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K™ -NEUTRON ELASTIC SCATTERING FROM K d — K 4
~ AND K d »K pn at 1 BeV/c
Nathan Nay Shew Jew
Lawrence Radiation Laboratory

- University of California
Berkeley, California

October 1969

ABSTRACT

We present experimental angular distributions fdr K'd »K d and
K'd »K pn at incident K~ momenta of 810, 910, 1010, and 1110 MeV/c.
These distributions are analyzed simultaneously in terms of free
nucleon scattering parameters; using Glauber's impact paraméter
fofmalism as étarting point. This formalism was modified to make it
applicable to our data, which contained a proton momentum ;ut made
during scanniﬁg.‘ In addition, we incorporated into our analysis two
other ﬁédifications to this formalism. One of these arose from the
difference in flux factors between K d and K -nucleon scattering, the
othér from the smearing of the nucleon cross-sections due to Fermi

momentum. Finally, this formalism was extended to include spin

.dependence.r The method of analysis required both the X p and X n

elastic scattering amplitudes. We input the K p amplitudes from two

- models based on experiment. These were held fixed during the fitting.

We then parametrized the Kn amplitudes and fitted our data by varying -
the K n parameters to get a minimum for the fitting xz. The analysis

included both the single and double scattering effects.
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'~ I. INTRODUCTION

We present here a bubble chamber study of K -deuteron scattering at
four K~ gomenta: 810, 910, 1010, and 1110 MbV/c, We study both the
elastic scattering reaction and the reaction in which the K ‘breaks up
the deuteron into a neutron and a proton. Out of the 219 000 pictures
scanned, we obtained Ll 000 2-prong events. After applying selection
criteria to these, we have a total of 7800 elastic scattering events and
24 000 break-up events. These numbers are for the four incident momenta
combined.

We analyze our data samples simultaneously in terms of free nucleon
scattering parameters, using Glauber's impact parameter formalism to do
this. We need to modify this formalism to make it applicable to our
data, which contain a proton momentum cut made during scanning. This
cut affects the break-up reaction cross-section ‘data. The modification

to the break-up cross-section formula is obtained via a diagrammatic

"method. We find two other modifications which we incorporate into our

fitting procedure. One of these arises from the difference in flux
factors between K d and K -nucleon scattering. The other arises from
Fermi moméntum smearing of the nucleon cross-sections. Finally, we extend
this formalism to include spin dependence. |

Our analysis require both the K p and K n elastic scattering
amplitudeé. We input the Kp amblitudes from two models based on
experiment. Thesé are held fixed during fitting. VWe then parametrize
thevK-nf;mplitudes and fit our data through a variation of the.parameteré
in the X n amplitude to minimize_ﬁhe fitting X?- Qur analysis also
includes double scattering effects.

The contents of the main sections of this report consist of the



following. 1In Section II, we give the relevant details of the
experimental procedure. In Section III, we present the impact parameter
formalism for K d scattering, followed by modifications which are needed
in order to apply this formalism to our data. We conclude this section
with an extension of this formalism to include spin. In Section IV, we
discuss the details of the procedure of analyzing our data. This
includes the choice of a deuteron form factor, details of the K p elastic
scattering models, the parametrization of the K n elastic scattering
amplitudes, and the various steps of the fitting procedure. This

section ends with a discussion of the results obtained in our analysis.



IT. EXPERIMENTAL DETAILS

A. Collecting and Processing of Data

1. The K Beam

This experiment was done with a two-stage separated K beam, using
the Lawrence Radiation Laboratory 25-inch bubble chamber as detector.
The beam was designed to operate in the momentum range 800 to 1200 Mev/c.
The K particles were produced from a copper target in the Bevatron
external proton beam and were extracted at o°. They were separated from
the other particles by two stages of separation. The layout of the beam
is shown in Fig. 1, and is described in Ref. 1. ZFrom a delta-ray
count, the beam in the bubble chamber was found to contain between 90 and
95% K~ (depending on momentum). About 85% of the contamination was muons,
the rest being pions. (See Section II-B.)

2. Scanning and Measuring

A total of 219,000 pictures were taken at incident K momenta of
810 MeV/c (23,000 pictures) 910 MeV/c (76,000 pictures), 1010 MeV/c
(54,000 pictures), and 1110 MeV/c (66,000 pictures). We scanned for
2-prong events which had a positive track of projected length > lmm.
About 1/2 the film (80%, 33%, 72%, 49% for the four incident momenta,
respectively) was scanned with just this cut. The remaining half was
scanned with the additional restriction that the positive track be of
projected>1ength < 9 cm and hence must stop within thé bubble chamber.
The fiducial volume was such that apart from very steep tracks, the
origins were more than 9 cm (projected on the scan table) from the
chamber boundaries. The number of events found in the portion of.the
film scanned with no upper limit on the positive track length Qas

about 2.3 times that of the other half. The lower cut was imposed to
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avoid picking up counterfeit events, the short prong of which being
really a low energy delta-ray. In the case of K -deuteron elastic
scattering, this cut limits our angular distributions to regions away
from the forward direction (-t > 0.02 (BeV/c)e). It presents no
difficulties in our analysis of the elastic scattering data. However,
in the case of the reaction in which the deuteron is broken up into a
free proton and a free neutron, corrections must be put iﬁ to account
for this cut. This point requires a modification of the theoretical
formula we will use in our analysis. We discuss this in detail in
Section III-B.

Due to the large number of events in the film containing a sigma and
one other prong, and also due to the difficulty of measuring the momenta
of short tracks from curvature, we rejected all events which had a
scatter or kink occurring within the beginning 4 cm (projected)iof the
out—going tracks. From the known pd, dd, and K d total cross-sections,
we estimate that this criterion rejected 4 * 2% of the genuine eveﬁts in
the break-up reaction and 3 * 2% in the K d elastic reaction.

Any event with a V pointing at the origin of the 2-prong ihtéraction
was rejected at the time of scanning. In cases of ambiguous origins,
the event was accepted for measuring and fitting.

All the scanﬁed film was used to obtain the K d elastic scattering
cross-sections. The half of the film scanned with no upper limit
imposed on the length'of the positive track was used to obtain distribu-
tions for the break-up reaction. We also used this portion of film to
check whether the upper limit on the length of the positive track made
any difference in the K d elastic scatﬁering angular distribution.  The
results showed fhat within our statistics the cut did not affect the

distrubutions. Consequently, we used all the scanhed film to get the
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K d elastic scatterihg cross-sections without having to introduce a
correction for this cut.

The scanning yielded a tofal of 44,000 2-prong évents. These were ,
then measured on the Franckenstein measuring system. About half of these
events were measured before these measuring machines went under éutomatic
computer control. The remaining half was measured with these machines
under computer control provided by the COBWEB system.2 The momenta of
all stopping tracks were obtainéd from range measurements. Events that
‘failed at either the measuring stage or the spatial re-construction stage
were remeasured. We estimate that less than 1% of the scanned events
were missing after the remeasurements.

3. Event Processing

The measured events were processed through the FOG-CLOUDY-FAIR
system of geometry re-construction, kinemétic fitting, and data selection
computer prOgrams.3

In the fitting procedure, we subjected each event to the following
hypotheses: |

K'd »Ka
‘—aK-pn

-7 pA (A not seen)

The first of these is a 4-constfaint fit (4-C), the second and third
are 1-C fits. TFor each of these hypotheses, CLOUDY calculated a good-

i %-
ness-of-fit parameter M , which is defined as , _ v

. 2
N n X, - X, L
M-=z[—-l———l]--z7\1?(x.),
i1 A& .2= /2

where x; are the parameters to be varied in the fitting procedure,
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B

X. the actual measured values corresponding to X5» Aﬁ the errors for

B v

X., Kz'are Lagrangian multipliers, and Fz the energy-momentum conserva-

(=)

*
P is 0, M is the usual

definition of a XE. This would be the case whenever the energy and

tion constraints. Invthe case in which ZKEF

momentum balance was satisfied to within the pre-set limits of 0.1 MeV
and 0.1 Mev/c, respectively.

After processing the events through CLOUDY, various physical
quantities of intereét were abstracted and additional ones calculated in
FAIR. This system of computer programs outputs the data in thé convenient
forms of histograms, scatter plots, lists, or tapes.

In addition to constraining the events to the three hypotheses

mentioned above, we also constrained them to the following two hypotheses:

xd-xnad

- pn .

' This was done in an effort to estimate what fraction of the small pion

contamination of the beam (see Section II-B) fitted the K d hypotheses.

B. Beam Flux Normalization

1. Beam Count

vWe used the trackééounting method to obtain the normalization for
the beam flux. The tracks of incoming particles were counted every fifty
frames in each roll of film. The criteria by which we judged beam

tracks were obtained from previously measured and constrained events of

" the type

K-d "’Tf_A (p) P)

in which the A decay was seen. Using plbts of these consﬁrained events;



we determined the beam momentum bite and its azimuthal angular spread at
the bubble chaﬁber entrance window. Together with an exact knowledge of
the position of the entrance window, this information enabled us to v
construct a beam track template for each incident momentum. Also
included on the template was the start of the fiducial volume limits by v
which_we accepted events. A track was counted as a beam track if it
entered through the entrance window, was within the azimuthal angular
acceptance at the entrance window, and reached the start of tﬁe fiducial
voiume without scattering or decaying. Bending of the beam particle
tracks by the bubble chamber magnetic field was taken into account.
On the average 35 frames per roll were counted. The average
number of beam tracks per frame was calculated. From this number we
determined the total path length of the K~ tracks used in this experiment.

2. Beam Contamination

A number of cprrections were made to the number of counted beam
tracks obtained via the procedure described above. One was beam contamina-
tion from other particles. This contamination came from negative pions
and muons. - To determine the extenf of this contamination, a delta-ray
count was performed on the film taken in a companion hydrogen run which
used the same beam conditions and at the same momenta as in this
experiment.)+ Because of kinematics, an incident parficlé éan produce
delta-rays only up to a certain maximum momentum. ThiS'momentgm is o

determined by the maximum kinetic energy Tmax transferrable to the

(‘5

electron. In terms of the mass m of the incident particle and its

>

momentum p, T
- “max

is given by the formula

5
Tmax =2 me (p/m) ’



where mé is the mass of the electron. In this delta—ray count,‘we
recorded the number of delta-rays of momentum greater than the maximum
that can be produced by a K at the given incident momentum. The nﬁmber
of tracks which interacted after producing such a delta-ray was also
noted. As the muons do‘not interact strongly, these tracks can be
éssumed to be pions. From the number counted, we estimated that about
85% of the contamination came from negative muons, the remainder - from
negative pions. The results for the pefcentage of combined contamination
at each momentum are shown in Tablevl.b We have checked these results
by doing a separate delta-ray count on lO% df the deuterium film used

in this experiment. The results obtained agreed with the results of

the delta-ray count on the hydrogen film.

3. Beam Attenuation

A second correction made on the beam count comes from the
attenuation of the beam as it traverses the liquid in the bubble chamber.
The main contribution to this attenuation comes from K—;deuteron scatter—
ing. The total cross-sections for K incident on deuterons have been
accurately measuréd in counter experiments.6 ‘Within the momentum
interval covered by our experiment, these total cross-sections range

from 65 mb to 85 mb. (See Fig. 2.) The number of interactions in the

K beam was thus expected to be large, thus appreciably depleting the

number of beam tracks going tthugh the entire bubble chamber. We
corrected for this attenuation by using the measured values of the

total cross-sections. From the values given in Ref. 6, we calculated

‘the mean free path, using the formula
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Table I. Normalization and correction factors.

Beam Momentum (Mev/c) 810 910 1010 1110
No. of Incident X :
in K°d (x 10°) 1.55 | 6.76 5.0k 6.42
in K'pn (x 105) 1.10 2.21 3.63 3.20
n-u Contamination (%) 4.9 6.0 5.3 9.1
Fid. Vol. Length (cm) 28.8 28.6 28.5 . 28.7
(corrected for beam
attenuation)
Kd Xe Correction Factor 1.12 1.17 1.18 1.13
Scan Efficiency (%)
for K & 97.9 %.8 97.3 %.5
for K pn 91.7 92.8 92.4 89.6
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KP AND KD TOTAL CROSS SECTIONS
50. - . . .

30. . . . .
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XBL 699-5657
Fig. 2. K d and K p total cross-sections.. The data points are

from Ref. 6. The smooth curves are interpolations of
the data points.
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vwhere oy is the total cross-section, n the number of scatterers per unit
37

volume. In our case, the density of deuterium was 0.1352 gm/cm .

Together with Avogeadro's numbér, this gives

= 2.45 x th cm-mb .

Bl

The average length a track goes before undergoing one interaction is
given by

L= @,

where g is the length of the interaction fiducial volume. 1In this
experiment, the length of beam track within this volume was 30 cm. 'The
track lengths corrected for beam attenuation at each incidént momentum
are shoﬁn in Table I. The corrections raﬂge from 4.1% in the case of.
810 MeV/c events to a high of 5.8% for the 1010 MeV/c events, at which
momentum the total cross-section is near the highest value for K d

scattering.

C. Selection of Events

1. Xg Selection

Of the 44,000 two-prong events that came through the system of
fitting programs, the break down into the number of events fitting the

three interactions hypothese

Kd-Kad | - (H1)
=K pn ' (H2)
»KprA (H3)

are displayed in Venn diagrams in Fig. 3. The criteria we used for these

selections had been the x2 for each fit. 1In particular, we had used the
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1010 MeV/c - 1110 MeV/c

Fig. 3.

