
UC Merced
UC Merced Previously Published Works

Title
SpaRC: scalable sequence clustering using Apache Spark

Permalink
https://escholarship.org/uc/item/7dn7m5rg

Journal
Bioinformatics, 35(5)

ISSN
1367-4803

Authors
Shi, Lizhen
Meng, Xiandong
Tseng, Elizabeth
et al.

Publication Date
2019-03-01

DOI
10.1093/bioinformatics/bty733
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7dn7m5rg
https://escholarship.org/uc/item/7dn7m5rg#author
https://escholarship.org
http://www.cdlib.org/


Sequence analysis

SpaRC: scalable sequence clustering using

Apache Spark

Lizhen Shi1, Xiandong Meng2,3, Elizabeth Tseng4, Michael Mascagni1

and Zhong Wang 2,3,5,*

1Department of Computer Science, School of Computer Science, Florida State University, Tallahassee, FL 32304,

USA, 2US Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA, 3Environmental Genomics

and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, 4Pacific

Biosciences Inc, Menlo Park, CA 94025, USA and 5School of Natural Sciences, University of California at Merced,

Merced, CA 95343, USA

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on February 20, 2018; revised on July 18, 2018; editorial decision on August 17, 2018; accepted on August 21, 2018

Abstract

Motivation: Whole genome shotgun based next-generation transcriptomics and metagenomics

studies often generate 100–1000 GB sequence data derived from tens of thousands of different

genes or microbial species. Assembly of these data sets requires tradeoffs between scalability and

accuracy. Current assembly methods optimized for scalability often sacrifice accuracy and vice

versa. An ideal solution would both scale and produce optimal accuracy for individual genes or

genomes.

Results: Here we describe an Apache Spark-based scalable sequence clustering application,

SparkReadClust (SpaRC), that partitions reads based on their molecule of origin to enable down-

stream assembly optimization. SpaRC produces high clustering performance on transcriptomes

and metagenomes from both short and long read sequencing technologies. It achieves near-linear

scalability with input data size and number of compute nodes. SpaRC can run on both cloud comput-

ing and HPC environments without modification while delivering similar performance. Our results

demonstrate that SpaRC provides a scalable solution for clustering billions of reads from next-

generation sequencing experiments, and Apache Spark represents a cost-effective solution with

rapid development/deployment cycles for similar large-scale sequence data analysis problems.

Availability and implementation: https://bitbucket.org/berkeleylab/jgi-sparc

Contact: zhongwang@lbl.gov

1 Introduction

Whole genome shotgun sequencing (WGS) using next-generation

sequencing (NGS) technologies followed by de novo assembly is a

powerful tool for large eukaryote transcriptome analysis [reviewed

in (Martin and Wang, 2011)] and analysis of complex microbial

communities [reviewed in (Tringe and Rubin, 2005)] without refer-

ence genomes. Because of the stochastic sampling associated with

WGS and the presence of sequencing errors, it is necessary for the

sequenced reads to cover a single gene or a genome many times

(coverage), typically at 30� to 50�, to ensure high quality de novo

assemblies (Ajay et al., 2011). Unlike in single genome sequencing

projects where the majority of the genomic regions are equally rep-

resented, in transcriptome and metagenome sequencing projects, dif-

ferent species of transcripts or genomes may have very unequal

representation, up to several orders of magnitude (Hughes et al.,

2001; Martin et al., 2014). To obtain a good assembly covering low

abundance species, much higher sequencing depth is required than

in isolate genome projects. As in practice it is difficult to precisely
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estimate the required sequencing depth without knowing the com-

munity structure, sequencing large transcriptomes and complex

metagenomes often generates as much data as the budget allows,

producing 100–1000 GB of sequence data or more (Howe et al.,

2014; Shi et al., 2014). The largest project so far is the Tara Ocean

Metagenomics project where 7.2 Tb was generated (Sunagawa

et al., 2015).

