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'Estimation of Linear Interpolation Error

Robért Clear and Sam Berman

Lighting Systems Research Group
Energy & Environment Division
Lawrence Berkeley Laboratory

Berkeley, California 94720

Abstract .

_ Llnear mterpolatnon is used to estimate missing values from
candlepower, reflectance and other data tables. We have developed an-error
estimating program, and have validated it against known functions. Sample :
error estimates are presented. The procedures should be useful to both the
developers and users of data tables.

Introduction

In this paper we briefly discuss three methods of estimating the

~ errorin linear interpolation, and then describe a computer implementation
and validation of one of the methods. We present a summary of sample
analyses of a selection of reflectance, and candlepower data tables

suitable for roadway calculations, as an immediate application of our
procedure. Average relative error estimates for the sample data sets

ranged from 6 to 60%. -

The roadway application was selected because the practice being
currently developed for computerized roadway calculations uses linear
interpolation of reflectance and candlepower data to generate any value
that is not in a table. ! However, the applications are more general. For
instance, interpolation is specified in a number of the IES LM reports on
Measurements, Testing and Calculations.23458 | inear interpolation is the
simplest interpolation scheme and may therefore be prefered if it is
adequately accurate. The use of linear interpolation is also sometimes
implicit in other operations. Zonal constant methods of calculating total
lumens are essentially equivalent to assuming bilinear interpolation
between integration points.3®7 In short, linear interpolation, either
explicitly or implicitly, pervades much of a lighting engineers' work.

The purpose of our program is to provide information to both those
who use data tables, and those who generate them. At present guidelines
for the generation and use of tables are very loose. The IES approved
method for photometric testing of fluorescent lamps notes that the
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"spacing should permit plotting of well determined candlepower
distribution curves", but does not further define what this means.2’ The
approved method for testing of floodlights specifies the number of points
to be measured, but does not provide a guideline as to what accuracy can be
expected from use of the resultant tables.>

The general error estimation methods described in the theory section -
can be used for higher order interpolation, and may be of more widespread
interest than the remainder of the paper. The section following covers the
procedure that we implemented in more detail. The validation section
displays the resuits of comparisons between our estimated error and the
actual error when the underlying function is a high order polynomial. The
results section presents our error estimates for a selection of reflectance
and candlepower tables. The potential significance of the error estimates -
is covered briefly in the conclusion.

Theory

The procedure we used to estimate errors was derived from the
remainder theory of interpolation.®® We assume that the interpolated
function is bounded, continuous, and twice differentiable. The first two
conditions are necessary both to insure that the error is bounded and for
the function to be physically realizable. The last condition can be dropped
if the errors are estimated instead by self interpolation or comparison
against a fit. These latter methods have their own constraints and
problems and we did not develop a procedure based on them. We describe
them and their problems briefly at the end of this section.

We only describe the rationale behind the remainder estimate, the
reader should refer to the references for proofs. Let f(x) be a function
whose values are known and tabulated at the points Xgr Xq5 Xp, -y X, Where
Xg < X4< Xy < .. X f P’1"(x) is the linear (interpolating ) function that -
matches f(x) at x,, and x,, then for any given z in the interval between x,,
and x,, there exists a point ¢, in the interval, such that f(z) can be expanded

as follows:
f(z) = P,(2) + f(€) * (z-xy) * (z-x,) * (1/2) = P, (2) + E(2),
where E(z) is the remainder, or error term, and the symbol "*" stands for
multiplication.

The remainder estimate is a consequence of Rolle's theorem, which
essentially is a statement that you cannot get from f(x) to f(x,) on a

continuous differentiable curve without finding a point somewhere on the
interval where the slope is equal to the average slope.®
2



If £(x) is known then the maximum value of f'(x) over the interval x,
to x, gives a rigorous maximum error bound. In the situations we are

interested in, the best we can do is use the numerical second derivative as
an estimate of f(x). Letx, -x,=h,and x,-x, = h*k, then the numerical

second derivative, A2f(xo)/h2 is:

APf(x)/h? = 2 * [f(x,) - (14K) * f(x,) + k * f(xo)]/[h2 *k* (1 + k)]
The mean value theorem guarantees that A%f(x )/h2 is equal to (=) for
some E in the interval x, to x,, but it does not guarantee that f'(Z) is the
maximum value of f*(x) in the interval x,, to x,, or even that it equals a

value of f"(x) that would ever be used in the remainder.®
The point x where the remainder estimate is largest is x = (x4 + X4)/2.

