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ABSTRACT
Disorders of the central nervous system, including neurodegenerative diseases, frequently affect the brainstem and can present 
with focal atrophy. This study aimed to (1) optimize deep learning-based brainstem segmentation for a wide range of pathologies 
and T1-weighted image acquisition parameters, (2) conduct a systematic technical and clinical validation, (3) improve segmenta-
tion quality in the presence of brainstem lesions, and (4) make an optimized brainstem segmentation tool available for public use. 
An intentionally heterogeneous ground truth dataset (n = 257) was employed in the training of deep learning models based on 
multi-dimensional gated recurrent units (MD-GRU) or the nnU-Net method. Segmentation performance was evaluated against 
ground truth labels. FreeSurfer was used for benchmarking in subsequent validation. Technical validation, including scan-rescan 
repeatability (n = 46) and inter-scanner reproducibility (n = 20, 3 different scanners) in unseen data, was conducted in patients 
with cerebral small vessel disease. Clinical validation in unseen data was performed in 1-year follow-up data of 16 patients with 
multiple system atrophy, evaluating the annual percentage volume change. Two lesion filling algorithms were investigated to 
improve segmentation performance in 23 patients with multiple sclerosis. The MD-GRU and nnU-Net models demonstrated very 
good segmentation performance (median Dice coefficients ≥ 0.95 each) and outperformed a previously published model trained 
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on a narrower dataset. Scan–rescan repeatability and inter-scanner reproducibility yielded similar Bland–Altman derived limits 
of agreement for longitudinal FreeSurfer (total brainstem volume repeatability/reproducibility 0.68/1.85), MD-GRU (0.72/1.46), 
and nnU-Net (0.48/1.52). All methods showed comparable performance in the detection of atrophy in the total brainstem (at-
rophy detected in 100% of patients) and its substructures. In patients with multiple sclerosis, lesion filling further improved the 
accuracy of brainstem segmentation. We enhanced and systematically validated two fully automated deep learning brainstem 
segmentation methods and released them publicly. This enables a broader evaluation of brainstem volume as a candidate bio-
marker for neurodegeneration.

1   |   Introduction

The brainstem is the anatomical and physiological link between 
the brain and the spinal cord and regulates vitally important 
physiological processes. In a cranio-caudal order, it consists of 
the three substructures, mesencephalon, pons, and medulla ob-
longata (Figure 1a).

Atrophy is a hallmark of neurodegeneration and can be assessed 
non-invasively by MRI in  vivo (Duering et  al.  2023). Several 
neurodegenerative disorders, such as multiple system atrophy 
(MSA), primarily affect the brainstem. MSA is an adult-onset, 
rapidly progressive, fatal-ending neurodegenerative disease 
presenting clinically with autonomic failure and Parkinsonian 
or cerebellar features (Wenning et  al.  2022) and pathologi-
cally with glial cytoplasmic inclusions and neuronal loss pre-
dominantly in striatonigral and olivopontocerebellar systems 
(Fanciulli and Wenning 2015). Previous volumetric MRI studies 
reported substantial atrophy in the mesencephalon and pons in 
patients with different MSA subtypes (Krismer et al. 2024) using 
the segmentation software FreeSurfer. Other structural pathol-
ogies of different etiologies, such as demyelinating or ischemic 
lesions, can result in secondary neurodegeneration (Duering 
et  al.  2015). While MR imaging of the cerebral hemispheres 
and the spinal cord has been extensively studied (Casserly 
et al. 2018; Rocca et al. 2017), the brainstem has been less well 
investigated. However, brainstem imaging can offer a potential 
diagnostic or therapeutic added value in these diseases, such as 
the detection of atrophy in early stages of multiple sclerosis (MS; 
Eshaghi et al. 2018).

The brainstem is a small structure, anatomically less well de-
marcated compared to other brain regions. MRI and automatic 
segmentation of the brainstem is demanding because of the cau-
dal position and artifacts caused by motion, pulsatile blood, and 
cerebrospinal fluid flow (Brooks et al. 2013; Herlihy et al. 2001). 
Segmentation is further impeded in the presence of lesions, 

which can appear hypointense on T1-weighted imaging. A com-
parison of the most frequently used atlas-based segmentation 
approaches, i.e., FreeSurfer (Fischl et  al.  2002, 2004; Iglesias 
et  al.  2015), PSTAPLE (Akhondi-Asl and Warfield  2013) and 
FSL-FIRST (Patenaude et  al.  2011), found the highest repro-
ducibility of brainstem segmentations performed by FreeSurfer 
(Velasco-Annis et al. 2018).

