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Abstract

Modeling of Biochemical States of DNA Replication Using Hidden Markov

Models

by

Matthew Simms

In nanopore experiments, DNA replication facilitated by φ29 DNA polymerase

(DNAP) can be observed at the single molecule level. The biochemical state of

the DNA-DNAP complex was studied by setting the complex atop a α-hemolysin

nanopore and applying an electric voltage. The movement of the DNA strand

relative to the nanopore was observed on a single base pair level by the ionic cur-

rent blockade. The time trace of the recorded ionic current amplitude from these

experiments was used to study the biochemical states. Given that the recorded

amplitude of the ionic current was an indirect measurement of the true ampli-

tude level, which in turn was an indirect measurement of the true biochemical

state, the experiments were modeled as a Hidden Markov Chain (HMC). When

the DNA position of two biochemical states relative to the nanopore is the same,

the states yield the same current amplitude level. To extract the dynamic tran-

sition rates between biochemical states that are not distinguishable in amplitude

level, two methodologies were applied to study the HMC. The first was a fully

Bayesian model, for which Markov chain Monte-Carlo (MCMC) simulations were

used to infer the reaction rates in a system of three biochemical states with two

observed amplitude levels. The second model adopted concepts of Viterbi train-

ing or the segmental k-means algorithm to find point estimates of the transition

rates. Given the low transition probabilities, the properties of the second model

led to a substantial bias in inference. The bias was addressed by first using a

xii



meta-model to describe the relation between the generating transition rates and

the biased inference. Then the inverse problem of the meta-model was solved to

reduce the bias in the inference. The meta-model was a fully Bayesian Gaussian

process model, built by creating a series of computer-generated datasets around

the given dataset. Improved inference was obtained by drawing posterior samples

from the inverse of the meta-model. Since both the MCMC simulations and bias

reduction techniques resulted in simulated posteriors, the two methods were used

to confirm each other. In the comparison of these two methods, the approach

of the second model plus bias reduction has the advantage of achieving similar

inference accuracy at a much lower computational cost.
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Chapter 1

Introduction

The focus of this work was the statistical and mathematical modeling of the

biochemical states of DNA replication based on data observed in the context

of nanopore experiments. The work here is meant to provide a more accurate

and robust alternative to quick inference methods based on dwell time samples

extracted using an ad hoc method [31] [32]. The motivating experiments are

introduced in Section 1.1. Following Section 1.1, Section 1.2 contains a more

detailed description of the models developed and organization of this thesis.

1.1 Biological Background

For somatic cell replication, the DNA of the cell must be copied. In humans,

this occurs in each of their 1014 cells about 1016 times [33]. Despite the frequency

and importance of replication, there are many facets of replication which are not

well understood. The focus of this study was the kinetics of the translocation step

and nucleotide addition cycle. Lieberman and her colleagues initially modeled

these aspects of replication [32]. This study developed an alternate way to model

this process to supplement the work by Lieberman et al. However, before the
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kinetics of the translocation step and nucleotide addition cycle could be discussed,

a basic understanding of DNA construction and replication is necessary.

DNA is a linear polymer structure made up of nucleotides. The nucleotides

form two complementary strands that twist around a central axis in a double-helix.

Since the twisting of the nucleotide strands is unimportant for understanding the

model developed, the DNA was described as if it had been untwisted and the

two strands of nucleotides form a ladder-like structure. Following this analogy,

each nucleotide strand is represented by “one rail of the ladder” and a “half of

each rung”. The “rails of the ladder” are called the backbone, and they create

the support for each nucleotide strand. “Half of each rung” is one of four base

compounds and these bases are the method for encoding information on the DNA.

Each of the four bases has a complementary pair, and the second nucleotide strand

connects the first at each rung of the ladder with the complementary base.

During transcription, the complementary nucleotide strands are separated and

can be visualized by cutting the ladder in half through the middle of each “rung”.

Assuming fidelity, two pairs of identical DNA are created by adding the nucleotides

(also referred to as deoxynucleoside triphosphate or dNTP) containing comple-

mentary base pairs to each rung of the aforementioned halved ladders.

There are a number of proteins that assist in the transcription process. This

study focused on the DNA polymerase (DNAP) which is a catalyst for DNA

synthesis. During replication, the DNAP is bound with a DNA strand. The

DNAP acts as a catalyst to bind the dNTP to the “halved” strand.

To observe transcription, a primer was bound to the end of the DNA. Without

this, there is nothing for the DNAP to bind to. Then, a φ29 DNAP (which

was chosen because of its ability to catalyze consecutive replication pairs without

additional proteins [11] [50]) was then added to the primer. A single nucleotide
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addition cycle is illustrated in Figure 1.1, where the DNA is depicted as a simple

lattice.

The first state is labeled as state S1 and is furthest left in Figure 1.1. The

joined ends with a P on either side at the top of the structure is the primer.

The center of the latter depicts the type of base with either an A (adenine),

G (guanine), T (thymine), or C (cytosine). Although the entire DNAP is not

depicted, the active site of the DNAP is at the -1 position and is signified with

parenthesis. This state will be referred to the binary structure pre-translocation

state since the structure includes the DNAP and the single DNA strand. The

second state (post-translocation) is depicted in Figure 1.1 as S2A where the DNA

has shifted up, and the active site of the DNAP is now at the 0 position to allow

the binding of dNTP. After translocation, the complementary dNTP is affixed to

the polymer structure as labeled as S2B. Since a third protein has been added,

this state will be referred to as the post-translocation ternary structure. Having

completed the nucleotide addition at position 0, the pre-translocation state (S1)

for the nucleotide addition at position 1 is labeled as NC.

S1 S2A S2B NC

P P P P P P

P P −2 GC −2 −2 GC −2 −2 GC −2

−2 GC −2 −1 TA −1 −1 TA −1 −1 TA −1

−1 (TA) −1 (C) 0 0 (GC) 0 ∗ 0 (GC) 0

C 0 G 1 G 1 G 1

G 1 T 2 T 2 T 2

T 2 A 3 A 3 A 3

A 3

Figure 1.1: A diagram depicting a nucleotide addition cycle where the location
of the active site of the DNAP is denoted by (∗)

The aforementioned states and the transition rates between them were the
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focus of this study. Furthermore, some of the states can be isolated. States S1

and S2A can be isolated by not adding dNTP to the solution. In this case, nothing

can be bound in state S2A so the system vacillates between S1 and S2A. In the

experiment by Lieberman and her colleagues, evidence supported that dwell times

in S1 and S2A were exponentially distributed [31]. This results in the two state

space model pictured in Figure 1.2A, where r12 and r21 are the transition rate

parameters from S1 to S2A and S2A to S1 respectively. Finally, S1, S2A, S2B could

be isolated by engineering the DNA so the dNTP could not form a covalent bond

with the backbone of the DNA. In this case, the active site cannot move forward

and the next cycle is not started. Similar to the previous case, the system vacillates

between S1, S2A, and S2B. When the dNTP was added to the system, it was seen

that it is not possible for the dNTP to bind before the binary system transitioned

to state S2A and the dNTP did not impact r12 [32] [11]. In addition, the dwell

time of S2B is exponential. Therefore, the transitions S2A to S2B and S2B to S2A

have constant transition rate parameters kon[dNTP ] and koff respectively where

kon is the binding affinity of the dNTP, [dNTP ] is the concentration of dNTP,

and koff is the disassociation rate of the dNTP [32]. This model is the three state

model depicted in Figure 1.2B.

A

S1

S2A

r12r21

B

S1

S2A S2B

r12r21 kon[dNTP ]

koff

Figure 1.2: Diagrams of the two state model (A) and three state model (B)

Unfortunately, at the base pair level, it was not possible to directly track the
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state of the system at the detail level discussed previously. The movement of

the DNAP was tracked indirectly using the α−hemolysin nanopore [11]. It has

been shown that the nanopore can be inserted into a membrane, an ionic current

can be applied across the membrane, and that signal can be tracked [30] [2] as

in Figure 1.3A. Then, the binary complex was placed on top of a nanopore that

acted as a channel across the membrane. The DNAP is too big to pass through

the channel created by the nanopore. Therefore, the DNAP sits on top of the

nanopore and the single DNA strand dangles through the lumen of the nanopore

[5] [30]. Finally, since abasic sites are small relative to the nucleotides, abasic sites

were inserted into the DNA strand near the lumen of the nanopore. Then as the

position of the abasic sites changed relative to the lumen, the relative position

could be differentiated on a base pair level. Given the experimental design used

by Dahl and his colleague and repeated by Liebermen, abasic sites were inserted

into the DNA strand. In the experiments necessary for this work, abasic sites

were inserted at positions +8 to +12 using the scaling system in Figure 1.1.

With this design, an upper amplitude of ∼ 32 picoamps (pA) is associated with

the pre-translocation state (S1) and a lower amplitude of ∼ 26 pA is associated

with the post-translocation states (S2A) and (S2B) [11] [31] [32] as illustrated in

Figure 1.3B. Unfortunately, no difference in current could be discerned for S2A

and S2B, but in previous studies, conclusions were made analyzing the two state

data with the three state data [32].

Given the above, the two experiments produced the emissions in Figure 1.4.

Utilizing data from both experiments, Lieberman and her colleagues used an ad-

hoc maximum likelihood approach based on the dwell times to approximate r12

and r21 [31] and kon and koff [32]. However, since the dwell times in each state

are exponential, time traces of the currents can be described as Markov Chains.
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A B

Figure 1.3: (A) The nanopore inserted into a membrane with an applied current
and (B) The pre and post-translocation states when the DNAP is fixed on top of
the nanopore

Using this alternate representation, a model supplemental to Lieberman and her

colleagues’ work was developed for this research.

2 State Experiment 3 State Experiment Signal

S1 S1 ∼ 32 pA

S2A S2A S2B ∼ 26 pA

r12 r12r21 r21

kon[dNTP]

koff

Figure 1.4: The two state and three state experiments where transitions were
represented with solid arrows and emissions were represented with dotted arrows.

1.2 Description of thesis

This research focuses on the experiments described in Section 1.1. Specifi-

cally, this thesis provided additional methods for modeling these experiments and

making inference on the transition rates between biochemical states.
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The first experiment introduced in [31] and discussed in Section 1.1 isolated

two biochemical states of DNA replication. The biochemical states and subsequent

transition rates could be described in hidden Markov models. Previously devel-

oped hidden Markov modeling techniques are introduced in Chapter 2. Within

that chapter, necessary preliminaries to hidden Markov modeling are introduced in

Section 2.1 and Section 2.2. Although Dynamic Linear modeling was not applied

to the experiments discussed, it was used to introduce hidden Markov modeling

in Section 2.3 and there is an extensive discussion on data collection. The models

and algorithms applied to the aforementioned two state system were introduced

in Section 2.4. The methods developed prior to this research from Section 2.4

could be applied directly to the experiment discussed in [31]. The performance of

these methodologies was evaluated using idealized computer generated datasets

in Chapter 3.

The second experiment introduced in [32] and discussed in Section 1.1 iso-

lated three biochemical states of DNA replication. This experiment could also

be described as a hidden Markov model. However, two of the states produced

indistinguishable electric signals. Following this, there was insufficient informa-

tion to apply the traditional hidden Markov models introduced in Section 2.4 and

this was empirically confirmed using computer generated datasets in Section 4.1.

Therefore a composite state, introduced in Section 4.1.2, was considered. Using

this composite state, an algorithm to compute point estimates and an MCMC

sampler that simulated Bayesian posteriors of the system parameters for the ex-

periment were developed and introduced in sections 4.2.2 and 4.2.7 respectively.

Again, the methods were tested using computer generated simulations of the ex-

periments. In Section 4.2.2, it is shown that the point estimates were biased

and that bias was a noticeable contributor to the error. Therefore, a Bayesian
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meta-model was built to reduce the bias. The bias reduction included the inverse

problem of a Gaussian process model which is introduced in Section 4.2.4 and

was tailored to fit this specific problem in Section 4.2.5. The performance of the

meta-model as a method for bias reduction is discussed in Section 4.2.6. Further-

more, since the meta-model was Bayesian, the credible intervals of the meta-model

and the MCMC sampler could be easily compared. In Section 4.3 it is observed

that both methods had very similar credible intervals and thus provided further

confirmation. Lastly, the research shows that with enough data and a reasonable

amount of compute time, the ranges of the credible intervals relative to the true

generating parameters can be reduced.
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Chapter 2

Mathematical Background

Building models of the experiments discussed in Section 1.1 required a number

of tools. This chapter will discuss the methods employed that were developed

prior to this research. The first and second sections of this chapter will introduce

the EM algorithm and Bayesian modeling. Although these two concepts have

much broader applications in the research, a mixture of geometric distributions

was used as an example to introduce those subjects. The following sections will

introduce hidden Markov models as they were the motivator of the algorithms

developed. First, the Ornstein-Uhlenbeck process will be discussed to introduce

hidden Markov models. Finally, hidden Markov models with discrete states will

be introduced as the motivating biological experiments were modeled as such.

2.1 A Brief Introduction to the EM Algorithm

2.1.1 Motivation

To motivate the need for the EM method, consider the geometric distribution.

Although the geometric distribution is not the most common way to introduce the
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EM algorithm, it was used here because it is the most straightforward application

of the EM method used directly for this project. The geometric distribution

is often viewed as the number of Bernoulli trials needed to experience the first

success. In this case, the probability density function was written as (2.1), where φ

was the probability of success and d was the number of trials needed to experience

the first success.

p(d|φ) = (1− φ)(d−1)φ (2.1)

φ̂ = H∑H
h=1 dh

(2.2)

The maximum likelihood estimator (MLE) for φ given d = (d1, d2, ..., dH) is

well known and was listed as (2.2). Now consider the more complicated case,

for each individual observation it was known that the probability of success was

either ϕ1 or ϕ2. Then the probability density function (pdf) could be represented

as (2.3) where v is an indicator variable such that v = 1 if the probability of

success was ϕ1 and v = 0 if probability of success was ϕ2.

p(d|v, ϕ1, ϕ2) =
[
(1− ϕ1)(d−1)ϕ1

]v [
(1− ϕ2)(d−1)ϕ2

](1−v)
(2.3)

Unfortunately, it was not known whether v = 1 or v = 0 and there was

not enough information to investigate further using the form described in (2.3).

Therefore, a new variable w was introduced. For each trial, the probability that

ϕ1 was the probability of success was w and the probability that ϕ2 was the

probability of success was 1− w. Then the joint probability of d and v given ϕ1,

ϕ2, and w could be written as (2.4).
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p(d, v|ϕ1, ϕ, w) =
[
w(1− ϕ1)(d−1)ϕ1

]v [
(1− w)(1− ϕ2)(d−1)ϕ2

](1−v)
(2.4)

Since v was unknown, the marginal distribution of d given ϕ1, ϕ2, and w was

explored. The marginal pdf, often referred to as a mixture model, was listed

as (2.6) and was derived from (2.5). In this case, the MLE was not straight

forward to calculate from the log-likelihood function (lnL) listed as (2.7). To

illustrate this, (2.8) has the first partial derivative of the log-likelihood function

with respect to w. There, it can be seen that the expression contains ϕ1, ϕ2, and

cannot easily be solved for w. Furthermore, the derivatives with respect to ϕ1

and ϕ2 were not more instructive.

p(d|ϕ1, ϕ2, w) =
1∑

l=0
p(d, v = l|ϕ1, ϕ2, w) (2.5)

p(d|ϕ1, ϕ2, w) = w(1− ϕ1)(d−1)ϕ1 + (1− w)(1− ϕ2)(d−1)ϕ2 (2.6)

ln {L(ϕ1, ϕ2, w)} =
H∑

h=1
ln
{
w(1− ϕ1)(dh−1)ϕ1 + (1− w)(1− ϕ2)(dh−1)ϕ2

}
(2.7)

∂ ln {L(ϕ1, ϕ2, w)}
∂w

=
H∑

h=1

(1− ϕ1)(dh−1)ϕ1 − (1− ϕ2)(dh−1)ϕ2

w(1− ϕ1)(dh−1)ϕ1 + (1− w)(1− ϕ2)(dh−1)ϕ2
(2.8)

Therefore, the original pdf from (2.4) was considered which results in the log-

likelihood listed as (2.9). Although this allows the separation of the variables and

was an improvement from the above, the MLE for {ϕ1, ϕ2, w} requires knowledge

of the unobserved variable v = (v1, v2, ...., vH). Therefore, the EM algorithm was

applied to provide knowledge of v.

ln {L(ϕ1, ϕ2, w)} =
H∑

h=1
ln
{[
w(1− ϕ1)(dh−1)ϕ1

]vh
[
(1− w)(1− ϕ2)(dh−1)ϕ2

](1−vh)
}

(2.9)
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2.1.2 Expectation Maximization (EM) Algorithm

Although special cases of the EM algorithm had been introduced previously,

the EM algorithm for general probability models was introduced by Dempster,

Laird, and Rubin in 1977. The paper originally proposed the algorithm for a

broad range of cases of missing data including mixture models [1] and the indicator

variable in (2.9). For the general case; let y be the observed data, v be the

unobserved or latent variable, and θ be the parameters of the distribution. The

EM method is an iterative algorithm where the inference on the parameters is

improved in each iteration. Therefore, the inference on any variable or parameter

(c) after the ith iteration was denoted as ĉi or (ĉj)i if the parameter contains a

subscript. For each iteration θ̂i was computed by the expression listed as (2.10)

where L(θ,v) denotes the likelihood of the joint probability of y and v given θ

and L(θ) denotes the likelihood of the marginal probability of y given θ. Since

the EM algorithm is an iterative algorithm, an initial value must be chosen (θ̂0)

with reasonable values. Then, θ̂i was computed using (2.10) where θ̂i−1 was the

initial values if i = 1 or the values from the previous iteration if i > 1. Given θ̂0

was reasonable, the iterations of (2.10) will converge to θ̂. For a basic justification

of the algorthm, [1], [17], and [37] prove that θ̂i is monotonic. Unfortunately, that

makes the EM algorithm a local optimizer and a poor choice for θ̂0 can result in a

solution that is not a global maximum. For further reading, [37] contains extended

conversation on analytical properties and convergence rates of the EM algorithm

past what was written in [1]. [56] contains more information on mixture models

and the specific application of the EM algorithm on finite mixture models.

θ̂i = argmax
θ

E(v|y,θ̂i−1)[lnL(θ,v)] (2.10)
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The computation of (2.10) was split up into two steps, an expectation step and

a maximization step. To formulate these steps, consider the joint log-likelihood.

The joint log-likelihood can be written as the sum of terms with the form

fj(v)gj(θ,y). Using this form, the expectation step consisted of computing

E(v|θ̂i−1,y)[fj(v)] for each fj(v) in the joint log likelihood. After the expecta-

tion is completed, the maximization step computed θ̂i by maximizing lnL(θ,v)

given fj(v) = E(v|θ̂i−1,y)[fj(v)] for each fj(v) in the joint log-likelihood. θ̂i was

computed iteratively until θ̂i had converged to a value. Computationally this was

approximated by using the stopping condition ||θ̂i− θ̂i−1|| ≤ δ where ||θ̂i− θ̂i−1||

denotes a distance metric and δ was an arbitrary small number. In this research,

the infinity norm was used which was denoted ||θ̂i−θ̂i−1||∞. The general algorithm

was listed as (2.11).

EM Algorithm (2.11)

I Pick θ̂0

II Set i = 0 and define
∣∣∣∣∣∣θ̂0 − θ̂−1

∣∣∣∣∣∣
∞
> δ.

III While
∣∣∣∣∣∣θ̂i − θ̂i−1

∣∣∣∣∣∣
∞
> δ

(a) i = i+ 1

(b) Compute E(v|θ̂i−1,y)[fj(v)] for each fj(v) in the joint log-likelihood

(c) Compute θ̂i that maximizes lnL(θ,v) given fj(v) = E(v|θ̂i−1,y)[fj(v)]

for each fj(v) in the joint log-likelihood.

To better illustrate (2.11), consider the mixture of two geometric distributions.

The joint log-likelihood was rearranged in (2.12).
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ln {L(ϕ1, ϕ2,w)} =
H∑
h=1

ln
{[
w(1− ϕ1)(dh−1)ϕ1

]vh [(1− w)(1− ϕ2)(dh−1)ϕ2
](1−vh)

}

=
H∑
h=1

[vh (ln(w) + (1− dh) ln(1− ϕ1) + ln(ϕ1)) + ... (2.12)

...+ (1− vh) (ln(1− w) + (1− dh) ln(1− ϕ2) + ln(ϕ2))]

From (2.12), it can be seen the fj(v) were simply vh. Therefore, for a mix-

ture of two geometric distributions, the Expectation step for the ith iteration was

computing
(
E(v|θ̂i−1,y)[vh]

)
i
denoted as (E[vh])i for h = 1 to H where (E[vh])i was

computed in (2.15) to (2.16). For brevity, let p
(
dh|vh = 1, θ̂i−1

)
and p (dh|vh = 0 ,

θ̂i−1
)
be defined as (2.13) and (2.14).

p
(
dh|vh = 1, θ̂i−1

)
=
(
1− {ϕ̂1}i−1

)(dh−1)
{ϕ̂1}i−1 (2.13)

p
(
dh|vh = 0, θ̂i−1

)
=
(
1− {ϕ̂2}i−1

)(dh−1)
{ϕ̂2}i−1 (2.14)

(E[vh])i =
1∑

vh=0
vhp

(
vh|dh, θ̂i−1

)
(2.15)

(E[vh])i =
1∑

vh=0
vh
p
(
dh, vh|θ̂i−1

)
p
(
dh|θ̂i−1

)

(E[vh])i =
1∑

vh=0

vh
[
p
(
dh|vh = 1, θ̂i−1

)]vh [
p
(
dh, vh = 0|θ̂i−1

)](1−vh)

p
(
dh, vh = 1|θ̂i−1

)
+ p

(
dh|vh = 0, θ̂i−1

)


(E[vh])i =
ŵi−1

[
p
(
dh|vh = 1, θ̂i−1

)]
ŵi−1

[
p
(
dh|vh = 1, θ̂i−1

)]
+ (1− ŵi−1)

[
p
(
dh|vh = 0, θ̂i−1

)] (2.16)

Using (2.16), (2.10) was computed by maximizing (2.17). Furthermore, the
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maximization for (2.17) was found by computing the MLE for (ϕ̂1)i, (ϕ̂2)i, and

ŵi which were listed as (2.18), (2.19), and (2.20) respectively.

{E [lnL (θ)]}i = lnL (θ, {E[vh]}i)

{E [lnL (θ)]}i =
H∑
h=1

[{E[vh]}i (ln(w) + (1− dh) ln(1− ϕ1) + ln(ϕ1)) + ... (2.17)

... (1− {E[vh]}i) (ln(1− w) + (1− dh) ln(1− ϕ2) + ln(ϕ2))]

(ϕ̂1)i =
∑n
h=1 {E[vh]}i∑n

h=1 {E[vh]}i (dh) (2.18)

(ϕ̂2)i =
∑n
h=1 1− {E[vh]}i∑n

h=1 (1− {E[vh]}i) (dh) (2.19)

ŵi =
∑n
h=1 {E[vh]}i

n
(2.20)

Finally, the EM algorithm for a mixture of two geometric distribution was listed

below.

EM Algorithm for a Mixture of Two Geometric Distributions (2.21)

I Pick θ̂0

II Set i = 0 and define
∣∣∣∣∣∣θ̂0 − θ̂−1

∣∣∣∣∣∣
∞
> δ.

III While
∣∣∣∣∣∣θ̂i − θ̂i−1

∣∣∣∣∣∣
∞
> δ

(a) i = i+ 1

(b) for h = 1 : H

i. Calculate (E[vh])i using (2.16).

(c) Calculate (ϕ̂1)i using (2.18).

(d) Calculate (ϕ̂2)i using (2.19).

(e) Calculate ŵi using (2.20).
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2.2 A Brief Introduction to Bayesian Modeling

In the last section, inference was made on θ̂, where θ is a parameter vector with

single values. However, one could also view θ as a vector of random variables. Given

this structure, the inference provides much more detailed information about the range or

distribution of θ. Unfortunately, this extra information has a cost. Bayesian inference

is much more computationally expensive than the inference on θ̂ as discussed in the last

section. The following section gives a brief introduction to Bayesian Modeling but is far

from comprehensive. For more reading, [17] is a good book on the subject.

2.2.1 Bayesian Inference

Bayes’ Theorem (2.22)

p(θ|y) = p(y|θ)p(θ)
p(y)

This research focuses on two types of inference, inference on the parameters (θ) given

the data (y) and inference on future data (y∗) given the data. The two types of inference

were denoted as θ|y and y∗|y respectively. To illustrate this, consider the geometric

distribution listed again as (2.26). The posterior of θ would include inference made on

w, ϕ1, and ϕ2. The predictive distribution, in this case, would include inference on d∗

where d∗ is predicting the distribution of a future dataset. Inference on both θ and

y∗ (or d∗ in the previous example) are dependent on Bayes’ Theorem, the namesake

of the model. Inference on p(θ|y) is referred to as the posterior density. To derive

the posterior density in this model, a prior distribution (p(θ)) was required. The prior

distribution signifies the distribution of θ before the existence of the dataset. When one

picks a prior, often two separate factors are considered. The first factor is to choose

a prior that results in a posterior density which is not too computationally intensive.
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The second factor is the information provided by the prior. In many cases, little is

known about θ, and the prior should reflect that by contributing little or nothing to the

posterior distribution. However, there are cases where information about θ is known

before data collection. In that case, the prior should reflect that information. Once the

prior is chosen, the general case of the posterior density is proportional to (2.23) which

follows directly from (2.22).

p(θ|y) = p(y|θ)p(θ)
p(y)

p(θ|y) ∝ p(y|θ)p(θ) (2.23)

Given the posterior distribution from (2.23), the predictive distribution follows im-

mediately. The predictive distribution is (2.24) where ϑ is the parameter space for θ

assuming ϑ a continuous subspace.

p(y∗|θ) =
∫
θ∈ϑ

p(y∗|θ)p(θ|y)dϑ (2.24)

There are a few cases where (2.23) and (2.24) can be computed analytically. One

such case is when a conjugate prior for θ is used. A conjugate prior is a prior such that

the posterior of θ results in the same type of distribution as the prior. However, this

method is not applicable for most cases including the inference made for this research.

In these cases, numerical methods such as MCMC are applied.

2.2.2 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a common way to numerically estimate the

distributions from (2.23) and (2.24) when p(θ|y) is intractable. MCMC simulates N

random draws from the distribution of the posterior (or predictive) where the ith draw
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from the posterior of parameter c will be denoted as ci or (cj)i if c has a subscript. This

differs from θ̂i because each θ̂i improves the estimate of the true value of θ. As stated

earlier, in Bayesian inference θ is a random variable and has a distribution. Following

this, each MCMC draw (θi) provides one more simulation from the distribution p(θ|y).

Therefore, θi is not expected to be closer to the mean of θ than θi−1. Each simulation

of θi combined with the previous simulations provides a more complete picture of the

distribution p(θ|y).

This section will have some practical information on implementing two different

types of MCMC samplers, but [47] describes the development of MCMC throughout

history. [17] has a basic introduction on MCMC which includes more on convergence,

sufficient sample sizes, efficient computation, and alternatives. [3] includes more justi-

fication of MCMC methods in a short format. [46] includes all of the aforementioned

subjects in more detail.

Gibbs Sampler

The Gibbs sampler is a special case of the Metropolis-Hasting algorithm which is

described next. Since the Gibbs sampler is a special case of the Metropolis-Hastings

algorithm, it is often introduced after the Metropolis-Hastings algorithm. However,

since the theory was not discussed here, Gibbs was introduced first as it is much easier

to implement. There are many papers that included special cases and necessary building

blocks but [18] is considered to be the seminal paper on Gibbs sampling. Furthermore,

for more information, Gibbs sampling is discussed in all the resources provided in the

previous subsection.

For the general implementation of the Gibbs sampler, let y be the observed data

and θ = (τ1, τ2, ..., τM ) be the parameters of the model. For a Gibbs sampler, each τm is

sampled separately. Then, the ith random draw for τm is made from p
(
τm|y, (θ−m))i−1

)
where (θ−m)i−1 =

(
(τ1)i−1 , (τ2)i−1 , ..., (τm−1)i−1, (τm+1)i−1, ..., (τM )i−1

)
or all θi−1

except τm. For this, each conditional posterior distribution
(
p
(
τm|y, (θ−m)i−1

))
, must
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be able to be sampled from. Given that p
(
τm|y, (θ−m)i−1

)
can be sampled from, the

draw for τm can be generated using a random number generator. A general algorithm

for a Gibbs sampler which draws N samples from the posterior was listed as (2.25).

A general Gibbs sampler (2.25)

I Make an initial guess or choose values for θ0

II for i=1:N

(a) for m=1:M

i. Draw (τm)i ∼ p
(
τm|y, (θ−m)i−1

)
(b) end

III end

To illustrate this, consider the joint probability of a mixture of two geometric dis-

tributions introduced in Section 2.1 and listed as (2.26).

p(d,v|w,ϕ1, ϕ2) =
H∏
h=1

[
w(1− ϕ1)(dh−1)ϕ1

]vh [(1− w)(1− ϕ2)(dh−1)ϕ2
]1−vh (2.26)

For more explanation on the distribution see Section 2.1. As in Section 2.1, only d

was known and v was latent. Therefore, in addition to drawing from the conditional

posterior of ϕ1, ϕ2, and w, draws from the conditional posterior of v must also be made.

The Gibbs sampler was listed as (2.27), and the distributions referenced in the sampler

were derived and listed in the following text.

A Gibbs sampler for a mixture of geometric distributions (2.27)

I Make an initial guess or choose values for (ϕ1)0, (ϕ2)0, and w0.

II for h = 1 : H
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(a) draw (vh)0 from (2.38)

III end

IV for i = 1 : N

(a) draw (ϕ1)i from (2.32)

(b) draw (ϕ2)i from (2.33)

(c) draw wi from (2.31)

(d) for h = 1 : H

i. draw (vh)i from (2.38)

(e) end

V end

As stated, the prior distributions must be chosen so that each conditional posterior

distribution can be sampled. Therefore, each prior distribution satisfied this require-

ment. First, the posterior of w was addressed by applying (2.23) which resulted in (2.28).

Unfortunately, picking a prior of the form p(w|d,v, ϕ1, ϕ2) was difficult. To resolve this,

a prior for w that was independent of ϕ1, ϕ2, and v was used. Then p(w|ϕ1, ϕ2) = p(w)

resulting in (2.29).

p(w|d,v, ϕ1, ϕ2) ∝ p(d,v|ϕ1, ϕ2, w)p(w|ϕ1, ϕ2) (2.28)

p(w|d,v, ϕ1, ϕ2) ∝ p(d,v|ϕ1, ϕ2, w)p(w) (2.29)

To ensure a posterior that could be sampled, a conditionally conjugate prior was

chosen. Much like a conjugate prior, a conditionally conjugate prior is a prior such that

the conditional posterior is the same type of distribution as the conditionally conjugate

prior. The distribution that was conditionally conjugate to the joint probability in the
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conditional posterior of w was a beta distribution. In the following, a beta distribu-

tion with parameters α and β was represented by B(α, β) which was defined by the

probability density function in 2.30.

The Beta distribution (B(α, β)) (2.30)

f(x;α, β) = Γ(α+ β)
Γ(α)Γ(β)x

α−1(1− x)β−1

x ∈ [0, 1]

α > 0

β > 0

Γ(x) =
∫ ∞

0
yx−1e−ydy

The posterior resulting from (2.29) was listed as (2.31), and the full derivation can

be found in Appendix A.1.1.

p(w|d,v,θ−w) ∝ p(d,v|ϕ1, ϕ2, w)p(w)

w ∼ B(αw, βw)

w|d,v,θ−w ∼ Bw

(
H∑
h=1

(vh) + αw,
H∑
h=1

(1− vh) + βw

)
(2.31)

ϕ1 and ϕ2 were dealt with simultaneously because solving for the posterior of each

was essentially the same problem. For ϕ1 and ϕ2, a conditionally conjugate prior was

employed. For both, the conditionally conjugate prior was also a beta distribution. The

resulting posteriors were listed as (2.32) and (2.33). Full derivations can be found in

Appendix A.1.2.
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p(ϕi|d,v,θ−ϕi) ∝ p(d,v|ϕ1, ϕ2, w)p(ϕi)

ϕi ∼ B(αϕi , βϕi)

ϕ1|d,v,θ−ϕ1 ∼ B
(

H∑
h=1

(vh) + αϕ1 ,
H∑
h=1

(vh(dh − 1)) + βϕ1

)
(2.32)

ϕ2|d,v,θ−ϕ2 ∼ B
(

H∑
h=1

(1− vh) + αϕ2 ,
H∑
h=1

((1− vh)(dh − 1)) + βϕ2

)
(2.33)

The amount of information provided by the priors above can be controlled through

the parameters of the priors (α and β). In this work, there was not initial information

for w, ϕ1, and ϕ2. Therefore, by choosing α = β = 1 for all priors, the priors were flat.

Finally, vh must be drawn even though vh was an unobserved variable or a latent

variable. Unlike the posteriors for ϕ1, ϕ2, and w, a prior did not need to be selected

for v. That is because the prior for v naturally occurred in the model used. (2.34)

and (2.35) shows that the joint probability was equal to the product of the conditional

probability of d and the prior on vh. Furthermore, (2.34) was equal to the right hand

side of (2.23) making (2.34) proportional to the conditional posterior of vh.

p(dh, vh|w,ϕ1, ϕ2) = p(dh|vh, w, ϕ1, ϕ2)p(vh|w,ϕ1, ϕ2) (2.34)

p(vh|d,θ) ∝ p(dh|vh, w, ϕ1, ϕ2)p(vh|w,ϕ1, ϕ2) (2.35)

p(dh|vh, w, ϕ1, ϕ2) =
[
(1− ϕ1)(dh−1)ϕ1

]vh [(1− ϕ2)(dh−1)ϕ2
]1−vh (2.36)

p(vh|w,ϕ1, ϕ2) = p(vh|w) = wvh(1− w)1−vh (2.37)

Using p(dh|vh, w, ϕ1, ϕ2) as defined in Section 2.1 and listed as (2.36), the prior on

vh was Bernoulli(w) as written in (2.37). The posterior of vh was listed as (2.38) and

the full derivation can be found in Appendix A.1.3.
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p(vh|dh,θ) ∝ p(d|ϕ1, ϕ2, w, vh)p(vh|w)

vh|dh,θ ∼ Bernoulli


[
w(1− ϕ1)dh−1ϕ1

]
w(1− ϕ1)dh−1ϕ1 + (1− w)(1− ϕ2)dh−1ϕ2

 (2.38)

Metroplois-Hastings algorithm

In many cases, it is not possible to sample from the conditional posterior for all

τm, regardless of the choice for priors. Given this, the Metropolis-Hasting algorithm

could be employed. A special case of the algorithm was developed by Metropolis and

his colleagues in 1953 [38] and was generalized by Hastings in 1970 [22]. As stated

above, [17] , [3], and [46] are good resources beyond this text and the seminal papers

on this subject. For the general case, the notation from Section 2.2.2 was used. Since

θi could not be drawn from a distribution as in the Gibbs sampler, a proposal (θp)

was generated. This proposal was generated using a “jumping distribution” given the

previous value for θ which was denoted at J (θp|θi−1). Then, a value r, which compared

the probability of θp with θi−1 was computed using the formula in (2.39). If r ≥ 1 (ie

θp was more likely to occur than θi−1), than θi = θp. If r ≤ 1, than θi = θp with

probability r, otherwise θi = θi−1. Like Gibbs sampling, this was continued for N

draws.

The general Metropolis-Hastings algorithm. (2.39)

I Make an initial guess or choose values for θ0

II for i=1:N

(a) Generate θp from J (θp|θi−1)

(b) Set r = p(θp|y)/J(θp|θi−1 )
p(θi−1|y)/J(θi−1|θp )

(c) Get c where c ∼ unif(0, 1)
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(d) If r ≥ c than θi = θp, otherwise θi = θi−1

III end

By varying J (θp|θi−1), it will change the acceptance probability of θp. The accep-

tance probability only affects the efficiency of mixing. Therefore, given enough draws,

the algorithm should simulate the true distribution regardless of acceptance rate. How-

ever, for most one-dimensional problems, an acceptance rate of 0.44 should be targeted

while a rate of 0.23 should be targeted for most cases when proposing a vector as

above. More on this and assessing convergence can be found in [17]. Finally, the

Metropolis-Hastings algorithm can be used to compute the value of a single conditional

posterior distribution within a Gibbs sampler. This was the setting in which Metropolis-

Hasting was usually applied for this research. To illustrate this, consider the mixture

of two geometric distributions. The calculation for (2.31) could be replaced with a

Metropolis-Hastings step. For this, a jumping distribution was chosen (J (wp|wi−1)). A

common choice is wp ∼ N
(
wi−1, σ

2) where N denotes the normal distribution. How-

ever, 0 ≤ w ≤ 1, so the Normal distribution was not viable for this example. This was

rectified by using the truncated normal distribution on 0 to 1 with mean wi−1 and vari-

ance σ2 which was denoted T N
(
wi−1, σ

2; (0, 1)
)
Then, the posterior of (2.26) could be

simulated using (2.27) except (2.31) was replaced by (2.40). In (2.40) J(wp|wi−1) rep-

resents the probability density function for wp ∼ T N
(
wi−1, σ

2; (0, 1)
)
and J(wi−1|wp)

represents the probability density function for wi−1 ∼ T N
(
wp, σ

2; (0, 1)
)
.

Metropolis-Hastings step for wi. (2.40)

I Generate wp ∼ T N (wi−1, σ
2; (0, 1))

II Set r = p(wp|y,v,θ−w)/J(wp|wi−1)
p(wi−1|y,v,θ−w)/J(wi−1|wp)

III Get c where c ∼ unif(0, 1)

IV If r ≥ c than wi = wp, otherwise wi = wi−1

With this, the acceptance rates of wp can be changed by choosing different values
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for σ2. Finally, although this change would simulate the posterior, the Gibbs sampler

listed originally is more efficient, and the Metropolis-Hasting algorithm should only be

applied when necessary.

Sampling from the posterior predictive distribution

The posterior predictive distribution was defined as (2.24). There are cases where

posterior predictive distribution can be calculated analytically, but many cases includ-

ing those from this research are simulated. Given the posterior distribution with N

samples, sampling N draws from the posterior predictive distribution is not difficult.

The algorithm for sampling was listed as (2.41).

Simulating N draws from the distribution of p(y∗|y). (2.41)

I Simulate N draws from the distribution of p (θ|y)

II for i = 1 : N

(a) Sample (y∗)i ∼ p (y∗|θi)

III end

Furthermore, this sampler could be listed as an additional step in (2.25), as opposed

to a separate sampler. To illustrate predictive sampling, the mixture of two geometric

distributions was employed. Let d∗ = (d∗1, d∗2, ...d∗H) and (d∗h)i be the ith draw from

the posterior of d∗h. Then (d∗h)i can be sampled from Geo ((ϕ1)i) if (vh)i = 1 or

Geo ((ϕ2)i) if (vh)i = 0 where Geo(c) is a geometric distribution with a success rate of

c. The algorithm for this sampler is found in (2.42).

Simulating N draws from the distribution of p(d∗|d). (2.42)

I Simulate N draws from the distribution of p (ϕ1, ϕ2, w,v|d)

II for i = 1 : N

25



(a) for h = 1 : H

i. if (vh)i = 1 draw (d∗h)i ∼ Geo ((ϕ1)i)

ii. if (vh)i = 0 draw (d∗h)i ∼ Geo ((ϕ2)i)

III end

This sampler essentially creates HN draws from the posterior where H was the size

of the original dataset and N was the number of draws from the posterior. In most cases,

it is not necessary to draw a vector of H predictive values for each i. However, using

this format for the predictive distribution improves results for finite mixture models.

For more information, [52] contains extended discussion on this topic in the context of

mixture models.

The posterior predictive samples can be used as justification for the model as well

as predicting future observations. For this research, it was used for prediction, but [17]

contains more discussion on evaluating a model using the posterior predictive distri-

bution. Furthermore, he discusses the predictive model in regards to many different

distributions.

2.3 Parameter Inference on an Orstein-

Uhlenbeck Process

dX = −B (X − µou) dt+ γdW (2.43)

The Orstein-Ulenbeck process is a continuous time process that is described by the

stochastic differential equation in (2.43). Although the process is a continuous time

process, the noisy measurement of X occurred at discrete times. This section discusses

the methodology of using those measurements to make inference on the parameters of
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the governing system.

The seminal research was done by Ornstein and Uhlenbeck to model Brownian

motion [57]. Although the Orstein-Ulenbeck process is a common modeling tool with

many applications, the model itself was not a focus area for this research. The Orstein-

Ulenbeck process was used here to introduce Hidden Markov models (HMMs) and to

explore how inference on the HMM affected inference on B and γ. For this, the special

case where µou = 0 was considered and was listed as (2.44).

dX = −BXdt+ γdW (2.44)

B ≥ 0

Before delving into inference, it is helpful to have a basic understanding of (2.44).

Following that, the Ornstein-Ulenbeck was described as a type of random walk. The

first term (−BXdt) is not random and pulls X back toward zero at a rate proportional

to the product of the distance from zero and time elapsed (dt). The second term

contributes the randomness where γ is a constant and W is a Wiener process defined

by the properties in (2.45).

Properties of Wiener Process (W ) (2.45)

I W (0) = 0

II For t1 ≤ t2, W (t2)−W (t1) ∼ N(0, t2 − t1)

III For t1 ≤ t2 ≤ t3 ≤ t4, W (t2)−W (t1) and W (t4)−W (t3) are independent.

2.3.1 Hidden Markov Models

Rather than having observations made continuously, the data includes observations

ofX at a discrete set of times t1, t2,...., and tT where ti−ti−1 = ∆t for all i ∈ {2, 3, ..., T}.
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The discrete case of (2.44) was listed as (2.46) and (2.47) where xi isX(ti). The mapping

to k and σ2
η are (2.48) and (2.49) and derivations can be found in the Appendices B.1.1

and B.1.2 respectively. The derivation follows the outline of the derivation from [57]. It

is less concise, but the derivation used does not require knowledge specific to stochastic

differential equations as that was not a focus of this work.

x1 ∼ Nx1

(
µ0, σ

2
η

)
(2.46)

xi = kxi−1 + ηi ηi ∼ N(0, σ2
η) (2.47)

k = e−B(∆t) (2.48)

σ2
η = γ2

2B
[
1− e−2B(∆t)

]
(2.49)

A Markov model is a model such that p(xi|xi−1, xi−2, ...., x1) = p(xi|xi−1) or xi only

depends on the previous state. From (2.47), p(xi|xi−1, xi−2, ...., x1) = p(xi|xi−1) =

N (kxi−1, σ
2
η), and therefore the discrete system is Markovian. A Hidden Markov model

is where xi is not observed directly. For (2.47), assume there was random measurement

error of the true state xi. Then, the dataset included all yi where yi ∼ N (xi, σ2
ς ) and

the true xi is unknown. This results in (2.50) and this combined with (2.46) and (2.47)

is a special case of Hidden Markov model called a dynamic linear model (DLM).

yi = xi + ςi (2.50)

ς ∼ N (0, σ2
ς )

2.3.2 Making Inference on a DLM

A dynamic linear model (DLM) (2.51)
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x1 ∼ Nx1

(
µ0, σ

2
η

)
xi = kxi−1 + ηi ηi ∼ N(0, σ2

η)

yi = xi + ςi ς ∼ N (0, σ2
ς )

Recall, the interest was making inference on B and γ, but direct inference given

the data was not possible. Instead, inference was made on the parameters of the DLM

which included θ = (k, σ2
η, σ

2
ς , µ0) and xT1 where xT1 = (x1, x2, ..., xT ).

B = − ln k
∆t (2.52)

γ = ση

√
2B

1− e−2B∆t (2.53)

Inference was made using the joint probability of the observed (yT1 ) and unobserved

(xT1 ) variables. The joint probability listed as (2.54) came from (2.51) and the convenient

Markov properties of the DLM. Using (2.54), inference was made using two methods.

The first was a variant of the EM method described in Section 2.1 and point estimates

for k̂, σ̂2
η, σ̂2

ς ,µ̂0, and x̂T1 were made. The second was a Bayesian model as described in

Section 2.2 that simulates the posterior distribution of k, σ2
η, σ2

ς , µ0, and xT1 using a

Gibbs sampler.

p(xT1 ,yT1 |θ) = p(x1, y1|xT2 , µ0, σ
2
η)

T∏
i=2

[
p(xi|xi−1

0 ,xTi+1, k, σ
2
η)p(yi|xi, σ2

ς )
]

p(xT1 ,yT1 |θ) = p(x1|µ1, σ
2
η)p(y1|x1, σ

2
ς )

T∏
i=2

[
p(xi|xi−1, k, σ

2
η)p(yi|xi, σ2

ς )
]

(2.54)
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2.3.3 Estimating the parameters of a DLM using the EM

method

For the EM method, the expectation step and maximization step must be computed.

