8) are the general transformations desired, subject
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to the restrictions as to choice of origin and orientation of exes as given

above, The classical Galilean transformations corresponding to these relations

S

would beg

(28,9) xt = x - vt
(28,10) vt =y
(28,11) g' = 2
(28.12) tr = %

Let us examine some of the comparativerProperties”of the Lorentz_ahd Galilean
vtransformations. We cen easily show algebraically tgat if the Lorentz trans-
" formation is valid; ) ’ o

(28.13) SR + y? + z2 f‘°2t2='xf2'+ ygz + 18 o o412
This means that if a light signal 1s propagated in gllvdiréQti§QS'with velocity
¢ from O at t = 0 as oﬁsery@d'by §::, then-a light signal is propagated from O
in all directions with velocity ¢ at't‘ =0 as observed.by_iil{‘ The'traﬁs-
formations are theréfore in agreement with ﬁhe first postulate andirssolve the
apparent paradox‘mentioned earlier in Chapter 27, Tor the Galilean fransformations,
(28.9) to (28.12), Eq. (28.13) 1s not true; in its place, “howeve‘r:

(28.14) (xl' = Xg')z + (Yl' = Y&?)z + (Ziv - 227)2 ;_(Xl = Xg)z * (yl-“ YZ)Z

Tl

(t1? -:t231)='(ti 5'1;2)' )

which shows that independently the spatial interval and the .temporal interval

5etween twouevents (Xls Y1s 213 t1) and (Xzs Yos 293 tzj are invariant, while
in special relativity»the cpmbined spaoe-time intérﬁalr _

(28415) (Xl- xz)z + (yi - yz)z + (Zl - 22)2 - 02(t1 - tz)z ‘
is_invaridnto Fér a differential interval between two.events; the éuantity:

(28.16) ds? = o2at% - ax? - ay? - dg?
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is therefor"e invariant, 1L 1n e given, frames
(28,17) dx® + dyz + dz? < czdt2
then a Lorentz frame can be found in which the spatiel part of ds is »fzero;- ’
ie.e, where the two events occur at the same place- ds:=: cdt 1s then ¢’ timés
the "proper" time. interval ag de_fmed before,. We therefore conclude if the -
“space-time" interval ds fulfills the'inedueiity/(28¢}7)‘(time—likejinte?valq)ﬁhen
ds/c represents the _,prebeyl-time interval between the eventsr.; Conversely, if in
a g;iven. frames: - v
(28,18)  dx® + dy® + dz° > chtz. |
then a»f“rame can be found in which dt = 03 ir}: t}_;ei; Ai_‘reme‘ ‘Fhe tw_e ey'ents, ere: _ejmul-

taneous and ids is ehen their muta} distance. Hence if ds fulfills (28,.18)

’ ("épaoe-'lil'ce interval) then ids represents the proper length of ‘the increment.

No' Lorentz transformation with real P can’ rje'verse the sign of the inequalities

(28,17) ond (28.18), so that the physical significance of ds; either being a
proper time interval (times c) or a proper Z_Leng’ch'interval 'reepectively,' depends

wniquely on the nature of the interval described.

It can be easily shown algebraically that two successive Lorentz transforma=
tions with velocity par&meter‘s Pl and ﬁ.Z are equivalent to a single Lox.'entz‘ :

transformation of” parameter-

@11” @2 .

Loréntz transformations therefors form a mathematical "group".

f.

@ e

I’c is poss1b1e to obtaln the Lorentz transformatlon equu‘olons 1n several

Yy
RS i

ways using s:.mply the demand that the 1nterva1 ds in (28 16) 'be :anarlan'b and

that the transform’itlons be 11near- the second demand arlses from the fact that
all po:mts in space and time should have 1dentlcal “bransformatlon ‘character as

. long as only inertial frames are considered. We must also have that if
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x = f(xv; i, v), fhen x! = £(x, t, -v). As an example of such a derivation,
we assumes:
(28,20) . kx = x? - vt?
(28é21).' Ckxti= x o+ Vb
where 'k is to be an even fuﬁction of the velocity. By simple'algebra:
(28.22) Txt? o x? = $P(1e1?)7L (12e412) .
- To make this égree with the invariant interval (28.13) we must takes

(28,23) 02(1_kg) = 2

(28.24) K = 7/15622

giving the Lorentz tfansformationo
" The Lorentz transformation treats x and t as‘entirély équiva]\.enfsvari»able's°
It was suggested by Minkowski to introduce ct simply as a fourth coofdinatee

Let us puts

(28.25) xT =x
x2 =y
x5 = gz

x% = ct

as a set of variables in four dimensional space.* The space-time interval

* Superécripts raﬁher than subscripts are used here for a reason to be explained
.1aterc
(28.,16) is therefores : : : : s
 (28,26) ds® = -dx12 - dxzz - dx52 + dx42
Thé>L6rehti.transformatiph is‘thérefore in‘a general sense the.sgt of lipéar'
traﬁéférmatiopé inxé—dimensional space which leaves as? invariant,
Th;‘intervél ds® can be ﬁfitten in a more familiar but physicallyiless

obvious form if we writes
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7~(28@27)~L ’ "X4 ? ix7s. . .dS = ids
aﬁd‘henéegf' v o ." 5
;(28Q2§) P d32-= dxlz + dx22 + dx52v+‘dX%2
Sinceﬁdxzvandwqxs»are‘not affeéted{byfpuyAsPeqialjghqéce»of goordinates in the

oo

~Lorentz transformation, let us consider only the‘invariance,of‘the_two-dimensional

sub-inﬁervalg
- (28.29) &2 = axl” +d3’42
- Other than translationg of origin, this intérval is also invariant %o rotations %o
an angle € in tﬁe xl - x4 plane,  (Fngre;28°é); |
- " ;Al'XA : S
N »
—
e
o x1
Lo L» - Figure (2802)5
- tb a néw setbof axes x"l -Axv4; By‘ggometryf‘_
* _; ﬂ(28°30)- x'l = xl cos © + X4‘sin‘Q
(28.31) x1% = wx! gin 0 + x4 oo; 6 t
K or from (28,25) and (28.27) and putting © = iffs
 (28.32) s '{ x cosh @ - 6t ginn g -
(28.33) ct? = -x sinh # + ot cosh @

‘This is identical with the Lorentz transformation if we puts

(28,34) sinh @ = _,__,E__ s cosh ff = _..._.L__ tanh @ =B
o o . - | V[I:é?—
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Hence thevLorentz transformation 1s simply a rotation in the 4-dimensional
space x1, x2, x5, X%, An "event" is therefore conveniently described by the
four coordinates in such a space-time system. . Temporal and“épatial coordinates
are equivalent in this notation. Eq. (28.19) which gives the relation be-

tween the equivalent @ for two successive Lorentz transformations corresponds

sinply to the addition formula for tanhAﬁ.

(28.35) tanh (f) + £,) = tenh g1 + tanh gy
_ 1+ tanhfﬁzgtanh ¢é

Tﬁisvnépresen£ation of the Lorentz transformation as a fotation in the 4-
dimensional ;pébe x; ¥, 2, lct is & very useful doncept butban artificial one
since the coérdinate along one'of“thg axes is an imaginary variable. Let us
inVestigate what the geometrical représenﬁation of the Lorentz transformation
is in the real:four-dimensional X, y,_z, ¢t space. Let us plot only x1‘= %
and x% = ¢t to permit.fep?esgptation in.a plane. Under a Lorentz transforma-
tion'ﬁhese axes'ﬁill transform into xfl‘and x'4, as seen in Figure (28.5).7

This diagram is called the Hinkowski Diagram and in it the trajectory of an

f X
Figure (28.3) ' _

event as a function of space and time is called a world-line.

The diagram must be interpreted with great care. The reason is that
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| 2 2
distances on. this diagram carnot -be measured .by theAquentities’x¥u + xt as in -
Fignre-(28°2) where we artificially produced a "BEuclidean" geometry by the imagi-
nary transformation (28.27). A substitute for a distance measurement in this

real space cen be obtained however by noting in Figure (28.4) that the family of

/hyperbolas:

(28,36) 12 - x4 o xn1? L g0 o constant .

lays out a convenient measurin net which permits comparison of the various quanti-
). .

ﬁies involved, VJK )

i

p!

] ‘ / |

© Figure (28,4) P

L

Let us see hOW’We can 1nterpret tne varlous phenomena of relat1v1st10 klne-

metlcs‘ln this dlagram, Consider first the Lorentz-wltzgora]d contraotlon, Lqua-

"o tion - (27 20) ' The Lorentz oontractlon consz.derc the transformatlon of a proper

- —/
1ength %1l 1n§Z: to tME EZ;frameo Con51der - rod OP‘,at rest 1n§E: o The world

11ne of the end po;nt P* on the hlnkowskl plane w1ll move parallel to the x'4(ct')
aXlu, from P o P', belng at rest (proper) lnEE: Slmllarly the poant 0 w111
move along the x4 axis (see arrows in Figure (28 4) hen the length of this
rodlle”measurod in E:; uhe dlstanoe between its endpoints is observed when they

are snnnltaneous in E:: i.e., along the xl axis. The 1ength of the rod in E:;
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is thus the‘longth OP. In;oomparing the loogpho OP4and op! wo'mgst be oareful
to refer the measurements to the ﬁyperbolio grid discussed above, It is easily
seen thot the hyperbolay _

(28,37) xl? - x42 = OP? = x'12 - x'42
orosses_Ox’l_between 0 and P' and hence OP <:0Pf in accordance with the Lorentz

contraction of proper lengths observed from a moving frame.

Slﬂllarly let us con51der the time dll&thnnr Consider a single clock at
rest 1n.E:;at xt = gt = x_=‘t = 0., As time progresseo the time inter;alirela-
tive to't‘ =% =710 will be reoresented by e world line moving along the x4
axis: the tlne 1nterval measured 1112:: since the c01n01dence of the tlme orlwlns,
vis thus 0t', Dnz:; 0 and tt are not at the same spatial point, however, in
EZ: the point considered simulteneous with t* will be at t where tf' is para;

1lel to the x1 axise.

Considering that in the hyperbolic "metric" Ot = 08, we find that Ot>0t'.
Penceiz: w111 observe a 1onger elapsed time than the proper time 1nterva1 mea=.

sured 1n.§ in agreement with our former result.

The Minkowski diagram shows the éymmotry between the E::and E::lframes
vdeopite the apparent asymmetry of the time=-dilation end Eoreﬁt; contraction,
In our examples,zz:awas taken to be the proper frame for both spatial and
temporal intervals. If‘z::had been chosen the proper frame, then we WOuld have
PP'“Ot.ano tt"IOP' which would have reversed the contractlon and allaulon

relations,

A Lorentz transformation with @.> 1 becomes complex and thus impossible.
- We shall later give a more concise formulation to this statement. On the

Minkowski d1abram ‘thls means that the x'! and y'4 axes cannot pass the-cone

(light cone) xL = 4 xé. This means that a time-like interval ds®> 0 cennot
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become;space4like‘inﬂanyﬁframeibut can become purely'temporal’if‘refefréd*tofthé'
proper frame; conversely azspace-liké'interval'ds%<.o cannot becoms time=tikKe in

any frame but can become purely spatial if referred to a proper frame,

1

The light cone x = j_X4 thus divides the Minkowski space into four regions
® (as seen in Figure 28,5) which have invér%gnt‘ significances
| \\\\ :: >A - future E'/)/( 
v“élééwhére elsewhere - ;
.~ L
/// . »Y Figufe (ZSFS)W: »
1), The two spatial interwval regions 1abe1édv "eisewhere" represen?
}ggioné whére‘éﬁents are located whicﬂ ffom nohiﬁerfiél fréme can
Bevconsidered to occur.at the origiﬁ°
'2)e The temporal region labeled "future"-repfesents events whosep'
temporal intgrval relative to the Origin”;s positive from any
. inertial fraﬁe,o | o |
3)e The temboralvregién labeled “past"'représéntsiévents whose
A

temporal intervol relativevto#the origin-is negati&e_frqm‘ény_ ER

{ inertial frame.

" Let ﬁé noW'extend_the Lorentz transformation to othes kinematic quantities.
In the next chapter we shall introduce more general methods for obtaining

¢ , T
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:transfprmation relations between various physical guantities in . different in-
ertial frames. Let us here simply derive the transformation equations of
simple kinematic quantities which can be obtained directly.from the Lorentz.

transformation.

Let us write the Lorentz transformation in terms of differential intervals.