With the substitutions described we get an estimate for the maximum error
of linear interpolation over the interval as:
Emax = | A%(xo)/8 |-

Replacing "(x) with A%f(x,)/h? is equivalent to estimating the error from

the difference between linear and quadratic interpolation. We are not
_suggesting that linear interpolation should be replaced by quadratic or
higher order interpolation. Higher order interpolation will have errors
proportional to higher order derivatives, and as figure 1 shows it
sometimes gives poorer results than linear interpolation. The point is that
the error in linear interpolation is approximately equal to the difference
between linear and quadratic interpolation, regardless of the relatlve
accuracy of the two types of interpolation. -
Itis |mportant to recognlze that Eppy5x is just an estimate, and not a

true upper bound. If the functional values chosen are the zeros of a
periodic function then our error estimate will be zero, even though the real
error will be arbitrarily large. There is no procedure thatcan geta
reasonable estimate from such poorly selected data, and the user must
exercise some common sense when using this or any other estimation

" procedure.

The reader should note that A%f is defined for a continuous function -

even if f* is not. Although the formal derivation of the error estimate no
longer holds in this case, we found that the error estimates were well
behaved. We nevertheless looked at, and rejected, two other procedures for
error estimation: self interpolation, and least squares.

An intuitive, and very simple procedure for estimating error is to self
interpolate at an existing point in a data table and compare the estimated
value against the listed value. For example if there are three data points,

3



o f(xo),' f(x,), and f(x,), then we would use linear interpolation of f(x;) and
f(x,) to get an estimate P,(x,) forfatx,. The difference [f(x,) - P,(x,)| is
an indication of the absolute error of linear interpolation over these points.

Manipulation of the above error estimate shows that it is actually
equaltok * A2f(xo)/2. Thus for equally spaced data (k = 1) this error

estimate is four times larger than the remainder estimate. Fork # 1 the
self interpolated estimate is arbitrarily different from the remainder
estimate. If a relative error is calculated at the interpolation points ( x,

and (x, + X,)/2 respectively) the estimate is arbitrarily different even for

a fixed k. Since self interpolation is less accurate than the remainder
estimate, we saw no reason to further consider it.

Least squares fitting techniques offer what appears to be another
attractive alternative to remainder estimates. In practice, however, we
found that either the fits are so good that there is no real reason to use
interpolation of a data table, or the fits are not very good and thus neither
~are the error estimates. In addition, making sure the fits are good can be
an extremely difficult task, and often requires considerably more
knowledge than a bare bones table of values.

In the standard least-squares program the user must specify a
functional form, and the program estimates coefficients. If the fitistoa
polynomial or orthogonal expansion the user must provide a stopping
criteria for when further terms are no longer significant. If the expansion
or functional form chosen is not appropriate to the problem it can be very
difficult to decide when the fit is "good" enough. In addition, although the
procedure guarantees that the fit has minimum variance over the data or
- "net" points, it is a minimum only with respect to the given basis set, and
for some baS|s sets there is no guarantee about the mtervals between the
net pomts

The limit where the number of coefficients equals the number of data
points is a special case called orthogonal or Fourier expansion. The same
problems apply as with normal least-squares, along with the added one that
there is no variance calculation in this limit. A strictly practical problem
is that the use of non-equal intervals between points makes it impossible
to use the standard Fourier series techniques, as the normal basis sets are
not orthogonal over a net of points with uneven spacing. The reader should
also be aware that the standard trignometric Fourier expansion converges
more slowly to functions that are not periodic. . :

' Least squares techniques are in a sense a "best" way of dealing with
data, but it did not appear to be easy to develop a easy, general, and robust
procedure that could be used to analyze arbitrary data sets without having
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to know more than is given by the data itself.-
The Errterp program

The remainder estimate described above provided the basis for the
Pascal program "Errterp" that we wrote to make error estimates. However,
in the actual program we made a number of modifications to improve the
estimates, and to adapt them to the problem of error estimation in two
dimensions.

