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Lung radiotherapy is greatly benefitted when the tumor motion caused by breathing can be modeled. The aim of this paper is
to present the importance of using anisotropic and subject-specific tissue elasticity for simulating the airflow inside the lungs. A
computational-fluid-dynamics (CFD) based approach is presented to simulate airflow inside a subject-specific deformable lung
for modeling lung tumor motion and the motion of the surrounding tissues during radiotherapy. A flow-structure interaction
technique is employed that simultaneously models airflow and lung deformation. The lung is modeled as a poroelastic medium
with subject-specific anisotropic poroelastic properties on a geometry, which was reconstructed from four-dimensional computed
tomography (4DCT) scan datasets of humans with lung cancer. The results include the 3D anisotropic lung deformation for
known airflow pattern inside the lungs. The effects of anisotropy are also presented on both the spatiotemporal volumetric lung
displacement and the regional lung hysteresis.

1. Introduction

Lung radiotherapy aims at delivering therapeutic ionizing
radiation on lung tumor in the form of external beams from
different angles while minimizing exposure to surrounding
healthy tissues. Errors in the lung tumor localization during
therapy may lead to an undertreatment of the tumor and
an overexposure of ionizing radiation to the surrounding
lung tissues [1]. Lung tumor localization errors occur as the
lung deforms during breathing, thereby compromising the
accuracy of the radiation therapy [2]. Clinical approach to
address these localization errors typically involves increasing
tumor margins in radiation treatment plan and avoiding
voluntary breathing variations (e.g., sneezing and coughing)
[3]. A precise estimation of lung tumor position can be
facilitated by a fluid structure interaction model, where the
airflow inside the lungs is modeled using computational fluid
dynamics (CFD) techniques, and the structure is modeled

as a subject-specific anisotropic poroelastic medium. Such
an estimation of the lung tumor position will not only lead
to improved adaptive radiotherapy and treatment outcomes
but also lead to an improved image acquisition guidance in
the future.

CFD of airflow inside lungs during respiration is a
challenging task due to the complexity of lung geometry,
structural heterogeneity and material anisotropy, and other
boundary constraints [4]. Specifically, the human lung is
heterogeneous and anisotropic, with a wide range of elastic
property values [5]. This situation is further exacerbated
by the presence of tumors, which significantly increase the
local elastic modulus due to stiffness [6]. Several methods
have been used to simulate flow and deformation in the
lung, ranging from fractal theory to macroscopic [7]. Some
methods allow simulation over several branching levels of
the tracheobronchial tree to the alveoli level, but are com-
putationally intensive and impracticable for near real-time
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application. For instance, Yang et al. [7] documented the
computation time for airflow studies in 11 airway branches
to be in year’s duration. Kunz et al. [8] and Radhakrishnan
and Kassinos [9] demonstrated the computational complex-
ity of fluid flow solution by using a parallel CFD solver for
studying the convective and diffusive particle depositions
inside the lung. The airway branching was modeled up
to 11 branches. The rest of the lung space was modeled
as a homogenous space. Fluid structure interaction (FSI)
between the airflow and the lung parenchymal region was
first investigated in [10] by modeling the alveolar region
as macro-air-sacs with isotropic elastic properties. Coupling
of anisotropic elastic properties for lung substructures with
CFD studies has not been previously investigated.

This paper describes a methodology for coupling the
anisotropic elasticity with CFD analysis to effectively predict
the volumetric lung displacement at different breathing
phases and, by so doing, track tumor motion. The fluid struc-
ture interaction depends critically on the anisotropic nature
of the subject-specific lung tissue elasticity. To incorporate
the anisotropic tissue elasticity, a multizone-based geometric
representation is employed. While multizone representations
have been previously investigated for arterial blood flows
[12], it has not been used for investigating airflow inside the
lungs. The usage of such a geometric representation avoided
errors in airflow analyses caused by airway segmentation
errors and reduced the computation time as compared to
the timings previously reported in [7]. The airflow model-
ing studies also demonstrated the influence of anisotropic
elasticity estimated from 4DCT on the resulting airflow
inside lungs and the volumetric deformation. The combined
usage of anisotropic elasticity and a multizone geometry
representation form the key contribution of the paper.