Differentiating and dividing by dt! we obtainsg*

5 en wm on G e s W em em e tE oew e o em o am mw me w5 e e W Tem e s M W e m s  Sm oms e e m e we

[
* We shall use the symbols v and 6 = v/c to denote the veloclty of frame Z
relative to frame :Z:,'evaluated 1112:. and uy, = dx/ﬁt, etc. to denote veleci—

ties in a given frame,

(28.38) ©ax! =|ax/at-v | at

(28,39)

dyt = ay' - dzt = dz' at
SRR Y dET gt qte
- B y‘ '
(28.40) dtt = ;;'—g
dt

or putting u, = dx/ﬁt uy’ = dx'/ﬁ*', etco, and gubstltutlng (28,40) 1nuo

(28, 58) and (28, 30), we obtaln-

(28.41) w, ! = u;=v .
- g v/ f
(28.42) uy o -2 ay wrdAi-e2 "
|| e : —_— g,
l—uxv/cz ’ 1l - U.xv/c2 i

Eq.(28.41) the "longitudinal velocity addition formula" is in agreement with
Eq. (28,19) for the successive Lorentz transformations, since (28,19) must
rremaln true as u, may represent the motion of the origin of anotner Lorentz

frame relutlve to the}E: frame.

Let us consider Eq. (28,40) in the forms
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. (28.43) . db! = 1 = vux/o?

If it were possible to makes '

28.44 dt!

by a suitable choicqufrv,‘Pheg ﬁh§ témporalﬂ§¢ggenoé of ﬁWd'eventsawquld.be ée—
versed be%weén the two frames.gnder consideration. Thié‘@ould be cdqsidered a

logical oontradiction if; N
;xi) Tﬁe fﬁ@vevéﬁts‘rgprésent a éause_éﬁ?»gfféctf  vi

'2) The sense of time has an invariant significance.

The latter point has been a question of some discussion. Let us assume here that

Loae

he sense ofiéiﬁebéan'be aécerﬁé@ped inqependénﬁiy in any ﬁraﬁe, forAingtance, by
u§e of the Séégnd taW §§ Thermoéynaﬁig%.i This_couldvbe dong by takiﬁg the posi—
t&ve:direcfion éf_time ?6 bémpﬁe‘direc#ion ofﬂétat;sﬁically ;nqreésing ﬁisorder or
incféasing:énffbpy énd of éégfad#ﬁi§p q?vhea£.‘ Aésuming thié ppiﬁt, we therefore
conclude that, in order that the:seéuepce befweenvéauss snd effect be preserved
as obgerved!fromligz frame, that . in any particular frame:. |

.(_28.45) _ ugec
where u'repgesents the ﬁelocity ofrpropagation pf any event which can‘connect
cause and effect, Obviously"veiocitigs lik@-phasq Yéibcifies, or velocities of
geometrical sig;ificance only,‘are’nqt_affgcted byrﬁhis restriction. The re-
étrictibn-also applies té;the relgﬁive velocities v of possible inertial frames

SO thatiit is not necessary to discuss the significance of the Lorentz trans-
formation when‘jl - ﬁ"z becomes complex.,

- Let us consider some simple applications of the velocity transformation’

relationss

1. Fizeau Convectiom Coefficient -_(cf, Ché_ls, Egs. (19.12) to (19.20)\

~Let u' be the velocity of light which an observer'fiﬁds for 1ight‘propagated
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in a plane wave in a fluid movwng w1th a velocltJ v relatlve to hlm; In s frame

i{: mov1ng with the fluid the light would be propagated with a phase velocltyz
(28. 46) \’v ut = c/h |

where n is the refractive ingex,_VT;aqgforﬁ%ng to a frame in relative mofibﬂ to

the fluid with velocity -v and applying (28,41),

(28.47) u=cl + v g0 + v |1- 1/n2
" gy o

to the first order in v/%. Thls is in agreement with the eXpefimental fagts and
the classical electrodynamlc resu‘t derlved in Ch 19, Note that in the classi-
cal discussion a relatlvely compllcated méchanlsm.was 1nvolved namely re-radlatlﬁn
from the nov1ng secondary radlators 1n the fluld whlch led to (28 47) The
relat1v1stlc dlscgsslon4on»the_gthqrmhgnd,wlgd”tq th;s_;elatloniw1phout any de-
tailed inférm@tioﬁ abéut_the méchgnism.:'We“%hall_fyequently meet situatiﬁns.in
which‘an.end result is deménded 5y_;ela£iv}$tic considerations But where the -

mechanism of attaining the result is far less obvious,

2. Aberration - Consider a beam of ‘light emitted by a star in the direction P
of the earth which strikes the earth in a direction transverse to the velooity:
of the earth (considered along the x axis) as seen in Figure (28.6). 1In the

Sfar { . z :

uy = o

o =0

E.a..rth" E Z/

/ wt . (velocity of earth
] . - relative to star)
' .1 Figure (28,6) .
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N,

0. In the carth's frame; the velocity components become from (28.41)

]

By 7% %

e
CGeas)  wr=fTogE e wrev

Therefore the angle of incidence to the normal becomess

P

tan e'=;( ! ; or
. . =u 1 .,
Yy .

A ‘mechanical emission picture or stationary ether assumption would give tan Q'==€

which is iﬁ“prédtiéé:indiétiﬁgﬁishablé ffom (25;4§); On the“bthér hand, aﬁy con-

" vectively carried ether theory would contradict (28.49) as it would the Fizeau

experiment,

© We shall obtain (28,49.) again from more detailed consideration of , the
propagated wave; it is, however, again characteristic that any consideration of

mechanism can be by-passed.
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.CHAPTER 29

COVARIANCE
in the previqusmchgptgrs,“W? have ip gstiggtedrthe bearing of thg-principles
of special relativity oﬁ»the laws of kinematics. e gbﬁaingd new_gelations by'
applying the principles of special relativity to two regions éf physics; kine-‘
matics and the propagation of'plane g%ectromaéngtic waves. Thg principles of
felativity apply to all fields o?mphysics!mhgﬁgver, fgy"by no-e;periment in any
field should 1t be_possiblertoAdetegt a pfeféfréd inertial frame. Thg beariné of
the principles of relativity on other"fields could of course be discussed by de-
signing “Gédanken E;pg;im?ntg"v§?_ﬁ@gsg»fie}@;wand_t@us_obtaining new laws valid
.in those fields. Or we could attempt to 6btaip transfqrmatiqn relations for
?hysiqal qgantitigs in these fields by applying #he”Lorenﬁz transformation to the
time and space coordingtes of the'péytineﬁt‘prefyelativistib equations and then
trying to deduce the transformation relations fbrAthe remaining quantities. Eoth
of these approadhes are qSefulg_ih partiqulaf we §hqllips¢ the fhought ekﬁeriment
approaqh_in our diéggssion“df‘pqllisiéns.  The direct transformation approach
is frequently tedious. Hovevér, it was usedrby.E}nstein in his origiﬁalrwork to
deduce the transformation equations for the elegtromagngtig fields an@_to show
that Maxwell's equations are.in agreement with relativistic principles.

There is.avthird approachlwhiqh is byAfay the most powerful one ig ex-
tending relatiﬁity to other f;elds. ?hiswapprpach is to rewrite the equations
éf these fields in a form which explicitly mekes evident in which way the qﬁan-‘
tities would behave under & change to a differept inertial frame. If an equ&tian
has a form which isvinvariant to a change in igertial frame, then an experiment
based on this equation obviously_could not give a rosglt depending on tﬁe parti=-
cular frame of reference, The equation then describes a2 phenomenon which would be

in agreement with the principles of special relativity. Arn eguation writbten in

such a way that its form is independent of the choice of inertial frame is said to

be "Lorentz covariant.®™

*
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The Lorentz tranSformatlon can be wrltten 28 a 11near Lransformatloa 01 four

L . . T L e
components of a VOCuOf x s (xl X257xY, XF = ct), in a four dlmen51omal space, le€o

1t can be wrltten aso
(29 1) | Q i xJ (sunmation convention})

where Q i is given bj the natr1x~

@
. (2932)
where g
(29,3) ’ g - v/c
(29.4)  v=__ 1 L ‘
Vl-pz .
. . i L »
We-hove seen that if the components of the vector x~ transform in sdccordance with
: : . .. . i R L L
(29.1), then an experiment involving X” cannot yield e préferred freme. If
therefore any physical rela tlon is written in the form* of a vector equation in
* By "Porm"™ we include in special re elativity the "numerical coaten*" of all
equations; i.e., the magnitude of all general physical conshants, etc.
~ four space where the voctor 001ponents transform in acoordancé with Eq. (29.1),
> Lhen such an equaulon is said to be written in Lorentz covariant form. If we
i » . .
solve (29.1) for xp, we obtains
. 141
(29,5 x = (Q.%)
5 - J
wheres:

(29,6)
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is the inverse matrix of (29.2); i}e., the matrix of the transformation corres-
ponding to relative motion of the frames with opposite velociﬁy. If a quantity

with four components L, transforms as the reverse transformation of the xJ’ ieCoe,

as
(29.7) &= (@3 ta .
then a relatiom equating componeﬂts of the type A, is Lorentz covariant also. -To
) - - o S R Ce e R
sum up, any quantitie§ Aj apd BJ are Lorentz covariant if under change of inertial -
frame they transform as (29,7), or ass
(29.8) . Bri = jS BJ
respectively. Aj is called a covariant* 4-vector and BY a contravariant 4-vect6r;
* It is unfortunate that two different uses of the word "cOvériant“ are beéing
made here, but this usage appears to be acdepted.
No'te t?at Q iy-1 o k .
, nat. ey )~ end Qj are related by:
dy-lgak. Sk
(29.9) @) agk = &,
wheres
1 0 o 0
o - 0 1 0 0
(29.10) Jil‘ = '.
: 0 0 1 0
0O 0 ‘0 1 ‘ , ®
Any quantity .of the type:
' i1 ig iz - - -1y
(29,11) T - 3

J1 32 3z = = = In - .
which transforms likes
37 G dg = = 4, . iq iy d. i 2 QN=1/ g\ -1/Q\-1
R i e I S I A\ P O
%% - =k kg k|
o -
~ , | _(Q,Qm 152 kg S

+



"}

* Tensors of physlcal 1nterest can be represented by matrices. Matrix multipli-
\

cation is usually non-commutatlve. However, when wrltten out 1n component form

as in (29 12), where the dummy summatlon conventlon IS belng used the 1nd1v1dual

elements are numbers_and_thelr order does/not_matter., (29 12) 1s wrltton in the

standard form.

i.eo, simply like products of covariant and contravariant 4=vector components, is
called a tensor of rank (n + m) An equality between such tensors will also be

Lorentz covariaﬁt° We shall therofore attempt to extend the pr1n01ples of relati=-

_v1ty to other flelds of phy51cs by rewrltlng thelr 1aws 1n the form of tensor

equations; thglg covariance 1§ then self-ev1dent and the transformation laws of

the quantitiles involved in the. equations will follow from Equation (29.2), (29.6)

and (29.12). Of course, we have not proved, nor is it necessarily true, that the

writing of the laws.of physics in tehsor form.is the only way of describing physics

i in.a covariant way. All we can say is-that it 1s a suitable way of doing so.:

Before proceding with this program, let us surmarize & number of useful facts

concerning tensors with constant_transformatlon coefficients,**

#% In the Lorentz transformation of special relativity, the transformation coef-.

*

ficients Qi are constants. In general tensor analysis, as is used in the general

theory of relativity, these coefficients are themselves:functions of the'COordi-

‘nates and represent the partial derivatives of the transformation. I.e. (29,1)

becomes, differentiallys

(2913 axrt <a> a
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covariant and contravariant vector components transform respectively ase

ax'i ! , _ _ o xY

(29.14) Ayt S

1) A tensor of rank zero is called an inveriant or scalar, i.e.s

(29.15) T t=T

2) The product of a tensor of rank n and a tensor of rank m is a tensor of rank
‘n o+ me _
~3) When a contravariant and a covariant index of a tensor have the same index

letter,’the resultant summation reduces the rank of the tensor.By two, This

process is called contraction. The contraction of a tensor le is an invariant.*

* Summation over two covariant or two contravariant indices doesnot lead to a new

tensor and is therefore not an invariant operation.

4) By the basic postﬁlates,vﬁhe space-time interval in special relativity (line~
elemeént): » [ -
(29,16) ds? = —dx® -gy? =dz% + o%at?

is a scalar invariant., It can be written in the forms

(29.17) as? = gij axt axd
wheres -1l 0 .0 0 -1 o
(29.18) : 0 -« ,0 0 -1
| gij) ) o o0 -1 o0 ) -1
o o0 -o‘ +1 o +1

is called the "metric tensor® corresponding to the line-elément.* It can be’

proved easily by transformation_using Eq. (29,2)’that gij is actually a tensor.

