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ABSTRACT
Wildfires are one of the most catastrophic natural disasters, caus-
ing increasingly severe ecological and economic damage. Early
response is critically important for wildfire management, but also
difficult due to the wide geographical area to monitor, often far from
utility infrastructures such as stable power and high-bandwidth net-
work. In this work, we present Xyloni, a very low-cost, low-power
neural network accelerator for sensor nodes, which improves the
cost-effectiveness and scalability of real-time wildfire detection by
drastically reducing wireless data transmission and overall power
consumption. Xyloni uses low-power flash and FeRAM memories
to store a hardware co-optimized Neural Network model for fire
and smoke detection, as well as intermediate activations during
inference. It also time-shares a Field-Programmable Gate Array
across different model layers for power-efficient computation. The
detection model prevents benign images from consuming network
traffic, allowing the use of low-bandwidth, low-power network
fabrics such as a LoRa mesh network with enough range for the
necessary geographical coverage. Compared to a wide range of
edge and sensor platforms capable of real-time data collection,
Xyloni demonstrated an order of magnitude reduction in power
consumption for the network transmission reduction task, leading
to a corresponding reduction in battery and deployment cost.

CCS CONCEPTS
• Hardware → Hardware accelerators; Chip-level power is-
sues; •Computer systems organization→ Embedded systems;
Neural networks.
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1 INTRODUCTION
Wildfires are one of the most catastrophic natural disasters which
regularly causes very large-scale ecological and economic damage.
Within the US state of California alone, wildfires between 2017
and 2021 have, on average, caused 117 billion dollars of economic
loss [7]. Unfortunately, the damage caused by wildfires is expected
to increase in the foreseeable future due to the impact of the chang-
ing climate. The Fire Weather Index (FWI), which calculates the
index of fire intensity potential, is expected to increase by 2.1 to 3.3%
per decade in Southern Europe [6], and has increased by 20% over
the last four decades in California [8]. The scale of potential damage
emphasizes the importance of real-time detection of wildfire events.
Reducing the average fire response times by 15 minutes is expected
to reduce economic impacts by 3.5 to 8.2 billion dollars [7].

One of the most promising family of approaches to wildfire
detection is using Computer Vision, via either unmanned aerial
drones or ground-based cameras due to their versatility, accuracy,
and the ability to observe a wide area from a strategic location [17].
Various machine learning models have been developed to classify
images based on existence of fire and smoke, or detect and locate
fire and smoke from images, with very high accuracy and versatility.

Unfortunately, the major hurdle of deploying such technologies
is not the accuracy of detection, but the scalability of data collection
and processing [17]. Real-time monitoring conventionally requires
a network connection capable of transmitting image data, but such
high-bandwidth wireless networks are typically short range, and
power-hungry enough to quickly become the primary source of
power consumption for embedded systems [9], increasing the cost
of batteries and limiting the coverage of drones. Low-power long-
range fabrics do exist, such as LoRa organized into a multi-hop
mesh (Figure 1). However, the low bandwidth of each LoRa link
(few KB/s) means the mesh nodes near the gateway can become
a severe bottleneck. While edge processing, which migrates com-
putation near the sensors, can mitigate the bandwidth issue, the
added computation can also significantly increase the net power
consumption and cost of nodes.

To address these concerns, we present Xyloni, a neural network
accelerator designed for minimizing power consumption within
real-time performance requirements. Xyloni uses low power flash
memory and Ferroelectric memory (FeRAM) to store the neural net-
work weights and intermediate activations. It also uses a very low-
power Field-Programmable Gate Array (FPGA) in a time-shared
fashion between neural network layers. For wildfire detection, Xy-
loni hosts an accurate, hardware co-optimized and 8-bit quantized
Convolutional Neural Network (CNN) for classifying images with
fire or smoke. We note that the CNN’s task is not to offload the
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Figure 1: LoRa nodes organized into a multi-hop mesh.

central server’s analytical workload, which will probably involve
more complex models, but to prevent images with low probability
of fires from consuming network resources.