For this, consider the log of the joint probability that was written as (2.54) where

θ = (k, σ2
η, σ

2
ς , µ0).

ln(p(xT1 ,yT1 |θ)) = ln {p(x1|θ)}+
T∑
i=2

ln {p(xi|xi−1,θ)}+
T∑
i=1

ln {p(yi|xi,θ)}

ln {p(x1|θ)} = −1
2 ln(2πσ2

η)−
1

2σ2
η

(x1 − µ0)2

T∑
i=2

ln {p(xi|xi−1,θ)} = −T − 1
2 ln(2πσ2

η)−
T∑
i=2

1
2σ2

η

(x2
i − 2kxixi−1 + k2x2

i−1)

T∑
i=1

ln {p(yi|xi,θ)} = −T2 ln(2πσ2
ς )−

T∑
i=1

1
2σ2

ς

(y2
i − 2yixi + x2

i )

For the jth expectation step, ExT1 |θ̂j−1,yT1
[ln(p(xT1 ,yT1 |θ))] was computed. For this,

it was sufficient to compute ExT1 |θ̂j−1,yT1
[xi], ExT1 |θ̂j−1,yT1

[x2
i ], and ExT1 |θ̂j−1,yT1

[xixi−1]. For

brevity, they were denoted as (x̂i)j ,
(
x̂2
i

)
j
, and

(
x̂i−1xi

)
j .

The E-step: Computing (x̂i)j,
(
x̂2
i

)
j
, and

(
x̂i−1xi

)
j

To compute (x̂i)j ,
(
x̂2
i

)
j
, and

(
x̂i−1xi

)
j , (x̂i)j and

(
x̂2
i

)
j
−
(
x̂2
i

)
j were computed.

Although
(
x̂2
i

)
j
−
(
x̂2
i

)
j which was denoted as

(
s2
xi

)
j
was not a quantity of interest, it

was computed as it was necessary to find
(
x̂2
i

)
j
, and

(
x̂i−1xi

)
j . (x̂i)j and

(
s2
xi

)
j
were

computed using a Kalman Filter which was developed by Rudolph Kalman in 1960 [26].

The Kalman Filter, which is a special case of the forward-backwards method, consists of

computing the expectation and variance of three probabilities. The first two of these are

the state forecast (p(xi|yi−1
1 ,θ)) and the state update (p(xi|yi1,θ)) which were denoted
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as ai and αi respectively.

âi = E(ai) s2
ai = Var(ai) (2.55)

α̂i = E(α) s2
αi = Var(αi) (2.56)

The expectation and variance of each ai and αi were computed recursively from

i = 1 to T . They were denoted as (2.55) and (2.56) and the values associated were

listed in (2.57). For the purpose of parameter estimation, the expectation and variance

of xi|yT0 , θ̂j−1 was needed. However, Kalman Filters can also be used for state estimation

and prediction when θ was known. Therefore, subscripts of the expectation, variance,

and θ were left off to maintain generality; but when implementing the entirety of the

EM algorithm from this section, all θ should be θ̂j−1.

Computing the State Forecast and State Updates (2.57)

I â1 = µ0

II s2
a1 = σ2

η

III α̂1 = â1 + s2a1
σ2
ς

(y1 − â1)

IV s2
α1 = σ2

ς s
2
a1

σ2
ς+k2s2a1

V For i = 1 : T

(a) âi = kα̂i−1

(b) s2
ai = σ2

η + k2s2
αi−1

(c) s2
αi = σ2

ς s
2
ai

σ2
ς+k2s2ai

(d) α̂i = âi + s2αi
σ2
ς

(yi − âi)

VI end
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The backwards probability was defined as p(xi|yT0 ,θ) or the probability of xi given

the full data. Following that, the expectation and variance of the backward probability

were already defined as (x̂i)j and
(
s2
xi

)
j
. As with the forward portion, the backward

portion was computed recursively. The algorithm for computing the backward proba-

bility was listed as (2.58).

Computing the expectation and variance given the full data (2.58)

I x̂T = α̂T

II s2
xT

= s2
αT

III For i = T − 1 : 1

(a) x̂i = α̂i + s2αi
s2ai+1

[x̂i+1 − âi+1]

(b) s2
xi = s2

αi +
(
ks2αi
s2αi+1

)2 [
s2
xi+1 − s

2
ai+1

]
IV end

Then,
(
x̂2
i

)
j
, and

(
x̂i−1xi

)
j could be computed directly from the results of the

forward and backward iterations. They were listed as (2.59) and (2.60) respectively.

x̂2
i = s2

xi + (x̂i)2 (2.59)

x̂i−1xi = x̂2
i+1α̂i +

ks2
αi

s2
ai+1

[
x̂2
i − âi+1x̂i+1

]
(2.60)

A derivation of the E-step can be found in Appendix B.2.1. In addition, derivations

can be found in [54] and [15]. [15] is more explicit and is a good source to build an

initial understanding of the forward-backward method. [54] is a comprehensive book

on time series and provides information on the complete EM method.
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The M-step

For the jth M-step, it was necessary to find the θj that maximized ExT1 |θ̂j−1,yT1
[

ln
(
p
(
xT1 , yT1 |θ

))]
. The maximizing values of θj given (x̂i)j ,

(
x̂2
i

)
j
, and

(
x̂i−1xi

)
j

were listed in (2.61) to (2.64).

(µ̂0) = (x̂1)j (2.61)

k̂j =
∑T
i=2

(
x̂i−1xi

)
j(

x̂2
i

)
j

(2.62)

MSE
(
(x̂i)j , k̂j (x̂i−1)j

)
=

T∑
i=2

((
x̂2
i

)
j
− k̂j

(
x̂i−1xi

)
j + (k̂j)2

(
x̂2
i−1

)
j

)

MSE
(
(x̂1)j , (µ̂0)j

)
=
((
x̂2

1

)
j
− 2 (µ̂0)j (x̂1)j +

(
(µ̂0)j

)2
)

(
σ̂2
η

)
j

=
MSE

(
(x̂i)j , k̂j (x̂i−1)j

)
+MSE

(
(x̂1)j , (µ̂0)j

)
T

(2.63)

(
σ̂2
ς

)
j

= 1
T

[
T∑
i=1

(
y2
i − 2yi (x̂i) +

(
x̂2
i

)
j

)]
(2.64)

The EM-algorthm for a DLM

The following describes the full EM-algorithm for the DLM, where δ was the arbi-

trary stopping condition. For further information on the full algorithm, see [54]

I Pick θ̂0

II Set j = 0 and define
∣∣∣∣∣∣θ̂0 − θ̂−1

∣∣∣∣∣∣
∞
> δ.

III While
∣∣∣∣∣∣θ̂j − θ̂j−1

∣∣∣∣∣∣
∞
> δ

(a) j = j + 1

(b) Calculate all (âi)j ,
(
s2
ai

)
j
, (α̂i)j , and

(
s2
αi

)
j
using (2.57)

(c) Calculate all (x̂i)j and
(
s2
xi

)
j
using (2.58).

(d) Calculate
(
x̂2

1

)
j
using (2.59).
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(e) For i = 2 : T

i. Calculate
(
x̂2
i

)
j
using (2.59).

ii. Calculate
(
x̂i−1xi

)
j using (2.60).

(f) Calculate (µ̂0)j using (2.61).

(g) Calculate k̂j using (2.62).

(h) Calculate
(
σ2
η

)
j
using (2.63).

(i) Calculate
(
σ2
ς

)
j using (2.64).

2.3.4 Estimating the parameters of a DLM using Bayesian

Inference

For the Bayesian model, σ2
η, σ2

ς , k, and µ0 were treated as random variables. The

joint posterior of θ was intractable, so a Gibbs sampler was used. Like the EM method,

information on xT1 |yT0 was required to sample from the posterior of θ. Therefore, the

conditional posterior of xT1 was also sampled using a method called the forward filtering

backward sampling (FFBS) [59] [16].

Forward filter-backward sample

To sample the conditional posterior of xT1 , it was necessary to draw from the distri-

bution of p(xi|yT1 ,θ). For this, the expectation and variance of the state forecast and

state update were needed. Following this, the forward filter was computed using (2.57)

exactly as with the EM method. Then
(
xT0

)
j
was drawn from the the conditional pos-

terior using (2.65) where cj denotes the jth draw from the conditional posterior of c and

(cs)j denotes the same for a sub-scripted random variable.

The backward sample for a DLM (2.65)

I (xT )j = NxT
(

(α̂T )j ,
(
s2
αT

)
j

)
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II For i = T − 1 : 1

(a) Draw (xi)j ∼ Nxi

α̂i +
(s2αi)j k̂j−1(
s2ai+1

)
j

[
(xt+1)j − âi+1

]
,
(σ2
η)j−1(s2αi)j(
s2ai+1

)
j


III end

The derivation follows Appendix (B.2.1) through Appendix (B.12). Since (xi)j was

drawn in reverse order, (xi+1)j had already been drawn when (xi)j was drawn. Then,

the current conditional posterior of (xi+1)j was used in drawing (xi)j . This made expec-

tation and variance calculated for the Kalman Filter in Appendix (B.2.1) after (B.12)

not necessary. Therefore, for the Bayesian Model all information in Appendix (B.2.1)

after (B.12) can be ignored.

p(σ2
η|yT1 ,xT1 ,θ−σ2

η
) ∝ p(xT1 ,yT1 |σ2

ς , σ
2
η, k, µ0)p(σ2

η)

p(σ2
ς |yT1 ,xT1 ,θ−σ2

ς
) ∝ p(xT1 ,yT1 |σ2

ς , σ
2
η, k, µ0)p(σ2

ς )

σ2 ∼ IG
(
n

2 ,
d

2

)

σ2
η|yT1 ,xT1 ,θ−σ2

η
) ∼ IG

T + nη
2 ,

[
dη + (x1 − µ0)2 +

T∑
i=2

(xi − kxi−1)2
]

2

 (2.66)

σ2
ς |yT1 ,xT1 ,θ−σ2

ς
∼ IG

(
T + nς

2 ,
1
2

[
dς +

T∑
i=1

(yi − xi)2
])

(2.67)

A derivation for (2.66) and (2.67) can be found in Appendix B.2.3.1 and B.2.3.2 re-

spectively. If there is little or no prior information about σ2
η and σ2

ς , the flat priors

p(σ2
η) ∝ 1

σ2
η
and p(σ2

η) ∝ 1
σ2
ς
can be employed. The resulting posteriors are the same

as (2.66) and (2.67) except nη = dη = nς = dς = 0.

For, k, the conditionally conjugate prior was not used. The normal distribution is

the conditionally conjugate prior for k. There are two possible problems with this choice

of prior. The first is the effect of the prior on the posterior. This can be minimized by
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picking large values for the variance of the normal distribution. The second problem is

that this prior can draw values of k such that k > 1 or k < 0. In the case k > 1 or k < 0,

it is expected that xi goes to infinity, which was not the case being considered. Therefore

p(k) must restricted from 0 to 1. A prior that achieves this and results in a conditional

posterior that could be sampled was the uniform prior from 0 to 1. The conditional

posterior was listed as (2.68) and I[0 ≤ k ≤ 1] denotes the indicator function.

p(k|yT1 ,xT1 ,θ−k) ∝ p(yT1 ,xT1 |k, µ0, σ
2
η, σ

2
ς )p(k)

p(k) = I[0 ≤ k ≤ 1]

k|yT1 ,xT1 ,θ−k ∼ T N
(∑T

i=2 xixi−1∑T
i=2 x

2
i−1

,
σ2
η∑T

i=2 x
2
i−1

; (0, 1)
)

(2.68)

The posterior in (2.68) is proportional to a truncated normal on (0, 1) with mean
T∑
i=2

xixi−1

T∑
i=2

x2
i−1

, variance σ2
η

T∑
i=2

x2
i−1

. A derivation for (2.68) can be found in Appendix B.2.3.3.

The conditionally conjugate prior of µ0 was also a normal distribution. For µ0, the

conjugate prior was used since there was a little more information. Since µ0 represents

an initial state before x1, and since each state is normally distributed, it is logical to place

a normal prior for µ0 near y1. However, since there is no direct information available

for this initial state, it was advantageous to make the prior weak. As before, the normal

prior can be made weak with a large variance. Therefore, the prior µ0 ∼ N
(
m0, σ

2
m

)
was used with µ0 ≈ y1 and σ2

m large. The resulting posterior was listed as (2.69) and a

derivation can be found in Appendix B.2.3.4.

p(µ0|yT1 ,xT1 ,θ−µ0) ∝ p(xT1 ,yT1 |σ2
ς , σ

2
η, k, µ0)p(µ0)

µ0|yT1 ,xT1 ,θ−µ0 ∼ N
(
x1σ

2
m +m0σ

2
η

σ2
m + σ2

η

,
σ2
ησ

2
m

σ2
m + σ2

η

)
(2.69)
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The Gibbs Sampler

To create an accurate representation of the posterior, N draws were taken from each

conditional posterior. At the beginning of the simulation initial values for θ0 must be

chosen as with the EM algorithm. With the initial values set, draws are taken from

each of the following distributions.

I Choose θ0

II For j = 1 : N

(a) Draw
(
xT1

)
j
from p

(
xT1

∣∣∣∣yT1 (σ2
η

)
j−1

,
(
σ2
ς

)
j−1 , kj−1, (µ0)j−1

)
listed as (2.65).

(b) Draw
(
σ2
η

)
j
from p

(
σ2
ς

∣∣∣∣(xT1 )j ,yT1 , (σ2
η

)
j−1

, kj−1, (µ0)j−1

)
listed as (2.66).

(c) Draw
(
σ2
ς

)
j from p

(
σ2
η

∣∣∣∣(xT1 )j ,yT1 , (σ2
ς

)
j−1 , kj−1, (µ0)j−1

)
listed as (2.67).

(d) Draw (k)j from p

(
k

∣∣∣∣(xT1 )j ,yT1 , (σ2
ς

)
j−1 ,

(
σ2
η

)
j−1

, (µ0)j−1

)
listed as (2.68).

(e) Draw (µ0)j from p

(
µ0

∣∣∣∣(xT1 )j ,yT1 , (σ2
ς

)
j−1 ,

(
σ2
η

)
j−1

, kj−1

)
listed as (2.69).

III end

The DLM discussed was one special case of the larger family of DLMs. For more

information on Bayesian inference on DLMs see [59] and for more on Bayesian inference

on general time series see [41].

2.3.5 Studying the effect of data collection on the infer-

ence of B, γ, and σ2
ς

The test function (2.70)
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dX = −BXdt+ γdW

B = γ = 1

yi = X(ti) + ς ς ∼ Nς(0, σ2
ς )

The system to be inferred on was listed as 2.70. B and γ were the primary interest,

but σ2
ς was necessary to make inference on the aforementioned parameters and it also

quantified noise from the data collection. The inference on B and γ varies depending

on the values of k, σ2
η, σ2

ς , and the number of observations. The values of k, σ2
η, σ2

ς , and

the number of observations are determined by the choice of ∆t and total time observed.

Therefore, the effect of ∆t and the total time observed (tT − t1) on the quality of

inference was studied.

To do this, a few different experiments were run. For all inference, Bayesian posteri-

ors were used to evaluate as much more could be extrapolated from a single simulation

and the associated inference. Since k varies from (0, 1) regardless of choice of parameter

in (2.70) and σ2
η varies from

(
0, γ

2

2B

)
than B = γ = 1 was chosen for all experiments.

The values of k and σ2
η given B = γ = 1 were shown as functions of ∆t in Figure 2.1.

The first experiment (2.3.5) studied inference while the number of observations of the

DLM was constant and ∆t was varied. The second (2.3.5) studied inference while ∆t

was constant and tF − t1 was varied. Finally, the last experiment (2.3.5) holds tF − t1

constant as the number of observations and ∆t were varied.

Varying ∆t = 8 to ∆t = 1
16384 for Dynamic Linear Models with 10, 000

observations

For each trial in this experiment, there are 10, 000 observations. ∆t was varied from

∆t = 8 to ∆t = 1
16384 and ∆t for each successive trial was half the previous trial.

Since the number of observations was constant, the total elapsed time (tF − t1) was
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Figure 2.1: The value of k(∆t) and ση(∆t)2 for ∆t ∈ [0, 1]

also half of the previous trial. Given that, each trial was a separately simulated dynamic

linear models.

98% CI 95% CI 80% CI

Figure 2.2: CI Demarcation

To explore inference for each ∆t, let

(εc)j be the difference between the jth

draw from the posterior and the true value

of c or (εc)j + cj = c. The distributions

were compared by plotting the credible in-

tervals of
{

(εc)j
}

where
{

(εc)j
}

was the

set of all (εc)j for each trial on the same

axis. 98%, 95%, and 80% CIs (Credible

Intervals) were demarcated by the color

schemes in Figure 2.2. Unfortunately, the

outliers made it difficult to observe the

trends of the credible intervals from ∆t = 8 to ∆t = 1
16384 for

{
(εB)j

}
and

{
(εγ)j

}
.

Therefore, the transformation g
({

(εc)j
})

where g(x) = sinh−1
(
sinh−1(x)

)
were plot-

ted in Figures 2.3 and 2.4 for c = B and c = γ respectively. Each trial was labeled on the
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x-axis with their corresponding ∆t. Finally,
{(
εσ2
ς

)
j

}
had a slightly different structure

for ∆t = 8 to ∆t = 1
16384 . Following this, the transformation used for

{(
εσ2
ς

)
j

}
was

h

({(
εσ2
ς

)
j

})
where h(x) = g(50x). h

({(
εσ2
ς

)
j

})
was plotted in Figure 2.5.

Credible Intervals of g
({

(εB)j
})

Figure 2.3: g
({

(εB)j
})

for experiment 2.3.5

Credible Intervals of g
({

(εγ)j
})

Figure 2.4: g
({

(εγ)j
})

for experiment 2.3.5

Examining Figures 2.3, 2.4, and 2.5 revealed three distinct region of behaviors. For

large ∆t, it was seen the credible intervals of
{

(εγ)j
}

and
{(
εσ2
ς

)
j

}
were large. For

small ∆t the credible intervals of
{

(εB)j
}
and

{
(εγ)j

}
were large and do not appear to

be centered around the true values of B and γ. Finally, for intermittent values of ∆t,

the credible intervals remained more stable either growing or shrinking slightly for each

change in ∆t. Since these regions displayed distinct behaviors, each was investigated
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Credible Intervals of h
({(

εσ2
ς

)
j

})

Figure 2.5: h
({(

εσ2
ς

)
j

})
for experiment 2.3.5

separately.

First, ∆t = 8 to ∆t = 1 was explored. Figure 2.6 has the histograms of {Bj}, {γj},

and
{(
σ2
ς

)
j

}
for ∆t = 8. It is clear that distributions of {γj} and

{(
σ2
ς

)
j

}
are not good

estimates of γ and σ2
ς . To better explore this phenomenon {kj} and

{(
σ2
η

)
j

}
were also

placed in Figure 2.6 since the MCMC algorithm takes draws from the posteriors of k,

σ2
η, and σ2

ς .

Histograms of the posterior draws from {θj} against the true values of θ

Figure 2.6: Histograms of {Bj}, {γj},
{(
σ2
ς

)
j

}
, {kj}, and

{(
σ2
η

)
j

}
for ∆t = 8

of experiment 2.3.5

Recall k, σ2
η, and σ2

ς were defined by (2.51). If k = 0 the system was reduced to

xi = σ2
η and yt = xi + σ2

ς which can be simplified to yi = σ2
η + σ2

ς . Since xi was
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unobserved, it was impossible to discern between σ2
η and σ2

ς in the case where k = 0. It

is interesting to note, for this simulation σ2
η + σ2

ς = 0.55 and both σ2
η and σ2

ς explore a

great deal of the space from 0 to 0.55. Following this, the posteriors of σ2
η and σ2

ς did

not perform well for low values of k. In Figures 2.7 and 2.8, the identifiability issues

persists from ∆t = 4 to ∆t = 1 and starts rapidly improving in ∆t = 1
2 and 1

4 .

Histograms of the posterior draws from
{(
σ2
η

)
j

}
against the true values of σ2

η

Figure 2.7: Histograms of
{(
σ2
η

)
j

}
for ∆t = 4 to ∆t = 1

4 of experiment 2.3.5

Histograms of the posterior draws from
{(
σ2
ς

)
j

}
against the true values of σ2

ς
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Figure 2.8: Histograms of
{(
σ2
ς

)
j

}
for ∆t = 4 to ∆t = 1

4 of experiment 2.3.5
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The inference on B, γ, and σ2
ς exhibit more positive behavior for ∆t = 1

2 to ∆t =
1

2048 . The credible intervals did not exhibit anomalies and are centered around the true

values of B, γ, and σ2
ς . Figures 2.9, 2.10, and 2.11 compare the credible intervals of

∆t = 1
2 to ∆t = 1

2048 using the same visualization as Figure 2.2.

Credible Intervals of
{

(εB)j
}

Figure 2.9:
{

(εB)j
}
for ∆t = 1

2 to ∆t = 1
2048 of experiment 2.3.5

Credible Intervals of
{

(εγ)j
}

Figure 2.10:
{

(εγ)j
}
for ∆t = 1

2 to ∆t = 1
2048 of experiment 2.3.5

Only the CI for
{(
εσ2
ς

)
j

}
became more precise as ∆t got smaller. As before,

{
(εk)j

}
and

{(
εσ2
η

)
j

}
were investigated to understand this behavior. The credible intervals of{

(εk)j
}
and

{(
εσ2
η

)
j

}
were plotted in Figures 2.12 and 2.13.

One can observe the credible intervals of
{

(εk)j
}

and
{(
εσ2
η

)
j

}
are decreasing in

size for ∆t = 1
2 to ∆t = 1

2048 . Therefore, in these two cases the lack of improvement

as ∆t gets small for
{

(εB)j
}
and

{
(εγ)j

}
must exist in the transformation from k and

σ2
η to B and γ. Since increase of the size of the credible intervals of

{
(εB)j

}
was more
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Credible Intervals of
{(
εσ2
ς

)
j

}

∆t

σ
2
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σ
2
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σ
2
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σ
2
ς + 0.02
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1
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1

16
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32

1
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1

128

1
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1
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1

1024

1
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Figure 2.11:
{(
εσ2
ς

)
j

}
for ∆t = 1

2 to ∆t = 1
2048 of experiment 2.3.5

extreme, the transformation from k to B appears to be the limiting factor. Therefore,

the transformation from k to B was studied.

B = − ln k
∆t (2.71)

Then behavior of (εB)j was studied using an expansion around the true value of k

and a derivation of the expansion can be found in Appendix B.2.3.5.
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Credible Intervals of
{

(εk)j
}

Figure 2.12:
{

(εk)j
}
for ∆t = 1

2 to ∆t = 1
2048 of experiment 2.3.5

Credible Intervals of
{(
εσ2
η

)
j

}

Figure 2.13:
{(
εσ2
η

)
j

}
for ∆t = 1

2 to ∆t = 1
2048 of experiment 2.3.5

Bj = − ln(kj)
∆t

B + (εB)j = −
ln
(
k + (εk)j

)
∆t

(εB)j = −
( 1
k∆t

)
(εk)j +O(ε2k,j) (2.72)

The pattern observed in Figure 2.9 can be explained using (2.72) as a an estimate

for the true value of (εB)j . For each successive trial in experiment 2.3.5, ∆t is half of

∆t of the last trial. Since the change of the successive values in k was relatively small,

the value of
(

1
k∆t

)
was about twice the previous due to the change in ∆t. Therefore, to

make the CI of
{

(εB)j
}
more precise, the CI of

{
(εk)j

}
had to be at least half the CI
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of
{

(εk)j
}
for the previous trial.

Finally, the behaviors for small values of ∆t were studied. To study the range

of ∆t = 1
4096 to ∆t = 1

16384 , ∆t = 1
2048 was included in figures for reference. In

Figure 2.14, it can be see that the credible intervals of
{

(εB)j
}
and

{
(εγ)j

}
have two

negative behaviors for ∆t = 1
4096 to ∆t = 1

16384 . The size of the credible intervals grow

rapidly and becomes further from the true value of B and γ as ∆t gets smaller. Once

again, since the behavior is more pronounced in Bj , Bj was studied. As found above,

the credible intervals of
{

(εk)j
}

and ∆t determine the credible intervals of
{

(εB)j
}
.

Therefore,
{

(εk)j
}
and

{
(k)j

}
were plotted in Figure 2.15. Examining Figure 2.15, it

can be seen that the precision of the credible intervals remain relatively constant while

the accuracy degrades as ∆t gets smaller. Then, the transformation described by (2.72)

amplified these errors. It is interesting to note that the credible intervals of {kj} for

∆t = 1
4096 to ∆t = 1

16384 are very similar.

Credible Intervals of
{

(εB)j
}
,
{

(εγ)j
}
, and

{(
εσ2
ς

)
j

}

Figure 2.14:
{

(εB)j
}
,
{

(εγ)j
}
, and

{(
εσ2
ς

)
j

}
for ∆t = 1

2048 to ∆t = 1
16384 of

experiment 2.3.5

Given this odd behavior, additional tests were conducted. First, it was tested if the

observed behavior was a result of the MCMC simulation and not the dataset. Follow-

ing this, three more independent MCMC were run for the same dataset as above for

∆t = 1
4096 where the initial guess was the true values of the parameters. The addi-

tional MCMC simulations were plotted in Appendix B.2.3.6. Each of the independent

simulations using the true values of the parameters as the initial guess produced nearly
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Credible Intervals of
{

(εk)j
}

Credible Intervals of {kj}

Figure 2.15:
{

(εk)j
}
and

{
(k)j

}
for ∆t = 1

2048 to ∆t = 1
16384 of experiment 2.3.5

identical results. Therefore, it was reasonable to conclude that the behavior exhibited

was not a result of poorly tuned MCMC simulation.

Following the previous result, it was checked to see if other DLMs generated with

10, 000 observations and ∆t = 1
4096 would show similar qualities. Since {Bj} was the

most problematic and was determined by {kj}, the credible intervals of {kj} were plotted

in Figure 2.16. In Figure 2.16, it was seen that only one other DLM produced results

similar to the original MCMC and the size of the credible intervals varied greatly.

Credible Intervals of
{

(εk)j
}
for ∆t = 1

4096 (left) and ∆t = 1
128 (right)

Figure 2.16: CI of
{

(εk)j
}

for ∆t = 1
4096 and ∆t = 1

128 comparing four new
datasets to the original dataset

To check to see if this behavior was constant for all ∆t,MCMC simulations were run

on additional datasets with ∆t = 1
128 and 10, 000 observations. The credible intervals

of
{

(εk)j
}
for ∆t = 1

128 were also placed in Figure 2.16. ∆t = 1
128 had credible intervals
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of consistent size and the true value of kj varied randomly within the credible intervals.

The poor behavior observed with the trials where ∆t = 1
4096 was caused by k being

too close to 1 or ∆t being too small. This behavior was problematic for two reasons.

First, because without context, it would be hard to identify. The histograms of
{

(εk)j
}
,{(

εσ2
η

)
j

}
, and

{(
εσ2
ς

)
j

}
for the original dataset found in Appendix B.2.3.6 do not

exhibit obviously poor behavior like the cases when ∆t is too large. Second, because

∆t is small, this poor behavior was greatly magnified by the transformation from k to

B. This was illustrated by the comparison of g
({

(εB)j
})

for ∆t = 1
4096 and ∆t = 1

128

in Figure 2.17. Therefore, it is important to provide context by evaluating multiple

datasets or choices of ∆t to confirm that an appropriate value for ∆t is being used.

Credible Intervals of g
({

(εB)j
})

for ∆t = 1
4096 (left) and ∆t = 1

128 (right)

Figure 2.17: CI of g
({

(εB)j
})

for ∆t = 1
4096 and ∆t = 1

128 comparing four new
datasets to the original dataset

Varying observations from 20 to 160, 000 with ∆ = 1
8

For this experiment ∆t was set to 1
8 . Then the number of observations were varied

from 20 to 160, 000. Each successive trial had about twice the observations then the

previous. Since ∆t was constant for all trials, then k = 0.8825, σ2
η = 0.1106, and

σ2
ς = 0.05 for all trials.

In experiment 2.3.5, trials with large ∆t performed poorly due to identifiably issues,

which should not be problematic in any of the trials in experiment 2.3.5. However, the
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low number of observations could be problematic. To study this, the posteriors of k,

σ2
η, and σ2

ς were explored for trials with a small number of observations as those are

the posteriors generated by the MCMC algorithm. The histograms for {kj},
{(
σ2
η

)
j

}
,

and
{(
σ2
ς

)
j

}
for the trial with 20 observations were placed in Figure 2.18.

Histograms of the posterior draws from {kj},
{(
σ2
η

)
j

}
and

{(
σ2
ς

)
j

}
against the

true values of k, σ2
η, and σ2

ς

Figure 2.18: The histograms of {kj},
{(
σ2
η

)
j

}
, and

{(
σ2
ς

)
j

}
for 20 observations

The posterior distributions for k and σ2
η in Figure 2.18 had large credible intervals,

but that was reasonable given there are only 20 observations. However, inference on

the posterior of σ2
ς did not perform as well. The entire posterior of σ2

ς was very close

to 0, and this could be caused by insufficient information within the trial. To study

the sufficient number of observations for this experiment the histograms
{(
σ2
ς

)
j

}
were

plotted for 39 to 625 in Figure 2.19.

Figure 2.19 shows that a disproportionate amount of
(
σ2
ς

)
j near 0 occurred when

there was an insufficient number of observations. For ∆t = 1
8 , poor behavior was

exhibited for 20 to 312 observations. The trials with 625 observations exhibited more

positive behaviors. Therefore, trials with 625 observations or more were evaluated

comparing credible intervals as before. The credible intervals of
{

(εB)j
}
,
{

(εγ)j
}
, and{(

εσ2
ς

)
j

}
were placed in Figures 2.20, 2.21, and 2.22.
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Histograms of the posterior draws from
{(
σ2
ς

)
j

}
against the true value of σ2

ς

Figure 2.19: The histograms of
{(
σ2
ς

)
j

}
for 39 to 625 observations

Credible Intervals of
{

(εB)j
}

Figure 2.20:
{

(εB)j
}
for 625 to 10, 000 observations

In Figures 2.20, 2.21, and 2.22 the credible interval became more precise for
{

(εB)j
}
,{

(εγ)j
}
, and

{(
εσ2
ς

)
j

}
. Since k and ∆t remain constant and (εB)j ≈

[
1

k(∆t)

]
(εk)j , the

factor of improvement of the precision of the credible interval from the discrete model

was translated to the continuous variables in the stochastic differential equation. There

could be a point where increasing data without changing ∆t has diminishing returns,

but a DLM of 1, 280, 000 observations was studied in the experiment in Section 2.3.5

and it still improved over the datasets preceding. Given the computational resources

available, it was not practical to search for the point where increasing data without

changing ∆t did not improve the precision of the credible intervals.
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Credible Intervals of
{

(εγ)j
}

Figure 2.21:
{

(εγ)j
}
for 625 to 10, 000 observations

Credible Intervals of
{(
εσ2
ς

)
j

}

Figure 2.22:
{(
εσ2
ς

)
j

}
for 625 to 10, 000 observations

Varying ∆t = 1 to ∆t = 1
128 for a Dynamic Linear Models where tF − t1 =

10, 000

The total time lapse in experiment 2.3.5 was 10, 000. The experiment with the

largest ∆t was 1, producing 10, 000 observations. The dataset was the same for each

trial, and the trials only differed by ∆t between each and the number of observations.

For each trial, ∆t was 1
2 of the ∆t of the previous trial. The smallest ∆t was ∆t = 1

128

and 1, 280, 000 observations were taken.

First, it was checked if identifiability issues occurred with σ2
η and σ2

ς for large ∆t.

Histograms of
{(
σ2
η

)
j

}
and

{(
σ2
ς

)
j

}
were plotted in Figure 2.23 for ∆t = 1 to ∆t = 1

4 .

The trial with ∆t = 1 exhibited the aforementioned identifiability issues where the

others did not.
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Histograms of the posterior draws from{(
σ2
η

)
j

}
against the true value of σ2

η

Histograms of the posterior draws from{(
σ2
ς

)
j

}
against the true value of σ2

ς

Figure 2.23: Histograms of
{(
σ2
η

)
j

}
and

{(
σ2
ς

)
j

}
for ∆t = 1 to ∆t = 1

4

For small ∆t, the trials became to computationally expensive before the posteriors

exhibited similar behavior to trials in Section 2.3.5 for small ∆t. Therefore, ∆t = 1
2

to ∆t = 1
128 were evaluated using credible intervals as before. The comparison of

the intervals of
{

(εB)j
}
,
{

(εγ)j
}
, and

{(
εσ2
ς

)
j

}
were placed in Figures 2.24, 2.25,

and 2.26 respectively. The credible intervals of
{(
εσ2
ς

)
j

}
for ∆t = 1 made it difficult

to observe the credible intervals for all ∆t. Therefore,
{(
εσ2
ς

)
j

}
was plotted using the

transformation f(x) = g(250x).

Credible Intervals of
{

(εB)j
}

Figure 2.24:
{

(εB)j
}
for ∆t = 1

4 to ∆t = 1
128

Unlike experiment 2.3.5, the credible intervals for
{

(εB)j
}

do not get less precise

as ∆t gets small. The credible intervals show improvement with diminishing returns as

∆t gets very small. Furthermore,
{

(εγ)j
}

gets more precise as ∆t gets small. Equa-
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Credible Intervals of
{

(εγ)j
}

Figure 2.25:
{

(εγ)j
}
for ∆t = 1

4 to ∆t = 1
128

Credible Intervals of f
({(

εσ2
ς

)
j

})

Figure 2.26: f
({(

εσ2
ς

)
j

})
for ∆t = 1

4 to ∆t = 1
128

tion (2.72) did provide better understanding for this behavior, and this was be explored

further for all experiments in the following section.

Optimizing the choice of ∆t

Given the trial being examined behaved well, the mean of the
{

(εB)j
}
,
{

(εγ)j
}
, and{(

εσ2
ς

)
j

}
should fluctuate randomly around the B, γ, and σ2

ς . Since the point estimates

have the aforementioned inherent randomness, the precision of the credible intervals of{
(εB)j

}
,
{

(εγ)j
}
, and

{(
εσ2
ς

)
j

}
were used to study the quality of inference for trials

that did not exhibit negative behaviors. This was done by comparing DQ (p;wj) where

DQ (p;wj) was defined in (2.73) and Q (n; {wj}) is the quantile function of the simulated
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distribution of {wj} evaluated at n.

DQ (p;wj) = 1
w

[
Q

(
1− 1− p

2 ; {wj}
)
−Q

(1− p
2 ; {wj}

)]
(2.73)

Figures 2.27 compares DQ (.9;Bj), DQ (.9; γj), and DQ
(
.9;
(
σ2
ς

)
j

)
versus ∆t for the

experiments 2.3.5 and 2.3.5.

0

0.2

0.4

0.6
DQ(.9;wj) vs ∆t for tf − t1 = 10, 000

1
4

1
32

1
64

1
128

DQ (.9;Bj)
DQ (.9; γj)
DQ

(

.9; {σ2
ς }j

)

0

1

2
DQ(.9;wj) vs ∆t for 10, 000 obsevations

1
2

1
4

1
8

1
16

1
32

1
128

1
512

1
1024

1
2048

D
Q
(.
9
;w

j
)

DQ (.9;Bj)
DQ (.9; γj)
DQ

(

.9; {σ2
ς }j

)

1
64

1
256

1
16

1
8

1
2

Figure 2.27: DQ (.9;Bj), DQ (.9; γj), and DQ
(
.9;
(
σ2
ς

)
j

)
versus ∆t for experi-

ments 2.3.5 (left) and 2.3.5 (right)

As discussed in previous sections and observed in Figure 2.27 the transformation

from kj to Bj was most sensitive to changes ∆t for (2.70). Therefore, if the credi-

ble interval of {Bj} was maintaining precision or becoming more precise as ∆t gets

small, it was reasonable to assume the same was true for γ and σ2
ε . Following this, the

credible intervals of {Bj} were studied more extensively. Recall, that equation (2.72)

approximated (εB)j by expanding around the true value of k.

(εB)j = −
( 1
k∆t

)
(εk)j +O

(
(εk)2

j

)
(2.72 Revisited)

Following this, the value of 1
k∆t for each trial in the experiment from Section 2.3.5

was put in a table along side the values of DQ (.9; kj) and DQ (.9;Bj).

54



Trial ∆t DQ (.9; kj) 1
k∆t DQ (.9;Bj)

1 1
2 0.048081 3.2976 0.159657

2 1
4 0.027837 5.1361 0.142584

3 1
8 0.018837 9.0652 0.171421

4 1
16 0.013332 17.0321 0.228052

5 1
32 0.009198 33.0169 0.304173

6 1
64 0.006054 65.0076 0.393446

7 1
128 0.004117 129.0062 0.530904

8 1
256 0.002801 257.0023 0.719547

9 1
512 0.001835 513.0261 0.940986

10 1
1024 0.000946 1,025.025 0.969292

11 1
2048 0.000928 2,049.025 1.901532

Table 2.1: Comparing the ranges of DQ (.9; kj), 1
k∆t , DQ (.9;Bj) for the experi-

ments from 2.3.5

In Table 2.1, it was seen that as ∆t get small, 1
k∆t was about twice the previous for

each successive trial. Therefore, to become more precise for small ∆t, the DQ (.9; kj)

had to be less than half of the previous trial. DQ (.9; kj) was highly dependent on the

noise of xi (σ2
η). σ2

η decreases for each successive trial of experiment 2.3.5 which in turn

resulted in more precise credible intervals of kj . However, the number of observations

for each trial is 10, 000. Each successive trial observed the continuous behavior for

half the time. Therefore, for improvement, the reduced value of σ2
η had to outweigh

the adverse effect of observing the system for less time. Following this, although the

credible intervals of k for experiment 2.3.5 in Table 2.1 became more precise; it was
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not by a large enough factor that the credible intervals of Bj became more precise. For

the given parameters and observations, the credible interval of Bj did not become more

precise after ∆t = 1
4 .

In the experiment from Section 2.3.5, tf − t0 = 10, 000 for each trial. Therefore,

each successive trial had twice as many observations. Unlike the previous experiment,

in each successive trial, σ2
η was decreasing, and there was the same amount of time

observed. As observed in Table 2.2, DQ (.9; kj) for each successive trial was about half

or less than half of the previous trial so the credible interval of Bj was more precise.

Furthermore, in Figure 2.27 it was seen that {γj} and
{(
σ2
ς

)
j

}
became more precise for

each successive trial in experiment 2.3.5.

Trial ∆t DQ (.9; kj) 1
k∆t DQ (.9;Bj)

1 1
2 0.031678 3.2976 0.103580

2 1
4 0.014133 5.1361 0.072369

3 1
8 0.006518 9.0652 0.059068

4 1
16 0.003229 17.0321 0.055025

5 1
32 0.001565 33.0169 0.051642

6 1
64 0.000756 65.0076 0.049150

7 1
128 0.000379 129.0062 0.048938

Table 2.2: Comparing the ranges of DQ (.9; kj), 1
k∆t , DQ (.9;Bj) for the experi-

ments from 2.3.5

In Table 2.2, it can be seen that there are diminishing returns for B. As ∆t gets

smaller, the precision of of Bj improves by less (although γj and
(
σ2
ς

)
j showed greater

improvement). Unfortunately, this added precision is not free. As stated above, each

successive trial has more observations. In this experiment, computation time became
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problematic before other factors. Figure 2.28 shows the computation time in hours from

experiment 2.3.5.

Number of Observations in a trial vs. time of MCMC simulation

0 200 400 600 800 1000 1200 1400

Number of Observations (in thousands)

0

50

100

150

200

H
o
u
r
s

Figure 2.28: A comparison of number of observations and computation time.

Finally, the experiment in Section 2.3.5 did not require advanced analysis. For that

experiment, more data was added with no cost. Therefore, the only limiting factors

were simply computation time and data available.

For the parameters B = γ = 1, B was the most difficult to make inference on.

Therefore, B was used as a baseline for decisions on ∆t and tF − t1 while factoring in

computation times. Finally, for the case of small ∆t, as occurred in the experiment in

Section 2.3.5, poor behavior could be difficult to identify. Therefore, it was important

to add enough context for that case to rule out those negative behaviors.
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2.4 Inference on a discrete state space continu-

ous time Markov given observations in dis-

crete time

2.4.1 Continuous time Markov chains with k discrete

states and k signals

The last section introduced the basics of using a HMM (hidden Markov model)

to make inference on a continuous state, continuous time system with measurement

noise. However, the applications which were the focus of this research had discrete

state spaces. The two models of interest were the continuous time systems with two or

three discrete states as diagrammed in Figures 2.29A and 2.29B respectively. Although

the parameters of interest were the parameters governing the continuous time system,

inference was not made on the continuous time model directly. Like the DLM, inference

was made on the time discretization of that model. This section discusses the mapping

between the continuous time model and the discrete time model.

A

S1

S2A

r12r21

B

S1

S2A S2B

r12r21 kon[dNTP ]

koff

Figure 2.29: Diagrams of the two state model (A) and three state model (B)
(Revisited)

As discussed in Section 1.1, the three state diagram in Figure 2.29B only had two

distinct emissions. However, for the purpose of introducing this topic, only systems that

had a distinct emission for each state were discussed.

58



Transition probabilities of Markov models given a two state system

First, the two state model diagrammed in Figure 2.29A was explored. In Fig-

ure 2.29A, r12 and r21 represented exponential transition rates and X(t) = 1 denotes

the system is in state S1 and X(t) = 2 denotes the system is in state S2A at time

t. Since the transition rates were exponential, the two state model was Markovian or

p(X(ti+2)|X(ti+1), X(ti)) = p(X(ti+2)|X(ti+1)) where ti ≤ ti+1 ≤ ti+2. The exponen-

tial transition rates of the system diagrammed in 2.29A were equivalent to a constant

change in probability. Therefore, the system could be expressed efficiently as a linear sys-

tem of differential equations as in (2.74) and (2.75). For brevity, P (t)j = P (X(t) = j).

dP (t)1
dt

= −r12P (t)1 + r21P (t)2 (2.74)

dP (t)2
dt

= r12P (t)1 − r21P (t)2 (2.75)

Unfortunately, the model was not measured continuously. As with the DLM, the

state was measured at t = (t1, t2, ..., tT ) where ti+1−ti = ∆t for all i ∈ {1, 2, 3, ..., T−1}.

Therefore, it was necessary to describe (2.74) and (2.75) at each ti or in discrete time.

Given the exponential dwell times and regularly collected data, the discrete description

was also Markovian. Therefore, the transition probabilities from state m to state n are

equal for all ti or p(X(ti) = m|X(ti−1) = n) = p(X(tl) = m|X(tl−1) = n) for all i,l

∈ {2, 3, ..., T} and m,n ∈ {1, 2}. Let q12 denote the probability of transition from state

S1 to S2A and q21 denote the probability of transition from state S2A to S1. Using this

notation, q12 and q21 were expressed in terms of the continuous system and r12 and r21

were expressed in terms of the discrete system. These were listed as (2.76), (2.77), (2.79),

and (2.80) which were derived by solving (2.74) and (2.75). The derivation can be found

in Appendix C.1.
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q12 = r12
r12 + r21

(1− exp(−∆t(r12 + r21))) (2.76)

q21 = r21
r12 + r21

(1− exp(−∆t(r12 + r21))) (2.77)

r12 + r21 = − ln(1− [q12 + q21])
∆t (2.78)

r12 = q12(r12 + r21)
1− exp(−∆t(r12 + r21)) (2.79)

r21 = q21(r12 + r21)
1− exp(−∆t(r12 + r21)) (2.80)

The likelihood of the two discrete state, discrete time system

Given that the two state discrete system is memoryless and the transition prob-

abilities from state m to n are qmn, the likelihood could be written. For this, let

zi = (zi1, zi2)′ be the discrete state measurement where zi = (1, 0)′ if X(ti) = 1 and

zi = (0, 1)′ if X(ti) = 2. So the model generalizes easily to k states, let zim = 1 denote

that zim = 1 and zin = 0 for all n 6= m. Using this notation the probability of the trace of

the states given T observations and θ were p(z1, z2, ...zT |θ) = p(z1,θ)
T∏
i=2

p(zi|zi−1,θ).

From this p(z1, z2, ...zT ) was defined in (2.81) where zT1 = (z1, z2, ...zT ).

p(zT1 |θ) for 2 states (2.81)

p(zT1 |θ) = p(z1,θ)
T∏
i=2

p(zi|zi−1)

p(zi|zi−1) = p(zi|z(i−1)1 = 1)z(i−1)1p(zi|z(i−1)2 = 1)z(i−1)2

p(zi|z(i−1)1 = 1) = (1− q12)zi1(q12)zi2

p(zi|z(i−1)2 = 1) = (q21)zi1(1− q21)zi2

p(z1|θ) = ρz11
1 ρz12

1

p(z1|θ) had to be treated differently than the zT2 . That was because there was no

state prior to z1. Therefore, the associated transition probabilities from the state prior

to z1 did not exist. Following this, a parameter ρ was used where ρm was the probability
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z1m = 1.

As discussed in Section 1.1, the state was not directly observed. Instead, each state

m at time i produced a signal (yi) that was normally distributed with mean µm and

variance σ2. Therefore, it was necessary to consider the joint probability of zT1 and yT1

which was listed in (2.82). The undefined probability distributions in (2.82) were as

defined in (2.81).

p(yT1 , zT1 |θ) for 2 states (2.82)

p(yT1 , zT1 |θ) = p(z1,θ)
T∏
i=2

p(zi|zi−1)
T∏
i=1

p(yi|zi,θ)

yi|zim = 1,θ ∼ N (µm, σ2)
p(yi|zi,θ) = [p(yi|zi1 = 1,θ)]zi1 [p(yi|zi2 = 2,θ)]zi2

Transition probabilities of Markov models given a k state system

Although this research only explored two and three state systems, the algorithms

employed generalize easily to k states. Therefore, inference on the discrete k state,

continuous time system diagrammed in Figure 2.30 was explored. Like the two state

system, the discrete k state system was determined by exponential transition rates

between adjacent states. Following this, the discrete k state, continuous time system

was also Markovian. This type of system that was both Markovian and measured on the

continuous time scale is commonly known as a continuous time Markov chain (CMTC).