)
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In Euclldean geometry glJ 51. R

| 5) By use of the relat10n~

&
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ij.°
. J | :
(29 19) By ° gijVB | o i e

each member of a set of covariantvcdmponents-B. can be assOqiated~with a contra-

-variant tensor component. For the special form of 853 glven by Eq.;(29 18) -this

process will simply reverse the:sign of the.firﬁtgthree components,,»Note that

= i
J ”8 ° ’

6) The covarlant components dxy correspondlng to the ba81c contravarlant coordi=-

nate interval dxl (dx, dy, dz, cdt) is dxs (-dx, -dy, —dz, cdt) ands

(29.20) axl axs = as?

.7) The. derivatives .

3 when operating on a tensor transforms like an additional
dxi : . S T

covariant tensor component.* The increment of a scalar S can thus be written as
a tensor relations i S o : : _ BT

(29.21) as = 95 axt

e

Ox"

* This is not true if the gij are functions of the coordinates.

.“é)"if'fﬁéhéibdﬁét'éf a £ensor-aﬁd a>§ymbol?of uﬁknowﬁ'ﬁranéfdfhation;pharaéter

is a tensor, then that symbol transforms like a ‘tensor also,

A covariant relation in physics can be generaﬁed by one of the following

processesg

1) The relation is known in a special inertial frame, such as a proper frame

where the system under consideration is at rest, If iﬁ is possible to write

a tensor equation which reduces to the special relation for the special frame,

then this tensor équatipn,h&s generalwgignificance,
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2) A knowm tgnsor relation is converted into a new tensor relation by a covari-

ant tensor operation (the simplest example isnmultiplécgﬁ@qn by an }nvgrignt);

3) An equation is théiﬁed from a relation valid inva‘special frame byvtrgns-~
formation of the remaining quantities"dedpged. The resultant_quagtitiss are

- then expressible in tensor form. This process is;the'direct transformation pro- €

"cess referred to above and isusually very tediouse.

A tensor theorem frequently of importance is the folloanp- If a four=-
‘vector J. obeys a relatlon of the type (conservation law; compare Bquation (9 1))
(29.22) 33t =0 |
3t
and if jl, jz, j3 are different from zero only in a finite spatial region, then
the integral in 3-dimensional space |

(29.23) ﬂfdf

is an invarient. To prove thls theorem let us apply Gauss' theorem in 4-space

(20.24] j/——-l—- i - [[ i a*s

*' dl‘)‘y = dxldxzoxzdxll- _

4.‘ . . r :
a5, = element of 3-dimensional “surface"™ normal %o x5 in 4~-space,

to the boundary shown in Figure (29.1):

P

(c) B .

Figure (29.1)
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Let the surfaces (&) and (C) be chosen such that the spatial components"of.‘.j]’

vanish on(A) and(C)., Thls-can be done s1nce the region of non-vanlshlng spatlal

‘components of J was assumed to be flnlte. Let (B) be chosen normal to the tlme-

‘a‘xis"in a E-frame whlle (0)" 1s chosen normal %o the time axis in a Z -frame.

Tt then follows from (29.22) and (29.24) thati |

B S :Di
and hence, by geometrys B
(29.,26) : yfy 34dv = SK{ 34' dv! = invariant
;vvhlch was to be proved,, It follows similarly that if a ';conservation law™ ¢

(29 27) 3rid = o

Oxt

-applievs to a temsor o‘f_uznd rank, then:

(25;28) (((T‘%v - | A

" is a 4-=vector.

In _thefnex_t chapters we blsha_;t_-l attempt to express the laws of point mechanics’ '

and then the laws of electrodynamics in covariant form,
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CHAPTER .30
RELATIVISTIC MECHANICS

In thé preceding chapter we have studied formal methods which will enable
us to generate "covariant" laws of physics in the relativistic sénsé.‘_Leﬁ us

use these considerations to formulate the law of conservation of momentum for

point particles. This will give us certain formal relations which we shall then

show are in agreement with a thought experiment involving an inelastic collision

~as observed from various frames.

- (30.1) p=mu

The vector u does not congtitute the first three components of a four vector,
for w, = dx/ﬁt etc., and dt is not an invariant., However, if we divide the
contravariant vector axt by the invariant,line'element ds we obtain a four
vectors
i dxi
(3062 )* uo= 9XT

_— B o N Y P AP
- % HNote that the components of this four-vector velocity ( Yo u, 'VB)'where
- - . . . . - - c . . : ‘, -
7§====%577r4 , do not have the'dimenéions'of velocity”but are dimension-
- u®/e A

B
i}

<

imown as the four-velocity. A covariant expression corresponding to momentum can

¢ which 1is

2
-9

then be generated by multiplying (30-2) by an invariant quentity m
assumeé to be characteristic of the particle, where m in the proper (rest)

frame of the particie would be its mass. The four-momentum is thuss .

!
(3003)¥% . . . . . . ptam SE 2
' ds

*#% Note that the components of the four-vector momentum pl have the dimensions of

of energy.

e
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If we formulate laws involving momente-io terms of pi_weﬂtﬁ?regy_a§s§?eﬂthe%?;qq_
variant properties. If we want to‘aesure that the law of conservation of momemtum
shall be preserved in the fremeworkuof relatiyity‘fo;ﬂtmo:partioles intefaotimg”at
a point,.then in order that this law be independent of the inertial frame'chosen,
it mﬁetftake'the forms: | H | i o

(30.4) ;” _p 1 p2A = const

“ﬂ‘before and after the 1nteract10n _rathef’thah4the claesioal laws
oo Y RS ——-79 : o o . ‘ v
'(3005) ' mlu] R mzuz = const, . . | .

.w1th the assumptlon that ml and m2 are constant

We are restricting thishoiscussion to particles in direct interaction rather
Ithamiintefeotimv at a distamoe since the total momentum of two separated partlcles
‘et a Qgivem’ tlme has no meanlng in relativ1ty and smnce all 1nteraotlons are neces-
sarily propagated with finite velooity._VThereforefTmomemtqm“betweem separated parti~
cles has meanlng only if each partlcle conserves momentum w1th a fleld acting on it,
or 1f the 1nteract10n 1svcarried by a partlcle 1nteract1ng in succes 51on_w;th"the
1ntereot1mg mass poimtso.‘Strlotlyvspeaklng then, eeoh_of the mass points oonsidered
here must have zero exteneioﬁ in order that this discussion be r;gorous;iif its

extension were non-zerofiitﬂooﬁiaJmo,1ohgef be considered rigid.
The' components of the four-momentum are, using (29,16) for dss
B oy R I
(30.6)* () ={m, M, ¢ -\ = (Po, me?)
: ) . (@) - - 4 .
¥ . E \ Vl-uz;cz Vl~u§/oz

* If the soatlal components of a four—vector conform to a standard three dlmen-

sional vector, we soall_ln enumeratlng the components of_the»four-veotors use
regular vector notation, e.ge

: T D

c e e e (dxl).; (dr, cdt).

s L v
where u is the ordlnary veloc1ty in a given freme. The first three components have

the form=
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: ' -
 (30,7) op = (m)e
wheres .
(30.8) om= o
Jl-uz/bz _

Hlence if it is desired to maintadn the law of conservation of momentun in the
classical form (30.5) and in order to have this law hé;d“ind_ep_gnaent. of the choice
of inertial frame, thg'mass can no longer pe1cons§dergd to be an invariant,Abuﬁ Will,
depend on the velocity':?zas mgésured ip @hevparticplgr frame,wby_the relation (50.8)o
The“%ariation of mass with velocity" is thus a necessary qgﬁsgquenqe of fdrmuig#ing
the law of conservation of momentum in a two~50dy collision in a covariant manner,
The law of cqngefvatipp Qf mementumL(Sooé) implies”nqt iny ﬁhenépnseryatiqp

of the three "spatial" components but also the conservation of the fourth components

| (30,9) o P4.= Eéézvu "= me?

Let us investigate the physical significance of this quantity. Let us con-

sider the time rate of change of this quentity in a given frame. We can show al-
gebraically thats

- (30.10) a 4_a | mef |3 a| mul

oo =S U 0 e S
t P £ 7‘""5"""2‘7‘
d d 1=u /C . dt \ 1“’11.",33,

or, ,
. : - S
(30011) dp% = u . dp
dt. - dt
Hence if we continue %o .calls
o . > = : ' R
(30012) F=4dp (Wot the space component of a four-vector})

the force, il.e. if we measure force in terms of rate of change of momentum thens

: . - - ' ;
(30,13) P=F o= ?o %_PJEG, P = Power :

represents the rate at which work is being done in a particular system. Hence if

— ——— ~the—law-of—-conservation-—ef-energy—is—to hold—in a particular frame, and if B is
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w*and the 1nvar1°nt p p; i
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the energys:

°

Tl A A

The constant of integration has no particular significanee since it'affects'only

(o) & LB st o s const,
the zero of energy; since enerwy only manlfests itself when changes of the energy
occur we lose no phys1ca1 31gn1fleance if we puts

(30,15)  E = mo?

 We are thus led to the following conclusionss

1) BEnergy as measured by "work-content" and mass as measured’ by the‘momeﬁtuﬁ for
a given velocity ere interchangable concepts; ﬁheofoﬁe‘ekiets so doesthe other,:
Neither mass nor eoergy are invariants;.their magnitude depende On'tﬁe freme 6£
the observer by fhe relation:

(30,16) - E = mc® = moo?

le=u
where Tris the«observed velocity in a particular fraﬁe;_fwevhave shovm that the
ohange in ‘mc? corresponds to work done bv meehapica1>foroes; that it corresponds
e , T - LT Ty R IRE

also tovchange 1n'energy under whatever nechanlsmemﬁght be involved implies an
additional assumptlon whoseKJustlflcatlon rests with exper;mento; Experleoce in
other fleldS/Of phy51cs, in particular nuclea? physics, where the fraetlonal mass

changes become very large, talnly prove beyond any reasonable doubt that (50 1r)

is valid n thls more general interpretation.
/ :
» // .

2) The conservation of energy and the conservation of momentum are not independent

principles; one demands the other for a covariant formulation.

. s , .
%) The four=vector p” which we can now call the energy-momentum vector has the
componentss

(30 17) (p ) = (cp; E)

99
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' s 2_ 22 _ . 9.2
(30.18) p%pi = E° - ¢“p” = (myc?)

This relation betwggn energy and.momentué is thus valid'in any frame., In a proper

frame (p = 0) we have ;imply:' _ A
(30,19) E = m(;oz -

as expected,

4) pi is glcgntravariant veétqr;.ﬁhus on changing from a:E::to aiz:{frame by the

use of (29.2), we have the transformation'relationsf | | P

(30.20) epxt = opx~BE

(30.21) R
,) 3 Pyt = By
:pZ" = pz
(30.22) E= E- fopy

e f o ) - P
If’E:: is a proper frams for!ﬁhe partiqle? (pt = 0, Bt = mocz) &hese can be
~written in the foliOWingqufm{ ys§ful for computations |

(30,23) X g = tanh ﬁ} ﬁ502'= E;
thengvfrom (80420) =

(30.24) cp.. = m.c2 sinh
Px )
(30.25) " E =Amocz cosh,ﬁUF

This relation corresponds geometrically to rotation through an'angle,é in a

(Cpx,.iE) plane (co.f. Chapter 28, Figure 28.2)

5) For small velocities B reduces to the classical kinetic energy plus the "rest

energy" m,c o By eéxpansion:

N ' 2 (a\2 \ 4 ' - L, 4
(30.26) E = mgo [1 * 1/2(-2—) + 3/8(%) - - {] = mge? + 1/ mu® + 3 o

6) Since mass and energy are equivalent quantities, any transfer of energy
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. .
implies transfer of mass.and therefore a momentum. : -Consider. a motor M drivihg a

A,load L at a distance x by means of a belt as .seen in Fig, (30.1) ..

m"‘ " : 1 "<3£> -

Figure (30.1)

 If the motor transfersvenefgy aﬁlthe ?atetdE/thto'thé'load, the mass of.L'ihqreases

correspondingly, the system. thus has & momentum:

- (30,27) p = &
at

i%é“'

If. energy is absorbed by a bodyvat a given fate,-thén the momentum of the body in-

creases, to conserve the ovérall momentum we must thus associate a density of mo-

-

3
mentim g w1tn anJ arent which transmlts energ y at the rate S per unit area in a
glven direction, glven by~

-

._)
(30,28)* g =35

* This relation can be deduced formally from the transformation properties of E?
and E,. If.we consider‘iz: to contain a system of energy E of 2zeéro momerntum then from

(30,20) MQEE:'we_will observe a momentums

pX?.-.-QE:%rE'
cY1l= @» c

This is equivalent to (30.28) and includes all forms of energye

This relation is in agreement with our discussion of radiation pressure given in
Chapter 17. If we consider electromagnetic radiation whiech represents an energy

flow S incident upon an observer, then in the absence of a Torce sustaining

medlum or ethor, we wvere forc d to attribute a momentum density as given by

~v,(30 28) to the electromayneulc f‘leld° The fact, as evidenced by the failure of

the various experlments whlch were dev1sed to detect the existence of an ether,
that electromagnetlc radlatlon has the 51nwu1ar property of exlstlng in free

space makes the system off radlatlon and absorber a closed system. The resultl“
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is that Bquation (30.28) is required by the comservation of momentum._ Equation
(30028) could be made the'starting;point of our\mass-energy equifalence discussions,
u31ng only the assumptlon of conservatlon of momentum and the absence of an ether.

