
UCLA
UCLA Electronic Theses and Dissertations

Title
On the Learning Behavior of Adaptive Networks

Permalink
https://escholarship.org/uc/item/7dk059rf

Author
Chen, Jianshu

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7dk059rf
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

On the Learning Behavior of Adaptive Networks

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Electrical Engineering

by

Jianshu Chen

2014

c� Copyright by

Jianshu Chen

2014

Abstract of the Dissertation

On the Learning Behavior of Adaptive Networks

by

Jianshu Chen

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2014

Professor Ali H. Sayed, Chair

This dissertation deals with the development of e↵ective information process-

ing strategies for distributed optimization and learning over graphs. The work

considers initially global cost functions that can be expressed as the aggregate

sum of individual costs (“sum-of-costs”) and proceeds to develop di↵usion adap-

tation algorithms that enable distributed optimization through localized coordi-

nation among neighboring agents. The di↵usion strategies allow the nodes to

cooperate and di↵use information in real-time and they help alleviate the e↵ects

of stochastic approximations and gradient noise through a continuous learning

process. Among other applications, the resulting strategies can be applied to

large-scale machine learning problems, where a network of agents is used to learn

a common model from big data sets that are distributed over the network.

The work also develops di↵usion strategies for the solution of another class

of problems where the global cost functions are expressed as regularized “cost-

of-sum” forms. This situation arises when a large-scale model is stored and

learned over a network of agents, with each agent being in charge of a portion

of the model and it is not feasible to aggregate the entire model in one location

due to communication and privacy considerations. It is shown that the “cost-

ii

of-sum” problem can be transformed into a “sum-of-costs” problem by using

dual decompositions and the concept of conjugate functions. The collaborative

inference step in the dual domain is shown to generate dual variables that can

be used by the agents to update their model without the need to share these

model parameters or the training data with the other agents. This is a powerful

property that leads to an e�cient distributed procedure for learning large-scale

models over networks.

The dissertation carries out a detailed transient and steady-state analysis

of the learning behavior of multi-agent networks, and reveals interesting results

about the learning abilities of distributed strategies. Among other results, the

analysis reveals how combination policies influence the learning process of net-

worked agents, and how these policies can steer the convergence point towards

any of many possible Pareto optimal solutions. The results also establish that

the learning process of an adaptive network undergoes three well-defined stages

of evolution with distinctive convergence rates during the first two stages, while

attaining a finite mean-square-error (MSE) level in the last stage. The analy-

sis reveals what aspects of the network topology influence performance directly

and suggests design procedures that can optimize performance by adjusting the

relevant topology parameters. Interestingly, it is further shown that, in the adap-

tation regime, each agent in a sparsely connected network is able to achieve the

same performance level as that of a centralized stochastic approximation strat-

egy even for left-stochastic combination strategies. These results lead to a deeper

understanding and useful insights on the convergence behavior of coupled dis-

tributed learners. The results also lead to e↵ective design mechanisms to help

di↵use information more thoroughly over networks.

iii

The dissertation of Jianshu Chen is approved.