Discrete K state CTMC

S1 S2 S3 Sk−1 Sk

r12

r21

r23

r32

r r r
r(k−1)k

rk(k−1)

Figure 2.30: A diagram of a system with k discrete states that produce k distinct
signals
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As with the two state system, the k state CTMC can be expressed as a linear system

of differential equations which were listed as (2.83).

System of differential equations representation of the discrete k state CTMC
(2.83)

dP1(t)
dt

= −r12P (t)1 + r21P (t)2

dP2(t)
dt

= r12P1(t)− (r21 + r23)P2(t) + r32P3(t)
... ...

dPj(t)
dt

= r(j−1)jPj−1(t)− (rj(j−1) + rj(j+1))Pj(t) + r(j+1)jPj(t)
... ...

dPk(t)
dt

= r(k−1)kPk−1(t)− rk(k−1)Pk(t)

In the case of k discrete states, it was more efficient to write (2.83) as dP(t)
dt = RP(t)

where P(t) was defined in (2.84) and R was a tridiagonal matrix defined in (2.85).

P(t) =
[
P1(t) P2(t) · · · Pk(t)

]′
(2.84)

R =



−r12 r21

r12 −(r21 + r23) r32

r23 −(r32 + r34) r43

r(k−2)(k−1) −(r(k−1)(k−2) + r(k−1)k) rk(k−1)

r(k−1)k −rk(k−1)


(2.85)

The exact solution to dP(t)
dt

= RP (t) is known to be P (ti) = eR(ti−ti−1)P(ti−1)

over the interval ti − ti−1 = ∆t where eR∆t is the matrix exponential and P (ti−1)

contains the initial conditions. Given that the system is Markovian, this was
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written equivalently as P (∆t) = eR∆tP(0) where P (0) is the initial condition at

any time ti−1 and P (∆t) contains the probabilities of being in state n at ti.

A discrete time Markov chain with measurement of state at all ti and time

interval ∆t can be described by the equation P (∆t) = Q(∆t)P(0) where Q(∆t)

is known as the transition probability matrix. The entry in the nth row and the

mth column of the matrix is the transition probability from state m to n which

was denoted as qmn. Given that P (∆t) = Q(∆t)P(0) and P (∆t) = eR∆tP(0),

Q(∆t) = eR∆t. Therefore, to compute Q(∆t) it was only necessary to compute

eR∆t.

In the case of the matrix R, the analytic form of eR∆t was not straightfor-

ward. Since the matrix exponential is defined as ∑∞d=0
(R(∆t))d

d! , then Q(∆t) can

be approximated by the first d terms of the series if ∆t is sufficiently small.

Q(∆t) =
D∑
d=0

(R(∆t))d

d! + o(∆tD) (2.86)

Given that inference was made on Q(∆t), it was also necessary to be able to solve

for R given Q(∆t). The transition rates in R were independent of ∆t and were

approximated from (2.86). Using (2.86), R was approximated using an iterative

process with error o(∆tD) where D + 1 was the number of iterations computed.

R = R(3) + o
(
∆t3

)
(2.87)

R(3) = R(0) − 1
2 (∆t)

(
R(0)

)2
+ 1

3 (∆t)2
(
R(0)

)3
− 1

4 (∆t)3
(
R(0)

)4

R(0) = Q− I
∆t

(2.87) was derived in Appendix C.2. For the work in this research, ∆t was set
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to 1
100,000 . Therefore, by including four terms for both (2.86) and (2.87) the error

introduced by approximation was negligible relative to the uncertainty introduced

in the inference.

The likelihood of the k discrete state, discrete time system

Following the two state system, the k discrete state, discrete time system was

also a Markov chain. Furthermore, the notation scales to k states and zi carried

the same meaning as previously where zi = (zi1, ...zik). It was important to note,

the tridiagonal properties of R were not upheld by Q. That was because it was

possible to have multiple state changes occur in one ∆t. Therefore, all qmn were

nonzero and should be computed if possible.

Aside from that difference, the likelihood was identical to the two discrete

state, discrete time system. The likelihood for k states was listed as (2.88).

p(yT1 , zT1 |θ) for k states (2.88)

p(yT1 , zT1 |θ) = p(z1|θ)
T∏
i=2

p(zi|zi−1)
T∏
i=1

p(yi|zi,θ)

p(zi|zi−1) =
k∏
j=1

[
p(zi|z(i−1)j = 1)

]z(i−1)j

p(zi|z(i−1)j = 1) =
k∏
l=1

qziljl

p(z1|θ) =
k∏
j=1

ρ
z1j
j

yi|zij = 1,θ ∼ N (µj, σ2)

p(yi|zi,θ) =
k∏
j=1

[p(yi|zij = 1,θ)]zij

As with the DLM, the k discrete state, discrete time system was expressed

as a joint probability where zT1 was latent. Therefore, inference was made on
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both zT1 and θ iteratively. For this, a special case of the EM algorithm called

the Baum-Welch algorithm, a similar technique to the EM method called Viterbi

training, and a version of the forward-filter backward sample were explored in the

following sections.

2.4.2 Inference on discrete time Markov chains with k dis-

crete states and k signals

As with the DLM, the goal was to make inference on the transition probabili-

ties and signals. Given the joint probability with a latent variable, it was necessary

to make inference on the latent variable as well as the parameters of interest. This

was done three different ways. The first is called the Baum-Welch algorithm [4].

Although it was developed before the general EM algorithm [1], the Baum-Welch

algorithm is a special case of the EM algorithm. The second method was also

frequentist in nature. It works in a very similar fashion to the EM method except

the most likely path of zT1 was used instead of the expectation of zT1 . The algo-

rithm for the most likely path is known as the Viterbi Algorithm [58] and using

that path for inference on parameters has been referred to as Viterbi Training,

Viterbi Extraction, or Segmental K-Means [24] [44]. Finally, the third method

is fully Bayesian and employs a gibbs sampler [48] that contains a forward filter

backward sampler [9].

The Baum-Welch algorithm for k states

Since the Baum-Welch algorithm is a special case of of the EM algorithm, it

consists of an expectation step and a maximization step. As with all forms of the

EM method, the Baum-Welch algorithm iterates between computing the E-step

and the M-step.
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EM steps for Baum-Welch Algorithm (2.89)

E-Step: Compute EzT1 |yT1 ,θ̂j−1
[p(yT1 , zT1 |θ)]

M-Step: Compute θ̂j = argmax
θ

EzT1 |yT1 ,θ̂j−1
[p(yT1 , zT1 |θ)]

The E-step consists of computing the expectation of all functions of z the joint

likelihood listed as (2.88). For this, it was necessary to compute E
[
zim|yT1 , θ̂j−1

]
and E

[
zimz(i−1)n|yT1 , θ̂j−1

]
for all i, m, and n.

The E-step or E
[
zim|yT1 , θ̂j−1

]
and E

[
zimz(i−1)n|yT1 , θ̂j−1

]
were computed iter-

atively using a version of the forward backward method. In the case of the DLM,

the state space was a continuous variable that was normally distributed so the ex-

pectations and variance were a convenient way to describe the state at time i. This

was not the case when the state space was discrete, but the structure of zi allowed

a simple solution. Since the variable zim was an indicator variable as to whether

the system was is in state m at time i, E
[
zim|yT1 , θ̂j−1

]
= p(zim = 1|yT1 ,θj−1) and

E
[
zimz(i+1)n|yT1 , θ̂j−1

]
= p(zim = 1, z(i+1)n = 1|yT1 ,θj−1) where zim = 1 denotes

zim = 1 and ziv = 0 for all v 6= m. Therefore, rather than using the notation of

expectations as with the DLM, the discrete space system was described in terms

of probability density functions.

ai(m) = p(zim = 1,yi−1
1 |θ) (2.90)

αi(m) = p(zim = 1,yi1|θ) (2.91)

The state update denoted as (2.90) and the state forecast denoted as (2.91)

which differed from the values computed for the Kalman filter were computed

from i = 1 to i = T . The algorithm for computing ai(m) and αi(m) was listed
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as (2.92). Like the Kalman filter, the forward backward presented here can also

be used to compute the probability of being in a particular state at time i when θ

was known. To maintain generality, θ was used. However, in the case of using the

entire Baum-Welch algorithm for parameter estimation, all θ in this section should

be replaced with θ̂j−1. A derivation of (2.92) can be found in Appendix C.3.1.

The forward iterations for the the Baum-Welch algorithm (2.92)

I For m = 1 to k

(a) a1(m) = ρm

(b) α1(m) = a1(m)p(y1|zim = 1,θ) where y1|zim = 1,θ ∼ N (µm, σ2)

II end

III For i = 1 to T

(a) For n = 1 to k

i. ai(n) =
k∑

m=1
αi−1(m)qmnZ

ii. αi(n) = ai(n)p(yi|zin = 1,θ) where yi|zin = 1,θ ∼ N (µn, σ2)
(b) end

IV end

The backward algorithm is slightly more involved than that from the Kalman

filter. To compute the necessary expectation, four different calculations were

made. The definitions of three of the components were listed in (2.93)-(2.95).

Γ := p(yT1 |θ) (2.93)

γi(m) = p(zim = 1|yT1 ,θ) (2.94)

ξi(m,n) = p(z(i+1)n = 1, zim = 1|θ) (2.95)

The last component βi(m) did not have a convenient definition as with (2.93)-
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(2.95). The most common explanations used are that p(zim = 1,yT1 |θ) = βi(m) · · ·

× αi(m) or βi(m) = p(yTi+1|zim = 1,θ). Although neither definition adds much

intuitive understanding of the data, βi(m) does allow for convenient computation

of the required values γi(m) and ξi(m,n). Finally, as with the Kalman filter,

the last time-step was dealt with differently. That is because αT (m) = p(zTm =

1,yT1 |θ). Therefore, βT (m) was set to one for all m. All calculations necessary for

the backward algorithm were listed as (2.96). A derivation of (2.96) can be found

in Appendix C.3.2.

The backwards iterations for the the Baum-Welch algorithm (2.96)

I Γ =
k∑

m=1
αT (m)

II For m = 1 to k

(a) βT (m) = 1
(b) γT (m) = αT (m)βT (m)

Γ

III end

IV For i = T − 1 to 1

(a) For m = 1 to k

i. βi(m) =
k∑

m=1
qmnp(yi+1|zin = 1,θ)βi+1(n)

where yi+1|zin = 1,θ ∼ N (µn, σ2)
ii. γi(m) = αi(m)βi(m)

Γ
iii. for n = 1 to k

A. ξi(m,n) = αi(m)qmnp(yi+1|zi+1n=1,θ)βi+1(n)
Γ

where yi+1|z(i+1)n = 1,θ ∼ N (µn, σ2)
iv. end

(b) end

V end

It is important to note that the probabilities computed in (2.96) are often very
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close to zero. To prevent underflow, it necessary to compute the logarithm of the

probabilities in (2.92) and (2.96).

The M -step maximizes θ for EzT1 |yT1 ,θ̂j−1
[p(yT1 , zT1 |θ)]. This step computes θj

given θj−1. Therefore, (2.93), (2.94), and (2.95) should be conditioned on θj−1

instead of θ if estimation of θ was the goal. The MLE of each parameter given

was listed in (2.97) to (2.100) . A derivation can be found in Appendix C.3.3.

(µ̂m)j =
∑T
i=1 γi(m)yi∑T
i=1 γi(m)

(2.97)

σ̂2
j =

∑T
i=1

[∑k
m=1 γi(m)(yi − (µ̂m)j)2

]
T

(2.98)

(q̂mn)j =
∑T−1
i=1 ξi(m,n)∑T−1
i=1 γi(m)

(2.99)

(ρ̂m)j = γ1(m) (2.100)

The derivations in Appendix C.3 for the Baum-Welch algorithm follow the

framework suggested by [6]. [6], [34], [4], contain more information on this type

of HMM and an alternate proof can be found [34] and [4]. The entire Algorithm

was listed as (2.101) where δ was an arbitrary small number.

The Baum-Welch Algorithm for k discrete states with k distinct Gaussian

Emissions (2.101)

I Pick θ̂0

II Set j = 0 and define
∣∣∣∣∣∣θ̂0 − θ̂−1

∣∣∣∣∣∣
∞
> δ.

III While
∣∣∣∣∣∣θ̂j − θ̂j−1

∣∣∣∣∣∣
∞
> δ

(a) j = j + 1
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(b) Calculate αi(m) and ai(m) using (2.92).

(c) Calculate βi(m), γi(m), and ξi(m,n) using (2.96).

(d) for m = 1 to k

i. Calculate (µ̂m)j using (2.97).

ii. Calculate σ̂2
j using (2.98).

iii. for n = 1 to k

A. Calculate (q̂mn)j using (2.99).

iv. end

v. Calculate (ρ̂m)j using (2.100).

(e) end

IV end

Viterbi training for k states

An alternate to the Baum-Welch algorithm can be used for computing the pa-

rameters of the k state, k distinct emission hidden Markov model. This method

has been referred to as Viterbi extraction, Viterbi training, and Segmental K-

means and is based on making inference on the most likely state sequence of zT1
given the parameters. The most likely path (Viterbi path) was found employ-

ing the Viterbi algorithm [58]. This Viterbi path which was denoted as v
(
zT1
)

was then used to estimate the parameters in an iterative method [24] [44]. Like

the EM-method, Viterbi training iteratively calculates the Viterbi path and then

maximizes the parameters given the Viterbi path until convergence. An outline of

the algorithm was listed as (2.102). Viterbi Training is known to be less compu-

tationally intensive than Baum-Welch, but Viterbi Training is not asymptotically
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unbiased [42]. Choosing between the Baum-Welch and Viterbi Training will be

disused in a later section in the context of the experiments discussed in Section 1.1.

The Viterbi Training Algorithm for k discrete states with k distinct Gaussian

Emissions (2.102)

I Pick θ̂0

II Set
∣∣∣∣∣∣θ̂0 − θ̂−1

∣∣∣∣∣∣
∞
> δ and j = 0.

III While
∣∣∣∣∣∣θ̂j − θ̂j−1

∣∣∣∣∣∣
∞
> δ

(a) j = j + 1

(b) for m = 1 to k

i. Calculate v
(
zT1
)
using (2.104).

ii. Calculate (µ̂m)j using (2.108).

iii. Calculate σ̂2
j using (2.109).

iv. for n = 1 to k

A. Calculate (q̂mn)j using (2.107).

v. end

vi. Calculate (ρ̂m)j using (2.106).

(c) end

IV end

The Viterbi algorithm acts similarly to the expectation step in the EM algo-

rithm. Inference was made on the latent variable zT1 and a most likely path given

θ̂j−1 was computed. For this, a few intermediate calculations were required at

each time step. The first, was the probability of the most likely state sequence

71



from t = t1 to ti given the last state was state m (denoted as ψi(m)) or zim = 1.

The second, expressed as Ψi(m), was the most likely previous state given the

most likely sequence from t = t1 to ti ended in state m or zim = 1. ψi(m) and

Ψi(m) were calculated for all states m in the forward iteration of the Viterbi

listed as (2.103). For (2.103) and (2.104), recall that p
(
z1m = 1

∣∣∣θ̂j−1
)

= (ρ̂m)j
and yi|zin = 1, θ̂j−1 ∼ N (µn, σ2).

Calculating the forward iteration of the Viterbi Path
(
v
(
zT1
))

(2.103)

I. Initialization (The first timestep or t2)

i. For m = 1 : k

A. ψ1(m) = p
(
z1m = 1

∣∣∣θ̂j−1
)
p
(
y1 | z1m = 1, θ̂j−1

)
ii. end

II. For i = 2 : T

i. For n = 1 : k

A. ψi(n) =
[
max
m

ψi−1(m) (q̂mn)j−1

]
p
(
yi|zin = 1, θ̂j−1

)
B. Ψi(n) = argmax

m
ψi−1(m) (q̂mn)j−1

ii. end

III. end

Then, ψT (m) was the probability from t1 to tT of the most likely path ending

in state m. Therefore, by choosing m to be the state that maximized ψT (m),

ψT (m) was the probability of the most likely path from t1 to tT . From this, the

Viterbi Path was traced backward using Ψi(m) from i = T to i = 1 and was

represented as v(zTi ). The backward iteration was listed as (2.104) where m was

the state of the current time (i) and n was the state at time i+ 1.
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Calculating the backward iteration of the Viterbi Path
(
v
(
zT1
))

(2.104)

I. m = argmax
r

ψT (r)

II. v (zTm) = 1 and v (zTr) = 0 ∀ r 6= m ∈ {1, 2, .., k}

III. n = m

IV. For i = T − 1 : 1

i. m = Ψi+1(n)

ii. v (zim) = 1 and v (zir) = 0 ∀ r 6= m ∈ {1, 2, .., k}

iii. v
(
zTi
)

=

 v (zi)

v
(
zTi+1

)


iv. n = m

V. end

As with the Baum-Welch algorithm, underflow is likely when computing ψi(n).

Therefore, the logarithm of all probabilities in (2.103) and (2.104) should be used.

After the Viterbi path was computed, θ̂j was computing (2.105), similar to the

maximization step of the EM -algorithm.

θ̂j = argmax
θ

p(yT1 , vj(zT1 )|θ) (2.105)

The MLE for θ was computed by maximizing (2.88) for each parameter. They

were listed as (2.106) to (2.109) where vj
(
zT1
)
was the Viterbi path computed in

the jth iteration of the algorithm.
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ρ̂j = vj (z1) (2.106)

(q̂mn)j =

T∑
i=2

vj
(
z(i−1)m

)
vj (zin)j

T∑
i=1

vj (zim)
(2.107)

(µ̂m)j =

T∑
i=1

vj (zim) yi
T∑
i=1

vj (zim)
(2.108)

σ̂2
j =

∑T
i=1

[∑k
m=1 vj (zim)

(
yi − (µm)j

)2
]

T
(2.109)

Notice, that (2.106) to (2.109) are the same as the maximum likelihood estima-

tions listed in Section 2.4.2 where γi(m) was substituted with vj (zim) and ξi(mn)

was substituted with vj (zim) vj
(
z(i+1)n

)
. Therefore, the derivations of (2.106)

to (2.109) can be reproduced by making the aforementioned substitutions in Ap-

pendix C.3.3. Further information on the Viterbi training algorithm can be found

in [24] and [44]. A good review of both the Baum-Welch algorithm and the Viterbi

algorithm can be found in [43].

.

A Bayesian model for k discrete states, with k distinct Gaussian emis-

sions

The Bayesian model employed a Gibbs sampler where θ and zT1 were treated

as random variables. Like the Baum-Welch algorithm and Viterbi training, the

Gibbs sampler can be thought of as having two parts. The first was a sampler for
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zT1 , which was done using a version of the forward filter backward sampler found

in [9]. The second part was sampling from θ as found in [48]. Following the same

notation of the Bayesian model for the DLM, the jth draw will be denoted as θj

and
(
zT1
)
j
. In addition, θ−k represents all parameters of θ except k. An overview

of the sampler for N samples was listed as (2.110).

Gibbs sampler for k states with k distinct Gaussian emissions (2.110)

I Pick θ0

II for j = 1 to N

(a) Draw
(
zT1
)
j
from p

(
zT1 |yT1 ,θj−1

)
listed as (2.114)

(b) Draw ρj from p
(
ρ|yT1 ,

(
zT1
)
j
, (θ−ρ)j−1

)
listed as (2.115).

(c) for m = 1 to k
i. for n = 1 to k

a. Draw (qmn)j from p
(
qmn|yT1 ,

(
zT1
)
j
, (θ−qmn)j−1

)
or (2.116).

ii. end
iii. Draw (µm)j from p

(
µm|yT1 ,

(
zT1
)
j
, (θ−µm)j−1

)
listed as (2.117).

(d) end

(e) Draw σ2
j from p

(
σ2|yT1 ,

(
zT1
)
j
, (θ−σ2)j−1

)
listed as (2.118).

III end

The updates of the forward filter backward sampler had similar definitions

to the updates for the DLM. The state update and state forcast were defined

as (2.111) and (2.112) respectively.

ai(m) = p(zim = 1|yi−1
1 ,θ) (2.111)

αi(m) = p(zim = 1|yi1,θ) (2.112)

Since there was no observation before y1, the initial state update and state forecast
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were slightly different. Therefore, the state update employed p(z1|θ) provided

in (2.88). Using p(z1|θ) from (2.88), the probability of state m occurring at time

t = t1 was ρm or p(z1m = 1|θ) = ρm. From this, the forward filter algorithm

was listed as 2.113, and a derivation can be found in Appendix C.4.1.1. Since

the probabilities were normalized at every step, underflow was not a problem.

Therefore, the algorithm can be coded as seen in (2.113).

Forward filter for k states with k distinct Gaussian emissions (2.113)

I for m = 1 to k

(a) a1(n) = p(z1n = 1|θ) where p(z1n = 1|θ) = ρn

(b) α1(n) = a1(n)p(y1|z1n=1,θ)∑k

m=1 a1(m)p(y1|z1n=1,θ)

where y1|z1m = 1,θ ∼ N (µm, σ2).

II end

III for i = 1 to T

(a) for n = 1 to k

i. ai(n) =
k∑

m=1
αi−1(m)qmn

ii. αi(n) = ai(n)p(yi|zin=1,θ)∑k

m=1 ai(m)p(yi|zim=1,θ)

where yi|zim = 1,θ ∼ N (µm, σ2).

(b) end

IV end

The backward step drew zi from i = T to 1. Since draws were made in the

reverse direction, zi+1 had already been drawn when zi was drawn. Therefore,

the definition of βi(m) was chosen to be p(zim = 1|z(i+1)n = 1,θ) to include the
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knowledge of the previous draw. The case for zT was different as there was no

zT+1. For the case, i = T , p(zTm = 1|yT1 ,θ) = αT (m) so no additional calculation

was required. This resulted in the backward sampling algorithm listed as (2.114)

and was derived in Appendix C.4.1.2. In (2.114) Cat(α1, α2, ..., αn) denotes a

categorical distribution where the ith element occurs with a probability of αi,

which is a multinomial distribution with only 1 trial.

The backward sample for k states with k distinct Gaussian emissions (2.114)

I Draw zT from Cat (αT (1), αT (2), ..., αT (k))

II For i = T to 1

(a) For m = 1 to k

i. bi(m) =
k∑

n=1
αi(m)qmnz(i=1)n

(b) end

(c) For m = 1 to k

i. βi(m) = bi(m)∑k

n=1 bi(n)

(d) end

(e) Draw zi from Cat (βi(1), βi(2), ..., βi(k))

III end

Since this is a Bayesian Model, a prior had to be placed on θ. Given that the

forward filtering backward sampling algorithm within a Gibbs sampler was com-

putationally expensive, conditionally conjugate priors were placed on each condi-

tional posterior. The first parameter considered was ρ. Since z1|θ ∼ Cat(ρ), the

conditional conjugate prior was ρ ∼ Dir(κρ1 , κρ2 , ..., κρk). This resulted in the

conditional posterior listed as (2.115) and was derived in Appendix C.4.2.1. The
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second was qm-, where qm− = (qm1, qm2, ..., qmk). qm- is equivalent to p(zi+1|zim =

1,θ) in (2.88) which was a categorical as well. Therefore, the conditional conju-

gate prior for qm- was Dir(κqm1 , κqm2 , ..., κqmk). The conditional posterior was

listed as (2.116), and a derivation can be found in C.4.2.2. The next param-

eter addressed was µn. Since µn was the mean in a normal distribution, the

conditionally conjugate prior was µn ∼ N (mn, σ
2
n). The conditional posterior

was listed as (2.117) and a derivation can be found in Appendix C.4.2.3. Lastly,

the conditionally conjugate prior for σ2 was an inverse gamma distribution or

σ2 ∼ IG
(
nσ2

2 ,
dσ2
2

)
. The conditional posterior for σ2 was numbered (2.118) and

was derived in C.4.2.4.

Priors can be chosen to limit the impact of the prior on the poster if neces-

sary. The non-informative case for the Dirichlet distribution was to employ the

symmetric Dirichlet distribution or κ1 = κ2 = ... = κn. The normal prior was

previously discussed in the context of the DLM and by setting mn = 0 and choos-

ing a large σ2
n, the information contributed by the prior was limited. Finally, to

make a non-informative prior for σ2, nσ2 = dσ2 = 0 could be used. In this case,

the prior was no longer an inverse gamma distribution, but it contributes nothing

to the posterior.

ρ|yT1 , zT1 ,θ−ρ ∼ Dir(z11 + κρ1 , z12 + κρ2 , . . . , z1k + κρk) (2.115)

qm-|yT1 , zT1 ,θ−qm- ∼ Dir

(
T∑
i=1

zi1z(i−1)m + κqm1 , ...,
T∑
i=1

zikz(i−1)m + κqmk

)
(2.116)

µn|yT1 , zT1 ,θ−mn ∼ N


σ2
n

T∑
i=0

yizin + σ2mn

σ2
n

T∑
i=0

zin + σ2
,

σ2
nσ

2

σ2
n

T∑
i=0

zin + σ2

 (2.117)

σ2|yT1 , zT1 ,θ−σ2 ∼ IG
(
nσ2 + T

2 ,
dσ2 + S2

2

)
(2.118)
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S2 =
T∑
i=0

[
k∑

n=1
zin(yi − µn)2

]

As stated previously, the forward filter backward sampler can be found in [9],

and the sampling of parameters can be found in [48]. However, [52] contains an

overview of the entire process, derivations, and extensions. The three algorithms

for making inference on zT1 and θ could all be applied to the models in Section 1.1.

Therefore, the algorithms were not compared here but were compared in the

section that discusses their performance on the experiments for the models in

Section 1.1.
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Chapter 3

Modeling of Biochemical States

of DNA Replication Restricted to

Two States

3.1 The 2-State Experiment

S1 S2A S2B NC

P P P P P P

P P −2 GC −2 −2 GC −2 −2 GC −2

−2 GC −2 −1 TA −1 −1 TA −1 −1 TA −1

−1 (TA) −1 (C) 0 0 (GC) 0 ∗ 0 (GC) 0

C 0 G 1 G 1 G 1

G 1 T 2 T 2 T 2

T 2 A 3 A 3 A 3

A 3

Figure 3.1: A diagram depicting a nucleotide addition cycle where the location
of the active site of the DNAP is denoted by (∗)
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In Chapter 1.1, methods to study the biochemical states of DNA replication

were discussed. Two specific experiments were studied. The focus of this chapter

was the experiment that isolated states S1 and S2A. Making inference on this

experiment was equivalent to the two state, two signals continuous time Markov

chain indirectly measured at discrete times discussed in Section 2.4.2.

An α−hemolysin nanopore, which is a very small channel, was employed to

study the biochemical states of DNA replication. Dahl and his colleagues found

that changes in biochemical state could be tracked when a single strand of DNA

attached to a DNA polymerase (a catalyst to replication) was hung through the

nanopore while an electrical current was conducted through the nanopore [11].

In an experiment designed by Lieberman and her colleagues, state S1, the pre-

translocation state, and state S2A, the post-translocation state were isolated.

Therefore, the DNA and DNA polymerase binary complex vacillated between

state S1 and state S2A in Figure 3.1. In addition, the dwell times in each state

were exponential and could be associated with different currents [31]. This re-

sulted in a continuous time Markov chain as discussed in Section 2.4.1.

A

S1

S2A

r12r21

B

S1

S2A

q11

q12

q22

q21

Figure 3.2: State diagrams of the continuous time 2-state system with transition
rates rij (A) and discrete time 2-state system with transition probabilities qij (B)

The state diagram for the continuous system is in Figure 3.2.A where rmn was
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the transition rate from state m to n. The corresponding discrete time system is

pictured in Figure 3.2.B where qmn was the transition probability from state m

to n. Inference on rmn was the subject of this study, but it could not be made

directly. Therefore, inference was made on qmn in the discrete time system and

this was transformed to rmn using the equalities in (3.1)-(3.5) where q11 = 1− q12

and q22 = 1− q21. For further discussion on (3.1)-(3.5), see Section 2.4.1.

q12 = r12

r12 + r21
(1− exp(−∆t(r12 + r21))) (3.1)

q21 = r21

r12 + r21
(1− exp(−∆t(r12 + r21))) (3.2)

r12 + r21 =− ln(1− [q12 + q21])
∆t (3.3)

r12 = q12(r12 + r21)
1− exp(−∆t(r12 + r21)) (3.4)

r21 = q21(r12 + r21)
1− exp(−∆t(r12 + r21)) (3.5)

The observed data was the amplitude of the electric current passing through

the nanopore. The current at time ti denoted as yi was measured at t = (t1, ..., tT )

where ∆t = ti − ti−1 for all i ∈ {2, 3, ..., T}. The unobserved state at time ti was

represented by zi where zi = (1, 0)′ if the system was in state S1 and zi = (0, 1)′

if the system was in state S2A. Since it was observed by Liebermen and her

colleagues that the different electric signals could be associated with different

states, yi ∼ N (µS1 , σ
2) if zi = (1, 0)′ and yi ∼ N (µS2A , σ

2) if zi = (0, 1)′. The

joint likelihood of yT1 = (y1, ..., yT ) and zT1 = (z1, ..., zT ) was listed as (3.6) and

an explanation can be found in Section 2.4.1.
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p(yT1 , zT1 |θ) for 2 states (3.6)

p(yT1 , zT1 |θ) = p(z1,θ)
T∏
i=2

p(zi|zi−1)
T∏
i=1

p(yi|zi,θ)

p(zi|zi−1) = p(zi|z(i−1)1 = 1)z(i−1)1p(zi|z(i−1)2 = 1)z(i−1)2

p(zi|z(i−1)1 = 1) = (q11)zi1(q12)zi2

p(zi|z(i−1)2 = 1) = (q21)zi1(q22)zi2

p(z1|θ) = ρz11
1 ρz12

1

yi|zim = 1,θ ∼ N (µm, σ2)
p(yi|zi,θ) = [p(yi|zi1 = 1,θ)]zi1 [p(yi|zi2 = 2,θ)]zi2

3.2 Parameter Estimation

3.2.1 Methology

The indirect discrete measurement of state was used to study the transition

rates from S1 to S2A and S2A to S1. Therefore, inference on the transition proba-

bilities was made using three different methods and subsequently mapped to the

continuous transition rates.

One method, called the Baum-Welch algorithm, maximizes point estimates for

the parameters of the discrete system iteratively. The Baum-Welch Algorithm is

recognized as a special case of the Expectation Maximization (EM) Algorithm, but

it was developed by Leonard Baum and his colleagues separately and before the

EM algorithm was introduced by Dempster [4] [1]. The Baum-Welch algorithm has

been studied extensively in a number of applications. A similar application of the

Baum-Welch was discussed in “Characterization of Single Channel Currents Using

Digital Signal Processing Techniques Based on Hidden Markov Models”. In this

case, Chung and his colleagues used the Baum-Welch algorithm to measure single

channel ion currents. They were able to infer transition rates with a high degree of

accuracy when the noise (σ) was up to 0.8 the difference between signal levels [10].
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Another method that maximizes point estimates for the parameters of the discrete

system is known as Viterbi extraction, Viterbi training, or segmental k-means [24]

[44]. For comparison to the Baum-Welch algorithm, Qin studied applying the

second algorithm which he refers to as the segmental k-means algorithm [42]

to a situation similar to [10]. A good comprehensive review of both methods

was written by Rabiner [43]. The last method applied a Gibbs sampler for the

posterior of the parameters. This model has also been studied extensively in a

Bayesian Paradigm where this model can also be referred to a Markov switching

model. General models of this type have been discussed in articles, textbooks, and

reviews [9] [52] [53] [48]. The details of each algorithm were discussed in detail in

Section 2.4.2.

3.2.2 Datasets

The Baum-Welch algorithm, Viterbi Training algorithm, and the Bayesian

Gibbs sampler were evaluated by computer generated idealized datasets. This

provided a simple way to assess the performance of the algorithm and an additional

way to confirm convergence. Since the transition rates are the focus of this study,

the dataset was created by simulating a continuous time Markov process with

known transition rates. This was done using the Gillespie algorithm [19] and then

adding additional noise to simulate the electric current. For these datasets, the

complex was arbitrarily started in state S1, but this could also be randomized.

The current state of the CTMC was denoted as X(t) = 1 if the system was in

state S1 at time t and X(t) = 2 if the system was in state S2A at time t. Then

X(t) was generated using the algorithm below, mapped to zT1 which in turn was

used to generate yT1 . To generate X(t), let Ej be the time of the jth event or

transition and ∆Ej be Ej − Ej−1. Since the complex started in state S1, if j is
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odd, a change from S1 to S2A occurred at time Ej. If j is even, a change from S2A

to S1 occurred at time Ej.

The Gillespie algorithm for simulating X(t) for the 2-state system

I. Set j=1 and t=0.

II. Generate E1 ∼ exp(r12)

III. t = E1, j = j + 1

IV. while t < tT

A. if j is odd

i. Generate ∆Ej ∼ exp(r12)

ii. Ej = ∆Ej + Ej−1 and t = Ej

B. if j is even

i. Generate ∆Ej ∼ exp(r21)

ii. Ej = ∆Ej + Ej−1 and t = Ej

C. j = j + 1

From this, X(t) = 1 for[0, E1], [E2, E3], [E4, E5],.... and X(t) = 2 for [E1, E2],

[E3, E4], [E5, E6],.... Since zT1 was measured at tT1 = (t1, t2, ...., tT ), zi was set equal

to the value associated with X(ti). Finally, yi was drawn from yi ∼ p(yi|zi,θ).

3.2.3 Convergence

To asses the convergence of the inference on the transition rates of the three

algorithms, they were run on a dataset generated from the Gillespie algorithm

as listed in 3.2.2. The first dataset was generated with r12 = 600, r21 = 2000,

µS1 = 32, µS2A = 26, and σ = 1.5 where ∆t = 1
10000 .
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Trial Name Run 1 Run 2 Run 3

(q̂12)0 0.092 0.034 0.058

(q̂21)0 0.027 0.015 0.078

σ̂2
0 4.354 1.127 0.679

(µ̂S1)0 32.09 30.62 33.26

(µ̂S2A)0 20.31 20.31 20.31

Table 3.1: Initial values for runs of the
Baum-Welch algorithm

Although convergence was checked

for all simulations, it will be discussed

in more detail for a 0.5 second dataset

with the aforementioned parameters.

To asses convergence, each algorithm

was tested using an overdispersed ini-

tial guess, compared against MLE esti-

mates when zT1 was known, and com-

pared with each other. First, the

Baum-Welch algorithm was tested using randomly generated numbers as initial

guesses which were denoted as θ̂0. Using randomly generated values for θ̂0, it was

discovered that the Baum-Welch algorithm does not converge to the global mini-

mum for all cases. If µS1 and µS2Aare chosen such that µS1 > ȳ
T
0 and µS2A > ȳ

T
0

where ȳT0 is the mean of the observed currents then the algorithm converges to

a local minimum µS1 ≈ µS2A ≈ ȳT0 . The same also occurred if µS1 < ȳT0 . and

µS2A < ȳT0 . Therefore, the same experiment was run where the initial guesses

were µS1 = max
(
yT0
)
and µS2A = min

(
yT0
)
and the rest of the parameters were

randomly generated. In Figure (3.3), k̂j represents the Baum-Welch algorithm

estimate of k after j iterations of the algorithm. The values of (q̂12)j, (q̂21)j, σ̂2
j ,

(µ̂S1)j, and (µ̂S2A)j for the runs in Table 3.1 were compared in Figure 3.3.

Although convergence was checked for all simulations, it will be discussed in

more detail for a 0.5 second dataset with the aforementioned parameters. To

asses convergence, each algorithm was tested using an over dispersed initial guess,

compared against MLE estimates when zT1 was known, and compared with each

other. First, the Baum-Welch algorithm was tested using randomly generated

numbers as intial guesses which were denoted as θ̂0. Using randomly generated
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values for θ̂0, it was discovered that the Baum-Welch algorithm does not converge

to the global minimum for all cases. If µS1 and µS2Aare chosen such that µS1 > ȳ
T
0

and µS2A > ȳ
T
0 where ȳT0 is the mean of the observed currents then the algorithm

converges to a local minimum µS1 ≈ µS2A ≈ ȳT0 . The same also occurred if

µS1 < ȳT0 . and µS2A < ȳT0 . Therefore, the same experiment was run where the

initial guesses were µS1 = max
(
yT0
)
and µS2A = min

(
yT0
)
and the rest of the

parameters were randomly generated. In Figure (3.3), k̂j represents the Baum-

Welch algorithm estimate of k after j iterations of the algorithm. The values of

(q̂12)j, (q̂21)j, σ̂2
j , (µ̂S1)j, and (µ̂S2A)j for the runs in Table 3.1 were compared in

Figure 3.3.

k̂j versus iterations of the Baum-Welch algorithm
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Figure 3.3: Values of (q̂12)j, (q̂21)j, σ̂2
j , (µ̂S1)j, and (µ̂S2A)j vs number of iterations

(j)

In each simulation q̂12, q̂21, µ̂S1 , µ̂S2A , and σ̂2 converged to 0.0063, 0.0202,

32.0144, 25.9925, and 2.2567. For reference, the true values of q12 and q21 when

r12 = 600 and r21 = 2000 are approximately 0.0060 and 0.0198 while µS1 = 32,

µS2A = 26, and σ2 = 2.25.

The same test was run on using the Viterbi training or segmental k-mean algo-

rithm. In Figure 3.4, the results of the Viterbi training algorithm were compared

for the over dispersed θ̂0 from Table 3.1. It is important to note that not all sim-
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ulations took 7 iterations to converge. To better compare θ̂ for all three runs, the

traces of θ̂ for the trials that converge more quickly were extended to 7. Unlike

the Baum-Welch, the Viterbi Training algorithm did not converge to the same

value for all θ̂0 from Table 3.1. This was particularly difficult because unlike the

Baum-Welch algorithm, it was not immediately obvious that θ̂ was an unwanted

local minimum.

k̂j versus iterations of the Viterbi Training algorithm for runs 1-3
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Figure 3.4: Values of (q̂12)j, (q̂21)j, σ̂2
j , (µ̂S1)j, and (µ̂S2A)j vs number of iterations

(j)

θ̂ for runs 1-3 in were placed in Table 3.2. However, the initial guesses for

θ̂0 were intentionally obtuse or overdispersed. Therefore, the Viterbi Training

algorithm was retested with initial guesses that were slightly more reasonable.

Table 3.3 has θ̂0 for Run 4-6 where (q̂12)j and (q̂21)j were within an order magni-

tude of θ. The results of the Viterbi training algorithm were placed in Figure 3.5.

For θ̂0 from Table 3.3, the Viterbi training algorithm converged to q̂12 = 0.0063,

q̂21 = 0.0199, σ̂2 = 2.2550, µ̂S1 = 32.0147, and µ̂S2A = 25.9926. Following this, the

Viterbi training algorithm also exhibits convergence for reasonable θ̂0. However,
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θ̂0 must be more carefully chosen as the Viterbi training algorithm was more likely

to get caught in undesirable local minimums that were not obviously wrong.

Trial Name Run 1 Run 2 Run 3

q̂12 0.0066 0.0064 0.0068

q̂21 0.0212 0.0203 0.0217

σ̂2 2.2454 2.2522 2.2420

µS1 32.016 32.015 32.017

µ̂S2A 25.990 25.992 25.990

Table 3.2: Values of θ̂ using the
Viterbi training algorithm for Runs 1-
3

Trial Name Run 4 Run 5 Run 6

(q̂12)0 0.0050 0.0040 0.0080

(q̂21)0 0.0210 0.0220 0.0150

σ̂2
0 1 2 3

(µ̂S1)0 36 40 40

(µ̂S2A)0 20 16 10

Table 3.3: Initial values for additional
runs of the Viterbi training algorithm

k̂j versus iterations of the Viterbi Training algorithm for runs 4-6
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Figure 3.5: Values of (q̂12)j, (q̂21)j, σ̂2
j , (µ̂S1)j, and (µ̂S2A)j vs number of iterations

(j)

The Gibbs sampler was also tested by choosing an over-dispersed initial guess

denoted as θ0. As with Baum-Welch, there are complications for µS1 > ȳT0 and
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µS2A > ȳT0 or µS1 < ȳT0 and µS2A < ȳT0 . Therefore, µS1 > ȳT0 and µS2A <

ȳT0 were used in θ0. The values for θ0 are in Table 3.4. The first 50 draws

from q12|yT1 , zT1 ,θ−q12 , q21|yT1 , zT1 ,θ−q21 , σ2|yT1 , zT1 ,θ−σ2 , µS1 |yT1 , zT1 ,θ−µS1
, and

µS2A|yT1 , zT1 ,θ−µS2A
are in Figure 3.6 where θ−k denotes all θ except parameter k.

A Trace of the draws 1-50 from the posterior of θ
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Figure 3.6: The first 50 draws from the posterior

Trial MCMC MCMC MCMC

Name Run 1 Run 2 Run 3

q12 0.065 0.838 0.049

q21 0.023 0.004 0.017

σ2 2.608 13.77 25.15

µS1 32.09 30.62 33.26

µS2A 26.15 22.66 27.84

Table 3.4: Initial values for runs of
the Gibbs sampler

In Figure 3.6, it can be seen that

the posterior quickly approaches similar

ranges for each posterior. Since the re-

gion of interest is small in 3.6, samples

4800− 5000 were compared from Run 1

and Run 2 for q12 and q21. In Figure 3.7,

it can be seen that both sequences ap-

pear to be stationary. Furthermore, both

have converged to the same region.

The last two tests were placed in Fig-
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A Trace of the draws 4800− 5000 from the posterior of q12 and q21
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Figure 3.7: Twenty draws of q12 and q21 from the posterior

ure 3.8. The simulated posterior was compared with the point estimates from the

Baum-Welch and Viterbi training algorithm. In addition, all three of the former

were compared with the true value of θ and θ̂ when the true values of zT1 where

known. This was done with a simulation that was 0.5 seconds long, 15, 000 draws

from the posterior were simulated, and the values for θ0 of the Gibbs sampler

were generated by the Baum-Welch algorithm.

As seen in Figure 3.8, the Baum-Welch algorithm and Viterbi training algo-

rithm both produced results close to θ̂ when the true values of zT1 where known.

In addition, the results were within reasonable error of the true value of θ. The

posterior of θ was also centered near the other two algorithms as well as θ̂ when

the true values of zT1 where known. Given that, plus the performance on overdis-

persed initial guesses, the algorithms seem to be converging to desired values.

Although the Viterbi training algorithm was more sensitive to choices of initial

guesses, all performed as desired with reasonable starting points.
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Estimates of the three algorithms with the true θ and θ̂ when zT1 was known
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Figure 3.8: The histograms of the simulated posteriors, the points estimates,
and true values of θ

3.2.4 Performance

The goal was to make inference on the transition rates of the two state, two sig-

nal system where the state was indirectly measured at discrete times. Therefore,

inference using the Baum-Welch algorithm, the Viterbi training algorithm, and

the Gibbs sampler was studied. To understand the performance of the different

methods, different tests were used. Since point estimates provide less information

about each dataset, more datasets were used to test the Baum-Welch and Viterbi

training algorithms. Therefore, twenty datasets each that were one half of a sec-

ond, 1 second, 2 seconds and 4 seconds long were generated. The Viterbi training

algorithm and the Baum-Welch algorithm were run on each dataset (80 total

datasets) to evaluate the point estimates. The nature of posterior distribution

provides much more information. Therefore, it was not necessary or practical to

evaluate 80 datasets as was done with the point estimates. To evaluate the Gibbs
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sampler for this data, one dataset was run that was four seconds long. Than the

Gibbs sampler was run on the first half second, 1 second, 2 seconds and the entire

dataset.

To test the Viterbi training algorithm and the Baum-Welch algorithm, each

dataset was generated using (3.2.2) with r12 = 600, r21 = 2000, µS1 = 32, µS2A =

26, σ = 1.5, and ∆t = 1
100000 seconds. For each dataset, both algorithms were

run. The estimates of each algorithm minus the MLE of each dataset given the

true value of zT1 were compared. The aforementioned differences were denoted at

k̂ − k̂ given zT1 and were plotted in Figure 3.9.

Estimates of the Baum Welch and Viterbi training algorithm minus the MLE of
each paramters given the true zT1
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Figure 3.9: k̂− k̂ given zT1 versus time for the Baum-Welch and Viterbi training
algorithms

For σ2, µS1 , and µS2A , both methods exhibited small relative error. However,

Viterbi Training exhibited larger errors that appear to be biased for r12 and r21.

In fact, it has been noted by Qin that Viterbi training is not asymptotically

unbiased [42] and this was observed in the empirical evidence in Figure 3.9. For

the case studied, the bias was small relative to the values of r12 and r21, but

93



parameters that were harder to learn could amplify the aforementioned issues. To

study this further, all three algorithms were run on a dataset one half of a second

long where r12 = 600, r21 = 2000, µS1 = 32, µS2A = 26, and σ = 3. The results

were compared in Figure 3.10.