2. Formulation

The present study considers the lung as an anisotropic
poroelastic medium. The spatially varying Young’s modulus
(YM) data is adopted from those derived based on optical
flow registration of human data in a previous study [13].
The mathematical model involves simultaneous solution of
the equations governing fluid flow of air through the airway
and the structural deformation of the lobe. A gauge pressure
acquired from the patient using spirometry is imposed at
the trachea, which in turn drives air into the lobes, and
the pressure of the air inside the lobe in turn results in
lung deformation during the breathing process. This flow-
structure interaction (FSI) approach enables the prediction
of the spatial velocity distribution and lung displacement
over several breathing cycles. In order to investigate the
impact of nonlinear elastic property, the predicted deforma-
tion with and without allowance for spatial variation in the
YM is compared. The FSI equations were solved by means of
ADINA commercial computational code [14].

2.1. Estimating Tissue Elastic Properties from 4DCT Images.
The 4DCT scans used in this study were acquired at the M.D.
Anderson Cancer Research Center, Orlando, from in vivo

experiments on human adult patients at different times of the
breathing cycle. 4DCT datasets for a human subject at 10%
tidal volume intervals were taken using Siemens Biograph
strain-gauge 64 slices CT. The 3D volumetric lung and the
airways were segmented using Pinnacle MBS and OSIRIX
software.

The 4DCT data registration algorithm was used to esti-
mate the motion of each 3D voxel at the end-expiration 3D
volume data by searching for and locating a corresponding
voxel in another 3D volume at a different breathing phase.
An optical flow-based motion estimation, which is based on
local Taylor series approximation and is further described in
the optical flow literature, was used for the registration [15].
One of the limitations of the optical flow method as applied
to estimating the 3D organ motion was the low sensitivity
to variations in regional motion. In order to improve the
accuracy of optical flow algorithm implementation, we used
a multilevel, multiresolution optical flow method [16], which
computed optical flow between two 3D volumes at lower
resolution, propagated the result to the higher resolution
volume, and subsequently to the original resolution volume
data. In this approach, the organ anatomy was separated
into four parts: (1) lung outline, (2) large capillaries, (3)
small capillaries, and (4) parenchymal region. At each level
of anatomy optical flow, a multilevel, multiresolution optical
flow registration was used for computing the 4D organ
motion of that anatomy and integrated into the next level.

The next step was to estimate the subject-specific defor-
mation model’s kernel for the surface and the volumetric
lung representations, which represents the internodal elastic
interaction, and the surface lung elasticity in terms of the
YM values. The method is based on the approach discussed
in [17]. The volumetric lung deformation operator took as
input the force applied on the voxels inside the lung and
computed the subsequent change in shape. We first estimated
the volumetric applied force and the displacement, which
were the inputs for estimating the operator. The force applied
on a lung for a given change in volume was computed using
the pressure-volume curve measurement, a key pulmonary
function test. This force was then spatially distributed inside
the lung using the vertical gradient of pressure. Such a
distribution estimated the volumetric applied force.

The volumetric lung displacement was estimated using
the optical flow, with Euclidean distance-based interpolation
of surface registration. We then estimated the surface
lung deformation operator as previously discussed in [16].
For both the surface and volumetric lung deformation,
a heterogeneous Green’s function (GF) based formulation
was considered. The structural and functional constants
estimated for the surface lung dynamics were specifically
used for the volumetric lung dynamics. The GF for the
volumetric lung was reformulated in the spectral domain
using a hyper spherical harmonic (HSH) transformation.
Upon simplification, the HSH coefficients of the displace-
ment were represented as a product of the HSH coefficients
of the applied force and the deformation operator. The
formulation at this stage was mathematically ill-posed since
the dimension of the HSH coefficients was higher than
the volumetric displacement and the applied force. Local
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isometricity was assumed at each volumetric point obtained
using the structural and functional constants associated with
each voxel. The constraints were computed from the values
associated with the lung surface points using a surface
lung deformation model [18]. This approach reduced the
dimensionality of the deformation operator, making the
formulation well-posed. Thus for known values of the
applied force and displacement, the HSH coefficients of
the operator were estimated, and the YM value of each
volumetric point was computed.

