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Abstract

Efficient Mapping-Free Methods for Discovery and Genotyping of Structural Variations

Structural variants (SVs) account for a large amount of sequence variability across genomes and

play an important role in human evolution and diseases. Despite massive efforts over the years, the

discovery of SVs in individuals remains challenging due to the highly repetitive nature of the hu-

man genome and the existence of complex SVs. The dominant mapping-based framework for SV

discovery has several drawbacks including dependence on resource intensive mapping algorithms

and an increased possibility of error in repetitive regions of the genome due to ambiguous read

mappings. As a result, new computational methods are needed that can genotype different types of

SVs in both short and long read data with high accuracy.

In this thesis, we first propose an ultra-efficient mapping-free approach for genotyping common

SVs on short Illumina reads in Chapter 2. Our method Nebula generates databases of k-mers for

catalogs of common SVs and counts these k-mers in unmapped samples to predict SV genotypes

using a likelihood model of the k-mer counts. Nebula is the first method known to us that’s capable

of directly mapping-free SV genotyping from raw FASTQ files. We show that Nebula is not only

an order of magnitude faster than mapping-based approaches for genotyping SVs, but it also has

comparable accuracy to state-of-the-art approaches. Furthermore, Nebula is a generic framework

that is not limited to specific types of SVs.

Next we introduce the concept of substring-free sample-specific strings (SFS) as an effective

tool for comparative variant discovery between pairs of accurate long-read sequencing samples

(e.g., PacBio HiFi) in Chapter 3. The SFS are sequences specific to a genome (or equivalently

its sequencing reads) with regards to another genome that also do not occur as substrings of one

another. We then introduce the Ping-Pong algorithm for theoretically and practically efficient ex-

traction of SFS between a pair of target and reference samples by building an FMD index of the

reference sample and querying the reads of the target sample against this index. Ping-Pong is a

mapping-free method and is therefore not hindered by the shortcomings of the reference genome

and mapping algorithms. We show that Ping-Pong is capable of accurately finding SFS represent-
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ing nearly all variation (> 98%) reported across pairs or trios of WGS samples using PacBio HiFi

data.

Finally in Chapter 4 we introduce SVDSS, a novel hybrid method for discovery of SVs from

PacBio HiFi reads that combines the SFS concept with partial-order alignment (POA) and local

assembly to yield highly accurate SV predictions. With experiments on three human samples,

we show that SVDSS outperforms state-of-the-art methods for SV discovery on long-read data and

achieves significant improvements in recall and precision particularly when discovering SVs in

repetitive and traditionally difficult regions of the genome.
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Chapter 1

Introduction and Background

1.1 Structural Variants
Structural variants (SVs) are defined as medium and large size (> 50 bp) genomic alterations. SVs

have many different types, e.g. deletion, insertions, duplication, and inversions. Complex SVs can

occur as combinations of basic types. Although SVs are not the most ubiquitous type of genetic

variants, the total volume of base-pairs impacted by SVs is far exceeds that of other type of genetic

variant including single-nucleic variants (SNVs) [1]. However, efficient and accurate genotyping

of all types of SVs using whole-genome sequencing (WGS) data is not a trivial task.

It has become clear that SVs are a major contributing factor to human diseases [2–4], pop-

ulation genomics [1, 5] and evolution [6]. Somatic SVs are one of the major causative variants

in different types of cancer [7–10]. Furthermore, study of rare and de novo SVs in disease such

as autism and epilepsy has proven the significant contribution of these variants in such diseases

[4, 11–14].

Recent orthogonal studies of genomic variants have shown that SVs are the least well-characterized

type of variants with many basic questions still not completely resolved, such as the average num-

ber of SVs per sample or sequence biases influencing their formation [15–17]. In addition, the

homology-driven mechanisms behind SV formation (e.g., non-allelic homologous recombination)

has contributed to the complexity of their systematic study [18]. It is believed that a large fraction

of polymorphic SVs are still not fully characterized [19, 20].
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High-throughput short-read sequencing (i.e., Illumina) has been the driving force behind most

of the WGS studies in the past decade. Short-read sequencing is cheap, provides high-throughput

data, and has a low error rate [21]. In the 1000 Genomes Project (1KG) over 42,000 SVs were

discovered and genotyped in over 2,500 Illumina samples [1]. However, in many of the large scale

genomic studies, SVs are being ignored or are merely an afterthought. The main reason behind SVs

not being as thoroughly studied as other types of variants such as SNPs, is due to the complexity of

efficient and accurate discovery and genotyping of these types of variants. It is hypothesized that

lack of comprehensive studies of SVs is one of the contributing factors to the missing heritability

gap observed in complex disorders [22, 23].

Today, WGS data continues to provide invaluable insight into every aspect of biology. In par-

ticular, comparative analysis of multiple samples using WGS data is fundamental in understanding

the genetics of disorders, traits, and evolution. The comparison of differences found between the

exome and genome of affected cases and unaffected controls has been successfully used for find-

ing genetic variants associated with disorders and for guiding the prediction of genes contributing

to such disorders [24]. Population genomics studies benefit from WGS data by finding shared

or discriminating sequences and genomic variants between different populations [25, 26]. Fur-

thermore, evolutionary studies also benefit from such comparative studies in a multiple species

setting [27, 28]. However, short-read sequencing also has several major drawbacks. First, the

assembly of the eukaryotic genomes using short-read sequencing data is non-trivial and compu-

tationally resource-intensive [29]. Second, the short length of the reads (generally below 250bp)

produced by these technologies has caused significant complexity and ambiguity in studying re-

peat regions of the genome [15, 30, 31]. Third, the quality of SVs and other complex variant

calls predicted using short-read data has remained low despite significant bioinformatics efforts,

and still requires orthogonal validations [32, 33]. Finally, several types of genetic variations are

hard to predict using short-read sequencing technologies due to their repeat nature (e.g., VNTR

expansions [34]).

A comparison of the SV predictions from state-of-the-art computational methods (e.g., LUMPY

[35], DELLY [36], TARDIS [32], and Pindel [37]) using short-read Illuimna WGS data against the

2



calls produced using long-read data indicated that many SVs (> 50%) are missed by our best prac-

tices using short-read sequencing data [15]. Thus, there is still a need for approaches which can

efficiently and accurately genotype SVs in short-sequencing samples.

With the introduction of long-read sequencing technologies (e.g., PacBio or Oxford Nanopore)

we have access to much longer reads (> 10 kbp) that can be used to overcome the above-mentioned

shortcomings of short-read sequencing [33, 38, 39]. WGS data from long-read sequencing tech-

nologies makes it possible to discover and further study variants that were either hidden or un-

reliably predicted from short-read data. Recent studies show that more than 50% of SVs being

reported from long-read data were previously missed by short-read sequencing data [15, 31, 33].

1.2 Methods for Discovery of Structural Variants
The current approaches for SV discovery and genotyping are mainly based on first mapping the

reads to the reference genome and then predicting the genotypes by analyzing the mappings for

presence of certain types of signatures showing each type of SV [40], [41], [42]. This mapping-

based framework has several main drawbacks. First, the mapping step is resource intensive, par-

ticularly for short-read samples, often taking upwards of a day for high coverage samples. Second,

genotyping any variant close to heavily repeatitive regions in the reference genome (e.g microsatel-

lites, segmental duplications, etc) would be less accurate due to potentially inaccurate mappings,

meaning the method may fail to use all the sequencing reads that are available for a SV. Further-

more, it is established that predicting complex SVs such as inversion-duplications - that account

for a significant fraction of SVs - using purely mapping-based approaches can result in increased

false discovery rates compared to basic SV types [32, 33, 43]. Finally, the reference genome gaps

and misasseblies could cause further complications in predicting SVs in these regions and result

in an increase in false or missed calls. Delly [36], PBSV [44] and CuteSV [45] are examples of

mapping-based methods for SV discovery.

Mapping-free methods that don’t require read mappings are becoming popular as an alternative

to traditional approaches. DISCOSNP [46] was one of the first approaches developed for predicting

SNPs efficiently using k-mers counts. The tools LAVA [47], VarGeno [48] and MALVA [49] are

3



examples of mapping-free methods developed for fast genotyping of common SNPs using k-mer

counts. Merfin [50] is a mapping-free variant polishing tool that filters a provided VCF file of

variants calls by building the haplotypes and checking for presence of erroneous k-mers not present

in sequencing reads. Most current mapping-free methods for variation discovery and genotyping

are limited to SNPs and small INDELs. BayesTyper [51] is a recent method that can genotype

common SNPs, indels and SVs by performing exact alignment of k-mers to a haplotype graph of

its input variants.

The growing list of such mapping-free methods relying on k-mers for variant detection has led

to development of various tools for fast and accurate k-mer quantification. Some of the tools used

for fast k-mer quantification include JellyFish [52], Khmer [53], DSK [54] and KMC [55].

Finally, assembly-based methods aim to find variations in a sample by building a complete or

local assembly of the reads. However, these methods are very computationally resource intensive

and often require integration of data from multiple different technologies (i.e., long-reads, short-

reads, and Hi-C) [56] and extensive polishing and post-processing to yield a high-quality de novo

assembly suitable for variant prediction, thus making them impractical for large-scale SV discovery

across many samples.

1.3 Methods for Comparative Study of Structural Variants
One of the most common use cases of WGS sequencing is comparative analysis between differ-

ent genomes [57], often from different populations of the same species. Comparative analysis is

usually carried out by mapping reads of the different individuals under study to a common refer-

ence genome, calling variants on each sample and detecting the differences between the observed

variants [15, 42, 58–60]. This strategy is effective for comparing SNPs, however for many SVs

the exact breakpoint position is hard to establish and ambiguities can negatively affect accuracy.

There are several heuristics used for comparing SVs in multiple samples by considering that the

exact breakpoint for the SV might not be known or ambiguous1. These are based on merging SVs

with approximately close breakpoints and considering reciprocal overlaps as a match [33]. Such

1https://simpsonlab.github.io/2015/06/15/merging-sv-calls/
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heuristics tend to work for SVs in simple regions of the genome. However, for more complex

scenarios such as STR/VNTR expansions [61, 62], SVs with adjacent SNP variants [63], or SVs

with breakpoints in repeats (e.g., segmental duplications) this will result in reduction of accuracy

as these heuristics tend to fail [32, 33, 64].

An alternative approach for comparative genome analysis is not to directly compare the pre-

dicted variants among multiple samples but rather to find the sequences containing breakpoints

that are different between samples. This approach can be implemented without the need to map the

reads to the reference genome and predict variants per sample. NovoBreak [65] is one such tool

that utilizes k-mer counts to predict different types of somatic variants between tumor and normal

samples using whole-genome sequencing data. DISCOSNP++ is another method that predicts in-

dels between multiple sequenced samples using raw unassembled reads [66]. DE-Kupl [67] is an

example of a mapping-free method for detecting RNA-Seq variations.

Discovery of de novo variants in families - variants in the child that were not inherited from

either of the parents - is another critical application of comparative analysis. The tools Scalpel

[68], COBASI [69], and Kevlar [70] are mapping free approaches for accurate discovery of de

novo variants using whole-exome sequenced or whole-genome sequenced samples.

Finally, mapping-free approaches have also been utilized in improving association studies using

whole-genome sequencing data. The tool HAWK [71] is capable of fast and accurate discovery

of variants associated with phenotypes of interest by comparing the k-mer frequencies between

cases and controls. HAWK works by first finding “significant k-mers” which are associated with

the phenotype of interest in cases versus controls, and then builds assemblies of these k-mers for

predicting the significant variants.

1.4 Our Contribution
During this dissertation, we present three novel approaches for study of SVs in both short and long-

read data. Chapter 2 introduces Nebula, an extremely fast mapping-free method for genotyping of

common SVs in unmapped Illumina short-read data using k-mer counts. Chapter 3 introduces the

concept of substring-free sample-specific strings (SFS) and the Ping-Pong algorithm for compar-
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ative discovery of all genomic variants between pairs or trios of unmapped PacBio HiFi samples.

Finally, in Chapter 4 we present SVDSS, a hybrid SV discovery method based on the Ping-Pong

algorithm that combines mapping-free signature detection with partial-order alignment (POA) and

local assembly to achieve significantly improved SV calling performance on PacBio HiFi samples.
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Chapter 2

Ultra-efficient Mapping-free Structural
Variation Genotyping Using k-mer Counts 1

2.1 Motivation
Current approaches for genotyping SVs using WGS data are mainly based on first mapping the

reads to the reference genome and then predicting the genotype [40], [41]. Mapping-free methods

have also been explored as an alternative to mapping-based approaches for different genomic and

transcriptome applications. These mapping-free approaches are not limited by the shortcomings of

the mapping algorithms and tend to be much more computationally efficient. However, most such

approaches are currently limited to genotyping small variants such as SNPs and indels. Here we

are proposing a novel mapping-free approach, Nebula, that utilizes k-mer counts for efficient and

accurate genotyping of (common) SVs in unmapped whole-genome sequenced sample.

2.2 Methods
Nebula is a two-stage approach and consists of a k-mer extraction phase and a genotyping phase

(Figure 2.1). Given as input a set of SV coordinates (BED/VCF), the reference assembly (FASTA),

and a set of mapped samples on which the genotype of the input SVs is already known (BAM),

Nebula extracts a collection of k-mers that represent the input SVs (k-mer extraction phase). These

1This chapter was published as Parsoa Khorsand, Fereydoun Hormozdiari. Nebula: Ultra-efficient mapping-free
structural variant genotyper. Nucleic Acids Research, 49(8):e47-e47.
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extracted k-mers will then be used to genotype the same set of SVs on any new WGS sample(s)

without the need to map the reads to the reference genome (genotyping phase). This is done by

counting the k-mers in the WGS reads of the new sample(s) and predicting genotypes using a

likelihood model. A graphical representation of the Nebula pipeline can be seen in Figure 2.1.

Figure 2.1: An overview of the entire Nebula pipeline. The upper half shows the k-mer extraction
stage which takes as input a set of SV coordinates, the reference assembly, and a set of samples
on which the genotypes of these SVs is known. The k-mer extraction stage selects a collection of
k-mers to be used for genotyping. The bottom half shows the SV genotyping phase, which uses
the k-mers extracted earlier to genotype the input SVs on any number of newly sequenced samples
without mapping the reads.

Note that the preprocessing stage is essentially not mapping-free, however, we envision that

the end user will not need to run the preprocessing stage themselves: a common scenario for using

Nebula would be genotyping catalogues of SVs found in large-scale studies such as HGSV ([15])

on new samples. k-mers can be extracted for these SVs using the samples in the study and made

publicly available for download. Users now only need to download the k-mers and use them to run

the genotyping step, avoiding the need to rebuild the k-mer database locally.
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For large-scale studies where it’s not practical to map all samples, an alternative approach

would be to map a small subset of the samples and use them for novel SV discovery and k-mer

extraction (potentially with a mapping-based method), and use the resulting k-mers to genotype

the remaining samples efficiently without the need for mapping. However, we believe this would

be a less common scenario in practice.

2.2.1 Likelihood Model

The key assumption in Nebula is that each SV will increase and/or decrease the copy number of

a specific set of k-mers in the genome. Note that the count of each k-mer in the WGS reads of a

sample is directly correlated with the copy number of the k-mer in the corresponding genome. We

develop a likelihood model to calculate the probability of different genotypes ({0/0, 0/1, 1/1}) per

SV based on the counts of k-mers.

We define a unique k-mer as one that appears in exactly one loci in the sample’s genome. For

a given sample, we assume the number of reads containing a unique k-mer that are coming from

each haplotype to follow a normal distributionN(µh, σ
2
h). We also model the total number of reads

containing that k-mer (i.e., the k-mer’s count) in a diploid genome as the summation of two the

normal distributions representing the number of reads containing the k-mer in each haplotype as

N(µ, σ2) = N(µ1, σ
2
1) + N(µ2, σ

2
2) where µi and σ2

i are mean and variance for the corresponding

haplotype.

However as we generally don’t know which haplotype a sequencing read is from, we will

directly estimate the sample-wide parameters µ and σ2 rather than the haplotype-specific ones. For

this, we select a large number of unique k-mers from conserved regions of the genome (e.g., exons)

and count them in the sequencing reads of the sample. By further assuming that the sequencing

coverage is equal for both haplotypes, the count of a unique k-mer present on only one haploid

can be approximated using the normal distribution N(µ/2, σ2/2). Finally, the count of a k-mer

not expected to be present in the genome is estimated by setting µ to zero and using a small fixed

number for the variance. This provides the basis of the model that we use to calculate likelihood

of SVs genotypes based on the k-mer counts.
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2.2.2 GC Coverage Normalization

Illumina reads tend to have coverage bias depending on the GC content of the region being se-

quenced [72]. As a result, assuming uniform coverage across the whole genome could result in

errors in calculating genotype likelihoods.

To correct for this, we select a large number of unique k-mers (500,000) from regions with

different levels of GC content across the genome and count them to derive a separate estimate of µ

for each GC content level. We define the GC content for a k-mer as the percentage of G or C bases

in a 1000bp window centered on the k-mer. The GC content will have rounded integer values from

0 to 100. µgc is defined as the average of the coverage of all selected k-mers with GC content level

of gc. Figure 2.2 shows the variations in k-mer coverage across the genome based on GC-content

level.

Genotyping k-mers selected from a region with GC level of gc will use the corresponding µgc

value in all likelihood calculations. For the genotyping k-mers selected from the reference genome,

gc is defined as the GC content of the 1000bp window around them. For those k-mers selected from

reads, the GC content of a 1000bp window around the read’s mapping location is used.

The set of k-mers used for deriving coverage estimates is constant and does not need to be

recalculated for each run. These k-mers are provided in JSON format on our Github repository and

can be passed to Nebula as arguments during invocation.