Adnan Darwiche

Suhas N. Diggavi

Lieven Vandenberghe

Ali H. Sayed, Committee Chair

University of California, Los Angeles

2014

iv

Table of Contents

1 Introduction . 1

1.1 Single-Agent Adaptation . 1

1.2 Multi-Agent Adaptation . 4

1.2.1 Sum-of-Costs Formulation 4

1.2.2 Cost-of-Sum Formulations 8

1.2.3 Social Learning . 11

1.3 Objectives . 12

1.4 Overview of Main Results . 15

1.5 Organization . 21

1.6 Notation . 24

2 Sum-of-Costs Formulation . 26

2.1 Problem Formulation . 27

2.2 Di↵usion Adaptation Strategies 29

2.2.1 Iterative Di↵usion Solution 29

2.2.2 Adaptive Di↵usion Solution 37

2.3 Simulation Results . 40

2.3.1 Distributed Estimation with Sparse Data 40

2.3.2 Distributed Collaborative Localization 44

2.4 Conclusion . 48

3 Cost-of-Sum Formulations . 49

v

3.1 Motivation . 50

3.2 Problem Formulation . 51

3.2.1 General Dictionary Learning Problem 51

3.2.2 Dictionary Learning over Networked Agents 55

3.2.3 Relation to Prior Work . 57

3.3 Learning over Distributed Models 58

3.3.1 “Cost-of-Sum” vs. “Sum-of-Costs” 58

3.3.2 Inference over Distributed Models 59

3.3.3 Recovery of the Primal Variables 69

3.3.4 Choice of Residual and Regularization Functions 70

3.3.5 Distributed Dictionary Updates 70

3.4 Important Special Cases and Experiments 75

3.4.1 Tuning of the inference step-size 76

3.4.2 Image Denoising via Dictionary Learning 78

3.4.3 Novel Document Detection via Dictionary Learning 83

3.5 Conclusion . 94

3.A Derivation of Some Typical Conjugate Functions 95

3.B Overview of Duality Theory . 99

3.C Overview of Proximal Gradient Algorithms 102

4 Mean-Square Analysis . 107

4.1 General Di↵usion Adaptation Strategies 107

4.2 Modeling Assumptions . 110

vi

4.3 Di↵usion Adaptation Operators 115

4.4 Transient Analysis . 120

4.5 Bias Analysis . 131

4.6 Steady-State Performance . 136

4.7 Conclusion . 140

4.A Properties of the Operators . 140

4.B Bias at Small Step-Sizes . 143

4.C Block Maximum Norm of a Matrix 148

4.D Stability of B and F . 151

5 Transient Analysis . 154

5.1 Introduction . 154

5.2 Problem Formulation . 157

5.2.1 Distributed Strategies: Consensus and Di↵usion 157

5.2.2 Relation to Prior Work . 163

5.3 Modeling Assumptions . 164

5.4 Learning Behavior . 172

5.4.1 Overview of Main Results 172

5.5 Study of Error Dynamics . 177

5.5.1 Error Quantities . 177

5.5.2 Signal Recursions . 183

5.5.3 Error Dynamics . 187

5.5.4 Energy Operator and Properties 189

vii

5.6 Transient Analysis . 195

5.6.1 Limit Point . 196

5.6.2 Mean-Square Stability . 197

5.6.3 Interpretation of Results 201

5.6.4 Discussion on the Limit Point and the Fixed Point 206

5.7 Conclusion . 209

5.A Proof of Lemma 5.1 . 210

5.B Proof of Lemma 5.4 . 212

5.C Proof of Lemma 5.5 . 214

5.D Proof of Theorem 5.1 . 221

5.E Proof of Theorem 5.2 . 222

5.F Proof of Theorem 5.3 . 223

5.G Proof of Lemma 5.6 . 230

5.H Proof of Lemma 5.8 . 236

5.I Proof of Theorem 5.4 . 238

5.J Proof of Lemma 5.9 . 249

5.K Proof of Theorem 5.5 . 250

6 Performance Analysis . 253

6.1 Introduction . 253

6.2 Family of Distributed Strategies 256

6.2.1 Distributed Strategies: Consensus and Di↵usion 256

6.2.2 Review of the Main Results from Chapter 5 257

viii

6.2.3 Relation to Prior Work . 262

6.3 Modeling Assumptions . 264

6.4 Performance of Multi-Agent Learning Strategy 271

6.5 Performance of Centralized Solution 274

6.6 Benefits of Coopeartion . 275

6.6.1 Category I: Distributed Learning 276

6.6.2 Category II: Distributed Optimization 283

6.7 Conclusion . 284

6.A Proof of Theorem 6.1 . 285

6.A.1 Relating the weighted MSE to the steady-state error co-

variance matrix ⇧1 . 286

6.A.2 Approximation of ⇧1 by 11T ⌦ ⇧̌c,1 289

6.A.3 Approximation of ⇧̌c,1 by ⇧̌a,1 291

6.A.4 Evaluation of ⇧̌a,1 . 300

6.A.5 Final expression for ⇧1 305

6.B Proof of Lemma 6.2 . 309

6.C Proof of Lemma 6.4 . 318

6.C.1 Perturbation Bounds . 318

6.C.2 Recursion for the 4th order moment of w̌c,i 319

6.C.3 Recursion for the 4th order moment of we,i 327

6.D Proof of Lemma 6.5 . 330

6.E Proof of Lemma 6.6 . 333

ix

7 Future Issues . 338

References . 340

x

List of Figures

1.1 A network representing a multi-agent system. The set of all agents

that can communicate with node k is denoted by Nk. The edge

linking any two agents is represented by two directed arrows to

emphasize that information can flow in both directions. 2

1.2 The data sample xt at each time t is available to a subset NI of

agents in the network (e.g., agents 3 and 6 in the figure), and

each agent k is in charge of one sub-dictionary, Wk, and the cor-

responding optimal sub-vector of coe�cients estimated at time t,

yok,t. Each agent k can only exchange information with its imme-

diate neighbors (e.g., agents 5, 2 and 6 in the figure and k itself).

We use Nk to denote the set of neighbors of agent k. 8

1.3 A typical mean-square-error (MSE) learning curve includes a tran-

sient stage that consists of two phases and a steady-state phase.

The plot shows how the learning curve of a network of agents com-

pares to the learning curve of a centralized reference solution. The

analysis in this dissertation characterizes in detail the parameters

that determine the behavior of the network (rate, stability, and

performance) during each phase of the learning process. 19

2.1 A network with N nodes; a cost function Jk(w) is associated with

each node k. The set of neighbors of node k is denoted by Nk; this

set consists of all nodes with which node k can share information. 30

2.2 Transient and steady-state performance of distributed estimation

with sparse data. 43

xi

2.3 Performance of distributed localization for a stationary target. . . 45

2.4 Performance of distributed localization for a target. Di↵usion

strategies employ constant step-sizes, which enable continuous adap-

tation and learning even when the target moves (which corresponds

to a changing cost function). 46

3.1 The data sample xt at each time t is available to a subset NI of

agents in the network (e.g., agents 3 and 6 in the figure), and

each agent k is in charge of one sub-dictionary, Wk, and the cor-

responding optimal sub-vector of coe�cients estimated at time t,

yok,t. Each agent k can only exchange information with its imme-

diate neighbors (e.g., agents 5, 2 and 6 in the figure and k itself).

We use Nk to denote the set of neighbors of agent k. 53

3.2 Illustration of the functions 1
2
u2, |u|, and L(u). 56

3.3 Illustration of the functions T�(x), T +
� (x), S�(x), and S+

� (x). Best

viewed in color. 72

3.4 The distributed inference step and the dictionary update step over

distributed models. In the inference step, after each data sample

xt arrives at a subset of the agents in the network, all the agents

find the corresponding optimal dual variable ⌫ot by exchanging the

estimates of ⌫ot with neighbors. In the dictionary update step,

agents update their sub-dictionaries locally on their own using a

step of proximal stochastic gradient descent as (3.52). 77

3.5 Learning curve for the Huber document detection example de-

scribed by Alg. 3.4 with µ = 0.5. 77

xii

3.6 Application of dictionary learning to image denoising. (a) Original

image; (b) denoised image by using the centralized method from

[93]; (c) dictionary obtained by the centralized method from [93];

(d) image corrupted by additive white Gaussian noise; (e) denoised

image by our proposed distributed method assuming only node 1

has access to the image; (f) dictionary obtained by our proposed

distributed method obtained by only providing node 1 with the

image data; (g) PSNR over the network if all nodes have access to

the image data; (h) denoised image by our proposed distributed

method at agent 1 assuming that all nodes have access to the im-

age data, and (i) dictionary obtained by our proposed distributed

method obtained by providing all nodes with the image data. . . . 82

3.7 Application of dictionary learning to novel document/topic detec-

tion. At each time step, the algorithms receive 1000 documents.

The task is to determine which documents are associated with

topics that have already been observed, and which documents are

associated with topics that have not yet been observed. These

curves represent the ROC associated with each time step against

a fixed test set. The x-axis represents probability of false alarm

while the y-axis represents the probability of detection. The area

under each curve is listed in Table 3.3. 90

xiii

3.8 Application of dictionary learning to novel document/topic detec-

tion. At each time step, the algorithms receive 1000 documents.

The task is to determine which documents are associated with

topics that have already been observed, and which documents are

associated with topics that have not yet been observed. These

curves represent the ROC curve associated with each time step

against a changing test set. The x-axis represents probability of

false alarm while the y-axis represents probability of detection.

The area under each cuve is listed in Table 3.4. 92

4.1 Representation of the di↵usion adaptation strategy (4.9)–(4.11) in

terms of operators. Each di↵usion adaptation step can be viewed

as a cascade composition of three operators: TA
1

(·), TG(·), and

TA
2

(·) with gradient perturbation v(·). If v(·) = 0, then bTd(·)

becomes Td(·). 118

5.1 A network representing a multi-agent system. The set of all agents

that can communicate with node k is denoted by Nk.The edge

linking any two agents is represented by two directed arrows to

emphasize that information can flow in both directions. 159

xiv

5.2 A typical mean-square-error (MSE) learning curve includes a tran-

sient stage that consists of two phases and a steady-state phase.

The plot shows how the learning curve of a network of agents com-

pares to the learning curve of a centralized reference solution. The

analysis in this work, and in the following Chapter 6 characterizes

in detail the parameters that determine the behavior of the net-

work (rate, stability, and performance) during each phase of the

learning process. 175

5.3 (a) Network basis transformation. (b) The diagrams show how

the iterate wk,i is decomposed relative to the reference w̄c,i and

relative to the centroid, wc,i, of the N iterates across the network. 179

5.4 The evolution and learning curves of various quantities in a dif-

fusion LMS adaptive network, where M = 2, and the regressors

are spatially and temporally white, and isotropic across agents.