In a previous study, we developed a fully automated, deep 
learning-based brainstem segmentation method based on multi-
dimensional gated recurrent units (MD-GRU) (Andermatt, 
Pezold, and Cattin 2016, 2018). The method provided reliable and 
robust brainstem segmentation in patients with Alzheimer's dis-
ease and MS, with more accurate segmentations than FreeSurfer 
in comparison to manual ground truth labels (Sander et al. 2019). 
However, the method's broader use has been constrained by a rela-
tively small and homogenous training dataset and limited techni-
cal and clinical validation. The U-Net architecture (Ronneberger, 
Fischer, and Brox 2015) is now widely recognized for its effective-
ness in medical image segmentation. Recently, nnU-Net has been 
introduced (Isensee et al. 2021) as a method to automatically self-
configure preprocessing, U-Net architecture setup, training, and 
post-processing. In multiple segmentation challenges, nnU-Net 
surpassed specialized segmentation algorithms, establishing itself 
as an ideal tool for benchmarking.

The goal of this study was to further enhance deep learning-
based brainstem segmentation and to facilitate a broader use of 
the trained models, also by making them publicly available. The 
first aim was to adapt the methods for diverse image datasets 
and diseases. The second aim was to conduct a systematic tech-
nical and clinical validation, adhering to consensus and state-
of-the-art recommendations (FDA-NIH Biomarker Working 
Group  2016; Smith et  al.  2019). The third aim was to improve 
segmentation performance in the presence of brainstem lesions.

2   |   Methods

2.1   |   Training of Brainstem Segmentation Models

2.1.1   |   Ground Truth Dataset

Details on the ground truth dataset are provided in Table S1. It 
comprised the “original” dataset used for training of the previ-
ously published MD-GRU algorithm (Sander et al. 2019) and an 
“extension” dataset. The goal of the extension was to cover a wider 
range of MR acquisitions (1.5 T and 3T, different 3D T1-weighted 
sequences, including MP2RAGE) and pathologies (MS, age-
related brain diseases, including cerebral small vessel disease, and 

Summary

•	 We optimized deep learning-based brainstem segmen-
tation approaches based on the MD-GRU and U-Net 
network types.

•	 Systematic technical and clinical validation was per-
formed in relevant target populations.

•	 Our results emphasize the importance of training seg-
mentation models on diverse datasets containing dif-
ferent imaging sequences and pathologies.
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healthy controls). Ground truth brainstem masks were created 
semi-automatically as previously described (Sander et al. 2019). In 
short, a first segmentation was created with the brainstem module 
of the FreeSurfer package (version 7.2.0; Iglesias et al. 2015) and 
then corrected manually by a neurologist expert rater (LS). The dif-
ference between ground truth masks and uncorrected FreeSurfer 
brainstem segmentation masks was smallest for the pons and larg-
est for the medulla oblongata (Table S2). The ground truth dataset 
(n = 257) was split into subsamples for training (n = 183), valida-
tion (n = 35), and testing (n = 39).

2.1.2   |   Training of MD-GRU Models

MD-GRU (https://​github.​com/​zubat​a88/​mdgru​; commit 
791ee4f) was first trained in the training subsample with default 
parameters (cross-entropy loss, no data augmentation, no filter-
ing), a patch size of 100 x 100 x 100 voxels, padding of 20 x 20 x 20 
voxels, and native T1 images as input. Seven additional train-
ing experiments were run by changing parameters from their 
defaults and/or using preprocessed T1-weighted images. Non-
default parameters included the use of Dice loss in combination 
with cross-entropy loss, the use of data augmentation (deforma-
tion, rotation and scaling), and activating high pass filtering of 
the input images. Added preprocessing steps included resam-
pling T1-weighted images into isotropic 1 mm3 voxel grids and 
cropping of isotropic images around the brainstem (as defined 
by ground truth and leaving a border of at least 20 voxels at each 
side of the brainstem), resulting in a consistent field of view for 
all subjects of 94 x 84 x 124 voxels, which was also used as patch 
size for the training. This last training experiment was also done 

with a combination of Dice loss and cross-entropy loss. In total, 
8 training experiments were conducted (Table S3).