2.2. Formulation of Mathematical Model for Computation-
al Fluid Dynamics Simulation. The mathematical model
involves solution of the coupled poroelastic flow-structure
interaction equation with nonhomogeneous and anisotropic
tissue properties. This coupled field approach required the
solution of the Richard’s equation [19] for the local lung
pressure and velocity distributions, given by

∅β
∂p

∂t
= ∇×

[
k

μ

(∇p + ρg
)]− ∂

∂t

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
, (1)

where ∅ and k represent the porosity and permeability of
the tissue, respectively, β and μ represent the compressibility
and viscosity of air, respectively, p is the local pressure (pore
pressure), ρ is air density, and u, v, and w are the three
components of the deflection (deformation) vector for the
tissue. Note that the above equation for pore pressure has
already incorporated the Darcy equation for gas flow through
the tissue skeleton. This equation was coupled to the lung
elastic deformation by the presence of the dilatation (final
term) in the above equation. This term was supplied by
solving the elastic deformation field, u, from the following
poroelastic version of the Navier’s equation:

G∇2�u +
G

1− 2v
∇(∇× �u) = ∇p − �f , (2)

where G and v are the tissue Shear Modulus and Poisson
ratio, respectively, and f is an external body force term that
can include thermal effects as desired. Note that in (2) G
represents anisotropic shear modulus. Assuming orthogonal
anisotropy the value of G is allowed to vary in the xy, yz,
and xz planes. The shear modulus is related to the YM
through the standard relation (G = YM/[2(1 + v)]) in each
direction. Together the previous two equations provide the
full description of the coupled lung flow problem. Solution of
these equations is accomplished for subject-specific patient
lung geometries using ADINA computational code [14].

2.3. Geometry Reconstruction and Multilayer Mesh Gener-
ation. The CT scans at the end-expiration stage are first
segmented and used to generate the three-dimensional (3D)
geometry utilizing the Mimics computer code [20]. The
3D meshes obtained are then remeshed by means of the
3-matic framework [21] for numerical computation. The
resulting geometry reconstructed for the right lung is shown
in Figure 1.

The lung airway is like a multilevel branching tree as
shown in Figure 2 [11]. Based on this airway structure of

xy

z

Figure 1: The right lung reconstructed from 4DCT scan dataset
obtained at M.D. Anderson Cancer Center, Orlando.

the lung, the permeability (K = ϕR2/8, in which R is the
branch radius) should decrease significantly from the main
central branches to the tip branches as the branch diameter
progressively decreases. Correspondingly, the airflow velocity
in the primary central branches is significantly higher than
that in the peripheral branches. A relatively fine volume
numerical mesh size will therefore be required in the core
region to reflect the relatively higher pressure, velocity, and
stress gradient there compared to the outer layers. Since
proper representation of the grid structure is critical to
numerical stability, the multibranching lung structure is
approximated within the context of the poroelastic model
used here, as a multizone structure shown in Figure 3, that
permits application of different grids and, if needed, different
property values. It can be seen that the multizone geometry
representation is similar to the hyperspherical formulation
used for representing the YM values of lung substructures.
For instance, a normalized airway branch radius can be
converted to permeability values associated with each voxel.
This permeability is then allowed to vary from the core (inner
shell) to the peripheral layers (outer shell) using the same
hyperspherical parameterization. The sectional view of the
volume mesh generated is shown in Figure 4. It should be
noted that both Figures 3 and 4 represent cut-out views of
the lobe in order to visualize the multi zone structure and
the numerical grid employed.

