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Abstract

Models with modular flavor symmetries have been thought to be highly predictive.
We point out that these predictions are subject to corrections from non–holomorphic
terms in the Lagrangean. Specifically, in the models discussed in the literature, the
Kähler potential is not fixed by the symmetries, for instance. The most general Kähler
potential consistent with the symmetries of the model contains additional terms with
additional parameters, which reduce the predictive power of these constructions. We
also comment on how one may conceivably retain the predictivity.
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1 Introduction

Recently a rather exciting observation has been made [1, 2]: nine neutrino parameters can
be predicted from only three input parameters. The crucial ingredients of the corresponding
model are modular flavor symmetries. The point of this paper is to show that these models
actually have additional parameters which have not been taken into account in the models
in the recent literature. We also comment on possible ways to retain control over these
parameters.

To understand the main point of our paper, recall that the predictions of these models
come from the fact that the superpotential is fixed by the modular transformations. However,
the superpotential only contains the physical parameters if the fields appearing there are
“physical”, i.e. canonically normalized. As we shall see, the Kähler potential, which contains
the information about the fields, is not at all fixed by the symmetries and transformation
properties of the models. This is why the modular transformations alone do not allow one
to make such remarkable predictions, as we shall discuss in more detail in what follows.

2 Modular flavor symmetries

Modular flavor symmetries have so far only been discussed in the supersymmetric context.
There, they are modular transformations which act on a so–called modulus τ and “matter”
superfields ϕ(j) according to [1]

τ 7→ a τ + b

c τ + d
=: γ τ , (1a)

φ(j) 7→ (c τ + d)−kj ρ(j)(γ)φ(j) , (1b)

where a, b, c and d are the Γ ≡ SL(2,Z) parameters satisfying, by definition, a d − b c = 1
and ρ(j) is the representation matrix of some quotient group ΓN = Γ/Γ(N). −kj denotes
the so–called modular weight. The collection of chiral superfields will be denoted Φ =
(τ, φ(1), . . . , φ(F )).

The modular group Γ = Γ/Z2 is generated by

S =

(
0 1
−1 0

)
and T =

(
1 1
0 1

)
, (2)

which correspond to the transformations

τ
S7−−→ − 1

τ
and τ

T7−−→ τ + 1 . (3)

These generators satisfy

S2 = (S T )3 = 1 . (4)

It is straightforward to verify that

(−i τ + i τ̄)
−k (1)7−−→ ((c τ + d) (c τ̄ + d))

k
(−i τ + i τ̄)

−k
. (5)

Therefore, the combination

(−i τ + i τ̄)
−kj

(
φ(j)∗φ(j)

)
1

(6)
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is invariant under modular transformations. Here, the notation (· · · )1 indicates a contraction
to a ΓN 1–plet, i.e. to an invariant under ΓN . However, as we shall see below, this is not
the only invariant.

3 Additional parameters from non–holomorphic terms

The fact that there are additional terms in the Kähler potential has been already noted in [1].
The existence of additional terms already follows from the observation that the predicted
parameters run. Running of couplings in supersymmetric theories can be understood as
corrections to the Kähler potential. On the other hand, the superpotential is protected by
holomorphicity, which is reflected by the non–renormalization theorems. As we shall see,
the most general Kähler potential consistent with the symmetries has numerous additional
parameters.

We will base our discussion on Model 1 of [1], which has the finite quotient symmetry
Γ3 ' A4. However, the analogous statements apply to the follow–up models in the literature
such as [2–9]. The Higgs and lepton sector of the model is specified in table 1.

(Ec1, E
c
2, E

c
3) N L Hd Hu ϕ

SU(2)L ×U(1)Y 11 10 2−1/2 2−1/2 21/2 10

Γ3 (1,1′,1′′) 3 3 1 1 3
k (kE1

, kE2
, kE3

) kN kL kHd
kHu

kϕ

Table 1: Model 1 of [1]. Eci , L, Hu and Hd are the superfields of the charged leptons,
left–handed douplets, up–type Higgs and down–type Higgs, respectively.

