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Multiple sclerosis (MS) is a central nervous system (CNS) disease characterized by chronic neuroinflammation, demyelination,
and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white
matter damage and axonopathy. Several United States Food and Drug Administration-approved therapies exist that impede
activated lymphocytes from entering the CNS thereby limiting new lesion formation in patients with relapse-remitting forms
of MS. However, a significant challenge within the field of MS research is to develop effective and sustained therapies that
allow for axonal protection and remyelination. In recent years, there has been increasing evidence that some kinds of stem
cells and their derivatives seem to be able to mute neuroinflammation as well as promote remyelination and axonal integrity.
Intracranial infection of mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in immune-mediated
demyelination and axonopathy, making this an excellent model to interrogate the therapeutic potential of stem cell deriva-
tives in evoking remyelination. This review provides a succinct overview of our recent findings using intraspinal injection of
mouse CNS neural progenitor cells and human neural precursors into JHMV-infected mice. JHMV-infected mice receiving these
cells display extensive remyelination associated with axonal sparing. In addition, we discuss possible mechanisms associated
with sustained clinical recovery. Developmental Dynamics 248:43–52, 2019. © 2018 Wiley Periodicals, Inc.
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Introduction
Multiple sclerosis (MS) is a chronic, inflammatory disease of the
central nervous system (CNS) characterized by extensive myelin
destruction (Steinman, 1996). While the cause of MS is unknown,
disease onset has been attributed to multiple factors including the
genetic background of the individual as well as environmental
influences (Oksenberg et al., 1993; Poser, 1994). Histologic charac-
terization of lesions reveals the presence of activated CD4+ and
CD8+ T cells as well as macrophages, which are thought to act in
concert with reactive microglia to release a milieu of pro-
inflammatory factors that lead to oligodendrocyte dysregulation
(Traugott et al., 1983; Lassmann et al., 2007). Multifocal demyelin-
ating lesions eventually lead to various clinical symptoms such as
impaired motor skills, cognitive decline, behavioral deficits and
vision loss (Prineas and Graham, 1981; Neumann et al., 2002;

Lassmann et al., 2007). Disease-modifying therapies (DMTs) for
MS focus on reducing T lymphocyte infiltration into the CNS in
an attempt to prevent formation of new lesions. With the excep-
tion of Ocrelizumab (anti-CD20) (Frampton, 2017), which was
recently approved for progressive MS, all United States Food and
Drug Administration (FDA) approved DMTs are indicated for
relapsing-remitting form of MS (Weinshenker et al., 1989).

Remyelination failure in MS patients is complex and the result
of a variety of factors that culminate in the inability of
oligodendrocyte precursor cells (OPCs) to mature into myelin-
producing oligodendrocytes. Endogenous OPCs are spread through-
out the CNS and appear in high density within some subacute
lesions during early stages of MS (Chang et al., 2000). Remyelina-
tion following OPC maturation leads to the formation of shadow
plaques, in which patches of remyelinated white matter are com-
posed of disproportionally thin myelin sheaths surrounding axons
(Chang et al., 2000; Halfpenny et al., 2002; Lassmann, 1983;
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Lucchinetti et al., 1999; Prineas et al., 1989; Roy et al., 1999; Schle-
singer, 1909). Therefore, understanding mechanisms associated with
impaired OPC differentiation and triggering maturation of these
cells into mature myelin-producing oligodendrocytes has potential
for profound clinical relevance.
With this in mind, one critically important aspect related to

OPC-mediated remyelination is that myelin-debris needs to be
cleared by phagocytic cells, including neutrophils (Lindborg et al.,
2017), inflammatory macrophages, (Healy et al., 2017; Karamita
et al., 2017), and resident microglia (Zhu et al., 2016; Karamita
et al., 2017; Kucharova and Stallcup, 2017). The ability to effi-
ciently phagocytize myelin is dependent upon age in mice; macro-
phages from older mice have impaired ability to engulf myelin
compared with macrophages derived from younger mice. Elegant
studies by Franklin and colleagues (Ruckh et al., 2012) used het-
erochronic parabiosis to assess recovery in old mice that had
undergone experimentally induced demyelination. When conjoined
to younger mice, the old mice showed increased remyelination;
this effect was attributed to increased clearance of myelin debris in
older animals by macrophages provided from younger animals.
A recent study identified a potential mechanism associated

