
UCLA
UCLA Electronic Theses and Dissertations

Title
Leveraging Distributed Tracing and Container Cloning for Replay Debugging of
Microservices

Permalink
https://escholarship.org/uc/item/7dp9q7j5

Author
Mathur, Mihir

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7dp9q7j5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Leveraging Distributed Tracing and Container Cloning for Replay Debugging of

Microservices

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Mihir Mathur

2020

c© Copyright by

Mihir Mathur

2020

ABSTRACT OF THE THESIS

Leveraging Distributed Tracing and Container Cloning for Replay Debugging of

Microservices

by

Mihir Mathur

Master of Science in Computer Science

University of California, Los Angeles, 2020

Professor Miryung Kim, Co-Chair

Professor Ravi Arun Netravali, Co-Chair

Microservice architectures have gained prominence in recent years for building large-scale

industrial distributed systems. However, microservice architectures make the usage of

replay debugging, a powerful technique for finding root causes of faults, very challenging

because of the polyglot (written in several languages) services, large accumulated state

of services, and tight latency limits imposed by long hop-chains. This work attempts

to provide a framework for enabling replay debugging in production microservice appli-

cations. We study 25 real-world faults in microservice systems collected from diverse

sources, categorize these faults by fault symptoms, and create 15 application agnostic

mutation operators for microservices. We then propose a language agnostic replay de-

bugging framework for microservice applications that uses a distributed tracing system to

record network requests and enables replay of those requests on cloned service containers

running in a debug environment. A key component of this framework is an anomaly

detector that uses span-level and container-level monitoring to detect fault symptoms

found in our study and localizes faults to trace level so that faulty traces can be eas-

ily replayed to find the root cause. An open-source microservices application injected

successively with the mutation operators is used for an evaluation that shows that our

framework is upto an order of magnitude lighter-weight than language-specific recording

tools such as Chrome DevTools or VisualVM and can help in finding root causes of 9 out

of 15 mutations at a line or function level.

ii

The thesis of Mihir Mathur is approved.

Harry Guoqing Xu

Ravi Arun Netravali, Committee Co-Chair

Miryung Kim, Committee Co-Chair

University of California, Los Angeles

2020

iii

To my family

iv

TABLE OF CONTENTS

1 Introduction . 1

2 Background and Related Work . 5

2.1 Background . 5

2.1.1 Microservices Architectural Style 6

2.1.2 Traditional Techniques for Debugging Microservice Faults 7

2.2 Related Work . 10

2.2.1 Record and Replay Debugging . 10

2.2.2 Anomaly Detection . 12

2.2.3 Containerization and Container Cloning 13

3 A Benchmark of Microservice Applications Faults 14

3.1 Methodology . 14

3.2 Fault Organization by Symptom . 16

3.3 Mutation Operators for Microservices . 18

4 Record and Replay Framework for Microservices 20

4.1 Design Objectives . 20

4.2 Record . 22

4.2.1 Instrumenting Services . 22

4.2.2 What to Record? . 23

4.2.3 Container Cloning . 26

4.3 Replay . 28

4.4 Anomaly Detection . 30

4.4.1 Anomaly Detector Implementation 31

v

5 Evaluation . 34

5.1 Application Used for Experiments . 34

5.2 Qualitative Evaluation . 36

5.2.1 Case Study 1: Debugging a Latent Memory Leak 36

5.2.2 Case Study 2: Debugging a Latent High CPU usage 37

5.2.3 Case Study 3: Debugging Slow Responses 39

5.3 Performance Evaluation . 40

5.3.1 Latency Overheads . 41

5.3.2 Container Cloning Overhead . 44

5.4 Summary . 44

6 Conclusion . 46

A Descriptions of Microservice Application Faults 47

A.1 Fault Symptom: Errors and Exceptions 47

A.2 Fault Symptom: Delays or Timeouts . 50

A.3 Fault Symptom: Unusual Resource Usage 52

A.4 Fault Symptom: Unexpected Output . 54

References . 56

vi

LIST OF FIGURES

2.1 Zipkin Web UI . 9

4.1 Setup of the Debugging Framework for Microservices 21

4.2 Service Instrumentation Setup Flowchart 23

4.3 Tag Instrumentation in Different Services 24

4.4 Methods for Parallelly Committing Running Containers 27

4.5 Recorded Information in a Zipkin Span, Stored in JSON 28

4.6 Steps for Replay Debugging . 29

4.7 Methods of Replayer for Replaying a Trace 30

4.8 Anomaly Detector Modules . 31

5.1 Requests initiated by each service in microservice-app-example 35

5.2 Steps to Find Root Causes of NodeJS Memory Faults by Replaying Traces

and using Chrome DevTools . 37

5.3 Mutation in users-api Causing High CPU Usage 38

5.4 Steps to Find Root Causes of Java Faults by replaying traces and Using

VisualVM . 39

5.5 More Instrumentation Done in todos-api before Replaying Traces 40

5.6 P95 Latency Overhead of Zipkin Instrumentation % versus Function Ex-

ecution Time . 43

5.7 Latency versus Number of Spans in Endpoint 43

vii

LIST OF TABLES

2.1 Characteristics of Microservices Architectural Style versus Monolithic Client-

Server Architectural Style . 7

3.1 Microservices Faults with Error and Exceptions observed 16

3.2 Microservices Faults with Delay or Timeout observed 17

3.3 Microservices Faults with High Resource Usage observed 17

3.4 Microservices Faults with Unexpected Output observed 18

3.5 Mutation Operators for Microservice Applications 19

5.1 Latency Overheads of Recording Zipkin Traces for Sample Microservices

Application . 41

5.2 Latency Overheads of Using NodeJS DevTools for Recording Memory Al-

location of ‘todos-api’ . 42

5.3 Container Commit Time for Different Services of Benchmark Application 44

viii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to Prof. Miryung Kim for advising me

during my undergraduate and graduate career at UCLA. I am thankful to Dr. Kim for

giving me research opportunities, for several ideas used in this thesis, and for her constant

words of encouragement. I am very thankful to my co-advisor, Prof. Ravi Netravali, for

his support, ideas, and feedback over the past year which guided me throughout this

project. I want to thank Prof. Harry Xu for several brainstorming sessions and for his

inputs that helped me with this thesis.

I also want to thank other faculty and students of the UCLA Computer Science

department who I’ve learned a lot from during my time as an undergraduate and graduate

student. Finally, I want to thank my parents, Anup and Sangeeta Mathur, my brother,

Raghav Mathur, and my girlfriend, Kyra Benowitz, for their emotional support, especially

during the grim times of a global pandemic when I wrote most of this thesis.

ix

CHAPTER 1

Introduction

In the past decade, industrial software systems have evolved significantly and one trend

that has become increasingly common is large scale distributed systems being built with

microservices architecture [2], a variant of the service-oriented architectural style. The

core idea of the microservices architecture style is to manage the growing complexity

of large systems by functionally decomposing these systems into a set of independent

services and thereby unlocking easier scalability, maintainability, and faster iteration [7].

Major web and mobile software serving millions of requests per hour such as streaming

services (Netflix and Spotify), ecommerce platforms (Amazon and Ebay) and ridesharing

applications (Lyft and Uber) are built using microservices [18, 15]. Further, many more

enterprises are starting or planning to switch to microservices from monolithic architec-

tures because of the numerous advantages of this architectural style [2].

Despite the several benefits that the microservices architectural style provides, there

remain critical challenges that make working with microservices harder than working

with other traditional architectural styles such as layered or client-server architectures

for building distributed systems. These challenges include debugging challenges such as

fault localization [32] and performance debugging [12], operational challenges such as

deployment, manual configurations, and team communication [9], and testing challenges

such as systematic resiliency testing [14] etc. Given the widespread adoption of microser-

vices in the industry as well as several challenges associated with this architecture, there

is a need for research on tools and techniques for building and debugging microservice

systems more effectively.

Among the challenges of working with microservices, overcoming debugging challenges

is of critical importance for any production software since bugs can adversely affect

end user experience and a company’s revenue. Debugging is especially challenging for

1

microservices because of numerous reasons including:

1. Large Accumulated State: Accumulated state of services due to some produc-

tion workload experienced can lead to several non-crashing errors such as time-

outs/delays and high resource usages. Reproducing the accumulated state and

corresponding workload in a debugging environment is complex which makes find-

ing a root cause harder. Independent update and deployment of services adds to

the complexity of reproduction of a system state since one would need to keep track

of version changes of each service.

2. Polyglot (i.e. written in several programming languages) System: Many

different languages and frameworks are used in a single microservices system.

Therefore, language-specific replay debugging tools cannot be used for reproducing

a system state. Fault localization is hard since disparate logs are generated due

to which different sources need to be correlated for debugging non-crashing fail-

ures. Further, due to polyglot containerized services, lots of manual configurations

(memory/cpu limits, restart policies, timeouts, circuit breakers, retries, what to

log etc.) are needed for each service. Errors due to mis-configurations may happen

during runtime and are hard to debug without reproducing the running system.

3. Cascading Failures and Overheads due to Long Hop Chain: A single re-

quest often triggers a long chain of requests to different services. Thus, failures can

cascade: an observed error in one service might be due to bugs in other services;

similarly a latent error in one service could propagate to several different parts of

the system. The long hop chain also imposes a tight latency limit on each indi-

vidual service since the latency that the end user experiences would be the sum

of latencies of each service in the chain of requests. Consequently, any debugging

solution that significantly increases latency would not be suitable for production

systems.

Traditional debugging tools and techniques can be used to debug certain faults in mi-

croservice architectures. For instance, log analysis and breakpoint debugging can be used

for finding the root cause if a failure is localized to a given service. However, for debug-

ging non-crashing faults (such as timeouts, high latency or memory leaks), log analysis is

2

ineffective for pinpointing a root cause because: (1) it is hard to define, prior to program

execution, what to record to find root causes of such faults and (2) causal relationship

of logs across services cannot be examined easily. Breakpoint debuggers impose a single

language constraint and cannot be used in production. Setting breakpoints on services

running locally and running the system with same inputs does not guarantee that a

fault will be reproduced since the local system state may be different from production.

Another set of tools, distributed tracing frameworks such as Jaeger [10], Zipkin [26],

and Dapper [29], track the causal and temporal relationships of service invocations for

each request. These tools can help in localizing latency faults in microservices but have

shortcomings: a large volume of traces is generated due to which a developer needs deep

prior knowledge of the system to be able to query and get the trace that can lead to a

latent fault. Further, even with a faulty trace, one cannot find the root cause of a fault

by reproducing the fault scenario locally since the accumulated system state (which in-

cludes available resources to each service or the workload on each service) is not recorded

within a distributed trace. In aggregate, limitations of traditional techniques for

debugging microservice application faults (discussed further in Section 2.1.2)

are: (1) ineffectiveness in localizing the root causes of non-crashing failures

at the log or trace level, (2) single language constraint, and (3) inability to

automatically reproduce an entire system state in a local/debug environment.

A potential solution that overcomes these limitations for finding latent bugs in a

production microservices system is a framework that can proactively identify fault symp-

toms, mark traces corresponding to those faults, and enable easy reproduction of faults

and symptoms in a debugging environment. Designing such a framework for production

systems needs to address two orthogonal goals: (1) lightweight recording so that pro-

duction systems can use the framework without excessive overheads and (2) finding the

needle (i.e. the faulty trace) in a haystack (i.e. the set of all recorded traces) so that

developers do not need deep prior knowledge of the system to identify which traces to

replay.

For designing and evaluating a debugging framework that can meet these two goals,

there is a need for a benchmark of faults based on real world fault and fault-symptoms

prevalent in microservice applications. In this work, we analyze 25 microservices faults

3

from the previous literature, open-source repositories, and software Q&A website, Stack-

overflow and categorize the faults by their symptoms. The analysis shows that a majority

of these faults can be reproduced by capturing all network requests and responses, and

replaying those requests on recorded service states. We derive 15 application-agnostic

mutation operators from the faults that would show similar symptoms. We then de-

sign a record and replay framework (prototyped with Zipkin) that can reproduce failure

symptoms for microservice faults on cloned service containers and can assist in finding

root causes of faults. The proposed replay debugging framework is language-agnostic,

incrementally integrable with production systems, and can help engineers to identify

potentially faulty traces and then easily reproduce failure symptoms in a debugging en-

vironment.