(a) The evolution of the iterates {wk,i} at all agents, the centroid

wc,i, and the reference recursion w̄c,i on the two-dimensional solu-

tion space; the horizontal axis and vertical axis are the first and

second elements of wk,i, respectively. The clusters of {wk,i} are

plotted every 50 iterations. (b) The MSE learning curves, aver-

aged over 1000 trials, for the iterates {wk,i} at all agents, and the

reference recursion w̄c,i. The zoom-in region shows the learning

curves for di↵erent agents, which quick shrink together in Phase I. 203

xv

5.5 Relations between the fixed point wk,1, the iterate wk,i, and the

limit point wo. In steady-state, the mean-square-error between

wk,i and wo is O(µmax), the mean-square-error between wk,i and

wk,1 is O(µmax), and the square-error (i.e., the bias) between wk,1

and wo is O(µ2
max). 208

6.1 Comparing the performance of a 30-node di↵usion LMS network

with that of the centralized strategy (6.51), where M = 10, µk =

0.0005 for all agents, and Hasting’s rule (6.66) is used as the combi-

nation policy. The result is obtained by averaging over 1000 Monte

Carlo experiments. (a) A randomly generated topology. (b) The

noise profile across the network. (c) The learning curves for di↵er-

ent agents in the di↵usion LMS network, the centralized strategy,

and the theoretical steady-state MSE. (d) The steady-state MSE

of di↵usion LMS, centralized strategy, and the theoretical value. 281

xvi

List of Tables

3.1 Examples of tasks solved by the general formulation (3.2)–(3.3).

The loss functions f(u) are illustrated in Fig. 3.2. 54

3.2 Conjugate functions used in this chapter for di↵erent tasks 67

3.3 Area under the curve measure for the three tested algorithms. . . 88

3.4 Area under the curve measure for the three tested algorithms. No

novel documents were presented in time-steps 3, 5, and 7. 95

3.5 Examples of proximal operators 103

5.1 Di↵erent choices for A1, A0 and A2 correspond to di↵erent dis-

tributed strategies. 162

5.2 Summary of various iterates, error quantities, and their relations. 184

5.3 Behavior of error quantities in di↵erent phases. 202

xvii

Acknowledgments

First, I would like to express my sincere gratitude to my advisor, Professor

Ali H. Sayed, for his support, guidance and encouragement through my five years

of Ph.D. study. His high standards in research, careful reviews of each of my

papers and numerous discussions greatly enhanced the quality and presentation

of my work. Working towards a PhD is always challenging, and without his kind

support and help, this would have been even more demanding.

I would like to thank Professor Suhas Diggavi for insightful discussions on

information-theoretic problems. I would also like to thank Dr. Li Deng for

o↵ering me the opportunity to do an internship at Microsoft Research, Redmond.

I also appreciate Professors Lieven Vandenberghe, Adnan Darwiche and Suhas

Diggavi for serving on my PhD committee.

I am glad to have met many good friends at the Adaptive Systems Laboratory

(ASL) at UCLA, with whom I spent lots of time together during the past five

years: Zaid J. Towfic, Shang-Kee Ting, Xiaochuan Zhao, Sheng-Yuan Tu, and

Chung-Kai Yu. I also appreciate the opportunity to have met many friends who

came to visit ASL: Oyvind L. Rortveit from Norway, Paolo Di Lorenzo from

Italy, Jae-Woo Lee from Korea, Alexander Bertrand from Belgium, Victor Lora

from France, Ricardo Merched and Cassio G. Lopes from Brazil, Reza Abdolee

and Milad A. Toutounchian from Canada, Mohammad-Reza from Sweden, and

Sergio Valcarcel Macua and Jesus F. Bes from Spain. I will always remember the

magic whiteboard where we discussed so many interesting ideas, and I will also

remember the great lunches and dinners we had together in Los Angeles.

Furthermore, I want to thank my parents for their support of my study over

xviii

the past years. From Yongjia to Harbin, Beijing and Los Angeles, my study is

such a long journey that has taken more than two decades and involved traveling

almost half of our planet. None of this would have been possible without your

love and support over the years.

Finally, the work of this dissertation was supported in part by NSF grants

ECS-0725441, CCF-1011918, and CCF-0942936, and by a Dissertation Year Fel-

lowship from the UCLA Graduate Division. The support of the funding agencies

is hereby acknowledged.

xix

Vita

2005 B.S. in Electronic and Information Engineering

Harbin Institute of Technology (HIT), Harbin, China.

2009 M.S. in Information and Communication Engineering

Tsinghua University, Beijing, China.

2009–2014 Research Assistant

Department of Electrical Engineering

University of California, Los Angeles.

2011–2012 Teaching Assistant

Department of Electrical Engineering

University of California, Los Angeles.

2012–2013 Teaching Associate

Department of Electrical Engineering

University of California, Los Angeles.

2013–2014 Dissertation Year Fellowship

University of California, Los Angeles.

xx

CHAPTER 1

Introduction

In this dissertation, we study the learning behavior of multi-agent adaptive net-

works consisting of N connected agents. Each agent k receives a local data stream

{xk,i} at time i and is able to communicate with its local neighbors — see Fig. 1.1.

The objective of the network is for the agents to collaboratively solve a global op-

timization problem by using information that is collected/stored locally at the dif-

ferent agents. Such networks of interacting agents are useful in solving distributed

estimation, learning, and decision making problems [7,48,100,115,117,130]. They

are also useful in modeling biological networks [29,46,140], collective rational be-

havior [51,52], and in developing biologically-inspired designs [7,67]. The learning

and adaptation processes of multi-agent systems typically consist of two compo-

nents: self-learning from local data streams and social-learning from neighbors.

During self-learning, each agent updates its state using its local data. During

social learning, each agent aggregates information from its neighbors. We briefly

discuss in this chapter the special features of these two components and then

state contributions of the dissertation.

1.1 Single-Agent Adaptation

The self-learning procedure at each agent k extracts information from its local

data streams {xk,i} in order to best represent, predict, interpret the local data,

1

N
k

k

1

2

3

4

5

6

7

8

9

10

{x
1,i

}

{x
k,i

}

{x
2,i

}

{x
3,i

}

{x
4,i

}

{x
5,i

} {x
7,i

}

{x
6,i

}

{x
10,i

}

{x
8,i

}

{x
9,i

}

Figure 1.1: A network representing a multi-agent system. The set of all agents
that can communicate with node k is denoted by Nk. The edge linking any two
agents is represented by two directed arrows to emphasize that information can
flow in both directions.

infer parameters of interest, or to make the best decision. Typically, the statistics

of the data streams are unknown to the agents, and this requires the networked

agents to rely on data realizations to learn from streaming data.