Our Xyloni prototype demonstrates extreme network filtering
via full-fledged CNN on images, within a half-Watt power budget
(430 mW), and within the minute-scale real-time requirements of
wildfire monitoring [19]. Compared to a wide range of off-the-shelf
systems capable of real-time filtering, Xyloni achieves a multifold re-
duction of power consumption, resulting in a corresponding reduc-
tion in battery and power harvester cost. Compared to the next best
system, the Raspberry Pi Zero 2, Xyloni reduces the recommended
power system capacities by over 10× [18]. While the power-hungry
Raspberry Pis and edge GPUs can achieve higher throughput, and
sometimes even higher throughput per Watt compared to Xyloni,
the network bottleneck limits the utility of higher performance.
Meanwhile, high-current batteries are expensive, making Xyloni
the more attractive system as long as real-time goals are met. Xy-
loni is also efficient under intermittent power availability thanks
to progress checkpointing via nonvolatile FeRAM. The claimed
contribution of this paper is demonstrating that a machine learning
accelerator using low-power flash memory and FeRAM for memory,
and time-sharing a low-power FPGA can:

• Sufficiently minimize data transmission via filtering.
• Perform real-time filtering per domain requirements.
• Minimize power consumption for low deployment cost.

The rest of this paper is organized as follows: We present back-
ground and related works in Section 2. We present the detailed
architecture of Xyloni in Section 3, and evaluate it against a spec-
trum of available edge systems in Section 4. We conclude with
discussion in Section 5.

2 BACKGROUND
Early detection of wildfires over a wide area is critical for mitigating
their catastrophic impacts [7]. Real-time monitoring platforms aim
for latencies at scale of a few minutes [16, 19, 20].

Computer Vision for Wildfire Management. Real-time wildfire
detection via computer vision is a rapidly emerging technology, by
analyzing image data collected by a variety of sources including
satellite [3], autonomous drones [2], and ground-based stationary
cameras [17]. Vision-based approaches have been repeatedly proven
useful thanks to the accurate and detailed analysis possible, as well
as the wide range covered by a well-placed camera, compared to
more local sensing technologies such as temperature or smoke

sensors. Many machine learning approaches to computer vision
have proven effective, and a wide variety of models being developed.

Network Bandwidth and Cost. Vision-based approaches are of-
ten not feasible at the scale of deployment to achieve necessary
geographic coverage, as high-bandwidth transmission required for
image transmission is power-hungry (~1s W) and short-range [17],
and necessitate a direct connection to a gateway such as 5G cell
towers. Deployment costs then increase due to the cost of necessary
batteries and power harvesters, as well as gateway construction.

Other approaches try to exploit very wide-range, low-power
(~100s mW) network fabrics such as LoRa meshes, which use peer-
to-peer mesh routing instead of a central gateway [13], using
lower-bandwidth sensors including temperature and air quality
sensors [16]. However, such networks have severely limited band-
width, since they are often limited by the low bandwidth (~few
KB/s) of a small number of links between the gateway and nearby
nodes, as seen in Figure 1.

Edge Processing for Filtering. One promising solution to the band-
width concern is edge processing, where collected data is processed
closer to the sensors where data is collected, and only the the
distilled analysis results get transmitted, allowing the use of wide-
range, low-bandwidth network fabrics. A spectrum of architectures
are explored, including a flexible fleet of edge servers between the
central cloud and the sensor nodes (“fog computing”) [12] to sensor
nodes themselves augmented with computation [15].

While edge processing can reduce network transmission, it can
actually end up increasing cost and power consumption, due to the
high computation requirements of machine learning models. Spe-
cialized edge accelerators aim to remedy this overhead via embed-
ded GPUs (e.g., NVIDIA Jetson) TPUs (e.g., Coral Edge TPU [4]), and
FPGAs [10, 21, 22]. Unfortunately, accelerators targeting highly ac-
curate complex machine learning tasks like vision still suffer multi-
Watt power budgets [10, 21], excluding extreme cases like binarized
neural networks which often trade accuracy for efficiency [1]. This
is partially because the on-board DRAM capacity necessary to host
models comes with a large power budget [14].