The main contributions of this work can be summarized as follows:

• We give an analyses of deficiencies of traditional debugging techniques for debugging

microservice faults (Chapter 2)

• We study 25 microservice faults, categorize them by symptom, and derive 15 ap-

plication agnostic mutation operators from the collected faults that can be used to

evaluate a microservices debugging framework on an arbitrary microservices appli-

cation (Chapter 3)

• We propose a framework for record and replay debugging of microservice appli-

cations, defining the adequate information that needs to be recorded to replay

executions for debugging common faults. As part of the framework, we give a

mathematical formulation for using container-level (eg. memory %, cpu usage, etc.)

or span-level (eg. latency) time series data for automatically detecting anomalous

traces that are useful for replay debugging (Chapter 4)

• We evaluate our framework on an open-source microservices application and provide

three case studies to show how our framework can be used for finding line-level or

function-level root causes of latent faults. Nine out of fifteen of the mutations can

be debugged using the methods described in the three case studies. Our framework

imposes upto 10X less latency overhead in production than heavier language-

specific recording tools such as Chrome DevTools or VirtualVM (Chapter 5)

4

CHAPTER 2

Background and Related Work

2.1 Background

Software architecture, analogous to building architecture, is a concretely defined set of

design elements (including processing, data, and connecting elements) with a certain

form; an architectural style (or pattern) is an abstraction of formal aspects from spe-

cific architectures that focuses on relationships and constraints of those design elements

[27]. Architectural styles offer an outline of solutions to commonly occurring problems

in engineering different kinds of software applications and these styles can be organized

by application types. For instance, applications primarily concerned with shared mem-

ory could use a blackboard or rule-based architectural style, applications that require

adaptable components could use a microkernel architectural style, applications that fo-

cus on messaging between sub-systems could use an event-driven or publish-subscribe

architectural style, and applications that need to run on a distributed system could use

a client-server, broker, peer-to-peer, space-based or service-oriented architectural styles

[28]. These styles may not be mutually exclusive; several architectural styles could be

combined to form a hybrid architecture for satisfying different application requirements.

For example, if an application requires reacting to events while the logical processing

runs over several physical machines connected over a network, it could be built using a

hybrid architecture that combines the event-driven and the service-oriented architectural

styles. As discussed in Chapter 1, one of the most popular architectural style in the

industry is the microservice architectural style and it is used for building software as di-

verse as ridesharing mobile applications to e-commerce platforms. In the next subsection

we discuss this style in more depth.

5

2.1.1 Microservices Architectural Style

The microservices architectural style is a variant of the service-oriented architectural

(SOA) style, in which software is decomposed into processing elements (services) that

communicate over a network. There are various definitions of the term microservices

across the software engineering research literature. Fowler (2014) defines microservices

as an architectural style and approach to developing a single application as a suite of

small services, each running in its own process and communicating with lightweight mech-

anisms, often an HTTP resource API [11]. Other definitions of microservice or microser-

vices architectural styles include phrases such as “single functions”, “autonomously de-

veloped”, “bounded by contexts”, and “fine-grained”, ”independent data stores”. One

of the key differences between SOA and microservices architecture is independent data

stores in the latter. For example, if an e-commerce web application was built with an

SOA, then services would be course grained such as commerce service and frontend ser-

vice. However, if the same application was built with a with a microservices architecture,

services would be fine-grained (the commerce service could be broken down into check-

out service, cart service, payments service) and would have their own databases. For

the purpose of this thesis, we will use Definition 1 when referring to the microservices

architectural style.

Definition 1. Microservices architectural style:

Microservices architectural style is a method of decomposing a software system into small,

independently developed and independently deployed processing components that work to-

gether, each with their own data components.

The popularity of this architectural style for building distributed systems is due to

several advantages it provides over the more conventional pattern for building distributed

systems, the monolithic client-server architecture. These advantages include agility of de-

velopment and deployment, flexibility in changing constituent technologies, scalability of

individual components, loose coupling between components, lower chance of regression,

among other advantages. Table 2.1 lists some characteristics of the microservices archi-

tectural style versus a monolithic client-server architecture.

6

Property
Monolithic Client-Server

Architectural Style

Microservices

Architectural Style

Example Application

e-commerce application: ecommerce-demo1

Example Application

e-commerce application: Online Boutique2

Functional Decomposition

Workload partitioned between two main

components

Eg. in ecommerce-demo: ‘client’ and ‘server’

Numerous independent services

handling separate business logic

Eg. 10 independent services in Online Boutique:

cartservice, currencyservice, checkoutservice etc.

Technology Stack

Locked in to a few languages and technologies.

Eg. in ecommerce-demo:

MEAN (MongoDB, Express, AngularJS, NodeJS) stack

is fixed. Any new functionality must conform to this stack

Polyglot. Can support arbitrary number of technologies.

Eg. in Online Boutique: cartservice (C#),

currencyservice (NodeJS), checkoutservice (Go) etc.

New services can be written in any language.

Code Organization

/Version control &

Code Visibility

Single repository contains entire source code.

All developers have visibility into entire code base

Eg. ecommerce-demo has a single repo

Usually each service has separate repositories, in which case

developers may not have visibility into other services’ source

code.

Though mono-repo, microservice applications

also exist (Eg. Online Boutique is mono-repo)

Deployment & Scaling

Entire application is deployed together and scales together.

Eg. if there was high load on a particular feature of

ecommerce-demo, the entire application (i.e. the client and

the server would scale together and run on multiple hosts.

Services are deployed and scaled independently from

one another. Eg. checkoutservice of Online Boutique

could scale to several replicas running on multiple hosts,

without any other service scaling.

Testability

Writing and running integration and end-to-end tests

is easier.

Eg. the entire ecommerce-demo application can be

run and tested easily on a single host.

Harder integration and end-to-end testing.

Eg. All services of Online Boutique would need

to run (potentially on multiple hosts) in

compatible versions for any end-to-end test

Table 2.1: Characteristics of Microservices Architectural Style versus Monolithic Clien-

t-Server Architectural Style

While the microservices architectural style provides several benefits for building dis-

tributed systems, it also brings several disadvantages. One of the major disadvantages

is that debugging becomes much harder for systems built with microservices compared

to systems built using other common architectural styles. The next section discusses

deficiencies of traditional debugging techniques for microservices.

2.1.2 Traditional Techniques for Debugging Microservice Faults

While there exist several debugging techniques for finding and fixing faults of programs,

most of those techniques are optimized for programs running on single machines. In this

section, we examine three traditional debugging techniques in the context of debugging

microservice applications: log analysis, breakpoint debugging, and distributed tracing .

1https://github.com/ratracegrad/ecommerce-demo

2https://github.com/GoogleCloudPlatform/microservices-demo

7

2.1.2.1 Log Analysis

In this debugging technique, records generated during program execution are analyzed

to find the root-cause of a failure. There is often a much higher volume of logs generated

in microservice architectures than monolithic client-server architectures because of the

higher number of network calls and steps in a transaction [21], which increases the search

space for log lines that can help in debugging a failure. Moreover, log analysis is in

general not well suited for debugging non-crashing failures like high latencies or memory

leaks because it is hard to define, prior to program execution, what to record to find root-

causes of such faults. Further, it is hard to track the causal relationship of logs across

services, which is often required for debugging such faults. As discussed in Chapter 3,

non-crashing faults such as delays/timeouts and high resource usages are two commonly

occurring categories of microservices faults, and the ineffectiveness of log analysis to

pinpoint the root-cause of such faults from a given set of logs makes it a weak debugging

technique for microservices.

2.1.2.2 Breakpoint Debugging

Using debuggers (such as GDB3 and PDB4) or IDEs (such as Visual Studio5 and Eclipse6)

developers can set breakpoints at arbitrary points in a program and pause execution to

examine the program state. While breakpoint debugging can be powerful in debugging

single process programs, setting breakpoints across different services and examining pro-

gram state is very hard because of two reasons: (1) the services are written in many

different programming languages and run in containerized environments (2) the program

state is much more complex than that of a single process since the state of the distributed

system involves the services running on different machines, the available resources to each

service, the number of replicas of each service, the workload on each service etc. So set-

ting breakpoints successfully might not lead to a root-cause of a bug in a microservices

3https://www.gnu.org/software/gdb/

4https://docs.python.org/3/library/pdb.html

5https://visualstudio.microsoft.com/

6https://www.eclipse.org/ide/

8

architecture if the state and workload is not re-created, which cannot be done in an auto-

mated way using single-language debuggers or IDEs. Further, a developer needs to guess

locations for setting breakpoints, which can be hard in a microservices architecture since

developers often do not have the knowledge (or in some cases access) of all potentially

faulty services.

2.1.2.3 Distributed Tracing

Distributed tracing is a widely used technique for tracking the sequence of operations

performed by different components in a distributed system. The two key terms of dis-

tributed tracing are: span, “a logical unit of work that has an operation name, the start

time of the operation, and the duration” and a trace, “a data/execution path through the

system that can be thought of as a directed acyclic graph of spans” [10]. An arbitrary

number of spans can be created within a service which allows for tracing to be done

at any granularity: at the service level, at the function level or even at the line level.

Distributed tracing frameworks like Zipkin or Jaegar propagate context information for

each request and can record the causal relationships, latency, responses, and failure rates

of each service. Figure 2.1 demonstrates an example trace and its spans as they appear

in Zipkin’s web user interface.

Figure 2.1: Zipkin Web UI

An example trace and its associated spans are shown. A span is selected and the tags and the

annotations of that span can be seen in the panel on the right.

While very powerful, distributed tracing for debugging microservices has some chal-

lenges. First, instrumentation of services has to be done a priori of program execution

9

by multiple people (i.e. developers of different services) and it is not always clear what

is the minimum yet sufficient instrumentation for being able to debug future errors. Sec-

ond, a large volume of traces are produced in a microservices architecture if all functions

in each service are instrumented and finding a fault from traces becomes a needle in a

haystack problem that requires experts for debugging. Third, a failure cannot be easily

reproduced using Zipkin or Jaegar because an accumulated state of services might be

unknown (if not enough information was recorded) or if services have evolved since the

trace was produced.

Therefore, traditional debugging techniques such as log analysis, breakpoint debug-

ging, and distributed tracing for debugging distributed systems such as microservice

applications have deficiencies including ineffectiveness in pinpointing root-causes of non-

crashing failures, single-language constraint, lack of automation, and inability to repro-

duce system state.

2.2 Related Work

2.2.1 Record and Replay Debugging

Record and replay debugging is a technique in which certain information is logged during

program execution in order to replay the program again in a debugging environment to

diagnose bugs. A major challenge of designing a record and replay system for distributed

systems is the very large state space consisting of memory and configuration of all the

physical machines, the state of the network, the volume of concurrent requests (load) etc.

One of the first research projects for replay debugging of large distributed applications

was Liblog [13], a tool that provides a shared library to services for logging and uses

Lamport clocks on all messages between services for keeping track of execution order.

While Liblog can replay program executions faithfully, its two main drawbacks are: (1)

the logging library only works with C/C++ and supports only POSIX applications (2)

it introduces significant runtime overheads such as 18% throughput reduction. Several

other tools for replay debugging [17, 30, 25, 20, 3] work with only one programming

language. These tools would not be able to replay executions across services written

in different programming languages, which is very typical in microservice architectures.

10

The framework proposed in our work is programming language agnostic.

The closest related work to our work is Parikshan [1], a production bug replaying

framework for service-oriented applications. The key insights of this paper are that the

state of service oriented applications necessary for reproducing bugs can be captured by

replicating each buggy production container and that bugs can be faithfully replayed by

sending same network traffic of production containers to replicas of buggy containers.

Traces for a faithful replay of bugs are never recorded, instead, live network traffic is

forwarded to replica debug containers. Parikshan lets developers recreate a production

system state in sandbox environments by relaying network packets to replicas of suspect

services.

While Parikshan is an effective framework for on-the-fly or live debugging of services,

it cannot be used for debugging errors that happened before container replicas were

created. For example, if a developer is notified that one hour ago some users were

experiencing very slow responses, that developer would not be able to debug this fault

since there is no recording of the system state or the inputs that lead to the fault since

the problem occurred before the replica containers were created. In such a case, the

developer would create replica containers and wait for that fault to happen again. Faults

3,9, and 25 in Appendix A are examples of faults that are triggered by a particular user

input and do not persist. Not recording any trace implies that a developer has to debug

the error exactly when it is happening i.e. a developer has to find a root cause fast

because the fault could stop persisting and there is no way to go back to the faulty state.

The authors justify not recording any trace by noting that capturing sufficient traces to

faithfully replay bugs in a debugging environment can result in performance overheads

balooning up to 2-10x, which is unacceptable for use in production SOA. However, they

ignore the fact that companies with production microservice systems already have some

level of distributed tracing [19] that can be used without adding excessive overheads.

Our framework leverages the existing distributed tracing present in most production

microservices systems [19] to record certain information (mentioned in Section 4.2) that

enables a developer to debug faults that were observed before the cloned containers were

created.