To introduce the self-learning process, we first review adaptation and learning

for stand-alone agents. Thus, consider a single agent k and introduce the problem

of minimizing an expected loss function with respect to an unknown vector w:

min
w

EQk(w;xk,i) (1.1)

where Qk(w;xk,i) is the loss function at agent k for data sample xk,i (we use the

boldface notation, xk,i, to highlight the random nature of the data and use regular

font, xk,i, to denote its realizations), and the expected loss Jk(w) = EQk(w;xk,i)

is called the risk function. A typical algorithm to solve (1.1) is the stochastic

2

gradient descent (SGD) algorithm, which updates estimates for w according to

the following recursion [117]:

wk,i = wk,i�1 � µk(i) ·rwQk(wk,i�1; xk,i) (1.2)

where µk(i) is a positive step-size parameter, which can be time-dependent or be

set to a constant value. Note that we are using the gradient of the loss function

Qk(w; xk,i) in (1.2) instead of the risk function Jk(w) to update from wk,i�1 to

wk,i. This is because we may not be able to evaluate rwJk(w) in closed-form

since the statistics of the data are usually unavailable. The learning algorithm

can also take other forms beyond gradient descent. For example, in order to

improve the convergence behavior, we may multiply a gain matrix Dk,i to the left

of rwQk(w; xk,i) so that the recursion becomes:

wk,i = wk,i�1 � µk(i) · Dk,i ·rwQk(wk,i�1; xk,i) (1.3)

This variation is popular in optimization problems to improve the convergence

rate of deterministic optimization algorithms [10]. More generally, we can write

wk,i = wk,i�1 � µk(i) · ŝk,i(wk,i�1) (1.4)

where ŝk,i(w) denotes the update vector used by agent k at time i. The SGD

algorithm (1.2) is a special case of (1.4) when the update vector ŝk,i(w) is chosen

as rwQk(w; xk,i). The more general form (1.4) is referred to as a stochastic

approximation algorithm [81,99,105,116]. This type of algorithms is widely used

in online learning and prediction [1,6,30,44,60,65,74,101,121,122,148]. It is also

popular in large-scale machine learning problems, where the dataset contains a

finite but a large number of data samples [6,15–17]. In this context, it is common

3

to formulate deterministic cost measures and to require each agent to minimize

an empirical cost defined in the form of a running sum:

Jk(w) =
1

T

T
X

i=1

Qk(w; xk,i) (1.5)

In these scenarios, the gradient descent algorithm assumes the following form:

wk,i = wk,i�1 �
µk(i)

T

T
X

t=1

rwQk(wk,i�1; xk,t) (1.6)

Note that each iteration now requires computing a total of T gradients and then

averaging them together. When the dataset is large, computing the gradients can

be very expensive. Instead, we can randomly fetch one sample at a time from

the dataset and update wk,i according to the SGD recursion (1.2). By doing so,

the computation complexity can be greatly reduced without much degradation

in performance.

1.2 Multi-Agent Adaptation

1.2.1 Sum-of-Costs Formulation

The single-agent adaptation procedure serves as a building block for the multi-

agent case. In multi-agent adaptation, agents collaborate with each other to solve

a problem that combines the individual cost functions {Jk(w)} in a certain way.

One important case is through a “sum-of-costs” formulation, which we will study

in some detail in Chapter 2, where the networked agents aim to minimize an

4

aggregate cost of the form:

Jglob(w) =
N
X

k=1

Jk(w) (1.7)

This situation arises when data streams arrive at di↵erent agents in a distributed

manner, and the agents want to work together to extract information from all the

data streams, i.e., learning from “distributed data”. Another example arises in

large-scale machine learning problems, where the training dataset is finite but too

large to be fitted into a single machine. Then, the entire dataset is partitioned

into several subsets, which are allocated to di↵erent machines to perform parallel

training. The individual cost functions in (1.7) can be either a risk function of

the form

Jk(w) = EQk(w;xk,i) (1.8)

or an empirical cost of the form:

Jk(w) =
1

T

T
X

i=1

Qk(w; xk,i) (1.9)

As we will show in Chapter 2, problem (1.7) can be solved by the SGD iteration

(1.2) interleaved with one combination step over neighborhoods at each agent.

Specifically, one may employ consensus [48, 75–77, 97, 98, 137] or di↵usion (ATC

or CTA) strategies [26, 34, 36,42,89, 91, 115,117,146] of the following form:

Consensus :

8

>

>

<

>

>

:

�k,i�1 =
X

l2N
k

alkwl,i�1

wk,i = �k,i�1 � µk(i)ŝk,i(wk,i�1)

(1.10)

5

CTA di↵usion :

8

>

>

<

>

>

:

�k,i�1 =
X

l2N
k

alkwl,i�1

wk,i = �k,i�1 � µk(i)ŝk,i(�k,i�1)

(1.11)

ATC di↵usion :

8

>

>

<

>

>

:

 k,i = wk,i�1�µk(i)ŝk,i(wk,i�1)

wk,i =
X

l2N
k

alk l,i

(1.12)

where wk,i 2 RM is the iterate of agent k at time i, usually an estimate for the

minimizer of (1.7), �k,i�1 2 RM and k,i 2 RM are intermediate variables gener-

ated at node k before updating to wk,i, µk(i) is a non-negative (time-dependent

or constant) step-size parameter used by node k, and ŝk,i(·) is an M ⇥ 1 update

vector function at node k. In deterministic optimization problems, the update

vectors ŝk,i(·) can be the gradient or Newton steps associated with the cost func-

tions [97]. On the other hand, in stocastic approximation problems, such as

adaptation, learning and estimation problems [26, 34, 36, 42, 48, 49, 58, 75, 77, 89,

91, 109,115,125,130,137, 146], the update vectors are usually computed from re-

alizations of data samples that arrive sequentially at the nodes, with a typical

choice being the stochastic gradient:

ŝk,i(w) = rwQk(w;xk,i) (1.13)

In the stochastic setting, the quantities appearing in (1.10)–(1.12) become ran-

dom and we therefore use boldface letters to highlight their stochastic nature.

The combination coe�cients {alk} in (1.10)–(1.12) are nonnegative weights that

each node k assigns to the information arriving from node l; these coe�cients are

6

required to satisfy:

N
X

l=1

alk = 1 (1.14)

alk � 0 (1.15)

alk = 0, if l /2 Nk (1.16)

Observe from (1.16) that the combination coe�cients are zero if l /2 Nk, where

Nk denotes the set of neighbors of node k. Therefore, each summation in (1.10)–

(1.12) is actually confined to the neighborhood of node k. We let A denote

the N ⇥ N matrix that collects the coe�cients {alk}. Then, condition (1.14) is

equivalent to

AT1 = 1 (1.17)

where 1 is the N ⇥ 1 vector with all its entries equal to one. Condition (1.17)

means that the matrix A is left-stochastic (i.e., the entries on each of its columns

add up to one).

Observe from (1.10)–(1.12) that the convex combination steps appear in di↵er-

ent locations in the consensus and di↵usion implementations. Moreover, observe

that the consensus strategy (1.10) evaluates the update direction ŝk,i(·) at wk,i�1,

which is the estimator prior to the aggregation, while the di↵usion strategy (1.11)

evaluates the update direction at �k,i�1, which is the estimator after the aggrega-

tion. It was shown in [117,139] that this asymmetry in the consensus update is a

source of instability. For this reason, we shall focus mainly on di↵usion strategies

in later chapters.