3 XYLONI ARCHITECTURE
Figure 2 shows the overall architecture of Xyloni, an FPGA acceler-
ator augmented with non-volatile memories, and attached to the
host microcontroller unit (MCU) over the Serial Peripheral Interface
(SPI) and Quad Serial Peripheral Interface (QSPI). Since Xyloni aims
to minimize cost and power consumption, it uses the Lattice iCE40
UP5K, a low-cost (~$5), low-power (20𝜇𝑊 budget) FPGA with small
amounts of on-chip memory (128 KB) and Digital Signal Processing
(DSP) blocks. The host MCU is in hibernation most of the time,
only waking periodically to initiate accelerator kernels, wirelessly
transmit alive indications to the server, or to transmit raw image
data in the rare case when fire or smoke is detected.

Two types of low-power nonvolatile memory are used to extend
memory capacity: multiple 16-MB QSPI Flash Memory chips with
sufficient total capacity to host read-only model parameters, due to
their limited overwrite lifetime; and a multi-MB Ferroelectric mem-
ory (FeRAM) with much better write durability for intermediate
activations. Both memories are fastest with large block accesses,
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Figure 2: Xyloni node architecture

where bursts of dozens of bytes are useful to minimize command
overhead.

3.1 Hardware Co-optimized CNN Model
For Xyloni, we have developed an image-based wildfire detection
CNN model based on CaffeNet [11], co-optimized with the Xyloni
architecture. We call the resulting model Shallow CaffeNet, and
its structure is compared against the original CaffeNet in Table 1.
Shallow CaffeNet reduces model weight capacity from 300.2 MB
to 43.4 MB, without significant loss of accuracy. Details about the
optimization approaches are described below.

Table 1: Model Architecture Changes to Wildfire Detection
CaffeNet (W is window, D is dimensionality, →↓ is stride)

CaffeNet [11] Shallow CaffeNet
Input:224x224x3 (32-bit) Input:250x250x3 (8-bit)
Conv2D W:11x11 D:96 →↓4,4 Conv2D W:12x12 D:96 →↓4x4
ReLU BatchNormalization
MaxPool2D W:3x3 →↓2,2 MaxPool2D W:4x4 →↓2,2
BatchNormalization ReLU
Conv2D W:5x5 D:256→↓1,1 Conv2D W:5x5 D:256 →↓1,1
ReLU BatchNormalization
MaxPool2D W:3x3→↓2,2 MaxPool2D W:4x4 →↓2,2
BatchNormalization MaxPool2D W:4x4 →↓2,2
Conv2D W:3x3 384→↓1,1 ReLU
ReLU Dense D:4096
Conv2D W:3x3 384→↓1,1 ReLU
ReLU Dense D:4096
Conv2D W:3x3 384→↓1,1 ReLU
ReLU Dense D:1
MaxPool2D W:3x3 →↓2,2 Sigmoid
Dense D:4096
ReLU
Dense D:4096
ReLU
Dense D:4096
Softmax
Size: 300.2 MB Size: 43.4 MB

The Shallow CaffeNet design was the result of design space
exploration aiming to optimize non-volatile storage accesses, accel-
erator resource efficiency, as well as model size. First, convolution
filter sizes are increased from 11×11 to 12×12, to reduce fragmen-
tation due to fixed-size bursts from QSPI Flash Memory, while
more parameters helped retain accuracy with fewer layers. Second,
three convolution layers are removed, since they did not have a
significant impact on accuracy. Third, the max pooling window

QSPI

Flash

FeRAM

×

×

×

×+

++

Accumulator

BRAM FIFOBRAM FIFOBRAM FIFOBRAM FIFO

BRAM FIFO

SPRAM

FPGA Weights

Figure 3: 2D Convolution configuration microarchitecture.

is increased from 3 to 4, so that the pooling window dimensions
are proportionally 2-to-1 to the stride dimensions. This enables
efficient architectural optimizations presented in Section 3.2.2 for
more efficient on-chip memory resource management. Finally, we
moved the ReLU activation functions to after max pooling to reduce
the number of activation function calls.