Since current NGS technologies are not able to read the entire se-

quence of a genome at once, genomes are broken into small DNA/

RNA fragments followed by massive parallel high-throughput

sequencing. Figure 1 illustrated a typical work flow to predict mi-

crobial genomes from environment samples. Different technologies

produce sequence reads that vary in length. For example, Illumina

(https://www.illumina.com) technology typically generates about

150 bp per read, while Pacific Biosciences (http://www.pacb.com)

reads are 100–60 000 bp. Transcriptome/metagenome assembly

from these short fragments is a compute and memory-intensive

problem. The problem is further complicated by several factors such

as sequencing errors, repetitive elements, and homologous genes

shared among related species. For a comprehensive review of de

novo assembly algorithms please refer to Miller et al. (2010).

Assembling these datasets as a whole requires efficient and scal-

able algorithms, and to achieve this current assemblers use either

multiple processes on a shared memory architecture [MetaSPAdes

(Nurk et al., 2017), MEGAHIT (Li et al., 2015), etc] or MPI to dis-

tribute jobs on a large cluster (Georganas et al., 2015). The shared

memory approach is very hard to scale up with exponentially

increased NGS data size. In addition, these assemblers try to tackle

the problem as a whole and are not able to produce optimized

results as different transcripts or genomes may need individualized

optimal parameter settings.

Our work was initially inspired by a ‘divide-and-conquer’ ap-

proach presented by DIME (Guo et al., 2015). DIME first clusters

reads based on their overlap, then assembles them separately. It was

implemented using Apache Hadoop (http://hadoop.apache.org) and,

in theory, should scale to large data sets. In practice, however,

Hadoop-based implementation has very poor computing efficiency,

making it expensive to run on commercial cloud providers such as

Amazon Web Services. Further, much larger intermediate files are

often generated during the assembly, making it harder to scale.

Apache Spark (http://spark.apache.org) is the most active open

big data framework and has overtaken Hadoop in the big data eco-

system due to its fast in-memory computation. Spark has been suc-

cessfully applied to several genomics problems such as (Bahmani

et al., 2016; de Castro et al., 2017; Klein et al., 2017; Massie et al.,

2013; Xu et al., 2016). In this paper we developed a new algorithm

called Spark Read Clustering (SpaRC), a generic NGS read cluster-

ing algorithm that parallel constructs a read graph and subsequently

partitions it. In order to achieve both scalability and accuracy on

large datasets we implemented SpaRC using a combination of sev-

eral tricks: (i) estimation of pairwise sequence similarity (edge

weight) by the number of shared k-mers; (ii) down-sampling to con-

trol the explosion of data caused by abundant species and noise as

data size and complexity grow; (iii) application of a fast overlapping

community detection algorithm, Label Propagation Algorithm

(LPA) (Raghavan et al., 2007), to efficiently partition the read graph

and break partitions containing a mixture of different species due to

shared genetic elements. We report clustering accuracy and comput-

ing performance on both transcriptomic and metagenomic read clus-

tering with both short read (Illumina) and long read (PacBio)

sequencing platforms.

2 Materials and methods

2.1 Algorithm overview
SpaRC is capable of clustering both short and long reads with differ-

ent parameter settings. It first computes the number of shared k-

mers between a pair of reads to approximate their overlap, and then

builds an undirected read graph followed by graph partitioning to

form clusters. Specifically, it contains four modules: K-mer mapping

reads, graph construction and edge reduction, graph partition and

sequence retrieval. We describe each of these modules in detail as

follows.

2.2 K-mer mapping reads (KMR)
Given a set of sequence reads, K-mer mapping reads (KMR) splits

them into k-mers according to a pre-defined k-mer length and only

keeps distinct k-mers for each read. KMR keeps track each k-mer

and the reads containing it. The length of k-mer (k) is a parameter

to control the sensitivity and specificity of read overlap detection.

Shorter k-mers result in more sensitivity but less specificity and vice

versa. The ideal k-mer size depends on the sequence platform, the

read depth and sequence complexity.