Estimates of the three algorithms with the true θ and θ̂ when zT1 was known

Figure 3.10: The histograms of the simulated posteriors, the points estimates,
and true values of θ

As with Figure 3.8, the Baum-Welch algorithm and the MLE when zT1 was

known are very similar. However, the biased behavior of the Viterbi training was

exacerbated when the value of σ was increased.

For the datasets ran, there were examples where the relative error introduced

by the Viterbi training algorithm was negligible. However, this was not the case

for all datasets. Furthermore, the longest iteration of the Baum-Welch algorithm

for 400, 000 data points was less than 5 minutes. Although this was considerably

longer than the Viterbi training algorithm, for datasets of this size, runtimes

differences were inconsequential for this research. Therefore, since σ2 was not

known, the Baum-Welch algorithm would be a better tool given the dataset was
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not significantly larger than the data explored here.

99% CI 95% CI 80% CI

Figure 3.11: CI Demarcation

The Gibbs sampler provides more informa-

tion. Therefore, it was not necessary to run

the algorithm on 80 different datasets. To ex-

plore the inference and uncertainty in the case

of r12 = 600, r21 = 2000, µS1 = 32, µS2A = 26,

and σ = 1.5, one dataset was generated that

was 4 second long with ∆t = 1
100000 seconds.

Then MCMC simulations were run on the first

half of a second, 1 second, 2 seconds, and the entire dataset. Simulations were

compared in a similar fashion as in Section 2.4.1. As before, define (wij)k as the

kth draw from the posterior and
{

(wij)k
}
as the set of all draws made from the

posterior. Let
(
εwij

)
k
be defined such that

(
εwij

)
k

+ (wij)k = wij where wij de-

notes the true value of wij. Finally, similar to
{

(wij)k
}
,
{(
εwij

)
k

}
denotes the set

of all draws of
(
εwij

)
k
from the posterior.

Again, the distributions were compared by plotting the credible intervals of{(
εwij

)
k

}
for each trial on the same axis. Here, the 99%, 95%, and 80% CIs (Cred-

ible Intervals) were compared and demarcated by the color schemes in Figure 3.11.

The comparisons of {(εr12)k}, {(εr21)k}, {(εσ2)k},
{(
εµS1

)
k

}
, and

{(
εµS2A

)
k

}
were

placed in Figure 3.12. The y-axis represented the size of the credible intervals

of
{(
εwij

)
k

}
while the x-axis represented the total time of each simulation. In

Figure 3.12, the credible intervals seem to be centered on the true values for each

parameter and the credible interval shrink around the true values as total time

goes to∞. As with the Baum-Welch algorithm, there was not a discernible bias for

the datasets used. The credible intervals for {(εσ2)k},
{(
εµS1

)
k

}
, and

{(
εµS2A

)
k

}
were small relative to the true values and therefore little uncertainty was intro-
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duced even with a dataset 0.5 seconds long. The same was not true for r12 and

r21. Recall the values of r12 and r21 were 600 and 2000, so the credible intervals

for the posteriors are large relative to true values for the half-second trial.

Credible Intervals {(ǫr12)k}

0.5 1 2 4
r12 − 200

r12 + 200
Credible Intervals of {(ǫr21)k}

0.5 1 2 4
r21 − 500

r21

r21 + 500

σ
2

σ
2

σ
2 + .05

0.5 1 2 4
σ
2
− .05

Credible Intervals of {(ǫσ2)
k
} Credible Intervals of

{

(

ǫµS1

)

k

}

0.5 1 2 4
µS1

− .05

µS1

Credible Intervals
{(

ǫµS2A

)

k

}

0.5 1 2 4
µS2

− .05

µS2

r12

Figure 3.12: The credible intervals of {( εw )k}

To investigate the size of the credible intervals, DQ
(
p;
(
εwij

)
k

)
was used as in

Section 2.4.1.

DQ
(
p;
(
εwij

)
k

)
= 1
wij

[
Q
(

1− 1− p
2 ;

{(
εwij

)
k

})
−Q

(1− p
2 ;

{(
εwij

)
k

})]
(3.7)

As a reminder, DQ
(
p;
(
εwij

)
k

)
was redefined in (3.7) and Q

(
n;
{(
εwij

)
k

})
was

defined as the quantile function of the simulated distribution of
{(
εwij

)
k

}
eval-

uated at n. To evaluate the uncertainty against simulation time, DQ (p; (εr12)k)
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Figure 3.13: DQ (p; {wij,k}) vs. compute time for r12 and r21

and DQ (p; (εr21)k) were plotted against compute time in Figure 3.13 for p = 99%,

p = 95%, and p = 80%.

In Figure 3.13, both 99% and 95% intervals have large uncertainty for small

datasets. For a dataset with a total time of four seconds, DQ (0.99; {(εr12)k}) and

DQ (0.99; {(εr21)k}}) were under 0.15. Following this, with long simulation times,

DQ (0.99; {(εr12)k}) ≈ 0.10 and DQ (0.99; {(εr21)k}) ≈ 0.10 could be achieved.

However, if only point estimates are desired, the Baum-Welch Algorithm was able

to converge for a dataset four seconds long in under ten minutes. The choice

between the two algorithms depends on the desire to describe ranges for the

parameters versus the cost of extra simulation time. Finally, if the Gibbs sampler

was used on a long dataset, given the nature of a Gibbs sampler, parallelization

is possible.
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Chapter 4

Modeling of Biochemical States

of DNA Replication Restricted to

Three States

4.1 The 3-State Experiment

S1 S2A S2B NC

P P P P P P

P P −2 GC −2 −2 GC −2 −2 GC −2

−2 GC −2 −1 TA −1 −1 TA −1 −1 TA −1

−1 (TA) −1 (C) 0 0 (GC) 0 ∗ 0 (GC) 0

C 0 G 1 G 1 G 1

G 1 T 2 T 2 T 2

T 2 A 3 A 3 A 3

A 3

Figure 4.1: A diagram depicting a nucleotide addition cycle where the location
of the active site of the DNAP is denoted by (∗)
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The inference on a system with three states with three distinct signals would

be almost identical to the inference explored in previous sections. However, the

three state experiments studied for this research only had two distinct signals.

Therefore, the inference was more difficult and previously discussed modeling

techniques could not be applied.

Chapter 3 discussed an experiment designed by Lieberman and her colleagues.

In that experiment, the biochemical states of the DNA were tracked by hanging the

DNA and DNAP complex through a nanopore and applying an electric current.

This experiment was designed such that states S1 and S2A in Figure 4.1 [31]

were isolated. In a later experiment, Lieberman and her colleagues isolated states

S1, S2A, and S2B [32]. For this experiment, dNTP , the necessary complement

for the addition cycle, was added to the solution in addition to the DNA and

DNAP binary complex. Then the DNA and DNAP could move from the pre-

translocation state labeled as S1, to the post translocation state (S2A), and the

complementary base pair could associate making the ternary complex pictured

as state S2B. The experiment was engineered such that the dNTP could not

form a covalent bond with the backbone of the DNA. Following this, the dNTP

would eventually disassociate from the DNA and DNAP complex without the

ability to transition past state S2B. Therefore, the system vacillates between

states S1, S2A, and S2B. In the experiment conducted by Lieberman et al., it was

also shown that transitions were only between adjacent states and all rates were

exponential. In addition, the transition rate from S2A to S2B was proportional

to the concentration of dNTP or r23 = k[dNTP ] [32]. However, for the purpose

of this work, the concentration of dNTP was fixed, so r23 was treated as a fixed

value. Given the exponential transition rates, this system could be treated as a

three state continuous time Markov chain as represented in the state diagram in
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Figure 4.2A.

A

S1

S2A S2B

r12r21

r23

r32

B

S1

S2A S2B

q12q12

q13

q11

q21

q23

q22 q32

q31

q33

Figure 4.2: State diagrams of the continuous time 3-state system with transition
rates rij (A) and discrete time 3-state system with transition probabilities qij (B)

The state diagram of the resulting 3-state discrete time system was depicted

in Figure 4.2B where qij is the transition probability from state i to j. Since it

was possible for more than one transition within a single timestep (ti to ti+1),

there are transition probabilities that do not exist in Figure 4.2A. Given the

continuous time Markov model from Figure 4.2A, the associated discrete system

was also Markovian. Furthermore, given the transition probabilities the transition

rates can be calculated and vice versa given the equations listed as (4.1) to (4.4).

For further explanation of the Markov properties of both the continuous time

system and the discrete time system as well as the mapping between the two, see

Section 2.4.2.

Recall, that the observation of state was made indirectly by measuring the

applied electric current through the nanopore. In the first experiment, as dis-

cussed in Chapter 3, two distinct current levels were associated with states S1 and

S2A [31]. For the datasets discussed, the Baum-Welch algorithm, Viterbi training,

and a Gibbs sampler were applicable, but the Baum-Welch algorithm and Gibbs
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R =

−r12 r21 0
r12 − (r21 + r23) r32
0 r23 −r32

 Q =

q11 q21 q31
q12 q22 q32
q13 q23 q33

 (4.1)

Q =
D∑
d=0

(R(∆t))d

d! + o(∆tD) (4.2)

R = S0 −
1
2 (∆t)S2

0 + 1
3 (∆t)2 S3

0 −
1
4 (∆t)3 S4

0 + o
(
∆t3

)
(4.3)

S0 = Q− I
∆t (4.4)

sampler were more advantageous. However, as discussed in Section 1.1, the three

state experiment did not have three distinct current levels. Lieberman and her

colleagues found that both S2A and S2B produced the same signal [32]. Then the

system only had two distinct current levels. Let µS1 be the signal produced when

the system was in state S1 and let µS2 be the signal when the system was in state

S2A or S2B. From this, the continuous time system and the discrete time system

state diagram were pictured with current levels in Figure 4.3.

CTMC Signal DTMC

S1 ∼ µS1 S1

S2A S2B ∼ µS2 S2A S2B

r12 q12

q11

r21

r23

r32

q21

q23

q22
q32

q33

Figure 4.3: The state diagrams of the CTMC and the discrete time markov
chain (DTMC) where q13 = q31 = 0 and the signals associated to each state

For the three state system, notation from Section 2.4.2 was used. The current
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was measured at regularly spaced times tT1 = (t1, t2, ..., tT ) and the ith measure-

ment of current was denoted as yi. The unobserved state at time ti was represented

by the indicator zi = (zi1, zi2, zi3) defined such that zim = 1 if the system was in

state m at time ti, otherwise zim = 0. For notational efficiency, let m = 1, 2 and

3 represent S1, S2A, and S2B respectively. The joint likelihood was listed as (4.5)

and was the same as the likelihood for the k state system with k distinct signals

except for p(yi|zi,θ). Following that, greater detail on the joint likelihood can be

found in Section 2.4.2.

p(yT1 , zT1 |θ) for k states (4.5)

p(yT1 , zT1 |θ) = p(z1|θ)
T∏
i=2

p(zi|zi−1)
T∏
i=1

p(yi|zi,θ)

p(zi|zi−1) =
k∏
j=1

[
p(zi|z(i−1)j = 1)

]z(i−1)j

p(zi|z(i−1)j = 1) =
k∏
l=1

qziljl

p(z1|θ) =
k∏
j=1

ρ
z1j
j

yi|zi1 = 1,θ ∼ N (µS1 , σ
2)

yi|zi2 = 1 ∪ zi3 = 1,θ ∼ N (µS2 , σ
2)

p(yi|zi,θ) = [p(yi|zi1 = 1,θ)]zi1 [p(yi|zi2 = 1 ∪ zi3 = 1,θ)]zi2+zi3

As a first test, the Baum-Welch algorithm and the Gibbs sampler from Sec-

tion 2.4.2 was applied naively to the 3 state system. Since there was much less

information than provided in Chapter 3, it was assumed that q13 and q31 were

zero as diagrammed in Figure 4.3 which is approximately true given a sufficiently

small timestep (∆t).
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4.1.1 Dataset

As with the 2 state system, the algorithms were evaluated against computer

generated idealized datasets. Again, the Gillespie algorithm [19] was used to

generate the state in continuous time or X(t) where X(t) = 1, 2 and 3 denotes

the system was in state S1, S2A, or S2B at time t respectively. zT0 was taken

from X(ti) for i = 1 to T and yi was generated from p(yi|zi,θ). As before,

the complex was arbitrarily started in state S1. However, the three state system

has two possible transitions from S2A. For this, test21 and test23 were generated

where test21 ∼ exp(r21) and test23 ∼ exp(r23). If test21 < test23, the complex

transitioned to state S1, if test21 > test23 then the complex transitioned to state

S2A. Recall from Chapter 3, Ej is the time of the jth event or transition and ∆Ej

be Ej − Ej−1.

The Gillespie algorithm for the 3-state system

1. Set j = 1, t = 0, and X(0) = 1.

2. Generate E1 ∼ exp(r12)

3. t = E1, j = j + 1, X(t) = 2

4. while t < tT

(a) if X(t) = 1

i. Generate ∆Ej ∼ exp(r12)

ii. Ej = ∆Ej + Ej−1, t = Ej, and X(t) = 2

(b) if X(t) = 2

i. Generate test21 ∼ exp(r21)

ii. Generate test23 ∼ exp(r23)

103



iii. if test21 < test23

A. ∆Ej = test21

B. Ej = ∆Ej + Ej−1, t = Ej, and X(t) = 1

iv. if test21 > test23

A. ∆Ej = test23

B. Ej = ∆Ej + Ej−1, t = Ej, and X(t) = 3

(c) if X(t) = 3

i. Generate ∆Ej ∼ exp(r32)

ii. Ej = ∆Ej + Ej−1, t = Ej, and X(t) = 2

(d) j = j + 1

For tT0 = (t0, t1, ...., tT ), X(ti) was mapped to zi and yi was drawn from yi ∼

p(yi|zi,Θ)

Analysis of performance of traditional hidden Markov modeling

A 10 second dataset was generated with r12 = 100, r21 = 1000, r23 = 100,

r32 = 200, µS1 = 32, µS2 = 26, σ = 3, and was sampled at 100 kHz. As with the

2 state algorithm, the Baum Welch algorithm was run first. To rule out the effect

caused by a poor initial guess, θ̂0 included the true values of µS1 , µS2 , σ, and

the approximated values of qij from 4.2. Given the low amount of information,

the algorithm searched in the vicinity of the solution and then failed after 134

iterations. Since there is very little change in the likelihood between being in

state S2A and S2B, the algorithm could continually change values for E[zT1 ] with

little to no penalty. A similar experiment was run with the Gibbs sampler, using

the same values for the initial guess of θ0. 15, 000 draws from the posterior of θ

were simulated. The histograms of q12, q21, q23, and q32 can be seen in Figure 4.4.
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Figure 4.4: The histograms of q12, q21, q23, and q32

From the histograms of posteriors in Figure 4.4, it was easy to see that the

posteriors were not good estimated for the values of qij. Furthermore, the in-

discernible signals for state S2A and S2B greatly affected inference on q23 in q32.

The values of q23 were near 0, and q32 seemed to explore the entire space from 0

to 1. Since the value of q23 was close to zero, the posterior of zT1 was rarely in

state S2B. Therefore, the value of q21 was underestimated since the stays in S2B

were incorrectly attributed to S2A. Using true values for both the initial value for

the Baum-Welch algorithm (θ̂0) and the Gibbs sampler (θ0) produced undesirable

results, and Viterbi Training was shown to be less accurate. Given three states

with only two discernible signals, the traditional methodologies for discrete state

systems were insufficient. Therefore, a composite state that included states S2A

and S2B was considered.
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4.1.2 The composite state

The three state system with only two distinct signals introduced added com-

plexity to inference. Since the state was not directly measurable and there were

only two discernible signals, changing from zi2 = 1 to zi3 = 1 or vice versa could

yield very little change in the value of the likelihood. This made finding the

MLE using traditional hidden Markov modeling methods very difficult and was

confirmed empirically by the results in Section 4.1.1. Therefore, the problem

was reconsidered using only the “visible” states. The first of which was the pre-

translocation state, or state S1. The second, referred to as the composite state

denoted as S2, was the union of states S2A and S2B (S2 = S2A ∪ S2B). The two

“visible” states two were illustrated in Figure 4.5 where q∗1(dh) is the transition

probability from S2.

S1 N (µS1 , σ
2)

S2 N (µS2 , σ
2)

q12

signal

q∗1(dh)

signal

Figure 4.5: The visible portion of the discrete three state model

q12 is the same as depicted in Figure 4.3 and therefore is memoryless. However,

the escape probability from the composite state (S2) was not Markovian. By

assuming only the transitions in Figure 4.3 were possible, the escape probability

from the composite state was a mixture of geometric distributions. Furthermore,

the transition probabilities in Figure 4.3 can be written in terms of the parameters

of the escape probability from S2. The escape probability from S2 was written

in (4.6) and denoted as q∗1(dh) where dh is the number of consecutive observations
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in the hth stay in S2. Following that, q21, q23, and q32 were written in terms of the

escape probability from S2 in 4.7-4.9.

q∗1(dh) = w(1− ϕ1)dh−1ϕ1 + (1− w)(1− ϕ2)dh−1ϕ2 (4.6)

q21 = ϕ2 + w(ϕ1 − ϕ2) (4.7)

q23 = (ϕ1 − ϕ2)2 − [(ϕ1 − ϕ2)− 2w(ϕ1 − ϕ2)]2
2[ϕ2 + w(ϕ1 − ϕ2)] (4.8)

q32 = ϕ2 − w(ϕ1 − ϕ2)− (ϕ1 − ϕ2)2 − [(ϕ1 − ϕ2)− 2w(ϕ1 − ϕ2)]2
2[ϕ2 + w(ϕ1 − ϕ2)] (4.9)

Given q12 and (4.7)-(4.9), inference on zT1 = (z1, z1, ...,zT ) could be made using

the previously discussed hidden Markov modeling algorithms. Although there was

insufficient information for convergence on zT1 , there was sufficient information to

converge on the values for zi1 and zi2 + zi3. In turn, this was enough information

for inference on q12, µS1 , µS2 , and σ2. Furthermore, the values of zi1 and zi2 + zi3,

were used to to generate d = (d1, d2, ..., dh, ..., dn) where dh is the consecutive

observations in the composite state S2 for the hth stay in S2. From that, inference

on ϕ1, ϕ2, and w was made.

Consecutive observations in the composite state

To understand the consecutive observations in the composite state and conse-

quently the transition probability from the composite state, an arbitrary sequence

of consecutive observations in state S2 was studied. Without loss of generality,

let zi+1 be the first observation in the composite state, Then p(zi+2|zi+1,θ) was

studied where states S1, S2A, and S2B were considered. Since all three states were

considered, as previously discussed, the probabilities of transitioning between the

states, were Markovian. Furthermore, p(zi+2|zi+1,θ) could be expressed as a sin-

107



gle matrix and was listed as (4.11) to (4.13). To reduce the number of variables,

q11 was written as 1− q12, q22 was written as 1− q21− q23, and q33 was written as

1− q32

p(zi+2|zi+1,Θ) = Qz′i (4.10)

p(zi+2|zi+1,θ) =


p(z(i+2)1 = 1|zi+1,θ)

p(z(i+2)2 = 1|zi+1,θ)

p(z(i+2)3 = 1|zi+1,θ)

 (4.11)

zi+1 =
[
z(i+1)1 z(i+1)2 z(i+1)3

]
(4.12)

Q =


1− q12 q21 0

q12 1− (q21 + q23) q32

0 q23 1− q32

 (4.13)

The matrix above, Q, has some extra information for the aforementioned

purposes. First, since the dwell time in S2 was being studied, then it was assumed

that z(i−1)1 = 0. Therefore, the first column was not needed. Second, q∗1(dh) was

derived by computing the probability of staying in S2, so it was not necessary to

compute the values in the first row. Therefore, the probability of staying in state

S2 could be described using the reduced matrices in (4.14).

QS2 =

1− q21 − q23 q32

q23 1− q32


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p(z(i+2)2 = 1|zi+1,θ)

p(z(i+2)3 = 1|zi+1,θ)

 = QS2

z(i+1)2

z(i+1)3

 (4.14)

p(z(i+n)2 = 1, zi+n−1
i+2 ∈ S2|zi+1,θ)

p(z(i+n)3 = 1, zi+n−1
i+2 ∈ S2|zi+1,θ)

 = Qn−1
S2

z(i+1)2

z(i+1)3

 (4.15)

(4.14) computes the probability of remaining in S2 at time ti+1 to ti+2. How-

ever, it was necessary to derive the probability of a general set of consecutive obser-

vations remaining in S2 from time ti+1 to ti+n. For this, two quantities were com-

puted, p(z(i+n)2 = 1, zi+n−1
i+2 ∈ S2|zi+1,θ) and p(z(i+n)3 = 1, zi+n−1

i+2 ∈ S2|zi+1,θ)

where zi+n−1
i+1 ∈ S2 denotes that the system was observed in the composite state

from i + 2 to i + n − 1. Since the three state system was Markovian, this was

done by multiplying QS2 (n−1) consecutive times as seen in (4.15). Furthermore,

QS2 was diagonalizable. Therefore, a diagonal matrix D and matrix M exist such

that Qn−1
S2 = MDn−1M−1. Expressing D as (4.16), MDn−1M−1 was simplified

in (4.17) where each li was the resulting constant from multiplying D by two

general unknown matrices (M and M−1). Since zi+1 was the first observation

in the composite state and the assumption q13 = 0 was used then z(i+1)2 = 1

and z(i+1)3 = 0 resulting in (4.18). (4.18) gives the probability z(i+n)2 = 1 and

z(i+n)3 = 1 separately, but the interest was the probability of remaining in S2

which was denoted as p(zi+ni+2 ∈ S2|zi+1,θ). This result was listed as (4.19).

D =

λ1 0

0 λ2

 (4.16)

MDn−1M−1 =

l1λn−1
1 + l2λ

n−1
2 l3λ

n−1
1 + l4λ

n−1
2

l5λ
n−1
1 + l6λ

n−1
2 l7λ

n−1
1 + l8λ

n−1
2

 (4.17)
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p(z(i+n)2 = 1, zi+n−1
i+2 ∈ S2|zi+1,θ)

p(z(i+n)3 = 1, zi+n−1
i+2 ∈ S2|zi+1,θ)

 =

l1λn−1
1 + l2λ

n−1
2

l5λ
n−1
1 + l6λ

n−1
2

 (4.18)

p(zi+ni+2 ∈ S2|zi+1,θ) = (l1 + l5)λn−1
1 + (l2 + l6)λn−1

2 (4.19)

Finally, (4.19) could be used to calculate the transition probability given n consec-

utive observations in the composite state. Since, (4.19) was p(zi+ni+2 ∈ S2|zi+1,θ),

it was also the probability that there were at least n consecutive observations.

Following that, p(zi+n+1
i+2 ∈ S2|zi+1,θ) gives the probability that there were at

least n + 1 consecutive observations. The transition out of the composite state

after exactly n consecutive observation in S2 or q∗1(n) was p(zi+ni+2 ∈ S2|zi+1,θ)−

p(zi+n+1
i+2 ∈ S2|zi+1,θ) which resulted in an alternate representation of a mixture

of geometric distribution listed as 4.20.

q∗1(n) = p(zi+ni+2 ∈ S2|zi+1,θ)− p(zi+n+1
i+2 ∈ S2|zi+1,θ)

q∗1(n) = (l1 + l5)λn−1
1 + (l2 + l6)λn−1

2 − [(l1 + l5)λn1 + (l2 + l6)λn2 ]

q∗1(n) = (l1 + l5)λn−1
1 (1− λ1) + (l2 + l6)λn−1

2 (1− λ2) (4.20)

The representation (4.20) was equivalent to the more traditional for of the mixture

model in (4.6) where λi = 1 − ϕi. Furthermore, since this is a distribution,

l1 + l5 + l2 + l6 = 1 so w was used where w = l1 + l5 and 1 − w = l2 + l6. Given

the definitions of (4.16) and (4.17), each λi was an eigenvalue of QS2 . This made

it possible to write each λi and ϕi it terms of the transition probabilities of the

hidden Markov model, which were listed as (4.21)-(4.24).
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λ1 = 2− q21 − q23 − q32 − k
2 (4.21)

λ2 = 2− q21 − q23 − q32 + k

2 (4.22)

k =
√

2q21q23 − 2q21q32 + 2q23q32 + q2
21 + q2

23 + q2
32

ϕ1 = q21 + q23 + q32 + k

2 (4.23)

ϕ2 = q21 + q23 + q32 − k
2 (4.24)

Finally, w was written in terms of the transition probabilities of the hidden

Markov model. For this, the assumption q13 = 0 was used again. If z(i+1)2 = 1,

then the probability of transition out of S2 on the first timestep was q21. Therefore,

to calculate w in terms of the transition probabilities of the hidden Markov model,

q∗1(1) was set equal to q21. This resulted in (4.25).

q∗1(1) = q12

q12 = w(1− ϕ1)1−1ϕ1 + (1− w)(1− ϕ2)1−1ϕ2

q12 = wϕ1 + (1− w)ϕ2

q12 = w

(
q21 + q23 + q32 + k

2

)
+ (1− w)

(
q21 + q23 + q32 − k

2

)

q12 = w(k) +
(
q21 + q23 + q32 − k

2

)

w = q21 − q23 − q32 + k

2k (4.25)

From this, algorithms were built to make inference on rij. This will be dis-

cussed in the following sections.
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4.2 Inference on a CTMC with 3 states and 2

distinct signals

In Chapter 3, inference on a 2 state system with 2 distinct signals was dis-

cussed. To calculate the MLE of the transition rates the Baum-Welch algorithm

and Viterbi training were applied. For the datasets explored, the Baum-Welch

was the preferred method of inference due to higher quality inference than Viterbi

training while having reasonable compute times. Unfortunately, the Baum-Welch

Algorithm is a special case of the Expectation Maximization Method [1] that it-

eratively computes E[zT1 ] and then maximizes the parameters based on E[zT1 ] [4].

The interpretation of E[zT1 ] to consecutive observations in state S2 (dh) was not

straightforward, making inference on (4.6) difficult. Therefore, a method that

makes inference on zT1 was preferential to one that makes inference on E[zT1 ]. The

other approach called the Viterbi training or segmental K-means algorithm [24]

[44] discussed in Chapter 3 made inference on the most likely state sequence of

zT1 given the parameters. This path (Viterbi path) can be found employing the

Viterbi algorithm [58]. Since the Viterbi path provides a single sequence for zT1 ,

values of the consecutive observations in the composite state (dh) were straight

forward to calculate. Therefore, the solutions to the Viterbi path could be used

to compute all parameters of interest in an iterative method similar to the EM.

Viterbi training is known to be less computationally intensive than Baum-Welch,

but Viterbi training is not asymptotically unbiased [42]. The asymptotically bi-

ased estimates of the algorithm were found to have an impact, and those will be

discussed later.

Chapter 3 also discussed the calculation of the posteriors of the parameters

using a Gibbs sampler [53] [9]. This used a variation on the forward filtering
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backward sampling algorithm to make inference on zT0 and the parameters. A

weakness of the aforementioned algorithm is long computation times. The com-

putation time is particularly limiting because the experiments above require large

datasets to make inference with acceptable accuracy.

4.2.1 Limitations

The goal of this research was to make inference on the transition rates of a

three-state system when only there were only two distinct signals. Without a

sufficient number of observations and favorable conditions, inference was difficult

or of poor quality. Unfortunately, there was not a set range of transition rates

that performed poorly. Instead, problems occurred on a sliding range that can be

alleviated through more observations or an adjustment of ∆t. Following that, this

section explores the possible types of problems that can occur through the lens

of the problem introduced in Section 4.1. Since it was observed by Liebermen

and her colleagues [31] [32] that r21 was much larger than r23 and r32, for this

section r21 was arbitrarily set to 1000 and r23 and r32 were varied from 50 to 500.

Furthermore, the sampling rate was set to ∆t = 1
100000 , as used with the original

experiment.

The first limitation comes from the assumptions necessary to derive the prob-

ability of transition from the composite state or state S2. For q∗1(dh), it was

assumed that q13 ≈ q13 ≈ 0. Occurrences where the system changes from state S1

to S2B and from S2B to S1 were not considered in q∗1(dh). A good tool to study

the probability of q13 and q31 was the second order approximations of qij. For this,

the second order approximations in terms of ∆t for q12 and q13 were listed as (4.26)

and (4.27) respectively. Since the algorithm assumes q13 does not account for any

of the transitions to the composite state, it was important that q13 was very small
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relative to q12. If q13 was small relative to q12, most of the transitions into state

S2 were from state S1 to S2A as assumed. By examining (4.26) and (4.27), it

can be seen that q12 contains a first degree term but q13 does not. Furthermore,

the second degree of q12 and q13 both have negative effects on the desired ratio of

q12 to q13. The same can be observed in the cases of q21 and q31. Therefore, the

ratios of q13 : q12 and q31 : q21 can be regulated by choosing ∆t small enough such

that the second (and all following degrees) were made negligible, leaving only the

desired first degree transitions.

q12 = r12∆t− (r2
12 + r12r21 + r12r23)∆t2

2! + o(∆t2) (4.26)

q13 = r12r23
∆t2
2! + o(∆t2) (4.27)

Another factor that contributes to the quality of inference were the values ϕ1

to ϕ2. If the values of ϕ1 and ϕ2 were too close or if ϕ2 was too small, inference

on ϕ1, ϕ2, and w was difficult. Recall from (4.23) and (4.24) that ϕ1 and ϕ2 differ

by k which was expressed differently in (4.28). Furthermore, k was expressed in

terms of rij in equation (4.29) using the first degree expansions of qij. From this,

k was approximately related to the difference of (r21 + r23 + r32)2(∆t) − 4r21r32.

In the case that the difference was too small, ∆t can be adjusted. However, if

4r21r32∆t was too close to 0, then k ≈ q21 + q23 + q32 and ϕ2 becomes very close

to 0. This can be alleviated by making ∆t larger. Plots comparing ϕ1
ϕ2

and ϕ2 to

values of r23 and r32 were placed in Figure 4.6 when r21 was held constant.
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k =
√

(q21 + q23 + q32)2 − 4q21q32 (4.28)

k ≈
√

[(r21 + r23 + r32)2(∆t)− 4r21r32] (∆t) (4.29)
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Figure 4.6: Comparing ϕ1
ϕ2

to r23 and r32 when r21 = 1000 and ∆t = 1
100000

Since r21 was held constant in Figure 4.6, as noted in equation (4.28), r32 had

the largest effect on both quantities. Therefore, ∆t needed to be chosen such that

4r21r32 was smaller than (r21 + r23 + r32)2(∆t) without 4r21r32(∆t) being too close

to zero.

The last factor considered for the composite state was w. If w was too close to

1, inference was difficult because there were very few observations of ϕ2. If w was

too close to 0, inference was difficult because there were very few observations of

ϕ1. Unfortunately, w did not lend itself to simplification in the same manner as

k, but the value of w was plotted against r23 and r32 in Figure 4.7. As before, r21

was set to 1000 and ∆t = 1
100000 . Since r21 was at least twice r23 and r32 in the

example presented, w was never close to 0. However, it is possible this could be
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problematic in the general application of these methods. As seen in Figure 4.7, w

does approach one when both r23 and r32 were too small.
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Figure 4.7: Comparing w to r23 and r32 when r21 = 1000 and ∆t = 1
100000

It would be convenient to list values of qij where these methods became ineffec-

tive. Unfortunately, these values are not fixed. Acceptable, values of ϕ1
ϕ2
, ϕ2, and

w depend on the values of qij and the amount of information available. These,

in turn, rely on the values of ∆t and number of data points. It could be the

case that problems could be resolved by changing ∆t. If ∆t was already optimal,

problems could be resolved with additional observations. Therefore, assuming an

optimal ∆t, bad qij could only be defined for fixed a number of data points or

compute time. Following this, Figures 4.6 and 4.7 were helpful in the case that

the algorithm performed poorly.

Unfortunately, processing more data was not free. For reference, the training

algorithm for point estimates took from 4-10 minutes to yield a biased estimator

for a dataset with 1,000,000 data points. The corresponding Gibbs sampler took

just over a week of compute time.
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4.2.2 A parameter training algorithm based on Viterbi

training

It was shown that traditional HMM methods were ineffective for making in-

ference on a three state system with two distinct signals. Therefore, a composite

state was considered which was explained in detail in Section 4.1.2. Given the

new composite state S2, inference was made on θ = (ρ, q12 ,ϕ1,ϕ2,w,µS1 ,µS2 , σ
2).

Similar to hidden Markov modeling, inference was made on the hidden state zT1
which allowed inference on θ. This resulted in an iterative algorithm that in this

research exhibited similar behaviors to Viterbi training. Following the same nota-

tion as used previously, let âk be the estimate of a after k iterations, (âi)k be the

same if a has a subscript, and vk
(
zT1
)
is the Viterbi path after k iterations. Since

the dh, or the number of consecutive observations in state S2 were taken from the

Viterbi path, the estimate of dh from the Viterbi path was denoted vk (dh). Like

the Viterbi training algorithm, this algorithm requires an initial guess
(
θ̂0
)
and

since the algorithm is a local optimizer it is important that θ̂0 is close enough

to the true θ that the local optimum found was also the global optimum. To

assess convergence,
∣∣∣∣∣∣θ̂k − θ̂k−1

∣∣∣∣∣∣
∞

was measured after each iteration (k) where∣∣∣∣∣∣θ̂k − θ̂k−1

∣∣∣∣∣∣
∞

denotes the infinity norm. When
∣∣∣∣∣∣θ̂k − θ̂k−1

∣∣∣∣∣∣
∞
< δ where δ was

an arbitrary small number, it was concluded that the algorithm had converged

and the algorithm was stopped. Therefore, the algorithm runs within a while

loop and to initialize the while loop when k = 0,
∣∣∣∣∣∣θ̂0 − θ̂−1

∣∣∣∣∣∣
∞

was set equal to

an arbitrary number greater than δ.

A Parameter training algorithm for 3 states with 2 distinct signals (4.30)

I. Pick θ̂0

II. Set k = 0 and define
∣∣∣∣∣∣θ̂0 − θ̂−1

∣∣∣∣∣∣
∞
> δ
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III. While
∣∣∣∣∣∣θ̂k − θ̂k−1

∣∣∣∣∣∣
∞
> δ

(i) k=k+1

(ii) Compute vk
(
zT1
)
from (4.41)

(iii) Compute ρ̂k from (4.42)

(iv) Compute (q̂12)k from (4.43)

(v) Compute (µ̂S1)k from (4.44)

(vi) Compute (µ̂S2)k from (4.45)

(vii) Compute σ̂2
k from (4.46)

(viii) Harvest vk (d) from vk
(
zT1
)

(ix) Compute (ϕ1, ϕ2, ϕ2)k from (4.50)

The likelihood functions

Following the discussion above, the system was described using two likelihood

functions. The first of which was listed as (4.31)-(4.35). This was the traditional

Hidden Markov Model where it was only important to converge on vk (zi1) and

vk (zi2) + vk (zi3) for all i. Recall, q21(θ), q23(θ), and q23(θ) are functions of θ and

were listed as (4.7)-(4.9).

p(yT0 , zT0 |θ) = p(z0|θ)
[
T∏
i=1

p(zi|zi−1,θ)
] [

T∏
i=0

p(yi|zi,θ)
]

(4.31)

p(z0|θ) = ρz10
1 ρz20

2 ρz30
3 (4.32)

p(zi|zi−1,θ) = Q(θ)z′i−1 (4.33)
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p(yi|zi,θ) =
[
Nyi(µS1 , σ

2)
]z1i [Nyi(µS2 , σ

2)]z2i+z3i (4.34)

Q(θ) =


1− q12 q21 0

q12(θ) 1− (q21(θ) + q23(θ)) q32(θ)

0 q23(θ) 1− q32(θ)

 (4.35)

The second was the likelihood of the consecutive observations in state S2 (or

probability of transition from the composite state S2 after dh consecutive obser-

vations) for n stays in the composite state which was listed as (4.36).

p(d|θ) =
n∏
h=1

[
w(1− ϕ1)dh−1ϕ1 + (1− w)(1− ϕ2)dh−1ϕ2

]
(4.36)

The training iteratively maximizes the state sequence
(
vk
(
zT1
))

given θ̂k−1

then θ̂k given vk
(
zT1
)
. In this case, the parameter training for this project itera-

tively performs the maximizations listed in (4.37)-(4.39) where {ρk , (q̂12)k , (µ̂S1)k
, (µ̂S2)k , σ̂2

k

}
and {ŵk, (ϕ̂1)k , (ϕ̂2)k} together are θ̂k.

vk
(
zT1
)

= argmax
zT0

p
(
yT0 , z

T
0

∣∣∣θ̂k−1
)

(4.37)

{
ρk, (q̂12)k , (µ̂S1)k , (µ̂S2)k , σ̂2

k

}
= argmax

q12,µS1 ,µS2 ,σ
2
p
(
yT0 , vk

(
zT1
)
|θ
)

(4.38)

{ŵk, (ϕ̂1)k , (ϕ̂2)k} = argmax
ϕ1,ϕ2,w

p (vk (d) |θ ) (4.39)

Calculating vk
(
zT1
)
|θ̂k−1

As stated previously, the most likely state sequence given θ̂k−1 was computed

using the Viterbi algorithm. For this, a few intermediate calculations were re-

quired at each time step. The first, was the probability the most likely state
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sequence from t = t0 to ti ended such that zri = 1 (denoted as ψi(r)). The second

expressed as Ψi(r), was the most likely previous state given the sequence from

t = t0 to ti ended such that zri = 1. These two were calculated sequentially from

i = 1 to i = T as outlined in (4.40).

Calculating ψi(r) and Ψi(r) (4.40)

I. Initialization (The first timestep or t1)

i. For m = 1 : k

A. ψ1(m) = p
(
z1m = 1

∣∣∣θ̂j−1
)
p
(
y1 | z1m = 1, θ̂j−1

)
ii. end

II. For i = 2 : T

i. For n = 1 : k

A. ψi(n) =
[
max
m

ψi−1(m) (q̂mn)j−1

]
p
(
yi|zin = 1, θ̂j−1

)
B. Ψi(n) = argmax

m
ψi−1(m) (q̂mn)j−1

ii. end

III. end

From this, the Viterbi Path was traced backward using (4.41) from t = tT to

t = t1 where m and n were temporary variables for each step of the backward

iteration.

Calculating
(
vk
(
zT1
))

(4.41)

I. m = argmax
r

ψT (r)

II. v (zTm) = 1 and v (zTr) = 0 ∀ r 6= m ∈ {1, 2, .., k}
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III. n = m

IV. For i = T − 1 : 1

i. m = Ψi+1(n)

ii. v (zim) = 1 and v (zir) = 0 ∀ r 6= m ∈ {1, 2, .., k}

iii. v
(
zTi
)

=

 v (zi)

v
(
zTi+1

)


iv. n = m

V. end

All of the calculations for (4.40) and (4.41) above were listed in terms of

probability functions. However, given a time series of sufficient length for inference

on θ̂, it was necessary to compute log probabilities to avoid complications caused

by underflow. The Viterbi Algorithm was discussed in more detail in Section 2.4.2.

Calculating
{
ρk, (q̂12)k , (µ̂S1)k , (µ̂S2)k , σ̂2

k

} ∣∣∣vk (zT1 )
ρk, (q̂12)k, (µ̂S1)k ,(µ̂S2)k, and σ̂2

k were computed using the likelihood functions

and were discussed in more detail in Section 2.4.2. The maximums of ρk, (q̂12)k,

(µ̂S1)k ,(µ̂S2)k, and σ̂2
k were given as (4.43) to (4.46).

ρ̂k = vk (z1) (4.42)

(q̂12)k =

T∑
i=1

vk
(
ẑ1(i−1)

)
vk (z2i)

T∑
i=1

vk (z1i)
(4.43)
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(µ̂S1)k =

T∑
i=1

vk (z1i) yi
T∑
i=1

vk (z1i)
(4.44)

(µ̂S2)k =

T∑
i=1

(vk (z2i)k + vk (z3i)k) yi
T∑
i=1

(vk (z2i) + vk (z3i))
(4.45)

σ̂2
k =

T∑
i=1

[vk (ẑ1i) (yi − (µS1)k)2 + (vk (z2i) + vk (z3i)) (yi − (µS2)k)2]

T
(4.46)

Calculating (ϕ̂1)k , (ϕ̂2)k , ŵk|vk (d)

vk
(
zT0
)
determines the values for vk (d). Unfortunately, (4.39) can not be

calculated immediately as was done with (4.38). Therefore, because it is compu-

tationally advantageous, an alternate form, as seen in (4.47), was used.

p(d,v|ϕ1, ϕ2, w) =
n∏
h=1

[
w(1− ϕ1)dh−1ϕ1

]vh [(1− w)(1− ϕ2)dh−1ϕ2]1−vh (4.47)

In (4.47), the additional variable vh indicates which geometric distribution

dh was drawn from. Using the form listed in (4.47), (ϕ̂1)k, (ϕ̂2)k, and ŵk were

maximized using the EM algorithm [1][52] which was nested within the larger

parameter training algorithm explained here. Since the EM for the mixture

of geometric distributions was an iterative algorithm within another algorithm,

the estimation of a after lth iteration of the EM within the kth iteration of

the larger parameter training algorithm was denoted as âkl. Following this,

the final solution of the kth iteration of the EM on the mixture of geomet-

ric distributions was denoted as (â)k. In addition, p(dh, vh = 1|ϕ1, ϕ2, w) and

p(dh, vh = 0|ϕ1, ϕ2, w) were used for brevity which were listed as (4.48) and (4.49)

respectively. As with (4.30), the EM algorithm is iterative and convergence
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was measured using the same metric. Following this, to initiate the algorithm,∣∣∣∣∣∣{(ϕ̂1)k0 , (ϕ̂2)k0 , ŵk0} −
{

(ϕ̂1)k(−1) , (ϕ̂2)k(−1) , ŵk(−1)
}∣∣∣∣∣∣
∞

was set to a arbitrary

value greater than δ. For a more detailed description on using the EM method

to find the MLE of a mixture of two geometric distributions, see Section 2.1.

p(dh, vh = 1|ϕ1, ϕ2, w) = w(1− ϕ1)dh−1ϕ1 (4.48)

p(dh, vh = 0|ϕ1, ϕ2, w) = (1− w)(1− ϕ2)dh−1ϕ2 (4.49)

EM Algorithm for a mixture of two Geometric Distributions (4.50)

I Let {(ϕ̂1)k0 , (ϕ̂2)k0 , ŵk0} =
{

(ϕ̂1)(k−1) , (ϕ̂2)(k−1) , ŵ(k−1)
}

II Set l = 0 and define
∣∣∣∣∣∣{(ϕ̂1)k0 , (ϕ̂2)k0 , ŵk0} −

{
(ϕ̂1)k(−1) , (ϕ̂2)k(−1) , ŵk(−1)

}∣∣∣∣∣∣
∞
>

δ.

III While
∣∣∣∣∣∣{(ϕ̂1)kl , (ϕ̂2)kl , ŵkl} −

{
(ϕ̂1)k(l−1) , (ϕ̂2)k(l−1) , ŵk(l−1)

}∣∣∣∣∣∣
∞
> δ

(a) l = l + 1

(b) for h = 1 : n

i. (E[vh])kl = p(vk(dh),vh=1|(ϕ̂1)k(l−1),(ϕ̂1)k(l−1),ŵk(l−1) )
2∑

f=1
p(vk(dh),vh=f|(ϕ̂1)k(l−1),(ϕ̂1)k(l−1),ŵk(l−1) )

(c) (ϕ̂1)kl =

n∑
h=1

(E[vh])kl
n∑
h=1

(E[vh])kl(vk(dh))

(d) (ϕ̂2)kl =

n∑
h=1

1−(E[vh])kl
n∑
h=1

(1−(E[vh])kl)(vk(dh))

(e) ŵkl =

n∑
h=1

(E[vh])kl

n

(f) {(ϕ̂1)k , (ϕ̂2)k , ŵk} = {(ϕ̂1)kl , (ϕ̂2)kl , ŵkl}
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Finally, the EM algorithm is also a local optimizer. In practice, using (ϕ̂1)k−1,

(ϕ̂2)k−1, and ŵk−1 as the initial guess for the EM was sufficiently close to find the

global optimum.

Performance

As with the two state system, two qualities of the algorithm were checked.

The first was the convergence of the algorithm. This was done by exploring the

behavior of the algorithm on the same dataset given multiple initial guesses. The

second was to check the quality of inference. This was done by generating many

datasets with known parameters and checking the estimates of the algorithm with

the true generating parameters.

To check convergence, the algorithm was run three times on a dataset with

1, 000, 000 observations where r12 = 100, r21 = 1000, r23 = 100, r32 = 200,

µS1 = 32, µS2 = 26, σ2 = 9, and ∆t = 1
100000 . The initial guesses for µS1 and µS2

needed to be such that µS1 > ȳ
T
1 > µS2 . To achieve this (µ̂S1)0 was set equal to

the 75 percentile of yT1 and (µ̂S2)0 was set to 25 percentile of yT1 . For ϕ1, ϕ2 and

w values above and below the true values were used for the initial guess. Since

ϕ1 and ϕ2 can act in a similar fashion as µS1 and µS2 , a significant difference

was maintained between (ϕ̂1)0 and (ϕ̂2)0. Finally, the initial guesses for q12 and

σ2 were generated randomly. The path of θ̂j, except µS1 and µS2 were placed in

Figure 4.8. The paths of (µS1)j and (µS2)j were omitted as the starting point was

the same each time.