with diminished phagocytic activity by aged macrophages.
Cantuti-Castelvetri et al. (2018) demonstrated by means of trans-
mission electron microscopy that lipids are rapidly released in
response to a demyelinating injury, and this can mute OPC dif-
ferentiation and remyelination. In contrast to older macro-
phages, young macrophages were able to efficiently engulf and
process myelin lipids. Old macrophages were deficient in lipid
processing, which led to formation of cholesterol crystals, pha-
golysosomal rupture and stimulated inflammasomes that ulti-
mately led to an inability to resolve inflammation.
One therapeutic option to treat progressive MS would be to

replenish or rejuvenate the pool of endogenous OPCs that show
limited remyelination potential in the later stages of disease. Sev-
eral groups have used high-throughput screening of small mole-
cule compounds to identify potential drugs that enhance OPC
maturation, with the goal of promoting remyelination in preclini-
cal animal models of MS (Deshmukh et al., 2013; Mei et al., 2014,
2016b). Using this approach, Lairson and colleagues (Deshmukh
et al., 2013) demonstrated that benztropine, an anti-muscarinic
receptor compound, increased OPC maturation and remyelination
in mice with experimental autoimmune encephalomyelitis (EAE),
the prototypic model of MS (Deshmukh et al., 2013). More
recently, clemanstine, another anti-muscarinic receptor compound,
was also shown to enhance OPC maturation in EAE (Mei et al.,
2016a). These results are consistent with the observation in EAE
mice that ablation of the M1 muscarinic receptor in oligodendrog-
lia resulted in accelerated remyelination, diminished axonal loss
and improved clinical outcome, arguing that clemanstine may be
functioning by binding to this specific receptor (Mei et al., 2016a).
Cellular replacement therapies for human neurologic diseases

have also emerged as a clinically relevant area of research. NPCs
possess the ability to develop into neurons, astrocytes, and oli-
godendrocytes (Gage, 2000). Additionally, quiescent adult NPCs
have been shown to proliferate, differentiate and migrate into
response to acute CNS damage in spinal cord injury, inflamma-
tory demyelination and stroke (Picard-Riera et al., 2002; Yagita
et al., 2001; Zhang et al., 2004). In animal models of chronic spi-
nal cord injury, NPCs have been reported to differentiate and
promote locomotor recovery (Salazar et al., 2010). Transplanta-
tion of NPCs improved cognition in a murine model of

Alzheimer’s disease by increasing brain derived neurotrophic
factor (Ager et al., 2015; Blurton-Jones et al., 2009). Engraft-
ment of NPCs into murine and primate models of Huntington’s
disease restore motor skills through differentiation into mature
striatal neurons (Dunnett et al., 2000; Kendall et al., 1998; Palfi
et al., 1998; Reidling et al., 2018).

It has also been reported that peripheral administration of
hNPCs in a nonhuman primate EAE model reduces disease sever-
ity through immune regulation (Pluchino et al., 2009). A small
clinical study reported that 2transplantation of human fetal-
derived NPCs into the frontal lobes of children with Pelizaeus-
Merbacher disease (PMD), a rare hypo-myelination disorder in
children, resulted in measurable gains in motor and/or cognition
associated with remyelination (Gupta et al., 2012).

JHMV Infection as a Model of
Neuroinflammation and Demyelination
Intracranial inoculation of C56BL/6 mice with the neurotropic
JHM strain of mouse hepatitis virus (JHMV) results in wide-
spread dissemination of virus throughout the brain and spinal
cord (Bergmann et al., 2006; Glass et al., 2004; Hosking and
Lane, 2009). Oligodendrocytes, astrocytes and microglia are sus-
ceptible to infection while neurons are spared (Fleming et al.,
1986). Type I interferons have essential roles for protecting the
host against JHMV infection, as mice deficient in the interferon
(IFN) -α/β receptor show elevated viral load within the CNS and
higher mortality, and exogenous treatment of mice with type I
interferon limits dissemination of virus (Minagawa et al., 1987;
Ireland et al., 2008; Smith et al., 1987). Virus-specific CD4+ T
cells function as support cells for CD8+ T cells, promoting
CD8+ T cell expansion in the periphery and enhancing survival
and cytolytic targeting of infected cells within the CNS (Zhou
et al., 2005; Phares et al., 2012). In addition, CD4+ T cells can
control viral spread through their release of IFN-γ, which serves
dual roles by inhibiting viral replication within oligodendrocytes
and also inducing upregulation of major histocompatibility com-
plex (MHC) class II expression on microglia (Bergmann et al.,
2003; Gonzalez et al., 2006; Parra et al., 1999; Phares et al.,
2012; Ramakrishna et al., 2004).