During training, the current checkpoint was validated every 5.000 
iterations in the “validation” subsample, running inference, and 
calculating the Dice similarity coefficients (referred to as Dice 
coefficients hereafter) against ground truth labels. Training ex-
periments were run for at least 100.000 iterations or until the 
Dice coefficients reached a stable plateau in the “validation” 
subsample. After completion of the training experiments, the 
checkpoint with the best performance in the “validation” sub-
sample was selected for each experiment and this performance 
(in terms of Dice coefficients in the “validation” subsample) was 
compared across training experiments, to select the best model. 
The MD-GRU model selected in this way was the one trained 
with default parameters. In the following, we refer to this newly 
trained model as “MD-GRU 2024” and the previously published 
MD-GRU model as “MD-GRU 2019.”

2.1.3   |   Training of nnU-Net Models

nnU-Net (https://​github.​com/​MIC-​DKFZ/​nnUNet.​git; commit 
96d44c2) was trained with the default parameters using the “3d_
fullres” configuration. We trained 3 models (Table S3) using dif-
ferent amounts of graphics processing unit memory: 8 (default), 
11, and 24 GB. The automated experiment planning carried out 
by nnU-Net resulted in changes to the U-Net used during training 
(e.g., larger patch sizes with increasing memory). Patch sizes for 
the three models were 160 x 128 x 112 (with 8 GB), 160 x 160 x 128 
(with 11 GB) and 192 x 192 x 160 voxels (with 24 GB). By default, 

FIGURE 1    |    Brainstem segmentation performance. (a) The target structures mesencephalon (purple), pons (green) and medulla oblongata (blue) 
are shown for a patient with cerebral small vessel disease. (b) Dice similarity coefficient (DSC) for the overlap of inferred with ground truth masks 
in the three subregions and the total brainstem. Bottom panels zoom into the range above 0.85.

https://github.com/zubata88/mdgru
https://github.com/MIC-DKFZ/nnUNet.git
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the nnU-Net training terminates automatically after 1.000 ep-
ochs and uses 5-fold cross-validation to assess performance of 
the final checkpoint. Given the use of cross-validation, a vali-
dation set was not required, and training was performed in the 
merged training and validation subsamples. The model trained 
with 24 GB memory had the best performance in cross-validation 
and was thus selected for subsequent analysis. Using default set-
tings, nnU-Net inference was performed as ensemble prediction 
using all 5 models.

2.1.4   |   Benchmarking

“MD-GRU 2024” was benchmarked against “MD-GRU 2019” 
and the newly trained nnU-Net model. We used the test subsa-
mple of the ground truth dataset to calculate Dice coefficients 
between inferred and ground truth labels.

2.2   |   Technical Validation

For technical validation of brainstem (subregion) volume as an 
imaging biomarker, we estimated the bias against a reference 
method and the precision under repeatability and reproducibil-
ity conditions.

2.2.1   |   Estimation of Bias Against a Reference Method

Using the test subsample of the ground truth dataset, we esti-
mated the constant and proportional bias of volumes derived 
from the MD-GRU 2024 and nnU-Net segmentations against 
reference volumes from the ground truth segmentations.

2.2.2   |   Scan-Rescan Repeatability and Inter-Scanner 
Reproducibility

Scan–rescan repeatability and inter-scanner reproducibility 
were compared across algorithms in unseen data from a differ-
ent source than the training data, i.e., two subsamples of the 
MarkVCID study (Lu et al. 2021; Maillard et al. 2022; Wilcock 
et  al.  2021), calculating Bland–Altman statistics (Deepankar 
Datta and Love 2018) for the comparison of brainstem volumes 
between either scan and rescan session or between different scan-
ners. Details on the scanning protocols used in MarkVCID were 
previously described (Lu et al. 2021). For brainstem segmenta-
tion, only the T1-weighted sequence was used. For comparison, 
we added segmentations from FreeSurfer's (version 7.2.0) cross-
sectional (FS cross) and longitudinal pipeline (FS long) using the 
brainstem module.

The first MarkVCID subsample, used for scan-rescan repeat-
ability, comprised 46 cerebral small vessel disease patients, each 
with two scans of the same protocol acquired within 14 days on 
the same scanner. Three patients were excluded because either 
the FreeSurfer or MD-GRU pipeline failed.