7

W
1

W
2 W

3

W
4

W
5

W
6

W
k

N
k

N
I

yo

1,t

yo

2,t

yo

3,t

yo

4,t

yo

5,t

yo

6,t

yo

k,t

{x
t

}

Figure 1.2: The data sample xt at each time t is available to a subset NI of agents
in the network (e.g., agents 3 and 6 in the figure), and each agent k is in charge of
one sub-dictionary, Wk, and the corresponding optimal sub-vector of coe�cients
estimated at time t, yok,t. Each agent k can only exchange information with its
immediate neighbors (e.g., agents 5, 2 and 6 in the figure and k itself). We use
Nk to denote the set of neighbors of agent k.

1.2.2 Cost-of-Sum Formulations

Another important situation that leads to the “sum-of-costs” form is the “model-

distributed” case, which we will study in Chapter 3. In this case, each agent in

the network is only in charge of a portion of the model, and the agents work

together to represent the data streams that arrive at a subset of the agents.

This setup is important in large-scale machine learning applications, since the

increasing amount of data samples allows us to use more sophisticated models

to interpret the data. However, when the model is too large, it may not be

possible to fit it into a single machine. One example is dictionary learning over

large-scale models, as illustrated in Fig. 1.2. As we will reveal in Chapter 3,

the problem involves a “cost-of-sum” form, which is not directly amenable to

8

distributed implementations. Specifically, the networked agents aim to learn a

dictionary W = [W1, . . . ,WN] by solving the following optimization problem:

min
{W

1

,...,W
N

}
E
"

f
⇣

xt �
N
X

k=1

Wky
o
k,t

⌘

+
N
X

k=1

hy
k

(yo
k,t)

#

+
N
X

k=1

hW
k

(Wk) (1.18a)

s.t. Wk 2Wk, k = 1, . . . , N (1.18b)

where Wk denotes the sub-dictionary at each agent k, xt is the M ⇥ 1 input data

vector at time t, f(u) in (1.18a) denotes a di↵erentiable convex loss function for

the residual error, hy
k

(yk) and hW
k

(Wk) are convex (but not necessarily di↵er-

entiable) regularization terms on yk and Wk, respectively, and Wk denotes the

convex constraint set on Wk. Moreover, for each given realization xt, yok,t is a

sub-coding vector at each agent k. {yo1,t, . . . , yoN,t} are defined as the solution to

the following inference (sparse coding) problem:

{yo1,t, . . . , yoN,t} = arg min
{y

1

,...,y
N

}

"

f
⇣

xt �
N
X

k=1

Wkyk
⌘

+
N
X

k=1

hy
k

(yk)

#

(1.19)

Observe that the inference problem (1.19) is a regularized “cost-of-sum” problem.

By using a dual decomposition technique and the concept of conjugate function,

we will be able to convert the problem into the “sum-of-costs” form (1.7), which

can be solved e�ciently over networked agents. More specifically, we will show

that problem (1.19) can be transformed into the following dual problem that

assumes the “sum-of-costs” form:

min
⌫

f ?(⌫)� ⌫Txt +
N
X

k=1

h?
y
k

(W T
k ⌫) (1.20a)

s.t. ⌫ 2 Vf (1.20b)

9

where f ?(·) and h?
y
k

(·) are the conjugate functions of f(u) and hy
k

(yk), respec-

tively, and Vf is the domain of f ?(⌫). Furthermore, for the dual “sum-of-costs”

problem (1.20a)–(1.20b), the optimal solution ⌫ot can be used to update the dic-

tionary components:

Wk,t = ⇧W
k

n

proxµ
w

·h
W

k

�

Wk,t�1 + µw⌫
o
t (y

o
k,t)

T
�

o

(1.21)

where ⇧W
k

(·) denotes the projection operator onto Wk, and proxµ
w

·h
W

k

(·) denotes

the proximal operator of µw ·hW
k

. Note that the sub-dictionary update recursion

at each agent k does not require further exchange of information among agents.

The distributed dictionary learning problem we are solving here is di↵erent

from the useful work [31, 32], where it is assumed that the entire dictionary

W [31, 32] is maintained at each agent in the network, whereas individual data

samples generated by the same distribution, denoted by xk,t, are observed by

the agents at each time t. That is, these previous works study data distributed

formulations. What we are going to study in Chapter 3 is to find a distributed

solution where each agent is only in charge of a portion of the dictionary (Wk

for each agent k) while the incoming data, xt, is observed by only a subset

of the agents. This scenario corresponds to a model distributed (or dictionary-

distributed) formulation. A related albeit di↵erent model was considered in [43]

in the context of distributed deep neural network (DNN) models over computer

networks. In these models, each computer is in charge of a portion of neurons

in the DNN, which exchange their private activation signals with neurons over

the network to perform the classification task. As we will see in Chapter 3, our

distributed model does not require exchanging either the private combination

coe�cients {yk} or the sub-dictionaries {Wk} while still being able to model

the data using the collective “wisdom” over the network. Another related but

10

di↵erent work is [142], where the authors study a special form of a distributed

sparse basis pursuit problem under fixed sub-dictionaries at each agent. We

instead allow the sub-dictionaries to be updated dynamically over time (rather

than staying fixed) and this is accomplished without exchanging any further

information after the distributed inference step — see (1.21) and also future Sec.

3.3.5.

The distributed model setting is important in practice because agents tend to

be limited in their memory and computing power and they may not be able to

store large dictionaries locally. Even if the agents were powerful enough, di↵erent

agents may have access to di↵erent databases and di↵erent sources of information.

Rather than aggregate the information in the form of large dictionaries at every

single location, it is more advantageous to keep the information distributed due

to potential excessive costs in exchanging large data sets, and also due to privacy

considerations where di↵erent agents may not be in favor of sharing their data

and dictionary. Therefore, by having distributed sub-dictionaries, and by having

many agents cooperate with each other, a large model that is beyond the ability or

reach of any single agent can be trained by the network in a distributed manner.

1.2.3 Social Learning

Note that in multi-agent systems, either data arrive at di↵erent agents in a dis-

tributed manner or the entire model is distributed over di↵erent agents. There-

fore, in order to solve the global problem, agents need social-learning to consult

with each other so that information extracted from local data streams can be

propagated over the entire network. An important feature of social-learning is

that it relies on limited interactions for at least two reasons. First, because the

network is possibly sparsely connected, each agent in the network can only in-

11

teract with a limited number of intermediate one-hop neighbors. Second, due to

privacy or security considerations, agents may be reluctant to share their raw or

processed data more fully.