11

2.2.2 Anomaly Detection

Anomaly detection, the problem of finding patterns in data that do not conform to

expected behavior, has been researched across several application domains which has

led to several techniques for automatic identification of past anomalies or prediction of

future anomalies [4]. Such anomaly detection techniques have been used in the context

of microservice application monitoring and debugging. We discuss three such systems:

Seer [12], MEPFL [33], and ADaaS [23].

2.2.2.1 Seer

Seer [12] is a performance debugging system for microservices that predicts upcoming

performance violations such as high tail latency or low throughput in different services,

using anomaly detection. For predicting such upcoming violations, deep neural networks

trained on historical execution traces annotated with violations are used to identify the

faulty microservice. Once a potentially faulty microservice is identified, Seer uses per-

node, low-level hardware monitoring primitives such as performance counters to find the

root cause of the violation and to recommend steps on how to prevent the performance

degradation. While Seer is able to detect and avoid a majority of imminent performance

violations, the authors noted that “violations that were not avoided correspond to appli-

cation level bugs, which cannot be easily corrected online”. Our framework can help in

fixing application level bugs (such as a memory leak when a particular execution path is

taken) since it enables a developer to reproduce a system state in a debug environment

by replaying anomalous traces (discussed in Section 4.3).

2.2.2.2 MEPFL

MEPFL (Microservice Error Prediction and Fault Localization) [33] is a system that uses

anomaly detection models such as Random Forests and Multi Layer Perceptron trained

on traces obtained from execution of fault-injected version of services to predict latent

errors in microservice applications. While MEPFL is able to localize the error to the

service-level with high accuracy, the debugging process still mandates additional effort

from an expert to precisely find the root-cause at the line level. The framework presented

12

in our work provides a simpler method for a developer to localize a fault to the line level

for certain fault types such as resource leaks or high latency once an anomaly is detected.

2.2.2.3 ADaaS

Another related system is ADaaS (Anomaly Detection As-a-Service) [23]. ADaaS pro-

vides an architecture for combining different statistical anomaly detection modules (such

as a mean shift anomaly detector) to seamlessly monitor complex cloud systems. While

ADaaS provides a declarative method for controlling anomaly detection logic, it does not

provide any actionable insights to fix the anomalies.

Anomaly detection models from Seer, MEPFL, and ADaaS can be integrated in

the Anomaly Detection component of our framework (described in Section 4.4). For

prototyping our framework, we used the lightweight statistical anomaly detection modules

outlined in ADaaS.

2.2.3 Containerization and Container Cloning

Containerization is the technique of encapsulating some source code and all of its de-

pendencies and associated configurations into images that can be run reliably across all

computing environments. Unlike virtualization, containerization is a lightweight tech-

nique because it uses a host machine’s operating system instead of bundling a copy of

the operating system like Virtual Machines do [8]. Using containerization for microservice

application development is the current industry standard. While there exist techniques

[24, 22] for live cloning containers, Parikshan [1] is the only tool we know that leverages

container cloning for debugging microservice applications. In Parikshan, a developer has

to specify which containers to clone and when, whereas in our proposed framework con-

tainers can be either cloned on a schedule or containers to be cloned can be automatically

inferred from faulty traces (described in Section 4.2.3).

13

CHAPTER 3

A Benchmark of Microservice Applications Faults

There have been two prior works on microservices debugging that categorize microservice

faults: X. Zhou et al. [31] organize faults collected from an industrial survey by their

root causes and the maturity levels of debugging (log analysis, visual log analysis, or

visual trace analysis) and Nipun Arora et al. [1] organize faults collected from issue

trackers of open-source SOA applications into four categories (performance, semantic,

concurrency and resource leaks). However, these categorizations have limitations: 1)

both of these prior works study faults from mutually exclusive sources, and 2) these

works do not categorize by fault symptoms. Understanding fault symptoms is important

since the observation of a symptom is often how the debugging process starts. Further,

fault symptoms can help with the automatic identification of which traces to replay. To

overcome these limitations of existing microservice fault categorizations, we conduct our

own study. We answer the following research question in this chapter:

What are common faults in microservices architectures and how can these faults be

categorized by symptoms?

3.1 Methodology

Microservices faults from three different sources were collected:

1. Literature: for obtaining microservices faults from the published literature, search

terms “microservices debugging” and “soa debugging” were used on Google Scholar

in January 2020. We found six relevant papers [1, 31, 16, 5, 12, 32] and each

paper was skimmed for descriptions of faults. Faults relevant to microservices were

recorded along with more context and individual root causes in a spreadsheet.

2. Github Issues: Issues of 3 open-source industrial microservice projects (Site-

14

Where1, Open-Loyalty2, Gizmo3) were examined in January 2020. We found these

three repositories listed under the Industrial Projects section of a microservices

project list4. Issues were filtered by the “bug” label. Gizmo and Open-Loyalty had

4 closed issues with a “bug” label. Sitewhere had over 100 issues with the “bug”

label, so we used search term “service” to reduce the number of issues to about 20.

Each of these issues was manually examined. Bugs that were due to the microser-

vices architecture of the project and had a bug-fix mentioned were recorded in the

spreadsheet along with more context and root causes.

3. Stackoverflow: Search terms “microservice bug”, “microservice fault”, “microser-

vice debug”, “microservice error” were used on Stackoverflow search in January

2020. Results were sorted by relevance. Each search result on the first page (15

results) was manually examined. If the question was about a microservices bug

and there was a fix mentioned in the answers, then the question was recorded in

the spreadsheet along with more context and root-cause.

There were two constraints while collecting faults from the aforementioned sources: 1)

faults whose symptom and root-cause were within one service were ignored since these

faults are not due to the microservices architecture of the system but rather an internal

error within a service, and 2) we set a limit of six faults from any one source to allow

for a diversity of sources i.e. no more that six faults (which is <25% of total faults) are

from the same research paper or the same open-source repository.

25 total faults were collected by this methodology. The details of each fault are in

Appendix A.

1https://github.com/sitewhere/sitewhere

2https://github.com/DivanteLtd/open-loyalty

3https://github.com/nytimes/gizmo

4https://github.com/davidetaibi/Microservices Project List

15

Fault Symptom: Errors and Exceptions

Fault Root Cause Source

State change updates sending after

shutdown and throwing exceptions

When shutting down an instance,

state updates are still being sent

after the heartbeat service is terminated

since the updates thread is not terminated

https://github.com/sitewhere

/sitewhere/issues/726

Two 502 responses triggered upon

attempting the deletion of the telephone

accounts

Error in interaction with Cassandra.

Microservices Monitoring with Event Logs

and Black Box Execution Tracing (Pg 4).

https://ieeexplore.ieee.org/document/8826375

Zuul Forwarding error

- Internal Server error 500

Root-Cause: Docker and Kubernetes

configuration: Zuul path not setup

properly in yaml file

https://stackoverflow.com/questions/

55026430/zuul-forwarding-error-internal-server-error-500

com.netflix.discovery.shared.

transport.TransportException:

Cannot execute request on any known server

Configuration YAML did not have

’register-with-eureka’ flag set to false

https://stackoverflow.com/questions

/46131196/com-netflix-discovery-shared-

transport-transportexception-cannot-execute-reques

The payment service of the system fails
Root-Cause: The overload of requests to a

third-party service leads to denial of service

Fault Analysis and Debugging of Microservice Systems:

Industrial Survey, Benchmark System, and Empirical Study.

TSE’18

Table 3.1: Microservices Faults with Error and Exceptions observed

3.2 Fault Organization by Symptom

For categorization of faults, the first 10 faults were analyzed and some candidate cat-

egories of symptoms were created. Then, each fault was put in a category or a new

category was created if none of the existing categories seemed to match the fault.

Our study of microservices faults showed that for fixing a microservices fault, devel-

opers observe one of 4 symptom categories: (1) Errors/Exceptions (2) Delays/Timeouts

(3) High Resource Usage, and (4) Unexpected Output. The next section discusses each

category and provides example faults.

1. Faults identified by Errors/Exceptions These are microservices faults where

the debugging process was started by the observation of an error or an excep-

tion (such as a HTTP 500 Internal Server Error). Table 3.1 gives some example

faults whose debugging started with an observation of Errors/Exceptions. The to-

tal number of faults in this category was nine and Appendix A.1 gives more detailed

descriptions of each of those faults.

2. Faults identified by Delays/Timeouts These are microservices faults for which

the debugging process was started when an unexpected delay was observed in get-

ting a response or if there was a timeout observed for a request. Table 3.2 gives

16

Fault Symptom: Timeouts and Delays

Fault Root Cause Source

Redis: connection with the slave times

out and it’s unable to sync because of the

large data

a lower output buffer limit.

Replay without Recording of Production

Bugs for Service Oriented Applications.

ASE’18

some of the user requests which were dealing

with complex scripts (Chinese, Japanese),

were running significantly slower than others.

Bug caused due to multiple calls in a loop

Replay without Recording of Production

Bugs for Service Oriented Applications.

ASE’18

a timeout of the server –code 504– occurred

(reported in client logs)

Connection refused by cassandra (call in 3rd degree service),

which is used to store authentication credentials and

profile information in Clearwater.

Microservices Monitoring with Event Logs

and Black Box Execution Tracing (Pg 4).

https://ieeexplore.ieee.org/document/8826375

AppScale datastore service is slow to respond

Injected fault to system for showing root cause analysis

system works. This fault injection logic activates once

every hour, and slows down all datastore invocations by

45ms over a period of 3 minutes

Performance Monitoring

and Root Cause Analysis for

Cloud-hosted Web Applications. WWW’17

A service is slowing down and returns error finally
Endless recursive requests of a microservice are caused

by SQL errors of another dependent microservice

Fault Analysis and Debugging of Microservice

Systems: Industrial Survey, Benchmark System,

and Empirical Study. TSE’18

MongoDB server selection timeout exceeded

If the microservices start before a MongoDB replica set has

time to initialize, there are cases where the server s

election timeout (30s) is exceeded.

https://github.com/sitewhere/sitewhere/issues/721

Table 3.2: Microservices Faults with Delay or Timeout observed

some example of such faults. The total number of faults in this category was seven

and Appendix A.2 gives more detailed descriptions of each of those faults.

3. Faults identified by High Resource Usage These are microservices faults for

which the debugging process was started when some resource used by a service such

as the number of CPUs or memory was anomalously high. Table 3.3 gives some

examples of such faults. The total number of faults in this category was four and

Appendix A.3 gives more detailed descriptions of each of those faults.

Fault Symptom:,High Resource Usage

Fault Root-Cause Source

Loading invocation by unique id in

InfluxDB can overload RAM

Due to the way that command invocations

are indexed in InfluxDB, getting one by

unique id can result in loading all event data

in RAM.

https://github.com/sitewhere/sitewhere/issues/655

Unusual memory usage in the Glassfish

application server, causing error logs to

be generated in the Nginx web server

Persistent memory leaks in a container.
Replay without Recording of Production

Bugs for Service Oriented Applications. ASE’18

Memory leak observed in a specific version

”Gizmo’s server.Router implementation

uses gorilla/context under the hood to allow

httprouter to pass parameters. This leads to a

massive memory leak when running with

1.7 as the gorilla/context never gets cleared.”

https://github.com/nytimes/gizmo/issues/74

Table 3.3: Microservices Faults with High Resource Usage observed

17

Fault Symptom: Unexpected Output observed

Fault Root Cause Source

Messages are displayed in wrong order
Asynchronous message delivery

lacks sequence control

Fault Analysis and Debugging of Microservice Systems:

Industrial Survey, Benchmark System, and Empirical Study.

TSE’18

The number of parts of a specific type in a

bill of material (BOM) is wrong

An API used in a special

case of BOM updating returns unexpected output

Fault Analysis and Debugging of Microservice Systems:

Industrial Survey, Benchmark System, and Empirical Study.

TSE’18

A default selection on the web page

is changed unexpectedly

The key in the request of one microservice

is not passed to its dependent microservice

Fault Analysis and Debugging of Microservice Systems:

Industrial Survey, Benchmark System, and Empirical Study.

TSE’18

Missing values when API call

made to endpoint

missing argument in route of service endpoint.

By changing api/level to api/level?perPage=total level,

this bug can be fixed

https://github.com/DivanteLtd/open-loyalty/issues/78

Table 3.4: Microservices Faults with Unexpected Output observed

4. Faults identified by Unexpected Output These are microservices faults for

which the debugging process was started when an unexpected output from a service

was observed. Table 3.4 gives some examples of such faults. The total number of

faults in this category was five and Appendix A.4 gives more detailed descriptions

of each of those faults.