2.2.3 k-mer Extraction

Nebula uses the coordinates of the input SVs, the reference genome, and mapped reads of WGS

sample(s) on which the genotype of the SVs of interest are known to extract k-mers whose copy

number is affected by the SVs. These k-mers either cross the SV’s breakpoint or fall inside the

region that is affected by the SV.

Sequencing reads that cross a SV’s breakpoint are usually soft-clipped when mapped to the

reference genome. For each SV, Nebula looks at soft-clipped reads mapping near its breakpoints

and selects k-mers that overlap the clipped part of the read (Figure 2.3).

Nebula also uses the reference genome to extract additional k-mers from within the region that
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Figure 2.2: k-mer coverage variation with different GC-content levels in the NA19240 sample (40x
sequencing coverage). The x-axis is GC content (0 to 100) and the y-axis shows the estimate k-mer
coverage µgc.

is affected by a SV (e.g inside the deleted region for a deletion or from the sequence that would be

inserted into the genome for an insertion). We also extract unique k-mers that cross the breakpoints

from the reference genome.

With the k-mers selected, Nebula scans the reference genome to filter any k-mer that also

occurs in loci not impacted by the input SVs. Finally, the remaining k-mers are counted on each

of the input sample with known SV genotypes. We use each k-mer independently to genotype its

corresponding SV and filter those k-mers that do not predict the correct genotype. After filtering,

the remaining k-mers are exported as the output of the k-mer extraction phase.

The likelihood of genotype g based on k-mer k with count ck is calculated using the normal

distribution as L(g|k) = p(k|g) = p(ck|N(µk,g, σ
2
k,g)) where µg,k and σ2

g,k are derived from the

sample-wide mean µ and variance σ2 depending on the expected copy number of the k-mer k for

genotype g. For example, for an insertion SV, a k-mer selected from the inserted sequence is

expected to be present on both haploids for a 1/1 genotype with µ1/1,k = µ and σ2
1/1,k = σ2 and

on only one haploid for a 1/0 genotype with µ1/0,k = µ/2 and σ2
1/0,k = σ2/2. We calculate the
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k-mer

Reference
Deleted Region

Alternate Haplotype

(a) Deletion

Reference Insertion

Alternate Haplotype

Inserted Sequence

k-mer

(b) Insertion

Figure 2.3: k-mer extraction from clipped reads for a deletion (a) and an insertion (b). Red and
green segments of the reads are soft-clipped by the aligner and correspond to the similarly colored
regions of the alternate and reference haplotypes.

likelihood of all three possible genotypes using the above formulation and choose the one with the

maximum likelihood as the genotype prediction.
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2.2.4 Genotyping

Once k-mers have been extracted for a set of SVs, the same set of SVs can be genotyped on any

new WGS sample(s) without the need to map the reads. The k-mers are counted on the sample

and genotypes are predicted using an extension of the likelihood model. For a SV supported by

multiple k-mers, the likelihood of each possible genotype g ∈ {0/0, 0/1, 1/1} can be calculated as

L(g|k1, k2, k3, ...) = p(k1, k2, k3, ...|g) where each ki represents a different k-mer.

Note that the counts of k-mers corresponding to the same SV might not be independent as the

k-mers may overlap one another. However, if we assume independence between k-mer counts, we

can approximate the above likelihood by calculating the probability as the multiplication of prob-

abilities of individual k-mers given the genotype (i.e.,
∏

i p(ki|g)). Note that p(ki|g) is calculated as

p(cki |N(µg,ki , σ
2
g,ki

)) where the random variable cki is the count of k-mer ki in that sample. Further-

more, the values µg,ki and σ2
g,ki

are derived from sample-wide µ and σ according to the genotype

g. We calculate the likelihood for all three possible genotypes 1/1, 1/0 and 0/0 for each SV and

choose the one with the maximum likelihood as our prediction.

2.2.5 k-mer Masks and Loci Reduction

Nebula only works with unique k-mers, e.g k-mers that are only seen in one loci in the genome

and are as a result associated with a single SV. However to increase the number of available k-

mers and improve the accuracy of counting, we use a broader definition of a unique k-mer in our

implementation which also takes into account the context surrounding the k-mer.

When extracting k-mers, Nebula stores the immediate left and right 32bp sequences surround-

ing a k-mer as “masks”. A k-mer is considered unique if it is associated with only one SV and the

combination of the k-mer and its masks, 96bp in total, is only seen in one loci in the genome. In

this sense, a k-mer could be present in multiple loci outside of the SV in the genome, but as long as

the SV locus has unique masks that are not seen in any other non-SV loci, the k-mer is still consid-

ered unique. k-mers whose SV locus cannot be uniquely identified using the masks are discarded.

This results in nearly half of the non-unique SV-associated k-mers to become effectively unique,

significantly increasing the number of available k-mers and consequently the method’s recall. We
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refer to this use of masks as “loci-reduction”. Figure 2.4 better shows the effect of loci reduction.

When counting k-mers in the reads, Nebula checks for exact matches for the k-mers, however

once a k-mer is found in a read, only approximate matches are required for the masks, i.e only 28bp

of each mask needs to match. With short sequencing reads being typically shorter than 120bp, it’s

unlikely to see a k-mer and both masks in a read, instead the presence of a single masks is enough,

as long as the mask uniquely identifies the SV locus among all loci of the k-mer.

It is possible that a SNP or sequencing error would result in a SV-associated unique k-mer

appearing in different regions in the genome, however, the use of masks prevents counting of such

instances, eliminating the possibility of overestimating k-mer counts. However, as k-mers need to

exactly match to be counted, Nebula may miss correct instances of k-mers that were affected by

errors or SNPs and hence it is possible for a k-mer’s count to be underestimated. As it would be

computationally expensive to consider the possibility of mismatch for k-mer, the current scheme

is a compromise between speed and accuracy.
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(a) Before reduction

(b) After reduction

Figure 2.4: k-mer loci reduction. Top figure shows the distribution of the number of loci of seem-
ingly non-unique k-mer before reduction (x-axis begins at 2). Bottom figures shows more than half
of k-mers being reduced to one loci considering masks (x-axis now begins at zero).
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2.2.6 Implementation Details

Nebula is implemented entirely in C++ and is heavily parallelized using OpenMP [73]. To improve

speed and reduce memory usage, the 32bp k-mers are hashed into 64-bit integer values in form of

unit64_t types. Similarly, sequencing reads are stored in memory as arrays of 8-bit integers.

This allows kmers to be extracted from reads by moving forward pointer to a unit64_t value and

avoids the overhead of allocating a new string instance for every k-mer.

2.3 Experimental Results
We utilized both simulations and real data to quantify and evaluate the performance of Nebula

using high quality SV predictions from long-read sequencing data on 1KG samples HG00514

(CHS trio, child), HG00733 (PUR trio, child) and NA19240 (YRI trio, child) [33].

2.3.1 Results on Simulated Illumina WGS Data

An extensive WGS simulation was performed to evaluate Nebula’s performance for accurately

genotyping SVs. The simulation consists of two stages: first we mutated a genome with the set of

SVs from the 1KG dataset and used it for k-mer extraction. Second, we simulated a subset of these

SVs on a new sample and used the extracted k-mers to genotype the simulated SVs.

During the first step, a diploid GRCh38 genome was mutated with the union of all inser-

tions and deletions reported for samples HG00514 and HG00733 (11551 total SVs) with random

genotype assignments of 1/0 or 1/1. Short paired-end sequencing reads were simulated from this

diploid simulated genome using wgsim (https://github.com/lh3/wgsim) at 30x coverage and

mapped using BWA-mem [74]. After running the k-mer extraction phase, Nebula found k-mers to

genotype 11330 (98%) of the simulated SVs.

During the second stage of the simulation, another diploid genome was constructed from

GRCh38 and was randomly mutated with the same set of SVs but with all three possible geno-

types (0/0, 0/1 and 1/1) allowed. Paired-end short reads were generated from this genome at 30x

coverage in FASTQ format and the extracted k-mers were used to genotype the sample.

The entire procedure was also repeated at 10x coverage to measure Nebula’s resilience to low

coverage. For the 10x simulation, k-mers could be extracted for 11304 (97.8%) SVs.
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We compared Nebula’s predictions against those of the mapping-based approaches SVTyper

[41] and Delly [36], the graph-based approach Paragraph [75] and the k-mer-based approach

BayesTyper [51]. Due to limitation of SVtyper and Delly on genotyping long insertions [76],

we have excluded these tools from the comparison for insertions. Note that none of the mentioned

methods except BayesTyper can genotype unmapped samples in FASTQ format directly and in-

stead require mapped reads as input.

We calculated four different measures of accuracy for each method: The true genotyping rate

(TGR) is defined as the number of correct genotype calls for each tool divided by the total num-

ber of input events. The false genotyping rate (FGR) is similarly defined as the number of false

genotype calls made by a tool divided by the total number of calls made by that tool. Precision is

defined as the number of true positive calls divided by all the positive calls (1/1 and 1/0) made by

a tool and finally recall is defined as the number of true positive calls produced by a tool divided

by the total number of 1/1 or 1/0 SVs present on the sample.

In both simulations Nebula produces comparable results to state-of-the-art genotyping ap-

proaches without requiring the mapping of the reads to the reference genome. The detailed results

for each simulation, separated by event type are presented in Figure 2.5 and 2.6.

Figure 2.6 shows the comparison of different accuracy metrics between Nebula and other tools

when genotyping the 10x simulation. The lower coverage in the 10x sample results in a higher

FGR for Nebula compared to the 30x simulation, as the separation of 1/1 and 1/0 genotypes based

on k-mer counts has a smaller margin. However Nebula’s accuracy metrics remain on-par with

other methods, showing that the method is robust to low sequencing depth.

2.3.2 Results on 1KG Illumina WGS Data

We also used real WGS data for experimental evaluation of Nebula. We considered the union

of all insertions, deletions and inversions reported from non-repeat regions of the HG00514 and

HG00733 genomes as the set of input SVs [33]. We used these two samples to extract k-mers for

the SVs and used the k-mers to genotype a third sample NA19240 with Nebula. We also used

Delly, SVTyper, Paragraph and BayesTyper to genotype the selected set of SVs on NA19240 and

validated their predictions against the 1KG callset. Figure 2.7 below provides an illustration of
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Figure 2.5: Comparison of different accuracy metrics between Nebula and other methods when
genotyping SVs on the 30x simulation.
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Figure 2.6: Comparison of different accuracy metrics between Nebula and other methods when
genotyping SVs on the 10x simulation.

how k-mers extracted from HG00514 and HG00733 can be used to genotype SVs on NA19240

using Nebula.

For evaluation, we only considered SVs that could be correctly genotyped on HG00514 and

HG00733 using at least one of the four methods (Delly, SVTyper, Paragraph and BayesTyper) in

the comparison. For consistency in validating genotypes, we have merged overlapping deletions

and insertions (less than 10bp apart) in different samples into a single event. A total of 4810

deletions, 7511 insertions, and 81 inversions were considered for our evaluation.

We use the same metrics introduced earlier for comparing the performance of different methods

and we observe that Nebula consistently performs equal to or better than the other state-of-the-art
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Figure 2.7: Example of genotyping SV on NA19240 using k-mers from HG00514 and HG00733.
The green and blue k-mers shows breakpoints of a deletion in HG00514 while the red and yellow
k-mers show breakpoints of an insertion present in HG00733. Only the green and blue k-mers are
observed in NA19240 reads, which result in a genotype of 1/1 for the deletion and a 0/0 call for
the insertion.

methods (Figure 2.8). As the input callset does not include genotypes for inversions and only

marks them as present or not, we have only reported precision and recall for inversions. We

couldn’t genotype the inversions using Delly or BayesTyper and we have thus removed them from

the comparison for inversions. Note that BayesTyper requires exact SV breakpoints for optimal

performance; as a result, its performance for insertions and deletions may have been negatively

affected due to inexact breakpoints for some of the SVs in the dataset.

2.3.2.1 Comparison Results for Mobile Element Polymorphisms on NA19240

Figure 2.9 shows the performance of Nebula and other considered approaches when genotyp-

ing SVs categorized as transposable elements (SVCLASS=ALU,L1,LTR,HERV in the VCF files) on

NA19240. Mobile element polymorphisms can manifest both as deletions and insertions. The

SVs considered in this figure are a subset of those shown in Figure 2.8. Delly and SVTyper are

not included in the comparison due to their limitation in genotyping insertions. Nebula and other

methods perform relatively well on SVs involving mobile elements (e.g., SINE or LINE elements)

and all methods achieve a precision of over 90%.
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Figure 2.8: Comparison of different accuracy metrics between Nebula and other methods when
genotyping SVs on NA19240.
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Figure 2.9: Comparison of different accuracy metrics between Nebula and other genotyping tools
for genotyping MEIs on NA19240. Includes both repeat and non-repeat regions.
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Figure 2.10: Comparison of different accuracy metrics between Nebula and other genotyping tools
for repeat events on NA19240.

2.3.2.2 Comparison Results for SV Calls in Tandem Repeat and Satellite Regions on NA19240

We repeated the experiment on NA19240 using the SVs reported on tandem repeat and satellite

regions of the HG00514 and HG00733 genomes, i.e those with IS_TRF=TRUE in the VCF file from

1KG. The comparison can be seen in Figure 2.10. All tools perform relatively poorly; no method

achieves a TGR above 60% on deletions and all methods have a less than 50% TGR on insertions.

Still Nebula achieves the highest TGR on insertions and the lowest FGR on deletions. This result

shows the difficulty of genotyping SV in repetitive regions with short reads.
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2.3.3 Results on Simons Genome Diversity Project Data (SGDP)

We used k-mers extracted for a total of 14103 insertion and deletion selected from the three 1KG

samples HG00514, HG00733 and NA19240 to genotype the entire set of 279 samples from the

Simons Genome Diversity Project [26] stored in BAM format on the cloud computation platform

Cancer Genomics Cloud (CGC) [77].

On average, we see about 19% homozygous and 24% heterozygous genotype predictions

among all samples. We expect the genotypes to cluster samples based on geographical origin.

For this we preformed a principal component analysis (PCA) on the SV genotypes and plotted

the two most significant components (Figure 2.11). The PCA clearly separates populations of

different continents with a greater level of separation between Africa and the rest (Figure 2.11a).

We repeated the PCA analysis using one million randomly selected SNP calls from the Simons

Genome Diversity Project [26] and plotted the two most significant components (Figure 2.11b).

The plot from Nebula’s genotypes captures the same structure as SGDP’s SNP calls, showing the

accuracy of our method for population studies.

We further checked our genotypes for concordance with Hardy-Weinberg Equilibrium and

compared our result to those made by Paragraph. We used the HWExact function with p-value

of 0.05 from HardyWeinberg R package ([78],[79]). Figure 2.12 shows the results of the test on

insertion SVs calculated on SGDP samples. Paragraph fails on 31% of insertion calls while Nebula

fails on only 26%. Similarly Paragraph fails on 33% of deletion calls while Nebula fails on 27%.

We need to note that although the 1KG SVs are based on GRCh38 coordinates, the SGDP sam-

ples are mapped against GRCh37. With Nebula’s modest resource requirements and independence

from mapping, each sample was genotyped accurately in under an hour and at a cost of $0.30 per

sample without the need to remap the reads to GRCh38.

2.3.4 Time and Memory Performance

Nebula’s main advantage is its ability to directly genotype unmapped samples with high efficiency

and comparable accuracy to the state-of-the-art mapping-based genotypers. Furthermore, Nebula

is not limited to specific types of SVs and can genotype deletions, insertions, inversions, or other
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(a) SV genotypes (Nebula) (b) SNP genotypes (SGDP)

Figure 2.11: Population clustering of SGDP samples

types of SVs using a universal algorithm.

Figure 2.13 shows the runtime and peak memory usage of Nebula and other tools for genotyp-

ing NA19240. Nebula’s genotyping stage has comparable runtime and often lower memory usage

than most other tools with the exception of SVTyper which has the lowest memory usage and run-

time among all the considered methods (excluding mapping time). Nebula is nearly 5 times faster

than BayesTyper, another k-mer-based approach and uses a tenth of the memory while achieving

higher recall and overall accuracy.

Nebula can be as much as 40 times faster than mapping-based methods in genotyping newly

sequenced samples. This is particularly useful in large studies with hundreds to thousands of

samples, where Nebula can be efficiently used to genotype common SVs on the entire cohort an

order of magnitude faster than other approaches.

Although Nebula is meant to genotype unmapped FASTQ files, k-mers can also be counted in

SAM, BAM and CRAM files with slight differences in performance between the different formats

due to parsing and decoding. Unlike many mapping-based tools that require certain fields in input
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(a) (Nebula) (b) Paragraph

Figure 2.12: Comparison of Hardy-Weinberg Equilibrium concordance on insertion SVs on SGDP
data between Nebula and Paragraph.

VCF files, Nebula only requires the SV coordinates (and optionally the inserted sequence for in-

sertions). We also provide a Docker version of Nebula that can be easily deployed to various cloud

computing platforms such as Cancer Genomics Cloud [77].

Nebula also has advantages when genotyping mapped samples. For a mapping-based geno-

typer, the sequencing reads should be mapped against the same reference genome version that the

SV coordinates are from; however, once Nebula has extracted k-mers for a set of SVs reported

against a certain reference genome (e.g GRCh38), it can genotype them on samples mapped to

other reference genome versions (e.g GRCh37) directly and without the need to remap the samples

or lift SV coordinates.