In Figure 4.8, it was observed that all initial guesses converged to q̂12 =

0.000976, ϕ̂1 = 0.0101, ϕ̂2 = 0.0020, ŵ = 0.8739, and σ2 = 8.9950. In addition,

µ̂S1 and µ̂S2 converged to 31.9999 and 25.9910 respectively. Like observed with

Viterbi Training, the parameter training algorithm introduced in Section 4.2.2 re-
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Figure 4.8: Comparing ϕ1
ϕ2

to r23 and r32 when r21 = 1000 and ∆t = 1
100000

quires better guesses than the Baum-Welch algorithm. However, given reasonable

guesses as observed in Figure 4.8, the algorithm did converge.

Since the transition rates were the primary interest, the second test was to

test the values of r̂ij against the true values of rij. As stated previously, having

observed similar behavior to Viterbi training, it was expected that the parameter

training algorithm developed would introduce bias. To test this and evaluate

whether the bias was problematic, the parameter training algorithm developed

was run on 1136 computer generated datasets with with 1, 000, 000 observations

where µS1 = 32, µS2 = 26, σ2 = 9, and ∆t = 1
100000 . The values of r12 were varied

from 60 to 180, values of r21 were varied from 475 to 2025, values of r23 were

varied from 40 to 276, and values of r32 were varied from 43 to 590. To avoid the

problems discussed in Section 4.2.1, the majority of the values of rij were taken

from the center of the region. Furthermore, the values of each rij were randomly

assembled with values of rmn. Since most values were picked in the middle of their

respective ranges, it was very unlikely that values from the edge of the region in

one dimension were assembled with a value near the edge of another dimension.
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To assess the results, relative error or r̂ij−rij
rij

was used.

Figure 4.9: Histograms of relative error or r̂ij−rij
rij

for the parameter training
algorithm developed on 1136 computer generated datasets with 1, 000, 000 obser-
vations

Figure 4.9 has histograms of the relative error of r̂ij estimated by the parameter

training algorithm. The relative error of r̂12 varied from about −0.15 to 0.05.

Since the mean of the relative error approximately −0.06, the bias was a sizable

contributor to the error. The relative error of r̂21 was slightly larger, and the

mean of the relative error approximately −0.085. Again, the bias had an obvious

contribution to the error. The ranges of the relative error of r̂23 and r̂32 were

much larger. This was expected as there was very little information on transition

between states S2A and S2B. However, the mean of the relative error of r̂23 was

approximately −0.15. This was still noticeable given the range. The contribution

of the bias to the relative error of r̂32 was less noticeable. The mean of the relative

error of r̂32 was approximately −0.05 which was less substantial given the range

of the relative error of r̂32.

For most transitions rates, the bias was a noticeable contributor to the relative

error. This was not surprising given the low amount of information provided by
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the data and the very low transition probabilities involved. Therefore, methods

were explored to reduce the bias introduced by the algorithm.

4.2.3 Bias Reduction

In Section 4.2.2, it was seen that the parameter training algorithm developed,

exhibited bias for inference on the transition rates. Furthermore, the bias made

a noticeable contribution to the error and therefore effort to reduce the bias was

prudent.

The results of the algorithm introduced in Section 4.2.2 on computer generated

datasets discussed in Section 4.2.2 provided a possible solution to the issue pre-

sented by the bias of the algorithm. The results of the inference on the computer

generated data created a set of pairs,
(
θ, θ̂

)
. In turn,

(
θ, θ̂

)
was used to create

an additional model to reduce this bias. This process fits under a methodology

often referred to as computer experiments. Computer modeling and experiments

has been an area of focus over the last few decades as compute power and re-

sources have become more widely accessible [55]. This research differs slightly

from the most common application of computer experiments. Computer experi-

ments were often based on a computationally expensive simulation and running

that code for all points of interest was considered too expensive. Instead, the data

collected through the computer experiment was used to build a computationally

less expensive approximating function (sometimes referred to as a meta-model)

that can predict the relationships at points of interest. In this case, the simu-

lations were only moderately expensive as making inference on a dataset with

1,000,000 datapoints took from 4-10 minutes. Furthermore, since each simula-

tion was independent of each other, the operation was embarrassingly parallel.

Therefore, compute time was not problematic. However, Kennedy and O’Hagan
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suggested that these methods can also be used to address “model inadequacy” or

the difference between the true mean and the output of the algorithm [27].

Let the result of the algorithm be denoted as θ̂ = PT
(
yT1
)
where PT was the

algorithm developed and yT1 was the electric signal observed at t = (t1, t2, ..., tT ).

Furthermore, yT1 was a non-deterministic function of the true value of θ which

was denoted as yT1 = g(θ) where g was the Gillespie algorithm for a 3-state

system presented in Section 4.1.1 used to generate yT1 . Therefore, θ̂ and θ have

the relationship listed in (4.51). Since g(θ) introduced randomness, (4.51) was

re-written in (4.52) where µ(θ) denotes the bias or non-random part of (4.51) and

ε denotes the white noise.

θ̂ = PT (g (θ)) (4.51)

θ̂ = µ (θ) + ε (4.52)

ε ∼ N
(
0, σ2

ε

)

The goal of this research was to make inference on θ when the data was not

generated by the computer. In this case, the true θ was unknown. This pair

of θ and θ̂ was referred to as the predictive pair and was denoted as
(
θ∗, θ̂∗

)
.

For this, given enough well placed pairs of
(
θ, θ̂

)
from computer generated data

sets, inference on µ(θ) and σ2
ε was made. Since θ̂∗ was known after running the

training algorithm on data, predictive inference on θ∗ was made by considering

the inverse problem of (4.52).

To make inference on θ∗, first a meta-model of the unknown function listed

as (4.52) was built. The Gaussian process is a common choice to model an un-

known function due to its flexibility [40][27] and following the paper ,“Design

and Analysis of Computer Experiments” by Sacks and his colleagues [49], Gaus-
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sian processes have become a standard for the meta-model of a computer exper-

iment [21]. Unfortunately, Gaussian processes are a computationally expensive

choice for meta-model and should not be applied if a simpler meta-model has

similar performance. However, the number of
(
θ, θ̂

)
pairs needed for this appli-

cation was relatively small and the Gaussian process meta-model had reasonable

compute times. Furthermore, in Section 4.2.6, it can be seen that inference on

the parameters of the meta-model indicated that there was some non-linear re-

lation between θ and θ̂, thus necessitating the use of Gaussian process model

or some other non-linear model. Therefore, the meta model for (4.52), partially

defined in (4.53)-(4.55) was applied where GP denotes a Gaussian Process and

s2C denotes the covariance function. The full definition of the Bayesian Gaussian

process applied was defined in the next section. Rassmussen’s lecture entitled

Gaussian Processes in Machine Learning [7] and the similarly titled book [45] by

himself and Christopher Williams are good introductions to Gaussian processes.

[28], [55] and [51] are books on computer experiments that have more detailed

explanations of Gaussian processes in that context.

θ̂ = θβ + f(θ)︸ ︷︷ ︸
µ(θ)

+ε (4.53)

ε ∼ N (0, s2ν2︸ ︷︷ ︸
σ2
ε

) (4.54)

f(θ) ∼ GP(0, s2C(θ,θ)) (4.55)

4.2.4 A brief introduction to Gaussian process regression

Given a time series of the type described in Section 4.1, the estimator of the

true parameters using the parameter training introduced in Section 4.2.2 was
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biased. By generating a list of (θ, θ̂) pairs, the bias could be described by a

meta-model which in turn could be used to reduce the aforementioned bias. A

Bayesian Gaussian process was used as the meta-model where the posterior was

simulated using anMCMC sampler. The Gaussian process, originally referred to

as kriging, was first introduced in a 1963 paper by Georges Matheron [35]. The

original paper used kriging as a means for spatially modeling ore grades based

on previously observed extractions. Due to the flexibility of kriging or Gaussian

processes, the applications in geology and computer experiments are two of many

possible uses. Since the Gaussian process described next has so many application

beyond what was described here, the standard notation for predictor (xi) and

response (yi) were used where there were N observations.

Although the problem introduced has a multivariate predictor and response,

a univariate response was introduced first. For the model applied here, let yi

be a univariate response and xi be a vector of k predictor variables. The full

definition was listed as (4.56) to (4.62) where MVN denotes the multivariate

normal distribution and C(x,x) is the squared exponential kernel.

y = Xβ + f(X) + ε (4.56)

y =



y1

y2

.

.

yN


X =



x1

x2

.

.

xN


xi =

[
xi1 xi2 . . . xik

]
(4.57)
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f(X) =



f(x1)

f(x2)

.

.

f(xN)


ε =



ε1

ε2

.

.

εN


εi ∼ N(0, σ2

ε = s2ν2) (4.58)

f(X)|X, ϑ ∼MVN
(
0, s2C(x,x)

)
(4.59)

c(xi,xj) = exp
{
−

k∑
h=1

(xih − xjh)2

l2h

}
(4.60)

y|X, β, l2, s2, ν2 ∼MVN
(
Xβ, s2C(x,x) + s2ν2I

)
(4.61)

C(x,x) =


c(x1,x1) c(x1,x2) . . . c(x1,xN)
c(x2,x1) . . . . c(x2,xN)

. . . . . .

. . . . . .
c(xN ,x1) . . . . c(xN ,xN)

 (4.62)

(4.56) to (4.62) has two uncorrelated parts. The first was the linear regression

or y − Xβ. For the problem introduced in this research, this has a practical

interpretation. Since θ̂ was a bias estimator of θ, it was expected that there should

be a correlation between the true value of θ and the corresponding θ̂. β provides

a very straight forward interpretation of that. The second part (f(x) + ε) was a

model of the residuals of the linear regression. This particular version is sometimes

referred to as the nugget model. Often when using the nugget model, it is defined

as one term f(X) where f(X) is a zero mean Gaussian process with variance
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s2C(x,x) + s2ν2I. However, for the purpose of this research ε ∼ N (0, σ2
ε = s2ν2)

was expressed separately since the aforementioned experiment had randomness

and therefore the noise term had an explicit meaning.

The use of the nugget model for this application was necessary as θ̂ was a

stochastic realization of the explanatory variable, θ. However, in the general case,

there are many reasons to apply the nugget model even if the relation between the

explanatory and response variables were deterministic. For a discussion on the

application of the nugget model in a deterministic setting, see Gramacy’s paper

“Cases for the nugget in modeling computer experiments” [21].

The goal was to generate a less biased estimator of θ than θ̂ produced from

the algorithm introduced in Section 4.2.2. For this a computer generated dataset

of θ and θ̂ pairs which are synonymous with xi and yi respectively. This dataset

was used to tune the parameters l2, s2, ν2, and β which were referred to as ϑ

to avoid confusion with the parameters of the hidden Markov model. Given the

inference on ϑ, inference could be made on an unknown θ∗ or x∗ given θ̂∗ or y∗

calculated by the parameter training algorithm from Section 4.2.2. This was done

using a Gibbs sampler to create posteriors of l2, s2, ν2, β, and x∗. As before, the

ith draw from the posterior of k was denoted by ki or (kh)i if k had a subscript

and ϑ−k denoted all elements of ϑ except k. A sampling algorithm for D draws

from the posterior when given one response variable was listed as (4.63). It was

important to note that for some of the conditional posteriors, two conditional

priors were presented. For those conditional posteriors, the sampler presents two

possible formulations to choose from.

A sampler for x∗|y∗,y,X, l2, s2, β (4.63)

I. Pick l20, β0, and (x∗)0

II. For i = 1 : D
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(i) Draw s2
i from (4.64) or (4.65).

(ii) Draw βi from (4.68)

(iii) For m = 1 : k

A. Draw (l2m)p from (4.69) or (4.71).

B. Set r =
p

(
log
(
(l2m)

p

)
|y,X,ϑ−l2m

)
/J

(
log
(
(l2m)

p

)
| log
(
(l2m)

i−1

))
p

(
log((l2m)i−1)|y,X,ϑ−l2m

)
/J(log((l2m)i−1)| log((l2m)p))

using (4.69)

and (4.70) or (4.71) and (4.72).

C. Get c where c ∼ unif(0, 1)

D. If r ≥ c than log ((l2m)i) = log
(
(l2m)p

)
otherwise log ((l2m)i) =

log
(
(l2m)i−1

)
(iv) end

(v) Draw ν2
p from (4.73) or (4.75).

(vi) Set r = p(log(ν2
p)|y,X,ϑ−ν2)/J(log(ν2

p)| log(ν2
i−1))

p(log(ν2
i−1)|y,X,ϑ−ν2)/J(log(ν2

i−1)| log(ν2
p)) using (4.73) and (4.74)

or (4.75) and (4.76).

(vii) Get c where c ∼ unif(0, 1)

(viii) If r ≥ c than log (ν2
i ) = log(ν2

p) otherwise log (ν2
i ) = log(ν2

i−1)

(ix) For m = 1 : k

A. Draw (x∗m)p from (4.77).

B. Set r = p((x∗m)p|y,X,y∗,(x∗)−x∗m ,ϑ)/J((x∗m)p|(x∗m)i−1)
p((x∗m)i−1|y,X,y∗,(x∗)−x∗m ,ϑ)/J((x∗m)i−1|(x∗m)p) using (4.77) and (4.78).

C. Get c where c ∼ unif(0, 1)

D. If r ≥ c than (xm∗)i = (xm∗)p otherwise (xm∗)i = (xm∗)i−1

(x) end

III. end
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Draws from s2|y,X, β, l2, ν2

Given the construction of the nugget model, a Gibbs sample was possible

for the conditional posterior of s2 with the correct choice of prior. Following

this, a conditionally conjugate prior was used. In this case, the inverse gamma

distribution was the conditionally conjugate prior for s2 which was denoted as

IG
(
ns2
2 ,

ds2
2

)
. If a less informative prior is desired, the improper case where ns2 =

ds2 = 0 which is equivalent to s2 ∝ 1
s2

still yields an inverse gamma distribution for

the posterior. However, Lawrence and his colleagues noted that efficient sampling,

“has proved to be particularly difficult in many GP applications, because the

posterior distribution describes a highly correlated high-dimensional variable” [29].

Given that, it may be desirable to use a more informative prior by choosing

different ns2 , ds2 , or truncating the distribution if justifiable for the model. The

truncated inverse gamma distribution with parameters n
2 ,

d
2 , and a maximum

value of U was denoted as T IG
(
n
2 ,

d
2 , U

)
. The resulting posteriors were listed

as (4.64) to (4.66) where N was the size of the dataset, C = C(x,x), and ϑ−k

denotes all parameters except k. Derivations of (4.64) to (4.66) can be found in

Appendix D.1.1.

If s2 ∼ IG
(
ns2

2 ,
ds2

2

)

s2|y,X,ϑ−s2 ∼ IG
(
N + ns2

2 ,
S2 + ds2

2

)
(4.64)

If s2 ∼ T IG
(
ns2

2 ,
ds2

2 , U

)

s2|y,X,ϑ−s2 ∼ T IG
(
N + ns2

2 ,
S2 + ds2

2 , U

)
(4.65)

S2 = (y −Xβ)T
(
C + ν2I

)−1
(y −Xβ) (4.66)

Finally, many software packages do not have a truncated inverse gamma ran-
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dom number generator. Since, the truncated inverse gamma is proportional to an

inverse gamma distribution over the support of truncated inverse gamma, draws

from T IG
(
n
2 ,

d
2 , U

)
were made from IG

(
ns2
2 ,

ds2
2

)
. Draws from the conditional

posterior greater than U were be rejected and another draw was made. If values

greater than U were “rare” in the posterior, the speed should not be noticeably

different from using the inverse gamma as a conditional prior. If draws greater

than U occur frequently enough that the sampler was slowed, the use of the

T IG
(
n
2 ,

d
2 , U

)
should be reviewed.

Draws from β|y,X, s2, l2, ν2

From (4.62), the likelihood of y was a multivariate normal distribution with

mean Xβ and variance s2C(x,x) + s2ν2I. Since s2C(x,x) + s2ν2I was not

correlated with β, the conditional posterior of β was treated as a linear regression

problem with known variance. In that case, the improper conditional prior p(β) ∝

1 resulted in a conditional posterior that could be drawn from a Gibbs sample.

This prior was advantageous as it was non-informative and sampled efficiently.

The conditional prior and the resulting conditional posterior was listed as (4.67)

and (4.68) respectively. For brevity, let ΣGP = s2C(x,x) + s2ν2I.

β ∝ 1 (4.67)

β|y,X,ϑ−β ∝MVN
((
XTΣ−1

GPX
)−1

XTΣ−1
GPy,

(
XTΣ−1

GPX
)−1

)
(4.68)

To sample effectively from (4.68) the standard numerical inversion methods could

not be used. Since ΣGP and
(
XTΣ−1

GPX
)
were symmetric and positive definite,

the matrices were inverted using Cholesky decomposition. Furthermore, the sym-

metric and positive definite properties were not always maintained numerically.
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Therefore, a function called nearestSPD (nearest symmetric positive definite ma-

trix) based on the work of Higham was applied [12] [23]. Alternatively, Gelman

and his colleagues suggest a slightly different method to address these issues which

can be found in [17]. A derivation of (4.68) can be found in append D.1.2.

Draws from l2m|y,X, s2,β, ν2, l2−l2m

Unlike s2 and β, there was not a conditional prior such that a Gibbs sample can

be taken of the conditional posterior. Therefore, a Metropolis-Hasting sample as

described in Section 2.2 was used. Following this, the inverse gamma distribution

was used as the conditional prior as it had the same supports as l2m and the amount

of information that was added by the conditional prior could be varied through

the parameters. Furthermore, since l2m represents the length scale, in many cases

it should be limited to a number not much bigger than the size of the region.

Therefore, in some applications, the truncated inverse gamma distribution was a

better choice, and the ease of application was already discussed in Section 4.2.4.

Another consideration was the dimension of x. If the hth dimension had little or

no effect on y, the nugget model does not have a variable that is interpreted as

the scale factor for each dimension. However, Neal noted that the length scale

can control the degree of relevance of each dimension. If the length scale for the

hth dimension was very large, the input in the hth dimension had little influence

on the amount of correlation between two inputs [39].

To fit all possible situations, a Metropolis-Hasting “jumping distribution” de-

noted as J
(
log(l2p)| log((l2m)i−1

)
was listed as (4.69) and (4.71) for both an inverse

gamma and a truncated inverse gamma respectively. The corresponding condi-

tional posteriors were listed as (4.70) and (4.72) respectively. To restrict draws to

the support of l2m, draws were made from log(l2m). In the case the conditional prior
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was an inverse gamma distribution, the “jumping distribution” was a normal dis-

tribution. For the case that the conditional prior was the truncated inverse gamma

distribution, a truncated normal distribution was used where T N (µ, σ2, [a, b]) de-

notes a truncated normal with mean µ, variance σ2, and was restricted to the

interval [a, b]. As before, let ΣGP = s2C(x,x) + s2ν2I and derivations of the

following can be found in Appendix D.1.3.

The ithdraw if l2m ∼ IG
(
nl2m , dl2m

)
log

((
l2m
)
p

)
∼ N

((
log

(
l2m
)
i−1

)
, τ 2
l2

)
(4.69)

p(log
(
l2m
)
|y,X, ϑ−l2m) ∝ |ΣGP |−

1
2 exp

{
−1

2 (y −Xβ)T (ΣGP )−1 · · · (4.70)

· · · × (y −Xβ)} (l2m)−nl2m−1 exp
{
−
dl2m
l2m

}
× l2m

The ithdraw if l2m ∼ T IG
(
nl2m , dl2m,, U

)
log

((
l2m
))
∼ T N

(
log

((
l2m
)
i−1

)
, τ 2
l2 , (−∞, log(U)]

)
(4.71)

p(log
(
l2m
)
|y,X, ϑ−l2m) ∝ |ΣGP |−

1
2 exp

{
−1

2 (y −Xβ)T (ΣGP )−1 · · · (4.72)

· · · × (y −Xβ)} (l2m)−nl2m exp
{
−
dl2m
l2m

}
× I

[
−∞ < log

(
l2m
)
≤ log(U)

]

Draws from ν2|y,X, s2,β, l2

As with l2m, a Metropolis-Hasting sample from the conditional posterior was

necessary. Again, the inverse gamma or truncated inverse gamma was used as the

conditional prior because of the versatility discussed in Section 4.2.4. Although

ν2 did not have a straight forward interpretation, s2ν2 = σ2
ε or s2ν2 was the

noise of the problem. By limiting ν2, it keeps σ2
ε from becoming too large or s2

from becoming too small which may contradict prior information. The jumping

distributions were listed as (4.73) and (4.75) for the inverse gamma and truncated
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inverse gamma conditional priors respectively. The corresponding posteriors were

listed as (4.74) and (4.76) and the derivation can be found in Appendix D.1.4.

The ithdraw if ν2 ∼ IG (nν2 , dν2)

log
(
ν2
p

)
∼ N

(
log

(
ν2
i−1

)
, τ 2
ν2

)
(4.73)

p(log
(
ν2
)
|y,X, ϑ−ν2) ∝ |ΣGP |−

1
2 exp

{
−1

2 (y −Xβ)T (ΣGP )−1 · · · (4.74)

· · · × (y −Xβ)} (ν2)−nν2−1 exp
{
−dν

2

ν2

}
× ν2

The ithdraw if ν2 ∼ T IG (nν2 , dν2 , U)

log
(
ν2
p

)
∼ T N

(
log

(
ν2
i−1

)
, τ 2
ν2 , (−∞, log(U)]

)
(4.75)

p(log
(
ν2
)
|y,X, ϑ−ν2) ∝ |ΣGP |−

1
2 exp

{
−1

2 (y −Xβ)T (ΣGP )−1 · · · (4.76)

· · · × (y −Xβ)} (ν2)−nν2 exp
{
−dν

2

ν2

}
× I

[
−∞ < log

(
ν2
)
≤ log(U)

]

Draws from x∗m|y,X,y∗, (x∗)−x∗m , ϑ

Drawing from x∗m was also a Metropolis-Hasting sample from the conditional

posterior. A conditional prior was suggested here and a second will be suggested

in terms of meta-model for
(
θ, θ̂

)
. The first conditional prior was built on the

assumption that the dataset was collected around an estimated point for x∗.

Therefore, it was reasonable to assume that the true x∗m was near the average of

the mth dimension of the collected observations or
∑N

i=1 xim
N

. Furthermore, since it

was necessary that xm∗ was in the range of all observations collected to make in-

ference, it was assumed that xm∗ ∈ [a, b] where [a, b] was the range of all collected

data in the mth dimension. From this, a truncated normal distribution restricted

to [a, b] with mean
∑N

i=1 xim
N

and variance τ 2
∗ was used for the conditional prior

where a large τ 2
∗ signifies less confidence in the prior assertion. The jumping dis-
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tribution for the Metropolis-Hasting sample was a truncated normal distribution

listed as (4.77), and the corresponding posterior was listed as (4.78).

The ithdraw if x∗m ∼ T N
(∑N

i=1 xim
N

, τ 2
∗ , [a, b]

)

(x∗m)p ∼ N
(
(x∗m)i−1 , τ

2
x∗m

)
(4.77)

p (x∗m | y,X, y∗, (x∗)−x∗m , ϑ
)
∝ 1
σy∗

exp
{
−(y∗ −my∗)

2

2σ2
y∗

}
· · · (4.78)

· · · × 1
τ∗

exp

−
(
x∗m − 1

N

(∑N
i=1 xim

))2

2τ 2
∗

× I[a ≤ qij ≤ b]

my∗ = s2CT
∗ (s2C + s2ν2I)−1 (y −Xβ) (4.79)

σ2
y∗ = s2C∗∗ − s2CT

∗

(
s2ν2I + s2C

)−1
s2C∗ + s2ν2I (4.80)

C∗ =
[
c(x1,x∗) c(x2,x∗) . . . c(xN ,x∗)

]T
(4.81)

A derivation for (4.79) and (4.80) can be found in Appendix D.1.5. (4.78) can

be found in Appendix D.1.5.4. For inference on one x∗ as discussed here, C∗ was

a N × 1 vector and C∗∗ was a scalar. However, it is possible to consider multiple

predictive points at once. The formulas for (4.79) and (4.80) are the same and

the first distribution in (4.78) would be a multivariate normal with mean my∗ and

covariance σ2
y∗
. For generality, the derivations in Appendices D.1.5 and D.1.5.4

were done using multiple predictive points. If it was desired to make inference on

W different observations of x, then C∗ was a N ×W matrix. Furthermore, C∗∗

was a W ×W matrix defined similar to (4.61) except it computes the correlation

between all the different observations of x∗.
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4.2.5 Applying Gaussian processes to the parameter train-

ing algorithm introduced in section 4.2.2

It was shown that θ̂∗ calculated by the algorithm introduced in Section 4.2.2

was a biased estimate for θ∗. To correct this bias, a set of computed simulated

pairs of (θ, θ̂) were generated. Using the MCMC sampler below, a meta-model

was built, and the inverse problem was solved to find a less bias estimate of θ∗.

However, the relative errors of the estimates of σ2, µ2
S1 and µ2

S2 were much smaller

than the estimates of the transition probabilities and consequently the transition

rates. In addition, σ2, µ2
S1 and µ2

S2 were part of the experimental setup but σ2,

µ2
S1 and µ2

S2 do not exist in vivo. Therefore, reducing the bias of inference made

on σ2, µ2
S1 and µ2

S2 was of less interest. Following this, bias reduction was run

only on θq = (q12, q21, q23, q32) to reduce computation time.

The Gaussian process introduced in Section 4.2.4 had multiple inputs but

a single response variable. However,
(
θq, θ̂qij

)
had four predictor and response

varaibles. For this, it was assumed that the bias for each q̂ij was independent.

This was an equivalent statement to q̂ij given θq was conditionally independent

of all q̂kl where ij 6= kl. Therefore, inference on ϑ for each q̂ij could be done

separately following the same steps as 4.63 where q̂ij corresponds with y and θq

corresponds with X. To avoid confusion, the parameters associated with q̂ij were

denoted as ϑqij =
(
βqij , l

2
qij
, s2
qij
, ν2

qij

)
and ϑ = (ϑq12 , ϑq21 , ϑq23 , ϑq32). In the case

of multidimensional parameters like l2qij , the m
th dimension was denoted as l2qij ,m.

The revised sampling algorithm for a multivariate response was listed as 4.82.

A sampler for θ∗q|θ̂∗q, θ̂∗q,θq, ϑ (4.82)

A. Pick ϑ0 and θ∗q

B. For i = 1 : D
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I. For all qij in θq

(i) Draw
(
s2
qij

)
i
from (4.64) or (4.65).

(ii) Draw
(
βqij

)
i
from (4.68)

(iii) For m = 1 : k

a. Draw
(
l2qij ,m

)
p
from (4.69) or (4.71).

b. Set r =

p

(
log
(
(l2qij ,m)

p

)
|q̂ij ,θqij ,ϑqij ,−l2qij ,m

)
J

(
log

((
l2qij ,m

)
p

)
| log

((
l2qij ,m

)
i−1

))
p

(
log

((
l2qij ,m

)
i−1

)
|q̂ij ,θqij ,ϑqij ,−l2qij ,m

)
J

(
log

((
l2qij ,m

)
i−1

)
| log

((
l2qij ,m

)
p

))
using (4.69) and (4.70)

or (4.71) and (4.72).

c. Get c where c ∼ unif(0, 1)

d. If r ≥ c than log
((
l2qij ,m

)
i

)
= log

((
l2qij ,m

)
p

)
otherwise log

((
l2qij ,m

)
i

)
=

log
((
l2qij ,m

)
i−1

)
(iv) end

(v) Draw
(
ν2
qij

)
p
from (4.73) or (4.75).

(vi) Set r =
p

(
log
((

ν2
qij

)
p

)
|q̂ij ,θqij ,ϑqij ,−ν2

qij

)
/J

(
log
((

ν2
qij

)
p

)
| log
((

ν2
qij

)
i−1

))
p

(
log
((

ν2
qij

)
i−1

)
|q̂ij ,θqij ,ϑqij ,−ν2

qij

)
/J

(
log
((

ν2
qij

)
i−1

)
| log
((

ν2
qij

)
p

))
using (4.73) and (4.74) or (4.75) and (4.76).

(vii) Get c where c ∼ unif(0, 1)

(viii) If r ≥ c than log
((
ν2
qij

)
i

)
= log

((
ν2
qij

)
p

)
otherwise log

((
ν2
qij

)
i

)
=

log
((
ν2
qij

)
i−1

)
(ix) end

II. end

III. For all q∗ij in θ∗q

i. Draw (q∗ij)p from (4.83).
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ii. Set r = p((q∗ij)p|θ̂q ,θq ,θ̂∗q ,θ∗q,−q∗ij ,ϑ)/J((q∗ij)p|(q∗ij)i−1)
p((q∗ij)i−1|θ̂q ,θq ,θ̂∗q ,θ∗q,−q∗ij ,ϑ)/J((q∗ij)i−1|(q∗ij)p)

using (4.83) and (4.84).

iii. Get c where c ∼ unif(0, 1)

iv. If r ≥ c than (q∗ij)i = (q∗ij)p otherwise (q∗ij)i = (q∗ij)i−1

IV. end

C. end

Drawing from q∗ij was different. Although it was assumed that each q̂∗ij given

θq was conditionally independent of the all other q̂∗ij, the same was not true for

all qij. Even with the assumed conditional independence, all q∗ij depended on all

q̂∗ij. This caused sampling from q∗ij to be slightly different than the sampler with

a one dimensional response variable and was discussed further in Section 4.2.5.

Draws from q∗ij|θ̂q,θq, θ̂∗q,θ∗q,−q∗ij , ϑ

Like the case with the one dimensional response variable, drawing from the

conditional posterior of q∗ij was a Metropolis-Hastings step. Since q̂∗ij was an

estimator of q∗ij, it was assumed that q̂∗ij was near the true q∗ij. Furthermore,

since the dataset was created specifically to estimate q∗ij, it was assumed that q∗ij

was within the range of the datapoints generated for the computer experiment.

Following this, the conditional prior was a truncated normal distribution limited

to [a, b] with mean q̂∗ij and variance τ 2
∗ .

The ith draw if q∗ij ∼ T N
(
q̂ij, τ

2
∗ , [a, b]

)
(q∗ij)p ∼ N

(
(q∗ij)i−1 , τ

2
q∗ij

)
(4.83)
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p
(
(q∗ij)p |θ̂q,θq, θ̂∗q,θ∗q,−q∗ij , ϑ

)
∝ I[a ≤ q∗ij ≤ b]× · · · (4.84)

· · · ×

 ∏
∀q̂∗ij∈θ̂∗q

1
σq∗ij

exp

−
(
q̂∗ij −mq̂∗ij

)2

2σ2
q̂∗ij


 · · ·

· · · × 1
τ∗

exp
{
−(q∗ij − q̂∗ij)2

2τ 2
∗

}

mq̂∗ij = s2
qij
CT
∗qij(s

2
qij
Cqij + s2

qij
ν2
qij
I)−1

(
q̂ij − θqβqij

)
(4.85)

σ2
q̂∗ij

= s2
qij
C∗∗qij − s2

qij
CT
∗qij

(
s2
qij
ν2
qij
I + s2

qij
Cqij

)−1
s2
qij
C∗qij + s2

qij
ν2
qij
I (4.86)

As with the general case, this model can be easily changed to deal with multiple

predictions. This was discussed further in Section 4.2.4. In addition, a derivation

can be found in Appendix D.1.5.4.

4.2.6 Initial analysis of bias reduction

Given a dataset yT1 , the parameter training algorithm results in biased es-

timators of transition probabilities
(
θ̂∗q
)
. To estimate the bias, a set of com-

puter simulated pairs of
(
θ, θ̂

)
were generated. A meta-model was generated

for the computer simulated pair,s and the inverse problem was solved for θq∗

using the methods described in Section 4.2.5. To test if the bias was reduced,

the methods were tested on a simulated 10 second dataset where r12 = 100,

r21 = 1000, r23 = 100, r32 = 200, µS1 = 32, µS2 = 26, σ = 3, and was sampled

at 100 kHz. This translates to θ∗q ≈ (0.0010, 0.0099, 0.0010, 0.0020) and the es-

timated values using the parameter training algorithm from Section 4.2.2 were

θ̂∗q ≈ (0.0010, 0.0090, 0.0008, 0.0022). To reduce the bias a set of 163
(
θq, θ̂q

)
pairs were generated to train the parameters of (4.53) and make prediction on

θ∗q. For the 163 pairs, the range of q12 was [0.007, 0.0016], the range of q21 was

[0.0055, 0.0135], the range of q23 was [0.0004, 0.0023], and the range of q32 was
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[0.0007, 0.0047]. 30, 000 draws from the posterior was made using (4.82). The his-

tograms of the simulated conditional posteriors of θ∗q were placed in Figure 4.10.

Histograms of the conditional posteriors of q∗ij|θ̂q, θq, θ̂∗q, θ∗q,−q∗ij , ϑ

Figure 4.10: q∗ij|θ̂q,θq, θ̂∗q,θ∗q,−q∗ij , ϑ when true θ∗q ≈ (0.0010,
0.0099, 0.0010, 0.0020) and θ̂∗q ≈ (0.0010, 0.0090, 0.0008, 0.0022)

From Figure 4.10, it was observed that the posterior of q∗ij did not reduce the

bias or improve estimation of q∗ij. The posteriors look as if they could be random

walks. Therefore, an alternative to the structure of (4.52) was considered. Another

possible structure assumes that the noise was proportional to µ (θq). Therefore,

θ̂q was assumed to be the product of the unknown function of (µ (θq)) and the

exponential function of white noise (ε) in 4.87.

θ̂q = µ (θq) eε ε ∼ N (0, σ2
ε) (4.87)

(4.87) cannot be modeled using (4.53). In (4.53), the variance of the noise is

constant, but the noise in (4.87) was proportional to µ (θ). Therefore (4.53) was
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not an appropriate model for (4.87). In (4.88), (4.87) was considered when the

data was
(
log (θq) , log

(
θ̂q
))

.

log
(
θ̂q
)

= log (µ (log (θq)) eε)

log
(
θ̂q
)

= log (µ (log (θq))) + ε (4.88)

(4.88) has constant noise and could be modeled with (4.53). It is important to

note that the same could be done with the data
(
θq, log

(
θ̂q
))

, but this choice was

made due to the belief that µ (θq)) ≈ θq. Depending on the data,
(
θq, log

(
θ̂q
))

could be preferable.

Given this, the sampler was run on the
(
log (θq) , log

(
θ̂q
))

for the same dataset.

The same algorithm described in (4.82) was used except log (θq) was used in place

of all θq and log
(
θ̂q
)
was used in place of all θ̂q. To compare the assumptions of the

two proposed structures, posterior for θqβqij + fqij (θq) |θ̂q,θq, ϑ were simulated

for both (4.53) and (4.88). Since q23 and q32 were most problematic, quantile-

quantile plots were placed in Figure 4.11 comparing the residual of the posteriors

with the normal distribution.

It was observed in Figure 4.11 that the posteriors of θqβqij +fqij (θq) |θ̂q,θq, ϑ

generated using
(
θq, θ̂q

)
had data that deviated quite significantly from a nor-

mal distribution for low values of q23 and q32. The evidence does not support

the assumption of normal noise with constant variance for (4.53). The quantile-

quantile plots of the posteriors generated using
(
log (θq) , log

(
θ̂q
))

showed less de-

viation from the normal distribution. Therefore, posteriors for log (q∗ij) | log
(
θ̂q
)
,

log (θq) , log
(
θ̂∗q
)
, log

(
θ∗q,−q∗ij

)
, ϑlog were simulated to test for improved perfor-

mance. The posteriors of log (q∗ij) were not as , so they were transformed back

to q∗ij. The transformations of the histograms were plotted in Figure 4.12 along

with q̂∗ij when zT1 was known, q̂∗ij from the algorithm in 4.2.2, and the mean of
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Qunatile-Quantile Plots of the residuals of θqβqij + fqij (θq) |θ̂q,θq, ϑ and
log (θq) βlog(qij) + flog(qij) (log (θq)) | log

(
θ̂q
)
, log (θq) , ϑlog versus the normal

distribution
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Figure 4.11: q∗ij denotes (4.53) was used and log (q∗ij) denoted (4.88) was used.

the posterior.

The simulations of posterior distributions from (4.88) produced plausible re-

sults. The means of the posterior of q∗12, q∗21, and q∗23 were closer to q̂∗ij when zT1
was known than the estimation using the parameter training from Section 4.2.2.

Although that was not the case for q∗32, the model suggested in (4.88) reduced

the overall bias from θ̂∗q. In addition, it was observed in Figure 4.9, that the

bias of r̂32 and consequently q̂32 was small relative to the noise. Therefore, for the

case or q∗32 it was conceivable that q̂32 using the parameter training introduced in

Section 4.2.2 could be closer to q̂∗32 when zT1 was given.

In addition, the estimates of βlog acted as hypothesized. For each βlog(qij), the

dimension that corresponded with qij had a mean near 1, all others were near 0.

Due to the representation of the other parameters, the desired behaviors of those

parameters were not as clear as βlog(qij). Following that, the posteriors of l2log(qij),
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The histograms of the simulated q∗ij drawn from
log (q∗ij) | log

(
θ̂q
)
, log (θq) , log

(
θ̂∗q
)
, log

(
θ∗q,−q∗ij

)
, ϑlog

Figure 4.12: The transformed posterior from log (q∗ij) | log
(
θ̂q
)
, log (θq)

, log
(
θ̂∗q
)
, log

(
θ∗q,−q∗ij

)
, ϑlog

the posteriors of σ2
εlog(qij)

,
(
s2

log(qij)ν
2
log(qij)

)
, and a list of the conditional priors can

be found in appendix D.2.

Finally, the simulated values of s2
log(qij) provided confirmation of the use of the

Gaussian process within the meta-model. s2
log(qij) can be thought of as the mag-

nitude of the difference of the meta-model from the mean of the regression term.

The histograms of the simulated posteriors of s2
log(qij) were placed in Figure 4.13.

In Figure 4.13, it was seen that the credible intervals of s2
log(qij) did not cover 0.

Therefore, there was some non-linear relation between θ and θ̂. Furthermore, since

the meta-model was on the log scale, the scale of s2
log(qij) was approximately the

relative difference from the linear regression term. By comparing that approximate

to the relative errors observed in Figure 4.9, the magnitude of each s2
log(qij) was

large enough that the Gaussian process within the meta-model was warranted.

The performance of the parameter training using the meta-model for bias

reduction was tested two other ways. First, the Gibbs sampler introduced in

the next section supplements the algorithm here and agreement between the two

provided more confirmation of desired behaviors. Secondly, there were additional

datasets that showed bias reduction of the parameter training estimates were
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effective. Therefore, this additional evidence was provided in a joint analysis of

both the parameter training with bias correction and the Gibbs sampler.

The histograms of the simulated s2
log(qij) drawn from

s2
log(qij)| log

(
θ̂q
)
, log (θq) , log

(
θ̂∗q
)
, log

(
θ∗q,−q∗ij

)
, ϑlog−s2

log(qij)

Figure 4.13: Histograms of “magnitude of the the non-linear part of meta-
model” which on the log scale is approximately relative differences between the
regression and full meta-model

Generating datasets

The goal of this research was to learn an unknown θ∗q of a dataset. The

parameter training algorithm was used to calculate a bias estimator θ̂∗q. The bias

was reduced by creating a meta-model for a computer generated set of
(
θq, θ̂q

)
pairs and solving the inverse problem. For quality inference, an appropriate set of(
θq, θ̂q

)
pairs needed to identified. First, the center of the region for the pairs was

chosen. This was done under the assumption that the ratio θ
θ̂
was approximately
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constant in a small area around θ∗. Therefore, a guess for θ∗ was generated using

the algorithm listed as (4.89) where n was the number of “guesses” desired.

Calculating an initial guess for θ∗q (4.89)

I. Calculate θ̂∗ for dataset with unknown θ∗.

II. θ(1) = θ̂∗

III. For i = 1 : n

i. Simulate a dataset with parameters θ(i)

ii. Compute θ̂(i) for the dataset in step i. using the parameter training

algorithm developed for this research

iii. θ(i+1) = θ(i)

θ̂(i)

IV. end

V. Let the initial guess θ(g) be θ(i) such that θ̂(i) was closest to θ̂∗

Then a set of
(
θ, θ̂

)
pairs was generated around θ(g). Initially, (4.89) was used

to help determine the region to explore. However, the Gaussian process model

used requires the region of exploration to be large relative to the area explored

in (4.89). In fact, the restrictions of the parameter training algorithm discussed in

Section 4.2.1 had the greatest effect on region size. For a 10 second dataset with

the aforementioned parameters, the dimensions of q23 and q32 needed to be as big

as possible without leaving the region where the parameter training algorithm was

effective. If datapoints were evaluated outside the effective range of the parameter

training algorithm, the associated
(
θq, θ̂q

)
pairs were often nonsensical and made

learning ϑ difficult. This, in turn, made inference on θ∗q poor. An example of

inference where this occurred was placed in Figure 4.14(A).
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The histograms of the simulated q∗23 drawn from
log (q∗23) | log

(
θ̂q
)
, log (θq) , log

(
θ̂∗q
)
, log (θ∗q,−q∗23) , ϑlog

Figure 4.14: (A) shows a region that generated points outside the effective region
of the parameter training and (B) has a region that was too restrictive to describe
the posterior

Another difficulty that occurred was when the region was too small. In this

case, the tails of the distribution of θ∗q were not explored. An example of this was

placed in Figure 4.14(B). Since the region in which the parameter training was

effective was partially determined by the size of the dataset, this made inference

difficult when the total time was too small. In the example from Figure 4.14(B),

the tails of q̂∗23 and q̂∗32 were not completely explored given 10 seconds of data.

With the correct region size, the tails of the distributions of q∗ij were explored (See

Figure 4.12). However, finding the correct region size was not trivial for a dataset

10 seconds long. Therefore, it would be difficult to compute the bias reduction

with much less than 10 seconds of data.

The method for generating an appropriate computer dataset was empirical.

First, the center of the region was θ(g) which was calculated in (4.89). Then,

the size of the region was decided using results as seen in Figure 4.14. Since

Latin hypercubes are known to be a computationally cheap way to explore high

dimensions [49], θq for each ordered pair was generated by a Latin hypercube [36].

For this, the data was assumed to be a truncated normal distribution around
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θ(g). The first reason for the normal assumption was that θ(g) tended to be a

reasonable guess and therefore it was a good way to produce data concentrated

near θ∗q. In addition, the normal distribution was chosen because the effective

region of the parameter algorithm could not be defined as a single polytope. As

seen in Section 4.2.1, the algorithm struggled when combinations of input variables

made the parameters difficult to learn. If too many of the components of θq were

near the edge of the region proposed, a nonsensical
(
θq, θ̂q

)
pair could occur. By

using the normal distribution, it was more likely that points near the edge of one

dimension would be paired with points near the center of the other dimensions.

To generate the Latin hypercube with n datapoints, first, consider only one

dimension. Divide the aforementioned dimension into n regions of equal proba-

bility. Within each of the n regions randomly generate one point (producing n

coordinates in that dimension). This process was repeated for all other dimen-

sions. Finally, each coordinate was randomly paired with coordinates from each

of the other dimensions making n points within the Latin hypercube. In this case,

there was no covariance applied between dimensions as using the normal distri-

bution was sufficient. However, a Latin hypercube with a covariance structure is

possible to generate, but a different implementation would be necessary. As an

example, an explanation of the region used to generate the bias reduction from

Section 4.2.6 can be found in Table 4.1.

Dimension Center
(
θ(g)

)
Distribution of qij

q12 0.0011 T N (0.0011, 0.10492, [0.0007, 0.0016])

q21 0.0090 T N (0.0090, 0.22222, [0.0055, 0.0135])

q23 0.0008 T N (0.0008, 0.34982, [0.0004, 0.0023])
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Dimension Center
(
θ(g)

)
Distribution of qij

q32 0.0022 T N (0.0022, 0.37362, [0.0007, 0.0047])

Table 4.1: A description of the Latin hypercube used for the computer experi-
ment in Section 4.2.6

The algorithm in (4.89) produced a reasonable θ(g) relatively quickly. Further-

more, (4.89) was expensive because it produced
(
θq, θ̂q

)
pairs sequentially. At the

completion of (4.89), a Latin hypercube could be generated. With the Latin hy-

percube, generating
(
θq, θ̂q

)
pairs was embarrassingly parallel. Therefore, given

enough processors, it was fairly cheap to generate a sufficient amount of
(
θq, θ̂q

)
pairs.

To test the precision of the bias reduction, the Gaussian process regression

model was tuned to three different Latin hypercubes built for the dataset ex-

plored in 4.2.6. The histograms of the simulated posteriors of q∗ij were placed in

Figure 4.15. Not surprisingly, the largest differences were observed in the poste-

riors of q∗23 and q∗32. q∗23 and q∗32 both had long tails, and the majority of the

difference was the size of those tails. This could have been cause by randomness in

the generation of the dataset. As mentioned earlier, the inference near the edges of

the region which the parameter training algorithm was effective was more difficult.