Break~down of the number of events fitting the
different hypotheses.
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following:

x? (k d) <10 , ke
x2 (K'pn) < b , 1C - ' ¥
x2 ( pA) < b , 1C

These cut-off values for the X2 are the limits within which approximately
95% of the area under the theoretical X2 distributions are included.
As can be seen from the diagrams in Fig. 3, a‘majomity of the
events (~86% for the four momenta together) fitting the elastic
scattering hypothesis also fit the K pn hypothesis. This is not an
unexpected result, since the deuteron can simulate the break-up reaction,
with the neutron and the proton seen as going off in the same direction.
When a deuteroh is mistaken for a proton, or vice versé, range measurements
give valﬁes for the momentum of the track which differ from the actual
momentum by 60 to lOO_MeV/c. But a one-constraint fitting hypothesis
Would not be able to distinguish this difference in the majority of
cases. This is reflected in good X2 values for both hypotheses. The
ionizatiom is nbt of help in the identification either. Both tlie proton
~and the deuteron appear as solid, dark tracks in the range of momentum
values with which they emerge from the inﬁeraction with the incident
K~ particle. However, the elastic scéttering reaction is a 4-constraint
fitting hypothesis, whereas the break-up reaction has only one _ _ ¥
constraint. To get. a sample of elastic events, we made the assumption X
_that all the events fittimg the elastic reaction are good K d elastic ¢
scattering events. 1In order to include as few break-up évents as
possible in this sample, we made use of an additional handle. As noted

above, the deuteron can simulate the break-up reaction, but only with the

proton and neutron seen going off in nearly the same direction. This
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means that the angle between the proton and the neutron, when.the events
are put through the break-up hypothesis, should be around 0° for genuine
elastic scattering events. The real break-up events should have a uniform
distribution in this angle, since in this case the ﬁeutroh and the proton
are not strongly correlated. In Fié. 4, we have plotted the distribution
of events as a fﬁnction of the cosine of the anéle between the‘proton and
the neutron for the K d elastic scattering events obtained.with jusﬁ the
X2 cuﬁ applied to all the evenfs that came throﬁgh the system. We note
that almost all the events (~84%)‘fall within the interval between 6.94

and 1.0. As our final sample of K d elastic scattering events we took

only the events in the interval between 0.5 and 1.0. These werevsubsequeﬁtly

corrected for biases and losses (to be considered below). The resulting
angular distributions wére then used in our analysis.‘ |

As our sample of break-up events, we took all the events that
satisfied hypothesis H2 (as determined by the Xg) and subtracted out
those that also fitted the K d elastic séattering criteria déscribed
above. In Fig. 5, we have plotted the histograms of the cosine of the
angle between the proton and the neutron for these évents.‘ The excess‘
of .events in the forward boxes represenfs K d elastic scattering evénts
which have a x2 > 10 for hypothesis H1l. These large Xg‘évents occur a£
small momentum transfers in the break-up distributions. We removéd this
contamination by using only the part of the break;up distfibution abéﬁe
-t = 0.06 (BeV/c)2 in our analysis. Since our analysis takes into account
break-up events regardless of the length of the protoﬂ track, we haVé

included in our sample of K-d,—aK-pn events only those from film scanned

~ with no upper limit on the length of the outgoing proton track.
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2. Lambda Contamination

From the diagrams in Fig. 3, we see that a large number (~L0%) of
the K d elastic scattering events fit also the 1 pA hypothesis H3. To
determine what fraction of this number represents actual n pA events, we
examine Fig. 6. This is a missing-mass histogram resulting from having
all the events that satisfied hypothesis H1 put through the fit for hypothesis
H3. We see that for each momentum the mass peak is below fhe lambda resf
mass. This is éonsistent with mis-identifying the K;d elastic scattering
events as n pA events. From the absence of a bﬁmp near the lambda resﬁ
mass, we estimate that the lgmbda contamination was negligible (less than
1%) in our sample of K d elastic scattering events.

In the case of the break-up reaction, we>can estimate the contamination_
from the n pA events in another way. It was found in Ref. 8 that there
should be 1350 n-pA events and 480 n-pZO events in the 1.11 BeV/c film
which had a spectator proton track between 1.5 mm and 6 cm in»length.

The two numbérs include both the visible and invisible decay modes 6f_

the lambda. They also include corrections to bring their cross—sectigné
into agreement with other experiments considered in Ref. 8. From a separate
scan, we also found that there were 590 events fitting x pA and 530
fitting n-pZo, with the spectator proton track longer than 6 cm. Combining
these numbers gives 2950 events with a lambda in the final state. Only
vl/3 of these lambdas (~980) decay via the iﬂvisible mode nx°. Since we
used only 1/2 the film at 1.11 BeV/c for the break-up reaction, we have
included only 1/2 this number of lambdas (~490) in our sample. From the
fit of our sample to hypothesis:H3, we have 526 events that.fitted énly
this hypothesis. Thus we see that the n-pA events are separated oﬁt by

the Xg section. We conclude tﬁat the lambda contamination is also small

in the break-up reaction (less than 2%) of the 1.11 BeV/c sample. We

o
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have not scanned for n-pA events with long spectator protoh for the
remaining three momenta. But from the number of events fitting only
hypothesis H3 in these momenta, we estimate the A contamination to be

about the same as in the 1.11 BeV/c sample.

D. Correction of Biases and Losses

1. Azimuthal Angle Scanning Bias

In scanning for events for this experiment, we had imposed the
criterion that each event must have a poéitive track longer than lmm°
This cut Was imposed for measuring parposes. Unfortunately, this
introduced a bias against events with a short positive track pointing
along the camera axis, which was up-and-down with respect to the bﬁbble
chamber. (The beam entered the chamber in a horizontal plane at mid-
chamber.. The three cameras were positioned at the bottom, looking
vertically up.) These events appeared fore-shortened on film. A dis-
tribution of events as a function of the azimuthal angle of the positive
track about the beam axis shows clearly this scan bias. This is Shown
in Figs. 7 énd 8. 1If there were-no biases;.these distribufions would be
uniform. The large number of eventévmissing around 0° and 1800,
corresponding to the up-down direction, indicates such a biés. This
bias is against short tracks. It causes a depletion of events in the

forward direction in the angular distributions, thus effectively

flattening their slopé. To avoid this bias, we have included in our

distributions only those events with the positive track coming out of ﬁhe'
interaction. vertex within 450 of the horizontal plane. The only e#ception’
to this is the distribution for the‘ygggg-gg reaction at 0.81 BeV/c..
Since we do not have many events at this incident momentum and since

the azimuthal angular distribution for the break-up reaction at this

-
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momentum does not show a serious bias, we have included all the events
in this case for analysis.

As an illustration of the change in the angular distribution arising
from this scan bias, we show in Fig. 9 two histograms of the angular
distribution for K d elastic scattering at 1.11 BeV/c. Events in
Fig. 9a have their positive traék come out of the interaction vertex
within ESO of the horizontal plane. Events in Fig. 9b have this track
come off with an angle of more than 45°.

2. x2 Distribution Correction

The experimental X2 distributions for the K™d elastic scattering
hypothesis at the four incident momenta are shown in Fig. 10. As is éuite
common, these experimentalvdistributions have a large tail. One way io
correct for this long tail effect is to accept events up to a Xg = 20
as K d elastic scattering events. We have decided to accept events up
to a X2 = 10, which 1s normal for a x2 of 4 degrees of freedom. We
account for the events in the tail by correcting the number of events
thus obtained by the éxcess of events in the experimenﬁal tail over those
in the theoretical tail (defined by the interval 10 < x2 < 20). The
correction factor at each incident momentum is shown in Table I.

To consider the effect of this XE cut on thé break -up reaction
"events, we look at.Fig; 5. This gives histogfams of the cosine of
the angle between the proton and the neutroﬁ in the break-up reaction.

We see that there is an excess of events in the forward bing.. Theée.are
K 4 elastic scattering events with a Xg > 10. To eliminate these'high
XEK_d elastic scattering eVentS from our sample of break-up events, we
exclude from our sample of the latter those events which have the cosine

of the angle between the proton and the neutron within the interval

(0.9, 1.0). This cut removed some real break-up events. But these
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events have predominantly small momentum transfers to the K . We
correct for this bias by using only the part of the momentum transfer
distribution with ~t > 0.06 (BeV/c)® in our analysis.

3. Scan Efficiency

We rescanned portions of our film to check for scan biases. All
of the film which were scanned the first time with an upper cut on the
positive track length were rescanned completely. This portion of our
film was used to obtain the sample of K d elastic scattering events.
Of the portion of film scanned with no upper cut on the positive track
length, approximately 1/3 was rescanned. This portioﬁ was used to
obtain the break-up reaction events.

To estimate the scan efficiency for the elastic scattering reaction,
we use the method described in Ref. 9 for the case of two scans. The
over-all efficiency is given by

- 1)(&

(h1p " typ)

E =

Hio

where o and Ai is the efficiency of scan i. The individual

1 1
= 0+ =
AN

efficiencies Ki are estimated through the relations

where Ni is the number of events found in scan i and N12 is the number
of events found in both scans. The overall efficiency E for the elastic
scattering reaction calculated with this method are given in Table I for-

each incident momentum.

Since we did not rescan completely the film used for the break-up
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reaction, we Jjust used the rescan to estimate the efficiency of the first
scan and correct our data according to this. The efficiencies for this

reaction are also shown in Table I.
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IIT. FORMALISM FOR K -DEUTERON SCATTERING

Having obtained the data in the form of angular distributions for
the elastic séattering and the bresk-up reactions, we wishvto analyze
these distributions in detail in terms of & theoretical model of
deuteron interactions. The particular model we have chosen is based
on the impact parameter formalism as developed by R. J. Glauber.lo We
present in Section III-A this formalism in some detail, neglecting,
hoﬁever, the complications due to spin. In Section III-B, we modify
thié formalism in order to make it applicable to our déta, which
contains a cut on the proton momentum. We conclude in Section III-C

by extending the formalism to include spin effects.

A. The Impact Parameter Formalism

The impact parameter method of treating high energy collisions of
composite particles was developed by R. J. Glauberlo and more recently
discussed by V. Franco and R. J. Glauber,ll C. Wilkin,12 and others.13
We first discuss in this éection this formalism for the case of
particle-nucleus scattering. After having done this, we then

specialize the results to K -deuteron scattering. We consider both

the K d elastic scattering and the break-up reactions.

1. Particle-Nucleus Scattering

The basic idea of the impact parameter method stems from the close
1k

analogy between wave mechanics and classical optics. As is well known,

the Schridinger equation (mass m=1/2, fi=c=1)

[P+ & S CIRGED

has the same form as the wave equation of light propagation, with the

index of refraction given by



The Glauber approximation corresponds to the eikonal method of solving
the wave equation. (See Ref; 10). The solution is given by

Z

v(r) = exp [ -Eiaf - -2% / dz’ V(z’2 + 52)}, (ITI-1)

—ob
where z’ 1s along the direction of the incident momentum Ei’ and
= |ki| =\/E. The vector b is perpendicular to ki and has the
interpretation of an impact parameter in classical scattering theory.

The equation for the scattering amplitude (see Appendix A) is given by

' \ iK1 -
A(Ef,ki) = - 'ﬁ-]d3f e T v(r) v(r) (111-2)

Putting Eq. III-1 into Eq. III-2, we obtain =

A(Q) = EE d3r v(r) e ig'r eXp[:Eku/\ dz”V(z’2+52 )} 5

=00

where we have put q = Ef-ii. For small angle scattering, q°r = g-b, and

we can rewrite A(q) in the form

[o0]

Alq) = -'%ﬁ_/ﬂdgﬁ ig- b/dz v(r) exp[gkfdz V(z +b2)]. (111-3)

-0
The integration with respect to z can be carried out, and it gives

:?Eex {iz%fzz (22 E)T =2ik{e};p[%fwdz V(254 )} } |

=00 : -0

Putting this back into Eq. III-3, we arrive at the equation giveﬁvby Glauber;

M@ - [oB ATB [ Bu)]
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where we have defined
[o.e]

w(B) = - I%E_/ dz V(2°45°) . (III-k)

=00
In the absence of absorption, V(r) is real, and x(b) can be interpreted

as a change of phase arising from the scattering by the potential V(f).

<

In the case of scattering from two scattering centers locaﬁed at fl and

o

v(r) = vl(f-il) + Ve(x_'-f'e)
We have from this and Eq. IIT-4 the relation that
X,(b) = X‘l(b—sl) + Xg(b-s2) .

In other words, ﬁhe scattering phases due to different scatierers are
additive. Here Xy are similarly defined as y(b) in Eq. III-&, and §j are
projections of fj onto the x-y plane. The z direction is taken along the
beam axis Ei. The fact that the phases rather than the amplitudes add
coherently gives rise to double scattering terms in this formalism, as

we shall see below. If we make the simplifying assumption thgt, in |
scattering a particle off a nucleus of mass number A, the phases Xj(ﬁ-éj)
arising from scattering by the individual nucleons j add coherently;

i.e. if we assume that

then the particle-nucleus scattering amplitude would be given by

A(3) = %1;- %% ei‘i'f’[l -jjliLlexp{Qixj(B-Ej)}} ,

To account for the motion of the nucleons within the nucleus, we form

the expectation value of the amplitude between the initial and final
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nuclear states and have
e = A ' '
-y ik [.2- ig°b [ s , - - ] .
Apy(3) = 5= \/d e <|| 1 -0 exp { 21Xj(b-—sj)} 1>

- Writing this in terms of the center of mass position variables of the

nucleons and nuclear wave functions, we have equivalently

. - = A .
D = 2 425 B T 35 G E (5, E )00
Afl(q) - Eﬁﬁ b € _/;Hl d- rﬂ Wf(rl’ :rA)IV(rl) );rA)a (A

J

N

A .
X [l'-jgi exyw{Qixj(b—s.)