Due to a heavily optimized implementation and the fact that Nebula only counts k-mers that

are associated with SVs, our k-mer counting stage is an order of magnitude faster than that of

BayesTyper and uses less than half of the memory. For our experiments with 1KG data in Sec-

tion 2.3.2, Nebula counts a total of 6.7M genotyping k-mers on NA19240 plus an additional
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Figure 2.13: Comparison of single-thread runtime (a) and peak memory usage (b) of Nebula and
other genotyping tools while genotyping 12321 insertion and deletion SVs on unmapped NA19240
reads. Nebula and BayesTyper are k-mer-based methods and don’t require read-mappings. Delly
and SVtyper mainly parallelize over the number of input samples and don’t benefit from multiple
threads when genotyping a single sample. Peak memory usage excludes the memory usage of
BWA-mem (peak memory usage of BWA-mem mapping was 16GB).

600,000 k-mers for estimating GC-corrected coverage. In our experiments Nebula can count k-

mers at upwards of 500,000 reads per second using a single Xeon processor core.

2.4 Discussion
We have presented Nebula, a novel approach for ultra-efficient and accurate genotyping of any

type of SV without the need to map the reads to the reference genome. We have demonstrated that

k-mers can act as a lightweight and simple alternative for expensive mapping-based methods to

genotype polymorphic SVs. Although several tools have already achieved similar conclusions for

other types of variants such as SNVs [47, 48] and indels [49, 66], Nebula was the first mapping-free

method for genotyping SVs known to us at the time of its publication.

Our proposed approach can easily be modified to genotype other types of variants (i.e., SNVs

and indels) by selecting more k-mers. Thus, we believe that utilizing a combination of these

mapping-free methods can provide a framework for accurate and efficient genotyping all types of

variation using k-mer counts. This would significantly reduce the computational resources needed

to analyze new WGS samples and will speed-up large scale studies.
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Note that Nebula does not require exact SV breakpoints for genotyping SVs and can work with

approximate breakpoints. This is an advantage over approaches that require exact breakpoints or

assembled haplotypes to guide the k-mers selection and accurate variant genotyping. Furthermore

Nebula only counts the k-mers directly associated with the SVs, significantly reducing the runtime

and memory usage compared to other k-mer based approaches.

Furthermore, genotype imputation algorithms [80] can be incorporated into Nebula’s pipeline

to improve the method’s accuracy and ability to genotype variants that are difficult to genotype

solely using k-mers, e.g. SVs with breakpoints in repeat regions of the genome.

Finally, extending Nebula to utilize non-unique k-mers that are shared between different SVs

may help us improve our performance when genotyping SVs in repeat regions of the genome (e.g.

tandem repeats).

2.5 Code and Data Availability
The code and data used in these experiments along with detailed usage documentation and instruc-

tions for reproducing the 1KG experiments is publicly available at https://github.com/Parsoa/Nebula.

Nebula was initially made available as a BioRxiv draft2 in March 2019 and was later presented

at Recomb-Seq 2019. A significantly improved version was published under the title “Nebula:

Ultra-efficient Mapping-free Structural Variant Genotyping” in Nucleic Acid Research in January

2021, available at https://doi.org/10.1093/nar/gkab025.

2.6 Funding
This work is funded in part by the Sloan Research Fellowship FG-2017-9159 and UC-Davis fund-

ing to Fereydoun Hormozdiari.

2https://www.biorxiv.org/content/10.1101/566620v1.full.pdf+html
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Chapter 3

Comparative Genome Analysis Using
Sample-Specific String Detection in
Accurate Long Reads1

3.1 Motivation
One of the main objectives of performing WGS is the comparison of two or more genomes. Com-

parative genomic studies are concerned with multiple individuals from the same or closely-related

species, either in a case versus control setting or within the context of population genomics and

evolution [57]. Discovery of variants between multiple samples using WGS is at the core of most

such analysis.

The mapping-free approaches developed for comparative study of short-read sequencing data

(e.g [81], [49], [71], [67], [68]) are mostly based on finding k-mers that distinguish one sample

from other samples. The idea of computing k-mer that are unique to a target with regards to a

background set of genomes was also proposed in [82]. In general, the length of k-mers(i.e., k) is

a fixed constant and usually short. However, for long and accurate reads we are not limited by

the length of the short reads and can select arbitrarily long k-mers if needed. This flexibility on

length of sequences selected can be advantageous for comparative studying of repeat regions of the
1This chapter was published as Parsoa Khorsand, Luca Denti, Human Genome Structural Variant Consortium,

Paola Bonizzoni, Rayan Chikhi, Fereydoun Hormozdiari. Comparative genome analysis using sample-specific string
detection in accurate long reads. Bioinformatics Advances, no. 1, 2021.
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genome. The tools mentioned above are fundamentally unable to deal with variable-length k-mers

and therefore novel developments are needed to fully explore this direction.

We propose a novel method for comparative analysis of multiple WGS samples using accurate

long-read sequencing data (e.g., HiFi reads from PacBio [83]), without the need to map the reads

to a reference genome or choose a fixed k value. The advantages of utilizing flexible length strings

(e.g., adaptive seeds) in pattern matching has been previously demonstrated [84].

The main novelty is the formulation and the resolution of a new computational problem con-

cerned with enumerating sample-specific strings, while avoiding a combinatorial explosion due to

the quadratic size of the set of potential candidates. We show that this approach enables identi-

fying nearly all sequences spanning variants between two human genomes on actual PacBio HiFi

data. Some of the applications of the proposed comparative genome analysis framework include

finding de novo variants, sequences segregating in a pedigree, or markers distinguishing between

populations (e.g., cases and controls).

3.2 Problem Definition
Consider two sets of strings: T (targets) and R (references). Here by references we mean either 1)

a reference genome, or 2) a set of unassembled reads that are coming from an unknown reference

genome, or 3) a heterogeneous set of reads and genomes that are taken together to be the reference

pangenome of some population of interest. We are interested in enumerating substrings of the

targets that do not appear as exact substrings of the references.

As a motivating example consider two individuals and their respective sets of sequencing reads

T and R. We define a variant as a genomic event that can be described by a single line in the VCF

format, such as a single nucleotide polymorphism (SNP), an insertion or deletion, or a SV such as

a duplication, or a translocation. We define a de novo variant as a variant in the child genome,

defined relative to some reference genome (e.g. hg38), that is not present in either the mother or

the father genomes. de novo variants represent variants in the child genome that are not inherited

from either parents.

More complex forms of genomic variation, e.g. inversion-duplications, can be seen as com-
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binations of variants and therefore are not further considered here. The intuition is that for each

variant, there should exist at least one substring of the genome of T spanning this variant that is not

found within the genome of R. Indeed, the whole genome of T would be one such substring, but

there also likely exist shorter strings than that. Translating this observation to reads, there should

exist for each variant at least one substring of T that is not found in R.

We postulate, and will later experimentally verify, that with long and accurate enough reads

virtually all variants can be found in substrings of T that do not appear in R.

We are now returning to the abstract formulation of our initial problem of finding substrings

of the targets not found in the references. For two strings s and t, we will use the notation s @ t

to indicate that s is a substring of t (and s 6@ t for s is not a substring of t). Formally we want to

enumerate the set S̃ T of all strings s such that

1. there exists t ∈ T where s @ t, and

2. for all r ∈ R, s 6@ r.

In the worst case, the size of S̃ T can be quadratic in the total length of strings in T , which is

too large to be stored or even enumerated. Therefore we will instead seek a reduced set of strings

S T that can be seen as a minimal representation of S̃ T that do not consider strings having proper

substrings in S̃ T (the substring-free property). This is formalized as the following problem:

Problem 1 (Substring-Free Sample-specific strings (SFS) extraction problem) Let T and R be

two sets of strings, targets and references, respectively. Let S̃ T be the set of all strings satisfying

conditions 1 and 2 above. Return the largest subset S T ⊂ S̃ T such that for all s ∈ S T , there does

not exist s′ ∈ S̃ T , s′ , s, where s′ @ s; i.e., S T is the set of all strings from S̃ T for which no shorter

string of S̃ T is substring of them.

A string s ∈ S T is then called a T-specific string w.r.t. references R, or simply specific string

when T and R are clear from the context. Furthermore, a T -specific string s that is a substring of

t ∈ T , will be also called a t-specific string. In the following, we will sometimes omit recalling that

T -specific (and t-specific) strings are substring-free.
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r = ACATGAG
t = ACAGAG

ST = { CAG,
      AGA,
    ACAG, 
     CAGA,
      AGAG,
    ACAGA,        
     CAGAG,       
    ACAGAG}

ST ={ CAG,
      AGA}

r

ST ST

t

~

~

Figure 3.1: Illustration of the SFS framework. Consider a target string t and a reference string
r, each represented by a circle symbolizing all substrings. Blue area: substrings of t not in r; pink:
substrings of r not in t; purple: substrings common to both t and r. We start by enumerating S̃ T ,
consisting of all strings s that satisfy conditions 1 and 2 of Section 2 (i.e., s is a substring of t and
not a substring of r). Then, the set S T (result of SFS) is the largest substring-free subset of S̃ T .

We will refer to Problem 1 as the “SFS problem”, and an instance is illustrated in Figure 3.1.

It is easy to see that SFS can be (inefficiently) solved in O(n3) worst-case time and O(m3) memory,

where n and m are the total lengths of strings in T and R respectively. The set S̃ T can be constructed

by enumerating all substrings of T and checking their membership in a hash table containing all

substrings in R; then another pass over S̃ T constructs S T in linear time and space over the total

length of strings in S̃ T , e.g., through indexing S̃ T using a FM-index. In this paper, we will propose

a novel and more efficient quadratic-time O(n2) algorithm (Algorithm 1 in Section 3.3) using linear

space O(m) for solving the SFS problem. We will also propose a heuristic version of the algorithm

that solves a relaxed variant of Problem 1 in linear time O(n). All these complexities are on top of

the FMD-index construction [85], which in our case can be done in O(m) time and space [86].

The following property shows that it is sufficient to consider instances of the SFS problem

where T is reduced to a single string.
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Property 1 (Local substring-free property) Let T and R be two sets of strings (targets and ref-

erences, respectively). The set S T of T-specific strings w.r.t. R, i.e., the solution of SFS problem,

can be computed as the union of the sets S t with t ∈ T, where S t is the set of t-specific strings.

For the sake of simplicity, assume that T = {t1, t2}. Let S t1 be the set of t1-specific strings

obtained as a solution of the SFS problem on instance ({t1},R) and similarly let S t2 be the set of

t2-specific strings on instance ({t2},R). We need to prove that given S T the solution of the SFS

problem on instance ({t1, t2},R), then S T = S t1 ∪ S t2 . Let us first observe that S T ⊆ S t1 ∪ S t2 as

indeed each string s in S T must be a substring of t1 or of t2 and thus s is a t1-specific string or is

a t2-specific string. Hence let us now prove that S t1 ∪ S t2 ⊆ S T . By construction, any t1-specific

string (as well as any t2-specific string) is a substring of a string in T (condition 1) and it is not a

substring of any string in R (condition 2). Moreover, strings in S t1 (S t2 , respectively) are substring-

free in the sense that each string is not a substring of another one in the same set. We have to

prove that any t1-specific string x cannot be a substring of any t2-specific string y, and vice versa

(substring-free property). We will prove this by contradiction. Let us assume that x is a substring

of y. By definition y is not a substring of R which implies that x is a substring of R: indeed y being

substring-free, it holds that any substring of y is a substring of R. But x being a t2-specific string,

we obtain a contradiction. At this point, the vice versa is trivial to prove.

3.3 Algorithm for Sample-specific String Detection
3.3.1 Preliminary Concepts

The FMD index [85] is a data structure based on the FM-index [87] which indexes a set of strings

and their reverse complements at the same time, allowing to perform search operations on the

index.

The FM-index of the collection {r1, . . . , rn} of strings of sample R is essentially made of the

BWT (Burrows Wheeler Transform) of R which is itself a permutation B of the symbols of R

obtained from the Generalized Suffix Array (GSA) S A of R. Indeed, recalling that S A[i] is equal

to (k, j) if and only if the k-suffix of string r j is the i-th smallest element in the lexicographic

ordered set of all suffixes of the strings in R, then B[i] = r j[|r j| − k], if S A[i] = (k, j) and k < |r j|, or
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B[i] = $ otherwise.

Given a string Q, all suffixes that have Q as a prefix appear consecutively in GSA, where they

induce an interval [b, e) which is called Q-interval. Note that the difference e − b, also called the

width of the Q-interval is equal to the number of occurrences of Q as a substring of some string

r ∈ R. The backward extension operation of an arbitrary character σ applied to the Q-interval of a

string Q allows to determine the σQ-interval in the index. In particular, iteratively performing the

backward operation on a pattern by searching the pattern backwards from its last symbol to its first

symbol, allows to find all occurrences of the pattern inside the strings of the reference sample R in

linear time in the size of the pattern.

The FMD index also allows to apply a forward extension operation of an arbitrary character σ

to a Q-interval of a string Q to determine the Qσ-interval in the index. The implementation of both

forward and backward operations in the FMD index is realized by constructing a FM-index for the

collection R concatenated with the reverse-complement of each string in R. Differently from the

bidirectional BWT [88] which builds two FM-indices, the FMD index builds a single FM-index

for both strands.

By adopting the same notations as in [85], we keep a triple [i, j, l] (called bi-interval) that en-

codes for the Q-interval [i, i + l] and the Q̄-interval [ j, j + l], where Q̄ is the reverse complement of

string Q. Whenever l = 0 the Q-interval (respectively Q̄-interval) is empty and string Q (respec-

tively Q̄) does not occur in IR. We will use notation t[b : e] to denote an interval on string t, i.e.,

t[b : e] is a substring of t, whereas [ib, jb, lb] to denote the corresponding t[b : e]-interval on the

index IR.

3.3.2 Ping-Pong Algorithm

We present Ping-Pong search (Algorithm 1), a novel algorithm to solve the SFS problem between

a set of reference strings and a single target string t ∈ T . Our algorithm computes substring-free

t-specific strings with respect to the reference sample R using the FMD index of R, from now on

denoted IR.

Note that based on Property 1, it is straightforward to extend the proposed algorithm to solve

the SFS problem between a set of reference strings and a set of target strings (i.e., T ). We will give
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Genome T
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Ping-Pong
Search

T-specific
strings

FMD-Index

Figure 3.2: Two genomes R and T are depicted. With respect to genome R, site 1 has no variation
in T , site 2 is an heterozygous insertion in T , and site 3 is an heterozygous deletion in T . Our
pipeline aims to detect T -specific strings by (a) indexing the reads sequenced from R with a FMD
index and (b) analyzing the reads sequenced from T with our novel Ping-Pong search algorithm.
We note that, for ease of presentation, we depict at the end of the pipeline a single T -specific string
per site even though multiple T -specific strings may actually be reported for each site.

more details on this at the end of this section.

The following main property which is a direct consequence of the substring-free property of

specific strings is used to define the generic iteration step of the Ping-Pong algorithm.

Lemma 1 Let R be a collection of strings with FMD index IR and let t be a string that does not

exist in R. Let x be the rightmost t-specific string currently found in t, where x = t[bx : ex]. It must

then be the case that any other t-specific string will begin before bx. Assume such a specific string

y exists and starts at by, it must then be the case that y is the shortest prefix of t[by : ex − 1] that

does not occur in the index.

By definition, two specific strings cannot start at the same position as one cannot be a substring

of the other. Thus given x the rightmost occurrence of a specific string in t, the second rightmost

occurrence y of a specific string must start to the left of bx, i.e., given y = t[by : ey] it must be

that by < bx. By the substring-free property t[by : ex] will not occur in the index as it contains

the substring x which does not occur in the index. On the other hand it must be that ey < ex

otherwise y includes x as by < bx which is not possible by definition of x and y as substring-free

specific strings. Thus ey < ex which implies that y is a prefix of t[by : ex − 1]. Now, y must be the

shortest such prefix not in the index, otherwise it includes another specific string contradicting the

substring-free property, thus concluding the proof of the Lemma.

Based on the previous Lemma, given the interval [bx : ex] of the last detected specific string,

the algorithm will start looking for a new occurrence of a specific-string from the end position
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Algorithm 1: The Ping-Pong algorithm for computing t-specific strings

1 Function PingPongSearch(t, IR)

2 b← |t| − 1

3 [i, j, l]← init(IR, t[b])

// init function initializes a FMD index bi-interval representing a single

character

4 while b ≥ 0 do

5 while l , 0 ∧ b > 0 do // Step 1 - Backward extension

6 b← b − 1

7 [i, j, l]← backwardExtension(IR, [i, j, l], t[b])

8 if l , 0 ∧ b = 0 then return

9 e← b

10 [i, j, l]← init(IR, t[e])

11 while l , 0 do // Step 2 - Forward extension

12 [ib, jb, lb]← [i, j, l]

13 e← e + 1

14 [i, j, l]← f orwardExtension(IR, [i, j, l], t[e])

15 Output t[b : e]

16 [i, j, l]← [ib, jb, lb]
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ex − 1. More precisely, the algorithm keeps track of two search positions b and e inside t which

respectively represent the start and end of a substring of t that may or may not exist in IR and uses

the constant-time forward and backward extension operations defined on the FMD index [85].

Given the index IR and a triple [i, j, l] encoding a Q-interval and Q̄-interval, the algorithm

alternates between extending the Q-interval backward (step 1, lines 5 to 7) and forward (step 2,

lines from 11 to 14) to find t-specific strings. Figure 3.3 illustrates how the algorithm iterates over

an input string t.

During each iteration of step 1, the algorithm backward extends the t[b : e]-interval of IR with

t[b − 1] until the backward extension in the index IR with t[b − 1] is not possible. In other words,

this is equivalent to finding the left maximal match ending at position e and extending it one base

on the left. Now t[b − 1 : e] is a substring of t that is specific to t. However, such a substring is not

necessarily the shortest, since one of its prefixes may also be specific.