As the author of [1] has pointed out, the charged fermion masses are obtained by ad-
justing three parameters. The nontrivial predictions of this model are on the neutrino
parameters, which come form the Weinberg operator

Wν =
1

Λ
[(Hu · L) Y (Hu · L)]1 . (7)

Here, Y is a triplet of modular functions of weight 2, Y = (Y1, Y2, Y3)
T

. The Kähler potential
of the charged leptons is taken to be

KL = (−i τ + i τ̄)
−1

L† L . (8)

Here the modular weights of the leptons are −1 (corresponding to kL = 1) and Hu has zero
weight (kHu

= 0). The neutrino mass matrix is then given by

mν =
v2
u

Λ

2Y1(τ) −Y3(τ) −Y2(τ)
−Y3(τ) 2Y2(τ) −Y1(τ)
−Y2(τ) −Y1(τ) 2Y3(τ)

 . (9)

The crucial point is that this matrix has only three free real parameters: Λ, Re τ and
Im τ . On the other hand, the charged lepton Yukawa coupling is diagonal in this model.
Therefore, the mass matrix (9) fixes nine observables: the three neutrino mass eigenvalues,
three mixing angles, the so–called Dirac CP phase and two Majorana phases. In [1,2] values
of τ that gives rise to realistic neutrino masses and mixing angles are specified. This is a
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spectacular result. Three real input parameters, Λ, Re τ and Im τ , pin down three mass
eigenvalues, three mixing angles and three phases. That is, this setting appears to make six
nontrivial predictions, which agree amazingly well with observation (so far).

In more detail, the MNS matrix is the mismatch of the unitary transformations that
diagonalize the neutrino mass matrix and the charged lepton Yukawa coupling matrix,
respectively,

UTν mν Uν = diag(m1,m2,m3) and U†eL Ye Y
†
e UeL = diag(y2

e , y
2
µ, y

2
τ ) . (10)

That is, U
(0)
MNS = UeL U

T
ν , and since in the original Lagrangean Ye is diagonal, U

(0)
MNS = UTν .

The first term depends on nine physical parameters,

mν = U∗ν diag(m1,m2,m3)U†ν , where Uν = Uν(θ12, θ13, θ23, δ, ϕ1, ϕ2, . . . ) (11)

with θij denoting the three mixing angles, δ the Dirac CP phase, ϕi the two Majorana
phases, and the omission “. . . ” stands for three unphysical phases.

This parameter counting assumes that the Kähler potential is given by (8). However,
the modular symmetries do not fix the form of the Kähler potential. Rather, the full Kähler
potential includes additional terms beyond the one given in (8),

K = α0 (−i τ + i τ̄)
−1 (

LL
)
1

+

7∑
k=1

αk (−i τ + i τ̄)
(
Y LY L

)
1, k

+ . . . . (12)

Here we have summed over all singlet contractions (specified by subscript k), and α0 can
be absorbed in a redefinition of the fields. Some of the relevant contractions are given

by
{(
Y L

)T
3(j) (Y L)3(i)

}
i,j∈{1,2}

and the invariant contractions of the one–dimensional con-

tractions (Y L)1,1′,1′′ with appropriate conjugates.1 Specifically, the first three terms in the
expansion (12) are

∆K = α1

(
Y L

)T
3(1) (Y L)3(1) + α2

(
Y L

)T
3(2) (Y L)3(2)

+ α3

[(
Y L

)T
3(1) (Y L)3(2) +

(
Y L

)T
3(2) (Y L)3(1)

]
+ . . . . (13)

Note that all the terms are on the same footing, there is a priori no reason why, say, the α0

term should be referred to as the leading term and the others as “corrections”.
Once we add the other fields of the model, even more terms will have to be added. For

instance, the above model [1, 2] also introduces a flavon ϕ (cf. Table 1). Therefore, we can
add further terms to the Kähler potential of the form

∆K =
∑
i

βi (−i τ + i τ̄)
−kL−kϕ (ϕLϕL)

1, i
, (14)

where we sum over all A4–invariant contractions.
The impacts of these additional terms can be significant. Suppose one has derived

predictions on the neutrino parameters based on the Kähler potential (8). The additional
terms will modify the Kähler metric,

Ki̄
L =

∂2K

∂Li ∂L̄
. (15)

1Notice that the conjugate of (Y L)1′ ,
[
(Y L)1′

]∗
, transforms as 1′′.
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This metric has to be diagonalized,