The second MarkVCID subsample, used for inter-scanner repro-
ducibility, comprised 20 patients with scans acquired on 4 dif-
ferent scanners: Philips Achieva, Siemens Trio, Siemens Prisma, 

GE 750 W. Because the brainstem was substantially cropped 
caudally in all GE scans, data from this scanner were excluded. 
Furthermore, the Philips Achieva scan was missing for one pa-
tient and the Siemens Prisma scan was excluded for another pa-
tient due to insufficient scan quality.

2.3   |   Clinical Validation

Clinical validation was conducted using unseen data from a 
different source than the training data, i.e. from the PROMESA 
clinical trial (Levin et al. 2019). The trial included patients older 
than 30 years diagnosed with MSA. The subset from the MRI 
substudy comprised 21 patients with T1-weighted imaging at 
baseline and at 1-year follow-up. Details regarding the scanning 
protocol were published previously (Levin et al. 2019). Due to 
scan quality issues, 5 patients had to be excluded.

The measure of interest for the clinical validation is the ability to 
detect pathological atrophy in MSA. To this end, we calculated 
the annual percentage volume change (PVC) of the brainstem 
and its subregions for all algorithms. To determine a threshold 
for pathological atrophy, we referred to a study on healthy aging, 
which reports two mean PVCs for the brainstem in healthy el-
derly subjects, −0.31% and −0.43% per annum (Fjell et al. 2009). 
Thus, we assessed the percentage of patients exceeding the 
mean of these two PVC values, being −0.37% per annum.

2.4   |   Lesion Filling

Although the training dataset included MS patients with brain-
stem lesions, the trained models might still have problems dealing 
with the altered tissue signal of larger brainstem lesions. We as-
sessed the severity of this issue and validated lesion filling as a mit-
igation strategy in scans of 23 MS patients with brainstem lesions 
from the ongoing Swiss MS cohort (SMSC) (Disanto et al. 2016). 
The ground truth mask and in addition a T1-hypointense lesion 
mask was created by expert readers (LS and ER).

Lesion filling was conducted with two different algorithms, from 
the FMRIB Software Library (FSL, version 6.0.4; function “le-
sion_filling”) and from Advanced Normalization Tools (ANTs, 
version 2.4.3; function “LesionFilling”) (Avants et  al.  2011). 
Both algorithms used the T1-weighted image and lesion mask 
as input. The FSL algorithm requires additionally a white mat-
ter mask, which was created from the FreeSurfer segmentations 
(aparc+aseg). The manually created ground truth brainstem 
mask was merged into the white matter mask.

The brainstem was segmented on T1-weighted images with the 
MD-GRU 2024 and nnU-Net models before and after filling le-
sions with FSL or ANTs, respectively.

Segmentation quality was then assessed by the Dice coefficients 
for the overlap of the inferred with the ground truth brainstem 
masks and by the sensitivity to lesioned areas (i.e., lesion cover-
age by the inferred mask). Finally, the different segmentation 
procedures were ranked by significance scores. These scores 
were calculated by comparing each metric (i.e., Dice coeffi-
cients and lesion coverage) pairwise across the six segmentation 
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procedures and counting for each procedure the number of 
comparisons in which it performed better (i.e., higher Dice co-
efficients or lesion coverage). Wilcoxon signed rank tests were 
used for comparisons, with an uncorrected significance level of 
alpha = 0.05.

2.5   |   Method Availability

The trained models are available for download at Zenodo for 
MD-GRU https://​doi.​org/​10.​5281/​zenodo.​12578294 and nnU-
Net https://​zenodo.​org/​recor​ds/​13323293. Ready to use con-
tainer images for both algorithms, the code for building, and 
instructions for using the images are available at GitHub: https://​
github.​com/​miac-​resea​rch/​dl-​brain​stem.

3   |   Results

3.1   |   Benchmarking of Brainstem 
Segmentation Models

While the newly trained MD-GRU 2024 model improved seg-
mentation performance over the previously published MD-GRU 
2019 model as measured by Dice coefficients against ground 
truth in the test subsample, the nnU-Net model showed the best 
performance (Table 1, Figure 1b). Findings were consistent over 
the three subregions and the total brainstem. For MD-GRU 2019, 
there were several outliers with very low Dice coefficients in the 
extension ground truth dataset (Table 1, Figure S1). Consequently, 
while Dice coefficients were generally slightly lower in the ground 
truth extension dataset compared to the original ground truth 
dataset, this difference was most obvious for the MD-GRU 2019 
model, highlighting poorer segmentation performance on image 
acquisition protocols and diseases not included in the previous 
ground truth dataset. Direct comparisons between MD-GRU 2019 
and MD-GRU 2024 in unseen data from different sources than the 

training data further highlight the improved generalizability of the 
newly trained MD-GRU 2024 (Figures S2 and S3). Thus, in the 
analyses below, we only report results from MD-GRU 2024.