The 3-dimensional &-function comes from the fact that not éll of the ij
are linearly independent. They are constrained by the ceﬁter-offmass

relation

For scattering of the incident particle by the individual nucleon

J, we can also write the amplitude as
=y ik [le- ii-E[ e (T
A, (q) = 55“/& be 1- exp{21xj(b)I].
An approximate inversion of this formula is given by
N L 1. (2=« -\ -i3‘b o

This is a good approximation for small angle scattering. 'In such cases,
Aj(a) is peaked in the forward direction (small ), and § and b would be

approximately coPlanar. Putting Eq. IITI-6 into Eq. III-5'yie1ds finally

ke

the multiple scattéring_series,
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- = n A '
- ik [.2- 1g-Db 3z % 3,1
Afl(q) = g‘/’(\i b e q le[l d rzﬂff(r yety A)‘lf \r 2% A)8 ( rj) X_
: (11I-7)
A ,
1 (52 }
-1 a A e -ig-(b- s >
[1 1{1 o kf 3 A,(3%) exp [ -13-(b-5.)] ]
Expanding the product within the square bracket gives rise to terms which v

can be interpreted as due to single-, double-, and triple-scattering, and

SO on.

2. Specialization to K -Deuteron Scattering

Wé now specialize this multiple scattering formula and apply it to
K -deuteron scattering. The deuteron and the nucleons will be treated as
spinless particles. We extend this formalism to include spin in
Sec. ITI-C.

Let r be the relative coordinate vector pointing from the neutron
to the proton. Thus we have for the proton and neutron center-of-mass
coordinates_fp = r/2 and En = -7/2. We let s be the projection of r onto
the x-y plane. After using the 3-dimensional &-function to integrate out
one of the space volume integrals in Eq. ITI-7 (A = 2 in this case), the
scattering amplitude becomes

- ik ig-b 3-
8p,(8) = 2= [aF e fd F L (F) ¥ (F) [ (r1-6)

{1 ) 2ﬂé#g/&2a, A_(3) e'ia"(ﬁ'g/g)}~{l . eﬂiku/53i' Ap(i,)e-ia'.(5+§/2)}J F,

' Carrying out the indicated integrations with respect to b and r (see . ¢

Appendix B), this can be rewritten as
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hes (3) = Gy (/2) 8.(3) + 04y (-0/2) & (3)
i (111-9)
i Eﬁ%ffdga' Gpy (27) A (37+/2) A (-q7+3/2)

where _ 3. % - .

Gpy (@) = [a%F 0p(5) @;(p - 4) - (111-10)
@f(ﬁ) and ¢i(§) are the Fourier transforms of Wf(f) and Wi(f),
respectively. The first two terms of Eg. III-9 are the single scattering
contributions to K”-deuteron,scattering. These correépond to the

impulse approximation contributions. The third term giﬁes the double

scattering correction to the impulse approximation.

3. K 4 Elastic Scattering

"~ We next consider K -deuteron elastic scattering. In this case we
have wf(ﬁ) =o,(p) = ¢D(§), the deuteron momentum space wave function.

We define the deuteron form factor as
- - ¥, - - -
¢(@) = [a% &5(E) 9y (G-3)

This is the convolution integral giving the Fourier transform of the

product |WD(5)|2; i.e. we also have
- 3~ ig.r -2
@(d) = [ar e [y (7))

where wD(f) is the deuteron coordinate space wave function. In cases
where.wD(f) depends only on the magnetude of r, we have G(q) = G(-q).

Thus from Eq. III-9, the elastic scattering'amplitude becomes
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‘ o=y _ _
8y (3) = 0(@/2) [ 4,(@) + 4(3)
1 ‘ : : (111-11)

i flee, -, - o PN -
t o Y C(a7) A3+ 9/2) A (<37 + 3/2)
The elastic scattering cross-section is givén by

(g%)el= ’Ael(a)lg :

Written out explicitly, this is
ac\ 2,- -2 -2 | .
(82). - @2 [I,@1% ¢ 1, @12 + 25 {4,@ 2D)}]
k18

- G“@L‘; 2) 1n [{AZ‘(CE) + A:(i)} fdgfi’ ¢(as) A (q,) Ap(c“l_)]

(an)

where q, =+ g’ + g/2.

k., Total Cfoss—Sections and Cross-Section Defect

To obtain the total cross-section for K-—deuteron scattering in terms
of the total cross-sections for X -nucleon scatterlng, we note from the

optical theorem that the K & total cross-section is given by

= k%'—“— Im Ael(O)

Similarly, the K -nucleon total ‘cross-sections are given by

by .
oy = ImA(0), J=pn

]
[}

Because of the normalization of the deéuteron wave function, G(O)

lqu G(q)A(q)A(q) [ (I]';I—l2)>

-5
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Taking the imaginary part of Eq. III-1l, we find that

Oy = o, + G? - do B

where the cross-section defect do is defined by

2 2- = - -
do = - —§uﬂ5 q G(q) Re [An(q) A (-q)] . (I11-13)
k Y
Thus ﬂhe K d total cross-section is not simply the sum of the single

nucleon total cross-sections. It has an additional contribution do

coming from the double scattering effects arising from the composite

structure of the deuteron. Depending on the relative phases of the

nucleon amplitudes An(i) and Ab(a), this contribution can be either

positive or negative.

5. Break Up of the Deuteron

- Finally, we turn our attention to the reaction in which the deutéron
is broken up into a free neutron and a free proton in the final state.
The amplitude i1s still given by Eq. III-9. Though in the present case
we still have @i(ﬁ) = @D(ﬁ), @f(ﬁ) is unknown. The usual approximation
introduced to handle this has been the closure approximation.ll It
assumes that the set of final states ¢f(§) is complete. With this

assumption, we then have
* - =, _ 3= o s . -
Z 0plp) 0p(07) = 8°(p - p7) . (III-14)

The differential cross-section is given byv

o |
(), - 2ha@l (111-15)
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Using the closure relation and Eg, III-10, we have

* - - 3= - - * -, = * - - -
? Gps(a7) Gpy(Q) = ?fd3p a5 0.(0") @; (p7-0") 9p(p) o, (p-2)

- o &% 9} (5-3') 87(5-5) ¢, (5-3)  (III-16)
N T - -
- [3%5 0763 0, G-3)

With a change of the variables of integration, the last integral can be

rewritten as

&35 036) 0,6 - (- 8))

This is just the deuteron form factor G(g-g’). Thus we have
. ) L
% Gpi(a”) Gpi(a) = G(a - a7) (TI1-17)
£ fi i

Using this relation and Eqs. III-9 and III-15, we obtain the cross-

- section for the break-up reaction

<do‘ .2 _ 2 ) e
Eﬁ)Kpn = 6(0)]A (3)] + 6(0)]a (@) + 26(q) Re [An(q) Ap(q)}
- E_T:tk- Im .[Ai(a.) a3’ ¢(3-3/2) A (q,) Ap(i_)} (II;-18)

- oy Im [A;f@ Jo®5 a@ea/2) a,(,) Ap<a_)}

1
(2rk)

‘2—1 2= Pt * /= = s . ~e
5[5 a%r aa-w) £ (G B A (E) &G

where q/” =% g’/ + g/2, and q, are defined previously.

®;

«,
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As noted before, G(0) = 1. Eq. III-18 is essentially the formula we
used in fitting our break-up reaction data. We now need to modify it to

account for the proton momentum cut we made in scanning.

B. Modifications to the Impact Parameter Formalism

We wish to apply Egs. IIi—l2 and ITII-18 to the analysis of our
experimental data. Aside from spin, Eq. III;l2 can be applied to our
elastic scattering data without any modifications. However, Eq. III-18 as
it stands can not be used to analyze our break-up reaction data. 1In the
derivation of this equation, it was assumed thét the final states
included all the momentum states of the outgoing particles. This was

used in the derivation of Eq. III-16,which states that
* -, - B 3_ ¥ - -, - »
% Gp; (%) Gpy (a) —fd B o, (p-a") o, (p-q) (IT1-19)

The integral on the right hand side is equal to the deuteron form
factor G(i—i’) only if the integration ovef p is taken over the whole
3-momentum space. We have used this fact to arrive at Eq. III—l8,’
expressing the break-up cross-section in terms of the deuteron form

factor. On the other hand, we have madé a cut . on the minimum length

v of the proton track in our scanning. This implies that the limits of

integration in Eq. ITII-19 no longer extend over the whole space.

Consequently Eq. III-18 must be modified to reflect this. For example,

the single nucleon scattering terms in Eq. III518 must be weighted by a

factor other than G(0). This factbr depends on the limit of integration
chosen for the integral in Eq. III-19. However, the integration
variable § in Eq. III-19 does not corréSpohd to the spectator momentum
exactly. Consequently, we.run intc difficulties in trying to define the

limits of integration that correspond to our experimental cut. In an



attempt to clarify this, we adopt a different approach to the problem

in the following. As a consequence of this approach, two other modifica-
tions to Eq. III-18 also emerge. One of these is Fermi momentum -
smearing; the other is the flux factor effect. We discuss these at
length later.

1. Modifications to the Break-Up Reaction Formula

The approach we use in this section to modify the break-up reaction
cross~section formula is based on the method of Feynman diagrams. Such
a disgrammetic method has already been used to discuss the elastic

15,16

scattering of deuterons. We start with the expression giving the
qross-section for the interaction of two incoming particles, yielding
three partiéles in the final state. Fig. lla gives a schématic diagrém
of such a redction together with the particle labeling scheme. The

17

differential cross-section for this process can be written as

do(s, t) fdu 3 2
p a* p a* D H 9(p;) 8(py-m,) x
a 2\}?\(s,mk, (on) 5 e 3 v

(III1-20)

x 64(p +D =D, ~-P-Ds) lT|2 5(t - (p,-p,)°)
k' Pg™P17Po7P3 Kk P1

where T is the invariant transition matrix, and s = (pk+pd)2. Ax,y,2)

is the completely symmetric function given by

b 4]

ANx,y,2z) = x2+y2+z2 - 2(xy + xz + yz) ,

and

0 if po_<O
e(p)={

1 ifp >0 .

We take particle 1 to be the out-going K particle. To express Eq. III-20
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in terms of 2-body cross-sections, we note that the 3-body phase space

is given by

ooy 3 2 2, .k ,

This can be written recursively in terms of the 2-body phase space

| | )
Ry(s) =f3', 0(pg) B(05mu5) By(e) =./riégg Ry(s)
3

where Re(s’) is defined by

TN 2 2 2, .k

and s’ = (pk+pd-p3)2 is the total energy squared of the two-particle

system. Using this recursion relation, Eq. III-20 can be rewritten as

do(s,t 1 v 1 r 2 2
do(s,t) _ 3 R (s*) |T|° 8(t-(p,-p;)7). (ITI-21)
dt 55 5 2E 2 k *1
EV?\(s,mk,md) (2r) 3 .
We consider the single scattering contributions to T. They come
from the two diagrams in Figs. 1llb and llc. The amplitude can be written

as

D

Tn(s ,6) Tp(s ,t)
T=€l:;§—_—n:2—— + ;i—__n;g— s

where

}
3
QJI
o
o]
0
]
[l

(pra)®

D,-D s = (p.*+ )2 .
d'n 7 ~Tp k qp

%

Tn(sn,t) and Tp(sp,t) are the single nucleon scattering amplitudés, m the
nucleon mass, and g the d-n-p coupling constant. The amplitude Squared‘

is given by



A

h

=41~

T (st (s, 6)[F Tt |
017 = & g+ R SRR (111-22)
(q -m (qp-m (qn—m_)(qpfm )

We consider the terms in this equation separateiy. Pﬁtting the first
tern into Eq. III-21, taking b, in Bq. III-2L to be the spectator proton
momentum and writing it as ﬁ, we get for the neutron single scattering
contribution to the X pn cross-section

g R, (s )|T (s ,t)|%8(t-(p, -0, )°)
2_m2)2 2\ n/Vn¥n? T/ k 71

1 1 fd3f>
2 gt (202 % (g

(Note: all terms to the right of R2 come under the integrals inVolved in

ao(s,t)
dt

(iIIf23)

We can also write the cross-section fof two initial particles going

19 -

RE')

into two particles in the final state as
dch(s »t)

ML —2 L Ry(s) |2 (s ,)|% 8(t=(p-p;)°)

at-
\ 2V>\(Sn5m12{)m2) (n)

‘Using this we can rewrite Eq. III-23 as

do(s, t)
dt

| 3- g2 —5>5= do, (s_,t)
= = = (21)3ngp ( 2g2)2 24Ny ,m) ——F
n z}q)(s,mﬁ,md) & p lq,-m

. 2 25 ., . . cr . ’
Since k(s,mk,md) is an invariant, we can evaluate it ‘in any coordinate

(T1T-24)

system. In the laboratory system in particular, we have

RN ”
Yr(emong) = 2mgPrg,

where Plab is the incident K~ 1ab momentum. Aside from energy factors

coming from the normalization of the initial state, V/Ms,mf:,mi)‘ is

essentially the flux factor for K~ incident on a deuteron. - The

coupling constant g is related to the deuteron wave funétion byzo
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1 g -

' —Em = ()
Vou ()7 (Fu’)

where p is the momentum of the spectator in the deuteron rest system.

&

Putting this into Eq. III-24 we get - o
do(s,t) 3- -\ (2 4'A(s’,m§,m2) do_, ,
= = §d’p l¢D(P)‘ n(s’,t) (III-25)
n : 2B P dat :
: p lab _

We emphasize in particular that the integration involved in this
equation is over the spectator proton momentum. In a similar mannrer,
the second term in Egq. ITI-22 gives a contribution corresponding to
proton single écattering to the Kpn cross-section (Eq. III-21) of the

form

)\(S', 2,1!12) do ’
%%(S;t)lp i/;3§le(§)l2 Tk p(s’,t) . (III726)

D in this case corresponds to the spectator neutron momentum. In both
Egs. III-25 and III-26, s’ = (pdfpk-p)e, where p is the spectator
4 -momentum (f),v m2+f)2). The third term of Eq. III-22 gives an inter-

ference between the neutron and proton single scattering amplitudes
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| [x(s' 2 20 (s ,ul mg)]l/&
gg‘.(s)t) d3p CP ( ) ( ) ’mk’ .p,mk’ X
ax p\P/ PpiP-a 2B P |
np p lab :
% - (I1I-27)
X [An(sn,t) Ap(sp,t) f c.c.] '
Here p corresponds to the proton lab momentum, and g = pk ﬁlab’ ﬁlab

and pk the lab momentum of the incident K~ and outgoing K , reSpectlvely.