In general, k-mers appearing in only a single read are derived

from either sequencing errors or rare molecules. While they repre-

sent a large fraction of the total k-mers, they are not useful for com-

puting read overlap, therefore they are filtered out. k-mers with a

very high count may derive from very abundant species or repetitive

elements. Because they can greatly increase the number of edges (see

blow) while contributing to more noise, here we manually cap k-

mer count to control the amount of computation and noise derived

from repetitive elements. Clustering very abundant species should

not be affected as long as the number is sufficiently large (200 by de-

fault). KMR allows users to specify customized filtering criteria

(min_kmer_count and max_kmer_count) to adjust clustering sensi-

tivity and specificity.

2.3 Graph construction and edge reduction (GCER)
Graph construction and edge reduction (GCER) constructs a read

graph in which a node is a read and an edge links two nodes if they

share k-mers. As discussed above, some nodes, if derived from re-

petitive elements or genes conserved among species or contamin-

ation, can have extremely high edge count (degree). Besides the

max_kmer_count to reduce the total number of edges produced,

here we also set the maximum degrees of any vertex in a graph

Fig. 1. Illustration of a typical metagenome workflow
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(max_degree) as a parameter to further reduce the amount of com-

putation during the graph partition step (below).

After all the vertices and edges are generated, GCER merges

edges having the same source and destination, and filters out edges

having fewer shared k-mers than specified by parameter min_shar-

ed_kmers as these are likely caused by noise.

2.4 Graph partition (LPA)
This step partitions the above read graph into clusters. Since repeti-

tive elements and homologous genetic elements are shared between

different molecules/genomes thus creates ‘overlap communities’, we

implemented LPA for its capability of overlapping community detec-

tion and near-linear execute time (Raghavan et al., 2007). SpaRC

also provides another iterative graph partition algorithm, connected

components (CCs), it might be useful where the overall sequencing

depth is very low, or there are very few repetitive genetic contents.

2.5 Sequence retrieval (AddSeq)
In the above modules reads are represented by numeric IDs to save

memory and storage. Once the clusters are formed, AddSeq retrieves

the sequences and format them for downstream parallel assembly

process.

2.6 Algorithms
1 For each read r in the read set R:

2 Generate distinct k-mer-read tuples

3

4 Group the tuples by k-mer and generate k-mer-reads pairs (KR)

5 Filter KR by only keeping pairs overlapping between

min kmer count and max kmer count

6

7 For each list of read in KR:

8 Generate pairwise edges (reads as nodes)

9

10 For each node in the edges:

11 If the node degree > max degree, sample max degree edges

12

13 Count distinct edges and generate edge-count pairs (EC)

14 Filter EC to only keep pairs whose count is more than

min shared kmers

15 Generate graph g0 with the edges in EC

16

17 If clustering algorithm �A is CC:

18 Generate the CCs of g0.

19 For each CC, add the connected

20 Component to the set of read clusters X.

21 else if �A is LPA:

22 Run label propagation step for m iterations

23 Group the nodes (reads) by its labels

24 For each reads group, add the group to X

2.7 Hardware and software environment
SpaRC was implemented in Scala (Scala 2.11.8). To assess its adap-

tivity in different hardware and software environments, we con-

ducted experiments on two cloud clusters, 20 nodes on Open

Telekom Cloud (https://cloud.telekom.de/en/infrastructure/open-tele

kom-cloud) and Amazon’s Elastic MapReduce (EMR, emr-5.9.0)

and one 8 nodes HPC cluster at the Pittsburgh Supercomputing

Center (Nystrom et al., 2015). On all three clusters, one node is

used as the master and all other nodes are used as workers.

Configuration details are shown in Table 1.

2.8 Datasets
To systematically test the scalability and accuracy of SpaRC we pre-

pared several real world test datasets (Table 2). A maize sequence

dataset, we generated previously from Martin et al. (2014), and the

Cow Rumen metagenome dataset (Hess et al., 2011), from which

we generated subsets of 1–100 GB in fastq, for testing scalability.

Two simulated metagenome datasets, including a mock dataset con-

taining 26 genomes and the CAMI2 simulated human microbiome

datasets (https://data.cami-challenge.org/participate), are used to

verify accuracy. Three long read transcriptome datasets were pro-

vided by PacBio. The datasets are described in details in the Results

section, here we simply summarize their metrics.