3.3 Mutation Operators for Microservices

For creating a language agnostic debugging framework for microservices, we needed a

benchmark of mutations representative of real-world faults. We created application-

agnostic mutation operators for microservice symptoms that could show similar symp-

toms to faults collected in the study. One goal for creating these operators was to keep

the code changes needed for the mutation as minimal as possible, while the mutations

show symptoms similar to real-world faults so that other developers can easily use these

operations within their applications for testing debugging tools. These mutation oper-

ators can be categorized into Network Mutations, Configuration Mutations, Resource

Mutations and Response mutations. Table 3.5 lists the mutation categories and provides

code diff examples in Python and configuration file diff examples in .yaml.

18

Mutation Type ID Mutation Name Mutation Description Example Mutation
Deterministic

Fault?

Symptom

Similar To

Network

Mutations

1 Consistent Delay
Responding service sleeps for some

fixed duration before sending response

Python:

+ time.sleep(.2)
Yes F12

2 Random Delay
Responding service sleeps for some

random duration before sending response

Python:

+ time.sleep(random.randint(0, 10))
No F14, F15

3 Abort/Throw Exception
Responding service aborts request or

throws an exception.

Python (Flask):

+ abort(404)
Yes

F16, F1,

F2

4 Timeout
Responding service does not respond

and lets request timeout

Python:

+ while True: pass
Yes

F13, F11,

F10

Configuration

Mutations

5 Environment Variable Edit
Some env variable line is edited in

configuration YAML

.yaml:

- REDIS PORT:6379

+ REDIS PORT: 6380

Yes F7

6 Flag Toggle
Some configuration boolean of container

is inverted

.yaml:

- register-with-eureka:true

+ register-with-eureka:false

Yes F5, F6, F8

7
Edit Restart Policy

or Timeout
Modify restart policy of container or service

.yaml:

+ restartPolicy: Never
No F11

8 Replica Reduction Reduce number of replicas for a deployment

.yaml:

- replicas: 3

+ replicas: 1

No F4

Resource

Mutations

9 Memory Leak
Some execution path in responding service

leaks memory

Python:

+ while len(x) < 10:

+ x += bytearray(256000000)

Yes
F19, F18,

F17

10
Container memory

reduction
Reduce available memory to container

.yaml:

- memory: 50M

+ memory: 5M

No F20

11 High CPU
Some execution path in responding service

is CPU intensive

Python:

+ while(i < 100000):

+ i++

Yes F4

12
Container CPU

reduction

Reduce number of available

CPUs of some container

.yaml

- cpu: ‘0.25’

+ cpu: ‘0.025’

No F4

Response

Mutations

13 Incomplete Response
Remove field from response of

responding service

Python:

- return (a,b)

+ return (a)

Yes F23, F25

14 Out of order async reception
Remove sequence control logic

in requesting service

Python:

- r = await client.get(’example.com/’)

+ r = client.get(’example.com/’)

No
F21, F22,

F24

15
Response Type/Field

Mutation
Change types in response or remove field

Python:

- return x : 5

+ return x: “5”

Yes F9, F3

Table 3.5: Mutation Operators for Microservice Applications

The example mutation column gives code samples in Python or .yaml. + indicates lines added

and - indicates lines removed for introducing the mutation. The last column indicates which

faults mentioned in Appendix A have symptoms similar to the mutation operator of that row.

19

CHAPTER 4

Record and Replay Framework for Microservices

The framework proposed in this thesis attempts to improve upon existing debugging

methods for microservices, especially for debugging latent or non-crashing faults. At a

high level, the proposed framework:

• Leverages distributed tracing for language-agnostic recording and prescribes what

and how to record

• Creates a debug environment with cloned containers and lets a developer replay

traces on those containers to reproduce fault symptoms and enables them to find

the root cause.

• Encourages preemptive debugging by detecting anomalies and forwarding poten-

tially faulty traces to the developer.

This chapter describes the design objectives and implementation details of the pro-

posed record and replay framework for microservices. Figure 4.1 illustrates the setup of

the components of the framework.

4.1 Design Objectives

The main goal of the proposed debugging framework is to reproduce faults of production

microservice systems in debug environments and assist in finding root cause. For making

this framework more useful for debugging production systems than simple distributed

tracing or monitoring, two orthogonal goals should also be addressed: 1) lightweight

recording and replay so that production systems can use the framework without excessive

overheads and 2) finding the needle (i.e. the faulty trace) in a haystack (i.e. the set of

20

Figure 4.1: Setup of the Debugging Framework for Microservices

Cloner, Replayer, and Anomaly Detector are the three main components of this

framework. The interactions of the production application, these components, and the

developer would would debug faults are shown.

all recorded traces) so that developers do not need deep prior knowledge of the system

to identify which traces to replay.

The following design objectives were derived from these goals:

1. Fault Reproduction: the framework should be capable of reproducing common

microservices faults (listed in Table 3.5) in debug environments for record and

replay debugging.

2. Language Agnostic: Since one of the major benefits of the microservices ar-

chitecture is the polyglot nature of services, a good replay debugging framework

should work irrespective of the languages chosen by developers of different services.

3. Easy Integration with Production Systems: Any effective debugging frame-

work should have the ability to easily integrate with a system. We want our frame-

work to be incrementally integrable with existing microservice applications without

major architectural overhauls or development overheads.

4. Low Overheads: We envision recording to be always-on because several microser-

vices bugs are latent. Therefore, the framework should favor low recording overhead

over perfectly faithful replay so that users are not impacted and costs of always-on

21

recording are not significant. We argue that common microservices faults can be

replayed without recording the entire system state.

5. Automatic Actionable Insights: One of the drawbacks of popular distributed

tracing frameworks is that developers need some insight about a fault to successfully

query and retrieve relevant traces. A framework that provides actionable insights

by learning from historical traces and system data patterns can be very effective

for debugging latent faults.

The next two sections describe how to record and replay executions in a microservices

application while accomplishing the aforementioned design objectives.

4.2 Record

4.2.1 Instrumenting Services

As per the design objectives, the recording technique should not only be language ag-

nostic, but should also be able to be easily integrated with existing production systems

without significant overheads. Distributed tracing tools would work well for recording

since these tools provide APIs for all major programming languages and introduce low

performance overheads. Moreover, most companies that have large scale distributed sys-

tems already have end-to-end distributed tracing tools integrated with their systems. A

recent analysis of systems of major internet companies including Google, Netflix, Face-

book, Yelp and Uber found that frameworks such as Zipkin, Dapper, Jaeger, Brave,

Zalando are used for end-to-end distributed tracing [19]. The most commonly used trac-

ing framework was Zipkin, used by 14 of the 26 companies surveyed [19]. Therefore,

Zipkin was used for prototyping our framework for recording service level traces.

Zipkin is a lightweight distributed tracing system that creates a unique correlation

ID for each request received by a microservices application and propagates this ID to

all services in the invocation chain of the request using HTTP headers. Microsecond-

precision timing events are recorded as the request goes through the call chain of services,

enabling Zipkin to track latency of each service. Services written in major programming

languages such as Java, Python, JavaScript, Go, C++, among others can be easily

22

instrumented with Zipkin using pre-existing libraries. Zipkin not only enables RPC level

tracing, but also provides a lot of flexibility in what to record since spans can be created

at the granularity of line level. Further, more information can be recorded within each

span using tags (key-value pairs) and annotations (timestamp-value pairs). A sample

Zipkin span is showed in Figure 4.5. Zipkin has 4 main components: (1) a collector

daemon that collects trace data sent over HTTP by services and that validates, stores

and indexes the data (2) a storage component for storing trace data (3) a query service

that provides a simple JSON API for retrieving trace data, and a (4) a web UI (Figure

2.1) for visualizing a dependency graph of services and the information recorded within

each trace on a timeline [26].

4.2.2 What to Record?

In an ideal scenario, we would record minimum yet sufficient data for faithfully repro-

ducing system state from the given recording. However, it is hard to prove what data

is sufficient to capture the state of an arbitrary microservices system. Even if we could

define a set of elements that should be recorded for perfectly faithful replay, as noted in

[1], recording sufficient information for faithful replay can lead to upto 10X performance

overhead which is unacceptable in production microservice systems.

Figure 4.2: Service Instrumentation Setup Flowchart

23

What matters more for a debugging framework than perfectly faithful replay is

whether common faults and fault symptoms can be reproduced. The fault analyses

from Chapter 3 shows that several microservices faults can be reproduced by replaying

network requests on each service. Therefore, a good starting point for recording data is

capturing network requests at the service level. For example, if services are communi-

cating over HTTP/2, then for each request the following should be recorded: Request

method (HTTP GET/POST) and headers, request URL, request payload, response pay-

load. This data can be recorded as tags (where the key is req and res and values

are request and response data), on Zipkin spans by instrumenting each service at the

route level. Figure 4.2 gives a flowchart for a service developer to instrument their ser-

vice. Examples of tag instrumentation on Zipkin spans of three routes of the benchmark

application used in this work (microservices-app-example1) is shown in Figure 4.3.

Figure 4.3: Tag Instrumentation in Different Services

Tags can be recorded on Zipkin spans using libraries for different programming languages.

The three example code snippets shown here are from the benchmark application’s

instrumented services: todos-api (NodeJS), log-message-processor (Python), and auth-api

(Golang). The corresponding trace captured for the todos-api service is shown in Figure 4.5

1https://github.com/elgris/microservice-app-example

24

Recorded request and response data could be sufficient for re-creating system state if

services are deterministic. However, there exist several sources of non-determinism in a

distributed system which means that the same set of inputs to a program running on a

distributed system can result in different behaviours in terms of output, response time

or side effects. While perfectly capturing all non-determinism is very challenging and

imposes massive overheads, several sources of non-determinism in a distributed system

could be captured in a lightweight way. The next sub section enumerates sources of

non-determinism in microservices architectures and describes how they are captured (or

how they are not) in our framework.

4.2.2.1 Sources of Non-determinism in microservices architectures

1. Resource Non-determinism In a microservices architecture, resources such as

CPU, memory and network are allocated dynamically to services depending on

workload and are a source of non-determinism. For instance, a request could fail

if services do not have adequate resources at the time of request, but the same re-

quest could succeed if adequate resources are allocated. Since services are typically

containerized using a platform like Docker, a time series of resource allocation and

utilization can be recorded by polling containers at regular time intervals using a

lightweight monitoring tool such as cAdvisor2.

2. Service Non-determinism Services themselves can have non-deterministic be-

havior if the program logic is based on internal state that depends on a container’s

file changes, memory or databases. Some of this non-determinism can be cap-

tured by cloning containers (discussed in Section 4.2.3). Further, services could use

random number generation to perform non-deterministic operations. For services

doing such operations, a key-value pair of variable and generated random value can

be recorded in the tag of a Zipkin span. Services could also have multi-threaded

functions and output could depend on thread execution order. Callers of such end-

points or functions should set a ‘non-deterministic operation’ flag to true on the

tag of the parent span.

2https://github.com/google/cadvisor

25

3. Network Non-determinism The rate of data transfer over a given path of nodes

is non-deterministic. For the same request made at different times to a service that

calls several other services, the response time might be different due to the varying

network bandwidth. Network non-determinism can affect the service latency, which

is a critical metric in microservice systems. Network IO rates can also be recorded

using cAdvisor.

4. Asynchronous Request Non-determinism In microservices architecture, one

request to a service can fan-out several asynchronous requests to other services. Due

to network non-determinism, the order of responses received can be different. How-

ever, with sequence control logic in services, non-determinism due to asynchronous

requests can be avoided.

5. Non-Determinism from third parties Services could make calls to external

APIs for performing some operation which could be a source of non-determinism.

This type of non-determinism cannot be handled by our framework. Callers of such

external APIs should set ‘non deterministic’ flag to true on the tag of the parent

span so that the replaying system can avoid making an external request.

4.2.3 Container Cloning

Containers solve the problem of running a software across different computing environ-

ments reliably. The Docker platform is the industry standard for running containerized

services [6]. For recording the state of a running Docker-containerized service, our frame-

work has an independent service, Cloner, whose job is to record running containers

and manage the creation of debug containers with attached debugging tools in a sep-

arate environment for a developer. The Cloner can be configured to create a debug

image for each service every time that service’s production container is restarted or at

any arbitrary point of time.