The resulting shallow model was quantized using quantization-
aware training on TensorFlow, TensorFlow Lite, and TensorRT. We
target uniform symmetric linear quantization, where weights are
centered around zero, the quantization scale is linear, and every
layer has the same scale factor. Symmetric linear scales greatly
simplify quantized arithmetic. And a shared scale factor can be
efficiently embedded into hardware in a static fashion.

3.2 Xyloni Accelerator Microarchitecture
Xyloni time-shares the FPGA across different stages, and focuses all
chip resources into each layer being processed. A separate FPGA
configuration bitfile is created for each stage and stored in the on-
board SPI flash. For each image, the MCU copies it to the accelerator
FeRAM and initiates the first stage. When one stage is done, the
FPGA wakes the host MCU from hibernation to initiate the next
stage. The Shallow CaffeNet in Table 1 is divided into three different
stages: Conv2D, Batch+Pool, and Dense.

3.2.1 Configuration 1: Conv2D. Figure 3 illustrates the microar-
chitecture of the Convolution configuration. Either input image
or the previous layer’s feature map is received from the FeRAM,
into the four available SPRAM units organized into an alternating
double buffer. Weights are loaded from the QSPI Flash module into
a set of 4 BRAM FIFOs, where loaded weights can be re-used for
each input feature map. The SPRAM accesses on the UP5K have
16-bit ports, so we can retrieve four 8-bit input values every cycle
from the two active SPRAM blocks currently being read. This data,
coupled with the weights from the four FIFOs, are then fed into a
multiply-accumulate pipeline, with output being accumulated for
each convolution. The output values are cached in output BRAM
and then written efficiently via bursts to the FeRAM.

3.2.2 Configuration 2: Batch Normalization and Max Pooling. Due
to relatively light computation requirements compared to other
stages, Xyloni implements both batch normalization and max pool-
ing units in the same stage. Figure 4 illustrates themicroarchitecture
of this stage, where both functions are implemented.

Batch normalization. To reduce computation and storage and
storage access, the runtime behavior of batch normalization is sim-
plified. As the batch normalization weights (𝛽,𝛾 ) are constants
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during inference, the original Equation 1 is re-organized into Equa-
tion 2, such that most computation between static values can be
pre-computed. During runtime, each input only needs to go through
one multiplication and one addition against two weights (a coeffi-
cient and a constant, highlighted gray in Equation 2).

𝑜𝑢𝑡𝑝𝑢𝑡 = (𝑖𝑛𝑝𝑢𝑡 −𝑚𝑒𝑎𝑛)/𝑠𝑡𝑑𝑒𝑣 ∗ 𝛾 + 𝛽 (1)

= 𝑖𝑛𝑝𝑢𝑡 ∗ (𝛾/𝑠𝑡𝑑𝑒𝑣) + (𝛽 − (𝑚𝑒𝑎𝑛 ∗ (𝛾/𝑠𝑡𝑑𝑒𝑣))) (2)

Inside the microarchitecture, the weights are stored and retrieved
from a special region reserved at the back of the FeRAM address
space. Weight pairs (const, coeff) are loaded into two BRAM FIFOs,
and the the input feature map is loaded from FeRAM and streamed
into the operator tree. Output is written in bursts using an output
BRAM FIFO.