This approach is frequently used in obtalnlng the relation E = 2 without the

necessity of introducing the entire relativistic kinematics.

-
7) The force F =dp in a glven frame is not the spatial component of kA four—vector.
‘dt :
On the other hand, a quantlty knovn as the "MlnkOWSkl force™
. ) . ’* ) " ‘ - -
(30929) . (F ) = apt = a (pc mcz) dp, -1 - -d(em) )
® /1‘?77 e

is a contravar1 ant four—vectore The components of F can be written as: (from

: (30012) and (30012)=

(30,30)*

The transformatiop laws for force can be derived from the four~vector‘character
of ¥, Let us restrict ourselves to the case where‘T is proper in thezz::frame
i.00 u =0, pl o (;io)a In thei{j frame (us1ng the fact that w. ' = v, since

u, = O)‘ﬁe obtaing

(30.31) Fx' = Fx

a2
. . ¢ =
(30.32) F,' = F o1 /3
%0 - 7/ _R2
(30,33) F, F_oy1 @

Let us apply these relatlons to the equilibriuvm of a right anule lever of

il

e
fl

equal arms s%oun in Plvure (30, 2) Let the 1ever be at rest in tnez ;frqme and
let it be in equilibrium.irli ;under the influence of the forces F and F as
y.

shown° For s1m01101ty let the arms of the lever be of equal length.}a i.e. in

equilibrium:
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(30,34) CF = F,y
P s ) | |
Let us now consider the system from a'framesz:'; ~We would expect static equilibrium
~to be an invariant property ‘since otherw1se the frames would be’ dlstlngulshablen Let
us analyze the forces in E:, From the transformation equations (30051)‘and (30.52)

and the Lorentz contraction, it would appear

. A SRR !
) F
ol
Fy'=y1-p% Fy
+— : FX‘ +-= F I=F

'_jz:: ’ v Pigure (30.2) z 1
that a net torque of magnitudes |

(30.35) L' =F Q[_l=(1 )] = Fx—Q@

were acting. However, this torque does not produce any rotatlon s1nce,1n§£: FX seems
to be doing work on the lever at the rate F v, the angular momentum of the lever

therefore increases at a rateo

(30.36) dM =) @ v) v =F ,Q(g
,v . . : ! c

Hence hnE: even though the torque and the angular'mCmeniﬁm do not Separately
vanish, the torque exactly balances the gain 'in angular momentum. Equilibrium
is thus preserved as an invariant property.*

Gm am e e an o @R Gm G0 e me WD G me  em GRG0 G M e Em M o% o0 am Gp em MR MM wa om fB ee M om DU wm  sm aw e e

* The above discussion omits entirely the mechanism by which forces are trans-
mitted through the levers obviously the laws of elasticity will also be pro-
foundly'modified by relativity; the lever cannot be treated as a rigid body,

since %he”Velocity'of‘propagation of an impulse is'limited. A more detailed dis-

" cussion (See e.z. Tolman, "Relativity, Cosmology and Thermodynamics," Pg.79ff.)
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N

does not alter the above conclusions,

@ mm 0 an e e e e an e o mm e e M e e e em e e mm D ey ee e A AR e G e e e s em ww e e wm e em

Equilibrium at a point evidently remains invariant since at a point all balanc-

ing forces trensform by the same laws.

8) Iet us consider the motion of a Partiqle under the influence ofvforces. IFroms
(30.12) F=4dp =4 Mol

We haves
- ~ -
(30.37) F=__T - du, . muu. du .

1-u? /2 dt cz(1~u2/c2)5/2 ‘d;_
Acceleration of a moving particle thus requires not only a force parallel to the
acceleration but.alséva component parallel to the velocity. We shall show in a

following chapter that the "Lorentz force" g( -on a particle of charge g moving
with velocity v in an electric field E and a magnetic field of induction B:
' - e T
(30,38) . Bp = q(E + u % B)
- .
has the same transformation character as the force F above and can thus be

equated to (30,57). The resultrmt equation: - '

' - o
(30039) mou . qKE +ux B)

dt ; l-uz/%

is the general equation of motion of a charged particle in an electromavnetlo

5

field and is in excellent agreement with observed particle behavior,

Wé:have been led to the change of mass with velocity by two processes:
first’by the formal approach of attempting to formulate the bonservation of
momentum covariantly; and second, have also indicated the p¢ssible_deducfion of-
the principle by the consideration of the interaction of "free" electromﬁgnetica
radiation with an absorber. We shall now show directly without reference fo_
tensor methods, how this principle can be deduced by use of the Lorentz trans-

formation and the requirement that in a two-particle collision momentun be con-

served.
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. Consider two particles. of equal properties colliding head on.. :Let us choose
a framezz: such as the center of mass frame in which the collision is symmetrical,
i.e., they appear to approach wiﬁh equal velocities as in Figure (30,3), After a

short period of coalescence, they will then depart with opposite velocities.

. Let us make ‘the samefpogtulgte§’as_wgydid Pefqre;in the more formal approach,

ice. let us conserve momentum and mass in any frame, Hence, in E g

.

(30,40) m1.+ my = M
(30041-_)' . MUyt MUy = v A I
A,y ) . y
ut : “u' , ' my w1 )
S |~ L —f——
o _ v
-92:‘: . :VJ AR B ' : u 9—_f—_——9;“
. B (velocity of center of mass)
i = w5
x! . ' 4 X

t ‘ ,7' ”*‘p‘_*« a ' S (bars rerer
E ' o E. to after the

E collision)
v . Figure (30.3)

e
=

_where M is the combined mass during collision. . But from the ‘longitudinal veloci-

ty addition relations, we haves.

(30.42) “11= ut+v :,_V.I u2 . eut e
N S ‘l-;ﬁzﬂvybz’j SRR 1 -utv/e?

. Eliminating M and reducing algeﬁraicaliylwe obtaine

.(30043) o '“ﬁ» }Elbz -1 # u“v/éz' ;:jzlb“ UZ?/%Z -
o B | m'u“v/%z‘ ' 7/E_f=§:§7€ET '
Hence, in order to preserve the conservatibn laws (300,40) and (30,41) in all’
frames, we must'haveé

(30.,44) m=
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where m is the mass in a proper frame. This is in agreement with (30.8) and the
o - .. . - - . '.‘

further deductions follow as above,

Thié description is of particular interest since it enables us to obtain

from (30,42) the mass I during the collisions

1

(30.45) M=m L. T T R S
- A Rl S
This is larger thanz

(30,46) S omy

V].—’VE/E?‘

which would be the mass of the two masses of rest mass m, moving with velocity ve

This increased mass represents the increase in energy of the ﬁ%o-particleSiduring

collision owing to the stored elastic energy or to the energy increase in case not

all the energy is released again° The distinction between an inelastic and elastic'

collision therefore essentially disappears in the first part of the céllisibﬁ.

Calculations of this Melastic mass increase™ are usually most useful in prac-
tical cases, e.g. in calculating the available energy in the center of mass sys-

tem in nuclear collisions.

Y.
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CHAPTER 31

S | | 31

'COVARIANT FORKULATION OF VACUUM ELECTRODYNAMICS -
Maxwell?s equations-ano their ooﬁéequeooes Iend fhemse}yes vory_simply to
covariant description. This follows fromgtﬂoifact“thoéiooFmodifioationooafe necesj
sary af all in the_iaws of electrodynamics to make thomiagreehwith theﬁrequirements

of rela’civity° The oovariant»formulgtion of toe spaoe-timo_oooroinotes_in'the

equations automatically puts the rest of the equation in covariant form.

Recall that we introduced the Lorentz transformatlon by cons1der1ng the co=

variant formulation of the proPagatlon of a plane electromavnetlc W'avee Aotually

t

the form of the equatlons @overnlng the propagatlon of any electromagnetlc wave

already agrees Wlth the laws of relat1v1ty, since the D‘Alembertlan operat10n~

(31,1) | Da, 9.
' xi in ]

is an invariant,

Since time and space ooordinéteo are 10 longer independent, it is clear that
charge density end current floW‘areboiﬁfly differont ao?eots.of the same thinge
If we havo‘a;@pfoPer":charge density_fi’in e frame where such charges are at rest,
then the’oootravariant,vectors

(B1e2) . L 3T A ax*
ds

i}

has fhe_ooﬁboneﬁts:

(5.9 Fepie
whereeh. : - «-;': :
RGIORE I " ’,0_%“ Bl

/1= /e
Hence the transformation equatlons of charye and current densities follow
au%omAtioaliye. Slnce current and charge den51tles are components of & 31ngle

e

four=-vector j?; we are led +o comblne the inhomogeneous wave equations_(l8p18)
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and (18.19) expressed as:

(31.5) D¢=- _(;__

o]

(31.6) o @y -- PT

cko

into a single equations

(31.7) e -

Eal

where s .
(31.8) # = (ch, #)
Wé therefore find that electric and‘magnetic fie}ds grgunqildnger qgaptities;per-

mitting independent description; they are different aspects of the same thing.

The equation of continuity takes the simple covariant forms

(31.9) 3t =0
oxi

and the Lorentz condition (18.15) becomes its counterparts:

(31.10) 9F =0
o E)Xi .

The gauge transformations (18,22) and (18.23) combine into the forms:

(31,11)* Byt = ﬁi*,aa _ (V)

* Note that covariant components of ¢i are used, giving both the correct trans-
formation character and the éorrect.sign of (18122) and (18.25).
The derivation of the field from the ﬁi and any law of physj_cal conseguence must

not depend on the choice of the scalar function'LP .

Note that Eq. (31.4) which gives thé transformation from a charge density
at rest to'a charge density in a non-proper frame, is in agreement with an in-

variant charge. A (spatiall) volume element dV is related to a proper volume
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element dV, by: | o | -

(31.12) o AV = v,
,since only one dlmen31on 1s Lorentz contracted° Hégg?gL::

(31013) {de= (—>Q

and the charge within a given'boudary-remeine-invarianto, Therefore thevelec~'
tronic charge e remains a universai constaoto SIHCG no charges have been found
in nature which are not rntegralvmultlplee of e,lfofai cherge could be ﬁeesored
by a counting operation which should beolnvar}ant,A These faots are all‘ln agree-
ment with experimenﬁo Note that the inrarianoe of total charge»is"also a direct
consequence of theorem (29023),

Let us obtain the integral ofﬂthe_inhomogeneous wave-equetion;(5107)'cor=‘
responding to an (1nvar1ant) p01nt oharge e at a p01n% P. This integraloehould
correspond to the‘W1echert=Llenard potentlals (20 11) and (20 12) We know that
in a proper frame9 as in Flgure (31 1), the 1ntegral of (31 7) is 51mp1y the

Coulomb potentials

(51014) ﬁgi(ij) ?{?ij"ei“  - ;_lef:

'; Flgure (51 1)

Here ;2 is the proper. vector dlstance PQ° .The potentlal s1gna1 at Q isl o be

measured at the tlme correspondlng to the retardatlon cond1t10n~

(31.15) RIR, = 0 = -r? + c?tz
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whereg ) _ o R
(51016) rJ =vxPj - xQ; iee. RI = (;ict) =.(;ir)
To make (31.14) valid in any frame;.we_ggek to Write'it‘in“tensor‘form such thgt
it reduces to (31.14) if U = 0. Consider the four-velocity: ‘
(30.2) ' ut = Eii
ds

In a proper frame it has the components:

, i -
(31.17) 4yt = (0,1)

Also the invariants .