Depletion of CD4+ T cells alters CD8+ T cell-mediated control
of viral replication within the CNS, mainly a result of reduced of
IFN-γ expression and elevated CD8+ T cell apoptosis (Phares
et al., 2012). Virus-specific CD8+ T cells are the primary cyto-
lytic effector cell within the CNS during JHMV infection and
their peak accumulation coincides with viral clearance from glia
(Lin et al., 1997; Parra et al., 1999; Ramakrishna et al., 2004). A
recent study by Perlman and colleagues (Wheeler et al., 2018)
used an inhibitor of colony-stimulating factor 1 receptor
(CSF1R) that depletes microglia to demonstrate that microglia
were required during the early days after infection to limit JHMV
replication within the CNS and protect against clinical disease
and death. Moreover, depletion of microglia resulted in impaired
T cell responses, leading to elevated viral titers within the CNS.
These results reveal nonredundant, critical roles for microglia in
the early innate and virus-specific T cell responses and for sub-
sequent host protection from viral encephalitis.

Mice that survive acute JHMV infection progress into the
immune-mediated chronic demyelinating phase of the disease,
with clinical symptoms manifesting as ataxia and partial-to-
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complete hind limb paralysis that peaks 2–3 weeks postinfection.
Histologic analysis of spinal cords from mice undergoing JHMV-
induced demyelination shows that oligodendrocyte dysfunction
and loss of myelin integrity within white matter tracts is not due
to widespread apoptosis or necrosis of mature oligodendrocytes,
but instead is closely associated with the presence of both
inflammatory leukocytes and presentation of viral antigen by
means of MHC-I and MHC-II (Redwine et al., 2001; Stohlman
and Hinton, 2001; Wu and Perlman, 1999)
Moreover, a paucity of infectious viral particles within the

CNS during chronic disease suggests that productive infection of
new glial cells does not amplify demyelination. More likely, viral
RNA quasispecies present within the CNS of persistently infected
mice promote chronic inflammation and demyelination (Adami
et al., 1995; Fleming et al., 1995; Rowe et al., 1997). Luxol fast
blue staining of spinal cord sections during persistent JHMV-
infection reveals lesion formation primarily within the lateral
funiculus and posterior funiculus (Wang et al., 1992). Addition-
ally, there have been reports that axonal degeneration within the
white matter tracts of spinal cords of JHMV-infected mice, as
assessed by SMI-32 or Bielschowsky's silver impregnation stain,
occurred at the same time as demyelination, while axon damage
is argued to precede oligodendrocyte dysregulation in MS
(Dandekar et al., 2001; Das Sarma et al., 2009).
Several studies have reported that T cells and macrophages

are the main inducers of demyelination during chronic JHMV
infection, rather than viral-induced lysis of oligodendrocytes.
This idea stems from results showing that JHMV-infection of
RAG1-/- immunodeficient mice (lacking functional T and B
lymphocytes) results in limited demyelination while there is
extensive viral replication within oligodendrocytes (Pewe and
Perlman, 2002; Wu and Perlman, 1999). Moreover, adoptive
transfer of JHMV-sensitized splenocytes from wild-type mice
into JHMV-infected RAG1-/- mice results in demyelination.
Subsequent studies indicate that both CD4+ and CD8+ T cell
subsets are capable of contributing to demyelination following
JHMV infection (Lane et al., 2000; Pewe and Perlman, 2002).
Other factors, such as epitope spreading and autoreactive T cells
against host neuroantigens, are not thought to contribute to
demyelination in these animals. Together, this evidence suggests
that demyelination is multifaceted and numerous factors could
contribute to pathology.