There are two alternatives for the underlying technique that the Cloner can use:

(1) Checkpoint/Restore In Userspace (CRIU)3 and (2) Committing the changes of the

container to a new image. CRIU can save the snapshot of a running container on disk

3https://www.criu.org/

26

and then restore and run the container in exactly the same state as it was in during the

snapshot, whereas committing a container can save all file changes in a new image that

can be rerun as a separate container. While CRIU can effectively live migrate running

containers, it is an experimental feature in Docker and neither has a robust API nor is

fully supported on all operating systems. Committing a container using Docker Commit4,

is much more stable and more widely used. Committing a running container to an image

can also be used to recreate the same container state if we send the same sequence of

requests (as received by the originally running container) to the recreated container,

while keeping a track of non-determinism. Since we record all requests to each container

using Zipkin, we can recreate the container state on a debug container. Docker commit

provides another benefit: the debug container can be configured to run in debugging

mode. So whenever a developer wants to replay a trace, all debug containers could be

run with the developer’s preferred tools automatically attached.

Figure 4.4: Methods for Parallelly Committing Running Containers

There are two challenges of cloning microservice containers: (1) minimize the time

that the containers are paused for least service disruption and (2) cloning containers in

4https://docs.docker.com/engine/reference/commandline/commit/

27

a consistent state i.e. the times at which different containers are copied should be as

close as possible. Docker Commit can tackle the first challenge since it can create a copy

of a container within a few milliseconds. For addressing the second challenge, separate

parallel processes that start at the same time could be created for cloning each container.

Figure 4.4 shows a function ‘create_replay_containers’ that takes in as input the

set of containers that need to be cloned and starts parallel Docker Commit processes for

creating replay containers.

The prototype of Cloner saves the committed images on the physical machines

running production services. However, it is easy to upload images to container registries

such as Google Container Registry5 or Docker Hub6 and download those images to a

developers local machine.

4.3 Replay

Replaying the captured traces requires creation of debug service containers, reconstruc-

tion of requests from Zipkin traces, and emission of those requests to services at time

intervals consistent with original requests. These tasks are performed by the Replayer

service in our framework.

Figure 4.5: Recorded Information in a Zipkin Span, Stored in JSON

Each trace contains several such spans with a common traceId. This particular capture

corresponds to the instrumentation shown in Figure 4.3.

5https://cloud.google.com/container-registry

6https://hub.docker.com/

28

The Replayer service is implemented as a Python script that can replay traces in two

modes: single trace replay mode or batch replay mode. In the single trace replay mode,

the Replayer takes a trace ID as input. It first obtains the recorded information of that

trace from the Zipkin API. This recorded trace information is in JSON format and has a

set of span objects as shown in Figure 4.5. After parsing the trace data, the Replayer

requests Cloner to start debug containers using images of production containers (that

were committed manually or on a schedule) for each of the services in the trace. Using

the req field of the tag information recorded in the first span of a trace, the root request

is reconstructed using the Python requests library and emitted to the relevant debug

container. Figure 4.7 shows the method of Replayer that replays a trace, given a trace

id. This mode is useful for finding the root cause when some fault has already been

localized to the trace level (which can be done by the Anomaly Detector). In the

batch mode, a time-ordered set of Trace IDs is the input, the Replayer requests the

Cloner to start debug containers of services, and then the Replayer emits requests

associated with each trace at time intervals consistent with the original request. In both

modes, the developer could see the original response and the replayed response. The

developer can also see the original systems statistics (i.e. the memory, cpu, network

usage) and the same statistics for the debug containers using cAdvisor. By replaying

traces on debug containers, a developer could reproduce fault symptoms and potentially

find root causes of faults at the line-level by following the steps shown in Figure 4.6. Case

studies for finding specific root causes using our framework are mentioned in Section 5.2.

Figure 4.6: Steps for Replay Debugging

The text in non-italics indicates the steps a developer should take for replay debugging. Text

in italics indicates the functionalities of the components of the framework for assisting the

developer.

The Replayer can also read the non_deterministic flag on the traces and either

ignore replaying those traces or perform a custom replay if the developers write handlers

in the Replayer for a particular span.

29

Figure 4.7: Methods of Replayer for Replaying a Trace

4.4 Anomaly Detection

Anomaly detection is used in our framework for answering “What to replay to debug

faults?”. As mentioned earlier, finding the right trace to debug a fault is equivalent to

the problem of finding a needle in the haystack since microservices typically produce a

large number of traces which makes it hard to pinpoint problematic traces to find root

causes of faults. Therefore, automating the search of traces associated with faults can

enable the developer to debug much faster. The problem of anomaly detection in the

context of finding faulty traces can be formally stated as follows:

Given a time series of distributed traces, T , obtained from running requests on a set

of microservices S, find a subset F ⊂ T such that replaying each trace t ∈ F on replica

services, S′, can reproduce anomalies (i.e. fault symptoms) and therefore help in finding

the root causes of faults. In an optimal solution, |F | should be as small as possible while

the replay of all t ∈ F on S′ should reproduce as many anomalies as possible, so that a

small number of traces can be analyzed to find the root causes of maximum number of

30

latent faults.

We leverage the fault study of Chapter 3 for tackling the aforementioned problem of

automatic identification of faulty traces, F , from the set of all traces, T . Two microser-

vice fault categories found in our fault study were: faults identified by delays/timeouts

and faults identified by high resource usage. Since requests that caused an anomalous

symptom (delay/timeout or high resource usage) also created a Zipkin trace, there is a

temporal proximity of the trace and the anomaly. Therefore, automatic identification

of delays/timeouts and high resource usages can help in identification of faulty traces,

which in turn can lead to the root causes of the faults. With this insight, we design an

Anomaly Detector service that automates the process of finding subset F by learn-

ing from historical traces and patterns of container resource utilization using statistical

analysis techniques.

4.4.1 Anomaly Detector Implementation

Figure 4.8: Anomaly Detector Modules

The Anomaly Detector polls cAdvisor7 during application run-time to obtain per-

container resource usage time series (such as CPU%, Memory %, Network IO) that are

used for anomaly detecion. Since the set of traces produced keeps increasing with time

as a microservice application processes more client requests, the Anomaly Detector

also polls the database of all traces using the Zipkin API for obtaining a fresh T after

7https://github.com/google/cadvisor

31

a certain configurable time interval. The time-series of per-span latencies obtained from

T are also used for anomaly detection.

Essentially, the Anomaly Detector’s responsibility is to observe the system for

anomalous behaviour and then map that observation to a set of traces that can be used for

finding the root cause. The mapping of an anomaly to traces is done using a configurable

time window. For example, if the Anomaly Detector observes a sudden increase

in memory usage % of a given container, it queries for the traces associated with that

container in a time window of -1 second to +1 second of the increase and adds those

traces to F . For prototyping this service, three statistical anomaly detection modules

defined in [23] were used:

1. Fixed Threshold Anomaly Detector Module: this module monitors whether

the values of a certain time series are crossing a fixed threshold and identifies

traces that could have led to the crossing of the threshold. Formally, given a

time series of values (eg. Memory usage % values) v1,vp and a certain fixed

threshold, V , if vj+i > V ∀i = 1...n for some 1 < j < p then all t ∈ T such that

(time(vj+n)−∆) < time(t) < (time(vj+n) + ∆) are added to F . The configuration

parameters for this detector are the fixed threshold, V (defined per service, per

metric), the time window, ∆ (around 1 second), and the number of consecutive

values above threshold, n (defined per metric). This detector is good for detecting

gradually increasing resource leaks or gradually increasing latencies.

2. Sigma Limit Anomaly Detection Module: this module detects sudden bursts

or outliers in the values of a time-series and identifies traces that could have led

to those bursts. Formally, given a time series of values v1, ...vp and some sen-

sitivity parameter σ, then vj is anomalous if: vj − median(vj−i, vj−i+1...vj−1) >

σ × std deviation(vj−i, vj−i+1...vj−1). All t ∈ T such that (time(vj) − ∆) <

time(t) < (time(vj) + ∆) are added to F . The configuration parameters for this

detector are the sensitivity, σ(typically 3 - 5), mean window size, i, and time win-

dow, ∆ (around 1 second). This detector is good for detecting sudden resource

leaks or sudden latency increases due to specific inputs to services.

3. Mean Shift Anomaly Detection Module: this module detects long-term changes

32

in some quality indicator of services by comparing the most recent δ values of that

indicator with the last δ values. Formally, given a time series of values v1, ...vp and

some sensitivity parameter λ, if |mean(vp−δ, vp) − mean(vp−2δ−1, vv−delta−1)| > λ,

then all t ∈ T such that time(vp−δ) < time(t) < time(vp) are added to F . The

configuration parameters for this detector are the sensitivity parameter, λ (defined

per quality indicator), and window size, δ (a day or a week).

For prototyping the Anomaly Detector, the following time-series were used: span-

level latency, container memory usage %, container CPU usage %, and network IO. For

even better anomaly detection, the combinations of indicators could also be used. For

example, the detection modules could be run on the time-series of ratio of memory

consumption and the number of requests. Further, custom models defined by developers

(such as [33]) could be integrated easily. The Anomaly Detector can also give a

natural language reason for why particular traces were marked as faulty. For example, a

developer could receive the following notification from the detector:

There was a sudden spike in memory usage by the todos-api service.

Traces: 00e26b1476bab62b and b74335f97997bcde were marked as faulty

by the Sigma Limit Anomaly Detector and may help in finding the root cause.

.

While the Anomaly Detector does not guarantee an accurate capture of the set

of faulty traces, F , it is a helpful tool for a developer since it can often reduce the time

it takes to localize a fault to the trace level.

33

CHAPTER 5

Evaluation

In this chapter we evaluate the framework described in Chapter 4 by answering the

following research questions:

• Q1: Can the proposed record and replay framework successfully reproduce common

faults and symptoms and assist a developer in finding the root cause of the faults?

• Q2: What is the overhead of recording services as described in Section 4.2 and

how does it compare to overheads of more faithful, language specific techniques of

recording?

We answer these questions by running experiments on an open-source microservices

application described in the next section.

5.1 Application Used for Experiments

microservice-app-example1 is a polyglot application that lets users login through a

web browser and then create or delete TODO items. This application was chosen for

running experiments because of a few reasons: 1) the code repository is freely available

on Github and has 1.3k stars (a measure of popularity in the open-source community),

2) it is a complete CRUD web-application, 3) services of the application are written in

four commonly used languages, 4) the application runs using popular multi-container

build and run tool Docker, and Compose2 5) services have basic Zipkin instrumentation

by default.

1https://github.com/elgris/microservice-app-example

2https://docs.docker.com/compose/

34

This application consists of 5 different services whose interaction is shown in Figure

5.1. At a high level, the services and their corresponding functionalities are:

• auth-api: Service written in Go for authorization. JSON Web tokens that are

used with other APIs are generated.

• todos-api: Service written in NodeJS for managing a user’s TODO records. This

service sends ‘create’ or ‘delete’ log messages to a Redis queue.

• users-api: Service written in Java (Spring Boot application) for maintaining user

profiles.

• log-message-processor: Service written in Python for listening to Redis queue

and printing logs.

• frontend: UI service written in Javascript (VueJS) for letting users login, create

and delete TODO items on a browser.

Figure 5.1: Requests initiated by each service in microservice-app-example

Before running experiments on microservice-app-example, the Zipkin instrumentation

of services were modified to record the request and response as described in Section 4.2.

Additionally, the cAdvisor image was added as a service in the application’s configuration

YAML so that resource usage and performance metrics of each service container could

be recorded in real-time.

35

5.2 Qualitative Evaluation

For answering Q1 , some faults from Table 3.5 were inserted one at a time and the

framework was used for replaying the fault in debug containers for finding the root cause.

The following three case studies describe the fault and exact debugging steps required to

find the root cause at the line level or function level.

5.2.1 Case Study 1: Debugging a Latent Memory Leak

Fault Description and Scenario: A resource leak fault that can cause large memory

allocations (mutation 9 from Table 3.5) was inserted in the todos-api service. This fault

occurs when a user of the frontend service inputs a long string when creating a TODO

item. Memory leaks only when a specific execution path is taken in the NodeJS ser-

vice. This is a latent fault because the todos-api service does not crash unless several

large TODO items are created, at which point the memory allocated to the container

is insufficient. Therefore, debugging this fault before the service crashes is hard be-

cause a developer needs two things: 1) some signal that memory leaks are happening

in a particular service, 2) the set of inputs causing the memory leak. For simulating

a production-like workload for a TODOs application with this fault, several successive

requests with varying TODO item lengths were made on the frontend service.

Replay Debugging Steps: The Anomaly Detector detects a sudden increase

in memory consumption (using the sigma-limit anomaly module) by the todos-api con-

tainer when a long TODO is created and notifies the developer. For debugging, the

developer wants to replay requests on todos-api service. However, this cannot be done

in production since replaying requests would result in non-user-initiated actions regis-

tered with production services. Therefore, the developer would want to replay requests

in a debug environment. For doing this, the developer can request the Replayer to

replay all traces that happened in a 20 second window of the anomaly notification. The

Replayer gets the requests of the relevant recorded requests from the Zipkin API and

requests the Cloner to create debug containers of services that are in any invocation

chain with todos-api. The Cloner, which has cached version of service images at dif-

ferent timestamps, creates the relevant containers in a debug environment. The debug

36

todos-api service is run in the inspect mode and an SSH tunnel is automatically setup

so that the developer can attach Chrome Node DevTools to the service running in the

container.