3.2   |   Technical Validation: Estimation of Bias 
Against a Reference Method

Neither MD-GRU nor nnU-Net showed a significant constant 
bias compared with reference volumes. A proportional bias with 
slightly negative slope (regression slope −0.12 mL/mL, uncor-
rected p value = 0.032) was found only for nnU-Net in the me-
dulla oblongata (Table S4, Figure S4).

3.3   |   Technical Validation: Scan-Rescan 
Repeatability

Brainstem volumes obtained by three algorithms (FreeSurfer 
[cross-sectional “FS cross” and longitudinal “FS long” pipeline], 
MD-GRU 2024, and nnU-Net) were compared across the repeated 
scans using Bland–Altman statistics (Table 2 and Figure 2a). No 
systematic bias was observed. Overlapping confidence intervals 
for the limits of agreement (LOA) indicate mostly similar repeat-
ability for the total brainstem volume, but LOA were smaller for 
nnU-Net compared to “FS cross.” Looking at the subregions, LOA 
were smaller for MD-GRU and nnU-Net than both FreeSurfer 
pipelines in the mesencephalon, smaller for nnU-Net than “FS 
cross” in the pons, and smaller for nnU-Net than MD-GRU and 
both FreeSurfer pipelines in the medulla oblongata.

3.4   |   Technical Validation: Inter-Scanner 
Reproducibility

Total brainstem volumes were compared between three scan-
ners using Bland–Altman statistics (Table  3 and Figure  2b). 

TABLE 1    |    Segmentation performance of the trained models in the test subsample. Dice similarity coefficients (median [IQR]), for the overlap of 
inferred with ground truth masks in the three subregions and in the total brainstem. Scores were calculated separately for cases from the original 
ground truth dataset and the newly added extension ground truth dataset. Highest median score in each row in bold.

Region Ground truth MD-GRU 2019 MD-GRU 2024 nnU-Net

Mesencephalon Original 0.93 [0.91,0.94] 0.95 [0.93,0.96] 0.96 [0.95,0.97]

Extension 0.91 [0.78,0.92] 0.93 [0.92,0.93] 0.94 [0.93,0.94]

Total 0.92 [0.90,0.94] 0.94 [0.93,0.95] 0.96 [0.94,0.97]

Pons Original 0.96 [0.96,0.97] 0.98 [0.97,0.98] 0.98 [0.98,0.99]

Extension 0.94 [0.72,0.96] 0.96 [0.96,0.96] 0.97 [0.96,0.97]

Total 0.96 [0.95,0.97] 0.97 [0.97,0.98] 0.98 [0.97,0.98]

Medulla oblongata Original 0.93 [0.90,0.95] 0.95 [0.95,0.96] 0.96 [0.95,0.97]

Extension 0.77 [0.48,0.90] 0.93 [0.91,0.93] 0.93 [0.92,0.95]

Total 0.91 [0.88,0.95] 0.95 [0.93,0.96] 0.96 [0.94,0.97]

Brainstem Original 0.96 [0.95,0.97] 0.97 [0.97,0.98] 0.98 [0.97,0.98]

Extension 0.93 [0.68,0.95] 0.96 [0.95,0.96] 0.96 [0.96,0.96]

Total 0.95 [0.93,0.97] 0.97 [0.96,0.97] 0.98 [0.97,0.98]

https://doi.org/10.5281/zenodo.12578294
https://zenodo.org/records/13323293
https://github.com/miac-research/dl-brainstem
https://github.com/miac-research/dl-brainstem
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Volumes segmented from Philips Achieva scans were in most 
cases larger than from the Siemens (Trio and Prisma) scans. In 
terms of reproducibility, differences between algorithms were 
generally small or absent. A significant proportional bias was 
not found in any comparison.

The Bland–Altman LOA tended to be larger between Siemens 
Prisma and the two other scanners. There was no clear differ-
ence between algorithms. Bland–Altman statistics for brainstem 
subregions are shown in Table S5.