Effects of Mouse Neural Precursor
Engraftment in JHMV-Infected Mice
As a first approach toward understanding the effects of trans-
planting NPCs, early studies used a syngeneic transplant proto-
col, in which H-2b haplotype-matched mouse striatal NPCs from
postnatal day 1 (P1) C56BL/6 mice were transplanted intraspin-
ally into the T8 region of C57BL/6 recipient mice undergoing
JHMV-induced demyelination (Totoiu et al., 2004). Initial results
demonstrated that transplanted NPCs readily proliferated and
migrated up to 12 mm both rostral and caudal from the trans-
plant site and preferentially differentiated into oligodendrocyte-
lineage cells (Totoiu et al., 2004). Quantification of remyelinated
axons resulted in up �70% of axons remyelinated compared
with 10% for nontransplanted controls, suggesting that NPCs
can survive within the inflammatory niche and functionally
incorporate throughout demyelinated white matter tracts

following differentiation into mature oligodendrocytes (Totoiu
et al., 2004).

Additional studies by Carbajal et al. (2010) demonstrating that
transplanted mouse green fluorescent protein (GFP)-NPCs were
shown to selectively colonize demyelinated white matter regions
within the ventral and lateral funiculus regions of the spinal
cord. Positional migration of NPCs was mediated, in part, by
responding to the CXC chemokine ligand CXCL12 by means of
the receptor CXCR4 expressed by engrafted NPCs (Carbajal et al.,
2010). NPC transplantation did not alter the accumulation of T
cells or macrophages within the CNS nor proinflammatory che-
mokine and cytokine gene expression, suggesting that the
enhanced remyelination and recovery following transplantation
was not a result of NPC bystander effects attenuating the
inflammatory response (Hardison et al., 2006).

As an additional step to better understand the therapeutic
potential of engraftment of NPCs in promoting clinical and his-
tologic recovery, we have transplanted MHC-mismatched mouse
NPCs into JHMV-infected mice with established demyelination
to determine whether allogeneic NPCs are recognized as foreign
and rejected by means of immunological mechanisms. Trans-
plantation of allogeneic NPCs is clinically relevant, because
transplantation of human neural stem cells into PMD patients
required administration of immunosuppressive drugs to limit
potential rejection (Gupta et al., 2012). Similarly, transplantation
of hESC-OPCs into individuals with spinal cord injuries also was
performed in conjunction with administration of immunosup-
pressive drugs. Studies by Palmer and colleagues (Chen et al.,
2011; Phillips et al., 2013) have shown an important role for
components of the innate immune response including NK cells
in recognizing and rejecting MHC-mismatched NPCs following
transplantation into the brains of mice.

Similarly, we have demonstrated that engraftment of alloge-
neic NPCs into spinal cords of JHMV-infected mice results in
rejection mediated, in part, by both T lymphocytes as well as NK
cells (Weinger et al., 2012, 2014). NPCs respond to both IFN-γ as
well as viral infection; they react by expressing MHC class I and
II that allows for T lymphocyte recognition, and retinoic acid
early precursor transcript (RAE)-1 that enables NK cell recogni-
tion (Weinger et al., 2012, 2014; Plaisted et al., 2014). Collec-
tively, these findings highlight that NPCs are recognized by
cellular components of both the innate and adaptive immune
system, indicating that administration of immunosuppressive
drugs must be considered to promote long-term survival and
function.

We have recently used two-photon microscopy to assess
intercellular interactions of transplanted mouse NPCs ex vivo
(Greenberg et al., 2014). JHMV-infected Thy1- yellow fluores-
cent protein (YFP) mice, which express YFP from medium-
to-large caliber axons within the spinal cord, received
subventricular zone-derived NPCs that express GFP following
their differentiation into oligodendrocytes (proteolipid protein-
GFP). Several important observations were derived from this
study, including the finding that JHMV-infected Thy1-YFP mice
displayed extensive axonal damage earlier than expected during
JHMV-induced disease, suggesting that appearance of axonopa-
thy precedes robust immune-mediated demyelination. This
argues that axonal damage may be important in contributing to
white matter damage and myelin loss. It is not yet clear whether
viral infection of neurons and/or transport of viral proteins
along axons is important in this process (Das Sarma et al.,
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2009). In addition, two-photon imaging showed that engrafted
NPCs interacted with damaged axons and this resulted in
improved axonal integrity and remyelination as determined by
YFP expression (Fig. 1A–D) (Greenberg et al., 2014; Kerschen-
steiner et al., 2005).
We have also examined the effect of S1P receptor antagonism