2.4. Input and Boundary Conditions. Phasic pressure with a
period of 4 s is imposed at the inlet to the lobe as illustrated
in Figure 5. The amplitude of the pressure waveform was
prescribed based on spirometry studies acquired from M.D.
Anderson Cancer Center, Orlando. The property data (beside
the YM) were assumed from those established in previous
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Figure 2: Multilevel branching structure of the human lung [11].

x
y z

Figure 3: Section view of the multilayer grid structure.

studies. The Poisson ratio v in the poroelastic governing
equation was assumed to be 0.4, which falls within the
range (0.25–0.47) suggested in previous studies [22, 23].
The density of lung was assumed to be 700 kg/m3 [21].
Preliminary studies indicated that the deformation is little
affected by the permeability k over the range (0.01–0.1) as
expected. The anisotropic YM adopted from a previous study
based on optical flow registration patient data ranged from
10 Pa to 500 Pa. The high YM values correspond to either
the tumor location where the structure is rigid or the main
trachea wall where the tissue is thick and rigid. The average
YM for the whole lung is 178 Pa. This average value is used for
the reference cases utilizing linear elastic property. Figure 6
shows representative color-coded YM distribution on a 2D
slice of lobe obtained from optical flow registration and used
for the anisotropic elasticity calculations in this paper [13].

3. Results

The predicted lung deformation simulated using the flow
structure interaction at different breathing phases is plotted
in Figures 7 and 8 for the linear and anisotropic YM
cases, respectively. The upper part of each figure is a cut-
off view to illustrate the evolution of selected layers from
the initial state over the specified duration. Figure 7 shows
that with linear elasticity, the layers expanded monotonically
in all directions. On the other hand, Figure 8 shows that

x
y z

Figure 4: Volume mesh for the multilayer structure.
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Figure 5: Prescribed inlet pressure.

the case with anisotropic elasticity exhibits both directional
deformation as well as expansion.

Three nodes or landmarks on the lung surface, marked
A, B, C in Figures 7 and 8, were monitored, and their
displacements along the x, y, and z coordinate directions
were analyzed. Landmark A was at the top surface of the
lobe, B was at the outer surface near the rib cage and close
to the midpoint along the craniocaudal axis, and C was at
the interior surface of the lobe.

Figure 9 shows the x, y, z displacements of the monitored
nodes A, B, and C over the first respiration cycle for both
linear and anisotropic elasticity. The predicted displacements
with linear and anisotropic YM are quite distinct. The
displacement profiles for the linear YM case, which are
represented by the dash lines, are generally sinusoidal with
a symmetric axis at t = 2 s, corresponding to the sinusoidal
pressure waveform imposed at the inlet to the lobe. On the
other hand, the displacement trajectories for the anisotropic
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Figure 6: Anisotropic YM obtained based on 4DCT scan dataset
and measured pressure-volume curves for patients with lung cancer.

YM case, which are represented by the solid lines in each
figure, are distorted from the sinusoidal pressure condition.
The peak x displacement for node A is located at t =
2.4 s, which lags the peak inlet pressure at t = 2.0 s by
0.4 s. The peak z displacement for node A is 0.2 s ahead of
the peak inlet pressure. A similar hysteresis phenomenon is
observed for the anisotropic YM case at nodes B and C. In
addition, the peak displacements in the x direction for nodes
A and B in the anisotropic YM model are nearly 3 times
the displacements in the linear YM model. These results
clearly show that the effect on deformation of anisotropic
lung elasticity could be significant.

In order to further examine the effect of anisotropicity,
the calculations were continued for additional breathing
cycles. Figure 10 shows the x, y, z displacements of nodes
A, B, and C for linear YM over 6 breathing cycles. The
entire displacement wave pattern becomes stable after the
second breathing cycle. The result indicates that all the peak
displacement values occur at the midpoint of each cycle, that
is, at t = 2 s, 6 s and 10 s. The displacements at the end of
each cycle are nearly negligible. It is worth noting that in the
consensus of the result presented in a previous Figure 9, the
displacement profile observed with linear elasticity follows
closely the input pressure wave pattern.