3 Results

3.1 SpaRC clustering accuracy
In order to measure the clustering accuracy of SpaRC, we used two

sets of data with ‘known answers’ and ran SpaRC to obtain clusters.

The first dataset is a Human Alzheimer whole brain transcrip-

tome sequenced by PacBio, consisting of 1 107 889 full-length tran-

script sequences. Transcript sequences were clustered using an

isoform-level clustering algorithm (Gordon et al., 2015), then con-

sensus sequences were mapped to the human genome to identify

source loci. Reads originating from clusters in which the mapped

genomic locations overlap by at least 1 bp are considered to be from

the same loci. This is the theoretical limit for overlap-based cluster-

ing algorithms. The second dataset is two million Illumina short

metagenome reads (150 bp) sampled from a mock microbial com-

munity consisting of 26 genomes described previously (Singer et al.,

2016). Clusters are defined similarly as above for the PacBio tran-

scriptome dataset.

By comparing the SpaRC clusters to ‘known answers’ in the

above two datasets, we measured SpaRC’s cluster purity and com-

pleteness. Here cluster purity is defined as the percentage of reads

belonging to the dominant known cluster for each SpaRC cluster,

and completeness is defined as the maximum percentage of reads

from a known cluster captured by a SpaRC cluster. It is worth not-

ing that measured cluster completeness will underestimate true clus-

ter completeness as the ‘known answers’ are overestimates as

described above. As the sensitivity of overlap detection is heavily

influenced by the read length, in the Illumina metagenome dataset

we joined the reads in a pair that is pair-end sequenced to double

the read length for clustering.

Table 1. Configuration for OTC, AWS EMR and Bridges

OTC AWS EMR Bridges

# of cores/node 8 8 28

Memory/node 64 61 128

Storage/node 500 GB SSD 160 GB SSD 8TB HDD

Ethernet 1 Gbps 10 Gbps Omni Path

Spark version 2.1.1 2.2.0 2.1.0

Hadoop version 2.7.3 2.7.3 2.7.2

Cluster mode Standalone YARN YARN

# of executors/node 3 3 4

Driver memory 55 GB 40 GB 55 GB

Driver cores 5 5 5

Memory/executor 18 GB 16 GB 27 GB

Cores/executor 2 2 3

HDFS Block size 32 MB 32 MB 32 MB

SpaRC: scalable sequence clustering 3
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In both experiments SpaRC clustered the majority of the reads

(PacBio: 82.65%, Ilumina: 98.3%), and generated very pure clusters

(Fig. 2A and E). For the impure read clusters in both datasets, con-

tamination appears to be relatively low, as purity increases with

cluster size (Fig. 2B and F).

Clustering long reads achieved much higher completeness than

clustering short reads, with many more clusters that have complete-

ness � 90% (84.88%, n ¼ 9578, Fig. 2C), comparing to short read

clusters (37.19%, n ¼ 37 879, Fig. 2G). For the transcriptome data-

set, the completeness improves as cluster size increases, suggesting

more copies of a transcript increases the chances of finding overlap

k-mers. For the metagenome dataset, as the genome copy number is

fixed in that dataset, larger clusters translate into larger regions, and

they are more easily broken into smaller clusters presumably uneven

coverage. Therefore, the overall completeness drops as cluster size

increases.

We also tested whether or not completeness is worse if the read

pairs in the short read dataset are not joined. This indeed is the case,

as clusters that have completeness � 90% is decreased to 6.08%

and more small clusters are produced (n ¼ 42 181).

3.2 Accuracy comparison with alternative solutions
3.2.1 Long reads

To assess whether using SpaRC improves recovery of known syn-

thetic spike-in transcripts (synthetic SIRV transcripts) in the PacBio

human data, clustering results from SpaRC were compared

with minimap-based (Li, 2016) clustering results and run through

the PacBio Iso-Seq clustering pipeline (https://github.com/

PacificBiosciences/IsoSeq_SA3nUP). The results (Table 3) from

SpaRC show comparable results with slightly improved recovery of

the synthetic spike-in transcripts (more true positives) and slightly

reduced artifacts (less false positives). The difference seems to be

more pronounced when sequence depth is lower (PacBio2).

