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Abstract
Background: Increasing evidence suggests that
genetic factors play a role in the variability associated
with cognitive performance in Parkinson’s disease
(PD). Mutations in the LRRK2 gene are the most com-
mon cause of monogenic PD; however, the cognitive
profile of LRRK2-related PD is not well-characterized.
Methods: A cohort of 1,447 PD patients enrolled in the
PD Cognitive Genetics Consortium was screened for
LRRK2 mutations and completed detailed cognitive
testing. Associations between mutation carrier status
and cognitive test scores were assessed using linear
regression models.
Results: LRRK2 mutation carriers (n 5 29) demon-
strated better performance on the Mini Mental State
Examination (P 5 0.03) and the Letter-Number
Sequencing Test (P 5 0.005). A smaller proportion of
LRRK2 carriers were demented (P 5 0.03).
Conclusions: Our cross-sectional study demonstrates
better performance on certain cognitive tests, as well
as lower rates of dementia in LRRK2-related PD.
Future longitudinal studies are needed to determine
whether LRRK2 mutation carriers exhibit slower cogni-
tive decline. VC 2015 International Parkinson and Move-
ment Disorder Society

Key Words: cognition; LRRK2; neuropsychological
tests; Parkinson’s disease; working memory.

Recent evidence suggests that genetic factors could
play an important role in the substantial variation in
the pattern of cognitive deficits seen in Parkinson’s dis-
ease (PD).1,2 The APOE E4 allele and mutations in
the GBA gene are both associated with a higher fre-
quency of dementia in PD yet appear to impact largely
distinct cognitive domains before the onset of demen-
tia.3-7 Additional information stands to be gained by
examining cognition in monogenic forms of PD
because the molecular mechanisms underlying neuro-
degeneration are likely to be more homogenous than
those involved in “idiopathic” PD.

Mutations in the leucine-rich repeat kinase 2
(LRRK2; OMIM #609007) gene are the most com-
mon cause of monogenic PD.8,9 The motor character-

istics of LRRK2-associated PD and idiopathic PD are
thought to be generally indistinguishable.10,11 How-
ever, mixed results have been reported with respect
to non-motor features, including cognition. Some
studies have found that LRRK2 mutation carriers
with PD exhibit milder cognitive symptoms and more
gradual cognitive decline than non-carriers with
PD,8,12 whereas others have not.13-20 To help recon-
cile the differences reported in the literature, we com-
pared the performance of LRRK2 mutation carriers
and non-carriers on a detailed neuropsychological
assessment in a large, well-characterized multicenter
PD cohort.

Methods
Subjects

The study included 1,447 participants with PD from
eight sites that constitute the PD Cognitive Genetics
Consortium, who were screened for known LRRK2
mutations as described previously21 and in the Supple-
mental Data. Participants were required to meet the
United Kingdom PD Society Brain Bank clinical diag-
nostic criteria for PD,22 with the exception of those
from UCLA who satisfied clinical diagnostic criteria
for PD as described elsewhere.23 Four participants
failed genotyping, and 21 subjects (all mutation non-
carriers) were missing disease duration data and were
thus excluded from analyses. Sixty-seven subjects (all
mutation non-carriers) who did not complete greater
than half of the cognitive measures were excluded
from analyses involving continuous measures but not
from those involving the categorical diagnostic vari-
able (demented vs. non-demented). The institutional
review board of each participating institution
approved the study, and all participants provided writ-
ten informed consent.

Cognitive/Clinical Variables

Seven cognitive tests were administered by at least
seven of eight sites, including the Mini Mental State
Examination (MMSE24) and tests measuring specific
cognitive domains: learning/memory (Hopkins Verbal
Learning Test-Revised25), working memory/executive
function (Letter-Number Sequencing Test [LNST]26

and Trailmaking Parts A and B27), language process-
ing (semantic and phonemic verbal fluency28), and
visuospatial abilities (Benton Judgment of Line Orien-
tation29). Motor symptom severity (see Supplemental
Data) was obtained at seven of eight sites.

Cognitive data at six of the eight sites were discussed
at a clinical consensus diagnosis conference, and partici-
pants were diagnosed as demented or non-demented by
using all available neuropsychological and clinical data
at each site, as described elsewhere.4,30,31 At the two
remaining sites, participants were not assigned clinical
cognitive diagnoses (Supplemental Data).
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Statistical Methods

The association between LRRK2 mutation carrier
status and clinical/cognitive variables was assessed by
separate linear regression analyses, applying the gener-
alized estimating equation to account for relatedness
in the study sample. Exact logistic regression was per-
formed to determine the association between clinically
diagnosed dementia and LRRK2 mutation status.
Analyses were adjusted for age at testing, sex, site, dis-
ease duration (time since diagnosis at UCLA and time
since symptom onset at all other sites), and years of
education. For analyses involving Trailmaking Part B,
Trailmaking Part A was also included as a covariate.
Statistical tests were two-tailed; the significance
threshold was set at P<0.05. Given the exploratory
nature of the study, no adjustments for multiple com-
parisons were made. Stata version 12 was used for all
analyses (StataCorp, College Station, TX).