An(sn,t) and Ap(sp,t) are defined so that they are related to the

nucleon cross-sections by

Tifept) ||

2 B y
at = Al(siyt)l s i=n,p.

é. Consequences.of the.Modifications

Summing up Eqs. III-25, IIT-26, and III-27, we get the single
scatteringvconfribﬁtions to the break-up reaction cross-section. These
terms correspond to the first three terms of Eq. III-18. Eqs, III-25,
III-26, and III-27 contain three modifications to Eq. III-18. We now
discuss each of these in turn. |

By examining Egs. III-25, iII-26, and ITI-27, it cah‘be seén hbm
Eq. ITI-18 is modified to take Fermi momentum smearing into'account.gl
We see from these equations that the nucleon éross—sectimns_arévnot
evaluated at an energy that corresponds to.a K~ incident on a‘nUCleon

at rest in the lab. They are evaluated at an enefgy given.by
4 _ o
s = (p*tPg-P)

which depends on the variable of integration p, the Specta%or"momentum.'

Thus the single scattering contributions to. the break-up reaction



o

cross-section consist of weighted averages of the nucleon cross-sections,
the weight being essentially the Fermi momentum distribution of the
deuteron.

A second modification to Eq. III-18 arises from the flux factors.

We refer to Egq. III-25 to discuss this. The effect is contained in the

o V?\(s’,mi,me)

R(p) =
2EpPlab

ratio

appearing under the integral in Eq. III-25. If we assume that the

target nucleon was initially at rest in the lab, we have

2 2
V?\(s’,mk,m ) =2m Piob

Because IQD(ﬁ)lg peaks at small values of p and falls off rapidly with
increasing f), we can make the replacement Ep =v m2+f52 ~ m .undéer the
integral in Eq. III-25. In this case the ratio becomes R(p) = 1, and

the integral in Eq. III-25 is just

J[d35 [op(3)|®

which, due to the normalization of the deuteron ﬁave function, is unity.
Thus Eq. ITII-25 reduces to the first term of Eq. ITI-18 exactly in thié_
approximation. Similarly Eq. III-26 and III-27 go over exactly to the
second and third term of Eq. III-18, respectively. In the general case
where we do not assume the target nucleon to be at rest, R(P) differs
from unity. It is a decreasing function of the magnitude of p. A
graph of R(p) verseé |p| (the angular dependence of R on P has.been
integrated out) is given in Fig. 12 for incident K~ momenta of 0.81;

1.11, and 5.0 BeV/c. For a given Iﬁl, we see that R(p) deviates more

¥
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from unity at the smaller incident K momentum than at the larger incident
momenta. This implies that the flux factor effect is small at higher
energies. For a fixed incident momentum, R(p) decreases as lﬁl increases.
The net effect of this is to depress the téil of the Fermi momentum
distribution by 10 to 20%. This in turn affects the integrated cut-off
corrections, which we discuss below.

The third modification shown by Egs. ITI-25, III-26, and IIi-27'is the
way we account for t£e proton momentum cut made in our scanning. We
first discuss the proton single scattering term, given by Eq. III-26.

The integral in Eq. iII—26 is over the spectator neutron momentum. We
have included in our sample of break-up events ﬁhose with all possible
spectator neutron moﬁentum. Consequently thé.limits of this integral
should be taken o#er all momentum space. As far as the proton single -
scattering contribution is concerned, the main effect of the proton
momentum cut made in our scanning is to cut out the events scattered into
the forward direction'(-t'g 0.06 (BeV/c)g). The distribution at iarger
-t values are unaffected. As pointed_but in Sec; IT-C, we are not using .
.the forward part of our experimental distributions. Consequently

Eq. ITI-26 can be used directly to describe the proton single scattering
contribution to our experimental break-up reaction, with the integral
occurring in this equation taken over all momentum space. This means
that we can replace the factor G(0) in the second term of Eq. III—i8 by
unity. However, because of the presence of the ratio of flux factors

in Eq. IITI-26, we should replace G(0) by

' | ' Z 2
- -2 ’ s
fcﬁp op(@12 W)
v 2EpPlab

(1I1-28)

The value of this integral turns out to be around 0.9 in)the range of
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By g

incident momenta covered by our experiment (see Fig; 13),.

In the case of neutron single scatferiné and its inﬁerference with
prbton single scattering (Egs. IIT-25 énd III—27,'resbéc£ivel§), we need
to put in a lower integration limit that corresponds to the lower cut on
the proton momentum in our scanning. In %oth EQS; III-25 and III-27, fhe
variable of integration is the proton momentum. Conseqﬁently, the |
correction needed is Jjust to set the iower integration limiﬁ equélﬁto
the loﬁer proton momentum cut value. The iowef cﬁrﬁe on each graph in
FPig. 13 shows the integrated corrections, givenlby Eq. III-28, as a
function of the lower integration limit o The_ﬁpper curve in each.
graph is a plot of the Integrated corrections using:ﬁhe‘deuteron wave
function alone (Eq. III-28 without the rétio of flux factoré). The
value on the lower curve at a pérticular momentum cut pé is to be used
in place of G(0) appearing in thé first term of Eq. ITI-18. As can
be seen from this figure, the net effect of the flux factors is to
lower the integrated corrections by 3 to h%._ This difference Becomes

smaller at higher incident momenta.

C. Spin Dependence

To generalize the results of Sec. ITI-A to include spin, we take as

starting point Eq. III-9,

hey(3) = 6,5 (¥/2) A,(3) + Gy (-0/2) A (D)
+ ﬁ‘k‘fde‘-f oy () A, (T7+3/2) A (-T+3/2) .

Because the K has O spin, we can assume thathn(i) and Ap(i) commute.

‘Thus we need not replace the product AnAp in this equation bj i its -

2

antl-commutator in order to get the amplitude Afi(a) symmetric with

respect to both the neutron and the proton. We assume that the nucleon
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amplitudes Aj(a)'have a spin dependence given by

Aj<<i) = fj(ci) + i gﬁq gj@ s 3 =mp

where fj(a) and gj(a) are the spintnonflip and spin-flip amplitudes of X
scattering on nucleon j, 55 the Pauli spin matrices for nucleon j, and ﬁq
the unit normal to the scattering plane.

Por elastic scattering, we have f = i. The cross-section is given by

do -\(2
(Eﬁ) = |25 (9)]
el
To get the unpolarized cross-section, we have to average over the

initial and sum over tﬁe final spin alignments. The result is
do\ 1 + = -
(&), -5 = [20,@ @] (111-29)

where P3 = % (3 + Gh-Eb) is the triplet projection operator, and Tr means
the trace in the product spin-space of the nucleons, which is the product
of the traces in the individual nucleon spin spaces. The factor % comes
from averaging over the spin alignments of the deuteron in the initial

state. The calculations are presented in Appendix C. The final result

is (Eqs. C-11 and C-15 of Appendix C)

s19) el

doc\ - fdo\® o\ o
(-5) = '(—E> + ( ) + purely double scattering (III-30)
el : IR

where
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(99)8 - 6°(3/2) [ |2, (@) (q)‘ lgn(i)+gp(i)‘2] .

el

e

(dQ)l ‘i—lmjrdq G(d) My (@,a7) -

an(i, q*) is given by

ORGSR NCUACHN ENCRINCRIE gn(a+>gp<a_>aq+.aq_}

3 (e (Dvay(D)) | 8,305, (3 00y 8, 4, (3)5,(8,)8,75,

+

. : . _ ' S
The definitions of 7 , 4,, 9 , ete. are given in Appendix C. 4o
A /ey

represents the single scattering contribution to the elastic. cross-section.

sD
(%%) represents the contribution coming from the interference between
el

the single scattering and the double scattering amplltudes We neglect

the purely double scattering term, since it gives only a small (< 1%)

contribution compared to the other terms. (See Ref. 11; for the definition

of this term, see Appendix C.)

- : 1
The K d total cross-section is given by the formula 1

r(ea,(0)) . (I

: 1
(o} —-E— Im "3-

Carrying out the calculations indicated on the right hand side gives-

(see Appendix C).

= + - -
o oy * o, e, (111-32)

where

Wll\)
no

J(dga'e<a> Re [ £ (D)2,(-2) + 5 &,(3) &,(-3) ]
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' This.ié the generalization of Eq. III-13 for the cross-section defect.
In the case of the.break—up reaction, we again use the élosure
approximation. - For the unpolarized cross—sectﬁon, the sum over the
~final spin glignments runs over both the singlet and the triplet spin
states of the nucleons. The summation then yields the identity operator
rather than theAtriplet projection operator as in the case of elastic
scattering. As a result, it leaves only oné triplet projection operator
in the cross-section formula, the one arising from the initial deuteron.

The cross-section is then given by
dU) 1 l: +, - -
) =z s [ 2y ald) Ay (@) ] (171-33)
( aq Kpn £ 3 3 fi fi _
Carrying out the calculations (sec Appendix C), we get .

do d@ S do SD
— = (== + | = + purely double scattering (111-34)
dan an )

K K Kpn

where

S - -
(8) o0 Ug,@1% + 15, @17 + ) (,@1° + I, I

Kpn

+ 20(3) Re [£,(D)E3(8) + § £, (D)D) ]

SD ' |
(%%)Kpn = - ,ﬁl; Tm fdei’ [G(i_) M (2,07) + 6(g,) Mp(c'l,a')]

M and Mp are given by
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i

ROCSEE AN ENCRENCRIE FACRENCR AT
. + -

gn*(a) [gn(i‘-)fp@-ﬁlq'aq + gp(Q_)fn(i+)3q.ﬁq

+ -

+ .
Wl

+

W

6, (3, )6, (3R (Bx 5 )]
- -

il

(58 = 5@ [ £,E)1,6) - §e,Ge a5, A ]

HONERCRH (3,08

+

. + = f n -n
q nq- 3 gn(q+) p(Q_) a""q,

1 -\ =N~ LA ~
" 5 6,088 @0 (B x B ) |

: S
As in the elastic scattering case, here <§E> represents the single

scattering contribution to the break-up réact?gg, (5%>ED represents the
interference between the single and double scattering agglitudes. Again,
because of its smallness, -we neglect the purely double scattering term; '
Equations IIT-30, III-32, and ITI-34 are the generalizations of Eq. I11-12,
III—l3; and ITI-18 to include spin effects. Except for the modifications
to the factors G(0) and G{(q) in Eq. 11123A, discussed in Sec. III-B, these

were . the equations we used to analyze our data. " We dicuss the procedure

of this analysis in detail in the next section.
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IV. ANALYSIS OF DATA

In this section we describe the method we used to analyze our data.
It involves using Egs. III;BO, III-32 and ITI-34 to do a simultaneous
fit to our K d elastic scattering and break-up reaction data. In order
to do this,vwe need to know the deuteron form factor and the elastic
scattering amplitudes for K- incident on the proton and on the neutron.
We assume that the deuteron form factor is obtained from the Hulthén wave
"function. We take as the K p elastic scattering amplitude two models
obtained from fits to experimental data. As the K -neutron elastic
scattering amplitude, we assume two parametrizations, the parametefs of

which we vary to obtain a fit to our experimental data.

A. Deuteron Form Factor

Various forms of the deuteron wave function can be used to obtain

the deuteron form factor.22 We used in our analysis the Hulthén wave

function .
~Or -Pr
e -e
Up(r) =X - )
where . , 1/2
| - [aﬁ orp) ]
= P
en(a-B)
and
a = 0.0457 BeV/e
B = 0.237 BeV/c

The Fourier transform of the Hulthén wave function is given by

-y 2 1 1
o (p) = Nqf= -
D :r [ Pigl Beﬂge}

The deuteron form factor is defined by
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6(3) = foﬁ; AT |y (5) =f35 @y (5) @p(5-3)

Carrying out the integrations gives

4p2. g

2
6(3) - =X {tan-l[_u;g%g} + tan-l[ _@_J S 2 tan-l[ 29(c+8)

-q (Oﬂ+B)2-q2

Here q denote the magnetude of q. A graph of G(q) as a function of g

is given by the upper curve in Fig. 1h.

We also need the function

/ 3% o (5) o (5-3)

Gpo(i)

B%4p {(p-q)gﬂlg}{(p+q)2+82}

\This function appears in the proton and neutron single scattering inter-
ference term of the break-up reaction, (Eq. III-34). The lower limit Py

corresponds to the lower cut on the proton momentum we made in our

I} -

P, -
2 i 2, 2 2, .2
gq— /Pdpl: 21 5 - - 2:] log[{(p+q) o H(o-a) +p }]
7 a +p

O

scanning. We note that.Gp (3) = G(q) for p, = 0. Gp (q) can be integrated

o . o
numerically for various values of p_. A plot of Gp-(i) as a function of

o}
(o]

qC is given by the lower curve in Fig. 14 for b, = 0.095 BeV/c, the
value we used for the lower cut on the proton momentum in our sample

of break-up events. Comparing the two curves in Fig. 14, we see that the

proton momentum cut affects the low momentum transfer events the most.
' !

B. Two Models of K p Elastic Scattering

K -proton elastic scattering with incident K momenta around 1 BeV/c

23, 24, 25 The authors

has been studied in detail in three experiments.
of Ref. 23 have fitted their data to a model of elastic scattering in

the form of a background term plus resonances:

£
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Fig. 1k. Upper curve is the deuteron form factor given by
the Hulthen wave function. Lower curve is the
same form factor modified by the lower spectator
momentum cut.
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fp = fb + fr

Il

g

o g, * 8, .