3.2.2 Short reads

For accuracy comparison on short reads we used a synthetic metage-

nome dataset derived from the Critical Assessment of Metagenome

Interpretation (CAMI) project, the first-ever community-organized

benchmark for evaluating computational tools for metagenomes

(Sczyrba et al., 2017). CAMI2 consists of 49 human microbiome

samples from gastrointestinal tract, oral cavity, airways, skin and

urogenital tract. We selected a subset of the simulated Illumina data-

sets (sample no. 2–9, 14), and the total size of these 9 samples is

100 GB in Fastq format.

We compared SpaRC with several alternative clustering tools,

including MC-MinH (Rasheed and Rangwala, 2013), MetaCluster

(Wang et al., 2012), bwtCluster (Alanko et al., 2017) and

Eigengenomes (LSA) (Cleary et al., 2015), for clustering accuracy on

the above CAMI2 dataset. MC-MinH is designed to cluster 16S

ribosomal sequences. The software was implemented as a single

threaded program with quadratic complexity. MetaCluster 5.0 uses

a two-round approach to cluster metagenomic reads. It first sepa-

rates the reads into high abundance and low abundance groups,

then it uses different k-mers to cluster each group. BwtCluster is a

space-efficient clustering algorithm. It first uses connect component

to cluster the reads into small clusters and then uses k-means to fur-

ther cluster them into bigger ones. LSA is a scalable partitioning ap-

proach that clusters raw reads based on abundance covariation

among many metagenome samples.

We were not able to run MC-MinH and MetaCluster because

the two solutions are not scalable to the 100 GB dataset. For a fair

comparison with the bwtCluster, we only ran the first round (pre-

cluster) because a reasonable number of cluster has to be set for the

k-means in the second round. LSA requires a threshold parameter

(0–1) to determine the number of clusters formed. We tuned this

parameter as recommended and found that 0.95 gave the best result

for this dataset.

Table 4 shows the comparison result for clustering the CAMI2

dataset. SpaRC and bwtCluster form many small clusters with rela-

tively high purity and low completeness. In contrast, LSA produces

very few clusters with high completeness but very low purity.

Comparing with bwtCluster, SpaRC clusters more reads, produces

many more clusters, achieves higher cluster purity but suffers from

lower completeness. If the goal is to pre-cluster metagenome short

reads, SpaRC results seem to be more desirable as higher purity

means few errors will be carried over to the next step.

BwtCluster was implemented in Cþþ for speed and also showed

efficient memory requirement, about 3� of the input data size.

However, the traversal of the suffix-link tree in bwtCluster was not

capable of scaling well with more than four cores as mentioned in

the paper (Alanko et al., 2017), and it is a monolithic program and

cannot utilize multiple nodes, so its scalability should be limited. In

contrast, SpaRC as a distributed program designed to scale up to

datasets of terabytes or more, requires much more resources for its

scalability and fault tolerance.

3.3 Data complexity has a major effect on SpaRC

execution time
As introduced above, SpaRC consists of four steps: KMR, GCER,

LPA and AddSeq. To measure the computing efficiency of each step

on data with different complexity (number of species, see Table 2),

we ran SpaRC against Human Alzheimer transcriptome, Maize

transcriptome and Cow Rumen metagenome with the same data

size (4 GB) on OTC computing environment.

We found different datasets gave rise to very different overall

execution time (Fig. 3), with PacBio transcriptome being the longest,

about twice as long as Illumina transcriptome, and three times as

long as Illumina metagenome. Execution time for each of the four

Table 2. Metrics of test datasets used in this work

Dataset # Species Read length (bp) Size (GB)

PacBio1 (Human Alzheimer brain transcriptome) High 300–30 816 3.8

PacBio2 (Human UHRR þ synthetic RNA, 2Cell) High 62–14 621 1

PacBio3 (Human UHRR þ synthetic RNA, 3Cell) High 54–14 833 1.8

Maize transcriptome High 151� 2 4

Mock metagenome Low (26) (90–150)�2 15

Cow Rumen metagenome Medium 100� 2 100

CAMI2 simulated metagenome High 150� 2 100

4 L.Shi et al.
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modules on different datasets shows very different behavior. First of

all, as the datasets have the same size, they contain similar number

of raw k-mers, therefore the KMR step takes about similar time.