Step 2 initializes e to b − 1 and then keeps incrementing e by one position at a time, and

performs a forward extension in IR for the prefix t[b − 1 : e] for each increment. If the forward

extension with t[e + 1] is not possible in IR, the algorithm stops and returns t[b − 1 : e + 1] as the

shortest string beginning from position b − 1 that’s not in IR. In other words, we are looking for

the longest right maximal match starting at position b − 1 and then we are extending it one base

to the right. We note that Algorithm 1 outputs substring t[b : e] since b (resp. e) has been already

decremented (resp. incremented) previously in the corresponding while (i.e., step 1 for b and step

2 for e).

Finally, since substring t[b − 1 : e] is not t-specific and is in the index, it could be extended

to the left to compute a new t-specific which will eventually overlap the last computed t-specific

t[b − 1 : e + 1]. Line 16 initializes this process. Observe that the Ping-Pong algorithm may

compute the same SFS multiple times when processing a string t, however, the output is still a set

of t-specific strings without duplicates.

Theorem 1 Ping-Pong algorithm solves the SFS problem for a string t w.r.t. a reference set R in

time
∑

s∈S t
O(|s| × occs + |t|), where occs is the number of times a string s is output by Algorithm 1

when processing t.
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We start by proving correctness and then time complexity. Based on Lemma 1, the algorithm

searches for a new specific string starting from the end position ex of the last detected specific

string x. The correctness relies on the fact that the Ping-Pong algorithm visits from right to left

each position b of the prefix of length ex of the input string t maintaining the following invariant

property: the algorithm outputs the shortest prefix t[b : e] of t[b : ex − 1] which does not occur in

the index IR (if such a string exists).

Based on Lemma 1, this invariant property allows us to state that the algorithm for any posi-

tion b outputs the t-specific string starting at that position (which is unique by the substring-free

property) if any; since all positions of the input string are processed by the algorithm, all possible

specific strings are output in the end. We now show the invariant by analyzing a single iteration.

Assume that b is a position such that t[b : e] is a t-specific string computed when the algorithm

visits such a position of t. Now, let k be the smallest integer (with k < b) such that t[b− k : e−1] is

the next string x not in the index. This is easily detected by backward extension, i.e., by iterating

k times the loop from line 5 to 7 of the algorithm. After finding k, the algorithm sets k′ = 0 and

computes whether t[b − k : b − k + k′] is in the index for increasing values of k′ and stops as soon

as t[b − k : b − k + k′] is not in the index thus computing the shortest prefix of t[b − k : e − 1] not

in the index. This concludes the proof of the invariant.

To prove Ping-Pong algorithm’s time complexity, observe that it performs a number of back-

ward extensions which is equal to the length of the string t, while it performs a number of forward

extensions that is O(lb) for lb being the length of the specific string retrieved from position b of t.

Thus the time complexity easily follows from the above observation.

3.3.3 Relaxed Ping-Pong Search: A Faster Heuristic Search Algorithm

Observe that by Theorem 1, the worst case time required to solve the SFS problem on a single

string t is O(n2) for n being the length of the string t, assuming that the index I is already available.

Note that in the formula
∑

s∈S t
O(|s|×occs + |t|), |s| can be O(n) in the worst case and

∑
s∈S t

O(|s|) can

achieve the bound of O(n2) since the strings in S t span positions of the string t that are overlapping

and we can have O(n) strings in S t each of length O(n). See Section 3.3.5 for an example. This

clearly implies a quadratic time for solving the SFS problem when the input is no longer a single
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string t but a collection T of strings of total length n.

In order to speed-up the computation of the SFS problem we consider a simple variant of

Ping-Pong algorithm that leads to a linear time complexity by avoiding the computation of specific

strings that occur in overlapping positions of the original string t. The variation is simply obtained

from the pseudo-code of Algorithm 1 by deleting instruction 12 and replacing line 16 with the

instruction [i, j, l] ← init(IR, t[b − 1]). This implies that the search procedure of t-specific strings

starts from one position to the left of the beginning of the last detected string in t. We call this

procedure the relaxed Ping-Pong Search.

Observe that the relaxed version may compute t-specific strings which have non-empty se-

quence overlaps, they however occur in non-overlapping positions of the read t.

It is easy to verify that the relaxed version of Ping-Pong algorithm is linear in the size of string

t. Indeed, in the worst case it performs two index queries per symbol of the input string: each

character is searched in the index one time during the backward extension and one time during the

forward extension (see Figure 3.3). Formally, when estimating the formula
∑

s∈S t
O(|s| × occs + |t|)

of Theorem 1 in this variant, strings in S t occur in positions of t that are disjoint and thus in the

worst case the sum of the sizes of strings in S t is
∑

s∈S t
O(|s| × occs) = O(|t|), thus proving that the

time complexity of the algorithm is linear in the size of the input string.

A more detailed visual comparison of the relaxed and exact versions of the algorithm can be

seem in Figure 3.3.

3.3.4 Relationship Between Edit-distance and the Relaxed Algorithm

The edit-distance is a well known measure in the comparison of two genome sequences. By count-

ing the minimum number of nucleotide insertions, deletions and changes that transform a genome

t into r, the edit distance between t and r, denoted by D(t, r) is clearly an upper bound for the num-

ber of positions with variations in t w.r.t. to r. In the following we show that for a pair of strings

t and r, each t-specific string returned by the relaxed version of Ping-Pong algorithm corresponds

to at least one edit operation that changes t into r, thus showing that D(t, r) is an upper bound on

the size of its output set. Observe that the relaxed version of the algorithm computes a subset of

the T -specific strings w.r.t. R that has the substring-free property.
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Mismatch Forward
extension

Backward
extension

t b e

Algorithm 1

Relaxed
version

(exact version)

Figure 3.3: The Ping-Pong search algorithm (top) starts from the end of the input string t and
alternates between backward and forward extensions. When the backward extension (blue arrows)
ends due to a mismatch (red cross), the algorithm starts a forward extension (green arrows) until
another mismatch is found. After a single iteration (outer while loop of the pseudocode), a t-
specific string t[b − 1 : e + 1] is found and the algorithm restarts the search from position e,
allowing solutions to “overlap” on t. A dashed blue line represents bi-intervals that were already
computed during a forward search (and therefore not recomputed in the next iteration). In the
relaxed version of the algorithm (bottom side), solutions cannot overlap and the search restarts
from position b − 2 instead of e. We note that Algorithm 1 outputs substring t[b : e] since b (resp.
e) has been already decremented (resp. incremented).
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Theorem 2 Given two strings t and r, |S t| the size of the set of strings S t returned by the relaxed

Ping-Pong search with respect to r, then |S t| ≤ D(t, r).

Since the set S t consists of strings induced by non-overlapping intervals of sequence t, any edit

operation changes |S t| by at most 1. The minimum set of edit operations to convert t to r (i.e.,

D(t, r)) will transform t = t0 into successive strings t1, t2, . . . and eventually tD(t,r) = r. For each

operation, the successive sets of relaxed Ping-Pong strings for t2, . . . change in cardinality by at

most 1, i.e. ||S ti | − |S ti+1 || ≤ 1 for 0 ≤ i < D(t, r). Observe that D(t, r) = 0 implies |S t| = 0 thus

|S tD(t,r) | = 0. Thus, total size of |S t| could not have been more than D(t, r) to start.

3.3.5 Example of a Ping-Pong Search in Quadratic Time

An example of string where the Ping-Pong algorithm works in quadratic time in the length of the

input target t is given by the string TT {ACG}n while the reference R consists of the unique string

TT {ACG}
n
2 . Observe that CG{ACG}

n
2−1A, G{ACG}

n
2−1AC are specific strings and each of them

occurs n
2 − 2 times in the target sequence. Each of these strings will be extracted n

2 − 2 times

when running the exact Ping-Pong search whereas they will be only selected once with the relaxed

version of the algorithm.

3.3.6 Implementation Notes

We implemented Algorithm 1 in C++ based on code from ropeBWT2 [89]. The implementation

is deeply parallelized using Open-MP [73]. Parallelization is critical for achieving reasonable

runtimes as the Ping-Pong algorithm is indeed very computationally intensive, in particular for the

exact case.

After creating the index of the reference set R, our code executes the Ping-Pong algorithm on

each target string t ∈ T while also keeping track of the number of times each specific string is seen

(Figure 3.2). As each target string can be processed independently, our code is embarrassingly

parallel. Once all target strings have been analyzed, a post-processing step combines the smaller

solutions into the final solution of the SFS problem. In order to remove specific strings produced

by sequencing errors when our method is run on WGS data, the post-processing step can filter out

all the specific strings occurring less than τ times, with τ being a user-defined cutoff. To efficiently
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perform this step, the implementation stores the specific strings along with the number of times

they occur in the input sample in a hashtable.

3.4 Experimental Results
We use experiments on both simulated and real data to show the effectiveness of the Ping-Pong

algorithm and the SFS concept as a tool for comparative SV discovery. The following sections

detail these experiments.

3.4.1 Specific String Detection in Simulated Human HiFi Trio

We used simulations to test the performance of our proposed method in detecting de novo SVs in

WGS trios (i.e., proband, mother and child). We mutated the GRCh38 genome randomly with 6115

insertions and deletions from the 1KG project [33] to produce two haplotypes for each parent. We

limited the simulations to chromosomes 1-5. We then simulated the child genome by inheriting

variants from the parents and considering recombination inside each chromosome. Finally, we

introduced an additional 17,595 randomly-generated de novo SVs equally divided between inser-

tions, deletions and inversions into the child genome impacting 7,913,593 base-pairs.

We simulated reads from the father, mother and child genomes at different coverage levels (5x,

10x, 20x and 30x) for each haplotype using PBSIM [90] with sequencing error rate and read length

distribution similar to real HiFi data. Specifically, we sampled these parameters from the HGSVC2

PacBio HiFi reads for the HG00733 sample [91] with the error rate averaging at 0.1%. All three

samples were error corrected using ntEdit [92] to remove sequencing errors. The combined reads

of the father and mother were indexed using FMD-index and we searched for child-specific strings

using Ping-Pong algorithm (exact version).

We measured the accuracy of the method using two metrics of recall and precision. Recall

is defined as the percentage of de novo variants that are covered with child-specific strings and

precision is defined as the percentage of child-specific strings that cover a de novo variant. We test

the performance of the method for different τ cutoff values (2 ≤ τ ≤ 6) to study the relationship

between this parameter and sequencing coverage levels and to measure our method’s sensitivity

(Figure 3.5). While the high coverage simulations (30x, 20x and 10x) have constantly high recall
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rates regardless of τ, the low-coverage 5x sample’s recall drops significantly with larger cutoff

values.

We analyzed the child-specific strings from the 30x simulation using τ = 5 in more detail. A

total of 14,381,350 child-specific strings were retrieved with 2,052,144 remaining after filtering

low-abundance strings. The selected child-specific strings achieved > 98% recall and 82% preci-

sion at recovering simulated de novo SVs. To better demonstrate the usefulness of child-specific

strings, we compared the performance of the strings generated using both the exact and relaxed

versions of Ping-Pong algorithm on the 30x simulation against child-specific k-mers of fixed sizes

32bp and 101bp with abundance of at least 5. Child specific k-mers were calculated using KMC3

[93] by subtracting the set of parent k-mers from the set of child k-mers. We calculated precision

and recall by mapping the k-mers and SFS strings to the child haplotypes with BBMap [94]. We

observe that SFS consistently performs better than fixed-length k-mers. The results can be seen in

Table 3.1.

We further analyzed the qualities of the alignments of child-specific strings against all three

genomes in the trio (Figure 3.4). Alignment quality is evaluated based on the number of bases that

do not match. More than 83% of child-specific strings map perfectly to the child genome, and no

(zero) string has a mismatch-free mapping to either parent genomes, indicating that the strings are

truly child-specific.

Figure 3.4: Comparison of the quality of SFS alignments in the 30x simulated trio with τ = 5.
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Figure 3.5: Precision (a) and recall (b) calculated for different coverage levels (5x, 10x, 20x and
30x per haplotype) and cutoff values 2 ≤ τ ≤ 6 in simulation.

Overlapp(ing/ed) Total % Metric

INV 5648 5768 97.91%

SVType DEL 5774 5879 98.21% Recall

INS 5945 5947 99.96%

Child-specific strings 1,690,675 2,052,144 82.38% Precision

Table 3.1: Summary of simulation results.

Finally, we re-ran the simulation at 30x coverage without incorporating any sequencing errors

in the trio. In this scenario, the simulated SVs are the sole source of novel sequences in the

child compared to the parents and therefore we expect every recovered SFS to cover a variant.

Analyzing the 1,720,395 child-specific strings retrieved in this scenario indeed yields a precision

of 100.0%. However, the recall remains the same as in the case with sequencing errors, at 98.70%.

This is because some variants don’t produce novel sequences and thus cannot be captured with our

approach.

3.4.2 Specific String Detection in Real Human HiFi Data

We performed an extensive evaluation of sample-specific strings using real HiFi data to assess

their ability to compare two individuals of different populations. We considered the HG00733
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child (Puerto Rican trio) and the NA19240 child (Yoruba trio). For both these individuals, the

HGSVC2 [91] provides a PacBio HiFi 30x sample. Figure 3.6 reports the length distribution of the

considered samples.

After correcting both samples with ntEdit [92], we indexed the NA19240 sample and we

searched for HG00733-specific strings (from now on we will refer to these strings simply as ‘spe-

cific’) using both the exact and the relaxed version of our algorithm.

Table 3.2 reports the running times and the peak memory usage of our pipeline; the creation of

the FMD-Index was the most time-consuming step.

Based on the results on simulated data (Figure 3.5) and the coverage of the two samples (30x),

we considered all specific strings occurring more than 5 times. The main goal of this post-filtering

is to remove from downstream analyses specific strings that are with high probability the result of

sequencing errors. Using the exact (relaxed, respectively) version of our algorithm we retrieved

34,219,149 (7,125,436, respectively) strings. Figure 3.9 reports information on the lengths and the

abundances of these strings. As expected, the exact version of our algorithm is slower and retrieves

more strings than the relaxed one.

Figure 3.6: Read length distribution for HG00733 and NA19240 samples.
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Figure 3.7: RepeatMasker classification of HG00733-specific strings mapping perfectly to
NA19240 contigs.

3.4.3 Contigs-based Analysis

We first analyzed the quality of HG00733-specific strings by checking whether they are effec-

tively specific to the HG00733 child. To do so, we aligned the strings to the contigs provided by

the HGSVC2 consortium of the two individuals and we counted base differences (substitutions,

insertions, deletions, and clips) within alignments. We mapped strings shorter than 500bp with

BBMap [94] and longer ones with minimap2 [94]. We used two different aligners since BBMap

showed higher sensitivity in mapping short (< 50bp) strings. Figure 3.8 (a/b) shows the results of

this analysis for the exact version of our algorithm (see Figure 3.10 for the relaxed results).

A total of 33,964,009 specific strings were mapped to the HG00733 contigs and 27,326,747

(80%) of these were aligned perfectly, i.e., without any base difference. On the other hand,

33,932,307 specific strings were mapped to the NA19240 contigs but only 158,094 (0.4%) of

these were aligned perfectly.

Note that in principle we do not expect HG00733-specific strings to align perfectly to the

NA19240 contigs. To investigate the small percentage of strings that nevertheless do, we screened

them with RepeatMasker [95] for interspersed repeats and low complexity DNA sequences. In

both scenarios, RepeatMasker masked ∼70% of the considered bases (Figure 3.7), hinting that

they may be the product of repeat-induced incorrect assembly or alignment.
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Figure 3.8: Results on exact HG00733-specific strings. Panels (a, b): comparison of the qual-
ity of specific strings alignments computed against the HG00733 contigs (a) and the NA19240
contigs (b). Panel (c): comparison of the qualities of the specific string alignments representing
(Haplo-compatible) and not representing (Non haplo-compatible) a specific portion of HG00733
haplotypes. Panel (d): comparison of the qualities of non haplo-compatible specific string align-
ments computed against the HG00733 contigs and the NA19240 contigs. Quality is expressed as
number of base differences (mismatches, insertions, deletions, and clips).

To summarize the results of this contigs-based analysis, we introduced the C-precision (contigs-

based precision) metric. Based on the alignments to the contigs, it computes the fraction of

HG00733-specific strings that align perfectly to HG00733 contigs and not perfectly to NA19240

contigs. Out of 27,326,747 specific strings aligned perfectly to HG00733 contigs, 132,031 aligned

perfectly also to NA19240 contigs. The exact version of our algorithm therefore achieved a C-

precision of 79.47%. On the other hand, the relaxed version achieved a C-precision of 90.61%.

This was expected since the relaxed version of our algorithm retrieves a lower number of specific

strings easily achieving a higher precision at the expense of, as we will see in the next section, a

lower recall (see Table 3.3).

This analysis shows that the strings output by our algorithm are effectively specific to the

HG00733 and may be effectively used to characterize differences between the two individuals.

3.4.4 Haplotypes-based Analysis

We evaluated the effectiveness of HG00733-specific strings in covering variant alleles that are

specific to the considered individual. To do so, we considered the phased callset provided by the

HGSVC2 consortium [96] and, after filtering out overlapping variations, we extracted for each

variation and for each haplotype the set of alleles that are present in the HG00733 child but not
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Error Correction NA19240 Indexing HG00733-specific Retrieval Total Time Peak RAM

Ping-Pong
Exact

05:03

20:30
11:59 37:32 242

Relaxed 03:01 28:34 32

k-mers
31-mers

-
03:25 08:28 12

101-mers 03:10 08:13 24

Table 3.2: Running time (hh:mm) and peak memory (GB) of our pipeline and the k-mers pipeline
(on real data). We used 16 threads where possible.

in the NA19240 (we will refer to these alleles as HG00733-specific or simply specific alleles).