(31.18) . : uiRi

can be evﬁiuated in the proper frame wheres

(31.19) R J = (rgs o)
using the condition (31.15) which defines the time of. propagation of the signal,
we haves:

(31.20) uR, = r

and (31,14) cen be written in tensor forms

(31.21) g= =X
4k, uasz

subject to the condition RjR3= 0. This equation is therefore now valid in ény
frame, whether proper or not. Let us show that (31.21) actually does correspond
to the Wiechert-Liénarad potentials. If we note thats )

- - ' ‘ - 9

(31.22) wWR = _"r-eu. r e

S sy oy VT"?/“Z‘(

=)
since s "

;l-uz/c 71-u§/cz>

then (31 21) has the. componentss:

s ‘.'9‘
(31.24) g = e [u,1
, 4Tk ¢s s
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wheres - . o e S e
‘ ‘ - - S IV T R
(31a25) § =p = T @ u S T

c P -
Equetion (31.24) is equivalent to Egs. (20.,17) and (20.18), NoﬁerhoWeyérafhgﬁ;the

significance of the velocity has changed profoundl

* In Chapter 20 thé velocity

-

was measured relative to a special frame in which ‘the wave equation was valid;

e T T e T TR R P SO S S S S R T R
in (31.24) u is the velocity of the observer relative to the frame in which the

charge was at rest at the-tiﬁé’6fj“émissio@"méfmfﬁébéjgnal.fgﬁence all our de-

.. tailed calculations of the fields of charges in various forms of motion remain

correct pro#ided the velocity is re-interpreted, in this manner.

Thus far, we have discussed the field equéﬁ&dnS'eﬁ%iféiy in terms of ‘the

electrodynamic potentials. Let us now derive the fields from the potentiais’

T o b d - S Sl v o
covariantly. The,field vectors E and B have different transformation character
N o S : t "
in three dimensional space. E is a “"polar" wvector, l.e. a wvector whose components
behave as do co-ordinate differences of a distance vector under change from a
4 L, o , -

left-handed @6 right-handed co-ordinate system. ﬁlis an "axial" vector, i.e. a

vegtor relatéd Lo Hwo poiar_vectbrs by a cross pjoduct relation. All correct

physical vector equations are equations only between one kind of vector. Axial.

vectors canndt form the spatial components of a four-vector. On the other hand,
= = ‘ SO |

the equation C = A x B can be expressed in a "coordinate-sense™ insensitive man-

ner by describing € by a quantitys

(31.26) / | C A.B, - A,B.= - C.,
~ A 1735 j i

}y'if ij J1
wheres,
O S ‘ coe -
z7 : = 2 = C. 5 =+ 0
(8127) 1 Gpmx G, Lz =G | Oy =iy

the + signlreferring to e right~handed Cartesian system and the - sign to a
g ‘ . i - _—5 -q -29 - . . .

~ left-hended system. For example, the equation S?{x E = ~ B is written in this

notation ase
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(31.28) By - a S *

- -
and ex A =B ass

(31.29) o Oky oy

3% Sx,

x,
A B

E, on the other hand, is polar; it can be derived from the potentials by:

‘ : K. L
(31.30) By =- _i_._?__a (i =1,2,3)

This leads us to the introduction of a four-dimensional antisymmetric field teﬁsq_r
Fij which, as a function ofs

(51.9) @) = (k)

iss _ i o o : : ) . - -
. (51’32) Fl = ;ﬂ{a’ - aﬁl 3 » FlJ - agg' _ C;ﬂfi '
o odx1 gxd . Axy Sx

' The components of Fij are, in conformity with (31.29) end (31.30)=

+éB
v
’ .. -chx
(31.33) . F,. =
. ]_J
0
+E,

~and the components of the contravariant tensor F*J are}

i—>
0 -‘-ch7 +cBy
| i35 Y[ s, o0 ~cB_
(31.34) - FH -y 2 ; %%
' -cB A 5+ch 0
--EX -Ey - -Ez

Note that (31.31) is in accordance with the requirement of gauge invariance

(31.11), sinces:
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Qxléx«? »l Qz;lgjgxi

Since 1t was poss1ble to wrlte the fleld equatlons covarlantly in. terms of
the potentlalsg it should be p0351ble to do S0 1n terms of the fleldSo, We can

verify easily that the source equatlonsaf

(31055) V°Esp‘ VxB )1(('17u+koa'E _

correspond togr

(51,36) dpit =4t
‘ S xJ ky

and the equationse

— - — oy
(31.37) Y . B =0; xE=- 9B
5 \V4 25
sorrespond tog |
(31.38) SFM + OFs 4 IFyy = ¢

SxE  dx  dxd
Note. that: the agreement between (31.36) and the equation of continuity (31.9) is

obyvious from the antisymmetric character of F'J. Also note that despite the three

,free-indices,. in Eqe. (31058), this equation represents only four non=-venishing

equations,.since the eq'uaﬁiep venishes identically- unless 1;!,];( k. Eg. '(31°I§8)
can be writtén ‘in a form resembling (5105'6) by the int;oduotion of thé "dual® of Fij
by the rela"cierijg o

(31.39) = . g4 =‘ijjk]F

H

. where Plel is a.tensox‘#deflned to be zero urless i 7 J 7( k 7( 1 and equal to +1

BN

if ikl are in- cycllc order ‘or -have been per’muted an even number of times from

cyclic order and equal to 1if ijkl are permu'ted an odd number of tlmes from
¢cyelic erder., (31;38} s then equlvalent tog - o et e e e s

(3140) - QGIJ = o
S .,ax s
! " c
This 'equation is written such as to permit the introduction of magnetic poles

and pole=-currents if they ex1stedo ;.

Pijkl ‘strictly is not a tensor but'a "pseudo-tensor“~-1t is not ‘invariant to the
“screw-sense" of the coordinate system, GlJ -is thus.a pseudo-tensor. and any. hypothe-

v tical” pole L=vector to- ‘bé addéd to qu (31 40) ‘isa pseudo=vectoro
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The tensor expression for the fields immediately permits a derivation of

the transformation relations of the fields. Since from Equation (29.12):

113 L g1 of pk&
(31.41) F Qk jSF
we can éasily derive the relationse
 — )
(31.42) B! _Eu _ | "
(31.43) B! =B, , '
' -> - —)
(31.44) B! = Y(E + vx B) _
o
- - ;
¥ = -
- (sl.a5) Bl Y(B v/c_ szL
here Y= 1/y1-82 E ,B andE, B are th ts of E and B
where = -p ond’\" s By nd B By are e components © and
parallel and normal to'?a respéctively.
Equations (31.44) and (31.45) can be interpreted fairly easily physicellys
.—A
the terms,other than the factor ’Y’ belnw llnear 1n v should be essentlally
cla<51ca1, i. eevdescrlbable by Maxwell's equatlons w1thout expllcitly using
relat1v1st1c arguments., Equatlon (31. 44) corresponds to the fact that & parti-
cle moving relatlve to a magnetic f‘leld to the order @2, experlences an electrlo
- = -
field B + v x B, as has been disoossed,in'detail in Ch., 14, To interpret(Eq.
(51.45)-coosider a finite region contaiging lines of electric fie1d1as shown in
Figure (31.2)s
(at this end of the
loop E = 0)
; y ) &
4 ] /
P c / ¥
/
e 3
¥ ) ,
RARRARARAE

Figure (31.2)

_ Consider the line integral of B around the rectangle indicated. To an observer

mov1ng relative to E the flux of E through the rectangle is changing at the rate-

(31.46) fE ° (dl D= c((v x2) ¢ d0
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and hence since the circulation of B is produced by the displacement current and the

ey,

...-xeal current by the. relatlonu ol

R VL
FUR I SRS SRR

(31.47) T.a =1 4 [ = .
,'.;3"’ v dQ _.2n=-e.-€ ed.S‘F}JOI—_.E.(VXE)od’Q )10
the moving observer w111 observe an effectlve nagnetlc fleld’
- - = -—)» ~
(31_.,48) ‘ Beﬁ_. B - v/c

in agreement with (31.45) for smail é?o

The tranéfdrmation equations for the fields are of considerable value in the

solution of practical problems involving the motion of electrons and ions in

electromagnetic fields. It is frequently possible to transform either the electric

or the magnetic field away by choosing a suitable Lorentz frame.

The Lorenta force per unit volumes

- -5
(31.49) 7 - P (B +ux B)
is the space component for a fournvectorg
: -
(31.50) ofta Flk = (r, 321
: s Pl

The fourth component is»l/% times the power expended by the electric fiéld/hnit
volume. The total force acting on a charges

(3l.51) §q= PV
is not the space component of a.fourmvector, but is given bys

(31.52) T =28V - 5q(§>+‘3x-§)
In a proper frame, since gq is an inveriant (cf. 31.13)s

(31,53) | F, =& q E‘o | |
and hence in general, from (31.42) and (31e44)g

(31.54) F. =F

i\ ol

1]

| 1
E ¢
(31,55) F =Y P,

This is in agreement with the mechenical force transformations (30.31) £f.
Hgnce‘égﬁilibrium between mechanical forces and electrical forces is invariant

to the choice of frame; the nature of the force does not affect,its transformation
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| : | o - = -
character. Jilso, we are justified in using the relation F = dp/ﬁt‘whjoh we intro=~
: - S ST SN ST TR A

'duced'és fhe'definitidn_of force, if for F we use the Lorentz force (31;52);’Eq; '

(3C.39) is thus the relativistically c;drrect expression for the equation of motion '

of a charged particle in an electromagnetic field, B

e
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CIHAPTER 32

COVARIANT :FORIMULATION CF THE ELECTROMAGNETIC
'FIELD EQUATIONS IN MATERIAL MEDIA

| From the electron theory v1ewp01nt the ordlnary Maxwell equatlons are the

result of an averaglnv process of electrlcal quantltles over reglons large

enough o permlt mgcrpscoplc ob;ervatlon° We shgwed in the prev1qus chapter that

vacuum electrodynamics may be described in a simple covariant manner. It seems

reaéqnablé-thenwthat electrodynamics in material media may also be described in a

. single covariant form,

The ﬁrincipal element entering intb macrASGOpié_elggtrodynamics that ?s new
is the.fagﬁlthaﬁ fheAcurrent four-vector ji_Will‘inmgeneral hg#@ all four com-
ﬁdnents;nénézéfq eve£ in_a‘frgme in which thé mediﬁm isfat rest. In such a frame
j; will nowhave the co;poﬁentsg_ N : o .

oo , —%
(32.1) (%) = -, e°
. 7 B c - .
where J 1§ ‘the current density in the proper frame., This would correspond to the
vaguum definition.” Leét us now, however, éOnsider'the'fbrmhéf‘fhe'components of jl
in a non-proper frame. In order to correspond to the vacuum case, we must assume
that j* retains the.component5°

()

in any frame, and hences

@ ey

(32.3) is physically clear; it'contains»%he.conveotive_currentﬂdﬁe‘té tfanépdft

it

(32,4)“' e

of charge and the contraction factor which assures the invariance -of the charge.
(3204) is physically less obvious; it says that a subst&nce‘which carries
current but is electriéally neutral (f o) in a proper frame does not neces~

sarlly remain so when observnd from another 1nert1al frame, Thls effect can be

\
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understood in "cerms .of the_ kinema’cics‘ of - the méving chavr'ge‘:s,‘& Lfat,l_ls .cfo‘ns%Qer i
positive and negatlve charges in the proper frame: v For simplicity, let the
positive charges be at rest (though this 1s. not essential to the argumen’c) and
the negative charges‘ be in motion. Let there be equal numbers of + and - charges

in Z The world 11nes of the + charges (shown as dashes) and of the - charges

(shovm solld) as ‘observed in Z and in an arbitrary frame Z are shown in the '
Mlnkowskl dla:rram in Flgure (32, 1) / -
' Acto ) #
anit hyperbola)
T x
A e O
Figure~(52°1)
The chargo denslty in Z 1s measured by countlng + vand - charges
"simultaneou;;ly in Z s le€o ON the x° axis; the charge dens:Lty in Z is
measured by counting + and = charges along the x axis (1_363 averaglng t_h_em ‘ j
simultaneously: in Z). Note that the density‘of‘- - charges along the x-axis
ig decreased relative to the density along theux(;"'aXiS, while the dénsify' of + .
charges has changed less.* Therefore a net positive cherge is found vihz R
T T T T T T T T R L I e »

* Note However that density of charge is ‘measured by counting charges per wait
length ‘defined by the intercept of the wnit hyperbola with the respective axes,

as shown in Figure (32.1)-,

@ om m e am m om o s € & em e mm wn S e om m o o em m n @ 0 e £ e en e mm e o om mm e e m. s

corresponding to the negative current in the neutral proper frame, in agreement

with Eqe. (32.4).
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One consequence of this effect resultlng dlreoﬁly from the dlffcrence in ‘the
s1mu1tanelty mcasurement of 2::0 and E::, 1s the fact that a neutral stationary :
current 1oop in- Z° acqulres an electrlc moment when - observed 1n2: Cons:Lder d
rectangulaf“cﬁrrén%'loop in'Figuré‘(SZ.Z) caering”a clirrent I3 -7 HEARRARES

qeliy

c
—p— & —Pm

Flgure (32 2)_

From the p01nt of view' ofz the legs parallel 'to x° will ‘earry charges of

'.-‘-'_A,;I_E'Xrospectlvely; thus the system has an electrlc moments
(32.5) P = vabl _ -l;gjgjgl
| o2 LR

N

R R o , | :
‘where M = IabS/5 is the "magnetic moment"™ of the loop.* _,-‘Qua.d‘r_aticv offects -

in v have been ignored thus far. Shortly we shall obtain'the ‘exact transforma=-

tion equation of the moments,. : R _ .