KL = U†LD
2 UL , (16)

where UL is unitary and D is diagonal and positive. Therefore, the canonically normalized
fields are

L̂ = DUL L or equivalently L = U†LD
−1 L̂ . (17)

After adding the αi>0 contributions and transforming the fields back to canonical nor-
malization, we need to diagonalize

ÛTν D
−1 U∗Lmν U

†
LD

−1 Ûν = diag(m1,m2,m3) , (18a)

Û†e D
−1 U∗L Ye Y

†
e U

T
L D

−1 Ûe = diag(y2
e , y

2
µ, y

2
τ ) . (18b)

This is to be compared with (10). We see that if D is proportional to the unit matrix, there
would be no effect, i.e. the original mixing matrix UL would still do the job of diagonalizing
mν and thus the predicted values for the neutrino mixing parameters based solely on α0

contribution remain valid. However, for the contributions given in (12), D is generically
not proportional to the unit matrix, and consequently the predicted values for the mixing
angles get modified significantly. Our numerical analysis reveals that they are of the order

∆θ
(k)
ij = αk · (1 . . . 10)◦ , (19)

and similarly for the CP phases. This is illustrated in Figure 1 for k = 3. Analytic formulae

12

13 23

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

3

ij

Figure 1: Dependence of the mixing angles on the additional parameter α3 (cf. Equa-
tion (13)).

that allow one to evaluate the impact of these corrections have been derived in [10, 11].
They confirm our result as given in (19). Importantly, these corrections are in general much
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larger than the corrections from RGE running and supersymmetry breaking which have
been worked out in [2].

Altogether we see that in models with modular flavor symmetries the specification of τ
and Λ is not sufficient to determine the neutrino parameters. There exist many additional
parameters, and, as a consequence, the number of free parameters is generically larger than
the number of predictions.

4 Discussion

The findings of the previous section should not be surprising. The salient properties of the
models with modular flavor symmetries rely on the holomorphicity of the superpotential.
However, the Kähler potential does not have these properties. Moreover, these symmetries
are nonlinearly realized.

How can one conceivably control the Kähler potential better? This will be possible if one
derives the modular flavor symmetries from some more complete setting. As is well known,
these symmetries come from tori. Thus one expects that there will be interpretations of
these symmetries in models with extra dimensions.

Most prominently, modular symmetries appear in string theory. The existence of some
non–Abelian symmetries has been already noted in [12], and more recently studied in more
detail in [13, 14]. In particular, the Z3 orbifold, which also has (in the absence of so–called
discrete Wilson lines) a ∆(54) flavor symmetry [15], has a T′ modular flavor symmetry [14].
Given these results, it is tempting to speculate that an A4 modular flavor symmetry could
originate from the T2/Z2 orbifold, where the four twisted string states form a (3 + 1)
reducible representation.

Note that in string theory, the notation is usually somewhat different (cf. e.g. [16]).
Instead of denoting the modulus τ and demanding that its imaginary part transforms as a
real scalar and its real part as a pseudoscalar, many string theorists prefer to consider T
instead of τ = iT . Then the real part transforms as scalar and has often the interpretation
of volume. The imaginary part is sometimes referred to as T–axion. The transformation of
T and the matter fields under γ ∈ ΓN then reads

T 7→ a T − i b

i c T + d
, (20a)

ϕ(j) 7→ (i c T + d)
nj ρ(j)(γ)ϕ(j) , (20b)

where the nj = −kj are the modular weights.
In contrast to the bottom–up models, in many string theory compactifications the mod-

ular weights are not free parameters but can be computed from other data of the models.
They are used to derive approximate expressions for the Kähler potential. For example, by
considering string scattering amplitudes in heterotic orbifold compactifications (although
this result is more general; see e.g. [17]) and the so–called large volume limit ReT � 1, it
has been found that the leading contribution to the Kähler potential for the matter fields
is given by [18]

K ⊃
∑
`

F ∗i`(T )F`j(T )
(
T + T

)nj
ϕ(i)ϕ(j) , (21)

where the modular weights nj are derived from the oscillator quantum numbers and the twist
of the fields ϕ(j), and turn out to be (mostly) nonpositive. F`j are arbitrary holomorphic
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functions, building a non–degenerate matrix that fix the basis of the field space. Although
these functions are typically chosen as F`j = δ`j for all j and `, one may in principle also
consider modular forms of nontrivial modular weight nF`j