The background terms were parameterized as
ik.(al+ 1a2)

b~ \I;E;

g, = O

bt -
e

The resonant terms were given by

f =

v (fl + fo)

8r =

i Pl

(gl + go) b4 ‘L

where the isospin amplitudes f_ and gI‘were given in the standard form

I

1
1 =% i [(4+l) T ¥ 2T ] P,(z)

(v-1)

e o

1
= - P
&y z [T, g1 TI,z-] 5(2)

The isospin index I is O or 1, z is the cosine of the cm scattering
angle,vahd kbthe particle momentum in the cm system. Fof thg aﬁplitudes
TI,zt appearing in Eq. IV-1l, the authors of Ref. 23 included only the
resonant amplitudes of the Yi(1765) and the Y;(iSlO). vAll the other térms

in Eq. IV-1 were set equal to zero. The resonant amplitudes were para-

‘metrized in the usual Breit-Wigner form
T = X/(e"i) s

where x = Fé(k)/r(k) is the elasticity of the resonance and
€ = 2(ER—E)/P(k). The ¢ and k dependences of the widths Pe(k) and (k)

were those given ‘in Blatt and Weiésk0pf.26 In fitting their data, these
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17 8ps and the resonant masses and

-widths. From their best fit, they obtained the following values for the

authors varied the parameters b, a

resonant parameters:

M, = 1758 £ 11 Mev s My = 1811 + L4 Mev
I, = 113+ 25 MeV s ry= 73 % 10 MeV
X, = 0.4 + 0.05 s X3 = 0.67 = 0.08

where. the indices 2 and 3 refer to the orbital angular momentum of the
resonances. The values for the parameters of the diffractive background

terms were

2b = 3.2 % 0.13 (gev/c)
a, = 3.73%0.12 (mb)3/u
a, = 0.89% 0.39 (mb)3/u

' The parametrization of the elastic scattering amplitudes fp and gp'given
above corresponds to separating these amplitudes into contributions from
diffractive scattering and from resonances. This combination has been
suggested by two experimental facts: 1) The general diffracﬁive nature
of the forward portion of the elastic scattering angular distributions
and 2) the occurence of numerous resonances within the energy region we
are considering. The combination of these two features gives a
reasonable description of s-nucleon elastic scattering as well as the
K™ -nucleon data.l

A second model of K-p elastic scattering has been given in Ref. 2k.

The full amplitude was given by ‘

fp .(fl'+ fo)/E:

g, = (g +g)/2

where fI and gI were defined in Egq. IV-1. To account for the background,
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the authors of Ref. 2L assumed that each partial wave amplitude T was.

a superposition of a background amplitude Tb and a reéonant amplitude Tr'
(To simplify notation, we suppress the. indices I and g that should appear
with each T and S occurring in this section.) To insure unitarity, they

superposed the two amplitudes by the relation

where each S and T are related to & and 1 throﬁgh

S=1+2i7=ned

With this assumption, the partial wave amplitudes turned out to be

213
T = Tb + Tr nbe. b .

The resonant am.plitudes"I‘r were parametrized in the same way as described

in the first model. The background amplitudes were given the momentum

dependence

T, =a+b (P -0.8¢ev/c) , forP > 0.8 GevV/c

b 1 Yk

a + b, (Pk - 0.8 Gev/c) , for P, < 0.8 gev/c

[}

where a, b,, and b

1 . are complex parameters varied in the fitting, and P

2 k

the incident K 1lab momentum. The background terms were assumed to come

only from the & and P.. waves. Table IT lists the different

11> F1p #nd Fpg
partial waves and their fitted values obtained from the best fit of
Ref. 24.

| In the'analysié of our data, we assume that the K p elastic
scattering amplitudes are giveh by either one of the models déscribed

above. In the next section, we discuss the two parametrizations for the

K -neutron elastic scattering amplitude.
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Table II. Parameters for solution (b) of Ref. 24. The
parameter in brackets have been kept fixed.
The errors are statistical only.

Non resonant Re a Tm a Re b Im b Re b

amplitudes 1 1 2
5 0.0l 0.81  -0.38 0.01 ] )
01 +0.03 +0,02 +0.1k4 +0.06
S 0.13 0.55 -0.20 0.34 0.43 0.91
11 +0.06 *+0.02 +0.21 +0.09 *0.46 £0.15
P 0.11 0.47 -0.76 0.11 -0.31 1.76
01 +0.04 £0.02 +0.20 +0.14 +0.30 *0.50
P 0.10 0.02 0.02 1 0.60 1.07 -0.0k4
11 +0.0k4 +0.01 +0.20 +0.08 +0.06 +0.05
P 0.38. 0.19 -0.49 0.61 0.68 0.40
03 +0.03 +0.01 +0.09 +0.07 +0.27 +0.08
P 0.17 . 0.02 -0.45 0.49 0.79 -0.27
13 +0.02 +0.01 +0.02 +0.01 +0.22 +0.08
Resonant Mass B Width I . .
amplitudes (Mev )T (Mev) ° Elasticity
S0y 1663 + 3 %6 * Q.lu + 0.04
DO3 1696 * 35 # 0.18 = 0.03
D4 1668 + 5 % + 18 0.09 £ 0.02
Dos 1807 + 10 123 + 32 0.09 + 0.01
Dls 1768 + 128 + 8 0.45 + 0.01
F 1817 + 7L+ L 0.62 + 0.02
05 _ .
Fis [ 1910] [ 50 ] [0.08]
For - 1864 + 2 39 + 7 0.12 + 0.02
7 _ :
Fio [20u0] [ 150 ] [0.25]
Gy [ 2100] [160] [0.25]
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C. Parametrizations of the K -Neutron Elastic Scattering Amplitude

We consider two models for K -neutron elastic scattering which are
similar to the K p models described in the previous section. In the
first model, we parametrize the K -neutron amplitude similar to the

first K p model. We assume the background terms to be given by

A 2
f,= = exp (t/4R")
\[ﬁz ; - (Iv-2)
g, = = 1+ q(40) e (1/0%) ,
,fgz bk ,

H

where the parameters A and B are complex and R is real. R has the

. | 4
interpretation of a root-mean-square radius of interaction, and k is the

particle momentum and s, the K n energy in the X n center of mass..
. ! ! .
The constants A, B, and R give us five parameters which we vary to obtain

a fit to the data. The.fuil amplitudes is given by

fn = fb + fl

g

n =8 * &

where fl and gl are the isospin 1 resQnant amplitudes and are parametrized

in the same way as in Eq. IV-l. We include 1in f; and g, the resonances
* * * : . - '

Yl(l660), Yl(1765), andAYl(l9lO). Because of our limited data, the
masses and widths of these resonances are not varied in our fitting -

procedure. They are taken to be those given in Ref. 29. The normaliza-

tion of fn and g, is such that the differential cross-section is given by

do
2 2
= 5l el

We parametrize our second K n elastic scattering model similar to the

second K p model described in the previous section. Included in the
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*

resonant amplitudes are again the three Yl resonances used in the first

K n model. Their masses and widths are also fixed at the values given
in Ref. 29. As in the K p model, we assume the background comes only

from the S , and P._ partial waves. Unlike the K-p model, these

110 P11 13

waves are not parametrized with an energy dependence. Since we fit each
incideht momentum separately (see below), this explicit energy dependence
can be neglected. We adopt this simpler parametrization in order to

reduce the number of fitting parameters. The background waves Sll’ Pll’

and P,, are considered as complex, thus giving us six parameters with

13
which to fit our data. We take them to be the real and imaginary parts
of Sll’ Pll’ and Pl3'

D. Fitting Procedure

1. Definition of the FittingX °

We used a minimization procedure to analyze our data; fitting each
incident momentum separately. We assume that the K-p elastic_scatﬁering
amplitudes are known and, in fact, are given by either one of the models
of Sec. IV-B. This K p input is not varied in the fitting. Then using
a parametrization of the K n amplitudes described in Sec. IV-C, we
calculate the K d elastic scattering and the break-up reaction cross-
sections througﬁ Egs. ITI-30 and III-34 and compare the results with

. . . . 2 . . .
our experimental data. The comparison is via a function, which is
-OIp X ’

o -0 2
2 s [ i 71 ] "
i AT,
i

e . : . e .
where o, 1is the calculated cross-section, oy the corresponding

defined as

~ experimental data point, and.Aoi the statistical error for the data
point. The index i ranges over the experimental data points from both

the K d elastic scattering and the break-up reaction angular distributions.



£0-

The x2 is minimized through a variation of the parameters occuring in the
K n amplitudes. The actual minimization was done by an LRL Computer
Library Program VARMIT,31 a computer routine based on the variable

2
metric method of reaching a minimum of a function.3

2. Treatment of Double Scattering Terms

In célculating the K d elastic and the break-up reaction cross-sections,
we have used Eqs. III-30 and III-34. The double scattering terms iﬁ
these two equations involve double integrals over intermediate momentum
transfers. We negléct the purely double scattering terms, since they

33

contribute less than 1% to the cross-sections. We retain the
interference terms between the single and double scattering amplitudes.
The double integrations involved in these interference terms have to be
carried out nﬁmerically during fitting. They require an enormous amount
of computer time in each fit (~30 minutesbjust for checking the gradient
of the X2 function required for the fitting). Consequently, we adopted
an iterative method in order to cut down on running time. In this
method, we included only the single scattering terms in our calculation
of Ug- These single scattgring terms do not involve any integration and
so can be computed very quickly. Aé a Oth order fit, we set the
interferénce terms between single andzdouble scattering amplitudes equal
to 0. After completing this fit, we calculated these interference terms
and added them to the calculated G; used for a second fit. After
completing the second fit, we re-calculated the interference terms and
then added the results to the calculated U; used for a third fit, and so
on. The iterations converged very quickly in the sense that the parémeter
values and the calculated interference ferms did not change very much

after the second iteration (less than 5%).. In this way, we were able

to complete a fit in less than 15 minutes of CDC 6600 computer time.
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3. Fermi Momentum Smearing

The effect of Fermi momentum smearing in the break-up reaction shows
up in the t-distributions for this reaction. If the target nucleons in
the deuteron were at rest, there should be very few events beyond a
certain maximum value of -t (corresponding to backward scatters). This
maximum value depends on the incident momentum. But experimentally we
do see events beyond this meximum value, the number of which can not be
ascribed to measurement errors alone. The way to account for this
smearing’is to take a weighted average of the nucleon cross-sections.
This was brought out by Egs. III-25, III-26, and III-27 and was briefly
discussed right after the derivation of these equations in Sec. III-B.

As in the case of double scattering, the integrals involved in the
smearing procedure require numerical integration. Again this takes up
lengthy computer time in each fit. We therefore replaced the integrations
by finite sums. Fig. 15 is a typical plot of the Fermi distribution aé a
function of K -nucleon cm energy. The highly peaked curve is the
distribution without any cut on the spectator momentum. The lower curve
is one with a lower cut on the spectator momentum. We note that this
laftér distribution is essentially flat and is about 120 MeV wide. This

is consistent with the energy spread formula

I'=2P7 <p2;>_

lab ——‘E
Sm

given by Ref. 21. Here m is the nucleon mass, and <p2> is the expectation

value of p2 taken between deuteron stateé.~ With the Hulthén wave function,

<p2> = 0B, and we get (in BeV units)

I'=0.125P

lab



ARBITRARY UNITS
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HULTHEN DISTRBTN IN E (KN)

Fig. 15.

1.7 1.8 ' 1.9

E(KN-CM)»s BEU

XBL 699-5656

Upper curve is the Hulthen distribution as a
function of the cm energy of the KN system at
K~ incident momentum 0.91 BeV/c. The lower
curve is the same distribution with the low
momentum (< 100 MeV/c) spectators excluded.
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We subdivided the energy spread interval arising from Fermi motion into
smaller intervals and evaluated the nucleon cross-sections af these
energy values. We calculated the break-up reaction cross-section by
taking a weighted average of these nucleon cross-sections over the
entire energy spread. Since the distribution with a spectator momentum
cut is essentially flat, we have taken the weights to be equal for each
of the energy subintervals. The resultingvbreak—up cross-section was

then used in our analysis.

4, 1Inclusion of Total Cross-Section Data

We have utilized the K d and K p total cross-section data of Ref. 6
in our analysis. We used these data to fit the total cross-section
formula given in Eq. III-32. The extrapolated total cross-sections at
our incident momenta were used with the K d élastic scat%ering and break;
up reaction data simultanedusly in our fit. We note that thé cross-
section defect do and the K n total cross-section involve fitting
parameters. These parameters were varied to obtain an over-all X2 for

our fit.

E. Results and Discussion

We discuss here the results of our fitting. We have tried the two
parametrizations of K n elastic scattering given in Sec. IV-C. Using
the two models of K p elastic scattering discussed in Sec. IV-B with
each of these parametriations, we have 4 combinations. For ease of

discussion, we denote the 4 cases as follows:
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Case I: 1°0 K p model

(e ) with 15% k™n parametrization (ebt)

17: 15% K p model (eb ) with 229 xn parametrization (SP wave)
(
(

nd

III: 2~ K p model (SP wave) with 1° K-n parametrization (ebt) .

nd

IV: 2 K p model (SP wave) with 2" g7y parametrization (SP wave)

The descriptions within the parentheses pertain to the background
amplitudes. Through a comparison of the results obtained in the k4 cases
liéted here, we first examine to what extend does the fit depend on the
model we use. Following this, we discuss what effects does the
inclusion of Fermi energy spreading and of double scattering have on
our fits. ZFinally, we display and discuss the angular distribdtions

obtained in the best fit.

1. Comparison of Models

Table III lists the X2 of each of the 4 cases of fitting given above,
togethef with the number of degrees of freédom for the xe. The x2 values
given in this table are for the over—éll fit to both the K 4 élastic
scéttering and the break-up reaction data. As can be seen from this
table, the x2 values are large for the number of degfees of freedom
corresponding to them. This is especially noticeabie in the case of
910 Mev/c incident momentum. However, as we shall see below, a detailed
examination into the fitting gives a better picturé. It is found that
therK_d elastic scattering data generally fit well. TLarge contributions ¢
. to the x2 come from the break-up reaction distributions, especially the
large angle region.