3.5   |   Clinical Validation

Our requirement was to detect pathological brainstem atrophy 
in 16 MSA patients from the PROMESA MRI substudy over a 
1-year follow-up, defined as an annual PVC below −0.37%. All 
three algorithms (FreeSurfer longitudinal pipeline, MD-GRU 
2024, and nnU-Net) fulfilled the requirement in all patients, 
when considering the entire brainstem (Table 4 and Figure 3). 
nnU-Net also detected pathological atrophy in the pons for 
all patients, while one patient was missed by FreeSurfer and 
MD-GRU. In the mesencephalon and medulla oblongata, all 
algorithms performed worse, with only small differences be-
tween them.

3.6   |   Lesion Filling

Figure 4a depicts the number of MS patients with lesions in 
the brainstem and its subregions, as well as the percentage 
of the lesioned volume per (sub-)region. In the subsequent 

analysis, only the total brainstem was considered as lesions 
often crossed subregion borders. Dice coefficients indi-
cated better segmentation performance with lesion filling 
(Figure 4b). ANTs lesion filling performed slightly better than 
FSL and the nnU-Net model performed generally better than 
the MD-GRU 2024 model. Also, the percentage of lesion vol-
ume covered by the inferred brainstem mask improved with 
lesion filling, especially when using ANTs.

4   |   Discussion

This study optimized and systematically validated deep 
learning-based brainstem segmentation approaches based on 
the MD-GRU and U-Net network types. For the U-Net, data 
preprocessing and network configuration were optimized using 
the nnU-Net framework. We provide ready-to-use containers 
for straightforward deployment of these anatomically accurate, 
highly reliable, and robust segmentation methods for the brain-
stem and its substructures.

Segmentation quality for the brainstem and all three of its sub-
structures was accurate, yielding high Dice scores compared with 
ground truth for MD-GRU and nnU-Net. The main improve-
ment over the previously published method is the re-training 
on a ground truth dataset with increased heterogeneity in terms 
of MRI acquisition and disease. The vastly improved segmen-
tation performance of MD-GRU 2024 over MD-GRU 2019 on 
data added during the current training (extension ground truth 
dataset) highlights the importance of addressing input data shift 
in this segmentation task, i.e., accurate model performance can 
be expected only for input data within the distribution of the 

TABLE 2    |    Scan-rescan repeatability. Bias and (one-sided) limit of agreement (LOA) of volumes (in ml) from the Bland–Altman analysis (95% 
confidence intervals in brackets).

Region Algorithm Constant bias LOA (one-sided)

Mesencephalon FS cross 0.01 [−0.07,0.09] 0.51 [0.37,0.65]

FS long 0.03 [−0.02,0.09] 0.34 [0.25,0.43]

MD-GRU 0.01 [−0.01,0.04] 0.15 [0.11,0.19]

nnU-Net 0.01 [−0.01,0.03] 0.13 [0.10,0.16]

Pons FS cross 0.06 [−0.14,0.02] 0.48 [0.35,0.61]

FS long 0.02 [−0.03,0.06] 0.30 [0.22,0.38]

MD-GRU 0.02 [−0.04,0.09] 0.41 [0.30,0.52]

nnU-Net 0.01 [−0.03,0.05] 0.26 [0.19,0.34]

Medulla oblongata FS cross −0.07 [−0.14,0.00] 0.47 [0.35,0.60]

FS long −0.04 [−0.09,0.02] 0.34 [0.25,0.43]

MD-GRU −0.01 [−0.07,0.05] 0.37 [0.27,0.47]

nnU-Net −0.01 [−0.03,0.02] 0.17 [0.12,0.21]

Brainstem FS cross −0.12 [−0.29,0.05] 1.08 [0.79,1.37]

FS long 0.01 [−0.09,0.12] 0.68 [0.50,0.86]

MD-GRU 0.03 [−0.08,0.14] 0.72 [0.53,0.92]

nnU-Net 0.01 [−0.06,0.09] 0.48 [0.35,0.61]
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training dataset. By using a purposely heterogeneous dataset 
in the re-training, we are confident that the method can be ap-
plied to a wide range of acquisitions and diseases. The improved 
generalizability was corroborated in unseen data from different 
sources than the training data: MD-GRU 2024 demonstrated bet-
ter scan–rescan repeatability and enhanced detection of patho-
logical atrophy, while MD-GRU 2019 had a much higher failure 
rate in the unseen data sources.