Second, reads from the complex metagenome dataset typically have

fewer edges than transcriptomes because many species do not have

sufficient coverage. Longer reads tend to produce more edges be-

cause they have more overlapping k-mers (Table 5). Finally, even

given comparable number of total edges (Table 5), LPA takes signifi-

cantly longer for the long read transcriptome dataset than for the

short read transcriptome dataset. This is because each long read ver-

tex has more edges than short read, and GraphX’s implementation

uses vertex-cut for graph partition (Xin et al., 2013), resulting more

copies of vertices, which in turn translates into higher time cost on

each reduction in each LPA iteration.

Among the steps in the workflow, AddSeq is the simplest step

and takes very little time (no more than 1 min) for all datasets.

3.4 Degree of parallelism on SpaRC’s computing

performance
Resilient distributed datasets (Zaharia et al., 2012) are Spark’s low-

level, fault-tolerant data structure. They are partitioned and distrib-

uted across different nodes due to its huge size. Spark runs one task

per partition, and the total number of partitions defines the parallel-

ism. It has been reported parallelism level has a major effect on the

performance of the Spark applications (Abu-Doleh and Çatalyürek,

2015). Therefore, we evaluated the effect of parallelism level on the

overall execution time of the current SpaRC software.

A B

C D

E F

G H

Fig. 2. SpaRC’s clustering performance on long and short reads: (A–D) SpaRC clustering results on a PacBio transcriptome dataset from a Human Alzheimer

whole brain sample and (E–H) on a Illumina metagenome dataset sequenced from a mock microbial community consisting of 26 genomes. Cluster purity is meas-

ured as the percentage of reads belonging to the dominant known cluster for each SpaRC cluster, and completeness as the maximum percentage of reads from a

known cluster captured by a SpaRC cluster. A, E show the purity distribution of SpaRC clusters for PacBio (A) and Illumina (E) reads, respectively. C, G show the

completeness distribution of the SpaRC clusters for PacBio (C) and Illumina (G) reads, respectively. B, F show the purity (Y-axis) versus the cluster size (X-axis)

for PacBio (B) and Illumina (F), respectively. Only the impure clusters are shown; D, H show the completeness (Y-axis) versus the cluster size (X-axis) for PacBio

(D) and Illumina (H), respectively. Only the incomplete clusters are shown

SpaRC: scalable sequence clustering 5
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We ran multiple SpaRC experiments over 20 and 50 GB Cow

Rumen dataset on OTC, each with a Spark default parallelism

(spark.default.parallelism) value ranging from 50 to 20 000. Once

set, Spark automatically sets the number of partitions of an input

file according to its size for distributed shuffles.

As shown in Figure 4, we found the performance of SpaRC does

not vary much over several orders of magnitude in parallelism, for

both of the two datasets tested. As long as the parallelism is not ex-

treme (<100 or over 1 million), SpaRC performance is quite consist-

ent. When there are too few data partitions, performance suffers

because of cluster resource under utilization. In contrast, when there

are too many data partitions, there might be excessive overhead in

managing small tasks. It is not necessary, at least in this case, to ad-

just the default parallelisms.

It is worth noting that Spark relies on Hadoop file system

(HDFS) which has a default partition size 64 MB. Our previous

work showed that bioinformatics applications can benefit from set-

ting it to 32 MB (Shi et al., 2017), therefore, in SpaRC we recom-

mend setting HDFS default partition size to 32 MB.