The first modification is to note that the ordenng of points is
arbitrary, and therefore if there are points from x to x , it is-equally valid

to estimate the error for the interval x, to x, from Azf(x1) as itis from
| Azf(xo). The program takes the maximum of the two estimates where both.

exist.
A second modification arose from our awareness that Azf(xo)/h2 is

~ ideally an estimate of f* at the point x =[x, + x1 +X, J/3. If the spacmg is
uneven x may not lie in the interpolation interval, x, to x,. When Azf( Xg)
and Azf(x ) both exust and one or both is an estlmate for a point outside

the interpolation region, Errterp interpolates between the two values to
get a better estimate for the interpolation region.

Most of the problems for illuminating engmeers involve blhnear
interpolation over functions of two variables. This can be formally
converted into two-one dimensional problems.® The error estimate is
therefore a sum of the partial second derivatives in x and y. In the Errterp
program we separately summed positive and negative partials and kept the
maximum of the two sums. This estimates the maximum error even if the
errors on the x and y boundaries have opposite sign and tend to cancel
inside the x-y interpolation region. It should be noted that these above
changes make the error estimate no longer equivalent to simply taking the
difference between linear and quadratic interpolation.

At the option of the user, Errterp can make additional assumptions
about the function that were not used in the derivation of the standard
remainder estimate. For instance, candlepower and reflectance values are
always positive. Telling Errterp that the function is positive forces it to
limit negative errors to the size of the interpolated value. A second option
tells Errterp to check for possible asymptotic behavior at the boundaries of
the table. This would be appropriate if candlepower data far from the beam
maximum, or reflectance data well away from the specular region,
approaches a constant diffuse limit. If this option is selected, Errterp
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assumes that there is an asymptote when three points coming off of a
boundary lie on a monotonic curve, and the magnitude of the slope is
smaller between points one and two than between two and three, where
point one is closest to the boundary. The slope of a quadratic function
passing through these three points changes sign between points one and
two and thus violates the asymptotic edge assumption if | Azf(xo)/8 | >

| Af(x,)/4 |. Errterp therefore takes the smaller of these two estimates.

The last option tells Errterp to look for local smoothness (convexity
or concavity over an interval). Possible examples are reflection from a
near Lambertian surface, or a candlepower distribution from a diffusing
fixture. If this option is selected Errterp assumes that the function is

locally smooth over the interval X; to Xj\3» when both A2f(x ) and A%f(x J+1)

have the same sign. The quadratlc function passing through ponnts X; to X,
is not consistent with the assumptlon of local smoothness if A%f(x )/8 |s

greater than the difference between the interpolated point.in the mterval

Xiy1 and Xj2 and linear extrapolation from points X2 and Xi\a- This is

shown in figure 2. The same test apphes to the quadratic function passing
through points X, s 1o Xj43° Errterp takes the maximum estimate consistent

with the local smoothness assumption.

The Errterp program was actually designed to estimate the overall
error. The user is prompted to enter a relative precision (zero implies no
relative error), and an absolute precision (number of significant figures),

for the input data. A zero entry in response to the latter prompt forces
~ Errterp to count the number of digits for each data point and assume that
each digit i is significant. The final reported error figure is the sum of all
the errors.

The Errterp program was designed to read candlepower table datain
the IES standard file transfer format.'® It can also read data in a second
less specialized format. The second format can handle tables'where the
final rows have fewer columns of data than the first rows. This permits it
to analyze the roadway reflectance data tables.