In technical validation, we found a weak negative propor-
tional bias of the nnU-Net model in the medulla oblongata, 
indicating that small volumes in this subregion are overesti-
mated and large volumes underestimated. While not signif-
icant, the same tendency was also present for the MD-GRU 
model. This finding might be related to difficulties of the algo-
rithms in exactly defining the border of the brainstem against 
the spinal cord.

FIGURE 2    |    Technical validation. Bland–Altman plots for scan-rescan repeatability (a) and inter-scanner reproducibility (b) of total brainstem 
volume. Dashed lines indicate (from top to bottom) upper limit of agreement (LOA), constant bias, and lower LOA. The blue line indicates the pro-
portional bias with confidence interval (grey).
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We further compared scan–rescan repeatability and inter-
scanner reproducibility between FreeSurfer, MD-GRU, and 
nnU-Net. A previous study showed highest repeatability of 
brainstem segmentations in healthy subjects obtained by 
FreeSurfer compared to two other automated brainstem seg-
mentation methods (Velasco-Annis et  al.  2018). Noteworthy, 
using the MarkVCID dataset, we were able to perform technical 
validation in a target population of patients, rather than young, 
healthy controls. This ensures that the technical validation re-
sults are applicable in the clinical setting. Overall, all three seg-
mentation approaches showed similar scan–rescan variability 
in the total brainstem and pons, with nnU-Net and MD-GRU 
showing better scan–rescan repeatability in the mesencephalon 
than FreeSurfer, and nnU-Net segmentations showing the best 
scan–rescan variability in the anatomically most challenging re-
gion, the medulla oblongata. Inter-scanner reproducibility was 
similar across all three methods.

For clinical validation, we chose to evaluate MRI scans from 
patients with MSA, a rapidly progressive, neurodegenerative 
disease affecting the brainstem and presenting with cerebel-
lar, mesencephalic, and pontine atrophy (Krismer et  al.  2024; 
Mascalchi, Vella, and Ceravolo 2012). Percent volume changes 
for the brainstem and its substructures were assessed by the 
three segmentation methods between baseline and 1-year fol-
low-up. All three segmentation methods consistently detected 

atrophy in the total brainstem over 1 year, exceeding the atrophy 
expected in healthy subjects. The same performance level was 
reached in the pons, while performance slightly dropped for the 
mesencephalon. In the medulla oblongata, the detected volume 
loss was less pronounced with all three methods, consistent 
with the clinical profile of the disorder. Brainstem volumetry is 
crucial in parkinsonian disorders, and automated mesencepha-
lon segmentation using FreeSurfer was found to perform better 
than planimetric measurements in separating progressive su-
pranuclear palsy from Parkinson's disease (Sjöström et al. 2020). 
Future studies are needed to investigate if brainstem volumetry 
assessed by the presented automated brainstem segmentation 
methods can be used in diagnosing parkinsonian disorders and 
can potentially be applied as outcome measures in clinical trials.

Although brainstem lesions were present in the training data 
by including patients with MS, severe hypointense brainstem 
lesions often caused incomplete segmentations, particularly 
when in an MS-typical location at the edge of the brainstem. 
Our results show that a lesion-filling algorithm can be applied 
in MS patients to improve the subsequent brainstem segmen-
tation performance. Lesion filling was shown previously to 
improve segmentation accuracy in patients with MS using dif-
ferent segmentation approaches (Battaglini, Jenkinson, and De 
Stefano 2012). In demyelinating disorders, brainstem segmenta-
tion is a promising biomarker for differential diagnosis, showing 
different atrophy patterns in patients with MS and neuromyelitis 
optica spectrum disorders (Lee et al. 2018).

As a key element of our work, we make both brainstem segmen-
tation algorithms, based on MD-GRU and nnU-Net, publicly 
available for non-commercial research use. While the nnU-
Net-based algorithm performed overall slightly better than the 
MD-GRU-based, the differences were mostly small and often 
had overlapping confidence intervals. To facilitate the setup and 
reproducible science, we provide ready-to-use and versioned 
software containers for download at a public container regis-
try. Installing deep learning algorithms can be challenging due 

TABLE 3    |    Inter-scanner reproducibility. Bias and (one-sided) limit of agreement (LOA) of volumes (in mL) from the Bland–Altman analysis (95% 
confidence intervals in brackets). Only results for total brainstem volume are shown.