If these edge points had too much randomness q∗23 or q∗32 could have come from

an area near the edge. This is similar to the effect observed in Figure 4.14(A) but

at a much lesser extent. This could be mitigated by having a longer time series,

thus making the effective region of the algorithm larger. Alternatively, the edges

of the region could be explored more thoroughly. Finally, adding more points to

the Latin hypercube could be effective, but only if the region boundaries were

well explored. To quantify the difference observed in these three posteriors, it was
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instructive to look at mean of each posterior. q̄∗12 was 0.001 and q̄∗21 was 0.0099

for all three Latin hypercubes. q̄∗23 and q̄∗32 were in the ranges [0.00099, 0.001]

and [0.0023, 0.0024] respectively. The differences were small relative to the cred-

ible intervals and the relative bias introduced. Therefore, the performance could

be improved by continuing to tune the region size while increasing the size of the

Latin hypercube, but the uncertainty added here was small relative to the noise

of the time series datasets.

The histograms of the simulated q∗ij drawn from
log (q∗ij) | log

(
θ̂q
)
, log (θq) , log

(
θ̂∗q
)
, log

(
θ∗q,−q∗ij

)
, ϑlog

Figure 4.15: Each plot compared the histograms of three posteriors of qij simu-
lated from three different Latin hypercubes

4.2.7 A Gibbs sampler for a 3 state system with only 2

distinct signals

likelihood

The traditional forward filtering backward sampling method was not an ef-

fective way to compute posteriors of the transition probabilities or rates for the

three state system with only two signals. Therefore, the composite state was

considered. By considering the composite state S2, inference on the posterior

distribution of θ = (q12,v, ϕ1, ϕ2, w, µS1 , µS2 , σ
2) could be made. Since the addi-

tional likelihood required the consecutive observations in state S2 for all stays in
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S2, Bayesian methods were convenient since the posterior produced a conditional

posterior path or zT1 for each draw. That, in turn, was used to generate the “dwell

times” or consecutive observations in the composite state which was denoted as

d. In addition, this algorithm did not seem to exhibit the bias results as with

the parameter training introduced in Section 4.2.2. Unfortunately, these advan-

tages came at a cost, as simulating the full posteriors was very computationally

expensive.

Like the parameter training from Section 4.2.2, the Gibbs sampler used two

different likelihoods. The first was the likelihood for the traditional hidden Markov

model. It was listed originally as (4.31) to (4.35), and was repeated here as (4.90)

to (4.94).

p(yT0 , zT0 |θ) = p(z0|θ)
[
T∏
i=1

p(zi|zi−1,θ)
] [

T∏
i=0

p(yi|zi,θ)
]

(4.90)

p(z0|θ) = ρz10
1 ρz20

2 ρz30
3 (4.91)

p(zi|zi−1,θ) = Q(θ)z′i−1 (4.92)

p(yi|zi,θ) =
[
Nyi(µS1 , σ

2)
]z1i [Nyi(µS2 , σ

2)]z2i+z3i (4.93)

Q(θ) =


1− q12 q21(θ) 0

q12 1− (q21(θ) + q23(θ)) q32(θ)

0 q23(θ) 1− q32(θ)

 (4.94)

However, not all qij in the transition probability matrix were part of θ. q21(θ),

q23(θ), and q32(θ) were not parameters, but they were functions of parameters.

They were listed originally list as (4.95) to (4.97) where there was more context

and repeated as (4.7) to (4.9).
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q21 = ϕ2 + w(ϕ1 − ϕ2) (4.95)

q23 = (ϕ1 − ϕ2)2 − [(ϕ1 − ϕ2)− 2w(ϕ1 − ϕ2)]2
2[ϕ2 + w(ϕ1 − ϕ2)] (4.96)

q32 = ϕ2 − w(ϕ1 − ϕ2)− (ϕ1 − ϕ2)2 − [(ϕ1 − ϕ2)− 2w(ϕ1 − ϕ2)]2
2[ϕ2 + w(ϕ1 − ϕ2)] (4.97)

To make inference on the parameters that determine q21(θ), q23(θ), and q32(θ)

the dwell time in the composite state which was defined as S2 = S2A∪S2B was used.

The probability of the dwell time was listed as (4.98) and for more information

on the composite state and the distribution of the dwell time see Section 4.1.2.

p(d|θ) =
n∏
h=1

[
w(1− ϕ1)dh−1ϕ1 + (1− w)(1− ϕ2)dh−1ϕ2

]
(4.98)

The Gibbs Sampler

The Gibbs sampler first uses θ to sample zT1 using forward filter backward

sample. With zT1 , the parameters ρ, q12, µS1 , µS2 , and σ2 could be sampled using

the methodology of the k state k signal system from Section 2.4.2. Finally, the

dwell times in the composite state could be taken from zT1 . This was used for

inference on ϕ1, ϕ2, and w. The sampler with N samples was listed as (4.99) and

bk indicates the kth draw and (bj)k indicated the same if b had a subscript.

The Gibbs sampler for 3 states with two discrete signals (4.99)

1. Pick θ0

2. For i = 1 to N with θi−1

(a) Draw zT from 4.106

155



(b) for l = T − 1 to l = 0

i. Draw zl from 4.107

(c) Draw (ρ)i from 4.109

(d) Draw (q12)i from 4.111

(e) Draw (µS1)i from 4.113

(f) Draw (µS2)i from 4.115

(g) Draw (σ2)i from 4.117

(h) Harvest d from zT0

(i) for h = 1 to H

i. draw (vh)i from 4.119

(j) Draw (ϕ1)i from 4.121

(k) Draw (ϕ2)i from 4.122

(l) Draw wi from 4.124

Drawing p(zT1 |yT1 ,θ)

To draw from zT0 , forward filter backward sampling was used. The notations

ai, αi, and βi were used for brevity. Recall ai, αi, βi were the state update, the

state forecast, and the backward probabilities given zi+1 at time i. For a more

detailed explanation see Section 2.4.2.
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ai(k) = p(zi = k|yi−1
0 ,θ)

αi(k) = p(zi = k|yi0,θ)

βi(k) = p(zi = k|yT0 ,θ)

First, ai (the state update) and αi were computed for i = 0 to T .

a0(k) = p(z0 = k|θ)

α0(k) = a0(k)Ny0(µSk , σ2)∑
j∈Z0

a0(j)Ny0(µSj , σ2)

ai(k) =
∑

j∈Zi−1

αi−1(j)qjk (4.100)

αi(k) = ai(k)Nyi(µSk , σ2)∑
j∈Zi

ai(j)Nyi(µSj , σ2) (4.101)

Then the full conditionals were computed and zi is sampled for i = T to i = 0.

(Note, for the case i = T , βT = αT ).

bi(zi1 = 1) = αi(zi1 = 1)(1− q12)z(i+1)1 + αi(zi1 = 1)q12z(i+1)2 (4.102)

bi(zi2 = 1) = αi(zi2 = 1)
(
q21z(i+1)1 + q22z(i+1)2 + q23z(i+1)3

)
(4.103)

bi(zi3 = 1) = αi(zi3 = 1)q23z(i+1)2 + αi(zi3 = 1)(1− q32)z(i+1)3 (4.104)

βi(k) = bi(k)
bi(zi1 = 1) + bi(zi2 = 1) + bi(zi3 = 1) (4.105)

zT ∼ DirzT [αT (zT1 = 1), αT (zT2 = 1), αT (zT3 = 1)] (4.106)

zi ∼ Dirzi [βi(zi1 = 1), βi(zi2 = 1), βi(zi3 = 1)] i 6= T (4.107)
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Drawing ρ, q12, µS1 , µS2 , σ
2 from the posterior

ρk, (q12)k, (µS1)k ,(µS2)k, and σ2
k were sampled using the likelihood functions

in (4.90) to (4.94) and were discussed in more detail in Section 2.4.2. The condi-

tional priors of ρk, (q12)k, (µS1)k ,(µS2)k, and σ2
k were given as (4.108), (4.110),

(4.112), (4.114), and (4.116) respectively. The posteriors were listed as (4.108),

(4.111), (4.113), (4.115), and (4.117) respectively.

ρ ∼ Dir(κρ1 , κρ2 , κρ3) (4.108)

ρ|yT1 , zT1 θ−ρ ∼ Dirρ(z01 + κρ1 , z02 + κρ2 , z03 + κρ3) (4.109)

q12 ∼ Dir(κq12 , κ(1−q12)) (4.110)

q12|yT1 , zT1 θ−q12 ∼ Dir

(
T∑
i=1

zi2z(i−1)1 + κq12 ,
T∑
i=1

zi1z(i−1)1 + κ(1−q12)

)
(4.111)

µS1 = N
(
mS1 , σ

2
S1

)
(4.112)

µS1|yT1 , zT1 θ−µS1
∼ N


σ2
S1

T∑
i=0

yizi1 + σ2mS1

σ2
S1

T∑
i=0

zi1 + σ2
,

σ2
S1σ

2

σ2
S1

T∑
i=0

zi1 + σ2

 (4.113)

µS2 ∼ N
(
mS2 , σ

2
S2

)
(4.114)

µS2|yT1 , zT1 θ−µS2
∼ · · · (4.115)

· · · N


σ2
S2

T∑
i=0

yi(zi2 + zi3) + σ2mS2

σ2
S2

T∑
i=0

(zi2 + zi3) + σ2
,

σ2
S2σ

2

σ2
S2

T∑
i=0

(zi2 + zi3) + σ2


σ2 ∼ IG

(
n0

2 ,
d0

2

)
(4.116)

Si = zi1(yi − µS1)2 + (zi2 + zi3)(yi − µS2)2
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σ2|yT1 , zT1 θ−σ2 ∼ IG

n0 + T + 1
2 ,

d0 +
T∑
i=0

Si

2

 (4.117)

Drawing ϕ1, ϕ2, w, and vh from the posterior

zT0 determines the values for d so all necessary information to sample ϕ1, ϕ2, w

from the posterior was available. Unfortunately, it is not easy to draw from the

posterior of p(dh|ϕ, w, vh) = w(1−ϕ1)dh−1ϕ1 + (1−w)(1−ϕ2)dh−1ϕ2. Therefore,

because it is computationally advantageous, an alternate form, as seen below, was

used where vh was introduced as a latent variable and indicates which geometric

distribution dh was drawn from.

p(dh, vh|ϕ, w) =
[
w(1− ϕ1)dh−1ϕ1

]vh [(1− w)(1− ϕ2)dh−1ϕ2]1−vh

p(d,v|ϕ, w) =
m∏
h=1

[
w(1− ϕ1)dh−1ϕ1

]vh [(1− w)(1− ϕ2)dh−1ϕ2]1−vh

The conditional priors of vh, ϕ1, ϕ2, and w were listed as (4.118), (4.120), (4.120),

and (4.123) respectively and the corresponding conditional posterior were listed

as (4.119), (4.121), (4.122), and (4.124). Bern(p) denotes a Bernoulli trial with

probability of success p. A detailed explanation of a Gibbs sampler for a mixture

of geometric distributions can be found in Section 2.2.2.

p(vh|w,ϕ1, ϕ2) = p(vh|w) = wvh(1− w)1−vh (4.118)

vh|dh,θ−vh ∼ Bern


[
w(1− ϕ1)dh−1ϕ1

]
w(1− ϕ1)dh−1ϕ1 + (1− w)(1− ϕ2)dh−1ϕ2

 (4.119)
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ϕi ∼ B(αϕi , βϕi) (4.120)

ϕ1|d,v,θ−ϕ1 ∼ B
(

H∑
h=1

(vh) + αϕ1 ,
H∑
h=1

(vh(dh − 1)) + βϕ1

)
(4.121)

ϕ2|d,v,θ−ϕ2 ∼ B
(

H∑
h=1

(1− vh) + αϕ2 ,
H∑
h=1

((1− vh)(dh − 1)) + βϕ2

)
(4.122)

w ∼ B(αw, βw) (4.123)

w|d,v,θ−w ∼ B
(

H∑
h=1

(vh) + αw,
H∑
h=1

(1− vh) + βw

)
(4.124)

Analysis of Gibbs sampler

Trial True MCMC MCMC MCMC

Name Values Run 1 Run 2 Run 3

q12 0.00099 0.0005 0.0080 0.0080

ϕ1 0.0111 0.0080 0.0120 0.0200

ϕ2 0.0018 0.0025 0.0018 0.0010

w 0.8711 0.7000 0.8500 0.9500

σ2 9 12 8 4.5000

µS1 32 33.6931 33.6931 33.6931

µS2A 26 29.0404 29.0404 29.0404

Table 4.2: Initial values for runs of the MCMC

The Gibbs sampler for

this research was developed to

make inference on the tran-

sition probabilities and sub-

sequently the rates of the

three state system with only

two distinct signals. To an-

alyze performance, the Gibbs

sampler was run on the

dataset from Section 4.2.2

with 1, 000, 000 observations

where r12 = 100, r21 = 1000,

r23 = 100, r32 = 200, µS1 = 32, µS2 = 26, σ2 = 9, and ∆t = 1
100000 . First, the

convergence of the algorithm was tested.

The convergence of the algorithm was tested using two methods. The first

method was to check the draws 1 to 400 of an over-dispersed initial guess or

θ0. As with the two state, two signal system from Chapter 3, it was better to
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overestimate the difference of mixture parameters (µS1 and µS2 or ϕ1 and ϕ2) than

underestimate. Therefore, using the same strategy from Chapter 3, (µS1)0 and

(µS2)0 were picked to be the 75% and the 25% of yT1 respectively. Unfortunately,

a good proxy for that strategy did not exist for ϕ1 and ϕ2. The values for θ0 were

placed in Table 4.2. Figure 4.16 has the trace of the first four hundred draws from

the posterior of θ for Run 1, Run 2, and Run 3.

The traces of the first 400 draws from the conditional posteriors with
over-dispersed θ0

0 200 400
0

0.005
(q12)k

0 200 400
0

0.01

0.02

0.03
(ϕ1)k

0 200 400
0

0.005
(ϕ2)k

0 200 400
0.5

0.6

0.7

0.8

0.9

wk

0 200 400
4

6

8

10

12

(

σ
2
)

k

Run1
Run2
Run3

Figure 4.16: Each run was labeled as was in Table 4.2 where θ0 was listed

In Figure 4.16 each trace, regardless of the quality of θ0, finished in the same

area. It was interesting to note that one choice of θ0 caused the sampler to search

an “undesirable area” of the posterior. Therefore, unlike the parameter training

algorithm developed for this research, a bad θ0 did not cause a failure. Since

the Gibbs Sampler searches randomly, it should eventually return to the “correct

region”, bad guesses just require more draws. Furthermore, once the sampler was

in the ”correct region”, it stayed there. This behavior can be observed in the trace

of draws 600-1000 in Figure 4.17.
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The traces draws 600-1000 from the conditional posteriors with over-dispersed θ0

600 800 1000

0.001

0.0012
(q12)k

0 200 400
0.008
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0.012

0.014
(ϕ1)k

600 800 1000

0.002
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(ϕ2)k
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0.7

0.8

0.9

1
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8.95
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9.05

(

σ
2
)

k

Run1
Run2
Run3

Figure 4.17: Each run was labeled as was in Table (4.2) where θ0 was listed

From the trace of draws 600-1000, it can be seen that the three samples are

all exploring the same general area that they converged to by the 400th draw.

However, it can also be seen that the draws of ϕ1, ϕ2, and w were highly correlated

and the mixing was slow. Therefore, it was important that a large number of draws

were taken from the posterior to produce satisfactory results.

As stated earlier, inference on three states with two distinct signals was dif-

ficult. Therefore, to make meaningful inference, a significant amount of infor-

mation was required. To study the amount of data needed, the same dataset

with 1, 000, 000 observations where r12 = 100, r21 = 1000, r23 = 100, r32 = 200,

µS1 = 32, µS2 = 26, σ2 = 9, and ∆t = 1
100000 was used. The Gibbs sampler was

run on the first second, the first two second, the first three seconds, ..., and all

ten seconds.

Since qij and the resulting rij were the focus, the distributions of qij were

studied. In particular, q23 and q32 were focused on as the inference on q23 and

q32 was the most difficult. Figures 4.18 and 4.19 have histograms of simulated
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conditional posteriors of q23 and q32 for short datasets. For a dataset one second

long, it can be seen that the algorithm explores much of the permissible range

of qij and the concentration does not correlate with the true values in Table 4.2.

At two seconds, the posterior has a concentration in the correct region, but the

tails still explore a large area of the space. Finally, at 5 and 6 seconds, the tails

dissipate some, and there was more concentration near the true value. However,

the credible intervals were large enough that the error was more than an order of

magnitude.

Histograms of the conditional posteriors of q23 for short time duration

Figure 4.18: The datasets had a total time of 1, 2, 5, and 6 seconds

Although the dataset 6 seconds long produced credible intervals too big to be

useful, it exhibited some desired behavior. Therefore, datasets of 7 or more seconds

were examined more thoroughly. As before, the distributions for the posterior of

parameter h were compared by using
(
εhij

)
k
where

(
εhij

)
k
+(hij)k = hij. Then the

99%, 95%, and 80% credible intervals of set of
(
εhij

)
k
denoted as

{(
εhij

)
k

}
were

compared for different times using the demarcation described in Section 3.2.4.

Figure 4.21 compared rij and Figure 4.20 compared µS1 , µS2 and σ2. µS1 , µS2 and
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Histograms of the conditional posteriors of q32 for short time duration

Figure 4.19: The datasets had a total time of 1, 2, 5, and 6 seconds

σ2 showed very little relative error for all datasets from 7 to 10 seconds.

Histograms of the conditional posteriors of
{(
εhij

)
k

}

7 8 9 10

Credible Intervals of {
(

ǫµS1

)

k
}

µS1
− 0.2

µS1
− 0.1

µS1

µS1
+ 0.01

7 8 9 10

Credible Intervals of {
(

ǫµS2

)

k
}

µS2
− 0.4

µS2
− 0.2

µS2

µS2
+ 0.02

µS2
+ 0.04

7 8 9 10

Credible Intervals of {(ǫσ2)
k
}

σ
2
− 0.1

σ
2

σ
2 + 0.05

σ
2 + 0.1

Figure 4.20: The total time of each dataset was labeled on the x axis

r12 showed reasonable credible intervals, and for 10 seconds the credible inter-

vals were within the range of 10% relative error. r21 also exhibited positive traits

and was within the range of 15% relative error for 10 seconds. r23 and r32 were

more problematic. First, the true value of r32 was close to the edge of the credible

intervals. However, since it was very close to the first border, it was just outside

the 80% credible interval. It was not unrealistic for this to happen with one of
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the 7 parameters shown here. In addition, the credible intervals had ranges bigger

for r23 and r32. This was not surprising as there was no direct way to observe

transitions between states S2A and S2B, but was problematic because running the

Gibbs sampler for larger datasets was difficult. Running the Gibbs sampler on the

10 second dataset took just over a week. Finally, for more confirmation, the Gibbs

sampler was run on more datasets and was compared to the parameter training

with bias reduction. This was done in the following section.

Histograms of the conditional posteriors of
{(
εhij

)
k

}

Figure 4.21: The total time of each dataset was labeled on the x axis

4.3 Comparison of methods

The goal of this research was to make inference on the transition rates of the

three state system with two distinct signals. The parameter training developed

for this research calculated point estimates for the rates. It was found that those

estimates were biased and a meta-model was used to reduce that bias. The infer-
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ence for the bias correction was Bayesian in nature and therefore simulated the

posterior of the true rates.

The other method developed was a Gibbs sampler that sampled from the

posteriors of the transition rates. This was convenient since both methods sim-

ulated posterior distribution of the transition rates and therefore were easy to

compare. Both algorithms were run on the same dataset from 4.2.2 and 4.2.7

with 1, 000, 000 observations where r12 = 100, r21 = 1000, r23 = 100, r32 = 200,

µS1 = 32, µS2 = 26, σ2 = 9, and ∆t = 1
100000 . Since the goal of this research

was to compute transition rates, the posteriors of the rates or rij were used to

compare the two algorithms. The posteriors of both were compared in Figure 4.22

where the posterior from the parameter training and bias reduction was denoted

as r∗ij and the posterior simulated by the Gibbs sampler was denoted as rij. For

reference, the maximum likelihood estimator of the transition rates given the true

value of the state sequence of zT1 was included on the graph.

Comparison of the conditional posteriors of r∗ij and rij

Figure 4.22: Histograms of posteriors of the two methods compared with the r̂ij
give the true zT1

The inference of the Gibbs and the parameter training with bias reduction

both seemed to centered on r̂ij when the true zT1 was known. In addition, the

algorithms show a fair amount of agreement. The means of the posteriors from
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the Gibbs sampler for r12, r21, r23, and r32 were 104.1594, 999.7081, 106.5893, and

254.6903. The corresponding means of the posteriors from the parameter training

with bias reduction were 104.4262, 999.6526, 101.3179, and 244.9022 respectively.

These were small differences relative to the size of the credible intervals.

Following this, a second time series was explored. The dataset was generated

had 1, 000, 000 observations with r12 = 100, r21 = 1000, r23 = 200, r32 = 100,

µS1 = 32, µS2 = 26, σ2 = 9, and ∆t = 1
100000 . Again, the histograms of the

posteriors were compared.

Comparison of the conditional posteriors of r∗ij and rij

Figure 4.23: Histograms of posteriors of the two methods compared with the r̂ij
give the true zT1

Dataset

Name r12 r21 r23 r32

1 100 1000 100 200

2 100 1000 200 100

3 100 1000 100 100

4 100 1000 200 200

Table 4.3: List of Datasets

Figure 4.23 exhibited many of the

same behaviors. First, the posteriors

of the Gibbs sampler and the parame-

ter training with bias reduction seemed

centered on r̂ij when zT1 was known.

Second, the difference between the two

simulated posteriors was very small rel-

ative to the credible intervals. Finally,

it can be observed in both Figure 4.22

and 4.23 that the credible intervals of the parameter training with bias reduction
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were slightly bigger. This comparison was done on four datasets, and this result

was consistent. A list of the four experiments can be found in Table 4.3 where

each dataset was 10 seconds long sampled at 100 kHz and µS1 = 32, µS2 = 26 and

σ2 = 9. The results were compared in Figure 4.24 using the credible intervals of{(
εrij
)
k

}
. Each dataset was labeled on the x axis where a denotes the results from

the Gibbs sampler and a∗ denoted the results of the parameter training with bias

reduction. For reference, the mean of each posterior was denoted as a dotted line.

As stated previously, datasets 3 and 4 exhibited traits similar to datasets 1 and

2 where both distributions were very close, and the difference relative to the size

of the credible intervals were small. Furthermore, in all four cases, the credible

intervals of the parameter training with bias reduction were slightly bigger.

Comparison of the credible intervals of the conditional posteriors of
{(
εr∗ij

)
k

}
and

{(
εrij
)
k

}
Credible Intervals of {(ǫr12)k}

1 1∗ 2 2∗ 3 3∗ 4 4∗1 1∗ 2 2∗ 3 3∗ 4 4∗

r12 − 20

r12 + 20

1 1∗ 2 2∗ 3 3∗ 4 4∗

r12

Credible Intervals of {(ǫr21)k}

1 1∗ 2 2∗ 3 3∗ 4 4∗
r21 − 200

r21

r21 + 200

r21 + 400

Credible Intervals of {(ǫr23)k}

1 1∗ 2 2∗ 3 3∗ 4 4∗
r23 − 100

r23

r23 + 100

r23 + 200
Credible Intervals of {(ǫr32)k}

1 1∗ 2 2∗ 3 3∗ 4 4∗
r32 − 100

r32

r32 + 100

r32 + 200

r32 + 300

Figure 4.24: Comparison of the credible intervals of the conditional posteriors
where true rij was represented by a solid line and the mean of the posteriors were
represented by a dotted line

The agreement of the two methods provides additional justification in addition
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to the results previously discussed. The Gibbs sampler was a rigorous Bayesian

statistical model of the biological system. It had slightly more concise credible in-

tervals but required long computation times. For reference, the 10 second dataset

with data collected at a frequency of 100 kHz took a little over a week to compute.

The parameter training with bias reduction was an ad-hoc method for comput-

ing the posteriors. It required producing a set of
(
θq, θ̂q

)
pairs to compute the

posterior of θ∗q. Calibrating a set that was big enough to include the full range

of the distributions of qij (and subsequently rij) without producing “bad
(
θq, θ̂q

)
pairs” was done empirically and could be time consuming. However, computing

the initial values of θ̂q for a single dataset 10 seconds long at 100 kHz ranged

from 5-10 minutes compute time. The Latin hypercube could be computed en-

tirely in parallel if enough processors were available. Finally, running the bias

reduction for 163
(
θq, θ̂q

)
pairs took under 1 hour. It is important to note, all

codes were written in MATLAB and had not been optimized for speed. Times for

both methods could be improved, but the parameter training with bias reduction

was run on a dataset with 80 seconds of data when ∆t = 1
100000 in a half day.

Given that the parameter training with bias reduction could be run on larger

datasets, these datasets were used as further confirmation of the methodology. As

before, the credible intervals of
{(
εrij
)
k

}
were placed on a single plot for datasets

with total times of 10, 20, 40 and 80 seconds. Each dataset was collected at a

frequency 100 kHz and the parameters of each dataset were r12 = 100, r21 = 1000,

r23 = 200, r32 = 100, µS1 = 32, µS2 = 26, and σ2 = 9. The credible intervals were

placed in Figure 4.25 and the times were placed on the x-axis.

Figure 4.25 shows additional empirical evidence of desired behaviors. As the

amount of data increases, the credible intervals shrink around the true values of

rij. In addition, it was interesting to note that given 80 seconds of data, the
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Comparison of the credible intervals of the conditional posteriors of
{(
εr∗ij

)
k

}
for datasets from 10-80 seconds long

Credible Intervals of {(ǫr12)k}

10 20 40 80
r12 − 10

r12

r12 + 10

r12 + 20
Credible Intervals of {(ǫr21)k}

10 20 40 80
r21 − 200

r21 − 100

r21

r21 + 100

r21 + 200

Credible Intervals of {(ǫr23)k}

10 20 40 80
r23 − 100

r23 − 50

r23

r23 + 50

r23 + 100
Credible Intervals of {(ǫr32)k}

10 20 40 80
r32 − 100

r32

r32+100

r32 + 200

r32 + 300

Figure 4.25: Comparison of the credible intervals of the conditional posteriors
where true rij was represented by a solid line and the mean of the posteriors were
represented by a dotted line

range of the 99% credible interval of the r23 was about [86, 152] and r32 was about

[174, 252]. Therefore, 99% credible intervals of the posteriors of r23 and r32 did

not exhibit more than 0.33 and 0.27 relative error. Given that inference was being

made on three states when only two states where visible, this result shows that

the method can be precise with enough data.

4.4 Future Work

The nanopore experiments conducted by Lieberman and her colleagues re-

sulted in a system with three states and two signals. The methods developed in

this thesis provide a statistical model for the transition rates that supplement ad-

hoc maximum likelihood approach based on dwell times employed by Lieberman

et al [32]. Both methods developed here incorporated hidden Markov modeling
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to calculate the transition rates. The Gibbs sampler developed was a rigorous

statistical model for generating posteriors of the of the transition rates. The pa-

rameter training with bias reduction was a more ad-hoc approach to the problem.

It produced reasonable but slightly less precise credible intervals in much less time.

In the experiments modeled, the DNA was engineered not to go passed the

post-translocation, ternary structure state. For a better understanding of the

replication process, it would be necessary to understand all transition rates within

DNA replication. To study all transitions, it is necessary to extend the models

to fit DNA replication where the states were not artificially restricted. Following

that, the biochemical states of DNA replication are not fully understood, and

not all states can be observed. Building a test to determine whether “hidden” or

composite states exist that were not previously known would be beneficial.

Computer experiments such as those introduced by Kennedy and O’Hagan

are widely implemented. Using the experiment to address bias, discrepancy, or

what they refer to model inadequacy was not a new application [27]. However,

continual advances in computing technology have made collecting large datasets

increasingly feasible and subsequently increased the demand for algorithms that

can process that data in a reasonable time. Applying Gaussian process regression

to “fast” but inadequate models may have a broader range of applications to be

explored. Furthermore, the application of the Gaussian process regression resulted

in a reasonable simulated posterior. Using a set of maximum likelihood estimators

might be a fast way to estimate the true posterior of the model. Applying this

in other cases could provide evidence for a viable alternative method to estimate

credible intervals. In addition, if posteriors were not desired, using methods that

made point estimates for learning the Gaussian process regression parameters such

as described in [7] would be much faster.
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The nanopore easily created large amounts of data. Furthermore, both meth-

ods required a lot of data to make inference with desirable credible interval sizes.

Therefore, writing the code in a language other than MATLAB and optimizing

would be needed if one wanted to evaluate large amounts of data (time series data

with 8 million points were run using the current code).

As stated above, creating a Latin hypercube that was big enough so the full

posterior could be explored without creating “bad”
(
θq, θ̂q

)
pairs was difficult.

Furthermore, it was seen in Section 4.2.6, that the Latin hypercube still con-

tributed to small variability in the posteriors. Creating a better understanding

of the theoretical limitations of inference on rij for the parameter training would

help reduce computation time and produce more reliable posteriors.
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Appendix A

Supplement: A mixture of two

geometric distributions

A.1 The conditional posterior distributions of a

mixture of two geometric distributions

A.1.1 Derivation of the conditional posterior of w for a

mixture of two geometric distributions

w ∼ B(αw, βw)

p(w|d,v,θ−w) ∝ p(d,v|ϕ1, ϕ2, w)p(w)

p(w|d,v,θ−w) ∝
H∏
h=1

[
w(1− ϕ1)dh−1ϕ1

]vh [(1− w)(1− ϕ2)dh−1ϕ2
]1−vh

p(w)

p(w|d,v,θ−w) ∝
H∏
h=1

[w]vh [(1− w)]1−vh wαw−1(1− w)βw−1
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p(w|d,v,θ−w) ∝ w

H∑
h=1

(vh)
(1− w)

H∑
h=1

(1−vh)
wαw−1(1− w)βw−1

p(w|d,v,θ−w) ∝ w

H∑
h=1

(vh)+αw−1
(1− w)

H∑
h=1

(1−vh)+βw−1

w|d,v,θ−w ∼ Bw
(

H∑
h=1

(vh) + αw,
H∑
h=1

(1− vh) + βw

)

A.1.2 Derivation of the conditional posteriors of ϕ1 and ϕ2

for a mixture of two geometric distributions

ϕ1 ∼ B(αϕ1 , βϕ1)

p(ϕ1|d,v,θ−ϕ1) ∝ p(d,v|ϕ1, ϕ2, w)p(ϕ1)

p(ϕ1|d,v,θ−ϕ1) ∝ p(d,v|ϕ, ϕ2, w)p(ϕ1)

p(ϕ1|d,v,θ−ϕ1) ∝
m∏
h=1

[
w(1− ϕ1)dh−1ϕ1

]vh [(1− w)(1− ϕ2)dh−1ϕ2
]1−vh

p(ϕ1)

p(ϕ1|d,v,θ−ϕ1) ∝
m∏
h=1

[
(1− ϕ1)dh−1ϕ1

]vh
ϕ
αϕ1−1
1 (1− ϕ1)βϕ1−1

p(ϕ1|d,v,θ−ϕ1) ∝ ϕ

m∑
h=1

(vh)

1 (1− ϕ1)
m∑
h=1

(vh(dh−1))
ϕ
αϕ1−1
1 (1− ϕ1)βϕ1−1

p(ϕ1|d,v,θ−ϕ1) ∝ ϕ

m∑
h=1

(vh)+αϕ1−1

1 (1− ϕ1)
m∑
h=1

(vh(dh−1))+βϕ1−1

ϕ1|d,v,θ−ϕ1 ∼ B
(

m∑
h=1

(vh) + αϕ1 ,
m∑
h=1

(vh(dh − 1)) + βϕ1

)

The derivation of ϕ2 was almost identical to ϕ1 and the posterior was listed

below.

ϕ2|d,v,θ−ϕ2 ∼ B
(

m∑
h=1

(1− vh) + αϕ2 ,
m∑
h=1

((1− vh)(dh − 1)) + βϕ2

)
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A.1.3 Derivation of thec onditional posterior of vh for a

mixture of two geometric distributions

vh|w ∼ Bernoulli(w)

p(vh|d,θ) ∝ p(d|ϕ1, ϕ2, w, vh)p(vh|w)

p(vh|d,θ) ∝
[
(1− ϕ1)(dh−1)ϕ1

]vh [(1− ϕ2)(dh−1)ϕ2
]1−vh [

wvh(1− w)1−vh
]

p(vh|d,θ) ∝
[
w(1− ϕ1)dh−1ϕ1

]vh [(1− w)(1− ϕ2)dh−1ϕ2
]1−vh

p(vh|d,θ) ∝

[
w(1− ϕ1)dh−1ϕ1

]vh [(1− w)(1− ϕ2)dh−1ϕ2
]1−vh

w(1− ϕ1)dh−1ϕ1 + (1− w)(1− ϕ2)dh−1ϕ2

vh|d,θ ∼ Bernoulli


[
w(1− ϕ1)dh−1ϕ1

]
w(1− ϕ1)dh−1ϕ1 + (1− w)(1− ϕ2)dh−1ϕ2


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Appendix B

Supplement: HMMs and the

Orstein-Uhlenbeck Process

B.1 Defining k and ση in terms of B and γ

The zero mean Orstein-Uhlenbeck Process

dX = −BXdt+ γdW

Properties of Wiener Process (W )

I W (0) = 0

II For t1 ≤ t2, W (t2)−W (t1) ∼ N(0, t2 − t1)

III For t1 ≤ t2 ≤ t3 ≤ t4, W (t2)−W (t1) and W (t4)−W (t3) are independent.

A Dynamic Linear Model (DLM)
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xi = X(ti)

∆t = ti − ti−1 ∀ i ∈ {2, 3, ..., T}

x1 ∼ N(µ0, σ
2
η)

xi = kxi−1 + ηi ηi ∼ N(0, σ2
η)

yi = xi + ς ς ∼ N(0, σ2
ς )

B.1.1 Deriving k in terms of B and γ

For ease all definitions were re-listed in appendix B.1. To solve for k, consider

dX = −BXdt+ γdW .

dX = −BXdt+ γdW

dX +BXdt = γdW

eBtdX + eBtBXdt = eBtγdW(
eBtX

)
t

= eBtγdW

Since ti − ti−1 = ∆t, k can be solved for using X(ti) and X(ti−1) without any

loss of generality.

(
eBtx

)
t

= eBtγdW∫ ti

ti−1

(
eBsX

)
s
ds =

∫ ti

ti−1
eBsγdW (s)∫ ti

ti−1

(
eBsX

)
s
ds =

∫ ti

ti−1
eBsγdW (s)

eBtiX(ti)− eBti−1X(ti−1) =
∫ ti

ti−1
eBsγdW (s) (B.1)

Unfortunately, the solution is a distribution and not deterministic. Con-
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sequently,
∫ ti
ti−1

eBsγdW (s) is not integrable. However, the value of the first

and second moments can be calculated. To compute these expectations, con-

sider
∫ ti
ti−1

eBsγdW (s) as a Riemann integral. For this, let
∫ ti
ti−1

eBsγdW (s) =

lim
N→∞

N∑
j=1

γeBsjdWj where s1, s2,..., sj,..., sN+1 is a partition of [ti−1, ti] and dWj =

W (sj+1)−W (sj).

∫ ti

ti−1
eBsγdW (s) = lim

N→∞

N∑
j=1

γeBsjdWj

E
[∫ ti

ti−1
eBsγdW (s)

]
= E

 lim
N→∞

N∑
j=1

γeBsjdWj


E
[∫ ti

ti−1
eBsγdW (s)

]
= lim

N→∞

N∑
j=1

γeBsjE [dWj]

From the properties of W , dWj = W (sj+1)−W (sj) ∼ N (0, sj+1− sj), There-

fore, E [dWj]] = 0 ∀ j. Following this, E
[∫ t

0 e
BsγdW (s)

]
= 0. Using this fact

and (B.1), the E [X(t)] given X(ti−1) can be found.

E
[
eBtiX(ti)− eBti−1X(ti−1)

]
= E

[∫ ti

ti−1
eBsγdW (s)

]

eBtiE [X(ti)]− eBti−1X(0) = 0

E [X(ti)] = e−BteBti−1X(0)

E [X(ti)] = e−Bt+Bti−1X(0)

E [X(ti)] = e−B(∆t)X(0)

Matching notations from the continuous system to the discrete system, E[xt] =

kxt−1 = kX(ti−1) = e−B(∆t)X(ti−1) or k = e−B(∆t).
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B.1.2 Deriving σ2
η in terms of B and γ

To solve for σ2
η in terms of B and γ, consider the second moment. To find

E
[(∫ ti

ti−1
eBsγdW (s)

)2
]
, again a Riemann integral was used.

E

(∫ ti

ti−1
eBsγdW (s)

)2
 = lim

N→∞
E


 N∑
j=1

γeBsjdWj

2


E

(∫ ti

ti−1
eBsγdW (s)

)2
 = lim

N→∞
E

 N∑
j=1

γeBsjdWj

( N∑
k=1

γeBskdWk

)

In the case where j 6= k, each term has the form E
[
2γeBsjdWjγe

BskdWk

]
which is equal to 2γ2eB

2sjskE [dWjdWk]. Since the si’s formed a partition, then

dWj and dWk are disjoint and therefore independent by the properties of the

Wiener Process. Following this, when j 6= k then E
[
2γeBsjdWjγe

BskdWk

]
is

equal to 2γ2eB
2sjskE [dWj]E [dWk] resulting in 2γ2eB

2sjsk×0×0 = 0. This results

in E
[(∫ t

0 e
BsγdW (s)

)2
]
being equal to lim

N→∞
E
[
N∑
j=1

γ2e2BsjdW 2
j

]
since it is only

necessary to deal with the case j = k. Then lim
N→∞

E
[
N∑
j=1

γ2e2BsjdW 2
j

]
is equal to

lim
N→∞

γ2
N∑
j=1

e2BsjE
[
dW 2

j

]
. Therefore, it was necessary to find E[dW 2], which was

done by considering Var[dW ].

Var(dW ) = E[dW 2]− E[dW ]2

Var(W (t+ dt)−W (t)) = E[dW 2]− E[dW ]2

From the properties of the Wiener Process it is known that the V ar(W (t +

dt)−W (t)) = t+ dt− t = dt. Furthermore, in appendix B.1.1 it was found that
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E[dW ] = 0.

dt = E[dW 2]− (0)2

dt = E[dW 2]

Using Var(dW ) = dt, E
[(∫ ti

ti−1
eBsγdW (s)

)2
]

= lim
N→∞

γ2
N∑
j=1

e2Bsj(sj+1 − sj).

E

(∫ ti

ti−1
eBsγdW (s)

)2
 = lim

N→∞
γ2

N∑
j=1

e2Bsj(sj+1 − sj)

E

(∫ ti

ti−1
eBsγdW (s)

)2
 =

∫ ti

ti−1
γ2e2Bsds

E

(∫ ti

ti−1
eBsγdW (s)

)2
 = γ2

[ 1
2Be

2Bs
]ti
ti−1

E

(∫ ti

ti−1
eBsγdW (s)

)2
 = γ2

2B
[
e2Bti − e2Bti−1

]

Finally, above it was shown that Var(dW ) = E[dW 2]. Therefore, Var(dW ) =
γ2

2Bs

[
e2Bti − e2Bti−1

]
. Consider this fact with (B.1).

eBtiX(ti)− eBti−1X(ti−1) =
∫ ti

ti−1
eBsγdW (s)

eBtiX(ti) = eBti−1X(ti−1) +
∫ ti

ti−1
eBsγdW (s)

Var
(
eBtiX(ti)

)
=
(
eBti−1

)2
Var(X(ti−1)) + Var

(∫ t

0
eBsγdW (s)

)
e2BttVar (X(ti)) = 0 + γ2

2B
[
e2Bti − e2Bti−1

]
Var (X(tt)) = γ2

2B
[
1− e−2B(ti−ti−1)

]
Var (X(tt)) = γ2

2B
[
1− e−2B(∆t)

]
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As before, the values from the continuous system can be related to the dis-

crete system. Since Var(xi) = σ2
η and X(ti) = xi, then Var(xi) = Var(X(ti)) =

γ2

2B

[
1− e−2B(∆t)

]
= σ2

η.

B.2 The EM method for DLMs

B.2.1 Derivation of the E-step

For each iteration of the EM algorithm above, Exi|yt0,θj [xi], Exi|yt0,θj [x
2
i ], and

Exi|yt0,θj [xixi−1] must be computed. Unlike section 2.3.3, to provide more clarity

to the derivations, the notations (x̂i)j,
(
x̂2
i

)
j
, and

(
x̂i−1xi

)
j
were not used. Since

each xi will be condition on θj, the index j was dropped from θ. To compute

the first of the required expectations, three steps considering partial data were be

used. The partial data (yi, yi+1, ..., yj−1, yj) where j > i was be denoted as yji . The

first step was to the compute the distribution of the state forecast which considers

all past data. Mathematically, this was xi|yi−1
1 ,θ and called ai. The second step

was to include the current data and is called the state update or xi|yi1,θ. This

was represented by the random variable αi. Finally, all future data was included.

This was xi|yT1 ,θ and was be represented by βi.

B.2.1.1 Initialization of the state forecast

Since there is no prior data for t = 0, computing a1 = x1|yt1 is slightly different.

Therefore, a prior must be placed on x1 to take the place of the state forecast. A

normal prior was placed on p(x1) as it is the conjugate distribution in this case.

To maintain generality, let p(x0) ∝ N(µ0, σ
2
0). The expectation (E(a1)) and the
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variance (Var(a1)) follow immediately.

E(a1) = µ0 (B.2)

Var(a1) = σ2
η (B.3)

B.2.1.2 The state forecast

From above, the state forecast (at) was defined as at = xt|yt−1
1 . Since the distri-

bution is the result of iterative normals, at also has a normal distribution. There-

fore, it was sufficient to compute the mean and variance. To find these, the follow-

ing identities were needed which are just cases of the law of total expectations and

law of total variance respectively. Consider Ext−1|yt−1
1

{
Ext|xt−1,y

t−1
1

[xt|xt−1,y
t−1
1 ]

}
which was denoted as Ext−1|yt−1

1

{
Ext|xt−1,y

t−1
1

[xt]
}
.

Exi−1|yi−1
1

{
Exi|xi−1,y

i−1
1

[xi]
}

= Exi−1|yi−1
1

{∫ ∞
−∞

xip(xi|xi−1,y
i−1
1 )dxi

}
Exi−1|yi−1

1

{
Exi|xi−1,y

i−1
1

[xi]
}

=
∫ ∞
−∞

{∫ ∞
−∞

xip(xi|xi−1,y
i−1
1 )dxi

}
p(xi−1|yi−1

1 )dxi−1

Exi−1|yi−1
1

{
Exi|xi−1,y

i−1
1

[xi]
}

=
∫ ∞
−∞

{∫ ∞
−∞

xip(xi|xi−1,y
i−1
1 )p(xi−1|yi−1

1 )dxi
}
dxi−1

Exi−1|yi−1
1

{
Exi|xi−1,y

i−1
1

[xi]
}

=
∫ ∞
−∞

{∫ ∞
−∞

xip(xi, xi−1|yi−1
1 )dxi

}
dxi−1

Since all functions above are continuous and integrable over the domain, then the

order of integration can be switched.

Exi−1|yi−1
1

{
Exi|xi−1,y

i−1
1

[xi]
}

=
∞∫
−∞


∞∫
−∞

xip(xi, xi−1|yi−1
1 )dxi−1

 dxi
Exi−1|yi−1

1

{
Exi|xi−1,y

i−1
1

[xi]
}

=
∫ ∞
−∞

{
xip(xi|yi−1

1 )
}
dxi
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Exi−1|yi−1
1

{
Exi|xi−1,y

i−1
1

[xi]
}

= Exi|yi−1
1

[xi] (B.4)

To find the variance, the identity Var(xi|yi−1
1 ) = Ex2

i |y
i−1
1

[x2
i ] −

(
Exi|yi−1

1
[xi]

)2

was used. Applying (B.4) to Var(xi|yi−1
1 ) = Ex2

i |y
i−1
1

[x2
i ] −

(
Exi|yi−1

1
[xi]

)2
resulted

in Var(xi|yi−1
1 ) = Exi−1|yi−1

1

{
Ex2

i |xi−1,y
i−1
1

[x2
i ]
}
−
(
Exi−1|yi−1

1

{
Exi|xi−1,y

i−1
1

[xi]
})2

Varxi|yi−1
1

(xi) = Exi−1|yi−1
1

{
Ex2

i |xi−1,y
i−1
1

[x2
i ]
}
−
(
Exi−1|yi−1

1

{
Exi|xi−1,y

i−1
1

[xi]
})2

Varxi|yi−1
1

(xi) = Exi−1|yi−1
1

{
Varxi|xi−1,y

i−1
1

[xi|xi−1,y
i−1
1 ] +

(
Exi|xi−1,y

i−1
1

[xi]
)2
}
...

...−
(
Exi−1|yi−1

1

{
Exi|xt−1,y

i−1
1

[xi]
})2

Varxi|yi−1
1

(xi) = Exi−1|yi−1
1

{
Varxi|xi−1,y

i−1
1

[xi]
}
...

...+ Exi−1|yi−1
1

{(
Exi|xi−1,y

i−1
1

[xi]
)2
}
−
(
Exi−1|yi−1

1

{
Exi|xi−1,y

i−1
1

[xi]
})2

Varxi|yi−1
1

(xi) = Exi−1|yi−1
1

{
Varxi|xi−1,y

i−1
1

[xi]
}

+ Varxi−1|yi−1
1

(
Exi|xi−1,y

i−1
1

[xi]
)

(B.5)

Given xi|xi−1 ∼ N(kxi−1, σ
2
η), the mean of ai was calculated using (B.4).