on the biology of mouse NPCs following transplantation into
JHMV-infected mice. Earlier studies from our laboratory showed
that treatment of JHMV-infected mice with FTY720 (fingolimod),
the first oral drug approved by the FDA for treatment of patients
with the relapsing-remitting form of MS, mutes effective
anti-viral immune responses by affecting migration and
accumulation of virus-specific T cells within the CNS during
acute viral-induced encephalomyelitis (Blanc et al., 2014).
FTY720 treatment reduced the severity of neuroinflammation-
mediated demyelination by restricting the access of disease-
causing lymphocytes into the CNS, but this did not result in viral
recrudescence.
As a result of this work, we were interested if the therapeutic

benefit of mouse NPC transplantation into JHMV-infected mice
would be augmented if FTY720 was also administered, since pre-
viously published studies showed a beneficial effect of FTY720
in combination with benztropine in reducing clinical disease and
increasing remyelination in the mouse EAE model of MS
(Deshmukh et al., 2013). We found that cultured NPCs expressed
transcripts for S1P receptors S1P1, S1P2, S1P3, S1P4, and S1P5.
Administration of FTY720 to JHMV-infected mice resulted in

enhanced migration and increased proliferation of transplanted
NPCs following spinal cord engraftment. FTY720 treatment did
not improve clinical disease, diminish neuroinflammation or the
severity of demyelination and did not increase remyelination
(Blanc et al., 2015).

Glial-committed neural precursor cells have been previously
suggested as a potential treatment for autoimmune demyelinating
diseases such as MS, as they are sources for generation of mature
remyelinating oligodendrocytes (Ben-Hur et al., 1998; Brustle
et al., 1999). Glial progenitors derived from NPCs can remyelinate
axons following transplantation into regions of experimentally
induced demyelination (Keirstead et al., 1999). Transplantation of
these cells into rodent autoimmune models of demyelination
resulted in improved clinical outcomes as a result of migration of
cells into the inflamed white matter tracts (Ben-Hur et al., 2003).
Glial precursor cells have been suggested to act either as modula-
tors of the immune system or by replacement of the damaged or
lost endogenous neural precursors in animal models of MS
(Pluchino et al., 2003,2009; Aharonowiz et al., 2008).

Most of these studies used models of demyelination caused by
injury or infiltration of myelin-reactive T cells to demonstrate the
effect of implanting myelin-competent NPCs in promoting remye-
lination. But viral infections have also been considered as poten-
tial triggers of MS in genetically susceptible individuals
(Giovannoni et al., 2006), and a clinically relevant question is
whether glial-committed stem cells can ameliorate demyelination
caused by persistent neurotropic viruses. To address this question,
we have shown that engraftment of glial-committed progenitors
in JHMV infected mice with established neurological disease
resulted in remyelination and axonal sparing (Totoiu et al., 2004).
This result raises another relevant question, whether glial cells
derived from NPCs are susceptible to viral infection. There are
several known neurotropic viruses that have been shown to infect
and replicate in NPCs and cells derived from NPCs.

For example, a neonatal neurotropic virus called Coxsackievirus
B3 (CVB3) persists in the CNS and preferentially infects proliferat-
ing neural stem cells and infiltrating myeloid cells (Tabor-Godwin
et al., 2010). CVB3 persists within the murine neurogenic region
and infects neural stem cells, causing cell death, decrease in brain
size, and eventually developmental defects (Ruller et al., 2012).
This suggests that persistent viral infections in the CNS can have
long-term neurological sequelae (Ruller et al., 2012). Borna dis-
ease virus, a human pathogen associated with behavioral disor-
ders, is capable of severely impairing neurogenesis by infecting
human neural progenitors (Brnic et al., 2012).

Another human neurotropic virus, herpes simplex virus type
1 (HSV-1) that causes herpes simplex encephalitis, was shown to
infect and deplete mouse NPCs in the subventricular zone, caus-
ing a loss of neuroblasts (Chucair-Elliott et al., 2014). Further-
more, NPCs are depleted by viral-induced lysis due to their
susceptibility to infection by Enterovirus 71 (Huang et al., 2014).
In addition, human ESC-derived oligodendrocyte progenitors are
highly susceptible to infection by JC virus, the causative patho-
gen of progressive multifocal leukoencephalopathy (Schaumburg
et al., 2008). We have shown that glial cells derived from murine
NPCs are susceptible to JHMV infection and these cells can
actively replicate JHMV, as evidenced by increasing viral titers
and extensive distribution of viral antigen throughout the
infected monolayer (Fig. 2A,B) (Whitman et al., 2009).