One effect due to the choice of K p ﬁodels is evident_from Table III.
‘'The two fits using the lst model of»K-p scaﬁtering (cases I and II) give

smaller xe values than the two using the 2nd K p model (cases III and IV).
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Table IIT. Results of fits with Ferml energy spread
r =0.125 P . . The errors shown are
statistical 8nd do not include those from
the K p distributions which were taken as
input.
Beam Momentum (MeV/c) 810 910 1010 1110
iﬁ(mﬂ T 12.00.7 10.7+0.2 11.8+1.6 11.0#0.3
II 11.7+0.6  11.4+0.7 11.8+0.4 10.3*0.7
IIT 11.7+1.4 11.6+0.6  10.6%0.3
A 11.5t0.5 11.0+0.8 11.5+0.3 10.5%0.7
oﬁi (mb) I 18.3+2.2  13.6+0.7 12.3*2.9 13.6%2.9
IT 16.6+0.7 17.9£1.5 12.8+£0.5 1k.9t2.4
IIT 8.5+1.7 12.9+1.5 15.2+3.k
v 10.0£0.6 22,9+1.0 1h.2+0.1  1h.5t2.h4
oﬁit(mb) I 32.5:0.5  39.0:0.%4  34.6+0.9  33.0%0.5
1T 33.1x2.2  37.7+2.6  33.3t1.4 31.7+2.3
I1I 30.6%0.8 34.7£0.7  33.2+0.2
v 31.6£1.8  37.9¥2.7 33.5t1.1 31.6%2.3
@ngm 40.8£0.3  44.1+0.3  50.9x0.4  4h,70.3
oigt(mb) 70.40.3  79.40.3 82.1x0.4  74.0£0.3
x2 I 80.7 151.7 25.9 h7.2
IT 32.0 148.8 32.6 7.4
IIT 109.2 100.2 74.0
v 76.8 254.1 59.2 Th.7
Degrees I 15 18 18 20
of II 14 17 17 19
Freedom III 15 18 18 20
IV 14 17 17 19
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In fact, the blank entry in this table under 910 MeV/c in case III is
due to the fact that we were unable to reach a minimum in fhis fit. The
reason for this was that, using the 2nd Kp model, the K p cross-section
gives as large a contribution to the break~-up reaction distribution as .
the experimental data at this incident momentum. ConSequently, the ' -
fitting would like to make the K n contribution as small as possible in
order to reduce the Xe. Case IITI uses the lSt parametrization of the K n
amplitude. The parameters that the fit varies in this case are the
coefficient and the exponent of the exponential background amplitude
(see Sec. IV-C). The coefficient is determined by the total cross-section
data to be non-zero. As a result, the only way that the fitting program
can minimize the K n contribution is to go to as‘large a negative
exponent as possible. This was what actually happened. -

Alsc listed on Table III are the K_d and K n total elastic
scattering cross-éectiqns and the X n %otai cross;sections. The elastic
cross-sections were obtained from integrating the differential elastic
cross-sections calcﬁlated in each fit; vhile the K n total cross-sections
were obfained from the imaginary part of the K n amplitude given by our
models. For comparison purposes, we also include in Table III the
experimental K d ahd K p total cross-sections at the same incident

momenta. These values were extrapolated from the data of Ref. 6 (see

Fig. 2). As can be seen fromvTable 117, oié and oigt remain unchanged v

(within errors) as we go from Case I through Case IV. This means that
these two quantities are model-independent. However, the same can not be

said about cei. Table IIT indicates that cel depends on which model of

K Xn

K p scattering we use. However, it should be noted also that it is

independent of the Kn models to within errors.



5
“a

-69-

2. Effect of Fermi Energy Spread

To compare the effect of Fermi momentum smearing, we have tried
varying the width of the energy spread used in calculating the break-up
reaction cross-section. The results in Table III were obtained with a
width given by

r=0,125 Py .

Table IV shows the corresponding results obtained with an energy spread
given by

r = 0.085 Py

Finally, Table V shows the results obtained with no Fermi energy spread
(equivalent to having the initial nucleons at rest). As can be seen from
a comparison of x2 given in Tables III and V, the largest difference
between fits with a Fermi energy spread and those with no spread is in
the 1010 MeV/c data. On an over-all basis, fits with an energy spread

do give a slightly improved xg. In all three energy spreads used, the

results for cié and cﬁgt remain the same within errors. (See Tables III,

IV, and V.) This is also true in the case of G;i, even though it was

found above to depend on the K p models used.

3. Effect of Double Scattering

We plot in Figs. 16 and 17 the interference term between single and
double scattering for K d elastic scattering and the break-up reaction,
respectively. The lower curves in each graph give the negative of the
interference term, the upper curves the total value of the éorresponding

cross-sections. As can be seen from these figures the break~-up reaction

" interference term (which extends below each graph for -t greater than the

horizontal intercept) is'relatively unimportant. But the elastic scattering

interference term range from a few per cent of the complete cross-section
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Table IV. Results of‘ fits with Fermi energy
spread I" = 0.085 Plob’

Beam Momentum (Mev/c) 810 910 11010 1110

cf{é (mb) I 12.1¥0.7  10.6%0 11.4£0.6  10.2:0.4
11 11.5+0.7 11.3+0. 11.8+0.3  10.3+0.7
I1I 11.7+1.h 11.7£1.0 10.4+0.4
v 11.5+0.6 11.0%0. 11.4+0.4 ° 10.5+0.6

crg (mb) I 18.4+2.0 13.5¢0 12.0+1.%4  13.9t2.8
II 15.8£0.8 19.1+1. 12.7+0.1 14.4+2.0
IIT 8.5+1.7 12.41.8 15.2t3.0
v 10.0+0.7 23.8+1 14.6+20.1  14.0%1.9

“tot

Tn (mb) I 32.5:0.4 39.0+0. 35.2£0.8 32.8£0.6
II 33.1x2.2 37.6x2 32.9£0.9 31.7x2.2
III 30.6£0.8 : 34.6+0.7  33.2t0.4
v 31.7+£1.9 37.8+2. 33.3t1.2 31.5%x2.1

x2 I 62.5 162.0 53.0 2.6
II 26.0 153.2 4o.,1 49.9
III 91.5 151.4 81.1
v 65.5 223.5 - 86.1 81.8
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Table V. Results of fits with no Fermi energy spread.

Beam Momentum (Mev/c) 810 910 1010 1110
oié (mb) I 12.1#0.6  10.5¢0.3  11.6+0.2 10.5:0.k4
IT 11.6£0.7 11.3+0.6 11.8+0.3  10.4x0.7
I1I 11.9+1.3 11.5¢0.6  10.3+0.4
v 11.0+£0.6 10.9+0.7 11.5£0.3 10.5%0.5
%a(mw I 18.0+2.0  13.0£0.6 14.7+1.4 10.5+£0.5
II 15.8t0.9 21.1+1.3 13.2¢0.1  1k4.2¢1.9
IIT 8.5t1.6 12.7#1.3 -15.8%£3.0
v 10.4+0.7 25.3*+1.1 15.6+0.2 13.6%1.3
cigt(mb) B 32.5¢0.4  39.0t+0.4  34.3:0.8  35.0:0.k
IT 33.1t2.4  37.3%2.0 32.5t1.0 31.9t2.2
ITI 30.40.7 34.4+0.2  33.2+0.3
v 31.7£2.0  37.7%2.4 33.3t1.1  31.4+1.8
Xe, I 49.8 220.1 158.2 32.4
II 19.8 185.7 119.4 50.1
III oL.7 291.6 106.5

v : 80. 194.9 152.9 100.7
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Fig. 16. X d > K d angular distributions. Data points are from

our experiment.
from our fits in Case I.

Curves through this data points are
Tower curves in each graph

give the K d elastic single and double scattering
interference term. '
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at small angles to above 30% at larger angles. The over-all effect of

these interference terms on the fitted curves is barely hoticeable when

we make a comparison between the distributions fitted with these interference
terms and those obtained with no interference terms. This is reflected

in the small change in XE values in each case. These x2 values are given

in Tables VI and VII for cases I and II, respectively. However the

fitting parameters, given in Tables VI and VII, are very sensitive to

these changes. These results show up in the K n angular distributions,

which we plot in Fig. 18 for Case I. The solid curves are the K n elastic
scattering cross-sections obtained from fits which included the interference
terms, the dashed curves from fits not using these terms. The data points
with error bars are the K n distributions obtained frém our break-up reaction
events with the requirements that the proton momentum is less than 250

MeV/c (i.e. spectator proton) and the neutron momentum is greater than

250 MeV/c (non-spectator nuetron). The data points are normalized to

the solid curves within the interval between -1.0 and 0.6.

4,  Angular Distributions

Figure 16 shows the angular distributions in -t for the K d elastic
scattering reaction. The data points shown with error bars are our
experimental points. The smooth curves are taken from our.simultanedus
vfits given by Case I. Figure 16 shows that the fits to the K d elastic
scattering data are generally reasonable. The x2 for just these elastic
scattering data points turns out to be about the'same as the number of
these data points. This holds true even for the 910 Mev/c data, ﬁhough
the- over-all X2 at this incident momentum turned out to behlarge (see
Table III).

This tendency for elastic scattering data to fit well holds true
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Parameter values obtained in Case I.
R, A, B refer to parameters given in Eq. IV-2.

Fit with single-double scattering interference term.

1110

Momentum (Mev/c) 810 910 1010
1/ (/B R) (Bev/c)t 3.28£0.20  5.78£0.47 5.041.18  2.35:0.18
ReA (mb-Bev?)l/2 1.00£0.13 -0.46£0.31 -0.38:0.90  0.36£0.10
oA (mb-Bev?)L/2 1.55¢0.03 0.95:0.03 1.26:+0.07  2.00t0.0k
ReB  (mb-Bev?)Y/2 1.69£0.50 -0.10:1.30 -0.70£1.70  2.61%0.99
TmB  (mb-Bev®)Y/2 0.92£0.26  0.39:0.70 0.99t1.05  -1.94t1.17
x° 80.7 151.7 25.9 7.2

Fit without single-double scattering interference term.

Momentum (MeV/c) 810 910 1010 1110
/W2 R) (Bev/e)t 3.35:0.24  8.13*1.10 7.75:0.92  3.69t0.19
ReA (mb-Bev2)1/2 0.85:0.15 -0.57+0.71 -1.hk9r1.25  1.36:0.12
Tmh  (mb-pev?) 2 1.55:0.01 0.94£0.03 1.20£0.05  2.14£0.03
ReB (1c:1b-13ev2")-1/2 1.16£0.52 -0.13t1.65 -2.9u4xlk.84  -0.53+0.41
TmB (mb_-Bevg)l/g 0.640.30 1.60t1l.h2 -3.58+5.03 1.00£0.82
32 82.6 153.6 23.5

50.8




Table VII.

Parameter values obtained in Case 17.
are the three background waves
ged in-the 2nd K n parametrization.

P
u

112 Pl3

8142

- Fit with single-double scatteriﬁg interference term.

Momentun (BeV/c) 810 910 1010 1110
Re sli 0.29%0.05 . _o.ohio;07 o.17¢o.o6  0.31+0.05
Im Sy, 0.23+0.0k -0.24+0.04  0.14#0.04  0.13#0.05
Re Py, 0.31#0.03 0.07#0.06 0.11%0.02 0.02%0.07
Tm 129 0.26%0.03 - 0.27#0.05 0.27%0.03  0.4520.06
Re P13 0.07%0.06 -o.luio.io 0.06+0.05 =-0.04%0.10
Im P 0.1420.05 0.23:0.08  0.13%0.05 0.144£0.09

xZ 32.0 148.8 32.6 7.4

Fit without single-double scattering interference term.

Momentum (BeV/c) 810 910 1010 1110
Re 8,4 0.18+0.05 -0.03%0.06 0.20%0.06  0.35%0.05
Im Sy, 0.22+0.03 -0.29%0.02 0.06*0.05 0.10%0.0k
Re Pll 0.22+0.03 0.06+0.05 0.11#0.0k  0.04+0.06
Im Py 0.24+0.02 o.2216<o3 0.26%0.03  0.45%0.05
Re P13 0.05$0.05 -0.10+0.08  0.03*0.07 -0.01%0.09
Im Pl3‘ Q.16io.ou 0.34+0.05 0.15%0.05 0.43+0.08

x2 50.3 194.6 66.2 76.2
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generally for all our fits. The large contributions to the over-all x2
come invariably from the break-up reaétion distribution, particularly
the large -t region. Figure 19 shows the break-up reaction data. Again
the points with error bars are the experimental points. The solid curves
shown result from fits of Case I with a Fermi energy spread I' = 0,125 Plab'
The dashed curves are the break-up reaction cross~seqtions obtained with
nd energy spread. Figure 19 shows that the fits to the data at 1010 Mev/c
comes out rather well. The fits at 810 MeV/c and at 1110 MeV/c are not
as good. And the one at 910 MeV/c is completely off. All these results
are reflected in the over-all x2 values given in Table IIT.