1.3 Objectives

In future chapters, we will develop algorithms that solve the aforementioned

“sum-of-costs” and “cost-of-sum” problems in a distributed manner. To ensure

continuous learning and adaptation to streaming data, we focus on multi-agent

systems with constant step-sizes. As we already indicated, there are two types of

learning processes involved in the dynamics of each agent k: (i) self-learning from

locally sensed data and (ii) social learning from neighbors. All nodes implement

the same self- and social learning structure. As a result, the learning dynamics

of all nodes in the network are coupled; knowledge exploited from local data at

node k will be propagated to its neighbors and from there to their neighbors in

a di↵usive learning process. It is expected that some global performance pattern

will emerge from these localized interactions in the multi-agent system. In this

dissertation, we address the following questions:

• Limit point: where does each state wk,i converge to?

• Stability: under which conditions does convergence occur?

• Learning rate: how fast does convergence occur?

• Performance: how close does wk,i get to the limit point?

We address the four questions by characterizing analytically the learning dynam-

ics of the network to reveal the global behavior that emerges in the small step-size

regime. A critical question to ask is whether it is possible that, under certain

12

conditions, the distributed strategy can achieve the same performance as the cen-

tralized strategy? The centralized strategy is the one that collects all data and

has the entire model available at a powerful fusion center. This question will be

addressed in later chapters.

In comparison with the existing literature [13,21,48,71,75–77,84,97,109,125,

126,137], it is worth noting that most prior studies on distributed optimization al-

gorithms focus on studying their performance and convergence under diminishing

step-size conditions and for doubly-stochastic combination policies (i.e., matrices

for which the entries on each of their columns and on each of their rows add up

to one). These are of course useful conditions, especially when the emphasis is

on solving static optimization problems. We focus instead on the case of con-

stant step-sizes because, as explained earlier, they enable continuous adaptation

and learning under drifting conditions; in contrast, diminishing step-sizes turn

o↵ learning once they approach zero. By using constant step-sizes, the result-

ing algorithms are able to track dynamic solutions that may slowly drift as the

underlying problem conditions change. Moreover, we do not limit the combina-

tion policies to be doubly-stochastic; we only require condition (1.17). It turns

out that left-stochastic matrices lead to superior mean-square error performance

(see, e.g., expression (6.66) and also [26, 146]). Furthermore, constant step-sizes

and left-stochastic combination policies enrich the learning dynamics of the net-

work in interesting ways, as we are going to discover. In particular, under these

conditions, we shall derive an interesting result that reveals how the topology

of the network determines the limit point of the distributed algorithm. We will

show that the combination weights steer the convergence point away from the ex-

pected solution and towards any of many possible Pareto optimal solutions. This

is in contrast to commonly-used doubly-stochastic combination policies where

the limit point of the network is fixed and cannot be changed regardless of the

13

topology. We will show that the limit point is determined by the right eigenvec-

tor that is associated with the eigenvalue at one for the matrix A. Therefore,

left-stochastic policies enable the networks to converge to any of infinitely many

Pareto optimal solutions. Moreover, the value of the limit point can be controlled

through the selection of the Perron eigenvector.

We will also be able to characterize how close each agent in the network gets

to this limit point. As a by-product of studying the transient behavior of the

algorithms, we will be able to derive closed-form performance expressions for

the steady-state mean-square-error (MSE) for a fairly general class of distributed

strategies under broader (weaker) conditions than normally considered in the

literature.

Other useful and related works in the literature appear in [13, 75–77]. These

works, however, study the distribution of the error vector in steady-state under di-

minishing step-size conditions and using central limit theorem (CLT) arguments.

They showed a Gaussian distribution for the error quantities in steady-state and

derived an expression for the error variance but their expression naturally tends

to zero as i ! 1 since, under the conditions assumed in these works, the error

vector w̃k,i approaches zero almost surely. Such results are possible because, in

the diminishing step-size case, the influence of gradient noise is annihilated by

the decaying step-size. However, in the constant step-size regime, the influence

of gradient noise is always present and seeps into the operation of the algorithm.

In this case, the error vector does not approach zero any longer and its vari-

ance approaches instead a steady-state positive-definite value. Our objective is

to characterize this steady-state value and to examine how it is influenced by the

network topology, by the persistent gradient noise conditions, and by the data

characteristics and utility functions. In the constant step-size regime, CLT argu-

14

ments cannot be employed anymore because the Gaussianity result does not hold

any longer. Indeed, reference [145] illustrates this situation clearly; it derived

an expression for the characteristic function of the limiting error distribution

in the case of mean-square-error estimation and it was shown that the distri-

bution is not Gaussian. For these reasons, the analysis in this dissertation is

based on alternative techniques that do not assume any specific form for the

steady-state distribution and that rely instead on the use of energy conservation

arguments [34,115,116].

1.4 Overview of Main Results

Before we proceed to the formal analysis, we first give a brief overview of the

main results that we are going to establish in this dissertation on the learning

behavior of the distributed strategies (1.10)–(1.12) for su�ciently small step-sizes.

Let ✓ denote the right eigenvector of the matrix A = [alk] corresponding to the

eigenvalue at one and whose entries are normalized to add up to one, i.e.,

A✓ = ✓, 1T ✓ = 1 (1.22)

The first major conclusion is that for general left-stochastic primitive combination

matrices A, the agents in the network will have their estimators wk,i converge,

in the mean-square-error sense, to the same vector wo that corresponds to the

unique solution of the following algebraic equation:

N
X

k=1

pksk(w) = 0 (1.23)

15

where

sk(w) , E [ŝk,i(w)|Fi�1] (1.24)

pk , ✓k · µk

µmax

(1.25)

µmax , max
k

µk (1.26)

Fi�1 denotes the history of iterates up to time i � 1, and ✓k is the kth entry of

the right-eigenvector ✓. For example, in the context of distributed optimization

problems of the form (1.7), this result implies that for left-stochastic matrices A,

the distributed strategies (1.10)–(1.12) will not converge to the global minimizer

of the original aggregate cost (1.7), which is the unique solution to the alternative

algebraic equation

N
X

k=1

rwJk(w) = 0 (1.27)

Instead, these distributed solutions will converge to the global minimizer of the

weighted aggregate cost Jglob,?(w) defined in terms of the entries pk:

Jglob,?(w) ,
N
X

k=1

pkJk(w) (1.28)

That is, the algorithms will converge to the unique solution of

N
X

k=1

pkrwJk(w) = 0 (1.29)

16

Result (1.29) means that the distributed strategies (1.10)–(1.12) converge to a

Pareto optimal solution of the multi-objective problem

min
w

{J1(w), . . . , JN(w)} (1.30)

with one Pareto solution obtained for each selection of the topology parameters

{pk}. The distinction between the aggregate costs Jglob(w) and Jglob,?(w) does

not appear in earlier studies on distributed optimization [75,77,97,109,125,137]

mainly because these studies focus on doubly-stochastic combination matrices, for

which the entries {pk} will all become equal to each other for uniform step-sizes

µk ⌘ µ. In that case, the minimizations of (1.7) and (1.27) become equivalent and

the solutions of (1.27) and (1.29) would then coincide. In other words, regardless

of the choice of the doubly stochastic combination weights, when the {pk} are

identical, the limit point will be unique and correspond to the solution of

N
X

k=1

sk(w) = 0 (1.31)

In contrast, result (1.23) shows that left-stochastic combination policies add more

flexibility into the behavior of the network. By selecting di↵erent combination

weights, or even di↵erent topologies, the entries {pk} can be made to change and

the limit point can be steered towards other desired Pareto optimal solutions.