. Modular invariance of the Kähler
potential would then imply that nj must be replaced by nj + nF`j

in Equation (21). If we

suppose that F`j = δ`jY (T ) for ϕ(j) = L, the terms of the Kähler potential (12) with k 6= 0
are recovered with no additional suppression. Note however that the functions F`j can be
absorbed in field redefinitions at the expense of altering the superpotential couplings.

It is known that the Kähler potential (21) receives additional contributions (see e.g. [19]).
E.g. for string compactifications where matter arises from bulk fields, the Kähler potential
can be expressed as K = − ln(T + T − |ϕ(j)|2), which yields (6) only in the large volume
limit. However, the best–fit point for phenomenology in the model discussed (ReT ≈ 1)
violates this limit. It should also be noted that in string compactifications the superpotential
usually transforms nontrivially, and has modular weight −1.

Furthermore, as is well known, string theory is in principle very predictive. However,
in concrete examples it is nontrivial to make precise predictions. This is because string
models leave us typically with several moduli, whose potential is hard to explicitly compute
and to minimize. Therefore it might be worthwhile to derive modular flavor symmetries
from less complex settings, such as magnetized tori, where the background fluxes lead to
chiral fermions [20]. Such models seem to give rise to modular flavor symmetries of the type
discussed in this note [5]. These models are dual to D–brane models [21], and the couplings
there can be mapped to couplings on orbifolds [22].

All these arguments suggest that more efforts need to go into deriving the modular
flavor symmetries from string theory, or other higher–dimensional models. It is only then
one might control the Kähler potential well enough to make controlled predictions.

As a side remark, let us also comment on the terminology. In some of the recent litera-
ture, the transformation

W (Φ) 7→ W (Φ) , (22a)

K(Φ,Φ) 7→ K(Φ,Φ) + f(Φ) + f̄(Φ) , (22b)

where f is a holomorphic function, is referred to as “Kähler transformation”. Since the
Lagrangean of a supersymmetric theory is given by

L =

∫
d4θK(Φ,Φ) +

[∫
d2θW (Φ) + h.c.

]
, (23)

we note that it is invariant under (22) just because∫
d4θ f(Φ) =

∫
d4θ f̄(Φ) = 0 . (24)

So (22) is nothing but the statement that one can shift the Kähler potential of a global
supersymmetric theory by the real part of a holomorphic function without changing a La-
grangean. This is not a Kähler true transformation. Kähler transformations are formally
written as [23]

W (Φ) 7→ e−f(Φ) W (Φ) , (25a)

K(Φ,Φ) 7→ K(Φ,Φ) + f(Φ) + f̄(Φ) . (25b)
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They have the virtue of leaving the scalar potential

VSUGRA = eK
[
Ki̄ (DiW )

(
D̄W

)
− 3|W |2

]
(26)

invariant. The Kähler transformation (25) does reduce to (22) for dimensionful fields Φ at
zeroth order in Φ/Λ because of the suppression scale Λ in the exponent of e−f . However, for
dimensionless fields, such as Φ = T (or τ) (cf. [1, footnote 3]), no such suppression appears
and thus only (25) is a proper Kähler transformation in this context. As mentioned above,
it does not make sense to expand in T/Λ, i.e. the point in field space at which |T | is small
is not a point one may expand around. This observation becomes relevant in constructions
emerging from string theory, where the Kähler transformations (25), and not (22), are
symmetries of the theory.

5 Summary

Motivated by the striking observation that modular flavor symmetries allow one, at some
level, to successfully make several nontrivial predictions [1,2], we have studied these models
in some more detail. We find that there are additional parameters which have not been
taken into account in the literature so far. The existence of these parameters renders these
models less predictive than previously thought.

Let us emphasize, though, that despite the existence of additional parameters, the mod-
ular flavor symmetries continue to be highly interesting approach to the flavor problem. It
will be instrumental to derive them from a more complete setting, in which one may hope
to control the Kähler potential to a greater degree.
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