The corresponding results over 6 breathing cycles uti-
lizing anisotropic elasticity are presented in Figure 11. The
observed hysteresis time for the peak wave appears to be a
fixed value for each monitored location. For example, the
predicted peak wave of the x displacement lags the peak
pressure inlet by 0.4 s, 0.3 s, and 0.2 s for nodes A, B, and
C, respectively. Note that the peak displacements also vary
from cycle to cycle. The observed hysteresis resulted from the

anisotropic elasticity distribution in the lung. The hysteresis
time is also found to be dependent on the geometric location
of the monitored point in the lobe.

In order to further examine the peak variation in
the anisotropic case, the calculations are extended to 12
respiration cycles, and the results are plotted in Figure 12.
The results indicate that the x displacement magnitude
profile for the monitored node A reaches local peaks at the
2nd, 6th, and 10th cycles, corresponding to a period of 16 s.
The y and z displacement profiles reach their local maxima
at the 4th, 8th, and 12th cycles, which also correspond to a
period of 16 s. A similar periodic pattern is observed for node
C while the trend in node B is not quite so distinct, perhaps
because the latter was located near the symmetry point along
the craniocaudal axis.

Figure 13 summarizes the results presented above by
tracing the trajectories of monitored point A over 6 breathing
cycles with both linear (Figure 13(a)) and anisotropic elas-
ticity (Figure 13(b)). The start and end locations of the node
are indicated in each figure. Hysteresis is clearly evident in the
anisotropic result as exemplified by the significant differences
in the trajectories of the monitored point over successive
breathing cycles. The trajectories for the linear case on the
other hand are nearly coincident. The results for nodes B
and C exhibit similar trends and are not presented here for
brevity.

Validation of airflow modeling is essential in verifying
the usage of anisotropic YM values. Studies were conducted
to verify the accuracy of the lung deformation using
the CFD-based flow analysis. Validation consisted of two
parts, namely, numerical accuracy and comparison with
data. Numerical accuracy was first tested by repeating the
calculations for a set of grid numbers below and above
the ones chosen for the above results. The results were
found to be essentially independent of grid number (and,
correspondingly, grid size) beyond the ones chosen for
the results. Next, clinical experts delineated two sets of
20 landmarks on two lung models. The motion of the
landmarks during the CFD simulation was documented and
compared with the displacement observed in the 4DCT
dataset that was used to generate the 3D geometry. Table 1
tabulates the mean target deformation error (TDE) for the
displacement obtained using the isotropic and anisotropic
YM values. It can be seen that a better accuracy was obtained
for the anisotropic case as compared to the isotropic case.
The maximum error for both the validations was with
3 mm for the anisotropic case, which is within the clinically
acceptable accuracy range. This validation shows that using
anisotropic YM values for modeling airflow inside lungs and
the subsequent fluid structure interaction can be achieved
within clinically acceptable accuracy range using anisotropic
elastic values.

4. Conclusion

The effect has been investigated of using subject-specific
anisotropic lung elasticity for studying the airflow-induced
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Figure 7: Predicted lung deformation with linear YM.
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Figure 8: Predicted lung deformation with anisotropic YM.
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Figure 9: Predicted displacements for monitored nodes A, B, and C for linear and anisotropic YM over the first respiration cycle.
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Figure 10: Predicted displacement for nodes A, B, and C over 6 breathing cycles with isotropic YM.

Table 1: The mean target deformation error (TDE) for the displacement.