IFN-γ plays an important role in controlling JHMV infection
of persistently infected mice (Parra et al., 1999). Treatment of
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Fig. 1. Axonal damage in JHMV-infected mice is reversed following NPC
engraftment. A: Time-lapse images (times marked in min:s) depicting
absence of focal axonal degeneration (FAD) in a noninfected Thy1-YFP
spinal cord. B: Time-lapse images showing progression of FAD in a
Thy1-YFP spinal cord 7 days following JHMV infection. Scale
bar = 20 μm. C: GFP-NPC localization correlates with the FAD severity
of lesions in the JHMV infected Thy1-YFP spinal cord 8 days
posttransfer. Number of transferred GFP-NPCs found in lesions is
plotted vs. FAD severity of the lesions for each 10-5 cm3 imaging
volume. D: Time-lapse images showing GFP-NPCs initiating intercellular
interactions with “Stage 1 FAD” axons in the JHMV infected Thy1-YFP
spinal cord 8 days posttransfer. Circle indicates a GFP-NPC actively
extending a process toward the axon. Scale bars = 10 μm.
Figures derived from Greenberg et al. 2014.
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JHMV-infected cells with IFN-γ led to inhibition of viral replica-
tion in a dose-dependent manner (Whitman et al., 2009). IFN-γ
treatment also limited the cytopathic effects of JHMV infection,
demonstrating the importance of this cytokine in host defense
following JHMV infection (Whitman et al., 2009). JHMV is capa-
ble of infecting and replicating in primary OPC cultures, indicat-
ing that these cells are susceptible to infection in vivo.
Remyelination is relatively slow in JHMV-infected mice, yet
OPCs can be found in the vicinity of on-going demyelination.
Overall, these findings suggest that susceptibility of NPCs and
their derivatives to viral infection should be considered in plans
to use these cells for cell replacement therapy for neurological
disorders.
Immunosuppression used to prevent rejection of allogeneic

cells may cause reemergence of persistent neurotropic viruses.
These reactivated viruses could infect and diminish the trans-
planted cells, impeding therapeutic benefits. Problems associated
with immunosuppression could be mitigated by using patient-
specific induced pluripotent stem cells (iPSCs) to produce
immune-matched cells for transplantation. Interestingly, we
recently learned that mouse iPSC-derived NPCs expressed low
levels of the JHMV receptor CEACAM1a, which made them
resistant to infection and viral induced cell death in vitro
(Mangale et al., 2017). This suggests that iPSC-derived cells may
be a good option for cell replacement therapy, because they
would avoid both rejection and viral-mediated cell death. An
overview of our results with transplantation of moues NPCs into
JHMV-infected mice is provided in Table 1.

Effects of Transplantation of Human
Pluripotent Stem Cell-Derived Cells in
Virally Induced Models of
Neuroinflammation and Demyelination
The long-term goal of studying MS model mice is to guide the
development of effective treatments for the human disease. In
our early work, we saw very limited clinical recovery after
transplantation of predifferentiated human OPCs in mice under-
going JHMV-induced demyelination (Hatch et al., 2009).
Engrafted cells were rejected within 2 weeks after transplanta-
tion, even in the presence of immunosuppressive drugs target-
ing activated T lymphocytes. There was only a slight increase in

remyelination near the transplant site compared with mice
receiving a saline control (Hatch et al., 2009). This in contrast
to earlier studies using human embryonic stem cell (hESC)-
derived early stage OPCs in a model of spinal cord injury in
rat, in which enhanced remyelination and improved motor
function were observed following transplantation (Keirstead
et al., 2005). Less mature human neural lineage cells have previ-
ously been shown to exert neuroprotective effects in mouse and
nonhuman primate models of EAE, suggesting that they possess
broader functionality in vivo (Aharonowiz et al., 2008; Pluchino
et al., 2009).

When we transplanted NPCs derived from human iPSCs into
the spinal cords of JHMV-infected mice, the cells were rejected,
but there was focal remyelination at the site of transplantation
(Fig. 3A,B) (Plaisted et al., 2016). There was also reduced recruit-
ment of CD4+ T cells into the CNS, and a transient increase in
CD4+FoxP3 + Tregs was observed (Fig. 3C,D). Importantly, abla-
tion of Tregs by means of PC61.5 treatment abrogated histopath-
ological recovery. These findings support an immunomodulatory
role for Tregs, where they may suppress neuroinflammation or
promote tissue repair mechanisms. The cells used for this study
were generated by an embryoid-body-based technique; they
were characterized by gene expression analysis and found to be
positive for the transcription factor PAX6, a classical marker of
CNS neural precursor cells.