Figure 5.2: Steps to Find Root Causes of NodeJS Memory Faults by Replaying Traces

and using Chrome DevTools

Using Chrome Node DevTools’ memory recording feature and the Replayer for

replaying requests on the debug containers, the developer follows the 5 steps shown in

Figure 5.2 to find the exact root-cause of the fault. It is worth mentioning that memory

recording could not be directly done on production containers because that would result

in a 3-4X latency overhead, making the todos-api service very slow.

The debugging technique used in this case study could also be used for finding the

root-cause of mutation 10, if the debug containers are run by using the same configuration

files as used for production containers.

5.2.2 Case Study 2: Debugging a Latent High CPU usage

Fault Description and Scenario: A fault that causes high CPU usage (mutation

11 from Table 3.5) was inserted in the users-api service by modifying the Java source

37

code and redeploying the service. This fault is triggered when a user enters their login

credentials on the frontend service running on a browser. The frontend service requests

the auth-api service for authentication, which in turn sends a request to users-api which

runs a CPU intensive while loop in the getUser() method of UsersController class.

The fault code is shown in Figure 5.3. This is a latent fault, since all services respond

without throwing any errors, while the end user experiences a slight delay in logging in.

Figure 5.3: Mutation in users-api Causing High CPU Usage

Lines 42-55 show the injected fault.

Replay Debugging Steps: Once a developer is notified that user logins have been

slower (notification could be given by Anomaly Detector), they would want to find

the root cause without disrupting any service. The root-cause could be found by following

the replay debugging steps shown in the flowchart in Figure 4.6. First, the developer

would obtain recent traces having the login flow by querying Zipkin. The trace ids of the

obtained traces are forwarded to the Replayer. The Replayer requests the Cloner

to start debug containers attached with language-specific debugging tools. The debug

users-api service is run with debug flags and an SSH tunnel is automatically setup so that

the developer can attach VisualVM to the service running in the container. As shown in

Figure 5.4, by replaying the network requests on debug containers and by using the CPU

sampling feature of VisualVM, the method taking the most CPU time can be found. It

is important to note that VisualVM could not be used for CPU profiling a production

container since that would significantly slow down an already slow service, and disrupt

end user experience.

The debugging technique used in this case study could also be used for finding the

38

Figure 5.4: Steps to Find Root Causes of Java Faults by replaying traces and Using

VisualVM

root-cause of mutation 12 if the debug containers are run by using the same configuration

files as used for production containers.

5.2.3 Case Study 3: Debugging Slow Responses

Fault Description and Scenario: A fault that adds a consistent delay in response

(mutation 1 from Table 3.5) was inserted in the todos-api. The JavaScript line “if (userID

== ‘johnd’) sleep(300)” (sleep(n) delays execution by n milliseconds) was inserted in a

method that obtains a user’s data from the cache. This fault line makes the /todos

endpoint slower for only one user by 300 milliseconds. For simulating a production-like

workload for a TODOs application with this fault, several login, create post, view post,

and delete post requests were made on the frontend service using different userids.

Replay Debugging Steps: In this case study, the sigma-limit anomaly detection

module for per-span latency was configured with σ = 4 and i = 25. This means, that any

trace whose any span has a latency higher than 4 times the median latency of previous

25 same spans would be marked anomalous. Using the sigma-limit anomaly module,

Anomaly Detector detects a sudden increase in latency of the /get todos span

39

when user johnd accesses the /todos endpoint and sends the trace associated with this

anomaly to the developer. The developer looks at the top level function associated with

the /get todos span, but is unable to figure out why the latency is high for the captured

trace. The developer uses the Cloner to create debug containers, SSHs into the todos-

api debug container and adds more spans within the top level function by modifying the

source as shown in Figure 5.5. The debug containers are run, the Replayer is used

to replay the captured traces and the developer sees that getTodoData method call is

taking the most time using the Zipkin web UI. The developer could now examine this

function and find the root-cause.

It is important to note that adding finer grained spans in production is not a good

idea because latency increases linearly with the number of spans (Figure 5.7). This case

study shows that finer-grained instrumentation can be done within debug containers

before replaying traces. Using finer grained instrumentation during replay, we could also

find the root-causes of mutations 3, 4, 13, and 15.

Figure 5.5: More Instrumentation Done in todos-api before Replaying Traces

5.3 Performance Evaluation

We evaluate the performance in terms of latency overheads added by instrumentation,

since latency is the most important metric for a service’s performance and is often defined

in SLAs. We also measure the time during which a container is paused for cloning.

40

Latency Overheads of Zipkin

Service Route or Function called Statistic
Latency (ms)

- No Tracing

Latency (ms)

- Zipkin tracing
Overhead %

Median 7.7950 8.1530 4.59%/create

(creates a todo-item) 95th Percentile 13.1103 12.9318 -1.36%

Median 7.1690 8.6160 20.18%

todos-api

(Javascript) /delete

(deletes a todo item) 95th Percentile 11.8577 15.8530 33.69%

Median 15.8365 16.6755 5.30%
auth-api (Go)

/login (authorization by

generating JWT tokens) 95th Percentile 22.8493 24.1086 5.51%

Median: 3.3778 5.7045 68.88%
user-api (Java)

/user

(provides user profile) 95th Percentile: 8.0304 11.7328 46.11%

Median 0.1287 6.9149 5270.93%log-message-processor

(Python)

log message (listens to redis

queue and prints to console) 95th Percentile 0.4418 12.3511 2695.92%

Table 5.1: Latency Overheads of Recording Zipkin Traces for Sample Microservices Ap-

plication

5.3.1 Latency Overheads

For answering Q2 , first, all instrumentation was removed from each service so that no

Zipkin traces were created on requests. 1000 successive requests, with very small random

delays (< 200ms) in between, were made on each service and latency of getting complete

response was recorded. Then, the instrumentation prescribed by the framework was

added and the same 1000 requests were sent to each service again. Table 5.1 shows the

median and 95th percentile latencies with and without instrumentation and the overhead

percentage.

The minimum overhead for the median request latency with instrumentation % was

4.59% for the /create route of the todos-api service. The outlier in terms of overhead was

log-message-processor. The reason for excessive overheads in this service is that without

any instrumentation, the log message function of this service simply listens to a redis

queue and prints to console, whereas, with instrumentation this function has to set up

an HTTP connection which requires significantly more time than printing to console.

For measuring the overhead of more faithful recording techniques, the same 1000

requests were sent on a new container running todos-api but this time with Chrome

NodeJS Devtools memory recording on. Table 5.2 contains the measured latency and

overhead % and it can be seen that with memory recording, there was 3X overhead for

41

the median request and 4.6X overhead for the 95th percentile request. This is an order

of magnitude more latency overhead than the Zipkin instrumentation overhead for the

same service and routes.

Route Called Statistic
Latency

- No Tracing (ms)

Latency

- Memory Recording

(Chrome DevTools)

Overhead %

/create (creates a todo-item) Median 7.7950 31.7100 306.80%

95th Percentile 13.1103 74.1608 465.67%

/delete(deletes a todo item) Median 7.1690 28.1690 292.93%

95th Percentile 11.8577 67.0037 465.06%

Table 5.2: Latency Overheads of Using NodeJS DevTools for Recording Memory Alloca-

tion of ‘todos-api’

Latency overhead due to Zipkin instrumentation depends on several factors includ-

ing programming language/framework choice, function execution time, how many spans

are used in recording, and the physical distances between requesting, responding and

tracing services. To illustrate the latency overhead’s dependence on programming lan-

guage/framework choice, two simple servers were created in Python (using Flask) and

NodeJS (using Express) and instrumented using the respective Zipkin instrumentation

libraries. Both the servers simply returned a simple string response after sleeping for a

certain number of milliseconds. Response time for non-instrumented servers had neglig-

ble difference for the servers, however after adding instrumentation, there was significant

difference in overheads. Figure 5.6 shows the relationship of overhead % of 95th percentile

latency and function execution time for the Python and NodeJS servers. To illustrate

the relationship of latency with number of spans in a trace, an endpoint in the Flask

server that takes 100ms for execution was created. Different number of spans were used

and 100 requests were made to that endpoint for each number of spans. Figure 5.7 shows

that each addition of a span adds about 1-2 milliseconds of latency. In the figure, the

latency corresponding to 0 spans is the time taken when there is no tracing at all.

42

Figure 5.6: P95 Latency Overhead of Zipkin Instrumentation % versus Function Execu-

tion Time

Figure 5.7: Latency versus Number of Spans in Endpoint

43

Container Commit Time

Service Image Size Commit Time

todos-api (Javascript) 88.3MB 5.2790ms

auth-api (Go) 354MB 5.4350ms

user-api (Java) 267MB 4.9830ms

log-message-processor

(Python)
285MB 4.6380ms

frontend (Javascript) 245MB 4.1530ms

Table 5.3: Container Commit Time for Different Services of Benchmark Application

5.3.2 Container Cloning Overhead

During container cloning using Docker Commit3, the container being committed is paused

for preventing data corruption during the commit. Therefore, it is necessary that the

clone process is very fast so that services are not disrupted. For measuring the time to

commit a container, all the containers of microservice-app-example were run, a sample

work load was run and then each container was committed by the Cloner. As seen

in Table 5.3, the commit times for each service are between 4-6ms. Since commit time

is less than response times for requests on each service, containers could be committed

without disrupting services because requests would not drop if the containers are paused

for a few milliseconds.

5.4 Summary

In this chapter we evaluated our record and replay debugging framework using an open-

source microservices application. The three case studies demonstrate how this framework

can be used to debug latent faults such as memory leaks, high CPU usage, or slow

responses by replaying network requests on cloned containers with heavy debugging tools

attached. Using the techniques described, nine out of fifteen mutations can be debugged.

The other six mutations (# 2, 5, 6, 7, 8, 14) may also be reproduced in the debug

environment using this framework, though it would be more complex to localize the

fault. For instance, configuration mutations are hard to debug precisely to line level

3https://docs.docker.com/engine/reference/commandline/commit/

44

without expert knowledge of how everything is configured. Even the usage of heavier

analysis or debugging tools may not lead to the exact line in the configuration files that

should be fixed.

We also evaluated the performance of our framework in terms of the time during which

a container is paused for cloning and latency overheads added by Zipkin instrumentation.

The pause times for committing containers (of microservices-app-example) using Docker

commit was 4-6ms. Latency overheads of instrumentation specified by the framework,

in the best case were about 1-4ms. In the worst case (in which there are no other

network calls other than the tracing call), the latency overheads can be >10ms. The

high overheads could potentially be reduced by modifying the Zipkin implementation to

send network requests asynchronously. We also showed that latency overheads depend on

programming language/framework choice, and the number of spans within a trace. Our

framework prescribes creating 1 span per endpoint, and therefore adds minimal latency

due to number of spans. It is important to note that most of the overheads due to

distributed tracing already exist in industrial microservice applications that use systems

like Zipkin or Jaegar. Further, the aforementioned evaluations show that the overheads

of our framework can be 10X less than the case in which language specific recording tools

(such as NodeJS Dev Tools or VirtualVM) are used directly on production services to

record executions.

45

CHAPTER 6

Conclusion

As industrial software systems shift increasingly towards microservice architectures, there

is a need for novel debugging tools and techniques that tackle unique challenges of this

architecture such as the polyglot nature of the system, large accumulated states, and

tight latency limits. In this work, we studied 25 faults from real-world microservices ap-

plications and observed that a majority of faults can be reproduced by replaying network

requests on containers in the same state as the production container’s state at the time of

recording. We then designed a language-agnostic record and replay debugging framework

for microservice applications that uses a distributed tracing system such as Zipkin for

recording network requests and enables replay of those requests on cloned debug contain-

ers with heavier analysis tools such as Chrome DevTools or VisualVM attached. While

our framework cannot reproduce all executions of a microservices application, it can be

a useful tool for finding root-causes of common faults. Further, our framework specifies

how to proactively find a needle (faulty trace) in a haystack (set of all traces produced)

using span-level and container-level monitoring to detect fault symptoms found in our

study. In our experiments on an open-source microservices application, we found that

our framework can indeed simplify the debugging process and therefore is a practical

approach for enabling replay debugging in real-world microservice applications.