Results
Twenty-nine participants with LRRK2 mutations

were identified, including two members from each of
three families and three members from another family.
Twenty-two were heterozygous for the G2019S muta-
tion, two were homozygous for G2019S, and five
were heterozygous for the R1441C mutation. Sample
demographic, clinical, and cognitive characteristics for
mutation carriers and non-carriers are shown in Table
1. Demographic and clinical data stratified by site are
presented in Supplemental Data Table e-1.

Adjusted linear regression results for cognitive test
scores are presented in Table 2. LRRK2 mutation car-
riers performed significantly better than non-carriers

on the LNST and MMSE. The effect sizes, shown by
the b coefficients, indicate the expected difference in
mean LNST scores was 1.19 and in MMSE scores was
0.74, given the same values for all other covariates.
Mutation carriers also had less severe motor symp-
toms, as assessed by the MDS-UPDRS III, than non-
carriers. These associations held when the analyses
were restricted to G2019S heterozygotes (Supplemen-
tal Data Table e-2).

LRRK2 mutation carriers demonstrated a lower
prevalence of dementia than non-carriers (4% vs.
19.6%). Exact logistic regression analyses that con-
trolled for age, sex, education, disease duration, and
site demonstrated that this difference was statistically
significant (Table 2).

Discussion
The current study offers evidence that mutations in

the LRRK2 gene might result in differences in cogni-
tive phenotype in PD patients, specifically higher
global cognition and lower prevalence of dementia, as
well as better working memory (executive) perform-
ance when compared with non-mutation carriers. Less
severe overall motor dysfunction exhibited by LRRK2
mutation carriers in conjunction with better cognitive
test performance suggests the possibility of overall
milder disease in these patients, although these find-
ings require replication.

Early descriptive studies suggested that LRRK2
mutation carriers diagnosed with PD might show
milder cognitive symptoms in comparison with
non-carriers with PD,8,12,15 whereas in contrast,
others found no difference in MMSE scores between
LRRK2 mutation carriers and non-carriers with
PD.13,14,16,19,32 In the current study, we observed a
significantly lower rate of dementia and higher mean
MMSE scores in LRRK2 mutation carriers compared
with non-carriers. We also found a notable difference
in the range of MMSE scores, such that LRRK2 muta-
tion carriers all had scores of 24 or higher in the
absence of differences in mean disease duration. Simi-
lar to our findings, Estanga et al.20 found a lower pro-
portion of dementia cases among LRRK2 mutation
carriers compared with non-carriers, although this dif-
ference failed to reach significance. The suggestion
that LRRK2 mutations are associated with a lower
likelihood of developing cognitive impairment might
be explained in part by the neuropathologic features
of LRRK2-related PD. Although widely heterogene-
ous,33,34 in a recent meta-analysis of 37 LRRK2
mutation-positive autopsy cases with a clinical diagno-
sis of PD,35 a substantial proportion (20/37, 54%)
lacked Lewy body pathology, and this finding was not
restricted to specific LRRK2 mutations. Furthermore,
the presence of Lewy body pathology was associated

TABLE 1. Demographic and clinical data for LRRK2 muta-
tion carriers vs. non-carriers

LRRK2 Status

Pa

Non-Mutation

Carriers [n 5 1,326]

Mutation

Carriers [n 5 29]

Age at visit
Mean (SD) 68.9 (9.3) 67.9 (9.6) 0.56
Range 34.8-94.5 50.2-86.9

Sex
N (%) female 439 (33.1%) 10 (34.5%) 0.84

Education
Mean (SD) 15.5 (2.7) 16.3 (2.7) 0.09
Range 7-20 12-20

Disease durationb

Mean (SD) 8.4 (5.6) 8.9 (7.0) 0.64
Range 0-43 1-32

SD, standard deviation.
aPairwise P-value using t tests (age, education, disease duration) or Fish-
er’s exact test (sex).
bDisease duration was based on age at diagnosis at UCLA and age at
onset at all other sites.
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with a higher proportion of cognitive impairment

(including dementia) diagnosed before death, whereas

the group without Lewy body pathology displayed a

predominantly motor phenotype. Given the associa-

tion between Lewy body disease and more severe cog-

nitive dysfunction in patients with PD reported by

these authors and others,36,37 it is perhaps not surpris-

ing that LRRK2 cohorts, which are likely enriched

with Lewy body-negative cases, might exhibit overall

milder cognitive symptoms.
Importantly, for the first time, we demonstrate a dif-

ference between LRRK2 mutation carriers and non-

carriers with PD on a sensitive measure of working

memory (an executive function). Previous studies that

evaluated aspects of executive functioning found no

differences in performance between LRRK2 mutation

carriers and non-carriers.16-19 Often, however, the

more frontally mediated tasks used in these studies

involved motor skills or timed task performance.