L Leﬁ us now 'Writewthe_'fi‘eld__equa‘bi__on‘s in matter,, ,Ifjv'yo divide the charge-

current fpur—vector 1nto “true components jl and. magne‘ciza;tion-’-“pbldrization’

compornent s JMi, “then Maxwell's équations (31, 36) and (31 38) becomes

(32.6) -~ al_?fl'e;__l +3N8
3xt

and:



,4(.':52,;7): Sil aFlJ N ,.aFJk QFm_: Q.F el

. where, as be?t‘.’.r?.; ‘the F J are given.by the matrix (31.34) -in teérms of B and E,.

It is desirable, as before, to wr;tg;(32,6} in terms of the,truenthngQ;gnd‘f,.
currents as external sources -only, and to incorporate the "induced" chgﬁge- 
currents into;the fields. Th:ﬁs can be done by introducing the moment-tensor

utd by the equationa

o) U ad o 2T
% ? - o xt s '

A;»,E;qa« -

s

Slnce the components of. JM are presumablyq

i

(3287 JNP‘ (JM + 3p, (o> (Vx M +' i _3_11?,-3?) -
Gghrar e . c U ': .

th%s corresponds to the form-r . e e e
+M /¢ ;'\
, uy/ ¢

0

gi;:,i

(32,10) - - - -;,»-‘(Miﬁj), -

- P,

for fhe components of the moment tensor MIJ;
If we introdiice s new field H Yibys <

(32011) e Hij . Fij .

k - -

Lo ko

corresponding’ to. the thrée dimensional relationss

(32.12)x  H- =

r Em e o e E M S am ey GR M e e e M @ e 4 e I Gm e em am M M . wm e Gm W M e e an e e ar em . m

' then the source equation (32.8) becomes simplys
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(52.14) . ot - 5

ot

i - p

Note the way in which the equivalent currents and charges are derived frpmgﬁhe
moments. The sign in the defining equations of the auxiliary fields also follows

automotically as a result of this formulation.

.The tréan&formation: properties of the moments follow diréctly from

:(32.,10) ¢ We obtains

(32.18) = - Pt = B
(32.17) 7 M= My @
; ' - 'VY—#. 2.7
("326118) T :-P" R p P - v )
L = L
.'-41 N -’ . ‘-9 .
(32 19) ‘ I a‘YYM + v x P)
N ﬁ .
(32, 16) is to be expected since F is the product of an (1nvar1ant) oharge and a

-
dlstance dlvmded by a volume 1f P is parallel to ;? then the dlstanoe and the

volume contract in the same ratlo° A 51m11ar argument applles to (52 17) The-
tern v x P in qu (32 19) is a purely non-relativistic term arising from the -

-fact +h9t conveotlon of a polarlzed medlum COrresponds to a; net circulation.of.
oharmeob we have met ths effoot before 1n Chapter 14 in the dlscuSSlon'on;.

Mamwell’s equutlons in moving media from a non-relat1v1stlo p01nt of view. .Con-

sider an infinite polarized slab shown in Plgure (32.3).
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[ Surface
currents

F ¥+ F F F F F F F F FFF

Flgure (52 3)
Fron1§::. a mov1ng frame thls slab possesses opposing surface currents correspond-

ing to a unlformly magnetlzed medlum.

Eq. (32018) has no non-relativistic counterpart. It_reéresepts, as alread&

' shbwn,"the”éffecﬁ of the ﬁgt charges when a currenﬁ'in a neutral stafiénary conduc-
tor is viewed from & non=proper frame. "The extra electrlc moment is precisely
that predlcted by Eq. (32 5) and arises from the relativistic definition of.

31mu1tane1ty. ‘This equivalent electric moment resolves the apparent paradox of the

uniépolar induction generator discussed briefly in_Chapter 14, We concluded there |

‘that»a‘current‘would flow when a gonductor, in contact with»také~off brushes,
moves pransverse:to a éagnetiq field. No diffigu}t@eg arise”as‘long as the,sou;ce
of?? is.externgl;_the effect should, howevef; persist Lf}?js dué_to a permaneﬁt
magngtizgtibn of the bgrm;tgelf. The éiﬁerhglyéesgriptién remains thé same, bug
éipqe the;permgnent @agnéti?atipn is té be describablevin terms of equivalent
Ampériép'currents'alone, tKe qgestiqn arises how éuoﬁ current§:could produce an 
eleétroétatic'effe@fiwhen viewed frbm.a-mqving fraﬁe; Thié descripﬁiéﬁ leads to
no diffigulties, since we can ndwwin£§rpret the élecﬁroéfatic field as due ta.
the'equiva}eht'electric:moment ;?xfﬁabzo Inasmﬁéh‘as this eQuivaient moment is}
only ﬁ consequence of the relativistic redefinition of gimultaﬁeity; dﬁipolar |

induction is fundamentaily a relativistic effects

.
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COVARIANT'FORMULA$ICN OF THE CONSERVATION LAWS OF ELECTRODYNAMICS
In Chapter 30, we discussed the conservation laws as applied to point mechanics.

Wé found that the law of conservation’of momeﬁtum and the law of conservation of

eﬁérgy.afe no longér independént cdncépts but are in fact pafts’of the same law,

JNow‘We would iiké td'exfénd these concepts fé vacuﬁm electroaynaﬁicso

The conservation laws of electrodynamics have the form ‘(see Chapter;16)t

written in three- dimensional tensor languages

S s | oy (E2+c231
(33.1) - 1+PE115=FQ,at = = ,

(Conservation of energy)

. (53.02) 5 _%—_ (Tla) . P[E ‘+v (_:X_g)l '= _1;0. _,a__ [(E X CB)J_ (cOnservatlon

73 X2, 1/\ 3t ~.of ‘momentum)
(Surface _ (z&:chanlcal (Electromagnetic
term) o volume term) - - field volume term)

o

ﬁ N =8 x H is the Poynting v £ d T, E Du H:B.- éij e N
: = 40X Poynting vector an e 2 BeDe B
_.ere is the ing i3 4D+t 5 (Ekpk+ HkBk)

Jd 717

is the Maxwell stress tensor. Equation (33.1) balances energy between radia-

‘tion loss over a given surface enclosing an arbitrary volume with the rafe of

mechanical and thermal work and the time rate of change of the electromagnetic
field energy within that volume. Equation (33.2) balances the forces transmitted
over a bounding surface by the electromégnetic field with the rate of increase of

éhé‘mechénicél:and eiedtromagqetic mémenfUm of the sjstem(bounded~by-the'volumeo

The§e"twoheqﬁations can be combined into a single,felation by iﬁtrodﬁcing

the ene?gyﬂmpmentum tensor of the.elebtromagnetiq fieid defined by the symmetric

matrixs
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) ] o T

_11‘11 T G
. ’ o] Q

(3303) (1) = Pl Tag Toz
o o o

T1s Tes - Ta3

+cGit +cGy -+,

5 ) o i :
where G = N/E is the momentum den31ty of the fleld and W' (k Ez +/uoH2)/? is

the energy den31ty. The conservatlon laws (33.1) and (33.2) are then equlvalent' *
to the 51mp1e covarlant relatlon-
(3304) . aTlJ = -fJ S
oxt
wheres: , -
(33.5) ()= pE+TxE 22w
is the four-vector representing the Lorentz foree/hnit volume and rate -of work per
unit volume of thé electromagnetic field on material media,
To show that (33.4) is actually a tensor equation, we must not only show that
it is correct-algebraically but also thet TlJ is a tensor. To shew the latter, We,
note that T J can be generated from the tensor i by the tensor operatlon-
(s5.6) 1= lkp -3 gz k,?
- . | k?'_ :
Nofe thaﬁ.the second term is simply the invariant “trace® of Fkﬁﬁ
534 7)% o S I 2
( ) Fi 2(c“B* = E°)
. ?'The invariance of czB?_: $2 ShOWS that the ratlo between ﬁhe electrlc and - é.
magnetic fields in a plane electromagnetlc wave is an 1nvar1ant
Therefore Tiu ; ‘or .o opld Jk i | ' ¥
j is a tensor and so is T™" = g Tk o The proof of the correctness

of Equatlon (33, 4) then remalns an algebraic computation whlch can ea51Ly be done. =
We can draw a number of important conclus1ons from the form of the energy mo=
mentum tensor of the field.,

1) Though the classical elecﬁromagnetic conservetion laws are iﬂ'egreement with
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relativity without, further modification, they are intimately connected with one

another,

2) The transformation laws applied to (3593),$how:agqju,the equivalence of

_energy transport and momentum flow.

3) Let us consider a volume V oontaining_totelly a quantity of free electromag-
netio radiation,‘but no charges or currents., The energy tensor thus obeys a
oonservatlon 1aw.

“(29g27) o aT13 =0
- 3;{

and henoe accordlng to the theorem 29 28),

€ R ( f[ g ) [[fﬁl -

is a contravariant fourevector also@ Hence the momentum and energy of a radla-

tion pulse totally oontalned w1th1n a flnlte volume has the same transformatlon

propertles as a materlal p01nt partlcleo Note that thls is not true for the

total field of & oherges since (29.27) is not satisfied, We shall study this

point in detail shortly. The invariants

(33,10) oo, = W - o2g%

is zero for a plane electromagnetlc wave= hence the equlvalent partlcle proper—
tles of such a wave correspond to zero rest masso This is in agreenent w1th the
fact that, since the radlatlon is propagated w1th veloclty o, it oould obey the

4

particle transformatlon laws and stlll yleld flnlte momenta and energy only 1f

its restemass is zero. All these facts are in agreement with the “llght quantum

’“conolude tha't not only eleotromagnetlc forces energv momenta etce must be dew

scribable by a tensor relation of the form fJ = uaTJ‘J/ax 'but all such me-

moheu%oegdquantitiee;when applied. to a continuum:must obey an_equation of this

. form,. Hence K$§,4),Will_be a valid equation, e.g. in a medium under elastic
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. L _ s :
stress where W is the mass density (including elastic energy!), G is the mechani-
) o o e *h ) o _

cal momentum density, and T, . are the élastic stresses. This yieldslthe trans-

J
formation quatipns-for'all'quantities:ehtering into the mechanics of cqntinuﬁa;
Note partidﬁlarly that the mass denéity 6f_a:cqntinpous medium cannot be treated
as'g scalar or even a compohent df.é four-vector (as is thé elecﬁriqal charge
density!) bﬁt is(theﬁ(4,4) component of the mechanical energy-momentum tensor.
The quaﬁtity n =..BK.WHY has the trﬁnsf?f@afiqn character of & mass'as‘before}_
These facts are in agreement with the existeﬁce of a fgndameptal unithf charge and
the apparent lack of:exis#enxﬁ‘éf a fundamenta1 unit ofvﬁass.v The tensor compo-
hent charactgrugf the mass density is of importemce in thé formulation of the -
gravitational action of mebter in the general theory of relativity;
5) The "phase" ﬁrof an e}ectromagéeticmwavenis definé@rby the rglation:_ o
(33,11) : ?=-§: eiﬁ =E: ei.(k_:;’- wt) l?‘-’-lwave Propf}gé_ttliog veétor =7/(-1
| . ) = angular frequency |
The zero'point of a field»ﬁUSt Be“an invafiépt physical fact and hence one would

expectlﬁ to be an invariant. Therefore, we can writes

(33,12) g = kixi

wheres: '» )

, (33.13) kg o= i, -w/e)
(33,14) v kl =’.‘. (?:w/c)

Sihce‘kiki = Oé ké @rgnsforps gxactlyuliké an energy momentum vector of a parti-
ole §f ;ero>rest mass. This is in agreéﬁént_with making £h§ momentum and eneréy
of a lighteégantum prpportionél té_ziand aJ_respectively; we saw in Conclusion 3
above that the momegtum andvgnefgy of'a eleétromagnetic waﬁe éisé transforms like

a particle of zero rest mass,

" Equation (33,14) which defines the transformation character of k and &) pro-

vides a simple method to obtain the relativistically correct expressions for the

¥



K

LY

331

Doppler shift and for the aberration of star 1ighta'

Con31der & source at rest 1n a frame jz: radlatlng 1n the x direction such
thatukx = O/Eo In a SE: frame we obtain fron the Lorentz transformatlon applled
to k4 2

(33.15) : = c‘}’ .__a@ij w (1-(5) o /1-B
A 1-p2 AR

-4

This is the expfession fof the‘relativistlc Doppler shift, The expression for

: : _ 1
aberration can be obtained similarly from the spatial components of k and gives
the relationg _

(33.16) sin®=8

for the sberration angle ©, in agreement with Equation (28,49).