As poinfed out in the previous paragraph, lafge x2 contributions come
from data points at large -% values. In Case I, which gives the results
of Fig. 19, we are using a K n model with an exponential parametrization
for the background amplitude. This term goes as ebt (see Sec. IV-C). At
large negative t, this background contribution tQ the K n amplitudefis
small. Essentially, there are no parameters‘to vary to fit the data
points at large Séattering angles. The contributions to the bfeak-up
reaction cross-section in this region come mainly from the non-vafying
resonant‘part of the K™n amplitude and.from the fiked input of the X p
distribution. Consequently, there are two possiﬁle‘reasoné connected
with the large X2 contribgtions coming from data points in this lérge-angle
region. One of these is connected with fhe Kp amplitude, the other with g
the K n amplitude. In the case of K p, the K p elastic scattering distribu-
tions given by the K p models discussed in Sec. IV-B may be too high in
the backward region. This is especially truebat 910 MEV/c. We show in
Fig. 20 the K-p distributions used as input in our fitting. The solid

t

curves are from the 1° K p model, the dashed curves from the 2nd. The

_data points shown are from our experiment, obﬁained with the impulse.
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our experiment.
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approximation method described in Sec. IV+E-3. .We have compared the K p
angular distributioﬁ calculated from the lst K_p model at 910 MEV/c
momentum with the experimental distribution given by Ref. 25. The results
indicate that the calculated distribution is higher by about 20 to 30% in

the backward region. This could account for part of the discrepancy at

large -t in our fit. In the case of the X n amplitude, there are indications

that other Yi resonances occur around the 9lQ MeV/c region besides the
Y;(l660) and the Yi(l765) used in our parametrization.3u If this were
the case, our K n amplitude should also include these. There is then a
possibility that the K n amplitude may be different in the backward
direction, depending on the spin-parity assignments and the branching-
ratio of these new resonances into the KN channel. This may also account
for part of the discrepancy in our fit. |

In contrast to Case I, which has zero degree of freedom in fitting the
data points at large -t, Case IIvdoes have a certain freedom in this region.
In Case II, the K-p amplitudes remained the same as in Case I. However,
the K n backgréund amplitude included the Sqq, P15 and Pl3 wave§
instead of an exponential. These three partial waves afforded sbme
latitude in fitting the large -t data points. The results of the fitting
are given by the solid curves in Fig. 21. The dashed curves in this
figure are from the results of Case I. The X2 values are improved, as

shown in Table III. However, this is accomplished at the expense of the

K n angular distributions, which we show in Fig. 22. The solid curves

in this figure are the K n elastic scattering angular distributions .
obtained in Case I. The dahsed curves are from Case II. The data

points are impulse approximation results, as described in Sec. IV-E-3.
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From Fig. 22, we see that the Case II'distributions (dashed curves)
are depressed at large angles so as to give a better fit to the K-pn
distributions in the large angle region. This again reflects the -
possibility that the input K_p distribu%ions are high in the large angle
region.

For completeness, we include in Table VIII the.angular distributions
for K'd K d. We show in Fig. 23 the calculated K d - K pn angular
distributions with no cut on the proton momentum. These curves are

from Case I.
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Table VIII. K d elastic scattering angular distributions.

810 MeV/c 910 MeV/c
-t (do/dt) , -t (do/dt)
(BeV/c)® 1o/ (Bev/c)® (Bev/c)? mb/(BeV/c)>
.02 0.03 i5o.7r15.3 0.02 0.03 11k.646.6
.03 0.04 121.2+13.7 10.03 0.0k 97.5%6.1
.04 0.05 83.9+11.4 0.0k 0.05 6L4.0%5.1
.05 0.07 49.7+6.2 0.05 0.06 59.4+4.8
.07 0.09 31.1i&.9 0.06 0.07 38.5+3.8
.09 0.11 17.1#3.6 0.07 0.08 33.9%3.6
.11 0.1k 10.4#2.3 0.08 0.10 22.5%2.1
.1Avo.18. 5.4+1.5 | 0.10 0.12 . 7+1.7
| 0.12 0.16 5.1%0.7
0.16 0.20 1.9+0.4
1010 MeV/c 1110 MeV/c
.03 0.04 111.8+7.6 0.02 0.03 124.1+47.0
.0k 0.05 82.016.5 0.03 0.0k 100.7+6.3
.05 0.06 56.2%5.3 0.04% 0.05 68.2+5.2
.06 0.08 33.8%3.0 0.05 0.07 45,0%3.0
.08 0.11 16.7+1.7 0.07 0.09 28.4+2. L
.11 0.1k 10.0+£1.3 0.09 0;12 0 15.9+1.k4
.14 0.18 3.2+0.6 0.12 0.16 5.7+0.7
.18'6.23 1.650.4 0.16 0.21  2.5%0.4
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V. SUMMARY AND CONCLUSIONS

. We have presented experimental angular distributions for thei
reactions K d - K d and K'd - K pn at four inéident K momeﬁta. To
analyze this dats use was made of Glauber}s impact parameter formalism
for K -deuteron scattering. The break-up reaction cross-section formula
was modified to take into account the proton momentum cut made in the
scanning. We chose to do this by looking at diagrams corresponding to
the break-up process. Using this method, we obtained the modifications
to the cross-section formula arising from the proton momentum cut. In
addition, we obtained modifications which arise froﬁ the difference. in
flux factors between K -deuteron and K -nucleon scattering and from the
smearing of the nucleon cross-sections due to Fermi momentum. Finally,
we extended this formalism to include spin dependence.

Using'this_formalism thus modified, we fitted our K d elastic
scattering and break-up reaction data simultaneously. The deuteron cross-
section formulae were expressed in terms of the K p and K n amplitudes.
We input into these formulae the K p amplitudes from two models based on
experiment. The K n amplitudes were parametrized with a variable back-
ground on top of fixed resonances. The background parameters were
Variedltd get a fit to our data. |

We have tried incorpofating Fermi smearing and double scattering
into our fits. Comparing the results, we found that the inclusion of
Fermi smearing in the break-up reaction improved the xg. The effect of
double scattering is small invthis reaction, but is sizeable in thevK—d
elastic scattering, becoming more important as -t gets large. The
inclusion of double scattering also improved the fit in most cases.

Of the 4 combinations of fits, we tend to favor Case I. Though’
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Case II gave somewhat smaller XE values, the fact that the K n elastic

scattering distributions are lover at large angles than the experimental

K n distributions obtained with a simple impulse approximation (see

Fig. 22) makes Case II less attractive. The improvement in X2 in

Case II comes from the freedom that Case II parameters have in the large

angle region, which nay contain uncertainties in the K p distr;butions.

Case I does not héve this freedom. As a result, it is less

susceptible to the K—p uncertainties in this region. The K;n elastic

distributions resulting from Case I aiso conform in shape to the.

experimental impulse approximation K n distributions, as shown in Fig. 22.
From oﬁr fits, we f&und that the total K 4 elastic cross-section

el
.

Kd and the K n total cross section cﬁOt were independent of the K p

Kn

and K n models we used. The reason for this is clear. Ultimately, these
two quantities are tied through the optical theorem to the K d and Kp
total cross-sections, which we input and.which are more precisely known.
Consequently, these two quantities aré less affected by the uncertainties
present in ouf models. On the other hand, cii showed a marked model-
dependence. From the values given in Table III, its dependence on the K_p
models is obvious. (Compare Cases I and II with cases III and IV.)

Its dependence on the K n models is less clear cut. ‘But from tﬁe
difference in the two K n angular distributions (from which oii is
obtained) shown on each graph in Fig. 22, we see that fhere is a
dependence. Aspointed out at the end of Sec. iV-E—h, the difference in
the two distributions given by the solid and the dashed curves in

Fig. 22 result from the K n amplitude compensating the K-p amplitude

to fit the K pn distributions at large angles. Thus we find that our
determinatipn of the K n amplitudes dependé critically oﬂ the input K_p

models (which had no variable parameters). One way to'remedy this is
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to use actual experimental K p and/or charge exchange data and to do
a simultaneous fit with both the K p and the K n amplitudes free to

vary. The possibility of doing this is now being investigated.
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APPENDIX A
We derive in this Appendix the expression for the scattering amplitude

as given by Eq. ITI-2. The Schrodinger equation can be written as (fi=c=1)
o - - -
(P )y (F) = UEN(E) (a-1)

where ko = 2uE, U(r) = 2uv(r), and u = mlmg/(ml+m2) is the reduced mass.
The definition of the scattering amplitude A(Ef,ﬁi) is given through the

asymptotic wave function

ey ik,.r __ _ikr
VE)EB e T ox a(RLE) S (a-2)
where Ei is the incident momentum, Ef the final momentum, and k = lﬁil =
11?:f| (elastic scattering). We define a function v(r) through
o ikgr
v(r) =e + v(r)
Then Eq. A-2 implies
_ 'Pﬁw R
v(F) 25 Akp k) = (A-3)
Eq. A-1l can now be written as
2 -\ = -
(P+E) v(F) = U(F) WEF) . (A-k)
The Green's function for this equation is given by
1k | F-7 |
- =, 1l e
: G(I‘,I‘ ) =" IE' o
. |r-r |
Using this, the solution v(r) for Eq. A-4 is then given by
. _ik|T-7 | . '
= 1 -, € - -,
V(E) = - g [ol o W) (a-5)

For r—ew, |f~§’|—>(r2~2r r C059)1/2—>(r-r’cose), where cosf = i;f .
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'Using this, Eq. A-5 becomes

ikr s
V(i“) I'—)o_o_ r:j-_[ e /d3£” e-lkl‘ COSGU(I-" )\![(I-") .

r
Comparing with Eq. A-3, we get

- e
1 d3r' e ikr’ cosé

Alkg,ky) = - T

u(r’ 2 (x”)

We note that kr’ cosf = Ef-f’(since 0 is the angle between r’ and r, and
r is the position vector of the scattered particle). Thus we finally

arrive at Eq. III-E;

-’

- k
MELE) = - & [ e uE ()
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APPENDIX B

In this Appendix, we furnish the steps by which we go from Eq. III-8

to Eq. III-9. Rewriting Eq. III-8, we get
-y _ ik 2~ iq-b [.3- *¥,- -
Afi(q) = gﬁ&/é be u/£ T wf(r)wi(r) x

X[Eﬁlik _/dz;l,{e-i&- (5-5/2) s (& yre~10 - (B+5/2) Ap(;l,)}'

2 n It "1.5'(&"“1”) i(i"‘c_l")'é/e
z———jggmk "% A(q)A(q) e .

Integrating over b gives
. [ TR -
hey (8) = 35 Vi@, ()
- 2 ,- = - ig°S - —3Q% -5
X[/dgq’ 5 (q-q’){An(q’) G135/2 A (a7) e e s/Q}

l 2 2 1 =, b 1] 2 -_",_-n i((i'-(i")'-s-/g—l
e s N PNCORCE RO |

Integrating out the &-functions gives
A, (Q) —f<i3f @ ) | A (3) 15/2 Ly (g) em178/2
£i0 = TAGRAS] nld H(d
1 . ‘ -
Eﬂlkfd 3 A, (%) A(3-3") S Q/E)] - (B-1)

We let @f(ﬁ) and @i(ﬁ) be the Fourier transform of Wf(f) and wi(f),

respectively. Again using the small angle scattering approximation

q*s = gq-r, we can rewrite Eq. B-1l as
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- 1 - - ¥ . - ._ ipe (p-p’
80, (3) = Fy3 o & cpf<p)cpi<p'>fd3r i (et)

n\ 4

x [A (3) V2 8,(3) o-iF+3/2

- _/deq’ A (a) Ap(i-i’) eif'(a"a/e)]

Srik

Integrating over r gives 3-dimensional d-functions which can be used to

do the 5’ integration. Carrying this out, we have

by (3) = A(D) (4% 93BN, (5-3/2) + A, (D) [a5 ()0, (+3/2)
| | (3-2)
* é;lazfdgi’ A,(3) A (3-3) ]d3f> op(B), (5-37-3/2)

We define the overlap integral
ey (D) = [4%5 G5(E) 0, (5-0)
Then Eg. B—?,with a change of variables Q" = @’-g/2, can be written as
8oy (8) = 0py (F/2) A, (8) + Gy (-/2) & (3)

(B-3)
v i [4E 0, (3 A (an/2) A (-2F/)
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APPENDIX C

We derive in this Appendix the generalizations of Egs. III-12, IIT-13,
and ITII-18 to include spin dependence. Our starting point is Eq. III-9.

We assume that the K d amplitude has the form

hey(B) =y v 2y

where
My = Gpy (0/2) A ()46, (-3/2) A, (Q) | (c-1)
M, = b [R5 6 () A(3,) AL(E) - (c-2)

' Here we have defined q, = +G’+3/2. The spin dependence of the nucleon

amplitudes is assume to be

A.(q) = £.(3) + i5.'n_ g.(q j =n
.J(q) 5(a) 50 85(a) J =mn,p
N K.xq
where n = ——— 1s the unit normal to the scattering plane defined by
' |k.xa| '
i

"the incident momentum Ei and the momentum transfer vector g. We use a
" hermitean representation for the Pauli matrices 55. Each 55 (for j=n,p)

satisfy the two relations
1) [6P] = 21e o

opy
2) &P tie . o .

Copti<apy

 (c-3)

€

apy

convention that all Greek indices run from 1 to 3, and repeated Greek

is the complétely anti-symmetric tensor of rank 3. We use the

indices are summed over this range. From these two relations we get
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[ ]=0

1r [ %)= 2, (c-b)
Tr [0Q0ﬁ07] = éigi

By

The following relations are also needed;

“agy o = O Syulsu O

(c-5)

€

v Neu Ayv T apy

eOCBu Gasv = ESLW .

1. Elastic Scattering

We consider first elastic scattering. The cross-section is given

by Eq. ITI-29 (we
<icz> “
ap el

The first term of
The second is the
third term is due

single scattering

take f=i),

30r [BA7,(3) Py 8, (D]
(c-6)

1 2 Lt 1., L
3 Tr (133M115>3Ml)+§ Re Tr(P3MlP3M2)+§ Tr(P3M2P3M2).

this equation is the single scattéring contribution.
interference between single and double scattering. The
purely to double scattering. We evaluate first the

term

ao \° 1
<d—%>el = 3 (P3MIP3M1) .