3.5 SpaRC scales near linearly with input data and

compute nodes
We designed two different experiments to measure the scalability of

SpaRC. The first tests data scalability as more input are added on a

fixed-sized cluster; the second measures horizontal scalability as

more nodes are added to the cluster to compute the same input. For

the data scalability test we use 20, 40, 60, 80 and 100 GB fastq data-

sets from Cow Rumen metagenome. The sequence retrieval step

(AddSeq) is not shown due to its negligible processing time (as men-

tioned in the above).

We report in Figure 5 the result of the first experiment varying

input data size and maintaining the number of nodes in the OTC

cluster to a fixed value (20). The KMR and GCER step scale up lin-

early as expected, while LPA step scales up near linearly, consistent

with its design (Raghavan et al., 2007).

We next tested SpaRC performances by keeping the input size

fixed (10, 50 GB) but using different number of nodes. As shown in

Figure 6, the compute time required for each stage and the total time

decreases as the number of nodes increases. However, there is a

‘sweet spot’ for each specific input size (10 nodes for 10 GB, 50 for

50 GB, respectively). For node counts less than the optimum, every

doubling of nodes translates into approximately halving the com-

pute time. However, the rate of compute time improvements

decreases when the node number increases beyond the optimum.

This phenomenon can be explained by the Amdahl’s law (https://en.

wikipedia.org/wiki/Amdahl’s_law) in parallel computing. Overall,

we achieve the near-linear scalability as other spark-based tools (de

Castro et al., 2017; Rasheed and Rangwala, 2013), suggesting

SpaRC scales well with the number of nodes.

3.6 Performance comparison among cloud and HPC

clusters
We have shown SpaRC can be run without modification on two

cloud environments, OTC and EMR. To explore whether SpaRC

Table 4. Clustering accuracy comparison on a 100 GB simulated

metagenome dataset

Tools #clusters #reads % of pure

cluster

Median

purity

Median

compl

LSA 619 213 447 604 0.16 33.42 85.49

bwtCluster 218 154 285 947 805 47.33 99.50 25.48

SpaRC 1 347 826 296 027 232 69.48 100.00 11.62

Fig. 3. Execution time difference between datasets: the execution time (Y-

axis) of each step on three sets of data (X-axis), from bottom to top: KMR,

GCER, LPA and KMR. (see text for details about the datasets). The number on

each stacked column shows the total runtime of the whole dataset in minutes.

Each experiment was repeated three times and the average runtime in

minutes is shown

Table 3. Isoform detection performance comparison between

SpaRC and Minimap clustering

Dataset SpaRC Minimap

TPa FPb TP FP

PacBio2 (375 k reads) 57 13 54 17

PacBio3 (623 k reads) 61 11 61 14

aTP: true positive, transcripts derived from the loci.
bFP: false positive, transcripts that do not belong to the loci.

Table 5. Metrics of SpaRC intermediate data on different datasets

Dataset # of k-mers # of edges # of nodes Avg degrees/node

PacBio1 179 039 835 263 116 527 1 027 204 512

Maize 96 643 966 298 631 852 11 465 314 52

Cow Rumen 46 027 775 41 155 061 4 001 389 20

Fig. 4. Effect of parallelism level on the total execution time. The execution

time (Y-axis) of two datasets derived from the Cow Rumen metagenome

dataset (20 GB and 50 GB) with different settings of Spark parallelism in log10

scale (X-axis). The execution time reflects the average of three independent

runs
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are applicable on HPC systems where spark jobs is incorporated

into the scheduler along with other traditional HPC jobs, we ran

SpaRC against PacBio1 dataset on an eight-node cluster on PSC’s

Bridge system (Section 2). Currently one can maximumly provision

eight nodes per interactive session without reservation. As on OTC

and AWS EMR clusters, we used one of the nodes as our spark mas-

ter and the remaining as spark workers. Again, we are able to run

SpaRC without modification in the HPC environment. Moreover,

the performance on HPC system is comparable to cloud environ-

ments, as the total execution time on the three systems are compar-

able (Table 6). These results demonstrate the flexibility of the

Spark framework, enabling SpaRC to adapt to very different

environments.