6) It is to be noted that oniy'the electrdmagnetic momentum and energy of a

 ffee wave have the transformatlion character of a particle of zero rest mass, TFor

’ éxample, consider the electromagnetic field of a point particle moving'with

velocity u in the x direction. In the Lorentz frame-in which the charge is at

' rest, the energy momentum tensor has only the components

(33:;16) T_lJ = (eds@ 0 o
. of W) - ap - 1,2,,3
(trve only when integrated over .a three=-
dimensional volume)

when Wé is the electrostatic field energy density of the chargeo In the general

frame it follows from the Eorentzotransformation that

(33.17) | rlt o B - T

(35;18) - Tzﬁ - L - gtu
Hence the momenta end energies of the field becomeo

(33;19-) | [Tld‘dv [1(1»(3 dVT ﬁ%‘f (w, -=T11)dv

(35;20) U ﬂ“dv-[q[ln z dV’OT (w, 7 )dV
g ,‘/"'""'?1[ -F
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where dvo iz the volume element in the rest frame. But if the charge is spheri-

cally symmetrical in the rest frame, we haves (33,21) | WodVo = U, and:
- R : . ‘(\ . - _ N ’ L . . A - ) »
oo c e L 2 'y .2 _ K, 2 _ Uy
(33.22) j 71167, = K (EXO -5 E, )dVo =2 E, dv, = -

o

where U, is the electrostatic energy of the charge,and where we have used the

A

. 2
relation, applicable to a spherically symmetrical chargeg that Ex =1 2. Hence 3
: T ‘ : 3~ i

we haves . ' , <

: S - U

(24.11) G =25 B_ 0 bt

3 L2 |
. o | . ﬁ.&
i
U, 2
{63023} U® i 1 2 (3 y
1m‘ﬁ.4 5 ‘
These relations obviously do not transform as components of a 4=vector and there-
fore we obtain an additional argument for the fact, discussed at length in Ch.
24, that the electromagnetic mass of a particle cannot constitute the total mass
of a charged particle.
It is of interest to write the equations of an electron in an external

field in Hemiltonian form. These equations must of course be equivalent to the
force equationy

z ‘ i ik

(31507 I = FOA,

. ey
‘Let us describe the mobion of the particle in 4-space as a function of the -
4] Lok, oL s 1 e ,,i A i L. 4 e . . 9
proper wime” s; 1l.€., let x (s; and p (s) be the positions and momenta of the
particle. Let p” be the momentum conjugate to x~ and not necessarily be equal d
. i . . ,
to the p” defined before. We are therefore looking for a function:
R i : ' ) N
(33.24) K 6L, 515 s) | A *

which will yield an equation of motion equivaleht to (31.80) of the form:

(_35,,25;\v - dpy '=..,,§.,é}§,,,

dxt , ‘ :

0
[
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(33.26) o ST
ds api 1

Let us derive this Hamiltonian from a Lagrangian L by the relation!
! i
(33.27) }t= - L+ up;

where the Lagrangian obeys a_variatiohal relationse -

| | Py
- (33.28) §1 wLas=0
AL :
c Pl

The variation is to be taken over neighboring worldlines connecting two events
P, and Py (Figo ;301}°

JX(4

‘ A Xi(s)

Figure(33.1)

Consider a Lagrangian of the form

(53629) L= +.% mgclulu; + eulf

b Let us derive the Eulerian.equation corresponding to (33.28)s

v (33.30) g‘[ Lds = 5/ { 1 njoPulu,+ eulﬂs ds

= [ m;czul + ep’] gul + eua _?-.g,lgxl} ds

xt
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€
ince = == = @ X+ and since the x” are functions of s, we can write)
136 ag . : K

Y
w

§
F
i
d
]
;

adfs ;-

g =

ds . Q‘K”"

We can integrate the first term in (33.30) by perts (noting that g:ﬁ vanishes

Eain ¥
©
[éN
o
€N
fue}

S

LR
Q-
'€,
o
fied
fddo

at the limits), givings

(35'“42) f {d) [m oty + eﬂf] - odd 355:;' gmg

o xt

Sinse this is to vanish for arbitrary ég , we cbtain the Bulerian squations;

(33.53) :(n@@g ang e ags _ ad é;?f; L3 g;dj ij
= P S Aagaimaites -dleaand
ds dsg 9. = e 3 ]
ox Q% O =
Henoe?

) ' 2 N . ,°n .- o o » @- .
§33c54> Wa G d”i. = eu.oFHiJ = Fljj
ds J 3

in ascordance with (31.,50)., Bg. (33,29) is thus a correct Lagrangian and

1 T e Y
ab L

3 &
ere the momenta zonjugste to x7,

(33,35} .= 8L o p ey 4 o

o

The Hemiltonmian ige

31 W"\i &S e }, 4 ui 3 =23 mﬁ@" .i 1 i i
(23.38) A R O P (p" = e@™)(p; - of.)
[o0d .

This Hamiltoniar again gives the correct equations of motion, From (33.25),

(32.25), and (33.36), we haves

dxi . A ] g 2 5
rEa 2L - b (0h < gty

" ' @Pi - mge”

in agreement with {33,.35). Alsos

rg?i = = aé’e = @'ﬂ <p_‘; - 6¢°> MM’

- ds Szt mged 9 hEe g

or, usging (33.%1)s

¢

«"r;
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2 . ) )
To® S 92{ = eu’ 9553
ds C 33{3 ) xi
(35 . 5:7) mocz dul - eu'F ij e i
T dg i

as bhefore,

The H_amil{gonian ar_ld Lagrang}an functiog?l_fi%rscu_ss‘,'evd abq}r_é_aj-a'fe ndt the ordi-
nary functions which use the time as an inde_‘.peﬁdent "valf'iable,l, "We can, -however,
easily obtain the "conventional™ Hemiltoniane

(33.38)  H= H(?, 3?,, t)
in relativistiéally correct form from the "'two:r;ld" Hamiltoniain._.,
(33,39) ya X (pl,xi X (p, x, p,’ ct)
by a simple calculation. W_e are looking' for the functj.on H which o’beys the re-

lations (3~-dimensional)

(33.40) &l _9H . dpy | QH . '
xt dp; | &E ok ’ i=L.23

. ’ . - . . T » .
' (No‘ce signs, since p; = (-cp, Pals xt = G?, ct)o)

We shall show now that 1f We solve the equatlon' '

1 g 12
-} t o = o
(33 41) M(pp X, pA, ¢ ) 5 moc utu, 7 m.C
g L . ) L |
(smce u ul‘ 1)9‘for p4 P4( Py Xs c‘t)svthen P4 has pre01sely the propertles

(33040) From (35 25) and (05 26) we have!

(33042) .. & QW . axy g5 _dmy . o, %px’ :
LT SR LN O sty PR : . = LAk = . - 3. :
o e . \® 1?4) T
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oX

(33.43) dos . 9H _ 9 g _dpz g P
2 Sxi 45 g8 d8 S/ T ————
. oy PRCSD -t --
. | ~ SH ) oH .
‘ ‘ a P4 ap4
Hence since p; = 53' p4) and since from (33. 41), considered solved for p s

&J?+a>r€ SPy - ' i1, 2,8 ;

o=
n
o

39+ 3K 3m

——- ——

9Xi . ° Py X

[

Equations (33.42) and (33.43) beCome:

(33.44) axl _ _ JPg i=1,2,3
dat api

dp; Py
at T 9xt

Hence P4(?:-?’ t) is identical with HG?,» P, t). Hences

(33.45). B F, t) = of + o V(7= _5&)2 + (m‘;c)?

is the relativistically correct "

ordinary" Hemiltonian describing the motion
in ordinary 3-space as a function of time. In the absence of an eleotromagnetic

field, thls talkes the simple form

‘(33.46) H(x, o ’G) f + (m c )2—

- : - -
in agreement with the éXpression'for the total energy. If mgc>> |E=eﬁl, Eqg.
.(33.45) takes~thé non-relativistic form$

ol 5

. HP_ A
(33.47) H(x, P, t) - mg % = o + (P = eh)”
2mgy

Note that the relativistic Hamiltonian is given as a square root expression with

the rooté of either sign formally permitted. These negative roots give rise to

U
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I

negative energy states when this Hamiltonian is used in quantum mechenics.

' AR’ interesting consequénce of the general form of the Hamiltonian is the

fact that claSsicaliy.théVQVerdgé'valué'of'a:fdnétion depeﬁding on the coordi-

“nates only of a system in thermal equilibrium is independent of an external

magnetic field. The mean value of such a function f£(x) is given by:

e %)
ff(‘;?)e

© (33.48) . f= - &
f; T @

Ir weztaké the Hamiltonian in the form (33.45) or (33.47) with £ = 0, we can’
make & tfansfor@ation _

(33,:49) P -F-ol
Tﬁengcobian qf this-transformation i§.ﬁgity and;hence,wsinqeithg'integration
linits in (33.48) are infinite, the value of (33.48) becomes _iﬁdependent ot &
and hence'gl 7The existence of‘étmagnetié_Susceptiﬁility'thefeforg implies the

éxistéﬁce of states governed by other than the classical equations of motion,
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CHAPTER 34. | HAMILTONIAN'FORMULATION oF MAXWELL'S EQUATIONS

In the last chapter we have formulated the equatlon of motlon of a p01n£
_Particle‘in an external field_in a covariant manner, using a Hamiltonian fonnulation.
ﬁ? now aiﬁ to fbrmulate the equations of motion .of %He field, i.e. Maxwell's |
equations?'in terms ofﬁsuph afsystem,' In trying to do so, a npwzéonsideration
affécts the discussion,vnamely ﬁhé fgct that the number of degrees of freedom, 1

in the mechanical sense, of a field is infinite, Before attempéing'such a

oy
%
) I8

formulation let us therefore study tﬁ;'%féhsiti§n, in Hémiltdniaﬁ'formulatioh,

of a system of a N degrees of‘fréeddm’to a syéfém of"ahvinfinite'numbpr of degrees.,
ﬁetvus consider a set of N poiﬁt particles éf équél mass m connected by a

set of springs of lengths a and force constant k. Let N; be the displacement

th

from equiliﬁrium of the i*M mass, - (See Figure 34:1;),

+~—144+»4+»+%~+—»4

FIGURE (34 1)

The solutlon of‘this problem rests on finding a sultable Lagfanélaﬁ L such’
' that the equatlone .. | |
(34.1) JJL( Mo ‘y"zi, t) dt =
represents the correct equation of motion, For é probiem ih classical mechanids
we kmow thats
.(’34,2) L=rT -7
where T and.V are thé kinetic and potential energies respectivelyoery the L Q

geometry of the prdbiem we thus have:

b =4

_1d . 2 N 2.]
(3403) L’z;l m ?i = k(7i+l - 71)
which can be written in the form:

N _ ’
(34.,3) L =§:; a in ;, where
T | |

!



339,

(545)99 [L ,»(ks)(’?llm)}

is a quantity which we might call’ ‘the "linear Lagrangian density". Eqﬁation
(34,1) for the Lagrangian (34, 3) g;lves then. the usual equatlon of motlon of a
set of coupled oscllla.‘cors° orthogonallzatlon -of (34 ,3) ylelds the set of normal
modeso | .

]7 n Our pr1nc1pa1 interest here is to 1et the number of degrees of freedom tend

to 1nf1n1ty, we shall do this by 1ett1ng:

1 ' /a —> dx
. ’ . ) R

i

m . ' .
- = - (linear mass density)
(3¢.6) § * o :
' “ka—>Y (Young®s modulus)

L Oi#l“&i 3.
T a Tox
‘We have thus replaced the_ discrete ihdex'i by the continuous variable x. The
Lagrangien then becomsss 2 _

(54.7) L=-—f[ 7% - J dx =/£dx
where: 2

{18 1) %‘[/**z (@)
.,The Lagrangian density acquires thus an explicit dependencéonvthe' spatial
.‘derivatiires of the "fielc_i __c_qordiné;'tef' .}Zo |

Let us derive the Euiefian .equati'on of the variational pi'inciple (3[,, ol).