However, the results differed when we transplanted a popula-
tion of PAX6-negative hPSC-derived cells that we referred to as
“neural precursor-like cells” (NPLCs) into JHMV-infected mice.
The NPLC transplantation resulted in clinical and histological
improvement out to 6 months posttransplant, despite the rejec-
tion of transplanted cells within 8 days (Fig. 4A,B) (Chen et al.,
2014). Strikingly, while the transplanted cells did not migrate
from the site of implantation, the remyelinated axons were dis-
tributed both rostrally and caudally, rather than localized to the
region of cell delivery (Fig. 4C,D). The remyelination was not
likely to be the result of acute inflammatory-mediated rejection,
as the spinal cords had reduced infiltration of CD4+ and CD8+
effector T cells compared with controls, and the total number
of CD4+CD25+FoxP3 regulatory T cells (Tregs) within the spinal
cords was elevated (Fig. 4D) (Chen et al., 2014). Depletion of
Tregs in NPLC-transplanted mice by means of anti-CD25
(PC61.5) treatment abolished the therapeutic benefits, highlight-
ing the likely importance of Tregs in this more extensive recov-
ery (Fig. 4E).
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Fig. 2. JHMV replicates in glial cells derived from mouse NPCs. A: Differentiated progenitor cultures were infected with JHMV (multiplicity of
infection = 0.1) and viral titers in supernatants determined at 12, 24, and 48 hr postinfection (p.i.) by plaque assay. B: Immunocytochemical staining
for viral antigen at 24 hr p.i. revealed wide-spread distribution of virus throughout the cell culture (100 × magnification). Figures derived from
Whitman et al. 2008.
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The PAX6-negative NPLCs were not classic neural precursor
cells; they were produced by a method that enhanced the differen-
tiation of peripheral neural lineage cells rather than CNS neural
lineage derivatives. The differences were confirmed by gene
expression studies, which showed that the NPLCs had an expres-
sion profile that considerably differed from the CNS-NPCs as well
as ineffective fibroblasts and undifferentiated hESCs and iPSCs
(Plaisted et al., 2016). The gene expression signature gave clues to
the characteristics that may underlie the disease-modifying activity
of NPLCs; for example, these cells produced higher levels of TGF-
ß2 than NPCs, fibroblasts, and undifferentiated hESC cells that did
not elicit clinical recovery (Chen et al., 2014).

Previous work has shown that this anti-inflammatory cytokine
promotes FoxP3 expression in the peripheral Treg compartment,
influencing the frequency and suppressive activity of Tregs (Marie
et al., 2005). Tregs have been shown to have an important role during
both acute and chronic JHMV-infection (Anghelina et al., 2009). IL-
10-expressing virus-specific Tregs dampen proliferation of virus-
specific effector CD4+ T cells, and depletion of Tregs increases
mortality, suggesting that during acute JHMV infection, Tregs limit
immunopathological disease without negatively impacting viral
clearance. In addition, studies from Trandem et al. (2010) have shown
that adoptive transfer of Tregs into JHMV-infected mice attenuates
clinical disease severity by dampening neuroinflammation and
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TABLE 1. Overview of Mouse and Human Stem Cell Engraftment Into JHMV-Infected Mice

Cell type Antigenicity

Cell

survival &

Migration

Clinical

improvement

Spinal cord

demyelination

Spinal cord

remyelination

Immuno-

modulation Reference

Mouse NPCs Syngeneic Yes Yes Yes Yes No Totoiu et al., 2004
Carbajal et al., 2010
Greenberg et al., 2014
Blanc et al., 2015

NPCs Allogeneic No No Yes Not determined No Weinger et al., 2012
Weinger et al., 2014

Human ESC- OPCs Xenogeneic No No Yes Focal at site
of transplant

Not
determined

Hatch et al., 2009

ESC-NCLCs Xenogeneic No Yes Reduced Yes Yes Chen et al., 2014
iPSC-NPCs Xenogeneic No No Reduced Focal at site

of transplant
Yes Plaisted et al., 2016

NPCs: neural progenitor cells; ESC-OPCs: embryonic stem cell-derived oligodendrocyte progenitor cells; ESC-NCLCs: embryonic stem cell-derived
neural crest like cells; iPSC-NPCs: inducible pluripotent cell-derived neural progenitor cells.