Exi|yi−1
1

[xi] = Exi−1|yi−1
1

{
Exi|xi−1,y

i−1
1

[xi]
}

Exi|yi−1
1

[xi] = Exi−1|yi−1
1
{kxi−1}

Exi|yi−1
1

[xi] = kExi−1|yi−1
1
{xi−1}

Exi|yi−1
1

[xi] = kE {αi−1}

E[ai] = kE {αi−1} (B.6)
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(B.5) was applied to compute the variance.

Varxi|yi−1
1

(xi) = ...

Exi−1|yi−1
1

{
Varxi|xi−1,y

i−1
1

[xi]
}

+ Varxi−1|yi−1
1

(
Exi|xi−1,y

i−1
1

[xi]
)

Varxi|yi−1
1

(xi) = Exi−1|yi−1
1

{
σ2
η

}
+ Varxi−1|yi−1

1
(kxi−1)

Varxi|yi−1
1

(xi) = σ2
η + k2Varxi−1|yi−1

1
(xi−1)

Varxi|yi−1
1

(xi) = σ2
η + k2Var (αi−1)

Var(ai) = σ2
η + k2Var (αi−1) (B.7)

The for i = 2 to T , the expectation and variance were calculated using (B.6)

and (B.7) respectively.

B.2.1.3 Calculate the state update

The state update was defined as αi = xi|yi1.

αi = p(xi|yi1)

αi = p(xi|yiyi−1
1 )

αi = p(yi|xi,yi1)p(xi|yi−1
1 )

p(yi|yi1)

αi ∝ p(yi|xi,yi1)p(xi|yi−1
1 )

yi|xi,yi1 is conditionally independent of yi1 so p(yi|xi,yi1) = p(yi|xi).

αi ∝ p(yi|xi)p(xi|yi−1
1 )

αi ∝
1√

2πσ2
ς

exp
[
− 1

2σ2
ς

(yi − xi)2
]

1√
2πVar(ai)

exp
[
− 1

2Var(at)
(xi − E(ai))2

]
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αi ∝ exp
[
− 1

2σ2
ςVar(ai)

(
x2
i (σ2

ς + Var(ai))− 2xi(σ2
ς (ai) + Var(ai)yi)

)]
× ...

...× exp
[
− y2

i

2σ2
ς

− E(ai)
2Var(ai)

]

αi ∝ exp

−σ2
ς + Var(ai)
2σ2

ςVar(ai)

(
xi −

σ2
ςE(ai) + Var(ai)yi
σ2
ς + Var(ai)

)2


Which is the kernel of the normal distribution. The mean was reorganized in terms

of its own variance.

αi ∝ N
(
σ2
ςE(ai) + Var(ai)yi
σ2
ς + Var(ai)

,
σ2
ςVar(ai)

σ2
ς + Var(ai)

)
(B.8)

E(αi) =
σ2
ςE(ai) + Var(ai)yi
σ2
ς + Var(ai)

E(αi) = E(ai) + Var(αi)
σ2
ς

(yi − E(ai)) (B.9)

Var(αi) =
σ2
ςVar(ai)

σ2
ς + Var(ai)

(B.10)

For each i < T , return to steps outlined in appendix B.2.1.2.

B.2.1.4 Including all data

After ai and αi were computed for 1 to T , one can compute βi = xi|yT1 . This was

done in reverse order, starting with i = T . The case where i = T required no additional

calculation because αT = xT |Y T
1 = βT . For all other i, additional computation was

needed to include yTi+1.

p(xi|xi+1,y
T
1 ) = p(xi|xi+1,y

i
1)

p(xi|xi+1,y
T
1 ) ∝ p(xi+1|xi,yi1)p(xi|yi1)

p(xi|xi+1,y
T
1 ) ∝ p(xi+1|xi)p(xi|yi1)
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p(xi|xi+1,y
T
1 ) ∝ exp

{
− 1

2σ2
η

(xi+1 − kxt)2 − 1
2Var(αi)

(xi − E(αi))2
}

p(xi|xi+1,y
T
1 ) ∝ Nxi

(
Var(αt)kxi+1 + σ2

ηE(αi)
Var(αi)k2 + σ2

η

,
σ2
ηVar(αi)

Var(αi)k2 + σ2
η

)
(B.11)

Var(αi)kxi+1+σ2
ηE(αi)

Var(αi)k2+σ2
η

was re-written as E(αi) + Var(αi)k
Var(ai+1) [xi+1 − E(ai+1)] and σ2

ηVar(αi)
Var(αi)k2+σ2

η

was re-written as σ2
ηVar(αi)

Var(ai+1) .

p(xi|xi+1,y
T
1 ) ∝ Nxi

(
E(αi) + Var(αi)k

Var(ai+1) [xi+1 − E(ai+1)],
σ2
ηVar(αi)

Var(ai+1)

)
(B.12)

Using (B.4), E(βi). was calculated.

E(βi) = Exi|yT1 [xi]

E(βi) = Exi+1|yT1

{
Ext|xt+1,yT1

[xt]
}

E(Bi) = Exi+1|yT1

{
E(αi) + Var(αi)k

Var(ai+1) [xi+1 − E(ai+1)]
}

E(Bi) = E(αi) + Var(αi)k
Var(ai+1) [E(βi+1)− E(ai+1)] (B.13)

B.2.1.5 E(x2
i |yT1 ) and E(xixi−1|yT1 )

Recall x2
i |yT1 = β2

i . Since Var(βi) = E[β2
i ] − (E[βi])2. Therefore computing Var(βi)

was sufficient to find E[β2
i ]. To find Var(βi), (B.5) was applied.

Var(βi) = Exi+1|yT1

{
Varxi|xi+1,yT1

[xi]
}

+ Varxi+1|yT1

(
Exi|xi+1,yi1

[xi]
)

Var(βi) = Exi+1|yT1

{
σ2
ηVar(αi)

Var(ai+1)

}
...
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...+ Varxi+1|yT1

(
E(αi) + Var(αi)k

Var(ai+1) [xi+1 − E(ai+1)]
)

Var(βi) = Exi+1|yT1

{
σ2
ηVar(αi)

Var(ai+1)

}
+ Varxi+1|yT1

( Var(αi)k
Var(ai+1)xi+1

)

Var(βi) =
σ2
ηVar(αt)

Var(ai+1) +
( Var(αi)k

Var(ai+1)

)2
Varxi+1|yT1

[xi+1]

Var(βi) =
σ2
ηVar(αi)

Var(ai+1) +
( Var(αi)k

Var(ai+1)

)2
Var(βi+1)

Var(βi) = (Var(ai+1)) Var(αi)
Var(ai+1) + ...

...− k2Var(αi)2

Var(ai+1)2 (Var(ai+1)) +
( Var(αi)k

Var(ai+1)

)2
Var(βi+1)

Var(βi) = Var(αi) +
( Var(αi)k

Var(ai+1)

)2
[Var(βi+1)−Var(ai+1)] (B.14)

With (B.14), E[β2
i ] was found.

E[β2
i ] = Var(βi) + E[βi]2 (B.15)

To compute E[xi+1xi|yT1 ], Exi+1|yT1

{
xi+1Exi|xi+1,yT1

[xi]
}
was considered.

Exi+1|yT1

{
xi+1Exi|xi+1,yT1

[xi]
}

= Exi+1|yT1

xi+1

∞∫
−∞

xip(xi|xi+1,y
T
1 )dxi


Exi+1|yT1

{
xi+1Exi|xi+1,yT1

[xi]
}

=
∞∫
−∞

xi+1

∞∫
−∞

xip(xi|xi+1,y
T
1 )dxi

× p(xi+1|yT1 )dxi+1

Exi+1|yT1

{
xi+1Exi|xi+1,yT1

[xi]
}

=
∞∫
−∞


∞∫
−∞

xi+1xip(xi|xi+1,y
T
1 )p(xi+1|yT1 )dxi

 dxi+1

Exi+1|yT1

{
xi+1Exi|xi+1,yT1

[xi]
}

=
∞∫
−∞


∞∫
−∞

xi+1xip(xi, xt+1|yT1 )dxt

 dxi+1

Exi+1|yT1

{
xi+1Exi|xi+1,yT1

[xi]
}

= Exi+1,xi|yT1
[xi+1xi]
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Then E[βi+1βt] was solved for using E[xi+1xi|yT1 ] = E[βi+1βt].

Exi+1|yT1

{
xi+1Exi|xi+1,yT1

[xi]
}

= E[βi+1βi] (B.16)

Then, (B.16) was used to find E[βi+1βi].

E[βi+1βi] = Exi+1|yT1

{
xi+1Exi|xi+1,yT1

[xi]
}

E[βi+1βi] = Exi+1|yT1

{
xi+1

(
E(αi) + Var(αi)k

Var(ai+1) [xi+1 − E(ai+1)]
)}

E[βi+1βi] = Exi+1|yT1

{
xi+1E(αi) + Var(αi)k

Var(ai+1) [x2
i+1 − E(ai+1)xi+1]

}
E[βi+1βi] = E(βi+1)E(αi) + Var(αi)k

Var(ai+1) [E(β2
i+1)− E(ai+1)E(βi+1)] (B.17)

B.2.2 Derivation of the M-step

For jth the M-step, the θ̂j that maximized the ExT0 |yT0 ,θ̂j−1
[p(xT0 |yT0 ,θ)] was found.

Therefore, the maximum likelihood estimator (MLE) was computed for each element of

θ. For this ln p(xT0 |yT0 ,θ) was revisited below.

ln(p(xT1 ,yT1 |θ)) = ln {p(x1|θ)}+
T∑
i=2

ln {p(xi|xi−1,θ)}+
T∑
i=1

ln {p(yi|xi,θ)}

ln {p(x1|θ)} = −1
2 ln(2πσ2

η)−
1

2σ2
η

(x1 − µ0)2

T∑
i=2

ln {p(xi|xi−1,θ)} = −T − 1
2 ln(2πσ2

η)−
T∑
i=2

1
2σ2

η

(x2
i − 2kxixi−1 + k2x2

i−1)

T∑
i=1

ln {p(yi|xi,θ)} = −T2 ln(2πσ2
ς )−

T∑
i=1

1
2σ2

ς

(y2
i − 2yixi + x2

i )âĂć

For brevity, the notations from section (2.3.3) were used.

188



B.2.2.1 MLE of µ0

∂ExT0 |yT0 ,θ̂j−1
[ln(p(x,y|θ))]
∂µ0

= −
∂ExT0 |yT0 ,θ̂j−1

[ln {p(x1|θ)}]
∂µ0

∂ExT0 |yT0 ,θ̂j−1
[ln(p(x,y|θ))]
∂µ0

= − 1
2σ2

η

(
−2 (x̂1)j + 2µ0

)
0 = − 1

2σ2
η

(
−2 (x̂1)j + 2 (µ̂0)j

)
(µ̂0)j = (x̂1)j (B.18)

From this, it is easy to see
∂2E

xT0 |y
T
0 ,θ̂j−1

[ln(p(x,y|θ))]

∂µ2
0

= − 1
σ2
η
< 0. Therefore, the

quantity found in (B.18) was indeed a maximum by the second derivative test.

B.2.2.2 MLE of k

∂ExT0 |yT0 ,θ̂j−1
[ln(p(x,y|θ))]
∂k

= −
∂

(
T∑
i=2

ln [{p(xi|xi−1,θ)}]
)

∂k
∂ExT0 |yT0 ,θ̂j−1

[ln(p(x,y|θ))]
∂k

= − 1
2σ2

η

(
−

T∑
i=2

2
(
x̂i−1xi

)
j + 2

T∑
i=2

(
x̂2
i−1

)
j

)

0 = − 1
2σ2

η

(
−

T∑
i=2

2
(
x̂i−1xi

)
j + 2

T∑
i=2

k̂j
(
x̂2
i−1

)
j

)

k̂j =

T∑
i=2

(
x̂i−1xi

)
j

T∑
i=2

(
x̂2
i−1

)
j

(B.19)

Then, it can be confirmed that the critical point is a maximum through the second

derivative test.

∂2ExT0 |yT0 ,θ̂j−1
[ln(p(x,y|θ))]

∂k2 = − 1
2σ2

η

2
T∑
i=2

(
x̂2
i−1

)
j

(B.20)
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In (B.20), it can seen that ∂2EΥi−1 [ln(p(x,y|θ))]
∂k2 < 0 since both σ2

η and
(
x̂2
i−1

)
j
must be

positive, guaranteeing that the critical point is a maximum.

B.2.2.3 MLE of σ2
η

∂ExT0 |yT0 ,θ̂j−1
[ln(p(x,y|θ))]
∂σ2

η

= −
∂

(
ExT0 |yT0 ,θ̂j−1

[
ln {p(x1|θ)}+

T∑
i=2

ln {p(xi|xi−1,θ)}
])

∂σ2
η

∂ExT0 |yT0 ,θ̂j−1
[ln(p(x,y|θ))]
∂σ2

η

= −T − 1
2σ2

η

+ 1
2(σ2

η)2

[
MSE

(
(x̂i)j , k̂j (x̂i−1)j

)]
...

...− 1
2σ2

η

+ 1
2(σ2

η)2

[
MSE

(
(x̂1)j , (µ0)j

)]
(T )

(
σ̂2
η

)
j

= MSE
(
(x̂i)j , k̂j (x̂i−1)j

)
+MSE

(
(x̂1)j , (µ0)j

)
(
σ̂2
η

)
j

=
MSE

(
(x̂i)j , k̂j (x̂i−1)j

)
+MSE

(
(x̂1)j , (µ̂0)j

)
T

(B.21)

It can be confirmed that the point is a maximum evaluating the second derivative at(
σ̂2
η

)
j
.

B.2.2.4 MLE of σ2
ς

∂ExT0 |yT0 ,θ̂j−1
[ln(p(x,y|θ))]
∂σ2

ς

= −
∂

(
ExT0 |yT0 ,θ̂j−1

[
T∑
i=1

ln {p(yi|xi,θ)}
])

∂σ2
ς

0 = − T

2
(
σ̂2
ς

)
j

+ 1
2
(
σ̂2
ς

)2
j

[
T∑
i=1

(
y2
i − 2yi (x̂i)j +

(
x̂2
i

)
j

)]
(
σ̂2
ς

)
j

= 1
T

[
T∑
i=1

(
y2
i − 2yi (x̂i)j +

(
x̂2
i

)
j

)]
(B.22)

Again, it can be confirmed that (B.22) was a maximum using the aforementioned

methods.
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B.2.3 Conditional posterior distribution for DLMs

B.2.3.1 Derivation of the conditional posterior of σ2
η

σ2
η ∼ IGσ2

η

(
nη
2 ,

dη
2

)
p(σ2

η|xT1 ,yT1 θ−σ2
η
) ∝ p(xT1 ,yT1 |σ2

ς , σ
2
η, k, µ0)p(σ2

η)

p(σ2
η|xT1 ,yT1 θ−σ2

η
) ∝ p(x1|θ)

[
T∏
i=2

p(xi|xi−1,θ)
]
...

...×
[
T∏
i=1

p(yi|xi,θ)
]
p(σ2

η)

p(σ2
η|xT1 ,yT1 θ−σ2

η
) ∝ (σ2

η)−
1
2 exp

{
− 1

2σ2
η

(xi − µ0)2
}
...

...× (σ2
η)−

T−1
2 exp

{
− 1

2σ2
η

[
T∑
i=2

(xi − kxi−1)2
]}

...

...× (σ2
η)−

nη
2 −1 exp

{
− dη

2σ2
η

}

σ2
η|xT1 ,yT1 θ−σ2

η
∼ IG

T + nη
2 ,

[
dη + (x1 − µ0)2 +

T∑
i=2

(xi − kxi−1)2
]

2

 (B.23)
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B.2.3.2 Derivation of the conditional posterior of σ2
ς

σ2
ς ∼ IG

(
nς
2 ,

dς
2

)
p(σ2

ς |xT1 ,yT1 θ−σ2
ς
) ∝ p(xT1 ,yT1 |σ2

ς , σ
2
η, k, µ0)p(σ2

ς )

p(σ2
ς |xT1 ,yT1 θ−σ2

ς
) ∝∝ p(x1|θ)

[
T∏
i=2

p(xi|xi−1,θ)
]
...

...×
[
T∏
i=1

p(yi|xi,θ)
]
p(σ2

ς )

p(σ2
ς |xT1 ,yT1 θ−σ2

ς
) ∝ (σ2

ς )−
T
2 exp

{
− 1

2σ2
ς

[
T∑
i=1

(yi − xi)2
]}

...

...× (σ2
ς )−

nς
2 −1 exp

{
− dς

2σ2
η

}

σ2
ς |xT1 ,yT1 θ−σ2

ς
∼ IG

(
T + nς

2 ,
1
2

[
dς +

T∑
i=1

(yi − xi)2
])

(B.24)

B.2.3.3 Derivation of the conditional posterior of k

p(k) = I[0 ≤ k ≤ 1]

p(k|xT1 ,yT1 θ−k) ∝ p(yT1 ,xT1 |k, µ0, σ
2
η, σ

2
ς )p(k)

p(k|xT1 ,yT1 θ−k) ∝
[
T∏
i=2

p(xi|xi−1,θ)
]
× I[−1 ≤ k ≤ 1]

p(k|xT1 ,yT1 θ−k) ∝ exp
{
− 1

2σ2
η

[
T∑
i=2

(xi − kxi−1)2
]}

I[−1 ≤ k ≤ 1]

p(k|xT1 ,yT1 θ−k) ∝ exp
{
− 1

2σ2
η

[
k2

T∑
i=2

x2
i−1 − k

T∑
i=2

xixi−1

]}
× I[−1 ≤ k ≤ 1]

p(k|xT1 ,yT1 θ−k) ∝ exp

−
∑T
i=2 x

2
i−1

2σ2
η

(
k −

∑T
i=2 xixi−1∑T
i=2 xi−1

)2
× I[−1 ≤ k ≤ 1] (B.25)
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B.2.3.4 Derivation of the conditional posterior of µ0

µ0 ∼ N
(
m0, σ

2
m

)
p(µ0|xT1 ,yT1 θ−µ0) ∝ p(xT1 ,yT1 |σ2

ς , σ
2
η, k, µ0)p(µ0)

p(µ0|xT1 ,yT1 θ−µ0) ∝ p(x1|θ)p(µ0)

p(µ0|xT1 ,yT1 θ−µ0) ∝ exp
{
− 1

2σ2
η

(x1 − µ0)2 − 1
2σ2

m

(µ0 −m0)2
}

p(µ0|xT1 ,yT1 θ−µ0) ∝ exp
{
−1

2σ2
ησ

2
m

[
µ2

0

(
σ2
m + σ2

η

)
− 2µ0

(
x1σ

2
m +m0σ

2
η

)]}

p(µ0|xT1 ,yT1 θ−µ0) ∝ exp

−σ2
m + σ2

η

2σ2
ησ

2
m

(
µ0 −

x1σ
2
m +m0σ

2
η

σ2
m + σ2

η

)2


µ0|xT1 ,yT1 θ−µ0 ∼ N
(
x1σ

2
m +m0σ

2
η

σ2
m + σ2

η

,
σ2
ησ

2
m

σ2
m + σ2

η

)
(B.26)

B.2.3.5 Expansion of εB,j

f(k) = − ln k
∆t (B.27)

Then behavior of εB,j was studied using an an expansion around the true value of

k where f(k) was used to denote the right hand side of (B.27).

Bj = − ln(kj)
∆t

Bj = − ln(k + εk,j)
∆t

Bj = f(k)−
( 1
k∆t

)
(εk,j) +O(ε2k,j)

This was then used to approximate εB,j for each εk,j .
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Bj = f(k)−
( 1
k∆t

)
(εk,j) +O(ε2k,j)

B + εB,j = f(k)−
( 1
k∆t

)
(εk,j) +O(ε2k,j)

f(k) + εB,j = f(k)−
( 1
k∆t

)
(εk,j) +O(ε2k,j)

εB,j = −
( 1
k∆t

)
(εk,j) +O(ε2k,j) (B.28)

B.2.3.6 Additionl MCMC simulations for the dataset from

section 2.3.5 for ∆t = 1
4096

Three additional MCMC simulations for ∆t = 1
4096 were run on the dataset where

∆t = 1
4096 from section 2.3.5. The true values were used for θ0 for each addition simu-

lation. The histograms for {kj},
{(
σ2
η

)
j

}
, and

(
σ2
ς

)
j were plotted in figures B.1, B.2,

and B.3 respectively.

Histograms of the posterior draws from {kj} against the true value of k

Figure B.1: Histograms of {kj} for the dataset from section 2.3.5 for ∆t = 1
4096
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Histograms of the posterior draws from
{(
η2
ς

)
j

}
against the true value of σ2

η

Figure B.2: Histograms of
{(
σ2
η

)
j

}
for the dataset from section 2.3.5 for ∆t =

1
4096

Histograms of the posterior draws from
{(
σ2
ς

)
j

}
against the true value of σ2

ς

Figure B.3: Histograms of
{(
σ2
ς

)
j

}
from four independent MCMC simulations

for the dataset from section 2.3.5 for ∆t = 1
4096
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Appendix C

Supplement: Inference on a

discrete state space CTMC

C.1 Derivation: Mapping a 2 state CTMC to a

2 state Markov Model

(C.1) System of differential equations representation of the discrete two state CTMC

dP (t)1
dt

= −r12P (t)1 + r21P (t)2 (C.2)

dP (t)2
dt

= r12P (t)1 − r21P (t)2 (C.3)

To represent (C.1) as a discrete system, the differential equations must be solved.

To illustrate this (C.2) was used to solve for q12 or P (Xi+1 = 2|Xi = 1).
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dP (t)1
dt

= −r12P (t)1 + r21P (t)2

dP (t)1
dt

= −r12P (t)1 + r21(1− P (t)1)

dP (t)1
dt

+ (r12 + r21)P (t)1 = r21∫ ti+1

ti

[
P (t)1e

(r12+r21)t
]
t
dt =

∫ ti+1

ti

r21e
(r12+r21)tdt

To understand the case where X(ti) = 1, the equivalent statement P (ti)1 = 1 was

substituted.

P (ti+1)1e
(r12+r21)ti+1 −

(
e(r12+r21)ti

)
= r21
r12 + r21

e(r12+r21)ti+1 − r21
r12 + r21

e(r12+r21)ti

P (ti+1)1e
(r12+r21)(ti+1−ti) − 1 = r21

r12 + r21
e(r12+r21)(ti+1−ti) − r21

r12 + r21

For brevity, let ti+1 − ti = ∆t.

P (ti+1)1e
(r12+r21)∆t = r21

r12 + r21
e(r12+r21)∆t − r21

r12 + r21
+ 1

P (ti+1)1e
(r12+r21)∆t = r21

r12 + r21
e(r12+r21)∆t + r12

r12 + r21

P (ti+1)1e
(r12+r21)∆t = r21

r12 + r21
e(r12+r21)∆t + r12

r12 + r21

P (ti+1)1 = r21
r12 + r21

+ r12
r12 + r21

e−(r12+r21)∆t (C.4)

Since the assumption Xi = 1 was made, than P (ti+1)1 = P (Xi+1 = 1|Xi = 1).

Furthermore, since the system can only stay in S1 or change to S2A, P (ti+1)1 =

1− P (Xi+1 = 2|Xi = 1).
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1− P (Xi+1 = 2|Xi = 1) = r21

r12 + r21
+ r12

r12 + r21
e−(r12+r21)∆t

P (Xi+1 = 2|Xi = 1) = 1− r21

r12 + r21
− r12

r12 + r21
e−(r12+r21)∆t

P (Xi+1 = 2|Xi = 1) = r12

r12 + r21
− r12

r12 + r21
e−(r12+r21)∆t

P (Xi+1 = 2|Xi = 1) = r12

r12 + r21

(
1− e−(r12+r21)∆t

)
(C.5)

Following the same process, one can derive P (Xi+1 = 1|Xi = 2).

P (Xi+1 = 1|Xi = 2) = r21

r12 + r21
(1− exp(−∆t(r12 + r21))) (C.6)

Finally, r12 and r21 can be found given P (Xi+1 = k|Xi = j) from (C.5)

and (C.6).

r12 + r21 = − ln(1− (P (Xi+1 = 2|Xi = 1) + P (Xi+1 = 1|Xi = 2)))
∆t (C.7)

r12 = P (Xi+1 = 2|Xi = 1)(r12 + r21)
1− exp(−∆t(r12 + r21)) (C.8)

r21 = P (Xi+1 = 1|Xi = 2)(r12 + r21)
1− exp(−∆t(r12 + r21)) (C.9)

C.2 Derivation: Mapping a 2 state Markov

model to CMTC

Recall, Q(∆t) approximated given R using the first D terms of the matrix
exponential or (C.10). Approximating R in terms of Q(∆t) required inversion of
the matrix exponential. Inverting the matrix exponential given an approximation
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for Q(∆t) was not as straightforward as approximating Q. To approximate, R
was rewritten as in terms of Q and higher powers of R as listed in (C.11). R was
approximated using an iterative process where R(D) denotes an approximation
with error o(∆tD)

Q(∆t) =
D∑

d=0

(R(∆t))d

d! + o(∆tD) (C.10)

R = Q− I
∆t − R

2∆t
2! − R

3∆t2

3! − R
4∆t3

4! − . . . (C.11)

The first was an approximation with error o(1) or o(∆t0). For this, R(0) was set

equal to all terms of order less than or equal to ∆t0 as shown in (C.12).

R(0) = Q− I
∆t (C.12)

For the second iteration, R(0) was substituted for R on the right side of (C.11).

Then R(1) was found by including all terms with degree less than or equal to ∆t1

from (C.11) and was listed in (C.13).

R(1) = Q− I
∆t −

(
R(0)

)2
∆t

2!

R(1) = R(0) −

(
R(0)

)2
∆t

2! (C.13)

It can be verified that the error of (C.13) is o(∆t1) by substitutingR(1) into (C.10).

For the third iteration, R(1) was substituted for R on the right side of (C.11).

Then R(2) was found by including all terms with degree less than or equal to ∆t2

from (C.11) and was listed as (C.14). The error of o(∆t2) could be confirmed as
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before by substituting R(2) from (C.14) into R in (C.10). .

R(2) = Q− I
∆t −

(
R(1)

)2
∆t

2! −

(
R(1)

)3
∆t2

3!

R(2) = R(0) −

(
R(0) − (R(0))2

∆t
2!

)2

∆t

2! −

(
R(0) − (R(0))2

∆t
2!

)3

∆t2

3!
R(2) = R(0) − 1

2

((
R(0)

)2
∆t− 2

2
(
R(0)

)3
∆t2

)
− 1

6

((
R(0)

)3
∆t2

)
R(2) = R(0) − 1

2
(
R(0)

)2
∆t+ 1

3
(
R(0)

)3
∆t2 (C.14)

Finally, for the fourth iteration, R(2) was substituted for R on the right side

of (C.11). Then R(3) was found by including all terms with degree less than or

equal to ∆t3 from (C.11) and was listed as (C.15). The error of o(∆t3) could be

confirmed as before by substituting R(3) from (C.15) into R in (C.10).

R(3) = R(0) −

(
R(2)

)2
∆t

2! −

(
R(2)

)3
∆t2

3! −

(
R(2)

)4
∆t3

4!

R(3) = R(0) −

(
R(0) − 1

2

(
R(0)

)2
∆t+ 1

3

(
R(0)

)3
∆t2

)2
∆t

2! · · ·

· · · −

(
R(0) − 1

2

(
R(0)

)2
∆t+ 1

3

(
R(0)

)3
∆t2

)3
∆t2

3! · · ·

· · · −

(
R(0) − 1

2

(
R(0)

)2
∆t+ 1

3

(
R(0)

)3
∆t2

)4
∆t3

4!
R(3) = R(0) − 1

2

((
R(0)

)2
∆t− 2

2
(
R(0)

)3
∆t2 + 1

4
(
R(0)

)4
∆t3 · · ·

· · · +2
3
(
R(0)

)4
∆t3

)
− 1

6

((
R(0)

)3
∆t2 − 3

2
(
R(0)

)4
∆t3

)
· · ·

· · · − 1
24

((
R(0)

)4
∆t3

)
R(3) = R(0) − 1

2
(
R(0)

)2
∆t+ 1

3
(
R(0)

)3
∆t2 − 1

4
(
R(0)

)4
∆t3 (C.15)
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C.3 Derivation: The Baum-Welch algorithm

for the k discrete state system with normal

emissions

The deivation follows the form suggested in [6] with more explicit steps pro-

vided forM -step. The E-step computed p(zim = 1|yT1 ,θj) and p(zim = 1, z(i+1)n =

1|yT1 ,θj) iteratively using the forward-backwards algorithm derived in the follow-

ing section. For efficiency, the following notation was used.

ai(m) = p(zim = 1,yi−1
1 |θ)

βi(m) = p(yTi+1|zim = 1,θ)

Γ = p(yT1 |θ)

αi(m) = p(zim = 1,yi1|θ)

γi(m) = p(zim = 1|yT1 ,θ)

ξi(m,n) = p(zin = 1, z(i−1)m = 1|yT1 ,θ)

The M -step follows the derivation of the forward-backward algorithm for this

case of HMM. To simplify the computation of the maximums, ln(p(zT1 ,yT1 |θ)) was

explored. As stated previously, zT1 was an indicator variable for the state. There-

fore, EzT1 |yT1 ,θj−1 [zim = 1] = p(zim = 1|yT1 ,θj−1) = γi(m) and EzT1 |yT1 ,θj−1 [zim =

1, z(i+1)n = 1] = p(zim = 1, z(i+1)n = 1|yT1 ,θj−1) = ξi(m,n). For brevity,

the shortened notations above were used along with Υj−1 = zT1 |yT1 ,θj−1 and

lnL = ln(p(zT1 ,yT1 |θ))
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lnL = ln
{
p(z1)

[
T∏
i=1

p(yi|zi)
] [

T−1∏
i=1

p(zi+1|z1)
]}

lnL =
k∑

m=1
z1m ln ρm +

T∑
i=1

k∑
m=1

zim ln p(yi|zim = 1) + . . .

· · ·+
T−1∑
i=1

k∑
m=1

k∑
n=1

zimz(i+1)n ln qmn

EΥj−1 [lnL] =
k∑

m=1
γ1(m) ln ρm +

T∑
i=1

k∑
m=1

γi(m) ln p(yi|zim = 1) . . .

· · ·+
T−1∑
i=1

k∑
m=1

k∑
n=1

ξi(m,n) ln qmn (C.16)

C.3.1 The forward iteration for the Baum-Welch

On the forward pass, ai(m) (the state update) and αi(m) (the state forcast)

were computed for i = 1 to i = T . First, ai(m) and αi(m) were computed for

i = 1 where a1(m) = p(z1m = 1|θ) because there were no emission prior to t1.

a1(m) = p(z1m = 1|θ)

a1(m) = ρm (C.17)

α1(m) = p(z1m = 1, y1|θ)

α1(m) = p(y1|z1m = 1,θ)p(z1m = 1|θ)

α1(m) = p(y1|z1m = 1,θ)a1(k) (C.18)

y1|z1m = 1,θ ∼ N (µm, σ2)

Then, the same was done for i = 1 to i = T .
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ai(n) = p(zin = 1,yi−1
1 |θ)

ai(n) =
k∑

m=1
p(zin = 1, z(i−1)m = 1,yi−1

1 |θ)

ai(n) =
k∑

m=1
p(zin = 1|z(i−1)m = 1,yi−1

1 ,θ)p(z(i−1)m = 1,yi−1
1 |θ)

ai(n) =
k∑

m=1
p(zin = 1|z(i−1)m = 1,θ)αi−1(m)

ai(n) =
k∑

m=1
qmnαi−1(m) (C.19)

αi(n) = p(zin = 1, yi1|θ)

αi(n) = p(yi|zin = 1,θ)p(zin = 1,yi−1
1 |θ)

αi(n) = p(yi|zin = 1,θ)ai(k) (C.20)

y1|zin = 1,θ ∼ N (µn, σ2)

C.3.2 The backward iteration for the Baum-Welch

The backward iteration was constructed such that αi(m)βi(m) = p(zim =

1,yTi |θ). By using the definitions above, this holds for i = 1 to i = T − 1.

βi(m)αi(m) = p(yTi+1|zim = 1,θj)p(zim = 1, yi1|θ)

βi(m)αi(m) = p(yTi+1|zim = 1, yi1,θ)p(zim = 1, yi1|θ)

βi(m)αi(m) = p(yTi+1, zim = 1, yi1|θ)

βi(m)αi(m) = p(zim = 1, yT1 |θ) (C.21)

However, for the case of i = T , the αT (n) = p(zin = 1|yT1 ,θ) Therefore,
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to maintain the relation αT (n)βT (n) = p(zin = 1,yTi |θ), it is necessary to set

βT (n) = 1. Then, for i = T − 1 to i = 1, it is necessary to use equation (C.22).

βi(n) = p(yTi+1|zim = 1,θ)

βi(n) = p(yTi+2, yi+1|zim = 1,θ)

βi(n) =
k∑

n=1
p(yTi+2, yi+1, z(i+1)n = 1|zim = 1,θ)

βi(n) =
k∑

n=1
p(yTi+2|yi+1, z(i+1)n = 1, zim = 1,θ)p(yi+1, z(i+1)m = 1|zin = 1,θ)

βi(n) =
k∑

n=1
p(yTi+2|z(i+1)n = 1,θ)p(yi+1|z(i+1)n = 1, zim = 1,θ)× . . .

. . .p(z(i+1)n = 1|zim = 1,θ)

βi(n) =
k∑

n=1
βi+1(n)p(yi+1|z(i+1)n = 1,θ)qmn

βi(n) =
k∑

n=1
qmnp(yi+1|z(i+1)n = 1,θ)βi+1(n) (C.22)

yi+1|z(i+1)m = 1,θ ∼ N (µm, σ2)

As already shown in equation (C.21), αi(m)βi(m) = p(zim = 1,yT1 |θ). How-

ever, the two required probabilities are γi(m) = p(zim = 1|yT1 ,θ) and ξi(m,n) =

p(zim = 1, z(i+1)n = 1|yT1 ,θ). γi(m), comes almost immediately from equa-

tion (C.21).

γi(m) = p(zim = 1|yT1 ,θ)

γi(m) = p(zim = 1,yT1 |θ)
p(yT1 |zim = 1)

γi(m) = αi(m)βi(m)
Γ (C.23)

Γ can be found multiple ways using quantities previously calculated. One such
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way, was to use αt(k).

Γ = p(yT1 |θ)

Γ =
k∑

m=1
p(zTm = 1,yT1 |θj)

Γ =
k∑

m=1
αT (m) (C.24)

Then, γi(m) was found by substituting (C.24) into (C.23). The last quantity

required was ξi(m,n) = p(zim = 1, z(i+1)n = 1|yT1 ,θ). Consider ξi(m,n).

ξi(m,n) = p(zim = 1, z(i+1)n = 1|yT1 ,θ)

= p(zim = 1, z(i+1)n = 1,yT1 |θ)
p(yT1 |θ)

= p(zim = 1, z(i+1)n = 1,yT1 |θ)
Γ

= p(yi+1
1 , zim = 1, z(i+1)n = 1,yTi+2|θ)

Γ

= p(zim = 1, z(i+1)n = 1,yi+1
1 |θ)p(yTi+2|zim = 1, z(i+1)n = 1,yi+1

1 ,θ)
Γ

= p(zim = 1, z(i+1)n = 1, yi+1,y
i
1|θ)p(yTi+2|z(i+1)n = 1,θ)

Γ

= p(z(i+1)n = 1, yi+1|zim = 1,yi1,θ)p(zim = 1,yi1|θ)βi+1(n)
Γ

= p(zim = 1,yi1|θ)p(z(i+1)n = 1, yi+1|zim = 1,θj)βi+1(n)
Γ

= αi(m)p(yi+1|z(i+1)n = 1, zim = 1,θj)p(z(i+1)n = 1|zim = 1,θ)βi+1(n)
Γ

= αi(m)p(z(i+1)n = 1|zim = 1,θ)p(yi+1|z(i+1)n = 1,θ)βi+1(n)
Γ

ξi(m,n) = αi(m)qmnp(yi+1|z(i+1)n = 1,θ))βi+1(n)
Γ (C.25)

yi+1|z(i+1)n = 1,θ ∼ N (µn, σ2)
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C.3.3 Computing θ̂j

For this section, the abbreviations from appendix C.3 were used and all deriva-

tion started with the expectation of the joint likelihood in (C.16).

C.3.3.1 Deriving (µ̂m)j

∂EΥj [lnL]
∂µm

= ∂

∂µm2

{
k∑

m=1
γ1(m) ln ρm +

T∑
i=1

k∑
m=1

γi(m) ln p(yi|zim = 1) . . .

· · ·+
T−1∑
i=1

k∑
m=1

k∑
n=1

ξi(m,n) ln qmn
}

∂EΥj [lnL]
∂µm

= ∂

∂µm

{
T∑
i=1

γi(m) ln p(yi|zim = 1)
}

∂EΥj [lnL]
∂µm

= ∂

∂µm

{
T∑
i=1

γi(m)(yi − µm)2

−2σ2

}
∂EΥj [lnL]

∂µm
= ∂

∂µm

{
T∑
i=1

(γi(m)y2
i − 2γi(m)yiµm + γi(m)µ2

m)
2σ2

}
∂EΥj [lnL]

∂µm
=

T∑
i=1

(2γi(m)yi − 2γi(m)yiµm)
−2σ2

(µ̂m)j =
∑T
i=1 (γi(m)yi)∑T
i=1 γi(m)

(C.26)

C.3.3.2 Deriving σ̂2
j

∂EΥj [lnL]
∂σ2 = ∂

∂σ2

{
k∑

m=1
γ1(m) ln ρm +

T∑
i=1

k∑
m=1

γi(m) ln p(yi|zim = 1) . . .

· · ·+
T−1∑
i=1

k∑
m=1

k∑
n=1

ξi(m,n) ln qmn
}

∂EΥj [lnL]
∂σ2 =

T∑
i=1

k∑
m=1

γi(m) ln p(yi|zim = 1)
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∂EΥj [lnL]
∂σ2 = − T

2σ2 + 1
2σ4

T∑
i=1

k∑
m=1

[
γi(m)

(
yi − (µm)j

)2
]

σ̂2
j =

T∑
i=1

k∑
m=1

[
γi(m)

(
yi − (µm)j

)2
]

T
(C.27)

C.3.3.3 Deriving (q̂mn)j

qmn was only present in part of the likelihood, therefore it was sufficient to

find the each qmn that maximized
T−1∑
i=1

k∑
m=1

k∑
n=1

ξi(m,n) ln qmn. Since qmn was first

degree, the standard method of differentiating the likelihood function was not

helpful in finding the qmn that maximized lnL. Therefore, qmn where m was fixed

and n = 1 to k was considered. Since this represents all transitions from state m,

then the sum of all qmn wherem was fixed and n = 1 to k was one. This resulted in

a constrained optimization problem that could be written as a Lagrange function

in (C.28).

L(qmn, λ) =
[
T∑
i=1

k∑
n=1

ln qmnξi(m,n)
]
− λ

[(
k∑

n=1
eln qmn

)
− 1

]
(C.28)

Then (q̂mn)j was found by differentiating and solving. (C.29) was found by

differentiating with respect to ln qmh where h was fixed.
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∂L(qmn, λ)
∂ ln qmh

= ∂

∂ ln qmh

{[
T∑
i=1

k∑
n=1

ln qmnξi(m,n)
]
− λ

[(
k∑

n=1
eln qmn

)
− 1

]}
∂L(qmn, λ)
∂ ln qmh

=
[
T∑
i=1

ξi(m,h)
]
− λeln qmh

0 =
[
T∑
i=1

ξi(m,h)
]
− λ̂j (q̂mh)j

(q̂mh)j =
∑T
i=1 ξi(m,h)

λ̂j
(C.29)

To find (qmh)j, it was necessary to find the value of λ̂j in (C.29). Therefore

L(qmn, λ) was differentiated in terms of λ, resulting in a second equation listed

as (C.30).

∂L(qmn, λ)
∂λ

= ∂

∂λ

{
k∑

n=1
ln qmnξi(m,n)− λ

[(
k∑

n=1
eln qmn

)
− 1

]}
∂L(qmn, λ)

∂λ
=
(

k∑
n=1

eln qmn
)
− 1

0 =
(

k∑
n=1

qmn

)
− 1

(
k∑

n=1
qmn

)
= 1 (C.30)

Since h in (C.29) was general, (C.29) could be used for any h ∈ {1, 2, ..., k}.

Therefore, in (C.31), the sum of qmn for all n ∈ {1, 2, ..., k} was put on the left

and the sum of the right side of (C.29) for all n ∈ {1, 2, ..., k} was put on the

right.

k∑
n=1

(q̂mn)j =
k∑

n=1

∑T
i=1 ξi(m,n)

λ̂j
(C.31)
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It was known from (C.30) that
(

k∑
n=1

qmn

)
= 1. This was substituted into (C.31)

and then λ̂j that maximized L(qmn, λ) was found.

k∑
n=1

(q̂mn)j =
k∑

n=1

∑T
i=1 ξi(m,n)

λ̂j

1 =
∑k
n=1

∑T
i=1 ξi(m,n)
λ̂J

Since the summation above is finite, the order of the summations can be changed.

λ̂j =
T∑
i=1

k∑
n=1

ξi(m,n)

λ̂j =
T∑
i=1

k∑
n=1

p(zim = 1, z(i+1)n = 1|yT1 ,θj−1) (C.32)

Finally, applying the law of total probability to (C.32),
k∑

n=1
p(zim = 1, z(i+1)n =

1|yT1 ,θj−1) = p(zim = 1|yT1 ,θj−1) = γi(m). This resulted in (q̂mn)j listed as (C.33)

(q̂mh)j =
∑T
i=1 ξi(m,h)∑T

i=1
∑k
n=1 p(zim = 1, z(i+1)n = 1|yT1 ,θj−1)

(q̂mh)j =
∑T
i=1 ξi(m,h)∑T
i=1 γi(m)

(C.33)

C.3.3.4 Deriving (ρ̂m)j

Finding (ρ̂m)j presents the many of the same problems as computing (q̂mn)j.

Furthermore, ∑k
m=1 ρm = 1 as with (q̂mn)j. Therefore, the derivation of (ρm)j

was very similar to (q̂mn)j. Following that, the explanations in this section were

abbreviated. See appendix C.3.3.3 for a more thorough explanations of the steps.

The only terms that contained ρm were the terms
k∑

m=1
γ1(m) ln ρm. There-

fore, to maximize the likelihood in terms of ρm, it was sufficient to maximize
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k∑
m=1

γ1(m) ln ρm for ρh where h was fixed. First, (ρ̂h)j was solved in terms of λ̂j.

L(ρm, λ) =
k∑

m=1
ln ρmγ1(m)− λ

[(
k∑

m=1
eln ρm

)
− 1

]
∂L(ρ, λ)
∂ ln ρh

= ∂

∂ ln ρh

{
k∑

m=1
ln ρmγ1(m)− λ

[(
k∑

m=1
eln ρm

)
− 1

]}
∂L(ρ, λ)
∂ ln ρh

= [γ1(h)]− λeln ρh

0 = γ1(h)− λ̂j (ρ̂h)j

(ρ̂h)j = γ1(h)
λ̂j

(C.34)

Using the constraint ∑k
m=1 ρm = 1, λ was solved for.

k∑
m=1

ρm =
k∑

m=1

γ1(m)
λ

1 =
∑k
m=1 γ1(m)

λ

λ =
k∑

m=1
γ1(m) (C.35)

(C.34) and (C.35) were combined and (ρ̂m)j was listed as (C.36).

(ρ̂h)j = γ1(h)∑k
m=1 γ1(m)

(C.36)
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C.4 Derivation: The gibbs sampler for the k dis-

crete state system with k distinct normal

emissions

The Gibbs sampler for the k discrete state model with k distinct Gaussian

emissions made inference on the probability density function listed as (C.37).

(C.37) p(yT1 , zT1 |θ) for k states

p(yT1 zT1 |θ) =
T∏
i=2

p(zi|zi−1)
T∏
i=1

p(yi|zi,θ)

p(zi|zi−1) =
k∏
j=1

[p(zi|zi−1 = j)]z(i−1)j

p(zi|zi−1 = j) =
k∏
l=1

qziljl

p(z1|θ) =
k∏
j=1

ρ
z1j
j

yi|zij = 1,θ ∼ N (µj, σ2)

p(yi|zi,θ) =
k∏
j=1

[p(yi|zij = 1,θ)]zij

Unlike the Baum-Welch and Viterbi training, the form of (C.37) was more con-

venient than the logarithm of the likelihood for the following derivations. There-

fore, all derivations used the form in (C.37).
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C.4.1 Derivation: The forward filter backwards sample al-

gorithm for k discrete states with k distinct Gaus-

sian emissions

C.4.1.1 Derivation: The forward filter

The state update and state forecast were defined as in (C.38) and (C.39).

ai(m) = p(zim = 1|yi−1
1 ,θ) (C.38)

αi(m) = p(zim = 1|yi1,θ) (C.39)

On the forward pass, the state update and the state forecast were computed

for i = 0 to i = T . First, ai(k) and αi(k) were computed for i = 0.

a1(m) = p(z1m = 1|θ)

a1(m) = ρm (C.40)

α1(m) = p(z1m = 1|y1,θ)

α1(m) = p(y1|zim = 1,θ)p(zim = 1|y1,θ)
p(y1|θ)

α1(m) = p(y1|zim = 1,θ)a1(m)∑k
n=1 p(y1|zin = 1,θ)p(zin = 1)

α1(m) = p(y1|zim = 1,θ)a1(m)∑k
n=1 p(y1|zin = 1,θ)a0(n)

(C.41)

y1|z1n = 1,θ ∼ N (µn, σ2)

Then, the same was done for i = 1 to i = T .
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ai(n) = p(zin = 1|yi−1
1 ,θ)

ai(n) =
k∑

m=1
p(zin = 1|z(i−1)m = 1,yi−1

1 ,θ)p(z(i−1)m = 1|yi−1
1 ,θ)

Since p(zin = 1|z(i−1)m = 1,yi−1
1 ,θ) is conditionally independent of yi−1

1 and

p(z(i−1)m = 1|yi−1
1 ,θ) = αi−1(m), ai(n) was simplified.

ai(n) =
k∑

m=1
p(zin = 1|z(i−1)m = 1,θ)αi−1(m)

ai(n) =
k∑

m=1
αi−1(m)qmn (C.42)

Finally, C.41 generalizes to the case of αi(m).