For most purposes relative errors are of more interest than absolute
errors. However, with candlepower data, the user is usually more
interested in the accuracy of the data near the candlepower maximum than
elsewhere. Errterp calculates relative errors with the interpolated values
as the denominators and outputs a summary table of the average error for
all values, and then for only those interpolated values which are within
10%, 20% or 50% of the maximum interpolated value. The summary table
also includes the magnitude and location of the maximum relative error in

6



each of these classes. Finally, Errterp can also output the individual
relative error values.

The 10/10/87 version of the Errterp program was released to
roadway committee members. it runs on IBM PCs and compatibles with at
least 256K of memory, and one disk drive. There are two run files, one
which uses the 8087 math accelerator chip, and the other WhICh cannot. An
- updated version will be available from the authors.

Validation and Calibaration

As noted earlier Errterp computes an estimate of the linear
interpolation error. After trying to make sure that the program computed
what it was supposed to compute, there was still the question of how close
the remainder estimate is to the real interpolation error. To get a handle
on this question, we had a program generate data tables from both one and
two dimensional polynomials from quadratic up to tenth order. The
coefficients were chosen randomly within sets of constrained ranges.
These ranges were adjusted variously so that we could look at a set of runs
where the function was always positive over the domain, or it was sure to
have at least one maximum or minimum over the domain, or it was likely to
have multiple maxima and minima. A second, slightly shifted domain with
uneven intervals was also used with each generated polynomial to get a
wider range of results.

Since the data tables were generated from known polynomials it was
possible and relatively easy to calculate some actual error values. We
calculated two sets of values for each table. The first set of values was
simply the set of relative errors at the midpoint of each interval. This
point was chosen as being the same point for which Errterp calculates the
error, and the point which is likeliest to have the largest absolute error. In
addition to knowing maximum errors it is also useful to know average
errors. Therefore, a second set of values was derived from the
root-mean-square (rms) average error over the interval divided by the
interpolated value at the center point of the interval. A fixed value for the
denominator was used in the average calculation to make it possible to
analytically compute the rms error, and to make the values more .
comparable to those calculated by Errterp. If the average of the ratios was
calculated this would give undue weight to portions of the interval where
the interpolated value is small, and in fact would return an infinite average
error if the interpolated value is ever zero when the real functnonal value
is not.

The rms error calculation is also useful as a check on how well the
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midpoint calculation represents the maximum error. The midpoint error
calculation was lower than the rms ‘error calculation (albeit occasionally:
~ substantially) in only a few percent of the cases . Most of the time it is an
“estimate of the upper range of the error in an interval. '

~ In all, a sample of 48 different runs was analyzed. Four of these were
runs with one dimensional linear interpolation and seven tested the various
smoothing options described earlier. -These eleven runs were mostly tests
for programming errors, and in fact a small bug in the asymptote routine
was found in the 10/10/87 version of the program. :

The thirty-seven remaining runs were tests of bilinear |nterpolat|on _
‘with no smoothing options. Twenty-two runs were tests of strictly '
non-negative data, and therefore directly correspond to most illuminating -
engineering problems. The other fifteen runs covered both negative and
- positive values. Table | summarizes the results. Since Errterp computes a_
summary average error estimate, the table shows the ratios of the average
of the calculated errors to the average estimated error in addition to A
showing the average of the ratios. The second type of average weights
- those points with large calculated to estimated ratios more strongly than
other points. The first type of average strongly weights points which
individually have high estimated or calculated errors.

Table 1 shows that on average the rms error is about one -half the
Errterp error estimate. - For non-negative data this value is falrly stable
and is not sensitive to when the average was taken. The variability in the
ratios for the mixed data shows that in these cases the actual errors can
be small while the estimated errors are still large. :

Errterp appears to do a reasonable job of estimating the upper range
of the error, but as can be seen it does underestimate occasionally. For |
non-negative data the fraction of points where the estimated error was
less than the calculated error was small, being about 1.5% for the midpoint
calculation and about 0.5% for the rms calculation.

As might be expected, Errterp did its best job of estlmatlon for low
order polynomials, and its worst for high order polynomials. With high
order polynomials, Errterp was more likely to both underestimate one
error, and then substantially overestimate another error. The above
comments, albeit less strongly, also apply to uneven, versus even, spacing.