The second major conclusion of the dissertation is that we will show in (5.145)

further ahead that there always exist su�ciently small step-sizes such that the

learning process over the network is mean-square stable. This means that the

weight error vectors relative to wo will satisfy

lim sup
i!1

Ekw̃k,ik2 = O(µmax) (1.32)

17

so that the steady-state mean-square-error at each agent will be of the order of

O(µmax).

The third major conclusion of our analysis is that we will show that, during the

convergence process towards the limit point wo, the learning curve at each agent

exhibits three distinct phases: Transient Phase I, Transient Phase II, and Steady-

State Phase. These phases are illustrated in Fig. 1.3 and they are interpreted as

follows. Let us first introduce a reference (centralized) procedure that is described

by the following centralized-type recursion:

w̄c,i = w̄c,i�1 � µmax

N
X

k=1

pksk(w̄c,i�1) (1.33)

which is initialized at

w̄c,0 =
N
X

k=1

✓kwk,0 (1.34)

where ✓k is the kth entry of the eigenvector ✓, wk,0 is the initial value of the

distributed strategy at agent k, and w̄c,i is an M ⇥ 1 vector generated by the

reference recursion (1.33). The three phases of the learning curve will be shown

to have the following features:

• Transient Phase I:

If agents are initialized at di↵erent values, then the estimates of the various

agents will initially evolve in such a way to make each wk,i get closer to the

reference recursion w̄c,i. The rate at which the agents approach w̄c,i will be

determined by |�2(A)|, the second largest eigenvalue of A in magnitude. If

the agents are initialized at the same value, say, e.g., wk,0 = 0, then the

learning curves start at Transient Phase II directly.

18

Phase&I& Phase&II&

Steady,State&

M
SE
&(d

B)
&

Number&of&Itera9ons&

&Reference&(centralized)&strategy&
&
&
&

&Steady,state&MSE&
&
&
&

&

&Distributed&strategies&

Figure 1.3: A typical mean-square-error (MSE) learning curve includes a transient
stage that consists of two phases and a steady-state phase. The plot shows how
the learning curve of a network of agents compares to the learning curve of a
centralized reference solution. The analysis in this dissertation characterizes in
detail the parameters that determine the behavior of the network (rate, stability,
and performance) during each phase of the learning process.

• Transient Phase II:

In this phase, the trajectories of all agents are uniformly close to the tra-

jectory of the reference recursion; they converge in a coordinated manner

to steady-state. The learning curves at this phase are well modeled by the

same reference recursion (1.33) since we will show in (6.10) that:

Ekw̃k,ik2 = kw̃c,ik2 +O(µ1/2
max) · �ic +O(µmax) (1.35)

Furthermore, for small step-sizes and during the later stages of this phase,

w̄c,i will be close enough to wo and the convergence rate r will be shown to

19

satisfy:

r =
⇥

⇢(IM � µmaxHc)
⇤2

+O
�

(µmax✏)
1

2(M�1)

�

(1.36)

where ⇢(·) denotes the spectral radius of its matrix argument, ✏ is an arbi-

trarily small positive number, and Hc is defined as

Hc ,
N
X

k=1

pkrwT sk(w
o) (1.37)

• Steady-State Phase:

The reference recursion (1.33) continues converging towards wo so that

kw̃c,ik2 = kwo� w̄c,ik2 will converge to zero (�1 dB in Fig. 1.3). However,

for the distributed strategy (1.10)–(1.12), the mean-square-error Ekw̃k,ik2 =

Ekwo �wk,ik2 at each agent k will converge to a finite steady-state value.

We will be able to characterize this value in terms of the vector p ,
col{p1, . . . , pN} as follows:

lim
i!1

Ekw̃k,ik2 = µmax ·Tr
�

X(pT⌦IM)Rv(p⌦IM)

+ o(µmax) (1.38)

where X is the solution to the Lyapunov equation described later in (6.42)

(when ⌃ = I), and o(µmax) denotes a strictly higher order term of µmax.

Expression (1.38) is a revealing result. It is a non-trivial extension of a

classical result pertaining to the mean-square-error performance of stand-

alone adaptive filters [54,57,72,141] to the more demanding context when a

multitude of adaptive agents are coupled together in a cooperative manner

through a network topology. Expression (1.38) also extends the results

that were developed for least-mean-square (LMS) adaptive networks (with

20

quadratic costs) [146] to the more general case where agents in the network

are associated with general cost functions. This result has an important

ramification, which we pursue later in Chapter 6. We will show there that

no matter how the agents are connected to each other, there is always a way

to select the combination weights such that the performance of the network

is invariant to the topology. This will also imply that, for any connected

topology, there is always a way to select the combination weights such that

the performance of the network matches that of the centralized solution.

Finally, we will show that the convergence rate in Transient Phase II and the

mean-square-error of Steady-State Phase match those of a centralized strategy

described by the following recursion:

wcent,i = wcent,i�1 � µmax

N
X

k=1

pkŝk,i(wcent,i�1) (1.39)

where the parameters µmax and {pk} are the same as those in the distributed

strategies. That is, in the small constant step-size regime, the performance of the

distributed strategies can approach a centralized strategy that collects all the data

into a central agent. From the design perspective, the centralized strategy (1.39)

could serve as a frame of reference for the distributed strategies. By designing

the combination coe�cients {alk}, we could steer the vector p in order to make

the distributed strategies approach the performance of the centralized strategy.

1.5 Organization

The organization of the dissertation is summarized as follows.

21

• Chapter 2: In this chapter, we propose an adaptive di↵usion mechanism

to optimize a global cost function in a distributed manner over a network

of agents. The cost function is assumed to be the sum of a collection of

individual components, i.e., in the “sum-of-costs” form. Di↵usion adapta-

tion allows the nodes to cooperate and di↵use information in real-time; it

also helps alleviate the e↵ects of stochastic gradient noise and measurement

noise through a continuous learning process.

• Chapter 3: Here, we examine problems involving an alternative form of

global cost functions that can be expressed as regularized “cost-of-sum”

forms. This formulation arises, for example, in dictionary learning over

large-scale distributed models, where each agent is in charge of a portion

of the dictionary and the agents collaborate to learn a best representation

for the incoming data. We will show that “cost-of-sum” problems can be

transformed to “sum-of-costs” problems of the form studied in Chapter 2

using the technique of dual decomposition and the concept of conjugate

functions. For this reason, the problem can be solved in the dual domain

using the methods developed in Chapter 2. Furthermore, besides its close

connection to the “sum-of-costs” problem, the “cost-of-sum” problem has

another special structure: its dual solution can provide a global gradient

information. As we will explain in Chapter 3, this property is especially

useful for learning large-scale distributed models.