αi(n) = p(yi|zin = 1,θ)ai(n)∑k
m=1 p(yi|zim = 1,θ)ai(m)

(C.43)

yi|zim = 1,θ ∼ N (µm, σ2)

C.4.1.2 Derivation: Backwards Sampling

Once the state update has been calculated for t = 0 to t = T , zi|yT1 ,θ was

drawn from i = T to 1. Since there was no information for the time tT+1, zT was

drawn by calculating p(zT |yT1 ,θ). This comes immediately from prior calcula-

tions. For i = T , αT (m) = p(zTm = 1|yT1 ,θ), so zT ∼ Cat(αT (1), αT (2), ..., αT (k))

where Cat denotes the categorical distribution. Then for all i < T , zi+1 was

known prior to drawing zi so it was sufficient to calculate p(zim = 1|z(i+1)n =

1,yT1 ,θ) = p(zim = 1|z(i+1)n = 1,yi1,yTi+1,θ) to draw zi. Since zi couldn’t be di-

rectly drawn from p(zim = 1|z(i+1)n = 1,yT1 ,θ) Bayes’ rule was applied to p(zim =
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1|z(i+1)n = 1,yi1,yTi+1,θ) resulting in p(yTi+1|zim=1,z(i+1)n=1,yi1,θ)p(zim=1|z(i+1)n=1,yi1,θ)
p(yTi+1|z(i+1)n=1,yi1,θ) .

Following this, p(yTi+1|zim = 1, z(i+1)n = 1,yi1,θ) is conditionally independent of

zim = 1 and yi1, therefore the expression was rewritten and then simplified further

below.

p(zim = 1|z(i+1)n = 1,yT1 ,θ) = p(yTi+1|z(i+1)n = 1,θ)p(zim = 1|z(i+1)n = 1,yi1,θ)
p(yTi+1|z(i+1)n = 1,yi1,θ)

∝ p(yTi+1|z(i+1)n = 1,θ)p(zim = 1|z(i+1)n = 1,yi1,θ)

∝ p(zim = 1|z(i+1)n = 1,yi1,θ)

∝
p(z(i+1)n = 1|zim = 1,yi1,θ)p(zim = 1|yi1,θ)

p(z(i+1)n = 1|yT1 ,θ)

∝ p(z(i+1)n = 1|zim = 1,yi1,θ)p(zim = 1|yi1,θ)

∝ p(z(i+1)n = 1|zim = 1,θ)p(zim = 1|yi1,θ) (C.44)

Since p(zim = 1|yt1,θ) = αi(m) equation (C.44) was re-written in terms of

αi(m).

p(zim = 1|z(i+1)n = 1,yT1 ,θ) ∝ αi(m)qmn

Then p(zim = 1|z(i+1)n = 1,yT1 ,θ) can be written as p(zim = 1|z(i+1)n,y
T
1 ,θ) ∝

k∑
n=1

αi(m)qmnz(i+1)n. Since zi, was an indicator variable it is not difficult to nor-

malize and express p(zim = 1|z(i+1)n,y
T
1 ,θ) as a proper distribution. For this,

the definition in C.45 was used to compute βi(m) in C.46 which was used in the

distribution to draw zi listed as (C.47).
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Bi(m) =
k∑

n=1
αi(m)qmnz(i+1)n (C.45)

βi(m) = Bi(m)∑k
n=1Bi(n)

(C.46)

zi ∼ Cat(βi(1), βi(2), ..., βi(k)) (C.47)

C.4.2 Derivation: Sampling θ for k discrete states with k

distinct Gaussian emissions

C.4.2.1 Derivation: Sampling the conditional posterior of ρ

Since the prior was conditionally independent, p(ρ|zT1 ,yT1 ,θ) could be writ-

ten as a product of the joint likelihood and prior. Given that p(z1|Θ) is a

draw from a categorical distribution the conditionally conjugate prior is ρ ∼

Dir(κρ1 , κρ2 , . . . , κρk).

p(ρ|zT1 ,yT1 ,θ−ρ) ∝ p(yT1 , zT1 |θ)p(ρ)

p(ρ|zT1 ,yT1 ,θ−ρ) ∝ p(z1|θ)
T∏
i=2

p(zi|zi−1)
T∏
i=1

p(yi|zi,θ)p(ρ)

p(ρ|zT1 ,yT1 ,θ−ρ) ∝ p(z1|Θ)p(ρ)

p(ρ|zT1 ,yT1 ,θ−ρ) ∝ ρz11
1 ρz12

2 . . . ρz1kk ρ
(κρ1−1)
1 ρ

(κρ2−1)
2 . . . ρ

(κρk−1)
k

p(ρ|zT1 ,yT1 ,θ−ρ) ∝ ρ
(z11+κρ1−1)
1 ρ

(z12+κρ2−1)
2 . . . ρ

(z1k+κρk−1)
k

ρ|zT1 ,yT1 ,θ−ρ ∼ Dirρ(z11 + κρ1 , z12 + κρ2 , ..., z1k + κρk) (C.48)
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C.4.2.2 Derivation: Sampling the conditional posterior of qm-

Since a conditionally independent conjugate prior was chosen, the conditional

posterior could be written as a product of the joint likelihood and the prior.

Recall, the conditionally conjugate prior was qm- ∼ Dir(κqm1 , κqm2 , . . . , κqmk) and

qm- = (qm1, qm2, . . . , qmk).

p(qm-|zT1 ,yT1 ,θ−qm-) ∝ p(yT1 , zT1 |θ)p(qm-)

p(qm-|zT1 ,yT1 ,θ−qm-) ∝ p(z1|θ)
T∏
i=2

p(zi|zi−1)
T∏
i=1

p(yi|zi,θ)p(qm-)

p(qm-|zT1 ,yT1 ,θ−qm-) ∝
[
T∏
i=1

p(zi|z(i−1)1 = 1,Θ)
]
p(qm-)

p(qm-|zT1 ,yT1 ,θ−qm-) ∝


T∏
i=1

[
k∏

n=1
qzinmn

]z(i−1)m


k∏
n=1

qκqmnmn

p(qm-|zT1 ,yT1 ,θ−qm-) ∝
k∏

n=1
q

(
T∑
i=1

zinz(i−1)m+κqmn

)
mn

qm-|zT1 ,yT1 ,θ−qm- ∼ Dir

(
T∑
i=1

zi1z(i−1)m + κqm2 , ...,
T∑
i=1

zikz(i−1)m + κqmk

)

(C.49)

C.4.2.3 Derivation: Sampling the conditional posterior of µn

As with the other parameters, the the conditionally conjugate prior was used.

For the case of µn, the conditionally independent conjugate prior for µn was

N (mn, σ
2). Since the conditionally conjugate prior was independent, the condi-

tional posterior was proportional to the product of the joint likelihood and the

conditional prior.
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p(µn|zT1 ,yT1 ,θ−µn) ∝ p(yT1 , zT1 |θ)p(µn)

p(µn|zT1 ,yT1 ,θ−µn) ∝ p(z1|θ)
T∏
i=2

p(zi|zi−1)
T∏
i=1

p(yi|zi,θ)p(µn)

p(µn|zT1 ,yT1 ,θ−µn) ∝
[
T∏
i=1

p(yi|zi,θ)
]
p(µn)

p(µn|zT1 ,yT1 ,θ−µn) ∝
[
T∏
i=1

{
k∏

m=1
p(yi|zim = 1,θ)zim

}]
p(µn)

p(µn|zT1 ,yT1 ,θ−µn) ∝
[
T∏
i=1

p(yi|zim = 1,θ)zim
]
p(µn)

p(µn|zT1 ,yT1 ,θ−µn) ∝
[
T∏
i=1

exp
{ 1

2σ2

[
(yi − µn)2(zin)

]}]
p(µn)

p(µn|zT1 ,yT1 ,θ−µn) ∝ exp
{
− 1

2σ2

[
T∑
i=1

(yi − µn)2(zin)
]}

p(µn)

p(µn|zT1 ,yT1 ,θ−µn) ∝ exp
{
− 1

2σ2

[
T∑
i=1

((zin)y2
i − 2(zin)yiµn + (zin)µ2

n)
]}

p(µn)

∝ exp
{
− 1

2σ2

[
T∑
i=1

((zin)y2
i − 2(zin)yiµn + (zin)µ2

n))
]}

p(µn)

∝ exp
{
− 1

2σ2

[
T∑
i=1

(−2(zin)yiµn + (zin)µ2
n)
]
− 1

2σ2
n

[
µ2
n − 2µnmn

]}

∝ exp
{
−1

2σ2σ2
n

[
µ2
n(σ2

n

T∑
i=0

(zin) + σ2mn)− 2µn(σ2
n

T∑
i=1

(zin)yi + σ2mn)
]}

∝ exp
{
−σ

2
n

∑T
i=0(zin) + σ2mn

2σ2σ2
n

[
µ2
n − 2µn

σ2
n

∑T
i=1(zin)yi + σ2mn

σ2
n

∑T
i=0(zin) + σ2mzin

]}

∝ exp

−σ2
n

∑T
i=1(zin) + σ2mn

2σ2σ2
n

[
µ2
n −

σ2
n

∑T
i=1(zin)yi + σ2mn

σ2
n

∑T
i=1(zin) + σ2mn

]2


The result above was proportional to a normal distribution resulting in (C.50)

µn|zT1 ,yT1 ,θ−µn ∼ N
(
σ2
n

∑T
i=1(zin)yi + σ2mn

σ2
n

∑T
i=1(zin) + σ2mn

,
σ2σ2

n

σ2
n

∑T
i=1(zin) + σ2mn

)
(C.50)
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C.4.2.4 Derivation: Sampling the conditional posterior of σ2

For σ2, the independent conditionally conjugate prior was σ2 ∼ IG
(
nσ2

2 ,
dσ2
2

)
.

As with the aforementioned conditional posteriors, the independence of the con-

ditional prior makes p(σ2|zT1 ,yT1 ,θ−σ2) proportional to the joint likelihood.

p(σ2|zT1 ,yT1 ,θ−σ2) ∝ p(yT1 , zT1 |θ)p(σ2)

p(σ2|zT1 ,yT1 ,θ−σ2) ∝ p(z1|θ)
T∏
i=2

p(zi|zi−1)
T∏
i=1

p(yi|zi,θ)p(σ2)

p(σ2|zT1 ,yT1 ,θ−σ2) ∝
[
T∏
i=1

p(yi|zi,θ)
]
p(σ2)

p(σ2|zT1 ,yT1 ,θ−σ2) ∝
[
T∏
i=1

{
k∏

m=1
p(yi|zim = 1,θ)zim

}]
p(σ2)

For brevity, let S2
i =

k∑
m=1

(yi − µm)2(zim) and S2 =
T∑
i=1

S2
i . Also, since the

system can only be in one state at time ti,
∑k
m=1 zim = 1 for all i.

p(σ2|zT1 ,yT1 ,θ−σ2) ∝
 T∏
i=0

(σ2)
∑k

m=1 zim
−2 exp

{
S2
i

−2σ2

} p(σ2)

p(σ2|zT1 ,yT1 ,θ−σ2) ∝ (σ2)−T2 exp
{
−
∑T
i=0 S

2
i

2σ2

}
p(σ2)

p(σ2|zT1 ,yT1 ,θ−σ2) ∝ (σ2)−T2 exp
{
− S2

2σ2

}
(σ2)−

n
σ2
2 −1 exp

{
− dσ

2

2σ2

}

p(σ2|zT1 ,yT1 ,θ−σ2) ∝ (σ2)−
T+n

σ2
2 −1 exp

{
−S

2 + dσ2

2σ2

}

σ2|yT1 , zT1 ,θ−σ2 ∼ IG
(
nσ2 + T

2 ,
dσ2 + S2

2

)
(C.51)
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Appendix D

Supplement: Modeling of

Biochemical States of DNA

Replication Restricted to Three

States

D.1 Derivation: The Gaussian process regres-

sion

D.1.1 Derivation of the conditional posterior of s2|y,X, ϑ−s2

for the Gaussian process regression

Before deriving the posterior, p(y|X,ϑ) was simplified in terms of S2 as

in (D.1).
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S2 = (y −Xβ)T
(
C + ν2I

)−1
(y −Xβ) (D.1)

p(y|X,ϑ) ∝ |s2C + s2ν2I|−
1
2 exp

{
−1

2

(
(y −Xβ)T

(
s2C + s2ν2I

)−1
(y −Xβ)

)}
p(y|X,ϑ) ∝ |s2C + s2ν2I|−

1
2 exp

{
− 1

2s2

(
(y −Xβ)T

(
C + ν2I

)−1
(y −Xβ)

)}
p(y|X,ϑ) ∝ |s2C + s2ν2I|−

1
2 exp

{
−S

2

2s2

}

Two conditional priors were discussed for s2, the inverse gamma and the trun-

cated inverse gamma distribution. First, the conditional posterior listed as (D.3)

was derived when the conditional prior was an inverse gamma distribution as

in (D.2). As in section 4.2.4, ϑ−a denotes all parameters except a.

s2 ∼ IG
(
ns2

2 ,
ds2

2

)
(D.2)

p(s2|y,X,ϑ−s2) = p(y|X,ϑ)p(s2)
p(y|X,ϑ−s2)

p(s2|y,X,ϑ−s2) ∝ p(y|X,ϑ)p(s2)

p(s2|y,X,ϑ−s2) ∝ |s2C + s2ν2I|−
1
2 exp

{
−S

2

2s2

}
(s2)−

n
s2
2 −1 exp

{
− ds

2

2s2

}

p(s2|y,X,ϑ−s2) ∝ (s2)−
n
s2
2 exp

{
−S

2

2s2

}
(s2)−

n
s2
2 −1 exp

{
− ds

2

2s2

}

p(s2|y,X,ϑ−s2) ∝ (s2)
−n

s2−N
2 −1 exp

{
− 1

2s2

[
S2 + ds2

]}
s2|y,X,ϑ−s2 ∼ IG

(
ns2 +N

2 ,
1
2
(
S2 + ds2

))
(D.3)

As discussed earlier, the inverse gamma is proportional to the truncated inverse

gamma with a maximum of m when 0 < s2 ≤ m. Therefore, the probability

function of the conditional posterior when the prior was the truncated inverse
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gamma was proportional to the conditional posterior when the prior is inverse

gamma when 0 < s2 ≤ m. Therefore, the posterior when the prior was the

truncated inverse gamma was simply a truncated inverse gamma distribution with

the parameters equal to (D.3). This was listed as (D.4)

s2 ∼ T IG
(
ns2

2 ,
ds2

2 ,m

)

s2|y,X,ϑ−s2 ∼ T IG
(
ns2 +N

2 ,
1
2
(
S2 + ds2

)
,m
)

(D.4)

D.1.2 Derivation of the conditional posterior of β|y,X, ϑ−β

for the Gaussian process regression

The derivation here assumes the flat prior listed in (D.5). For discussion of

numerical issues to sampling the conditional posterior, see section (4.2.4). As with

section (4.2.4), s2C + s2ν2I was represented by ΣGP

p(ϑ) ∝ 1 (D.5)

p(β|y,X,ϑ−β) = p(y|X,ϑ)p(β)
p(y|X,ϑ−β)

p(β|y,X,ϑ−β) ∝ p(y|X,ϑ)p(β)

p(β|y,X,ϑ−β) ∝ |ΣGP |−
1
2 exp

{
−1

2 (y −Xβ)T Σ−1
GP (y −Xβ)

}
× 1

p(β|y,X,ϑ−β) ∝ exp
{
−1

2
(
yTΣ−1

GPy − yTΣ−1
GPXβ + · · ·

· · · −βTXTΣ−1
GPy + βTXTΣ−1

GPXB
)}

p(β|y,X,ϑ−β) ∝ exp
{
−1

2

(
βT

(
XTΣ−1

GPX
)
β − yTΣ−1

GPX
(
XTΣ−1

GPX
)−1
× · · ·

· · · ×
(
XTΣ−1

GPX
)
β −βT

(
XTΣ−1

GPX
) (
XTΣ−1

GPX
)−1

XTΣ−1
GPy

)}
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p(β|y,X,ϑ−β) ∝ exp
{
−1

2
(
βT

(
XTΣ−1

GPX
)
β · · ·

· · · −
[((

XTΣ−1
GPX

)−1
)T
XT

(
Σ−1
GP

)T
y

]T (
XTΣ−1

GPX
)
β · · ·

· · · −βT
(
XTΣ−1

GPX
) [(

XTΣ−1
GPX

)−1
XTΣ−1

GPy
])}

Since ΣGP was an invertible symmetric matrix, Σ−1
GP was also symmetric.

∝ exp

−1
2

βT (XTΣ−1
GPX

)
β −

[((
XTΣ−1

GPX
)T)−1

XTΣ−1
GPy

]T
× · · ·

· · ·
(
XTΣ−1

GPX
)
β −βT

(
XTΣ−1

GPX
) [(

XTΣ−1
GPX

)−1
XTΣ−1

GPy
])}

∝ exp

−1
2

βT (XTΣ−1
GPX

)
β −

[(
XT

(
Σ−1
GP

)T (
XT

)T)−1
XTΣ−1

GPy

]T
· · ·

· · · ×
(
XTΣ−1

GPX
)
β −βT

(
XTΣ−1

GPX
) [(

XTΣ−1
GPX

)−1
XTΣ−1

GPy
])}

∝ exp
{
−1

2

(
βT

(
XTΣ−1

GPX
)
β −

[(
XTΣ−1

GPX
)−1

XTΣ−1
GPy

]T
× · · ·

· · ·
(
XTΣ−1

GPX
)
β −βT

(
XTΣ−1

GPX
) [(

XTΣ−1
GPX

)−1
XTΣ−1

GPy
])}

∝ exp
{
−1

2

(
βT

(
XTΣ−1

GPX
)
β −

[(
XTΣ−1

GPX
)−1

XTΣ−1
GPy

]T
× · · ·

· · ·
(
XTΣ−1

GPX
)
β −βT

(
XTΣ−1

GPX
) [(

XTΣ−1
GPX

)−1
XTΣ−1

GPy
]

+ · · ·

· · · +
[(
XTΣ−1

GPX
)−1

XTΣ−1
GPy

]T [(
XTΣ−1

GPX
)−1

XTΣ−1
GPy

])}

∝ exp
{
−1

2

[(
β −

(
XTΣ−1

GPX
)−1

XTΣ−1
GPy

)T (
XTΣ−1

GPX
)
× · · ·

· · · ×
(
β −

(
XTΣ−1

GPX
)−1

XTΣ−1
GPy

)]}
∝ exp

{
−1

2

[(
β −

(
XTΣ−1

GPX
)−1

XTΣ−1
GPy

)T ((
XTΣ−1

GPX
)−1

)−1
× · · ·

· · · ×
(
β −

(
XTΣ−1

GPX
)−1

XTΣ−1
GPy

)]}
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Which was the kernel to a multivariate normal distribution with a mean(
XTΣ−1

GPX
)−1

XTΣ−1
GPy and variance

(
XTΣ−1

GPX
)−1

as listed in (D.6).

β|y,X,ϑ−β ∝MVN
((
XTΣ−1

GPX
)−1

XTΣ−1
GPy,

(
XTΣ−1

GPX
)−1

)
(D.6)

D.1.3 Derivation of the conditional posterior of l2m|y,X, ϑ−l2m

for the Gaussian process regression

Like with the conditional posterior of s2, two possible conditional priors were

used in deriving the conditional posterior of l2m. First, the inverse gamma con-

ditional prior was address and the posterior was listed as D.7. Recall ΣGP =

s2C + s2ν2I

l2m ∼ IG
(
nl2m , dl2m

)
p(l2m|y,X, ϑ−l2m) =

p(y|X, ϑ)p(l2m|ϑ−l2m)
p(y|X, ϑ−l2m

p(log
(
l2m
)
|y,X, ϑ−l2m) ∝ p(y|X, ϑ)p(l2)× l2m

p(log
(
l2m
)
|y,X, ϑ−l2m) ∝ |ΣGP |−

1
2 exp

{
−1

2 (y −Xβ)T (ΣGP )−1 · · · (D.7)

· · · × (y −Xβ)} (l2m)−nl2m−1 exp
{
−
dl2m
l2m

}
× l2m

The conditional posterior for the case when the conditional prior was the truncated

inverse gamma was proportional to D.7 over the support of log (l2m). Therefore,

the same proof can be followed with the addition of the indicator function for

−∞ < log (l2m) ≤ log(u) where u was the upper bound. That result was listed in

section 4.2.4.
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D.1.4 Derivation of the conditional posterior of ν2|y,X, ϑ−ν2

for the Gaussian process regression

Again, two conditional priors were considered in the derivation of the condi-

tional posterior of ν2. The conditional posterior of ν2 was derived when the condi-

tional prior was an inverse gamma. The result was listed as D.8 and s2C + s2ν2I

was denoted as ΣGP .

ν2 ∼ IG (nν2 , dν2)

p
(
ν2|y,X, ϑ−ν2

)
= p(y|X, ϑ)p (ν2|X, ϑ−ν2)

p (y|X, ϑ−ν2)

p
(
log(ν2)|y,X, ϑ−ν2

)
∝ p(y|X, ϑ)p(ν2)× ν2

p
(
log(ν2)|y,X, ϑ−ν2

)
∝ |ΣGP |−

1
2 exp

{
−1

2 (y −Xβ)T (ΣGP )−1 · · · (D.8)

· · · × (y −Xβ)} (ν2)−nν2−1 exp
{
−dν

2

ν2

}
× ν2

D.1.5 Derivation of my∗ and Σy∗ for the Gaussian process

regression

The derivation of my∗ and Σy∗ was quite lengthy. The derivation was done for

the model y = f(X)+ε for brevity, but the proof for y = Xβ+f(X)+ε follows

the exact form of the latter. First, the posterior distribution of the function f(x)

was computed.

D.1.5.1 Deriving f(X)|y,X

f(X)|X, ϑ ∼MVN
(
0, s2C(x,x)

)
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y|f(X),X, ϑ ∼MVN
(
f(x), I(s2ν2)

)
p(f(X)|y,X, ϑ) = p(y|f(X),X)p(f(X)|X, ϑ)

p(y|X, ϑ)

p(f(X)|y,X, ϑ) ∝ p(y|f(X),X, ϑ)π(f(X)|X, ϑ) (D.9)

For readability, the left from (D.9) was omitted

∝ exp
{
−1

2
[
(y − f(X))T (I(s2ν2))−1(y − f(X)) + (f(X))T (s2C)−1(f(X))

]}
∝ exp

{
−1

2
[
(y − f(X))T (I(s2ν2))−1(y − f(X)) + (f(X))T (s2C)−1(f(X))

]}
∝ exp

{
−1

2
[
f(X)T (I(s2C))−1(s2C)(I(s2ν2))−1 + · · ·

· · ·+ (s2C)−1Iσ2
ε(I(s2ν2))−1)f(X)− f(X)T ((s2C)−1(s2C)(I(s2ν2))−1)y + · · ·

· · · −f(X)T ((s2C)−1(s2C)(I(s2ν2))−1)y − yT ((s2C)−1(s2C)(I(s2ν2))−1)f(X)
]}

For brevity, (s2C)−1(s2C)(I(s2ν2))−1 + (s2C)−1I(s2ν2)(I(s2ν2))−1 was simpli-

fied.

(s2C)−1(s2C)(I(s2ν2))−1 + (s2C)−1I(s2ν2)(I(s2ν2))−1 = · · ·

· · · (s2C)−1((s2C) + I(s2ν2))(I(s2ν2))−1

[
(s2C)−1(s2C)(I(s2ν2))−1 + (s2C)−1I(s2ν2)(I(s2ν2))−1

]−1
= · · ·

· · · I(s2ν2)((s2C) + I(s2ν2))−1(s2C)[
(s2C)−1(s2C)(I(s2ν2))−1 + (s2C)−1I(s2ν2)(I(s2ν2))−1

]−1
= · · ·

· · · (s2ν2)((s2C) + I(s2ν2))−1(s2C)

Let (s2ν2)((s2C) + I(s2ν2))−1(s2C) be denoted as Σf . Before, returning to
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p(f(X)|y,X, ϑ) consider Σ−1
f s2C.

Σ−1
f s2C =

[
(s2ν2)((s2C) + I(s2ν2))−1(s2C)

]−1
(s2C)

Σ−1
f s2C = (s2C)−1((s2C) + I(s2ν2)2)(s2ν2)−1(s2C)

Σ−1
f (s2C) = (s2C)−1(s2C)(s2ν2)−1(s2C) + (s2C)−1I(s2ν2)(s2ν2)−1(s2C)

Σ−1
f (s2C) = (s2C)(s2C)−1(s2C)(s2ν2)−1 + (s2C)(s2C)−1I(s2ν2)(s2ν2)−1

Σ−1
f (s2C) = (s2C)(s2C)−1((s2C) + I(s2ν2))(s2ν2)−1

Σ−1
f (s2C) = (s2C)Σ−1

f

Therefore, s2C and Σ−1
f commute. This and the notation was Σf substituted into

p(f(X)|y,X).

∝ exp
{
−1

2
[
f(X)T (I(s2C))−1(s2C)(I(s2ν2))−1 + · · ·

· · ·+ (s2C)−1Iσ2
ε(I(s2ν2))−1)f(X)− f(X)T ((s2C)−1(s2C)(I(s2ν2))−1)y + · · ·

· · · −f(X)T ((s2C)−1(s2C)(I(s2ν2))−1)y − yT ((s2C)−1(s2C)(I(s2ν2))−1)f(X)
]}

∝ exp
{
−1

2
[
f(X)T (Σ−1

f )f(X)− f(X)T ((s2C)(s2C)−1(I(s2ν2))−1)y + · · ·

· · · −yT ((I(s2ν2))−1(s2C)(s2C)−1)f(x)
]}

∝ exp
{
−1

2
[
f(X)T (Σ−1

f )f(X)− f(X)T ((s2C)Σ−1
f Σf (s2C)−1(I(s2ν2))−1)y · · ·

· · · − yT ((I(s2ν2))−1ΣfΣ−1
f (s2C)(s2C)−1)f(x)

]}
∝ exp

{
−1

2
[
f(X)T (Σ−1

f )f(X)− f(X)T (Σ−1
f (s2C)Σf (s2C)−1(I(s2ν2))−1)y · · ·

· · · −yT ((I(s2ν2))−1ΣfΣ−1
f (s2C)(s2C)−1)f(x)

]}

Then, Σ−1
f (s2C)Σf (s2C)−1(Is2ν2)−1 and (Is2ν2)−1Σ−1

f Σf (s2C)(s2C)−1 were sim-
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plified.

Σ−1
f (s2C)Σf (s2C)−1(Is2ν2)−1 = Σ−1

f (s2C)s2ν2((s2C) + s2ν2I)−1 (s2C)(s2C)−1

(s2ν2)

= Σ−1
f (s2C) s

2ν2

(s2ν2)((s2C) + s2ν2I)−1(s2C)(s2C)−1

= Σ−1
f (s2C)((s2C) + s2ν2I)−1

(Is2ν2)−1ΣfΣ−1
f (s2C)(s2C)−1 = (Is2ν2)−1ΣfΣ−1

f I

= (Is2ν2)−1s2ν2((s2C) + s2ν2I)−1(s2C)Σ−1
f

= ((s2C) + s2ν2I)−1(s2C)Σ−1
f

=
[
((s2C) + s2ν2I)−1

]T
(s2C)TΣ−1

f

Then, Σ−1
f (s2C)((s2C) + s2ν2I)−1 and [((s2C) + s2ν2I)−1]T (s2C)TΣ−1

f were sub-

stituted into the original.

∝ exp
{
−1

2
[
f(X)T (Σ−1

f )f(X)− f(X)TΣ−1
f

(
(s2C)((s2C) + s2ν2I)−1

)
y · · ·

· · · −yT
([

((s2C) + s2ν2I)−1
]T

(s2C)T
)

Σ−1
f f(x)

]}
∝ exp

{
−1

2
[
f(X)T (Σ−1

f )f(X)− f(X)TΣ−1
f

(
(s2C)((s2C) + s2ν2I)−1

)
y · · ·

· · ·
[(

(s2C)((s2C) + s2ν2I)−1
)
y
]T

Σ−1
f f(x)

]}

This result was proportional to a normal distribution with mean (s2C)((s2C) +

s2ν2I)−1 and variance Σ−1
f

f(X)|y,X, ϑ ∼MVN (mf ,Σf ) (D.10)

mf = (s2C)((s2C) + s2ν2I)−1

Σf = (s2ν2)((s2C) + I(s2ν2))−1(s2C)
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D.1.5.2 Deriving f(X∗)|f(X),y,X

Numerically, simulating f(X∗)f(X),y,X was difficult because there was no

s2ν2I term in the matrices that needed to be inverted. Therefore, this intermediate

step was only used to simplify the derivation. This term should not be sampled

given f(X) and in general these intermediate steps were not placed in this thesis

to be part of sampler. However, before we can derive the desired y∗|y,X∗,X for

prediction, it is necessary to derive f(X∗)|f(X),X∗,X first.

p(f(X∗)|f(X),X∗) = p(f(X∗),f(X)|X∗,X)
p(f(X)|X∗,X)

p(f(X∗)|f(X),X∗) ∝ p(f(X∗),f(X)|X∗,X)

f(X∗)|f(X),X∗ ∝MVN


0

0

 ,
 (s2C) (s2C∗)

(s2C∗)T (s2C∗∗)




Using the notation K = sC , K∗ = s2C∗, and K∗∗ = s2C∗∗, the covariance

matrix was inverted using the block form as above.

 K K∗

KT
∗ K∗∗


−1

=

 A −K−1K∗Σ−1
f∗|f

−Σ−1
f∗|fK

T
∗ K

−1 Σ−1
f∗|f

 (D.11)

A = K−1 −K−1K∗
(
K∗∗ −KT

∗ K
−1K∗

)−1
KT
∗ K

−1

Σ−1
f∗|f =

(
K∗∗ −KT

∗ K
−1K∗

)−1

From this, p(f(X∗)|f(X),X∗,X) was derived from p(f(X∗),f(X)|X∗,X).
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f(X∗)|f(X),X∗,X ∼MVN


0

0

 ,
 K K∗

KT
∗ K∗∗




∝ exp

−
1
2

 f(X)

f(X∗)


T  K K∗

KT
∗ K∗∗


−1  f(X)

f(X∗)




∝ exp

−
1
2

 f(X)

f(X∗)


T  A −K−1K∗Σ−1

f∗|f

−Σ−1
f∗|fK

T
∗ K

−1 Σ−1
f∗|f


 f(X)

f(X∗)




∝ exp
{
−1

2
[
f(X)TA+ f(X∗)TΣ−1

f∗|fK
T
∗ K

−1 + f(X)TK−1K∗Σ−1
f∗|f · · ·

· · ·+ f(X∗)TΣ−1
f∗|f

]  f(X)

f(X∗)




∝ exp
{
−1

2
[
f(X)TAf(X)− f(X∗)TΣ−1

f∗|fK
T
∗ K

−1f(X) + · · ·

· · · −f(X)TK−1K∗Σ−1
f∗|ff(X∗) + f(X∗)TΣ−1

f∗|ff(X∗)
]}

∝ exp
{
−1

2
[
f(X∗)TΣ−1

f∗|ff(X∗)− f(X∗)TΣ−1
f∗|fK

T
∗ K

−1f(X) + · · ·

· · · −f(X)TK−1K∗Σ−1
f∗|ff(X∗)

]}

∝ exp
{
−1

2
[
f(X∗)TΣ−1

f∗|ff(X∗)− f(X∗)TΣ−1
f∗|fK

T
∗ K

−1f(X) + · · ·

· · · −f(X)TK−1K∗Σ−1
f∗|ff(X∗)

]}
∝ exp

{
−1

2
[
f(X∗)TΣ−1

f∗|ff(X∗)− f(X∗)TΣ−1
f∗|fK

T
∗ K

−1f(X) + · · · .

· · · −
(
KT
∗ K

−1f(X)
)T

Σ−1
f∗|ff(X∗)

]}
∝ exp

{
−1

2
[
f(X∗)−KT

∗ K
−1f(X)

]T
Σ−1
f∗|f

[
f(X∗)−KT

∗ K
−1f(X)

]}

The resulting was proportional to the multivariate normal. The full distribu-

tion was defined in D.12.
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p(f(X∗)|f(X),X∗,X) ∝MVNf(X∗)
(
mf∗|f ,Σf∗|f

)
(D.12)

Σf∗|f = K∗∗ −KT
∗ K

−1K∗

mf∗|f = KT
∗ K

−1f(X)

D.1.5.3 Deriving f(X∗)|X∗,y,X and y∗|X∗,y,X

As stated above, the true goal is to generate the posteriors for y∗. First,

the posteriors for fX∗ was derived. Since f(X∗)|X∗,f(X),X was conditional

independent of y, then p (f(X∗) |X∗,f(X),X) = p(f(X∗)|X∗,f(X),y,X).

Therefore, one can use a combination of the distributions from D.10 and D.12 in

conjunction with the laws of total expectation and covariance. Then the law of

total expectation was used to find the mean.

Ef(X∗)|X∗,y,X [f(X∗)] = Ef(X)|fX∗,y,X
{
Ef(X∗)|f(X),X∗,y,X [f(X∗)]

}
Ef(X∗)|X∗,y,X [f(X∗)] = Ef(X)|X∗,y,X

{
KT
∗ K

−1f(X)
}

Ef(X∗)|X∗,y,X [f(X∗)] = KT
∗ K

−1Ef(X)|X∗,y,X {f(X)}

Ef(X∗)|X∗,y,X [f(X∗)] = KT
∗ K

−1K(K + (s2ν2I)−1y

Ef(X∗)|X∗,y,X [f(X∗)] = KT
∗ (K + s2ν2I)−1y

mf∗ = KT
∗ (K + s2ν2I)−1y (D.13)

The law of total covariance was used to compute the covariance matrix. However,

it is helpful to write Σf in a different from.

Σf = s2ν2(K + s2ν2I)−1K
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Σf =
[
K−1 +

(
s2ν2I

)−1
]−1

Σf =
[
K−1 + s2ν2I

(
s2ν2I

)−1 (
s2ν2I

)−1
]−1

Then theWoodburry matrix identity which states (A+UCV )−1 = A−1−A−1U(C−1+

V A−1U)V −1A−1 was applied.

Σf = K −K
(
s2ν2I

) [
s2ν2I +

(
s2ν2I

)−1
Ks2ν2I

]−1 (
s2ν2I

)−1
K

Σf = K −K
[
s2ν2I +K

]−1
K

The law of total covariances applied to this problem here was listed as (D.14), (D.15),

and (D.16).

Covf(X∗)|X∗,y,X [f(X∗)] = · · · (D.14)

· · ·Ef(X)|X∗,y,X

{
Covf(X∗)|X∗,y,X [f(X∗)]

}
+ · · · (D.15)

· · ·+ Covf(X)|X∗,y,X

{
Ef(X∗)|X∗,y,X [f(X∗)]

}
(D.16)

For brevity, (D.14) was denoted as Cov[f(X∗)] and (D.15) was dealt with sepa-

rately first.

Ef(X)|X∗,y,X

{
Covf(X∗)|X∗,y,X [f(X∗)]

}
= Ef(X)|X∗,y,X

{
K∗∗ −KT

∗ K
−1K∗

}
Ef(X)|X∗,y,X

{
Covf(X∗)|X∗,y,X [f(X∗)]

}
= K∗∗ −KT

∗ K
−1K∗

Then (D.16) was considered.

Covf(X)|X∗,y,X

{
Ef(X∗)|X∗,y,X [f(X∗)]

}
= Covf(X)|X∗,y,X

{
KT
∗ K

−1f(X)
}
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Covf(X)|X∗,y,X

{
Ef(X∗)|X∗,y,X [f(X∗)]

}
= KT

∗ K
−1Covf(X)|X∗,y,X [f(X)]K−1K∗

Covf(X)|X∗,y,X

{
Ef(X∗)|X∗,y,X [f(X∗)]

}
= · · ·

· · ·KT
∗ K

−1
[
K −K

(
s2ν2I +K

)−1
K
]
K−1K∗

The simplified forms of (D.15 and (D.16) were used to compute (D.14).

Cov[f(X∗)] = K∗∗ −KT
∗ K

−1K∗ +KT
∗ K

−1
[
K −K

(
s2ν2I +K

)−1
K
]
K−1K∗

Cov[f(X∗)] = K∗∗ −KT
∗ K

−1K∗ +KT
∗ K

−1KK−1K∗ + · · ·

· · · −KT
∗ K

−1K
(
s2ν2I +K

)−1
KK−1K∗

Cov[f(X∗)] = K∗∗ −KT
∗ K

−1K∗ +KT
∗ K

−1K∗ −KT
∗

(
s2ν2I +K

)−1
K∗

Cov[f(X∗)] = K∗∗ −KT
∗

(
s2ν2I +K

)−1
K∗

Also, since p(f(X∗)|X∗,y,X), was a convolution of two multivariate normals and

therefore also normal, the covariance and expectation was sufficient to describe

the posterior of f(X)∗.

f(X∗)|X∗,y,X ∼MVN (mf∗ ,Σf∗) (D.17)

mf∗ = KT
∗ (K + s2µ2I)−1y

Σf∗ = K∗∗ −KT
∗

(
s2ν2I +K

)−1
K∗

From this, deriving y∗|X∗,y,X was straight forward.

y∗ = f(X∗) + ε∗

E[y∗] = E[f(X∗) + ε∗]

E[y∗] = E[f(X∗)] + E[ε∗]
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E[y∗] = mf∗ + 0

my∗ = KT
∗ (K + s2ν2I)−1y (D.18)

Cov(y∗) = Cov(f(X∗) + ε∗)

Cov(y∗) = Cov(f(X∗)) + Cov(ε∗)

Cov(y∗) = K∗∗ −KT
∗

(
s2ν2I +K

)−1
K∗ + s2ν2I

Σy∗ = K∗∗ −KT
∗

(
s2ν2I +K

)−1
K∗ + s2ν2I (D.19)

The distribution of y∗|X∗,y,X was also normal, making (D.18) and (D.19) a

sufficient description. In addition, the posterior distribution in D.20 was listed in

the terms defined with the original problem from section 4.2.4.

y∗|X∗,y,X ∼MVN (my∗ ,Σy∗) (D.20)

my∗ = s2CT
∗ (s2C + s2ν2I)−1 (y −Xβ)

Σy∗ = s2C∗∗ − s2CT
∗

(
s2ν2I + s2C

)−1
s2C∗ + s2ν2I

D.1.5.4 Derivation of x∗m|y,X, y∗, ϑ for the Gaussian process regres-

sion

The derivation for the general case with one response variable was addressed

first. For this, the conditional prior suggested for the general case introduced in

section 4.2.4 was used.

x∗m ∼ T N
(∑N

i=1 xim
N

, τ 2
∗ , [a, b]

)

p(x∗m|X,y, y∗, (x∗)−x∗m , ϑ) =
p(y∗|x∗,X,y, ϑ)p(x∗m|X,y, (x∗)−x∗m , ϑ)

p(y∗|X,y, (x∗)−x∗m , ϑ)
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p(x∗m|X,y, y∗, (x∗)−x∗m , ϑ) ∝ p(y∗|x∗,X,y, ϑ)p(x∗m)

p (x∗m | y,X, y∗, (x∗)−x∗m , ϑ
)
∝ |Σy∗|−

1
2 exp

{
−1

2 (y∗ −my∗)
T × · · ·

· · · × (Σy∗)
−1 (y∗ −my∗)

}
× 1
τ∗

exp

−
(
x∗m − 1

N

(∑N
i=1 xim

))2

2τ 2
∗

× · · ·
· · · × I[a ≤ qij ≤ b]

The case of the multivariate response when the response variables were in-

dependent was very similar. Since the multivariate response when the response

variables were independent was the what was applied for this research, notation

specific to the research was used.

q∗ij ∼ T N
(
q̂ij, τ

2
∗ , [a, b]

)

p
(
q∗ij|θ̂q,θq, θ̂∗q,θ∗q,−q∗ij , ϑ

)
=
p
(
θ̂∗q|θ∗q,θq, θ̂q, ϑ

)
p
(
q∗ij|θ̂q,θq,θ∗q,−q∗ij , ϑ

)
p
(
θ̂∗q|θ̂q,θq,θ∗q,−q∗ij , ϑ

)
p
(
(q∗ij)p |θ̂q,θq, θ̂∗q,θ∗q,−q∗ij , ϑ

)
∝ p

(
θ̂∗q|θ∗q,θq, θ̂q, ϑ

)
p (q∗ij)

p
(
(q∗ij)p |θ̂q,θq, θ̂∗q,θ∗q,−q∗ij , ϑ

)
∝

 ∏
∀q̂∗ij∈θ̂∗q

p
(
q̂∗ij|θ∗q,θq, θ̂q, ϑ

) p (q∗ij)

p
(
(q∗ij)p |θ̂q,θq, θ̂∗q,θ∗q,−q∗ij , ϑ

)
∝ I[a ≤ q∗ij ≤ b]× · · ·

· · · ×

 ∏
∀q̂∗ij∈θ̂∗q

1
σq∗ij

exp

−
(
q̂∗ij −mq̂∗ij

)2

2σ2
q̂∗ij


× 1

τ∗
exp

{
−(q∗ij − q̂∗ij)2

2τ 2
∗

}

mq̂∗ij = s2
qij
CT
∗qij(s

2
qij
Cqij + s2

qij
ν2
qij
I)−1

(
q̂ij − θqβqij

)
σ2
q̂∗ij

= s2
qij
C∗∗qij − s2

qij
CT
∗qij

(
s2
qij
ν2
qij
I + s2

qij
Cqij

)−1
s2
qij
C∗qij + s2

qij
ν2
qij
I
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D.2 Additional analysis on the bias reduction

using
(
log (θq) , log

(
θ̂q

))

The dataset used to generate a posterior for log
(
θ̂∗q
)
had a range of log (q∗12) ∈

[−7.2735,−6.4342], log (q∗21) ∈ [−5.1967,−4.3077], log (q∗23) ∈ [−7.8118,−6.0627]

and log (q∗32) ∈ [−7.2223,−5.3542]. Therefore, given the length scale definition

of l2qij , l
2
qij

should be restricted to a small range. However, for the posterior of qij

it was possible that some predictor variables could have little or no correlation

with qij. Given the Gaussian process model used, this make it necessary to in-

clude fairly large l2qij . Therefore, the prior listed as D.21 was used to allow for l2qij
to act as a weight and a length scale without exploring the entirety of the long

and correlated tails and the parameters were chosen to be “slightly informative”.

Given the ranges, σ2
ε should also be limited as it would not make sense to have

noise bigger than the range. As with l2qij , both s
2
qij

and ν2
qij

were chosen to allow a

fair amount of exploration without allowing exploration into the long correlated

tails. The priors for s2
qij

and ν2
qij

were listed as (D.22) and (D.23) respectively.

l2qij ,m ∼ IG (1, 1, 50) (D.21)

s2 ∼ IG (1, 1, 100) (D.22)

ν2 ∼ IG (1, 1, 10) (D.23)

The histograms of the posterior were placed in D.1.

From D.1, it appears that l2qij ,1 and l2qij ,2 have shorter length scales where l2qij ,3
and l2qij ,4 have longer length scales for all qij in θq. For any qij, l2qij ,m may be

slightly shorter than l2qkl,m for all k, l 6= i, j if m was important to qij, but the

effect was smaller than the general length scale of that variable. In most case
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The histograms of the simulated l2qij ,m| log
(
θ̂q
)
, log (θq) , log

(
θ̂∗q
)
, ϑlog,−l2qij ,m

Figure D.1: The histogram of l2qij ,1 was filled in where l2qij ,2 − l
2
qij ,4 were outlines

as described in the key

l2qij ,m seemed to be close to the same for all qij in θq.. Therefore, it appears that

most of the weight or importance of the variable was described in βqij . Finally,

σ2
ε,qij

acted as expected and was place in figure D.2. There was more noise or

larger σ2
ε,qij

for q23 and q32 and less for q21 and q12.

The histograms of the simulated s2
qij
ν2
qij
| log

(
θ̂q
)
, log (θq) , log

(
θ̂∗q
)
, ϑlog,−l2qij ,m

Figure D.2: The histogram of s2
q12ν

2
q12 or σ2

ε,qij
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