The comparisons in Table 1 are indicative of the type of behavior to
be expected from Errterp. The reader should bear in mind thatthe
comparison was limited to polynomials, and is not necessarily a random
sample of the types of functions that are likely to be found in engineering
practice. We feel, however, that it provides a reasonable flrst guide to
“interpretation of the Errterp error estimates.
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Results

We ran Errterp on a number of roadway fixture candlepower tables,
roadway reflectance tables, and the sample files from the IESNA guide,
LM-63, to get a handle on the size of errors to be expected with
photometric data tables.'® In the future we hope that manufacturers will
use Errterp to provide an estimated error with the photometric file. Most
of the data was taken from a disk supplied to IESNA roadway committee
members for testing purposes by Merle Keck, the chairman of its Standard
Practice subcommittee. We analyzed a selection of twenty-two
candlepower tables, representing roadway fixtures from five
manufacturers, plus 10 different roadway reflectance tables.

The four roadway reflectance "R" tables are in common use, and we
present the results for them separately in table 2.'' The remaining data is
mostly generic data that is only useful as guide. The results for this data
is summarized in figures 3a and 3b. For the analyses in table 2 and in
figures 3a and 3b, no smoothing options were chosen; the absolute error
~ was calculated from the number of significant figures in the data itself,
‘and the relative error was set to 0.5% of the listed values. For several data
sets input values of "0" had to be changed to "0.0" to get the correct
absolute error. S
' Errterp groups the error estimates by the relative size of the
interpolated value, s. The groupings in the tables presented here are not
the same for the maximum and average. The average values were *
recalculated from the Errterp output to show the error within the classes.

In general, table 2 and figures 3a and 3b, show that there is a
commendably small error in regions of the data tables where the values are
large. At the same time the program shows that individual errors may be
large, even near the candlepower or reflectance maximums. If Table 1 is
any guide, rms errors are about 1/2, and maximum errors are about 2/3 the
Errterp estimates in this region of the tables. The considerably larger
Errterp estimates for the smaller values in the table is mostly due to
round-off error. For example, a set of entries such as "1", "2", and "5" are
specified only to within 10 to 50% precision. The numerical second
derivative through these numbers is only accurate to £80%. In short, the
relative accuracy for interpolation with this degree of round-off is very
poor. The very large error estimates for the smaller values in many tables
“indicate that calculations over these regions should be viewed with some

~ caution.

Errterp was rerun for a number of the data tables listed above with
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both the asymptotic edge, and local smoothing-options on. To keep things
consistent we calculated the ratios between the smoothed error estimates
and the basic error estimates. Table 3 summarizes these comparisons. The
effect of assuming a smoother function was usually slight.

- Conclusion

The validation runs indicate that Errterp does a reasonably consistent
job of estimating the nominal error bound level. Errterp overestimated the
general rms error level by a factor of 1.5 to 3.5 for non-negative validation
data set. Tests of a sample of real data sets indicate that they maintain an
estimated general rms level of accuracy of 1 to 15% as for data entries
that are within 10% of the maximum size of entries in a table. Individual
points may have substantially higher error potentials, and the general error
level is also much higher for points which are relatively small.

The Errterp program is a tool for estimatihg the inherent accuracy of
many types of calculations with data tables. It can be used by table
developers to assure that enough measurements are made to provide a
nominal accuracy level. As endusers, we are using it to provide an
- estimate for the accuracy of our computer calculations, and by inference a
guide to when they no longer make sense. In addition, the nominal error
estimates provide a target accuracy for the development of fitting
equations.
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Summary of comparison measures between calculated and estimated
interpolation errors.

Measure

Averages: -
<mid/est>
<mid>/<est>

<rms/est>
<rms>/<est>

Maximums:
mid/est
rms/est

Minimums:
mid/est
rms/est

Ratio Max/MIn:

(rms/est)

Only those midpoint values that were higher than the correspondmg rms

'Non-negative data

Avg.
(Median)

0.70
0.69

0.52
0.51

1.04(.98)

0.75(.71)

051"
0.35

3.2(2.5)

Max.