46

APPENDIX A

Descriptions of Microservice Application Faults

This appendix provides a description of each of the faults collected in our fault study.

The description includes some background context about the fault and the root-cause of

the fault. The level of detail recorded here is different for different faults because the

sources of faults are diverse (i.e. published research, Stack Overflow, Github issues) due

to which the information available per fault varied. The following subsections of fault

descriptions are organized by fault symptoms (as defined in Chapter 3).

A.1 Fault Symptom: Errors and Exceptions

• F1. Fault Context: This fault was observed in the Clearwater IP Multimedia

Subsystem (IMS) microservices system. The deletion of telephone accounts was

attempted and two 502 responses were triggered.

Debugging Steps and Root Cause: Debugging started when developers were

troubleshooting a failure reported by a Clearwater client. The developers examined

logs of several candidate microservices. One service had anomalies relating to

the telephone accounts, and further examination showed error in interaction with

Cassandra database.

Source: Microservices Monitoring with Event Logs and Black Box Execution Trac-

ing (Pg 4) [5]

• F2. Fault Context: SiteWhere provides a microservices platform for Internet of

Things applications. In this fault, one of the services of SiteWhere was sending

state updates even after being terminated due to which exceptions were thrown.

Debugging Steps and Root Cause: Exceptions being thrown by a terminated

service were observed. The root-cause was that the updates thread was not be-

47

ing terminated on shutdown of the service. The fix was to correctly handle the

shutdown of the state updates thread.

Source: https://github.com/sitewhere/sitewhere/issues/726

• F3. Fault Context: Fault in SiteWhere: an unhandled exception is thrown when

an HTTP POST request is made to a particular route.

Debugging Steps and Root Cause: Debugging started when a user encountered

this fault and created an issue on Github. The root-cause was that the API contract

of that route was not clearly defined. Because of this, the user’s POST request had

a missing field in the body.

Source: https://github.com/sitewhere/sitewhere/issues/607

• F4. Fault Context: Fault found by surveying a Senior Software Engineer of

company that creates a travel assistance system. The fault symptom was that the

payment service of the application fails.

Debugging Steps and Root Cause: Six microservices were involved in the

fault. Visual trace analysis was used to find that the root cause was that there

was an overload of requests to a third-party service, which lead to a DoS (Denial

of Service). Total time spent in debugging was 16 hours.

Source: Fault Analysis and Debugging of Microservice Systems: Industrial Survey,

Benchmark System, and Empirical Study, TSE’18 [31].

• F5. Fault Context: An developer of a Spring Boot microservices application was

getting an error (ConfigServicePropertySourceLocator : Could not locate Proper-

tySource: I/O error on GET request) when executing the client app. The developer

suspected that the settings they specified in their configuration file were not being

used during execution.

Debugging Steps and Root Cause: A question about the fault was asked

on StackOverflow by the developer. Another user responded by saying that the

configuration property spring:cloud:config:enabled: true should be added to

the files application.yml and bootstrap.yml, which fixed the fault. Thus, the root-

cause was that a parameter was not configured in the .yml files.

48

Source: https://stackoverflow.com/questions/37074642/settings-in-application-yml-

for-spring-cloud-config-arent-used-when-app-is-exec

• F6. Fault Context: A developer working on a Spring Boot microservices applica-

tion gets an “Unauthorized” error when they access information about traces and

logs of services.

Debugging Steps and Root Cause: A question was asked on StackOverflow

about the fault and a few different solutions were provided by users. The solution

that got the most upvotes was configuring the management.security.enabled=false

flag in the application.properties.

Source: https://stackoverflow.com/questions/42648060/unauthorized-in-spring-boot-

admin

• F7. Fault Context: A developer working on a microservices application with

Zuul, a dynamic routing and monitoring gateway service gets an internal server

error (HTTP Code 500) when services are run on Docker.

Debugging Steps and Root Cause: A question was asked on StackOverflow

about the fault. A user diagnosed the problem and gave a solution: each service

deployment should be explicitly connected to the same Docker network and Zuul’s

properties.yml should have paths configured.

Source: https://stackoverflow.com/questions/55026430/zuul-forwarding-error-internal-

server-error-500

• F8. Fault Context: A developer running a Spring and OAuth2 sample microser-

vices application available on a tutorial site was getting TransportExceptions.

Debugging Steps and Root Cause: A question was asked on StackOverflow

about the fault and it has been viewed over 50,000 times since then. The root cause

was that the application was attempting to automatically register with the Eureka

service, which was unintended behaviour. To fix this, two lines (eureka.client.register-

with-eureka=false and eureka.client.fetch-registry=false) had to be added to the

application.properties configuration.

49

Source: https://stackoverflow.com/questions/55026430/zuul-forwarding-error-internal-

server-error-500

• F9. Fault Context: An error is encountered by a user of New York Times’ open-

source microservices toolkit, Gizmo. When the ‘prefix’ value of a service is empty,

there is a silent failure.

Debugging Steps and Root Cause: An issue was created on Github. The

root-cause was that the ‘prefix’ attribute of a service which should be optional was

instead required. So the users who set ‘prefix’ to an empty value, were running

into silent failures. The fix was to do a refactoring that would remove the Prefix()

method from the server.Service interface and add it to the config.Server.

Source: https://github.com/nytimes/gizmo/issues/26

A.2 Fault Symptom: Delays or Timeouts

• F10. Fault Context: A timeout of the server (504 error code) was experienced

by a user of the Clearwater IP Multimedia Subsystem (IMS) microservices system

when they were attempting a voice telephone call.

Debugging Steps and Root-Cause: Log inspection showed the faulty microser-

vice has been unavailable in close time proximity to the timeout experienced by the

client. The developers needed apriori knowdlege of service architecture to figure

out that the root cause was that the connection was refused by Cassandra database

(call in 3rd degree service), which is used to store authentication credentials and

profile information in Clearwater.

Source: Microservices Monitoring with Event Logs and Black Box Execution Trac-

ing (Pg 4) [5]

• F11. Fault Context: MongoDB server selection timeout exceeded in SiteWhere, a

microservices platform for Internet of Things applications. Debugging Steps and

Root-Cause: A user of SiteWhere observed this fault when their microservices

started before the MongoDB replica initialized and created an issue on Github.

The root-cause was that the server selection timeout was configured to 30 seconds.

50

Changing the configuration to have an indefinite wait time fixed the fault.

Source: https://github.com/sitewhere/sitewhere/issues/721

• F12. Fault Context: This is a production bug in a running MySQL instance.

Extremely long delays were observed when the mysql client was requested to execute

long INSERT statements with different character sets. This bug was recreated in

[1] with a client-server setup for evaluating Parikshan.

Debugging Steps and Root-Cause: The MySQL server was cloned by Parik-

shan and then complex scripts (in Chinese and Japanese) were sent to the produc-

tion MySQL server, which were asynchronously replicated in the debug container.

SystemTap was used on the debug containers for pinpointing functions causing

the slow-down. The root-cause was that there were multiple calls in a loop which

caused the slow-down.

Source: https://bugs.mysql.com/bug.php?id=15811 (Reported in [1])

• F13. Fault Context While using redis-2.6.11, a slave is unable to synchronise

with a master.

Debugging Steps and Root Cause: Failure observed when there was an attempt

to synchronize a big database but the slave timed out. Parikshan was used to create

debug containers and debuggers were used during replay. The root-cause was that

a lower output buffer limit should have been specified in the configuration with:

client-output-buffer-limit slave 4096mb 2048mb 60

Source: https://github.com/antirez/redis/issues/957 (Reported in [1])

• F14. Fault Context Multiple faults in benchmark microservice application, Social

Network. Quality of Service (latency/throughput) violations in several services.

Debugging Steps and Root Cause: Seer, a system that uses models trained

on trace data for detecting QoS violations was used for automated debugging. The

root-causes were: resource contention causing violations in the memached service

and long synchronization times causing violations in Thrift services.

Source: Seer, ASPLOS’19 [12]

51

• F15. Fault Context: This fault was injected to a Java microservices applica-

tion, Guestbook, for showing that the author’s root cause analysis system works.

The fault injection logic activates once per hour, and slows down all datastore

invocations by 45ms for a period of 3 minutes

Debugging Steps and Root Cause: The Service Level Objective (SLO) based

anomaly detector of monitoring system, Roots, was run with sampling rate of

15 seconds. Anomalies were detected correctly and the root-cause was that the

AppScale datastore service was slow to respond.

Source: Performance Monitoring and Root Cause Analysis for Cloud-hosted Web

Applications, WWW’17 [16].

• F16. Fault Context: Fault found by surveying an architect of company that

creates a mobile payment system. The fault symptom was that a particular service

slows down and eventually returns an error.

Debugging Steps and Root Cause: Eight microservices were involved in the

fault. Visual trace analysis was used to find that the root cause was that there

were recursive requests to a microservice due to SQL errors in another dependent

service. Total time spent in debugging was 24 hours.

Source: Fault Analysis and Debugging of Microservice Systems: Industrial Survey,

Benchmark System, and Empirical Study, TSE’18 [31].

A.3 Fault Symptom: Unusual Resource Usage

• F17. Fault Context: This fault was described in a sample scenario of a multi-

tier SOA application that has an Nginx server and a Glassfish server, among other

services running in separate containers. The symptom observed is unusual memory

usage by the Glassfish service due to which error logs are generated in the Nginx

server.

Debugging Steps and Root Cause: Debugging starts when developers notice

the unusual memory usage and surmise that the underlying fault is a memory leak.

The developers use Parikshan to create Nginx-debug and Glassfish-debug contain-

52

ers and to forward network requests from the production containers to these debug

containers. The developers then use heavier instrumentation on debug containers

(using their preferred tools) to find that the root-cause is a persistent memory leak

in the Glassfish application.

Source: Replay without Recording of Production Bugs for Service Oriented Ap-

plications [1]. Page 2.

• F18. Fault Context: Error in New York Times’ open-source microservices

toolkit, Gizmo. A memory leak is observed in a specific version (1.7)

Debugging Steps and Root Cause: An issue was created on Github. The root-

cause was that Gizmo’s router implementation uses a registry (gorilla/context) for

global request variables that never gets cleared in version 1.7, and thus there is a

memory leak.

Source: https://github.com/nytimes/gizmo/issues/74

• F19. Fault Context: A redis-2.4.9 master and slave are setup as separate services.

Running concurrent requests through the client triggers memory leaks.

Debugging Steps and Root Cause: Parikshan is used to create debug contain-

ers for the master and slave. Debug tracing is turned on, concurrent requests are

replayed and the root cause is found to be a memory leak in master.

Source: https://github.com/antirez/redis/pull/417 (Reported in [1])

• F20. Fault Context: Fault in SiteWhere, a microservices platform for Inter-

net of Things applications. Loading an invocation in InfluxDB by unique id was

overloading RAM.

Debugging Steps and Root Cause: An issue was created on Github by a

contributor of SiteWhere after they received a bug report from a user. The root-

cause was that the InfluxDB command invocation query was inefficient because all

event data was being loaded in the RAM, instead of only the data needed.

Source: https://github.com/sitewhere/sitewhere/issues/655

53

A.4 Fault Symptom: Unexpected Output

• F21. Fault Context: Fault found by surveying a Staff Software Engineer of

company that creates an online meeting system. The fault symptom was that

certain messages were being displayed in wrong order.

Debugging Steps and Root Cause: Three microservices were involved in this

fault. Basic log analysis was used to figure out that the root-cause was asynchronous

message delivery lacking sequence control. Total time spent in debugging this fault

was 56 hours.

Source: Fault Analysis and Debugging of Microservice Systems: Industrial Survey,

Benchmark System, and Empirical Study, TSE’18 [31].

• F22. Fault Context: Fault found by surveying a Senior Software Engineer of

company that creates a collaborative translation system. The fault symptom was

that some information was displayed incorrectly in a report.

Debugging Steps and Root Cause: Six microservices were involved in this

fault. Visual log analysis was used to identify that the root cause was “different

data requests for the same report are returned in an unexpected order”. Total time

spent in debugging was 26 hours.

Source: Fault Analysis and Debugging of Microservice Systems: Industrial Survey,

Benchmark System, and Empirical Study, TSE’18 [31].

• F23. Fault Context: Fault found by surveying a manager of a company that

creates an Office Automation system. The fault symptom was that there was an

unexpected change in the default selection on a web page.

Debugging Steps and Root Cause: Three microservices were involved in this

fault. Basic log analysis was used to find the root-cause that the key in the request

of a microservice was not being passed to another dependent microservice. Total

time spent in debugging was 40 hours.

Source: Fault Analysis and Debugging of Microservice Systems: Industrial Survey,

Benchmark System, and Empirical Study, TSE’18 [31].