Max pooling. Figure 10 also illustrates the microarchitecture for
max pooling, for a 4×4 window and stride of 2, as used by the Shal-
low CaffeNet model. The design goal of this microarchitecture is to
minimize redundant data loads despite the existence of overlapping
strides, while also supporting random accesses. To support this,
we implement two full sets of pooling windows. One full (“main”)
window, and two half windows. Input is read in as values from
4-byte contiguous bursts four times to fill its main pooling win-
dow in a 16-byte vector. While the main pooling window is being
filled, the back halves and front halves of the window, split by the
stride, are stored separately. Once filled, the max values of the main
and back windows are calculated, and emitted. Then, the next non-
overlapping block is read in, and during the process, the max of
the new front window and the max of the previous back window
can be joined to compute the max value of the overlapping window.
The ReLU activation function is performed during output.

3.2.3 Configuration 3: Dense layer. Figure 5 shows the microar-
chitecture for the Dense unit, which executes three dense layers

QSPI

Flash

FeRAM

FPGA

BRAM FIFO

×Accumulator

Relu BRAM FIFO

Weights

Input

Output

Figure 5: Dense layer microarchitecture.

Table 2: UP5K chip utilization for each accelerator instance.

Instance LC BRAM SPRAM DSP
Convolution 4111 (77%) 30 (100%) 4 (100%) 8 (100%)
Batch+Pool 2632 (50%) 30 (100%) 0 (0%) 2 (25%)
Dense 3201 (61%) 30 (100%) 0 (0%) 2 (25%)

sequentially, and does its best to perform on-chip caching between
layers. The Dense unit receives input from FeRAM to load into a
BRAM FIFO, and performs multiply-accumulate with the weights
received from the QSPI Flash. Input data is re-enqueued into the in-
put FIFO for reuse across weight matrix rows. For the intermediate
dense layers (e.g., first two layers in Shallow CaffeNet), ReLU activa-
tion is applied to each accummulated results and then pushed into
the output FIFO. On the final layer, the raw accumulation results
are pushed enqueued without ReLU. The output stream is collected
in the output BRAM FIFO and re-used as input for the next dense
layer (if any). The final output is emitted to the host MCU either
via FeRAM or through SPI.

The performance of the dense layer is primarily limited by how
fast weights can be read from the QSPI Flash chips. This is partly
because Xyloni is operating at batch size of 1, to minimize latency.
Higher throughput can be attained if Xyloni is allowed to collect,
say, 4 images each 5 to 10 seconds apart, for larger batch processing
at the cost of dozens of seconds of latency. Image batching must
be done at such large intervals, because immediately back-to-back
images likely will not have much variance.

4 EVALUATION
4.1 Implementation Details
Table 2 shows the FPGA resource utilization of Xyloni across the
three configurations. We achieve a balanced division of work across
configurations. All designs achieve a 22 MHz clock speed.

We note that all designs make efficient use of on-chip resources,
including 100% BRAM utilization for burst I/O, up to 100% SPRAM
and up to 100% DSP usages for caching and parallel processing.

Xiloni

FPGA, 286 Flash, 70

FeRAM, 72 LoRa, 120 Camera, 200

0 200 400 600 800 1000
Power (mW)

Figure 6: Component power consumption breakdown.

Figure 6 presents the component power breakdown. The exter-
nal memory additions, the QSPI Flash and FeRAM modules, draw
similar amounts of low power that combined are still less than half
of the FPGA power consumption.

4.2 Model Accuracy Evaluation
Figure 7 presents the change in model accuracy, starting from
the unmodified CaffeNet to the eventually deployed, hardware
co-optimized and quantized version. All models were trained and
tested on the Wildfire Detection Image dataset [5].
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The final hardware-optimized quantized model achieves 91.2%
accuracy, a mere 3% drop compared to the dynamically quantized
version, and 6-7% lower than the unquantized original.

We emphasize that this model is only used on the edge device
for network filtering. Much more capable models may be used at
the central server to analyze raw images sent after filtering.

Table 3: Evaluated off-the-shelf platforms.