0.98
0.98

0.71
0.72

1.8
1.3

0.98
0.71

9.7

Min.

0.40
0.37

-0.30
0.28

0.91
0.64

011

0.09

1.0

values were considered in the tabulation.

mid = midpoint error calculation.
rms = root-mean-square error calculation

est = Errterp error estimate

Mixed data
Avg. Max.
(Median)

0.64 0.89
0.54 0.88
0.48 0.64
0.40 0.64
1.6(.98) 3.7
1.2(71) 27
0.40" 0.72
0.17 - 0.51
24.(5.3) 91.

The <> stands for an average. In the bulk of the table, values in () are

medians.

12

Min.

0.40
0.14

0.31
0.12

0.89
0.64

0.03"
0.01

1.40



Table 2

Summary of Errterp percentage error estimates for the R-table rpadway
reflectance data grouped by the relative size of the interpolated values (s).

Average Errors (%)
Relative size of interpolated values (s)

R-Table s<10%. 10%<5<20%  20%<s<50%  50%<s
R1 95 3.8 3.0 1.9
R2 179 5.2 4.3 - 22
R3 164 63 44 2.0

R4 204 10.3 | 49 2.6

Maximum Errors (%)
' Relative size of interpolated values (s)
R-Table ' All's - 10%<s 20%<s 50%<s

R1 45 8 7 7
R2 99 14 13 5
R3 99 24 18 5

9

R4 - 100 _ 48 16

s = midpoint interpolated value / maximum midpoint interpolated value in
table. ’
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[able 3

Ratio of Errterp error estimates with smoothing to Errterp error estimates
without smoothing, grouped by the relative size of the interpolated values (s).

. Ratio of Average Errors (%)
- Relative size of interpolated values (s)

VALUE s<10% - 10%<S<20%  20%<S<50% - 50%<s
(14 data sets) '

Maximum : 100 100 100 100
Minimum : 62 92 84 : 84
Average 80 97 95 - 93
Median 77 .97 . .97 . 94

~ Ratio of Maximum Errors (%)
Relative size of interpolated values (s)

VALUE All's | 10%<s 20%<s ‘50%<s

| Maximum 100 100 - 100 : 100
Minimum 52 78 78 78
Average ‘ 78 96 - 9% 94
Median 81 100 100 100

s = midpoint interpolated value / maximum midpoint interpolated value in
table.
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Figure 1. The linear interpolation error estimate

Linear Interpolation’ —_—

Quadratic fit

- Actual function

Estimated error in the first interval
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Figure 2:

Linear Extrapolation as an Alternate Error Bound to
Quadratic Interpolation for Locally: Smooth Function

Alternate error estimate

Quadratic interpolation —®

Linear interpolation

-~ . ’
Quadratic error estimate

Linear Extrapolation
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Figure 3a. Summary of average percentage error estimates
‘ grouped by the relative size of the interpolated
values (s). |

s < 10% | m

10% < s < 20%

3
—
'Y

20% < s < 50% | '*‘”a I
m = median
50% < S ImHa I o | ~ a = average

| N | ] |
10% 20%  30% 40%  50% @ 60%

Average Relative Errof

s = midpoint interpolated value / maximum midpoint interpolated
value in table. - | |

The left and rith ends of the bars represent the minimum and
‘maximum values, respectively. The hatch marks marked "m" and "a"

~ are the median and average.
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Figure 3b: Summary of maximum percentage error estimates
grouped by the relative size of the interpolated

values (s).
all s | ) r_n| 2 - : |
I | |
10%<s | am |
I | |
20%<s (" H{° |
! |
50% < S mla l m = median
| | - = average
| | | 1 |
50% 100% 150% 200% . 250%
Maximum Relative Error
s = midpoint interpolated value/ maximum midpoint interpolated

value in table. '

The left and right ends of the bars represent the minimum and
maximum values, respectively. The hatch marks marked "m" and
"a" are the median and average. : 9

18



LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
TECHNICAL INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

I