We obtains
5 (34.9) {[Ldt Sﬂxdxdt

=Subst1tut1ng qu (34, 8) and 1nteara,t1ng by parts in the usual way, we obtaln,
o _;Lgnorlng expllcrt time dependencea |

v e ff{En 2 [9"‘] ax).a[;{z] >},d o

'(34010) =
o 3 [3L ] »
ﬂ{én 56| 5F 5 }5"‘”‘ *




’ S 340
where the integrated outrpartﬂhas been made to venish by,tﬁé cbnditioh that
‘£z= 0 at the endpoints of integration over t. Since S?ﬁiéﬂgﬁ"érbitraryAfunotion

of x, we thus obtain the partial differential equations . . .~

Loy e ¥ . 3 | o2& ( o) XA '
(3¢.13) 55 - 3x | J7any |~ 5% |3n) | ©
S S |y |
which is often written in the forms | ,
1y $2_ 2 [ a2 | )
(52.12) 2% _ 2| 2| _, |
2t [y/o
TP o
SN . ‘ ’ ‘ ,’(j\
6 (3L 3 (oL ] S

.where: . ¢ ," " § 3x N

gQ.A Q a(ax)
is called the “variational® derivative. Note that in going to the limit w i %
of & comtinuous variable we have replaced a system of N 6rdinary differential
Lagrangian equations by a partial differential equation.

Us'ingl'thet,;agrarigim~dep\‘s:‘i.‘ty(Sfl;8),' Eq. (34.12) yields immediately the wave

equations v :
2 2 :
(34.13) p 2% -v2W -0

corresponding to gdmpressional waves_tréveiing with velocity 7vY4y Y

Let us now éeneraliie these considefatidns fp a three dimensional field Q}
where )Z may be any covariant parameterai.The actibn integrai(&@l)then generalizes
to: :

(54.14) S1-= ‘gﬂxdv dt = 0

(34;15) . gﬁ z {7 » 5—5.—-} d4 x =0 . ﬂ

This formulation is evidently covafiantg Let us againvvary the funcﬁiona14v&
dependence of & on)z and gi%’, butAconsiaer the x1i as'fixed;'ihdépendeﬁt,
‘coordinates. Partial integration gives:

(34.16) (S—f?ﬁje;ii a?i)\ d? xS»Z=o ';
T (4
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leading %o the covariant Lagraﬁgian equationss

a2 s T L
(34,17) 9‘2 “5T a<i‘3r)~ ’« (1'— 1; 2, 3, 4)

To obtaln an’ expllclt tlme dependence these can be writfen in the forms:

(34. 18? ;f;ﬁ 9__{533} ("L .9_17_>

§£ 2 3 [ &
JV( a? ax (—-—i)

Our program is thus to find angf such that qu (34 17) will lead to Mexwell's

where

o‘(..": l,‘ 2, 3o

. (34,19)

equations. Clearly this discussion will apply to any fleld_theoryo

"It has been possible to state the action principle and write a Lagrangisan

;parfiel_differential equation in an evidently covariant form. To introduce a

Hamiltonian, the time has %o be'singled out among the x1 as has been done in

Eqs. (34.18) and (34.19). We can then define a "momentum density™conjugate to 7

> &
a(g%

and a Hamiltonian densitys :
( | 2N
(34921) X()zg/ﬂ’; x: t) =A _a_.._E.) E(X‘

The Hamiltonian equations fellgw in the usual way: Consider an'increment»dH

(34,20) W(x,t) =

of the total Hamiltonian H = [des

() dH:f{ﬁdv*’"’dﬁ a(;i) <§xﬂ> ;o?‘f 7} ie

using (34.19) and (34.20) this becomes, on partial integration:

(s4.22) aE =f( W afr =W d7)av

Since:

(34.23) H [J—@{'ﬂ’ , g 7&_} av

(54,24 am =f{aq o ;(?ﬁ) dax) 97‘ ‘W a(g—-tz-) (SX)

B
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, Integratlng by parts and using (34 23) and the notation used in (54 19), we obtain:

8 - 592
34,2 = -
(30.28) 7 = s T )?
as the new form of Hamilton's equations.
Hamilton'®s equations(34°25) lead to the usual meaning of the time rate of

change in terms of Poisson brackets. If /A is the density of a physical variable

L, i,e. if L =Jﬂ?\ dv, then, ﬁsing the process used in cbtaining Eq. (34.25) we haves

(54.26) ¢ - /{5’? 7+ gfr ij f{éAﬁrﬁ a‘;'fll\“;%&
=[EA{ )e~dv |

This is analogous to the usual Poisson bracket., These expressions lead to convenient

‘ﬁstartingjpoints;for quantization.

. The discussion . above leads to definite field;equations if a Lagrangian density
ggiszgiven, In order to lead to linear field eQuations! the Lagrangian ﬁust not
-contain powérs of ?z orgjLT higher than‘the'secpndo As the simplgst e#ample wé

, x
might considers:

' 2.2
() Lo {5 SE - 7}
leading to the field equatlons (from (34, 12))

(34.28) [D; )‘ﬂ’l =0
- a méméntum densitys
1 9 L _ - "
(34029 = == : . v o
) 2 It ‘ : : :
and a positive definite Hamlltonlano

(34.30) M = =4~' | + (77)2 + e 72} | | @

This is the scalar meson fleld of Yukawa whose p01nt solutlon iss

-

i(kr-wt)  o"PY

(34.31) n=e -

The electromagnetic field leads to a more éomplicated formulation, Pre=-
sumably we aré now dealing with a vector field, i.e.s

(34.32) nﬁgi
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The Lagrangian'will have Slpartsz 1),a mass term for the mgtion Qf materigl
pérticleé; 2) én interaction term betwéen par%icle and-fieid,_ 3) a field term
‘corresponding to the fielq equation. | |

Terms (1) and (2) cen be_written from ;ur former considerations: if we take

(34,35> ;fi =-% goczuiul o g, = proper mass density

(s.58) &Ly = 50} | |
we know that the correet motions. of point particles in an external field result.
In the chbice of L5 we might be guided by a classical gnalogyr let us choose LS
such that 1)3¢3 is an invarisnt and 2) L3 is a quantity analogous to the classical
difference betweén potential and kinetic energy. In an eleotromagnetic oscillation
energy oscillates between electric and magnetic energy, just as in a mechanical
pscillatioﬁ ?nergy oscillates between kinetic and potential energy. -We are éhus

led to take;/,

ko(B%- o B2) ko

' - 13,
Note that the field equations: :
-_ . —_> - &B
(54056) VOB =0 - . vx E = = 5"{"
are already implied in the connecting equations: ‘
(34.37) pJ =§_"§" - 2—? . corresponding tos:
3 . .
.
(34.38) E = -%9( -3 : B=VxA

The total Lagrangian is thus: .
"(54;39) : ‘5ﬁ= - %Q FijFij +'e ul ¢E +-:-,§’.moczuiui

A further motivation foriﬁé. choide.of the Lagrangian is the connection
be tween Laérangian density and the ene?gy.momentum tensor (BEq. (33.3)). If we
considér the Hamiltonian density to retain the meaning of an energy density then
we can-butg | |

(34.40)

: - —>
2.T T -0

Dy 2 (g3 L .2 (agf);aae_ 3z (L&
| 3t()'£) 31—,{"{ i} \'(;t ;))z \?97 a(ééf&) Gxa‘at
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Hence from (34.40) we can puts '

) ) - a:_ 4& 0 a .

(34.42) N=¢ T "= YWa YA
O%

from which we can form the covariant generalization:
(34.45) T4 = 9y _ 3% o‘féfj

TS

. Note that the cho:.ce\of Lagrangisn fulfills both Eq. (34.42) and T ){as ' i

- required. The ‘Lagrangian selected in Eqo (54035) is thus in agréement with the
stress tensor (33, 6) v , . : : P
We can show easily that the Eagr‘anglanx2 +,£3 of Eqe (34. 34 1&(34..35) 1eads to
- Maxwell®’s equations. We have shown -that il glves ’che correct motlon of a particle
in an external field (see Eqs. (33.28)ff); consider‘ingz% +£3 separately is '
_,eq'uival'eni_;-_to ign.cring;,, the back reaction of the field on the motion of the particle,
Treating the overall Légrangian will lead to the difficulties already discussed
previously in .the> delayed interaéf:ion calculations,

Note that “this choice of & is no£ uniqueo Sin;e tle equations of‘r‘notion
- will depend on the fields Fij which in-turn do not deﬁend on the. quantityg-g 5
any function ofig;» when added to Sﬁ will still be a correct -Lagrang‘iano it is

) 3
custemary but no‘c; mandatory to use the Lorentz c:ondl’clona 0,

From Eq. (34.17) we obtain, using &= f +;f and@-%n

& ke a af I" agjﬂ aﬁk ijﬂ Jﬁr ~ ] ij
 (34.44) —C;—%j = = ax a(gj%) (5 " 9%y (axk “3RZ -—ko&xi (F9)
= - _ v
ﬁénée:. o 7 | ' | | N ‘9
- i3 53
(51,36) 'aii = f’;-

-

which afe Maxwell®s equations. This calculation can of course also be carried
. out using the three~dimensional form:
(34.45) L= =2 {\cz B% - E%) = A ° 3 +p ;j%

end Eq. (34.19).
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- a8 expecteds - ;-

(34 oO) H[{ , kao - 2}16 r dv.-,., SENEEE

Since the solutions are periodic, they can be expanded iu space by a Fourier

- 345

In the three dlmens1ona1 language we have-
(34.46) = o a*

(36.47) W= -k Bt
hvia K ;_) . are e

i.eL,‘A“and E are canonically conjugate. These varlables glve a Hamiltonian density.

. (3R (3xA) “1 1

(34. 48)){ (’a‘%) 679( at> 2}1 Tt n g k \7;1 X (V?f)
‘T?-rk(vﬁp . @ W)

The last term can be ma.de zero byva'partlcular chOlCe of-gaugeQ-at any .rate since

<}’E 0 the volume integral of the last term vanlshes and thus does not contrlbute

to the energy. _ o T E Eﬁvh“~ | ““, o .; ,j

Hence:

(34.49) [)f av = —j —%2 + X (T 77 )2 -

This method of defining canonical wvariables of the'field*eleaFIy‘eenfains

no physical information beyond the content of Maxwell's equatlon.' The main reason

for treating the subject is: a) the particle motions and the'field equations are

,treated by. the: ame procedure and' b): transltlon 10" quantum eleetrodynamlcs is best

DAY

accomplished- through the: canonlcal formulatlon of: the fleld.
An alternative, and possibly phy31ca11y more 1nterest1ng, way of treatlng

Mexwell's equations in Hamiltonian form is to make the number of degrees of freedom

of the field finite by conflnlng the fleld to a- box of dimensions L. Let us

take boundary condltlons such that the field functlons shell be perlodlc ‘with
period L in the three dlmenS}opg.'hf.

Let us take the Hamiltonian ae~

R



,zatlon.

346
integral; i.e., if we pub: o
_ - - e
. - 1 £ i(ker)
= R <] :
(34.51) w5 (L)s 2 Tk :
' ‘ > oy -
then any vector function can be expanded as a sun over k = T(’Ll +mj + n 1) and

‘over the unlt vectors E‘k;\ . The Ekx(;\ 1,2 3) permlt. an arbitrary choice of polar:.-' '

As an example we can expand:

(34 ) Rt - F};_ 2y (r) 07 (+)

gr,@ .
RN ..
. \

(34.55) (xS t) = {12325'3“ -'(r)*’pk_,< () " - o

Ly

We can derlve the auxlllary relationss

(34,54) E]é T{ k- gk\

quk?\ k x E | | |
Let us apply ‘these relations to a pure, i.e. transverse radlatlon fleld. We can
_ then. choose a "gauge" ¢ = 0 and thus. take:

(34 55) V ?
-Q

VOE =O
2 In fhat case’ °?k;\ 0 and hence the summation over é: KA will 1nc1ude only
- -> :
two components ekl and Ekz for each k where ékk is L to k. Hence‘ o G

(34, 56) Vx- uk>\1 - i k. u.
Hence-"

(34 57) (’TZ av = -

"
4 |r—'
(o]
M
M
. ‘m .
"
~
=
+
w
~
.
o]
=
go]
w
2,
4
it

Since W is real, the sum (34.53) is equal to-its complex conjugate; 'Sin.ce'_‘?k}u =
u_k); we must have:’ Py = ‘pf‘k .

Hence:

o[22 a5 | )



"Alsd,'ffom (34.56) and (34.52):

347

(3459)[(3::2)2 av =y

. |z

; ]2 =) é

ik qufl —j;éx k"

Hence: : : ' ' 1
(34.60) H=3 kZ‘Di kak I + kw lqk‘;\ /3

This is the same as the Hamiltonian of a set of harmbnic oscillators. Thus the
equations of the electromagnetic fiqldiare equivalent to the equations of motion

of a set of harmonic oscillatorse Hio 0.0 “Lias a7 Akt