Using the hermitean conjugate of Eq. C-1, we can show that the commutator

+ 1, % % o B
[ Ml’P3] =3 (gn—gp) apy "q %p Og . (c-7)
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We use the following short-hand notation:

£, =6@/2) f(a) , . £ =6(-9/2) £ (a) (c-8)
g, = 6(¢/2) g (a) , g, = 6(-3/2) g (a)

where G(q) = Gii(i) is the deuteron form factor. We have used this
notation in Eqg. C-7. The asterisk appearing in this equation denote

complex conjugation. We note also that a projection operator satisfy

Pg = P3. Using this fact and Egq. C-7, we can write
. * %
Tr(PM+PM)—'Tr(PM+’)+g—n:g—I—)'e 2% mr(p.oPd M, )
M Pty ) = TP My My 57 Sapylq TFIP30,00M

Using the relations given in Egs. C-3, C-4; and C-5, we can show that

* *

g -g

n °p 0] ) _ - 2 . _
—5= a0y Tr(P3crpor71Ml) = r'gn gp| . (c-9)

With a similar procedure, we can show that

Tr(P MM, ) = 3 (Ifn+fp| + g |7+ lgp| ) + e,8,8,8, (c-10)

Adding Egs. C-9 and C-10 yields the single scattering cross-section

s
do 2 2 2
(—dg)el = g1 |7 + 5 leyve,]

Written out explicitly, using the fact that G(g/2) = G(-3/2), this

equation becomes

Wl

S

(D, (2)1°] (c-22)
el .

The interference between the single and double scattering is given

"

-
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by the second term of Eg. C-6. We denote this term by

i

dc'SD é +
<35>e1 = 3 Re Tr(P3MlP3M2) . (c-12)
Again we write, using Eq. C-8 and P32 = P3,‘
' (g g)
o Y
‘I'r(P 3M2 = Tr(P3M1M2) + -——- €apy"q Tr(P3o“EUnM2)
Evaluating the second term of this equation gives
(& ¢ )
g -&
n °p o By 2= * %
——— e —_— ——ve— -
5 oyl Tr(P3Gp0'M ) = 5 (670 &(2) (g, g,)
x a)f(q)n -n -g (3 )f (q )n -n c-1
ECRREACREAENCRIXCECR S (c-13)

+ 3 g )n_-(d_=xn
8,(q, ) (a ) " ( q+an_)J
Evaluating the first term gives

1, (el )- s [0 o) [ (e {3rn G @m0, A, )

+(3g, e, )e, (3, )2, (308 -8, +(e,+3e, )6, (3.)2, (8, )R -8

. q_

o (c-14)
(g -2 )e (a, )g (a_ )n (mq xn ):’-
+ -

n “p’®n

From Egs. C-12, C-13, and C-14, we get the single and double-scattering

interference contribution to the elastic scattering cross-section

, (c-15)

dQ

d
(°> C—}g-i—lm qu(q) ,(33)
el
where ' v :
M
np

- (@) {£(807,(8)- 5 8,(3,)8,(04 -5, }

* 5 (o (@ (@)e, (305,307, -5, +e, (307,358, }

-+



2. Deuteron Break-up

The break-up reaction crdss-section is given by Eq. III-33,

(%%)Kpn - 5 [Pf\;i@ Afi(a)_] (c-16) .'

L

1 2 + 1 +
= 3 ? Tr(P3M1Ml)+ 3 Re ? Tr(P3MlM2)+ 3 ? Tr(P3M2M2) .

Again the three terms on the right correspond to single sCattering,
interference between single and double scattering, and pure double

scattering, respectively. We denote the single scattering term by

)
(a‘sz‘) : -J?;—?Tr(P?)MlMl) . (C-17)

The spin structure of this equation is the same as Eq. C-10. However,
rather than Eg. C-8, the amplitudes fn; 8, fp, and gp should be defined

in the présent case by

f

Il
Il

o = Gy (¥/2) £.(2), T =Gpy(-3/2) £ (3)

g, = Gp;(9/2) g, (3), &

D Gfi('a/g) gp(a)

Hence, reading off from Eq. C-10, Eq. C-17 becomes explicitly
do S -y (2 -y(2 | * -
() - (r,@Prle, @17 2 63y (¥2) gy (F2)
/ Kpn v f v
+ (12 (@)% e (@)1%) = 6 6d/2) oy, (-3/2) | (c-18) |
P D £ fi i

+ 2re [ £ (D)5 (@) 5 g, (Dl (D)) §c§1(5/2> Gpy (-7/2)-
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Using the closure approximation, we have from Eg. III-17
* - - % - -
% Gy (9/2) Gpy (3/2) = 2 Gp, (-3/2) Gy, (-3/2) = 0(0)

-

Gpy (7/2) Cpy (-4/2) = 6(3)

where G(q) is the deuteron form factor. Thus Eq. C-18 can be re-written

as

5
(%%) = 6(0) [, (@)%, (D)7 ] + 6(0) [ 1£,(3) %], ()17 ]

(c-19)

- 26(2) Re [ £, (D)1, (3) + 3 6, (De,@D]

The first bracket in this equation arises from neutron single scattering,
the second from proton single scattering, and the third from their
interference.

Next we consider the second term of Eg. C-16. This is the

interference between single and double scattering amplitudes. We

denote this by

SD '
do> 2 : +
= = =Re T Tr(P_M.M,) (c-20)
(dﬂ kpn 3 MM

Againbwe note that the spin structure of this equation is the same as
Eq. C-14. In this case, we have to replace each G(3) in Eq. C-1k by

Gfi(é). We get for the cross-section explicitly

-

2|8
Q

sD | *
( >Kpn= - ;TlE ImJ[_:ig(i' [M (@, J(/2)e, (q?+M (g, i’)? Gfi(-i/E)Gfi(i')}

(c-21)

where Mn(i,i’) and Mp(i,i’) are defined by
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M (835, (D[ 2,302, () 5 8,(3 )8, (05, B ]

* - - - A A 1 - - AN A
+gn(q)[gn(q+)fp(‘1_)nq"nq++ 3 8,(a ) (g )ngn

+ % g,(3,)e (3 )h - (ﬁqﬁa%)}

u (3, a'>=f§<a>[fn<a+>fp<a_>- = gn<a+>gp<a_>aq+.aq_]

9 a_ n q

+g;<a>[gp<a_>.¢n<a+)a ‘n o+ %g ((—1+)fp([i_)ﬁq.ﬁ )

.+ % gn(a+)gp(a')ﬁq.(ﬁq;Xﬁq-)]

With the closure approximation relations, we can rewrite Eq. C-21 as

(g_%)f{;: i ﬁjl-{f Im_/:lgc-l' [G(i_)Mn(i, )+ G(i+)Mp(<'1,<_1’)] (c-22)

3. Cross-Section Defect

The K d total cross-section is given by Eq. III-31,

Ly 1
oq = 3 Im 3 Tr(PsAii(O))
From Eq. C-1 and C-2 we get
Oq = o, + op - do ,
where |
do = + Im 3 Tr(P3M2(O)) . (c-23)

From Eq. C-2
-i o - - -
Tr(p6,(0)) = e [a3 (3) Txfeop,(8) A (-D)]
Using the techniques described above, we get

Tr [PBAn((_l) Ap(-ci)] - 3[fn(§)f:1‘;(-€1)-'ﬁq.ﬁ_q gn(a)gp(_a)] )
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Since f .= -ﬁq, we finally get for Eq. C-23

do =..£§ a%3 ¢(3) Re [fn(a)fp(-§)+ % gn(i)gp(-i)]f

(c-2k)



-102-

ACKNOWLEDGMENTS |

I thank Dr. George Kalmus for his guidance and éﬁpport throughout
the course of this work. The comments and advice of Professor }
Robert Poe have been invaluable. To Dfsq &ames Louie, Jack Sahouria, |
and Wesley Smart I owe muéh for their help in the early part of thisr'
eXperiment.. To the many members of thé Powell-Birge éroup‘who helped
with this experiment, I express my thanks. I especially appreciate
the patience and skill with which Mrs. Sandy Paciotti and Mrs. Jane
Kennedy typed this thesis. '

_This work was done under the auspices of the U.S. Atomic Energy

Commission.

b Ay a w e



-103-

REFERENCES

R. B. Bell, R. W. Bland, M. G. Bowler, J. L. Brown, R. P. Ely,

S. Y. Fung, G. Goldhaber, A. A. Hirata, J. A. Kadyk, J. Loﬁie,

C. T. Murphy, J. S. Sahouria, V. H. Seeger, W. M. Smart, and

G. H. Trilling, A Variable Momentum Separated Kir Beam>at the
Bevatron, UCRL-11527, 19%6k.

H. C. Albfecht, E. P. Binnall, R. W. Birge, M. H. Meyers and P. W.
Weber, The COBWEB Data Reduction System, UCRL-18528 (Rev.), 1968.
H. S. White, S. S. Buckman, D. E. Hall, E. Hurwitz, L. B. Meissner,
J. C. Smith, and F. R. Stannard, The FOG, CLOUDY, and FAIR Programs
for Bubble Chamber Data Réduction, UCRL-9457, 1960.

J. Louie and J. S. Sahouria, P-B Group (LRL) Note PB-10k-2,

(April 1967). o

B. Rossi, High Energy Particles, Prentice-Hall (1952), Ch. 2;

F. Crawford, Use of Delta-Rays to Determine Particle‘Velocifies, IRL,

‘ UCID-éhl (1957)}

D. V. Bugg, R.vS. Gilﬁore, K. M. Knight, D. C. Salter, G. H. Stafford,
. E. J. N. Wilson, J. D. Davies, J. D. Dowell, P. M. Hattersley,

R. J. Homes, A. W. 0'Dell, A. A. Cartér, R. J. Tapper, and K. F. Riley,
Phys. Rev. 168, 1466 (1968).

‘J. L. Brown, Theoretical Index of Refraction in Various Hydrogeh/
Deuterium‘Experiments, LRL, Trilling-Goldhaber Technical Note

TGT-29 (Oct. 196L). | |

W. M. Smart, Study of the Yi Resonant Amblitudes Between 1660 and
1900 MeV in the Eeaction Kn = Ax , UCRL-17712 (Aug. 1967).

S. E. Derenzo and R. H. Hildebrand, The Estimation of Scanninbg

Efficiencies for Experiments Using Visual Detectors, UCRL-18638
(Dec. 1968).



10.

11.

12.

13.

1k,

15.

16.

17.

18.

19.
20.
21.
22.

.23.

2k,

R.

~10h4-

J. Glauber, in Lectures in Theoretical Physics, edited by W. E.

Britten et. al, (Interscience Publishers, Inc., New York, 1959),

Vol. I, pg. 315.

V.

C.

Franco and R. J. Glauber, Phys. Rev. 142 1195 (1966).

Wilkin, High Energy Scattering from Nuclei, Brookhaven National

Laboratory, RNT,-11722 (1967).

T.

Adachi and T. Kotani, Prog;'of Theo. Phys. 39, 785 (19%68), and

references therein.

L.

D. Landau and E. M. Lifshitz, Quantum Mechanics - Non-Relativistie

Theory, (Pergamon Press, New York, 1965), pg. 19.

E.

S. Abers, H. Burkhardt, V. L. Teplitz, and C. Wilkin, Nuovo

Cimento 42, 365 (1966).

L.

G.

Bertocchi and A. Capella, Nuovo Cimento 51, 369 (19%67).

Kgllén, Elementary Particle Physics (Addison-Wesley Publishing Co.,

Inc. 1964), Chapters 1 and 3.

E.

P.

Byckling and K. Kajamtie, Nucl. Phys. 39, 568 (1969);

P. Srivastava and G. Sudarshan, Phys. Rev. 110, 756 (1958).

Chapter 3 of Ref. 17.

For a detailed discussion of this relation, see Ref. 16.

G.

Faldt and T. E. O. Ericson, Nucl. Phys. B3, 1 (1968).

M. J. Moravesik, Nucl. Phys. 7, 113 (1958).

T. Lasinski, R. Levi-Setti, and E. Predazzi, Phys. Rev. 163,

1792 (1967). |

R. Armenteros, P. Baillon, C. Bfeiman, M. Ferro-Luzzi, D. E. Plane,
N. Schnitz, E. Burkhardt, H. Filthuth, E. Kluge, H. Oberlack,

R. R. Ross, R. Barloutaud, P. Granet, J. Meyer,-J. P. Porter, and
J. Prevost, Nucl. Phys. B8, 195 (1968). |



25.

26.

27.

28.

29.
30.
31.
'32._

" 33.
3k,

-105-

W. R. Holley, E. F. Beall, D. Keefe, L. T. Kerth, J. J. Thresher,
C. L. Wang, and W. A. Wenzel, Phys. Rev. 154, 1273 (1967).

J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, (John

Wiley and Sons, New York, 1952), pg. 361.

W. A. Ross and D. W. G. S. Leith, A Simple Model of n p Elastic
Scattering Near 1 GeV/c, Stanford Linear Acceierator, SLAC-PUB-430
(1968).

M. Musette, Nucl. Phys. BY, 131 (1967). This is a special case of
the genefal expansion considered in this reference. The choice of
&y, being proportiqnal to \I:E-corresponds to having the spin-flip
potential being proportional to o-L in poténtial scattering.

(See Ref. 30.)

N. Barash-Schmidt, G. Conforte, A. Bérbaro—Galtieri; L. R. Price;
M. Roos, A. H. Rosenfeld, P. Soding, and C. G. Wohl, Review of
Particle Properties,_UCRL—803O (Jan. 1969).

N.‘Byers and C. N. Yang, Phys. Rev. 142, 476 (1966).

E. R. Beals, Z0 BKY VARMIT, Lawrence Radiation Laboratory Computer

Center Library Note, June 1966 (unpublished).

W. C. Davidon, Variable Metric Method for Minimization, Argonne

National Laboratory Report ANL-5990 Rev., Nov. 1959 (unpublished).

See for example, Figs. 4 and 5 of Ref. 11.

R. Levi-Setti, StrangevBaryon Resonances, Univ. oflChicago,
Preprint EFI 69-78 (June,‘l969)}'vRapporteur talk given at the
Lund International Conférence on Eiementary Particles in Lund,

Sweden.



LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, ''person acting on behalf of the Commission’’
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.




N - “‘

TECHNICAL INFORMATION DIVISION
LAWRENCE RADIATION LABORATORY
UNIVFRSITY OF CALLIFORNIA
BERKELEY, CALIFORNIA 94720