Clock Suff. Power
Platform CPU Cores (MHz) Mem (W)
Arduino Uno M0 1 16 × ~0.3
Arduino Due M3 1 84 × ~0.8
Arduino Teensy4 M7 1 600 × ~0.4
RPi Zero 2 A53 1 1000 ⃝ ~1.8
RPi 4 B A72 4 1500 ⃝ ~5
NVIDIA Jetson Volta
AGX Xavier (GPU) 512 1211 ⃝ ~15

4.3 Evaluated Platforms
We compared Xyloni against a wide variety of embedded platforms
typically used for sensor deployment, spanning 8-bit microcon-
trollers to embedded GPUs. Table 3 summarizes the systems. All
platforms with sub-watt typical active power consumption could
not support even our quantized model in memory (“Suff. Mem”).
More powerful systems with sufficient memory capacity also con-
sumed proportionally larger power.

4.4 Comparison Against Real-Time Systems
Figure 8 compares the performance and power efficiency of the
systems capable of supporting the CNN model in memory. While
Xyloni perform poorly compared to the much costlier and power-
hungry systems, Xyloni does achieve sufficient performance for the
domain-specific minute-scale real-time requirement (red hatches),
as well as competitive power efficiency.

Once real-time requirements are met, however, higher perfor-
mance has diminishing returns. Instead, low power consumption
starts being more important, because it has direct impact on the
cost and lifetime of the deployment. Figure 9 compares the real-time
systems based on average active power consumption as well as peak
power based on the recommended power system capacity [18], and
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Figure 8: Performance and power efficiency comparison.

shows that Xyloni achieves multifold reduction in power consump-
tion, as well as sub-watt power consumption. Compared to the most
low-power RPi Zero, Xyloni reduces power consumption by over
4× based on average power, and over 10× based on peak power.
Furthermore, Xyloni supports intermittent computation using the
non-volatile FeRAM module for checkpointing, and the consistent
accelerator behavior results in very regular power consumption,
allowing near-threshold, intermittent power budgets.
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Reduction of power budgets have a direct impact on the de-
ployment cost, since the cost of off-the-shelf batteries and power
harvesters are often directly proportional to their standard dis-
charge current, as seen in Figure 10. The recommended batteries
for Xyloni and the Raspberry Pi Zero 2 are highlighted (Both with
1.2 Ah capacity). The battery can end up accounting for the majority
of the sensor node, considering the RPi Zero device itself costs less
than $30 as of 2024. The production cost of Xyloni is difficult to
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Figure 11: Embedded systems performance comparison

predict, but each component (e.g., FPGA, memory) is lower-cost
compared to RPi Zero.

4.5 Comparison Against Embedded Systems
We first emphasize that the systems evaluated in this section lack
sufficient memory to perform CNN inference. But for completeness,
we evaluate some sub-components that can be run or estimated.
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Figure 12: Embedded systems power and efficiency

As the dense layer weights exceeded the memory capacity of all
embedded systems, we present a proxy evaluation by extrapolating
on executing a subset of the convolution layers, only as much as
can fit in memory. Effectively, we are evaluating the comparison
systems under the unrealistically favorable scenario where they can
magically procure sufficient on-chip SRAM. Figure 11 compares the
convolution performance between embedded systems, and shows
that Xyloni, using FeRAM for temporary storage, achieves superior
performance even for memory-resident workloads.

Figure 12 compares the active power consumption and power
efficiency of embedded systems, and shows Xyloni consumes com-
parable amounts power compared to embedded systems, with much
higher power efficiency. We note that Xyloni power consumption
numbers included the FeRAM but not the QSPI Flash module, to
match the scale of memory capacity.

5 CONCLUSION
We present Xyloni, a very low power neural network accelerator
for sensor nodes, capable of real-time filtering of captured image
data for the purpose of minimizing network transmission. Thanks
to Xyloni, a sensor node can take advantage of very long-range and

low-power, but also very low-bandwidth network fabric such as
LoRa, while also significantly reducing the cost and power consump-
tion of each node. We believe this approach can finally enable the
wide-area deployment of early detection of wildfires and beyond.
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