Therefore, each variation may have 0, 1 or 2 specific alleles. For instance, if a variation has

genotype 0|2 in the HG00733 child and 1|1 in the other child, we considered alleles 0 and 2 as

specific to the HG00733.

Table 3.3 (column Total) reports the number of specific alleles we considered in our analysis.

We classified each allele with respect to the type of its originating variant (following the classifica-

tion in [96]): SNPs, indels (insertions and deletions of 1-49 bp), and SVs (insertions and deletions

of ≥ 50bp), which include copy number variants and balanced inversion polymorphisms.

Considering the entire set of known variations, we built the haplotypes of the HG00733 indi-

vidual using BCFtools and then we aligned the HG00733-specific strings (occurring more than

5 times) to them using BBMap (strings ≤ 500bp) and minimap2 (strings > 500bp). Finally, we

used BEDtools [97] (intersect sub-command) to find the overlaps between the alignments and the

considered alleles.

We evaluated the quality of our specific strings in terms of recall, i.e., number of specific

alleles effectively intersected by at least one alignment, and H-precision (Haplotype-compatible

precision), i.e., the number of specific strings representing a specific portion of a haplotype of the

HG00733 child. By “specific portion” we mean a subsequence of a HG00733 haplotype induced

by a set of variations that is different from the subsequence of any NA19240 haplotype induced by

the same set.

Table 3.3 reports the results of this analysis. We introduced the H-precision measure since

close alleles (especially SNPs) on a haplotype of one individual may result in a specific string even
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when neither alleles are specific.

Indeed, a set of close alleles may be shared between two individuals but in one individual they

may be on the same haplotype whereas in the other one on different haplotypes. Consider for

instance two nearby variants with genotypes 0|1 and 0|1 in one individual and 1|0 and 0|1 in the

other. In this case, the haplotype containing both 1 alleles on the first individual is specific to the

first individual even though the single alleles themselves are not.

Remarkably, the set of specific strings computed by our method (exact version) intersect most

of the HG00733-specific alleles (> 98%), covering nearly all alleles coming from SNPs and indels

(> 98% and > 95%, respectively) and most of alleles coming from SVs (> 92%).

We observed that a majority of the variants not covered by the sample-specific strings were

indels in stretches of A or T sequences, likely addressable through improvements in homopolymer

error correction.

Out of the 34,219,149 specific strings retrieved by the exact version, 73.43% of them represent

a specific portion of the HG00733 haplotypes (H-precision). Figure 3.8 (c) reports the comparison

in terms of base differences between the alignments representing specific portions of the haplotypes

(denoted as “haplo-compatible”) and those that do not (denoted as “non haplo-compatible”). As

expected, the vast majority of the haplo-compatible strings are aligned perfectly to the haplotypes

whereas the vast majority of non haplo-compatible strings are aligned with errors.

To better investigate why ∼ 27% of the specific strings align well to the HG00733 haplotypes

but do not represent a specific portion of them (accordingly to the considered VCF), we aligned

those strings to the contigs of the two individuals. Figure 3.8 (d) reports the results of this analy-

sis. 2,885,356 strings were aligned perfectly to the HG00733 contigs whereas only 208,330 were

mapped perfectly to the NA19240. Moreover, ∼ 1.8 million specific strings align perfectly to the

HG00733 contigs but not to its haplotypes.

This shows that even though the specific strings we computed do not represent a specific por-

tion of the HG00733 haplotypes (accordingly to the VCF), they are effectively specific to that

individual, confirming their capability in characterizing an individual even in those regions hard

to call and analyze. This leads us to conjecture that a portion of those strings correspond to true
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variants missing from the VCF.

Results on strings retrieved by the relaxed algorithm follow the same trend (Figure 3.10). They

however achieve higher H-precision and lower recall than the exact version (see Table 3.3), likely

due to a lower number of strings returned.

Moreover, the relaxed algorithm may fail in covering close variations: if two variations are

too close to each other, strings retrieved by our relaxed algorithm may cover only the right-most

variation (due to its right-to-left traverse of input strings). See Figure 3.10 for an example.

To put our results in perspective, we compared them with a k-mer method. Similarly to a

HG00733-specific string, a HG00733-specific k-mer is a k-mer occurring in the HG00733 sam-

ple and not in the NA19240. To compute the set of specific k-mers we first counted all k-mers

occurring more than 5 times in the two samples independently with KMC3 [93] and then we re-

trieved the k-mers present only in the HG00733 sample by subtracting the two sets (kmc tools

kmers subtract operation). A total of 97,975,734 HG00733-specific k-mers (k = 31) were re-

trieved. We then mapped those to HG00733 haplotypes with BBMap and evaluated their recall and

H-precision similarly to HG00733-specific strings.

Table 3.3 reports the results of this analysis. HG00733-specific 31-mers achieved lower recall

and H-precision than HG00733-specific strings, although their computation is faster (8h for k-mers

vs 28–37h for Ping-Pong, see Table 3.2). The poor performance of 31-mers can be explained by

their length: a 31-mer located at a variant position might occur elsewhere in the genome, whereas

a longer string would be unique.

We note that long (> 500bp) HG00733-specific strings retrieved by the exact algorithm cover

∼ 1.5% of indels and SVs not covered by shorter ones, proving that longer strings are sometimes

needed to effectively cover a variation.

For this reason, we also performed an analysis using longer k-mers (k = 101). A total of

387,221,925 101-mers were retrieved. However BBMap failed to align that many k-mers in rea-

sonable time. We therefore aligned them with BWA-MEM [98] and computed their recall and H-

precision. Results of this analysis can be found in Table 3.3.

Thanks to their length, 101-mers are able to cover more variations than 31-mers but not as
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many as our (exact) specific strings which are of variable length, sometimes longer than 101bp.

For instance, Figures 3.11 and 3.12 show two examples of variants covered by specific strings and

not by specific 101mers, highlighting the biological usefulness of our method.

Moreover, 101-mers are less precise than (exact) HG00733-specific strings: indeed, due to

their overlapping nature, a false variant (e.g., a sequencing error) will in the worst case yield 101

false specific 101-mers.

We therefore mapped the specific k-mers to the contigs of the two individuals and we com-

puted their C-precision (fraction of specific k-mers mapping perfectly only to HG00733 contigs).

Similarly to specific strings, C-precision of 31-mers and 101-mers is higher then their H-precision

(see Table 3.3), proving one more time that the considered VCF may be incomplete.

Finally, in an attempt to reduce the number of strings obtained using the k-mer method, we

assembled the 31-mers and the 101-mers into unitigs (which correspond to maximally extending k-

mers using their (k−1)-overlaps and stopping at any variation) using BCALM2 [99] and we computed

their recall and H-precision. Results of this analysis, can be found in Table 3.3. Surprisingly,

assembling the k-mers into unitigs did not improve their overall accuracy.

The explanation behind these results must be sought in the incompleteness of the considered

VCF. Indeed, the considered VCF takes into account only 75% of the entire genome: variants are

called only in those regions in which all the haplotypes of the three considered trios were properly

covered by contig-alignments.

3.5 Discussion
We have presented a novel algorithm called Ping-Pong for finding substring-free samples-specific

(SFS) strings with the primary objective of performing comparative genome analysis between

two groups of whole-genome sequenced samples. We have shown that these SFS strings capture

a comprehensive representation of genomic variation between samples of interest. In practice

the proposed approach is capable of finding sequences that span the breakpoints of most variants

specific to each sample.

The proposed approach improves upon fixed-length sequences (i.e., k-mers) for comparative
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(a) Exact Ping-Pong Search (b) Relaxed Ping-Pong Search

Figure 3.9: Correlation between length and abundance of HG00733-specific strings occurring at
least 5 times: 34,219,149 (7,125,436) strings for the Exact (Relaxed) version. For ease of presenta-
tion, we zoomed the region concerning strings of length ≤ 500bp: 33,600,277 (6,750,216) strings
for the Exact (Relaxed) version.

Figure 3.10: Results on relaxed specific strings. Panels (a, b): comparison of the quality of
HG00733-specific strings alignments computed against the HG00733 contigs (a) and the NA19240
contigs (b). Panel (c): comparison of the qualities of the HG00733-specific string alignments rep-
resenting (Haplo-compatible) and not representing (Non haplo-compatible) a specific portion of
HG00733 haplotypes. Panel (d): comparison of the qualities of non haplo-compatible HG00733-
specific string alignments computed against the HG00733 contigs and the NA19240 contigs. Qual-
ity is expressed as number of base differences (mismatches, insertions, deletions, and clips).
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Metric Method Missed Total Hits (%)

Recall

SNPs

Alg. 1 (exact) 39,354

3,147,410

98.75

Alg. 1 (relaxed) 112,940 96.41

31-mers 243,363 92.27

101-mers 46,143 98.53

31-tigs 267,078 91.51

101-tigs 55,627 98.23

indels

Alg. 1 (exact) 31,426

716,226

95.61

Alg. 1 (relaxed) 120,313 83.20

31-mers 131,591 81.63

101-mers 32,944 95.40

31-tigs 175,892 75.44

101-tigs 31,705 95.57

SVs

Alg. 1 (exact) 1,521

20,775

92.68

Alg. 1 (relaxed) 2,948 85.81

31-mers 4,912 76.36

101-mers 1,978 90.48

31-tigs 6,383 69.27

101-tigs 2,698 87.01

All

Alg. 1 (exact) 72,301

3,884,411

98.14

Alg. 1 (relaxed) 236,201 93.92

31-mers 379,866 90.22

101-mers 81,065 97.91

31-tigs 449,353 88.43

101-tigs 90,030 97.68

H-precision

Alg. 1 (exact) 9,093,407 34,219,149 73.43

Alg. 1 (relaxed) 1,583,684 7,125,436 77.77

31-mers 28,561,768 97,975,734 70.85

101-mers 120,109,600 387,221,925 68.98

31-tigs 2,764,640 5,839,695 52.66

101-tigs 2,167,395 5,281,605 58.96

C-precision

Alg. 1 (exact) 7,024,433 34,219,149 79.47

Alg. 1 (relaxed) 669,324 7,125,436 90.61

31-mers 23,170,031 97,975,734 76.35

101-mers 84,211,940 387,221,925 78.25

31-tigs 2,563,021 5,839,695 56.11

101-tigs - - -

Table 3.3: Variant analysis on real human HiFi data. Recall is the fraction of known alleles specific
to HG00733 (w.r.t. NA19240) overlapped by at least one HG00733-specific string (or specific k-
meror specific unitigs). For the sake of completeness, we reported the recall values for alleles
coming from SNPs, indels (2-49bp), and SVs (≥ 50bp), as well as all the considered specific
alleles. H-precision (Haplotype-aware precision) is the fraction of HG00733-specific strings (or
HG00733-specific k-mersor HG00733-specific unitigs) representing a portion of its haplotypes that
is specific w.r.t. the NA19240 haplotypes. C-precision (Contig-based precision) is the fraction of
HG00733-specific strings (or k-mersor unitigs) aligning perfectly only to HG00733 contigs (and
with errors to NA19240 contigs). C-precision for 101-tigs is not present since minimap2 crashed
while mapping long unitigs to the contigs.
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Figure 3.11: Example of allele from a long deletion (bottom track, vertical line) covered only by
a HG00733-specific string (top track) and not by specific 101-mers (mid track). The string of
length 227bp occurs 12 times in the sample and starts exactly at the breakpoint position (vertical
line middle of the image). No 101-mers cover such a breakpoint since at least 227bp are needed
to make any string covering the breakpoint specific to the HG00733 sample. On the left, two
variations (a small insertion and a snp) are covered both by specific strings and specific 101-mers
(note the “overlapping nature” of k-mers).
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Figure 3.12: Example of allele from a long insertion (bottom track) covered only by HG00733-
specific strings (top track) and not by specific 101-mers (middle track). Although the insertion
comes from a tandem repeat region of the genome, specific strings - thanks to their variable-length
nature - are able to cover it.
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genome analysis in three aspects: 1) higher recall: SFS sequences cover a higher fraction of true

difference between two genomes than fixed-length k-mers. This is mainly due to the variable-length

nature of SFS which increases their power in finding strings representative of differences between

genomes in repetitive regions (e.g., segmental duplications). 2) higher precision: our experiments

have indicated that SFS sequences have a higher precision than fixed length k-mers(k = 31 or

101). 3) specificity: our exact algorithm returned between 3x-10x less strings than k-mers, making

results more amenable to further analysis. As a motivating example, we could not exhaustively

map the results of the 101-mer analysis in reasonable time (< 1 week).

Our method also has several major advantages over traditional mapping based approaches for

comparative genome analysis. First, it is not dependent on a prior knowledge of variants in each

sample and thus, its performance is not impacted by the biases in variant prediction methods.

Second, the proposed approach does not require mappings of the reads, hence, ambiguities in read

mappings or biases in mapping algorithms will not impact the results of the proposed method.

One of the main limitations of the proposed method is its reliance on reads with low sequencing

error (e.g., HiFi reads). To be able to accurately predict SFS strings from reads with sequencing

errors we need to utilize an error correction tool such as ntEdit. This method is not expected to

translate well to higher error-rate long reads, unless correction yields nearly perfect reads.

Another downside is the 3x longer running time of the relaxed algorithm compared to k-mers.

This longer runtime is mainly due to the overhead of building the FMD index. We note that the

FMD index can be replaced by a more efficient implementation that offers the same backwards and

forward extension operations, if such a data structure or implementation becomes available, thus

improving the performance of the method.

We believe there are many applications and possible future research directions for SFS. An

obvious application of the experiments presented in this chapter would be the discovery of de novo

variants in the child sample in genomic trios (Section 3.4.1). Another potential application would

be discovery of somatic variants between whole-genome sequences of tumor and normal tissues.

Furthermore, as SFS strings will capture any variant as long as it produces a genomic sequence

not present in the FMD index, our method could be used as an orthogonal approach to catalogue

54



all variants in a given sample against the reference genome. Note that this mapping-free variant

calling approach against a reference genome would be significantly faster than the comparative

analysis scenario as only the reference genome needs to be FMD-indexed. We will explore this

idea more deeply in the following chapter.

3.6 Code and Data Availability
The current implementation of the Ping-Pong algorithm along with detailed usage manual and

instructions to reproduce the results and experiments presented in this chapter is publicly available

at https://github.com/Parsoa/PingPong.

The results in this chapter where published under the title “Comparative Genome Analysis

using Sample-specific String Detection in Accurate Long Reads” in Bioinformatics Advances in

May 2021, available at https://doi.org/10.1093/bioadv/vbab005. Ping-Pong was also

presented as part of the HIT-Seq track of the ISMB conference in July 2021.
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Chapter 4

Structural Variation Discovery Using
Sample-Specific Strings in Accurate Long
Reads

4.1 Motivation
There are many methods developed for prediction of SVs using whole-genome sequencing (WGS)

data produced from different sequencing technologies. The majority of these methods are mapping-

based and try to predict variants by detecting certain SV signatures (i.e., read-depth, read-pair, or

split-read) in mappings of the reads to the reference genome. Mapping-free methods are a more

recent group of approaches that try to predict SVs without mapping the reads to the reference

genome and instead by comparing sequence data between different genomes. Finally, assembly-

based approaches first assemble the sequenced reads into longer contigs and use the assembled

contigs to predict variants.

There are several limiting factors for predicting SVs using each of these frameworks. Predicting

SVs in highly repeated regions of the genome (e.g., segmental duplications) can be particularly

challenging for mapping-based methods due to increased error-rate in read alignments. On the

other hand, purely mapping-free approaches are mostly limited to detecting the presence of a

known variants (e.g provided in a VCF or BED file) as the lack of mapping information means the

method is not able to find new variants. Assembly-based approaches are also very computationally
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intensive and often require integration of data from multiple different technologies (i.e., long-reads,

short-reads, and Hi-C). Such approaches are mostly used for building catalogs of variants in large

studies rather than for individual genotyping.

Here we propose a novel method called SVDSS that combines ideas from all three mapping-

based, mapping-free, and assembly-based frameworks for predicting SVs. Our method utilizes

mapping-free SFS signatures introduced in Chapter 3 and mapping information to cluster reads

potentially including SVs and then performs local assembly and alignment of the clusters for ac-

curate SV prediction. With the combination of different analysis methods, our algorithm is able

to improve SV calling performance compared to other contemporary approaches particularly in

repetitive areas of the genome.

4.2 Methods
We present SVDSS (Structural Variant Discovery with Sample-specific Strings), a novel method for

the discovery of SVs from accurate long reads (e.g., PacBio HiFi) using sample-specific strings

(SFS). SVDSS takes as input a reference genome and a mapped BAM file and produces SV calls in

VCF format along with assembly contigs for SV sites in SAM format.

SFS were defined in Chapter 3 as the shortest substrings that are unique to one genome (or

equivalently its sequencing reads) with regards to another genome. Here our method utilizes SFS

extracted using the Ping-Pong algorithm for coarse-grained identification of potential SV sites and

performs partial-order-alignment (POA) [100] of clusters of SFS from such sites to produce as-

sembly contigs that are then locally aligned to the reference genome to detect SVs. The main

advantage of using SFS is that they are not limited to a fixed length and the algorithm can dynam-

ically find the shortest string for covering the breakpoints of each variant, thus, making SFS ideal

for anchoring potential SV breakpoints.

SVDSS has three main steps as depicted in Figure 4.1:

1. Read smoothing: reads are smoothed to remove sequencing errors, SNPs and small indels

(Figure 4.2).
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2. SFS computation and superstring assembly: SFS are computed from the smoothed reads

(Figure 4.1, 2A) and then assembled into superstrings (2B).