Here, we found a significant difference between

LRRK2 mutation carriers and non-carriers on a sensi-

tive working memory task that does not require motor

involvement and is not timed. These findings suggest

that LRRK2 mutation carrier status might be associ-

ated with less impairment on working memory, an

area of cognition that is frequently impacted early in

PD. This result conflicts with a recently published

study20 of LRRK2 R1441G mutation carriers with

PD that found no difference across several sensitive

cognitive measures, including LNST. However, our

sample was largely composed of G2019S carriers

(24/29, 83%), suggesting that specific LRRK2 muta-

tions might be associated with differential test

performance.

TABLE 2. Cognitive test scores and clinical features: LRRK2 mutation carriers vs. non-carriers

Scores (raw) Standard (z-scores) Regression Resultsa

N

Non-Mutation

Carriers

Mutation

Carriers

Non-Mutation

Carriers

Mutation

Carriers

Cognitive Measures (Total)

(Mutation

Carriers)

Mean (SD)

Range

Mean (SD)

Range

Mean (SD)

Range

Mean (SD)

Range Coeffb
Std.

Error 95% CI P

MMSE 1,237 27 27.7 (2.4)
11-30

28.6 (1.6)
24-30

21.10 (1.87)
213.84-0.86

20.42 (1.32)
24.3-0.86

0.74 0.35 0.05, 1.42 0.034c

Fluency: semantic 1,344 28 17.2 (6.1)
0-37

19.9 (6.8)
7-35

20.63 (1.05)
23.89-2.83

20.17 (1.21)
22.34-2.31

1.79 1.16 20.48, 4.05 0.122

Fluency: phonemic 1,317 28 35.6 (14.3)
2-93

41.4 (14.6)
12-69

20.09 (1.09)
22.81-5.47

0.35 (1.34)
22.17-2.91

4.35 2.83 21.20, 9.90 0.124

HVLT: total learning 1,203 25 21.4 (6.3)
0-35

23.2 (4.8)
12-33

20.82 (1.25)
25.04-2.25

20.46 (0.91)
22.07-1.58

1.25 0.83 20.39, 2.88 0.135

HVLT: delayed 1,201 25 6.8 (3.6)
0-12

7.9 (3.3)
0-12

20.98 (1.59)
25.45-1.54

20.49 (1.42)
24.94-1.30

0.77 0.48 20.17, 1.71 0.111

HVLT: RDI 1,190 25 9.3 (2.4)
22-12

9.6 (2.5)
2-12

N/A N/A 0.13 0.39 20.64, 0.90 0.737d

Judgment of
line orientation

1,149 27 11.2 (3.0)
0-15

11.7 (2.1)
8-15

0.71 (2.13)
22.45-3.99

0.91 (2.02)
21.22-3.99

0.39 0.45 20.49, 1.28 0.386d

Letter number
sequencing

1,118 23 8.4 (3.1)
0-18

9.8 (2.3)
4-14

20.06 (1.07)
23.0-3.0

0.49 (0.84)
21.67-2.0

1.19 0.43 0.35, 2.02 0.005

Trailmaking, part Be 1,123 25 143.6 (87.5)
28-300

99.8 (78.3)
35-300

21.44 (1.94)
26.80-1.31

20.55 (2.06)
26.80-1.04

29.72 13.31 235.80, 16.37 0.465f

Clinical Features

Non-Mutation

Carriers

Mutation

Carriers

MDS-UPDRS III 1,153 28 28.64 (12.9)
3-79

23.54 (9.1)
3-43

— — 25.17 1.58 28.27, 22.08 0.001

Dementia N (%)
Cognitive status 1,057 25 210 (19.9) 1 (4.0) — — 21.99 — 25.76, 20.07 0.029