54

• F24. Fault Context: Fault found by surveying a Senior Software Engineer of a

company that creates an Product Data Management System. The fault symptom

was that ”the bill of material (BOM) tree of a product is erroneous after updates”.

Debugging Steps and Root Cause: Six microservices were involved in this

fault. Visual log analysis was used to find that the root-cause was updating the

BOM data in an unexpected sequence. Total time spent in debugging was 32 hours.

Source: Fault Analysis and Debugging of Microservice Systems: Industrial Survey,

Benchmark System, and Empirical Study, TSE’18 [31].

• F25. Fault Context: A bug was encountered in an open-source microservices

project, open-loyalty, a platform for gamification and other loyalty features. The

fault occurs on the admin page of the application when a user tries to edit a

customer’s level, some levels are missing in the dropdown menu.

Debugging Steps and Root Cause: The root cause of the bug was that a service

endpoint was being called with a missing argument from the admin service. By

changing the route requested from api/level to api/level?perPage=total level, this

fault could be fixed.

Source: https://github.com/DivanteLtd/open-loyalty/issues/78

55

REFERENCES

[1] Nipun Arora et al. “Replay without recording of production bugs for service ori-

ented applications”. In: ASE 2018. 2018.

[2] Kristin Brennan. “Microservices Trends Report”. In: (2018). url: https://lightstep.

com/blog/microservices-trends-report-2018/.

[3] Brian Burg et al. “Interactive Record/Replay for Web Application Debugging”. In:

Proceedings of the 26th Annual ACM Symposium on User Interface Software and

Technology. UIST ’13. St. Andrews, Scotland, United Kingdom: Association for

Computing Machinery, 2013, pp. 473–484. isbn: 9781450322683. doi: 10.1145/

2501988.2502050. url: https://doi.org/10.1145/2501988.2502050.

[4] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A

survey”. In: ACM computing surveys (CSUR) 41.3 (2009), pp. 1–58.

[5] M. Cinque, R. Della Corte, and A. Pecchia. “Microservices Monitoring with Event

Logs and Black Box Execution Tracing”. In: IEEE Transactions on Services Com-

puting (2019).

[6] Docker. “Why Docker?” In: (2020). url: https://www.docker.com/why-docker.

[7] Nicola Dragoni et al. “Microservices: Yesterday, Today, and Tomorrow”. In: Present

and Ulterior Software Engineering. Ed. by Manuel Mazzara and Bertrand Meyer.

Cham: Springer International Publishing, 2017, pp. 195–216. isbn: 978-3-319-67425-

4. doi: 10.1007/978-3-319-67425-4_12. url: https://doi.org/10.1007/978-

3-319-67425-4_12.

[8] IBM Cloud Education. “Containerization”. In: (2019). url: https://www.ibm.

com/cloud/learn/containerization.

[9] André Fachat. “Challenges and Benefits of the Microservices Architectural Style”.

In: (2019). url: https://developer.ibm.com/articles/challenges- and-

benefits-of-the-microservice-architectural-style-part-1/.

[10] Cloud Native Computing Foundation. “Jaeger”. In: (2020). url: https://www.

jaegertracing.io/.

56

https://lightstep.com/blog/microservices-trends-report-2018/
https://lightstep.com/blog/microservices-trends-report-2018/
https://doi.org/10.1145/2501988.2502050
https://doi.org/10.1145/2501988.2502050
https://doi.org/10.1145/2501988.2502050
https://www.docker.com/why-docker
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://www.ibm.com/cloud/learn/containerization
https://www.ibm.com/cloud/learn/containerization
https://developer.ibm.com/articles/challenges-and-benefits-of-the-microservice-architectural-style-part-1/
https://developer.ibm.com/articles/challenges-and-benefits-of-the-microservice-architectural-style-part-1/
https://www.jaegertracing.io/
https://www.jaegertracing.io/

[11] Martin Fowler. “Microservices”. In: 2014. url: https://martinfowler.com/

articles/microservices.html.

[12] Yu Gan et al. “Seer: Leveraging Big Data to Navigate the Complexity of Perfor-

mance Debugging in Cloud Microservices”. In: Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages and

Operating Systems. ASPLOS ’19. Providence, RI, USA: ACM, 2019, pp. 19–33.

isbn: 978-1-4503-6240-5. doi: 10.1145/3297858.3304004. url: http://doi.

acm.org/10.1145/3297858.3304004.

[13] Dennis Michael Geels et al. “Replay debugging for distributed applications”. PhD

thesis. University of California, Berkeley, 2006.

[14] V. Heorhiadi et al. “Gremlin: Systematic Resilience Testing of Microservices”.

In: 2016 IEEE 36th International Conference on Distributed Computing Systems

(ICDCS). June 2016, pp. 57–66. doi: 10.1109/ICDCS.2016.11.

[15] Jacob Jackson. “Debugging Microservices: Lessons from Google, Facebook, Lyft”.

In: (2018). url: https://thenewstack.io/debugging-microservices-lessons-

from-google-facebook-lyft/.

[16] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. “Performance Monitor-

ing and Root Cause Analysis for Cloud-Hosted Web Applications”. In: Proceed-

ings of the 26th International Conference on World Wide Web. WWW ’17. Perth,

Australia: International World Wide Web Conferences Steering Committee, 2017,

pp. 469–478. isbn: 9781450349130. doi: 10.1145/3038912.3052649. url: https:

//doi.org/10.1145/3038912.3052649.

[17] Ravi Konuru, Harini Srinivasan, and Jong-Deok Choi. “Deterministic replay of

distributed java applications”. In: Proceedings 14th International Parallel and Dis-

tributed Processing Symposium. IPDPS 2000. IEEE. 2000, pp. 219–227.

[18] Aleksandra Kwiecień. “10 companies that implemented the microservice architec-

ture and paved the way for others”. In: (2019). url: https://divante.com/blog/

10- companies- that- implemented- the- microservice- architecture- and-

paved-the-way-for-others/.

57

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1145/3297858.3304004
http://doi.acm.org/10.1145/3297858.3304004
http://doi.acm.org/10.1145/3297858.3304004
https://doi.org/10.1109/ICDCS.2016.11
https://thenewstack.io/debugging-microservices-lessons-from-google-facebook-lyft/
https://thenewstack.io/debugging-microservices-lessons-from-google-facebook-lyft/
https://doi.org/10.1145/3038912.3052649
https://doi.org/10.1145/3038912.3052649
https://doi.org/10.1145/3038912.3052649
https://divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others/
https://divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others/
https://divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others/

[19] Jonathan Mace. End-to-End Tracing: Adoption and Use Cases. Survey. Brown

University, 2017.

[20] James Mickens, Jeremy Elson, and Jon Howell. “Mugshot: Deterministic Capture

and Replay for Javascript Applications”. In: Proceedings of the 7th USENIX Con-

ference on Networked Systems Design and Implementation. NSDI’10. San Jose,

California: USENIX Association, 2010, p. 11.

[21] Microsoft. “Monitoring a microservices architecture in Azure Kubernetes Service

(AKS)”. In: (2020). url: https://docs.microsoft.com/en-us/azure/architecture/

microservices/logging-monitoring.

[22] A. J. Mirkin. “Containers checkpointing and live migration”. In: 2010. url: https:

//api.semanticscholar.org/CorpusID:115145450.

[23] Marco Mobilio et al. “Anomaly Detection As-a-Service”. In: 2019 IEEE Inter-

national Symposium on Software Reliability Engineering Workshops (ISSREW)

(2019), pp. 193–199.

[24] S. Nadgowda et al. “Voyager: Complete Container State Migration”. In: 2017 IEEE

37th International Conference on Distributed Computing Systems (ICDCS). 2017,

pp. 2137–2142.

[25] Ravi Netravali and James Mickens. “Reverb: Speculative Debugging for Web Ap-

plications”. In: Proceedings of the ACM Symposium on Cloud Computing. SoCC

’19. Santa Cruz, CA, USA: Association for Computing Machinery, 2019, pp. 428–

440. isbn: 9781450369732. doi: 10.1145/3357223.3362733. url: https://doi.

org/10.1145/3357223.3362733.

[26] OpenZipkin. “Zipkin Architecture”. In: (2020). url: https://zipkin.io/pages/

architecture.html.

[27] Dewayne E. Perry and Alexander L. Wolf. “Foundations for the Study of Software

Architecture”. In: SIGSOFT Softw. Eng. Notes 17.4 (Oct. 1992), pp. 40–52. issn:

0163-5948. doi: 10.1145/141874.141884. url: https://doi.org/10.1145/

141874.141884.

58

https://docs.microsoft.com/en-us/azure/architecture/microservices/logging-monitoring
https://docs.microsoft.com/en-us/azure/architecture/microservices/logging-monitoring
https://api.semanticscholar.org/CorpusID:115145450
https://api.semanticscholar.org/CorpusID:115145450
https://doi.org/10.1145/3357223.3362733
https://doi.org/10.1145/3357223.3362733
https://doi.org/10.1145/3357223.3362733
https://zipkin.io/pages/architecture.html
https://zipkin.io/pages/architecture.html
https://doi.org/10.1145/141874.141884
https://doi.org/10.1145/141874.141884
https://doi.org/10.1145/141874.141884

[28] Anubha Sharma, Manoj Kumar, and Sonali Agarwal. “A Complete Survey on Soft-

ware Architectural Styles and Patterns”. In: Procedia Computer Science 70 (2015).

Proceedings of the 4th International Conference on Eco-friendly Computing and

Communication Systems, pp. 16–28. issn: 1877-0509. doi: https://doi.org/10.

1016/j.procs.2015.10.019. url: http://www.sciencedirect.com/science/

article/pii/S187705091503183X.

[29] Benjamin H. Sigelman et al. Dapper, a Large-Scale Distributed Systems Tracing

Infrastructure. Tech. rep. Google, Inc., 2010. url: https://research.google.

com/archive/papers/dapper-2010-1.pdf.

[30] João Pedro Gomes Silva. “Debugging Microservices”. In: (2019). url: https://

repositorio-aberto.up.pt/bitstream/10216/122187/2/350626.pdf.

[31] X. Zhou et al. “Fault Analysis and Debugging of Microservice Systems: Indus-

trial Survey, Benchmark System, and Empirical Study”. In: IEEE Transactions on

Software Engineering (2018), pp. 1–1. issn: 0098-5589. doi: 10.1109/TSE.2018.

2887384.

[32] Xiang Zhou et al. “Delta debugging microservice systems”. In: ASE. 2018.

[33] Xiang Zhou et al. “Latent Error Prediction and Fault Localization for Microservice

Applications by Learning from System Trace Logs”. In: Proceedings of the 2019

27th ACM Joint Meeting on European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering. ESEC/FSE 2019. Tallinn, Es-

tonia: ACM, 2019, pp. 683–694. isbn: 978-1-4503-5572-8. doi: 10.1145/3338906.

3338961. url: http://doi.acm.org/10.1145/3338906.3338961.

59

https://doi.org/https://doi.org/10.1016/j.procs.2015.10.019
https://doi.org/https://doi.org/10.1016/j.procs.2015.10.019
http://www.sciencedirect.com/science/article/pii/S187705091503183X
http://www.sciencedirect.com/science/article/pii/S187705091503183X
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://repositorio-aberto.up.pt/bitstream/10216/122187/2/350626.pdf
https://repositorio-aberto.up.pt/bitstream/10216/122187/2/350626.pdf
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1145/3338906.3338961
https://doi.org/10.1145/3338906.3338961
http://doi.acm.org/10.1145/3338906.3338961

	Introduction
	Background and Related Work
	Background
	Microservices Architectural Style
	Traditional Techniques for Debugging Microservice Faults

	Related Work
	Record and Replay Debugging
	Anomaly Detection
	Containerization and Container Cloning

	A Benchmark of Microservice Applications Faults
	Methodology
	Fault Organization by Symptom
	Mutation Operators for Microservices

	Record and Replay Framework for Microservices
	Design Objectives
	Record
	Instrumenting Services
	What to Record?
	Container Cloning

	Replay
	Anomaly Detection
	Anomaly Detector Implementation

	Evaluation
	Application Used for Experiments
	Qualitative Evaluation
	Case Study 1: Debugging a Latent Memory Leak
	Case Study 2: Debugging a Latent High CPU usage
	Case Study 3: Debugging Slow Responses

	Performance Evaluation
	Latency Overheads
	Container Cloning Overhead

	Summary

	Conclusion
	Descriptions of Microservice Application Faults
	Fault Symptom: Errors and Exceptions
	Fault Symptom: Delays or Timeouts
	Fault Symptom: Unusual Resource Usage
	Fault Symptom: Unexpected Output

	References