3. SV prediction from superstrings: SFS are clustered based on position and length (Fig-

ure 4.1, 3A) and are assembled using POA (3B). The assembly contigs are mapped back to

the reference and SVs are called from the superstrings (3C).

Before any SFS are extracted, we preprocess the input reads to remove SNPs, short indels (<

20bp) and sequencing errors that may interfere with SV calling (Figure 4.1, step 1). This prepro-

cessing step is called smoothing and is described in detail in Section 4.2.2. Smoothing significantly

reduces the number of extracted SFS while increasing their specificity for the purpose of SV call-

ing. SFS are then extracted from the smoothed reads using the optimal Ping-Pong algorithm [101]

(step 2A). To reduce sequence redundancy, overlapping SFS on each read are further assembled

into superstrings (step 2B).

Next, nearby superstrings are clustered and extended to include unique anchoring sequences

from the reference genome (step 3A). The position of the superstrings with respect to the refer-

ence genome is inferred based on the mapping of the reads they originate from. Each cluster of

superstrings is further divided based on length into up to two subclusters and each subcluster is

assembled with POA (step 3B) to generate haplotype candidates. The abPOA [102] library is used

for POA computation. Finally the resulting consensus sequences are aligned back to the reference

genome to make SV calls (step 3C). We will now explain the different parts of the method in more

detail:

4.2.1 Sample-specific string computation and assembly

SVDSS uses the Ping-Pong algorithm from Chapter 3 to compute SFS. Ping-Pong works by building

the FMD index [85] of the reference genome and querying the reads of a PacBio HiFi sample

against this index and reporting substrings that are not present in the index. The FMD index is a

bidirectional text index with constant-time forward and backward search operations and allows for

extremely fast computation of SFS.
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Figure 4.1: Overview of the SVDSS SV prediction pipeline. 1) Reads are smoothed to remove
SNPs and sequencing errors. 2) SFS are extracted from reads (A) and assembled into superstrings
(B). 3. Superstrings (grey) are clustered based on their placements on the reference genome and
extended until uniquely mapable 7bp anchors on each side (colored) (A). Each cluster is further
clustered into up to two subclusters based on length of the superstring. Each subcluster signifies
a potential haplotype. The subclusters are assembled with POA to generate a consensus sequence
(B). The POA consensus for each cluster is locally aligned to the reference genome and SVs are
called from the mapping information.
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SFS capture nearly all variation in the sample genome with regards to the reference genome.

Each sequencing read including a variant will produce the same SFS for this variant. Indeed,

each sequencing read including a variant produces at least one SFS supporting the variant, hence

a variant will be supported by at least one SFS per read covering it. SV breakpoints usually result

in novel sequences that are captured as SFSs. However, due to the “shortest” property of SFS,

the entire SV sequence is not necessarily covered by a single SFS: a read may produce several

overlapping SFS for long variations.

To remove unnecessary redundancy in the information captured by overlapping SFS, we as-

semble all such overlapping SFS into longer strings called “superstrings”. We note that assembling

SFS into superstrings also reduces the number of SFS by an order of magnitude, making any down-

stream analysis more efficient. As SFS on each read are naturally sorted based on start position, the

assembly stage can be implemented as a single pass over the SFS on each read, merging each SFS

with the next one if they overlap. The resulting superstring can further be merged with the next

SFS if they overlap. More formally, on a read R where k consecutive SFS are overlapping such

that R[i1, j1] overlaps with R[i2, j2] and R[i2, j2] overlaps with R[i3, j3] and . . . R[ik−1, jk−1] overlaps

with R[ik, jk], we merge the strings into the single superstring R[i1, jk].

Assembling SFS into superstrings reduces the number of SFS by an order of magnitude and

removes unnecessary redundancy in the information captured by overlapping SFS. The assembly

procedure effectively merges all the SFS belonging to the same variant into a single long super-

string. This results in superstrings from the same variant to have similar length, sequence and

position with respect to the reference genome which allows them to be easily clustered for SV

prediction.

4.2.2 Read smoothing

The SFS extraction step (Ping-Pong algorithm) requires reads with low error-rates for optimal per-

formance as sequencing errors can result in millions of erroneous SFS to be extracted. While most

such SFS can be filtered later on, they can still affect the accuracy negatively and will increase

runtime by adding excess computational load. For the experiments in Chapter 3 we had used

ntEdit [92] to further error-correct the HiFi reads. However, ntEdit is computationally expen-

61



sive and increases the runtime of the method significantly. Furthermore, the presence of millions of

SNPs and small INDELs in a sample results in tens of millions of additional SFS being extracted

that are not directly useful for genotyping SVs. To solve both of the above problems, we introduce

a preprocessing step called “read smoothing” that aims to eliminate both sequencing errors and

short variants from the dataset. The smoothing algorithm uses information from the CIGAR strings

of BAM alignments to remove any short mismatch between a read and the reference genome.

For segments reported as a match between a read and the reference genome (CIGAR op ‘M’),

the algorithm will replace the read sequence with the corresponding sequence from the reference

genome, automatically removing any single-base mismatches (i.e., sequencing errors or potential

SNPs) in the process. For short (< 20bp) deletions (CIGAR op ‘D’), the algorithm will remove

the deletion from the read by copying back the deleted bases from the reference sequence. Short

(< 20bp) insertions (CIGAR op ‘I’) are similarly smoothed by removing the inserted bases from

the read.

Soft-clipped regions (CIGAR op ‘S’) will be retained as they indicate potentially long in-

sertions or deletions; any SNP or sequencing error inside clipped regions cannot be corrected as

a result. Note that removing an INS or DEL segment results in the merging of the surrounding

‘M’ section in the CIGAR. A smoothed read’s CIGAR strings will have significantly fewer edit

operations than that the original read and it will consist of one or more very long ‘M’ segments

with large INDELs in between and potentially surrounded with soft-clipped regions. Figure 4.2

illustrates the smoothing procedure on an example read.

The above modifications will not change the overall mapping of the read as the mapping end

and begin positions remain the same as before. As a result, the algorithm will not change the order

of the reads in a sorted BAM file. This allows us to quickly smooth a sorted BAM file without the

need to sort it again. However, because the size of the reads may have changed, the index of the

original BAM files is no longer valid for the smoothed BAM and it has to be indexed again with

samtools index.

Note that the Ping-Pong algorithm won’t produce any SFS that is entirely contained in a M

section of a smoothed read as the corresponding sequence has been replaced base-by-base with
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Figure 4.2: Illustration of the read smoothing algorithm. M alignment segments are smoothed from
the reference genome, correcting SNPs (blue) and sequencing errors (red) in the process. Long
indels are preserved while small ones (< 20bp) are removed. The small deletion is smoothed using
the reference genome sequence while the large insertion (yellow) - potentially a SV - is carried
over to the read. The soft-clipped section (green) is directly copied to the read.

reference genome sequence. This significantly reduces the number of SFS that will be extracted

from smoothed reads and allows for a small runtime reduction when processing smoothed reads.

Smoothing relies on correctness of long HiFi read alignments. If an alignment is thought to

be inaccurate, the algorithm won’t modify its sequence. The algorithm keeps track of the average

number of mismatches between M section of alignments and the corresponding reference sequence

as it’s processing the reads. Any read that has more than 3 times the mismatch rate will be ignored.

In our experiments, smoothing effectively reduces the number of extracted SFS by over 90%,

while having effectively no impact on the SV calling pipeline’s recall. Out of the 6.2M reads for the

CHM13 samples, around 5M are smoothed and the rest are deemed to have unreliable mappings

and are discarded. The 1.2M non-smoothed reads from CHM13 are responsible for more than

82% of all SFS extracted from that sample after smoothing. However, the SFS extracted from non-

smoothed reads do not contribute to the method’s recall at all. Indeed excluding the SFS extracted

from non-smoothed reads increases the method’s precision while leaving the recall unaffected.

This leads to the heuristic of excluding non-smoothed reads from the SVDSS pipeline entirely.

Further analysis shows that effectively all non-smoothed reads map to centromere regions of
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(a) GRCh38 (b) CHM13

Figure 4.3: Distribution of read mapping locations on chr1. Almost all non-smoothed reads orig-
inate from centromeres of CHM13, however almost none can be properly mapped the GRCh38,
resulting in an alignment gap around the centromere.

the CHM13. Figure 4.3 below shows the distribution of mapping positions of reads from chr1

on both CHM13 and GRCh38. The large gap around the centromere when mapping to GRCh38

explains the poor performance of non-smoothed reads when predicting SVs against the reference

genome.

In summary, read smoothing is a critical preprocessing step of the SVDSS pipeline. smoothing

reduces the number of retrieved SFS and increases the specificity of the extracted SFS which

results in higher precision in predicting SVs without affecting the recall. The procedure is also

computationally very lightweight, as it essentially rewrites the BAM file in a single pass with

minor modifications. As a result, smoothing is an effective method for increasing the specificity of

SFS for SV calling and improving the computational efficiency of the pipeline.

4.2.3 SV Calling

The main SV-calling algorithm consists of three main steps as shown in Figure 4.1. We will explain

each step in more detail below:

1. Superstrings constructed from the SFS strings are “placed” on the reference genome by

extracting their alignments from read alignments. The superstring are then clustered based

on the loci they are aligned to Each cluster represents one or more SVs that are close to each
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other and may be potentially from different haplotypes.

2. Each cluster is further clustered based on length to generate up to two haplotype candidates

(taking into account the diploidy of the human genome). Each haplotype cluster candidate

is assembled with Partial Order Alignment (POA) to yield a consensus sequence.

3. Each haplotype candidate is locally realigned back to the reference genome region corre-

sponding to its cluster and SVs are called based on the alignment.

4.2.3.1 Superstring placement and clustering

Aligning superstrings back to the reference genome can be time-consuming and error-prone due

to their relatively short lengths, however we note that the necessary mapping information is indeed

already available in the sample’s read mappings. In practice, superstring are not aligned to the

reference genome but instead their alignment is extracted from the alignment of the reads they

originate from. Assuming R[i, j] is a superstring that spans positions i . . . j on read R, its alignment

to the reference will be C[i, j] with C being the CIGAR string of R.

It is possible that a superstring’s mapping is entirely contained in an inserted or clipped part

of the read and hence the mapping extracted above cannot be used to place the superstring on

the reference genome. To avoid this, each superstring is extended on the read from both sides

until we reach a perfectly map-able and locally unique k-mer anchor (the default value for k is 7).

The superstrings that cannot be extended in this manner are ignored. Figure 4.1 3A shows this

extension procedure. The k-mer anchoring idea was influenced by LongShot [103].

We observe that due to this extension and the fact that a deletion or insertion cannot directly pre-

cede or follow a soft-clip in the read alignment, superstrings cannot have both a deletion/insertion

and a soft-clip. This allows us to classify the superstrings based on their alignments into 4 groups:

deletions, insertions, both and soft-clips. We ignore superstrings that don’t include any deletions,

insertions or soft-clips.

Finally, we cluster the superstrings of each type based on their their mapping location: super-

strings that have close enough mappings (by default less than 500bp apart) are placed in the same

cluster. The resulting cluster’s interval will be the smallest interval in the genome that completely
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includes all of its superstrings. Each cluster now represents either a single SV or several close

or overlapping SVs possibly from different haplotypes. Based on the type of superstrings in each

cluster, the type of SV being predicted by the cluster is tentatively known. However, for clusters

including soft-clipped superstrings, the type of SV is not immediately known and we need further

processing to determine the type.

4.2.3.2 SV calling from non-clipped clusters

Each cluster so far includes one or more close SVs. However, as the human genome is diploid,

the SVs might indeed be from different haplotypes. To resolve the different haplotypes, we further

split each cluster into subclusters of superstrings of similar size and sequence. This is based on

the assumption that different alleles at each site have different length and sequence. The similarity

of sequences is calculated using rapidfuzz 1. The two largest resulting subclusters (in terms of

number of superstrings) are selected as haplotype candidates since the human genome is diploid.

If only one subcluster is returned, it signifies a homozygous variant. SVDSS then computes a

consensus sequence for each subcluster using Partial Order Alignment.

Assume that a cluster c spans the interval G[sc, ec] of the reference genome G. Most strings of

the cluster only partially cover this interval (i.e., they align to positions [s, e] with sc ≤ s < e ≤ ec)

while some others span the entire interval (i.e., they align to positions [sc, ec]). In order to perform

a more accurate POA, SVDSS requires all the strings in a cluster to be of the same length. Therefore,

SVDSS fills the gaps preceding or following a superstring using the reference genome. For instance,

if a superstring S aligns to [s, e] with sc < s < e < ec, then the resulting sequence will be

G[sG, s − 1] + S + G[e + 1, eG] (where + is the string concatenation operator). The main goal of

this extension is to summarize the information contained in a cluster and to minimize the difference

between the superstrings coming from different reads. The extended superstrings in each subcluster

are then aligned to each other using POA to generate a consensus (Figure 4.1 3B).

Finally, each POA consensus sequence is realigned locally to the reference genome window

corresponding to its cluster using parasail [104] and the alignment’s CIGAR information is

analyzed to call and detect SVs (Figure 4.1 3C). A weight is assigned to each SV prediction based

1https://github.com/maxbachmann/rapidfuzz-cpp
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on the number of superstrings that support it. A higher support indicates a more confident call. By

default, we filter SV calls having less than four supporting superstrings however The confidence

threshold can also be determined at runtime using the --min-cluster-wight option.

4.2.3.3 SV calling from soft-clipped clusters

Clipped reads usually include SVs that are larger than the read length and hence cannot be captured

entirely in a single read. For very large insertions, reads completely contained within the inserted

sequences are either not mapped at all or will have low-quality mappings and are likely discarded

during smoothing.

For clusters including soft-clipped superstrings, the type and coordinates of the SV are decided

by analyzing the mapping positions of the superstrings. Each clipped cluster is further divided into

“left-clipped” and “right-clipped” subclusters based on which end of each superstring is clipped.

The position of each subcluster is calculated by averaging over start position of all its superstrings.

For a left(right)-clipped subcluster lc (rc), lc.p (rc.p) represents the start position.

We then analyze the distance between the subclusters to detect SV types based on Figure 4.4.

In case of a deletion, it is the case that lc.p > rc.p. Ideally all left-clipped superstring should have

the same start position lc.p and all right-clipped ones should have start position rc.p, however in

practice there is some variation in positions due to mapping imperfections, in particular in repetitive

regions. For an insertion it should ideally be the case that rc.p = lc.p, but in practice there is again

some variation so we allow that rc.p − lc.p <= 1000.

In our experiments with the CHM13 sample, out of the 300 SV calls from clipped regions, only

40% were correct. Furthermore, nearly all SVs correctly reported from clipped SFS were already

being detected with non-clipped superstrings, meaning that they were short enough compared to

the read length. Due to this, SVDSS does not by default use clipped SFS for SV detection. However,

this can be optionally enabled by passing the --clipped flag. We recommend manual inspection

of clipped SV calls.

4.2.3.4 SV Chain Filtering

In repetitive regions of the genome such as STRs, the structure of the DNA may result in reads

originating from the same locus mapping to slightly different coordinates. This will result in mul-
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Figure 4.4: SV calling from clipped superstrings. A deletion SV is seen on the left and an insertion
on the right. Green shows left clips and blue shows right clips. lc.p and rc.p shows the start
position of the left-clipped and right-clipped subclusters. Note that the lc.p < rc.p for insertion
and lc.p > rc.p for deletions.

tiple SV calls for the same variant but at slightly different positions. To reduce the number of false

positives and eliminate such redundant calls, we perform a “chain-filtering” post-processing step.

This step sorts all predicted SVs based on coordinates and filters out consecutive SVs of the same

type with similar sizes, keeping only the one with the highest weight. This heuristic is indeed very

effective, and on CHM13 our precision is improved by nearly 2% after chain-filtering while the

recall is not affected.

4.3 Results
One complexity in comparing different tools for calling SVs is the imperfectness of available

callsets. Missing variants and potentially false predictions affect almost all published callsets, and

even the most high-quality callsets have been reported to have a ∼ 5% false discovery rate [15].

Furthermore, many callsets are constructed using state-of-the-art but imperfect tools and are thus

biased towards these methods [105].

For these reasons, we have opted out of using popular callsets (e.g. GIAB) in our exper-

imental benchmarking and instead constructed our ground truths using the recent high-quality

haplotype-resolved de novo assemblies built for a few samples. We considered the assemblies

available for three samples CHM13, HG002, and HG007 and built the callsets by comparing each

assembly against the GRCh38 reference genome using the assembly-to-assembly SV calling tool

dipcall [105]. By calling SVs directly from the high-quality assemblies, we can exhaustively
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benchmark our SV calling approach against state-of-the-art tools using unbiased and comprehen-

sive SVs callsets.

4.3.1 Whole-genome SV Discovery Performance

We experimentally validated the accuracy of the SVDSS pipeline in calling SVs from three whole-

genome samples sequenced using PacBio HiFi technology: the homozygous CHM13 sample from

the telomore-to-telomere (T2T) project [56] and the HG002 and HG007 samples from the GIAB

project [106] corrected using DeepConsensus [107]. These samples were chosen because of the

availability of high-quality and effectively complete assemblies for them. Furthermore, the HG002

and HG007 samples show higher accuracy than standard HiFi samples corrected using only pbccs.

The use of both homozygous (CHM13) and heterozygous (HG002 and HG007) samples allows for

more comprehensive analysis of SV calling methods.

We mapped each sample against the reference genome using pbmm2 [108] and then we called

SVs on each sample using the SVDSS pipeline. We compared our approach to 4 state-of-the-art

mapping-based SV callers: pbsv [44], cuteSV [45], sniffles [109], SVIM [110] and on a recent

preprint of a POA-based method, debreak [111]. We ran each caller on the three considered

samples mapped with pbmm2 to call insertions and deletions.