HVLT, Hopkins Verbal Learning Test-Revised; MDS-UPDRS III, Movement Disorder Society Unified Parkinson’s Disease Rating Scale Part III; MMSE, Mini Men-
tal State Examination; RDI, Recognition Discrimination Index; SD, standard deviation.
aAnalyses involving cognitive measures adjusted for age, sex, education, site, and disease duration; Trailmaking, Part B analyses also adjusted for Trailmaking,
Part A time. MDS-UPDRS analyses adjusted for age, sex, site, and disease duration. Linear regression analyses were used for continuous measures; exact
logistic regression procedures were used to compare proportion of demented/nondemented participants
bCoeff. 5 beta coefficient, indicates the expected change in mean test score when carrying a LRRK2 mutation given the same values for all adjustment
covariates
cWhen cube transformed scores were used, P 5 0.05
dWhen cube transformed scores were used, P values remained nonsignificant
eLower score denotes better performance.
fWhen log-transformed scores were used, P values remained nonsignificant.
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Our study had some limitations. Importantly, this
study is cross-sectional; only longitudinal research will
provide evidence for whether the overall cognitive
course differs between LRRK2 mutation carriers and
non-carriers. In addition, although we examined a
large, well-defined PD cohort, our sample of LRRK2
mutation carriers remains relatively small. Given the
exploratory nature of the study, we did not correct for
multiple comparisons. Finally, the pattern of perform-
ance across cognitive measures, when looking at raw
scores, suggests that we might have lacked adequate
power to detect statistically significant differences on
several other cognitive tests.

Our findings add to a growing body of evidence
that suggests that genetic factors play an important
role in determining cognitive performance in PD.
Given the near ubiquitous, yet heterogeneous nature
of cognitive impairment in PD, identification of sub-
groups associated with better or worse cognitive out-
comes is an important step toward tailoring
appropriate interventions, and could inform inclusion
for enrollment in long-term cognitive treatment and
prevention trials. Future large, longitudinal investiga-
tions will be needed to reveal whether LRRK2 muta-
tion carrier status predicts a more stable cognitive
course.

Acknowledgements: We thank our research subjects and family
members for their participation in this study.
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Relationship of Age of Onset and
Family History in Parkinson Disease
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ABSTRACT
Background: The aim of this study was to determine
whether age of onset of Parkinson disease (PD) is
associated with differences in PD risk and PD age of
onset in parents and siblings.
Methods: Clinical and detailed family history data were
available for 1,114 PD probands.
Results: Proband age of onset was not associated
with differences in PD prevalence or PD age of onset
in parents. Proband age of PD onset <50, compared
with �50 years, was associated with significantly
greater risk of PD in siblings (hazard ratio: 2.4;
P 5 0.002; 95% confidence interval: 1.4, 4.1), and pro-
band age of onset was significantly correlated with sib-
ling age of onset (Somer’s D 5 0.20; P 5 0.018).

Conclusions: Proband age of PD onset is not associated
with differences in parental PD risk. Siblings of PD patients
with onset before age 50 are at increased risk of PD and
are more likely to have early-onset disease. VC 2015 Inter-
national Parkinson and Movement Disorder Society

Key Words: Parkinson disease; age of onset; family
history; familial aggregation; genetics

One of the greatest risk factors for Parkinson disease
(PD) is a positive family history.1-3 Though many
genetic causes and risk factors of PD have been discov-
ered, identified genetic factors currently only account
for approximately 20% to 30% of disease risk.4,5

Another important risk factor for PD is advancing age.
Though PD usually emerges later in life, it may occur
at any time during adulthood. Previous studies reported
that those with early-onset PD were more likely to
have a family history of PD,6,7 suggesting that there
may be a greater genetic contribution in this group of
PD patients. The aims of this study were to determine
whether, in a large, clinic-based cohort, (1) earlier PD
age of onset is associated with a greater likelihood of a
family history of PD in parents and siblings and (2)
whether probands’ age of onset is associated with the
age of onset of affected family members.

Patients and Methods
Between 1996 and 2010, clinical and family history

data for 1,114 PD patients observed at the University
of Virginia Movement Disorders Clinic (Charlottes-
ville, VA) were collected in a clinical database. Diag-
nosis of PD was determined by a movement disorders
specialist. Each PD patient, the proband, was queried
about family history of PD in parents and siblings.
For each family member, current age or age at death
was recorded. For family members reported to have
PD, age at symptom onset and source of diagnosis
were recorded. This study was approved by the insti-
tutional review board at the University of Virginia.

Risk of Parkinson Disease

PD incidence and prevalence increase rapidly after age
50, and those with onset before 50 have previously been
considered to have early onset.8 In our population, neither
probands nor family members had an age of PD onset
younger than 30 years. PD risk (PD events/100 person-
years) was estimated for mothers, fathers, and siblings at
younger (30-50 years) and older (�50 years) ages. PD risk
at younger ages was estimated by dividing the number of
family members with PD onset between ages 30 and 50
years by total time at risk. Time at risk was defined as the
time in years from 30 years of age to either age of onset of
PD in affected family members, current age at the time
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