Fig. 3. Intraspinal transplantation of iPSC-derived NPCs into JHMV-infected mice. A: Focal remyelination in animals transplanted with hiNPCs.
Representative electron micrographs of coronal spinal cord sections from HBSS, fibroblast, and hiNPC injected mice. B: Analysis of the ratio of the
axon diameter vs. total fiber diameter (g-ratio) confirmed enhanced remyelination. C: Quantification of the percent of CD4+ T cells demonstrated a
significant (P < 0.05) decrease in the CLNs of hiNPC transplanted mice compared with controls at 5 days posttransplant (p.t.) D: Quantification of the
number of CD4+FoxP3 + Tregs demonstrated a significant (P < 0.05) increase in the CLNs of hiNPC transplanted mice compared with controls at
5 days p.t. Figures derived from Plaisted et al. 2016.
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subsequent demyelination. An overview of our results with trans-
plantation of human progenitor cells into JHMV-infectedmice is pro-
vided in Table 1.

Concluding Remarks
Research using a mouse model of virally induced demyelination
has provided support for the potential of cell transplantation
therapy for human disease. Experiments indicate that transplan-
tation of certain types of cells can promote sustained recovery
both through promoting remyelination and limiting ongoing
demyelination by muting neuroinflammation. These reports also
highlight the importance of comparing differing cell types trans-
planted to the same model of human disease. In designing cell
therapies for human disease, it is important to standardize cri-
teria for defining cell types to be used for transplantation. Our
analysis of gene expression profiles of a variety of human pre-
cursors and stem cells revealed that they are very diverse; for

example, while pluripotent stem cells were very similar to each
other, cells that had been designated as neural stem cells were
clustered into multiple subgroups (Muller et al., 2008). Similarly,
mesenchymal stem cells are very divergent in their behavior and
capabilities depending on fundamental factors, including organ
or tissue of origin, age of donor, preparation methods, degree
and means of expansion, and assays used to assess their differ-
entiation capabilities (Robey, 2017).

The mechanisms by which different transplanted cells elicit
clinical improvements appear to be different, but the experimen-
tal evidence converges on common themes. The transplanted
cells all appear to mute the effects of inflammatory immune cells
and involve signaling by Tregs, which are anti-inflammatory.
Some of the cell types either function as OPCs or to stimulate
remyelination by endogenous OPCs. In order for cell therapies to
advance to clinical relevance, the properties of each cell type
should be examined by multiple methods to determine what
characteristics are responsible for clinical recovery in mouse
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Fig. 4. Intraspinal transplantation of hNPCs into JHMV-infected mice. (A) Improved (p < 0.05) clinical recovery in hNPC-transplanted JHMV-infected
mice was sustained out to 168 days post-transplantation (p.t.) when compared to infected mice treated with vehicle alone. (B) Daily IVIS® imaging of
luciferase-labeled hNPCs revealed that following intraspinal transplantation, cells are reduced to below the level of detection by day 8 post-
transplantation; representative mice are shown. IVIS® imaging was performed on vehicle-transplanted mice as a control. (C) Representative EM
images (1200×) showing increased numbers of remyelinated axons (red arrows) compared to demyelinated axons (blue arrows) in hNPC-
transplanted mice compared to control mice. (D) Calculation of g-ratio, as a measurement of structural and functional axonal remyelination, revealed
a significantly (p < 0.001) lower g-ratio (indicative of remyelination) in hNPC-treated mice compared to control mice at 3 weeks pt. (E) Quantification
of Treg numbers in spinal cords of mice indicated a significant (p < 0.05) increase in numbers of Tregs in hNPC-transplanted mice versus controls
between 8-10 days post-transplantation. (F) hNPC-transplanted mice receiving anti-CD25 antibody (purple line) did not display recovery in motor
skills as compared to either hNPC-treated mice (red line), hNPC-treated mice receiving isotype-matched control antibody (green line), or vehicle
control mice (blue line). Figures derived from Chen et al., 2014.
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models of demyelinating disease. This approach could lead to
identification of the best cell type for transplantation therapy, or
perhaps more promising, identification of the key ameliorative
factors that can be translated into therapy without the need for
cells.
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