4 Conclusions and discussions

Metagenome and transcriptome assembly is challenging due to both

its scale and complexity. We developed an efficient distributed algo-

rithm, SpaRC, for large-scale metagenome and transcriptome read

clustering to enable downstream assembly optimization. SpaRC

takes advantage of Apache Spark for scalability, efficiency, rapid de-

velopment and flexible running environments. SpaRC can handle

large-scale datasets produced by current NGS technologies, includ-

ing both long and short reads. We evaluated SpaRC on both

transcriptome and metagenome datasets and demonstrated that

SpaRC produces accurate results.

SpaRC is a generic read clustering tool. Although it has a func-

tion to produce k-mer counts for filtering purposes, it needs to create

a map between k-mers and reads containing them for downstream

clustering. We do not recommend using SpaRC for calculating sim-

ple k-mer statistics. There exist several k-mer counters such as

KMC2 (Deorowicz et al., 2015), DSK (Rizk et al., 2013) and

Jellyfish (Marçais and Kingsford, 2011) that are very fast as they ex-

ploit specific data structures. For larger datasets it should be

straightforward to create a Spark-based k-mer counting program.

We are actively exploring alternative data structures (bloom filters,

minimizers, etc) for further improving the computing performance

of SpaRC.

Since Apache Spark is a still very young project undergoing

heavy development, some of its components have not been stabilized

and/or optimized. For example, the current LPA is implemented in

GraphX using the pregel interface (Malewicz et al., 2010) instead of

in GraphFrame (Dave et al., 2016), which does not take the full ad-

vantage of the scalability and efficiency of the DataFrame API

(Armbrust et al., 2015). Current LPA function in GraphFrame is a

simple wrapper of the method in GraphX. LPA performance in

space and time efficiency could be improved further. Since it cumu-

latively caches the results of each iteration for job recovery, disk

usage often explodes as the number of iterations increases.

Furthermore, if one executor dies, all of its cached data is lost and

the whole process has to start from scratch. Creating a checkpoint

for each iteration like the GraphFrame version of connect compo-

nent should alleviate this problem. Although it is known that Spark

programs are much faster than their Hadoop equivalent, they may

not be as efficient as MPI programs on a cluster, or non-scalable C/

Cþþ/JAVA programs on a single machine. Some overhead in Spark

is necessary to ensure its robustness, which is critical for large jobs.

Besides robustness, programing Scala/Python/R relatively is much

easier than programing C/Cþþ/JAVA and MPI.

We observed the clusters produced tend to be too small when the

read is short (e.g. single-end metagenomic dataset on Illumina plat-

form). For pair-end sequencing datasets one can merge (if they over-

lap) or concatenate the two ends to increase the cluster size.

Decreasing k-mer size, or requiring less shared k-mers should also

help increase cluster size. However, this may lead to decrease of pur-

ity. One potential solution is to run an additional binning or scaf-

folding step (using pair-end or long reads if available) after

assembling each cluster of reads into contigs, a common practice in

metagenome assemblies.

Fig. 5. Scalability of SpaRC on different input sizes. The execution time (Y-

axis) of each step of SpaRC on the Cow Rumen dataset with different input

sizes (X-axis) on 20 OTC nodes. Total runtime is shown at the top. Each ex-

periment was executed three times and the figure shows the average run-

time, standard deviations are too small to be shown

Fig. 6. Scalability of SpaRC on different number of nodes. (Left) The execution time (Y-axis) of each step plus the total time on different number of Amazon EMR

nodes (X-axis) using a 10 GB Cow Rumen dataset; (right) same experiments were repeated using a 50 GB Cow Rumen dataset. Each experiment was executed

three times and the figure shows the average runtime, standard deviations are too small to be shown
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Running SpaRC on HPC systems sometimes is necessary because

it avoids the need to move data into the cloud, as well as makes it

easy to incorporate SpaRC as part of the assembly pipeline.

However, Spark configuration on HPC systems is a complicated

task. Once Spark is deployed, in our case on the Bridges system, it is

flexible and can be run on a single node, or can be scaled up to a

very large cluster.
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