We validated the calls of each tool against the truthset constructed with dipcall using the

benchmarking utility Truvari [112]. Truvari reports precision, recall, and F1 score for each

method. From this comparison, we further exclude calls made in haplotype gaps in the respected

assemblies reported by dipcall (i.e., regions of the reference genome not covered by both haplo-

types), as any such call would be classified as false positive regardless of correctness. Our method

consistently outperforms other methods in all three measures of accuracy when considering the

full genome (Table 4.1 - Full Genome row).

On HG002 and HG007 samples, SVDSS outperforms the other callers’ recall by 5 to 10% while

achieving the highest precision on the full genome. SVDSS has been able to report ∼ 2,400 more

correct calls on HG002 and ∼ 1,600 more calls on HG007 without introducing many false calls.

SVDSS also achieves the highest recall on CHM13 and reports ∼ 400 more true positive calls than

other methods while maintaining a very high precision.
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We note that the improvement achieved by SVDSS over other approaches is less significant for

CHM13 compared to the other two samples (improvement of 2 to 5% in recall while achieving

similar precision to other tools). We believe this is partially due to homozygous nature of the

CHM13 sample that makes SV calling relatively easier for all approaches.

Figure 4.6(a) reports the length distribution of the SVs called by each tool on the HG007

sample. On HG007, the number of SVs reported by each tool ranges from 34,827 to 38,659 with

SVIM reporting the lowest number of SVs and SVDSS reporting the highest number. Overall, all

the tools report more insertions than deletions with shorter SVs (of length ≤ 100bp) being more

frequent than longer ones. Moreover, all the tools show a clear peak at around 300bp suggesting a

good capability in calling potential Alu mobile elements.

We also repeated the above experiment on HG007 using different aligners to test how SV

callers are influenced by how reads are aligned. We tested all 5 callers in combination with

minimap2 [113] and ngmlr [114]. Overall, the choice of aligner seems to have minimal impact on

the SV calling performance of all methods. Table 4.2 reports results for this analysis.

Finally, we also investigated how read coverage affects SV calling performance. To this aim,

we subsampled the HG007 sample (coverage 15x) down to 5x and 10x and we ran the 5 considered

approaches on these two newly-created samples. Our SVDSS approach was also able to outperform

other approaches using 10x sequencing coverage in all the metrics of interest (precision, recall,

and F1, see (Figure 4.6(b) and Table 4.3).

When sample coverage is low (5x), pbsv achieves the highest recall (63.2%) at the expense of

lower precision (58.6%) whereas other tools achieve similar high precision (ranging from 87.4%

of SVIM to 92.9% of SVDSS) but low recall (ranging from 46.2% achieved by SVDSS to 51.6%

achieved by cuteSV). On the other hand, with higher coverages of 10x and 15x, SVDSS achieves

the best precision and recall, outperforming other approaches.

4.3.2 SV calling performance in hard-to-analyze regions.

For further analysis, we divided the genome into two regions based on difficulty of calling variants

based on GIAB’s definition of tiers [106]. Tier 1 accounts for nearly 86% of the genome spanning

2.51 Gbp, includes 50% or less of the total expected number of SVs, and is likely biased towards
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HG002 HG007 CHM13

Region Tool P R F1 P R F1 P R F1

Full Genome

SVDSS 88.4 78.2 83.0 90.1 76.5 82.7 87.3 84.6 86.0

cuteSV 86.0 68.6 76.3 88.3 68.1 76.9 87.1 79.7 83.2

pbsv 86.9 68.8 76.8 84.9 68.6 75.9 84.6 82.7 83.6

sniffles 82.0 67.3 73.9 86.7 64.1 73.7 86.4 81.4 83.8

SVIM 83.5 65.1 73.2 84.9 64.7 73.4 90.1 79.9 84.7

debreak 88.6 67.5 76.6 90.1 64.2 75.0 83.7 79.6 81.6

Tier 1

SVDSS 95.2 85.5 90.1 95.2 82.7 88.5 95.3 93.4 94.5

cuteSV 90.9 82.9 86.7 93.0 79.9 86.0 94.8 93.1 93.9

pbsv 95.7 83.1 89.0 89.7 80.5 84.9 94.0 93.7 93.9

sniffles 87.7 81.1 84.3 92.3 75.9 83.3 87.2 93.6 90.3

SVIM 90.1 81.1 85.4 91.5 77.9 84.2 96.6 92.5 94.5

debreak 96.8 82.5 89.1 96.2 76.4 85.2 93.7 93.0 93.3

Extended Tier 2

SVDSS 82.7 72.3 77.2 84.6 70.2 76.7 80.3 77.4 78.8

cuteSV 80.9 57.0 66.9 82.3 56.0 66.6 79.9 68.1 73.6

pbsv 78.4 57.2 66.1 78.8 56.4 65.7 76.0 73.3 74.6

sniffles 77.8 56.1 65.2 80.3 52.1 63.2 72.7 73.2 72.9

SVIM 76.4 52.0 61.9 76.2 51.2 61.2 83.4 69.3 75.7

debreak 80.4 55.3 65.5 82.3 51.9 63.7 74.4 68.1 71.1

Table 4.1: Comparison of performance of SVDSS and other methods on calling SVs. Accuracy
of each tool is reported in terms of Precision (P), Recall (R), and F-measure (F1). Results are
further broken down by different regions of the genome.
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pbmm2 minimap2 ngmlr

Tool P R F1 P R F1 P R F1

SVDSS 90.1 76.5 82.7 91.9 79.3 85.1 93.0 62.8 75.0

cuteSV 88.3 68.1 76.9 89.8 68.8 77.9 90.5 64.3 75.2

debreak 90.1 64.2 75.0 91.3 64.8 75.8 86.0 60.8 71.2

pbsv 84.9 68.6 75.9 85.0 68.7 76.0 84.9 67.9 75.5

sniffles 86.7 64.1 73.7 90.8 66.1 76.5 87.7 61.3 72.2

SVIM 84.9 64.7 73.4 87.2 65.7 74.9 81.9 64.4 72.1

Table 4.2: Comparison of performance of SVDSS and other methods when calling SVs on HG007
reads mapped with different aligners. Accuracy of each tool is reported in terms of Precision (P),
Recall (R), and F-measure (F1). Results are whole-genome.

5x 10x 15x

Tool P R F1 P R F1 P R F1

SVDSS 92.9 46.2 61.7 91.6 70.3 79.5 90.1 76.5 82.7

cuteSV 92.0 51.6 66.1 90.5 65.2 75.8 88.3 68.1 76.9

pbsv 58.6 63.2 60.8 66.0 68.1 67.0 84.9 68.6 75.9

sniffles 91.4 46.9 62.0 89.7 60.0 71.9 86.7 64.1 73.7

SVIM 87.4 49.9 63.5 86.3 62.3 72.4 84.9 64.7 73.4

Table 4.3: Comparison of performance of SVDSS and other methods on HG007 at different cover-
ages. Accuracy of each tool is reported in terms of Precision (P), Recall (R), and F-measure (F1).
Results are genome-wide.
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easy-to-call SVs 2.

On the other hand, Tier 2 accounts for nearly 0.8% of the genome and consists of ∼ 6000

difficult-to-genotype sites. The remaining 13% of the genome mostly consists of centromeres,

telomeres, and microsatellite regions (e.g., STRs) which are generally more difficult to genotype

because of their repeat structure and due to the ambiguities of the reference genome. Because the

high-quality assemblies that are the basis of our analysis include effectively complete genomes for

each individual, we decided to extend Tier 2 to also include these regions (Extended Tier 2). This

way, we are able to more thoroughly evaluate callers’ accuracy across the entire human genome

and we do not limit our analysis to easier-to-call regions (i.e., Tier 1). Figure 4.5 provides a break-

down of the tiers we considered in our analysis.

In this analysis, we considered the callsets produced by SVDSS, cuteSV, pbsv, sniffles, and

SVIM starting from pbmm2 alignments. Table 4.1 reports the results of this analysis. Results on

both tiers follow the same trend seen on full genome, with SVDSS managing to call more correct

SVs without introducing many false calls. As expected, all tools achieve higher accuracy on Tier

1 regions, that are easier to analyze. Furthermore, we observed that the improvement between

performance of SVDSS and other tools widens in the Extended Tier 2 regions of the genome (Ta-

ble 4.1). Remarkably, on difficult-to-analyze regions (i.e., extended Tier 2), SVDSS achieves the

highest recall, outperforming other callers by 15%, /14% and /4% on the three considered individ-

uals.

To further provide evidence of correctness for true positive calls in these hard regions, we

analyzed how these calls are shared among the tested callers using an upset plot [115]. Upset

plots are an alternative to Venn diagrams that represents more conveniently the intersections of

multiple sets. Figure 4.6(c) shows that out of the 10,333 total SVs in the truth set for HG007 (i.e.,

the dipcall callset), 3,923 (38%) of these SVs are correctly called by all the tested approaches

whereas 2,444 (24%) are not detected by any tool. Remarkably, 739 SVs (7%) are detected only

by our pipeline, partially explaining the higher recall it is able to achieve. SVIM has the second-

2https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_

Integration_v0.6/README_SV_v0.6.txt
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Figure 4.5: Breakdown of reference genome GRCh38 into tiers. Grey areas show Tier 1 regions
and red areas correspond to extended Tier 2 regions.
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highest number of specific calls at 130. Figure 4.12 shows the distribution of SVDSS-specific vs

SVIM-specific calls on chr1, chr2 and chr3 of the HG007 sample. SVDSS also detects the highest

number of SVs that would have been exclusive to other tools, i.e., 242 (2.3%) calls are shared by

SVDSS and pbsv, and 215 (2%) are shared between SVDSS and sniffles.

We manually investigated some of the SVs that are exclusively called by SVDSS and we dis-

covered that a some of such calls are SVs that exhibit two different alleles on the two haplotypes.

These SVs account for heterozygous non-reference SVs, i.e., SVs genotyped 1/2 (see two examples

in Figures 4.7 and 4.8) as well as pairs of close SVs whose alleles come from different haplotypes

(see an example in Figure 4.9). Other callers cannot always discern between the two haplotypes

and heuristically call only one of the two alleles, inferring the length of alleles by combining the

information coming from the two haplotypes.

To further validate our claim, we considered each SV called only by our pipeline and we

computed its distance to the closest SV. Out of a total of 792 SVs exclusively called by SVDSS, 345

(44%) are located at the exactly the same position as another called SV, hence are heterozygous

non-reference SVs, while 227 (29%) SVs are close (≤ 100) to another SV, and 107 (14%) SVs are

too distant to another SV to be considered heterozygous events (Figure 4.11). The SVDSS pipeline

is able to more correctly manage these situations since it better discerns haplotypes supported by

the input reads. Indeed, after clustering SV signatures by position, SVDSS splits each clusters in

two subclusters, one per haplotype, hence allowing it to call two different alleles - if needed.

4.3.3 Baseline Error Rate Comparison

We further investigate the lower bound on baseline false discovery rate of the proposed method

by comparing the HiFi reads from CHM13 against the high-quality genome assembly built on

the same samples (T2T [56]). Given the almost perfect T2T CHM13 assembly produced using

multiple orthogonal technologies, it is expected that an ideal SV caller would predict no SVs when

comparing CHM13 reads against this assembly. Thus, we propose to use a simple experiment to

establish the lower bound on the baseline false discovery rate of different methods.

Ideally, our pipeline should generate zero SVs calls as no SFS should be extracted when query-

ing CHM13 reads against the T2T assembly of the same sample. This will not be the case in
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(a) SVs size distribution on HG007 (b) Coverage titrations on HG007

(c) TPs distribution against HG007 (Ext. Tier 2)

(d) TPs distribution against CMRG

Figure 4.6: (a) Distribution of SVs lengths reported by different tools on HG007 (Full Genome).
(b) Lineplot presenting results of the coverage for 5x, 10x, and 15x. (b) Analysis of shared calls
(True Positives) between different tools on HG007 (extended tier 2). (d) Venn diagram showing
shared calls (True Positives) between different tools on the 273 medically-relevant genes consid-
ered in the CMRG callset.

practice due to the abundance of sequencing errors in particular from repetitive regions. Still, we

expect the method to produce very few variant calls in this ideal scenario. The number of variants

reported in such a scenario would also establish an empirical baseline for the method’s error-rate.

As a side-objective, we will also investigate the resulting SV calls to find if our method has dis-

covered any true SVs missing from the T2T assembly. Due to the effectively homozygous nature

of the CHM13 genome, any true variant discovered must be homozygous. However it is possi-

ble artifacts accumulated in the cell-line and actual heterozygosities in the genome may result in

heterozygous SVs being reported.

We built the FMD index for v1.1 of the CHM13 assembly and extracted SFS from smoothed

CHM13 PacBio HiFi data against this index. We then passed the SFS through the SVDSS pipeline

for SV discovery. Our pipeline discovers a total of 102 SVs. For comparison, we repeated the

above experiment with the other tools pbsv, cuteSV, SVIM and sniffles. Table 4.4 below in-
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Figure 4.7: Heterozygous insertion in the HG007 sample (chr1:2522791). dipcall called two
alleles of length 555 and 621. SVDSS agreed with dipcall correctly calling both alleles. cuteSV,
pbsv, sniffles, and SVIM, instead, called just one allele of length 601, 621, 621, and 602, re-
spectively.

Figure 4.8: Heterozygous deletion in the HG007 sample (chr7:32786841). dipcall called two
alleles of length 51 and 75. SVDSS agreed with dipcall correctly calling both alleles. cuteSV,
pbsv, sniffles, debreak and SVIM, instead, called just one allele of length 63, 75, 75, and 63,
respectively.
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Figure 4.9: Two close insertion alleles in the HG007 sample (chr13:33360658 and
chr13:33360681). dipcall called two alleles of length 207 and 230. SVDSS agreed with
dipcall correctly calling both alleles. cuteSV, pbsv, sniffles, debreak and SVIM, instead,
called just one allele of length 218, 230, 230, and 218, respectively.

Figure 4.10: Full IGV image for the double insertion falling in the SLC27A5 medically-relevant
gene.
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Figure 4.11: Bar plots showing the distance (in basepairs) of the SVs exclusively called by SVDSS
and the closest SV. A distance of 0bp means that the SV is a heterozygous non-reference SV (i.e.,
a SV with two alleles and genotyped 1/2).

cludes a summary of the result. We calculate the baseline False Discovery Rate for each tool as

the number of calls it makes against T2T divided by the number of calls it makes against GRCh38.

SVDSS has the lowest number of calls against the T2T assembly and also has the lowest baseline

error rate at.

We further investigated if any of our calls are indeed true variants. The T2T project provides

a list of known heterozygous sites on CHM13 3 and 13 of our SV calls intersect these regions,

suggesting that may be actual heterozygous alleles missing from the homozygous assembly. We

also report the number of intersecting calls in Table 4.4 for every tool. SVDSS has the highest

ratio of calls intersecting known heterozygous regions. We did additional filtering on the calls

using Merfin [50], a variant call polishing tool that filters VCF files based on whether the variants

introduce k-mers not found in the sequencing reads. Only one of our calls passes Merfin’s filtering

and we verify that the call seems to be a heterozygous site (Figure 4.13).

3https://github.com/marbl/CHM13-issues
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Figure 4.12: Comparison of SVDSS-specific and SVIM-specific Calls on Extended Tier 2 (red)
on HG007. SVDSS (blue) has the highest number of specific calls on HG007 (739) while SVIM
(green) has the second highest number of such calls (130).
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Tool GRCh38 calls T2T calls Baseline FDR Het Intersections Het Precision

SVDSS 23777 102 0.4% 13 12.7%

cuteSV 22654 667 2.94% 23 3.4%

pbsv 23707 616 2.59% 28 4.5%

sniffles 22680 314 1.38% 22 7.0%

SVIM 22176 948 4.27% 29 3.0%

debreak 23432 834 3.55% 24 2.8%

Table 4.4: Comparison of baseline FDR rate of SVDSS and other methods. Number of SV calls
against both the reference genome and the CHM13 assembly is included. Baseline FDR is calcu-
lated as division of first two columns for each tool. The last two columns report the number of
known CHM13 heterozygous (het) sites covered by each method and the precision of the method
based on the number of covered heterzoygous sites.

In summary, SVDSS produces only 102 SV calls against the CHM13 assembly, some of which

may be actual true heterozygous variants. Our analysis doesn’t result in discovery of any homozy-

gous SVs missed by the T2T assembly, however, this was expected given the quality of the assem-

bly. Furthermore, with our pipeline producing 23777 SV calls on CHM13 against GRCh38, this

amounts to a baseline error rate of less than 0.4% showing that SVDSS is robust to false detection

of variants.

4.3.4 Discovery of SVs with Clinical Importance

Finally, to perform a more thorough analysis of the HG002 individual, we considered the CMRG

(Challenging Medically Relevant Genes) callset provided in [116] and we evaluated callers’ accu-

racy against it. The CMRG callset consists of 250 SVs falling in 126 challenging and medically

relevant genes that were excluded from the previously published GIAB benchmark [106] due to

their complexity: compound heterozygous insertions, complex variants in segmental duplications,

and long tandem repeats. The CMRG callset was created by diploid assembly of the haplotypes

using hifiasm and then dipcall, proving one more time the effectiveness of assembly-based meth-
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Figure 4.13: Example of heterozygous SV detected by our pipeline on CHM13 HiFi reads.

ods for hard-to-analyze SVs.