4DCT breathing phase
Validation dataset 1 Validation dataset 2

Isotropic case (mm) Anisotropic case (mm) Isotropic case (mm) Anisotropic case (mm)

10% 4.11 2.43 4.55 2.61

20% 4.21 2.44 4.43 3.10

30% 4.13 2.42 4.67 3.04

40% 4.38 2.57 4.81 2.57

50% 4.37 2.29 4.51 2.89

60% 4.74 2.44 4.80 2.02

70% 4.49 2.42 5.23 2.70

80% 5.43 2.17 5.31 2.98

90% 5.47 2.38 5.15 2.10

100% 5.34 2.57 5.40 2.90

lung deformation during radiotherapy. The lung was mod-
eled as an anisotropic poroelastic medium. The lung geom-
etry at the end-expiration was reconstructed from 4DCT
dataset of patients with non-small-cell lung cancer (NSCLC).
The subject-specific tissue elasticity was obtained from the

4DCT using an inverse deformation analysis [10]. The
airflow-tissue interaction model involved solving the coupled
equations governing fluid dynamics of airflow inside the
lungs and the associated structural deformation of the lung,
subject to appropriate boundary conditions.
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Figure 11: Predicted displacement for nodes A, B, and C over 6 breathing cycles with anisotropic YM model.

The major findings of the study may be summarized as
follows.

(i) The local anisotropy in the elasticity of the lung
substructures has a significant impact on the airflow
inside lungs.

(ii) Anisotropic YM of lung substructures produces a
hysteresis effect on the predicted spatial lung dis-
placement relative to the pressure waveform imposed
at the inlet to the lung.

(iii) The hysteresis time spatially varies from one 3D
location to another inside the lungs.

The above findings have profound implication in
the optimization and targeting of radiation to tumor in
radiotherapy. The presence of tumor (focal or distributed) in
the lung substructures may alter the anisotropism in the lung
poroelasticity and, hence, as this study has indicated, signifi-
cantly affects the resulting spatiotemporal displacement and
deformation of the lung. In addition, changes in the tumor
regression may lead to changes in the overall anisotropism
of the tissue elasticity and subsequently the hysteresis. The
net result is an evolving tumor location that is significantly
distinct in shape from one breathing signal to another. The

model presented here has demonstrated the capacity to fully
represent and quantify such detailed motion of any location
in the lung utilizing subject-specific tissue elasticity for lung
substructures.

Computation time is key limitation for many CFD-based
analyses. The proposed method of geometry representation
took approximately 24 hours to finish the breathing simula-
tion, which is improvement to previous run time calculations
using a full airway geometry. Future work would focus on
using high performance graphics units to accelerate the
calculations so that the process can be finished in much lesser
timeframe.

Results section discusses validation results for the fluid
structure interaction, which showed that anisotropic YM
values were effective in modeling the airflow inside the
lungs. Validating the airflow inside the lungs for different
breathing patterns and the subsequent interaction studies
will be a key part of our future work. Such a study would
involve the use of tracking landmarks in the lung anatomy
by means of 2D cine MRI imaging that can acquire the 2D
lung snapshots in a given plane in real-time. In addition,
using 4D gated MRI imaging, we can validate the volumetric
lung deformation and the fluid structure interaction studies
taking into account physiological factors such as tumor
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Figure 12: Predicted displacement for nodes A, B, and C over 12 breathing cycles with anisotropic YM model.

20

15

10

5

0

−5
3

2
1.5

2.5

1
0.5

0
−0.5 −15

−10
−5

0
5

Start
End

x
y

z

(a) Isotropic YM

10

5

0

−5
20

15
10

5
0
−5 −30

−20
−10

0
10

20
30

Start

End

x
y

z

(b) Anisotropic YM

Figure 13: Predicted trajectories of monitored node A over 6 breathing cycles with (a) isotropic and (b) anisotropic YM.

regression and day-to-day breathing changes. Future studies
would also account for the effect of cardiac motion on
lung imaging. Such cardiac motion can be acquired using
2D cine MRI imaging in addition to 4D imaging acquired
for treatment purposes and modeling the lung deformation
subject to being constrained by the cardiac motion.
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