Comparison Algorithm Constant bias LOA (one-sided)

Trio versus Prisma FS cross 0.52 [0.05,1.00] 1.94 [1.11,2.77]

FS long 0.29 [−0.16,0.75] 1.85 [1.06,2.64]

MD-GRU −0.05 [−0.41,0.31] 1.46 [0.84,2.09]

nnU-Net 0.27 [−0.11,0.64] 1.52 [0.87,2.16]

Achieva versus Prisma FS cross 0.66 [0.30,1.01] 1.40 [0.78,2.02]

FS long 0.32 [0.01,0.64] 1.25 [0.70,1.80]

MD-GRU 0.47 [0.15,0.79] 1.26 [0.70,1.82]

nnU-Net 0.55 [0.25,0.86] 1.20 [0.67,1.74]

Achieva versus Trio FS cross 0.08 [−0.24,0.40] 1.31 [0.75,1.87]

FS long 0.05 [−0.28,0.39] 1.35 [0.77,1.93]

MD-GRU 0.54 [0.35,0.73] 0.78 [0.44,1.11]

nnU-Net 0.31 [0.05,0.57] 1.06 [0.60,1.51]

TABLE 4    |    Clinical validation. Number of PROMESA study 
participants (n = 16) in which pathological atrophy could be detected.

Label FreeSurfer MD-GRU nnU-Net

Mesencephalon 14 (87.5%) 14 (87.5%) 13 (81.3%)

Pons 15 (93.8%) 15 (93.8%) 16 (100%)

Medulla oblongata 9 (56.3%) 11 (68.8%) 12 (75.0%)

Brainstem 16 (100%) 16 (100%) 16 (100%)
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to specific and sometimes conflicting software dependencies. 
Prebuilt containers simplify this process and ensure consistent 
segmentation results regardless of the local software environ-
ment (Moreau, Wiebels, and Boettiger 2023).

Main strengths of our work include the systematic validation 
approach following the HARNESS initiative guidelines (Smith 
et al. 2019). Importantly, we perform both clinical and technical 
validation in relevant target populations to ensure that results 

apply to the clinical setting. Limitations include the ground truth 
creation by just one reader. The intra-rater reliability of the rater 
was previously shown to be excellent (Sander et al. 2019) and the 
impact of the reader was reduced by using pre-segmentations. 
The lack of data from a GE scanner in the technical validation 
is another limitation. Although T1-weighted scans from a GE 
scanner are available in the MarkVCID dataset, the brainstem 
was unfortunately cropped due to a relatively small field-of-
view. Finally, the small number of patients with longitudinal 

FIGURE 3    |    Clinical Validation in MSA patients (n = 16). Percent volume change (PVC) over 1 year in the subregions and the total brainstem. 
Individual patients are shown as colored dots with the same color code across regions. The dashed red line indicates threshold for pathological brain-
stem atrophy at −0.37% per annum. One extreme outlier (PVC = +14.1%) observed in the medulla oblongata analysis using MD-GRU is depicted with 
an arrow and was the result of a larger segmentation error on the baseline image.

FIGURE 4    |    Lesion filling. (a) Segmentation of the pons in the presence of an MS-typical brainstem lesion without (middle) and with (right) lesion 
filling. (b) Lesioned volume as percentage of the total brainstem and its subregions. The number of patients with lesions in each region is shown above 
the boxplots. (c) Dice similarity coefficient (DSC) for the fit of the inferred with the ground truth brainstem segmentations before (none) and after 
filling lesions with FSL or ANTs. Lower panels show significance scores with ranks (numbers in the dots). (d) Coverage of lesions by the inferred 
brainstem mask as percentage of the lesion volume.
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MRI data in the PROMESA study precluded analyzing correla-
tions with clinical outcomes. This currently confines clinical 
validation to atrophy assessments and a monitoring biomarker 
use case. Future studies with larger sample sizes are necessary 
to assess clinical correlations and the utility of brainstem volu-
metry as a surrogate endpoint in clinical trials.

5   |   Conclusion

The common and clinically relevant involvement of the brain-
stem in neurodegenerative diseases makes brainstem volumetry 
an interesting biomarker candidate for neurodegeneration. Our 
findings emphasize the need to train segmentation models on 
diverse datasets that include various imaging sequences and the 
target pathologies. Through our study, we make two validated, 
fully automated, and fast brainstem segmentation algorithms 
publicly available, packaged as containers for convenient appli-
cation. This will facilitate future studies that assess the extent of 
brainstem atrophy and its association with clinical outcome and 
prognosis in different neurodegenerative diseases.
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