As done previously, we computed the accuracy of SVDSS and the other 4 mapping-based SV

callers using Truvari. Out of the 250 SVs contained in the CMRG callset, SVDSS correctly called

232 SVs followed by pbsv (228) and cuteSV (225), sniffles (218) and SVIM (218). As shown

in Figure 4.6(d), 5 SVs are exclusive to SVDSS, while 2 are missed exclusively by SVDSS: one was

reported but with a length just under the evaluation threshold of Truvari, the other was missed

due to being only detectable in clipped reads, which SVDSS does not consider by default. We then

manually investigated the SVs that were exclusively called by SVDSS, discovering that all them

exhibited two alleles, one per haplotype (i.e., heterozygous non-reference SVs).

This result confirms previous findings [116] that heterozygous insertions in tandem repeats are

among the most challenging classes of SVs to discover with current methods.

Figure 4.14 shows one of the SVDSS-exclusive SVs, a double insertion inside the SLC27A5

gene on chromosome 19. Although the two haplotypes can be easily distinguished from read

alignments, thanks to the adjacent heterozygous SNPs, the tested callers disagree on which allele
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Figure 4.14: Example of SV falling on medically-relevant genes that have been correctly called
exclusively by SVDSS. On the right panel, IGV sketch of the 602bp region around the SV (the full
region is reported in Figure 4.10). The sketch reports the HiFi reads alignment along with the
haplotype alignment performed using minimap2 (as part of the dipcall pipeline). On the left
panel, details on the SVs reported by the CMRG callset, SVDSS, and the other alignment-based
callers considered in our evaluation.

to call. For instance only SVDSS calls two alleles of length 168bp and 224bp agreeing with the

CMRG callset, whereas pbsv and sniffles report only one of the two (168bp). Surprisingly,

cuteSV and SVIM report a single allele of length 185bp, which does not match any of the evidence

from read alignment. Additionally, we considered the portion of the high-quality HG002 assem-

bly covering that locus (chr19:58487900-58488500) and we checked its alignment against the

reference genome (Figure 4.14 and 4.15). Although the considered locus is in a repetitive region

(as also proven by the noisiness of the dotplots), the haplotype alignment confirm the presence of

two alleles of different size.

4.4 Implementation Notes
The exact version of the Ping-Pong algorithm as presented in Chapter 3 is very computationally

intensive. This means that the time it takes to load a batch of reads from a BAM or FASTQ file

(I/O overhead) is negligible compared to the time it takes to process them. With the introduction
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Figure 4.15: Dotplots of the alignment between the two HG002 high-quality haplotypes and the
GRCh38 reference genome around the heterozygous SV falling in the medically-relevant gene
SLC27A5 (locus: chr19:58487900-58488500).

of read smoothing and the resulting reduction in number of extracted SFS, processing times be-

come fast enough that I/O overhead becomes significant. As a result, we have introduced several

optimizations to improve the algorithm’s throughput.

4.4.1 Dual and Triple Buffering

Ping-Pong algorithm works by loading batches of reads from input files and processing them in

parallel. The I/O performance can be improved by parallelizing the loading of next batch of reads

with the processing of current batch. We refer to this optimization as “dual buffering”. Two buffers

are allocated in memory, each holding a batch of SFS. The input file is processed in a while loop:

at each iteration one buffer is processed while the other buffer is being populated with new reads.

At the next iteration the buffer pointers are swapped and the newly-populated buffer is processed

while the other buffer is flushed and reloaded.

During smoothing, processed reads have to be written back to the BAM file. This necessitates

the introduction of a third buffer. At any iteration, reads in one buffer are being smoothed, the

second buffer is being populated and the third buffer is being written to the output file and flushed

afterwards. Figure 4.16 below shows this triple-buffering scheme in practice.
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Figure 4.16: Triple-buffering for read smoothing. One buffer is processed while the other two
buffers are populated and written out respectively. The buffers switch roles each iteration

4.4.2 Multi-thread BAM Decoding

While the multi-buffering optimizations significantly improve our performance, their impact is still

limited by the overhead of decoding BAM files. By default, “htslib” loads one BAM entry from the

file at a time, however it can be configured to use multiple reads when decoding reads by setting

bgzf_mt flag when opening a BAM file. Using 8 internal decoder threads makes BAM decoding

up to 5 times faster. We can make BAM I/O even faster by building htslib with libdeflate.

This replaces the internal decoder implementation with a more efficient one, making BAM pro-

cessing around 3 times faster.

When combined, these optimizations yield a 15x speed improvement in loading BAM files.

The massive speedup means that once again I/O overhead becomes insignificant compared to com-

pute overhead and so we don’t expect to see the same level of speedup in overall performance. In

our experiments, SFS extraction becomes about 9x faster than before with the above optimizations,

while read smoothing becomes 6-7 times faster.
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Figure 4.17: Overview of the SVDSS pipeline. Input files are shown in blue, output files are shown
in green and intermediate and internal files are showed in grey. Square boxes show commands. The
reference genome is FMD-indexed and the HiFi BAM sample is smoothed, then SFS are extracted
and assembled into superstrings and finally SV calls are made from the superstrings. The only
external command needed is samtools index to re-index the smoothed BAM file. The FMD
index can be reused once created for a reference genome.

4.4.3 Command-line Usage

Figure 4.17 shows the complete pipeline for genotyping a sample sample.bam mapped to refer-

ence genome GRCh38.fa with SVDSS. All parts of the pipeline are implemented as subcommands

of the SVDSS package. The only needed external command is ‘samtools index‘ for indexing the

smoothed BAM file. Extensive documentation for using the package is available on the Github

repostiory https://github.com/Parsoa/SVDSS.

4.4.4 Runtime

SVDSS is a generally compute-intensive method due to the theoretical complexity of SFS extrac-

tion with the Ping-Pong algorithm, POA and local alignment. However, with deep parallelization

and careful optimizations, our runtime remains low compared to similar methods. We provide a

breakdown of the runtime of different stages below:

• The FMD index creation and querying are handled internally by the FMD implementation

from [85] and have not been further optimized. FMD index creation for the GRC38 ref-
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erence genome takes around 30 minutes with 16 cores. The index can be reused for any

number of samples so its creation is a one-time expense.

• read smoothing takes only about 15 minutes to run on 16 cores for a 30x Hi-Fi sample

(CHM13 in our experiments).

• SFS extraction is the most computationally intensive step and takes about 45 minutes on 16

threads for the CHM13 HiFi data. Increasing the number of threads to 48 bring the runtime

down to 25 minutes. Due to the heavy I/O load of SFS extraction, increasing the number of

threads does not necessarily bring linear time improvements.

• Finally, the SV calling steps is extremely fast and takes less than 8 minutes.

Overall the runtime of the SVDSS pipeline is less than 70 minutes for a high-coverage (30x)

HiFi sample on 16 cores excluding index creation time. The experiments in this chapter were

performed on a computer with a Intel(R) Xeon(R) processors with 24 cores and 256GB of RAM.

For comparison, all the other methods tested in this chapter with the exception of cuteSV

took more than 90 minutes to run using the same number of threads and runtime options (where

allowed) to genotype the CHM13 samples. cuteSV was the fastest method and impressively took

only 5 minutes to genotype a sample. The slowest method was Sniffles, taking upwards of 4 hours

to genotype CHM13.

All compared methods used less than 64GB of memory during their runtime. SVDSS peaks at

34GB of memory during the SV calling stage due to holding several (depending on the number

of threads) POA graphs and local alignment dynamic programming matrices in memory. The

smoothing and SFS extraction step each use constant amount of memory. The smoothing stage

keeps 3 batches of 10000 BAM reads each in memory at any given time while the Ping-Pong

algorithm keeps 2 batches of 10000 reads each plus up to 10 million SFS pointers (read ID, start

and end positions) in memory.
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4.5 Discussion
In this chapter we introduced SVDSS, a hybrid method for SV discovery that combines advantages

of different SV discovery approaches to achieve significant improvements in SV calling. Our

method achieves much higher recall compared to state-of-the-art approaches in repeated regions of

the genome (i.e., Extended Tier 2) while maintaining equal precision. Furthermore, SVDSS is also

more robust to low coverage samples compared to other methods and displays significantly lower

baseline error rate.

While the availability of low-error long-read data enables more extensive variant discovery on

new samples, SV discovery in repetitive regions of the genome such as STRs and microsatellites

remains both challenging and hard to evaluate. Despite SVDSS’s significant performance improve-

ments in repetitive regions, precision and recall in these regions are still lower than on the rest of

the genome.

SVDSS currently supports the discovery of unbalanced SVs, i.e. deletions and insertions, how-

ever as the underlying SFS signatures capture nearly all variation in the genome, a next step could

be to extend the method to finding other classes of SVs such as inversions and duplications. Our

current approach for building a SV truth set from assemblies (dipcall) does not evaluate inver-

sions and duplications, yet a recent study [117] provides one of the first gold standards.

We also highlight the importance of accurate benchmarks for SV calling methods. We eval-

uated SVDSS on a recent benchmark extensively curated over the HG002 sample [116] with the

specific purpose of producing SVs occurring in genes of medical relevance, which are still consid-

ered challenging for mapping-based and assembly-based SV prediction methods even with highly

accurate long reads. This benchmark revealed that while other methods fail to call heterozygous

SVs in these regions, SVDSS was able to discover 5 heterozygous SVs in medically relevant gene

regions.

4.6 Code and Data Availability
The implementation of the SVDSS algorithm along with detailed usage manual is publicly available

at https://github.com/Parsoa/SVDSS.
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The results in this chapter are pending journal review as of the time of this thesis’s completion.
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Chapter 5

Conclusion and Future Works

5.1 Conclusions
Throughout this dissertation, we have explored the applicability of mapping-free and sequence-

based methods for analysis of SVs in both short and long-read data. This chapter summarizes the

key findings of the presented works and proposes future research directions.

In Chapter 2 we presented Nebula, a k-mer-based mapping-free method for genotyping com-

mon SVs on Illumina short-read data that is an order of magnitude faster than similar approaches

and can detect all types of variants using a universal k-mer-counting scheme. We showed that

Nebula matches state-of-the-art mapping-based methods in accuracy and offers significant runtime

advantage, in particular for large-scale studies. The method is theoretically applicable to other

organisms as well, however we have not tested it on non-human data.

In Chapter 3 we presented the notion of SFS as an effective mapping-free tool for capturing

effectively all variation in one PacBio Hi-Fi sample with regards to another sample or the reference

genome. We introduced the theoretically-optimal Ping-Pong algorithm for SFS extraction and

presented an efficient and highly-parallelized implementation of the algorithm for our experiments.

Finally, we experimentally verified that the SFS framework can indeed detect nearly-all (> 98%)

between a pair or trio of HiFi samples in both real and simulated data.

Finally, in chapter 4 we introduced SVDSS, a hybrid method that incorporates advantages of

mapping-based, mapping-free and assembly-based approaches for discovery of deletion and inser-

90



tion SVs in PacBio HiFi sample. SVDSS uses the concept of SFS and the Ping-Pong algorithm from

Chapter 3 along with partial-order assembly and local alignment to achieve significant improve-

ments in recall and precision when genotyping SVs from highly-repetitive regions of the genome.

We experimentally validated SVDSS’s performance on three PacBio HiFi samples and showed that

it consistently outperforms state-of-the-art purely mapping-based methods.

Despite the progress in quality of long-read data and the accuracy of computational methods,

SV discovery in repetitive regions of the genome such as STRs and microsatellites is still a chal-

lenge. This is evidenced by comparisons presented in Section 2.3, Section 3.4.2 and Section 4.3.

Despite SVDSS’s significant performance improvements in repetitive regions, precision and recall

in these regions are still lower than the rest of the genome. We believe that improving SV calling

performance in these regions should be the focus of the community’s efforts in the near future.

5.2 Future Works
There are several different directions to extend and expand on the works presented here. In par-

ticular, we believe there are many potential venues for extending the SFS framework presented in

Chapter 3 beyond what we have already explored. We have discussed few of them below.

5.2.1 Improved SV Calling with Nebula using SNP information

The k-mer-counting based framework presented in Chapter 2 can be further extended for targeted

genotyping of different types of variants including SNPs and small INDELs in short-read samples.

Furthermore this allows incorporation of SNP-imputation information to the pipeline and can pro-

vide additional signal for genotyping SVs that may otherwise be difficult to genotype alone with

k-mers. The inclusion of SNP discovery could also make Nebula more useful for large association

studies that aim to test many samples for presence or absence of certain variants.

5.2.2 Variant Call and Assembly Polishing with SFS

As SFS will cover nearly all variations in a sample, a potential application of the method would be

the comparative discovery of variants that are missed using traditional mapping-based approaches

between two samples. The SFS remaining after filtering the SFS covering the variants predicted
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using a mapping-based approach may indicate potentially novel variants missed by that method.

SFS can also be used as a method for measuring quality of genome assemblies. By building the

FMD index of the assembly and querying the sequencing data used to build the assembly against

the index, one can potentially find variants that are missed by the assembly or other structural

imperfections. SFS could be more flexible than fixed-length k-mers in this application due to their

ability to cover long mismatches.

5.2.3 Deeper Theoretical Study of SFS

A potential venue for more theoretical research could be to investigate the connection between

SFS strings and other related but different concepts in stringology, such as maximal exact/unique

matches, minimum unique substrings [118], and shortest uncommon superstrings.

5.2.4 Inversion and Complex SV Discovery with SVDSS

We have so far utilized SFS for discovery of insertions and deletions, however as SFS capture

nearly all variants regardless of type, the SVDSS framework could be extended to allow for detec-

tion of more complex types of SVs as as well. Inversions are generally difficult to detect using

mapping-free methods due to the reverse-complemented inversion sequence producing the same

canonical substrings as the non-inverted sequence. However, inversions can be detected using SFS

by building two FMD indices, one for each direction of the reference genome and by detecting

the presence of SFS from one direction on reads that are originating from the opposite haplotype.

This allows for detection of the presence of inversions, however additional processing is required

to establish the exact bounds of the variant which can be done by performing local assembly of

reads and checking for the start position of the inversion base-base, guided by the placement of

SFS sequences.

5.2.5 STR and VNTR Expansion Estimation Using RNNs

Short Tandem Repeats (STRs) are formed by multiple consecutive repetitive occurrences of small

DNA motifs also called repeat units in the genome. The repeat units are usually short 2bp or

3bp motifs but can also be longer. Mutations in STRs have been linked to several diseases and

genetic disorders such as Huntington’s disease [119]. These mutations often manifest as positive
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or negative changes in the length of the repeat array, referred to as “expansions”. Tandem repeats

with larger repeat units (> 6bp) are called Variable-Length Tandem Repeats (VNTR). VNTRs

can occur in coding regions of the genome and sometimes close to genes [120], and as a result,

changes in their lengths can have significant functional effects. VNTRs have also been linked to

many genetic disorders [121].

While many methods exists for genotyping of STRs [122, 123], relatively few methods have

been developed for the specific problem of VNTR genotyping. Deep learning-based approaches

have been recently applied with great effectiveness to biological problems such as SNP genotyp-

ing [124] and the long-unsolved problem of 3D protein structure prediction [125]. We believe

that the application of these methods to the problem of STR and VNTR expansion could allow

significant improvements over current methods.
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Laurent C Francioli, Amit V Khera, Chelsea Lowther, Laura D Gauthier, Harold Wang,
et al. A structural variation reference for medical and population genetics. Nature, 581
(7809):444–451, 2020.

[5] Peter H Sudmant, Swapan Mallick, Bradley J Nelson, Fereydoun Hormozdiari, Niklas
Krumm, John Huddleston, Bradley P Coe, Carl Baker, Susanne Nordenfelt, Michael
Bamshad, et al. Global diversity, population stratification, and selection of human copy-
number variation. Science, 349(6253), 2015.

[6] Peter H Sudmant, John Huddleston, Claudia R Catacchio, Maika Malig, LaDeana W Hillier,
Carl Baker, Kiana Mohajeri, Ivanela Kondova, Ronald E Bontrop, Stephan Persengiev, et al.
Evolution and diversity of copy number variation in the great ape lineage. Genome research,
23(9):1373–1382, 2013.

[7] ICGC The, TCGA Pan-Cancer Analysis of Whole, Genomes Consortium, et al. Pan-cancer
analysis of whole genomes. Nature, 578(7793):82, 2020.

[8] Yilong Li, Nicola D Roberts, Jeremiah A Wala, Ofer Shapira, Steven E Schumacher, Kiran
Kumar, Ekta Khurana, Sebastian Waszak, Jan O Korbel, James E Haber, et al. Patterns of
somatic structural variation in human cancer genomes. Nature, 578(7793):112–121, 2020.

[9] Kai Ye, Jiayin Wang, Reyka Jayasinghe, Eric-Wubbo Lameijer, Joshua F McMichael, Jie
Ning, Michael D McLellan, Mingchao Xie, Song Cao, Venkata Yellapantula, et al. System-
atic discovery of complex insertions and deletions in human cancers. Nature medicine, 22
(1):97–104, 2016.

[10] Emma C Scott, Eugene J Gardner, Ashiq Masood, Nelson T Chuang, Paula M Vertino, and
Scott E Devine. A hot l1 retrotransposon evades somatic repression and initiates human
colorectal cancer. Genome research, 26(6):745–755, 2016.

94



[11] Jeremiah A Wala, Pratiti Bandopadhayay, Noah F Greenwald, Ryan O’Rourke, Ted Sharpe,
Chip Stewart, Steve Schumacher, Yilong Li, Joachim Weischenfeldt, Xiaotong Yao, et al.
Svaba: genome-wide detection of structural variants and indels by local assembly. Genome
research, 28(4):581–591, 2018.

[12] Tom Walsh, Jon M McClellan, Shane E McCarthy, Anjené M Addington, Sarah B Pierce,
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