• Chapter 4: From Chapters 2–3, we will conclude that both the “sum-

of-costs” and “cost-of-sum” problems can be e↵ectively solved by di↵usion

strategies. In this chapter, we analyze the stability and performance of

the di↵usion algorithm under the special case where each individual cost

function is strongly convex. This assumption will be relaxed in later chap-

22

ters to only require the aggregate cost to be strongly convex. Analyzing

the performance of di↵usion strategies under the stronger assumption that

each cost function is strongly convex is important since this assumption

typically holds in practical applications. This is because quadratic regular-

ization can always be added to convert each individual cost into a strongly

convex function.

• Chapter 5: This chapter carries out a detailed transient analysis of the

learning behavior of multi-agent networks, and reveals interesting results

about the learning abilities of distributed strategies. Among other results,

the analysis reveals how combination policies influence the learning process

of networked agents, and how these policies can steer the convergence point

towards any of many possible Pareto optimal solutions. The results also

establish that the learning process of an adaptive network undergoes three

(rather than two) well-defined stages of evolution with distinctive conver-

gence rates during the first two stages, while attaining a finite mean-square-

error (MSE) level in the last stage. The analysis reveals what aspects of

the network topology influence performance directly and suggests design

procedures that can optimize performance by adjusting the relevant topol-

ogy parameters. Interestingly, it is further shown that, in the adaptation

regime, each agent in a sparsely connected network is able to achieve the

same performance level as that of a centralized stochastic-gradient strat-

egy even for left- stochastic combination strategies. These results lead to

a deeper understanding and useful insights on the convergence behavior

of coupled distributed learners. The results also lead to e↵ective design

mechanisms to help di↵use information more thoroughly over networks.

23

• Chapter 6: This chapter examines the steady-state phase of distributed

learning by networked agents. Apart from characterizing the performance

of the individual agents, it is shown that the network induces a useful equal-

ization e↵ect across all agents. In this way, the performance of noisier agents

is enhanced to the same level as the performance of agents with less noisy

data. It is further shown that in the small step-size regime, each agent in

the network is able to achieve the same performance level as that of a cen-

tralized strategy corresponding to a fully connected network. The results in

this part reveal explicitly which aspects of the network topology and oper-

ation influence performance and provide important insights into the design

of e↵ective mechanisms for the processing and di↵usion of information over

networks.

1.6 Notation

All vectors are column vectors. We use boldface letters to denote random quan-

tities (such as uk,i) and regular font to denote their realizations or deterministic

variables (such as uk,i). We use diag{x1, . . . , xN} to denote a (block) diagonal

matrix consisting of diagonal entries (blocks) x1, . . . , xN , and use col{x1, . . . , xN}

to denote a column vector formed by stacking x1, . . . , xN on top of each other.

The notation x � y means each entry of the vector x is less than or equal to the

corresponding entry of the vector y, and the notation X � Y means each entry

of the matrix X is less than or equal to the corresponding entry of the matrix

Y . The notation x = vec(X) denotes the vectorization operation that stacks the

columns of a matrix X on top of each other to form a vector x, and X = vec�1(x)

is the inverse operation. The operators rw and rwT denote the column and row

gradient vectors with respect to w. When rwT is applied to a column vector s,

24

it generates a matrix. The notation a(µ) = O(b(µ)) means that there exists a

constant C > 0 such that a(µ)  C · b(µ). The notation a(µ) = o(b(µ)) means

that limµ!0 a(µ)/b(µ) = 0

25

CHAPTER 2

Sum-of-Costs Formulation

In this chapter, we propose an adaptive di↵usion mechanism to optimize a global

cost function in a distributed manner over a network of nodes. The cost function is

assumed to be the sum of a collection of individual components, i.e., in the “sum-

of-costs” form. Di↵usion adaptation allows the nodes to cooperate and di↵use

information in real-time; it also helps alleviate the e↵ects of stochastic gradient

noise and measurement noise through a continuous learning process. We apply

the resulting distributed strategy to two applications: distributed estimation

with sparse parameters and distributed localization. Compared to well-studied

incremental methods, di↵usion methods do not require the use of a cyclic path

over the nodes and are robust to node and link failure. Di↵usion methods also

endow networks with adaptation abilities that enable the individual nodes to

continue learning even when the cost function changes with time. The following

presentation in this chapter is based on [34].

26

2.1 Problem Formulation

The objective is to determine, in a collaborative and distributed manner, the

M⇥1 column vector wo that minimizes a global cost of the form:

Jglob(w) =
N
X

l=1

Jl(w) (2.1)

where Jl(w), l = 1, 2, . . . , N , are individual real-valued functions, defined over

w 2 RM and assumed to be di↵erentiable and strongly convex. Then, Jglob(w)

in (2.1) is also strongly convex so that the minimizer wo is unique [105]. In this

chapter we study the important case where the component functions {Jl(w)} are

minimized at the same wo. This case is common in practice; situations abound

where nodes in a network need to work cooperatively to attain a common objec-

tive (such as tracking a target, locating the source of chemical leak, estimating

a physical model, or identifying a statistical distribution). This scenario is also

frequent in the context of biological networks. For example, during the foraging

behavior of an animal group, each agent in the group is interested in determin-

ing the same vector wo that corresponds to the location of the food source or

the location of the predator [138]. This scenario is equally common in online

distributed machine learning problems, where data samples are often generated

from the same underlying distribution and they are processed in a distributed

manner by di↵erent nodes (e.g., [44, 133]). Later in Chapters 4–6, we will show

that di↵usion strategies are also applicable to the case when the {Jl(w)} have

di↵erent individual minimizers and nodes would converge instead to a Pareto-

optimal solution.

Our strategy to optimize the global cost Jglob(w) in a distributed manner is

based on three steps. First, using a second-order Taylor series expansion, we

27

argue that Jglob(w) can be approximated by an alternative localized cost that is

amenable to distributed optimization — see (2.11). Second, each individual node

optimizes this alternative cost via a steepest-descent procedure that relies solely

on interactions within the neighborhood of the node. Finally, the local estimates

for wo are spatially combined by each node and the procedure repeats itself in

real-time. The approach in this chapter extends the derivation from [26, 115],

which focused on di↵usion strategies for mean-square-error estimation problems

(i.e., quadratic costs).

To motivate the approach, we start by introducing a set of nonnegative coef-

ficients {cl,k} that satisfy:

N
X

k=1

cl,k = 1, cl,k = 0 if l /2 Nk, l = 1, 2, . . . , N (2.2)

where Nk denotes the neighborhood of node k (including node k itself); the

neighbors of node k consist of all nodes with which node k can share information.

Each cl,k represents a weight value that node k assigns to information arriving

from its neighbor l. Condition (2.2) states that the sum of all weights leaving

each node l should be one. Using the coe�cients {cl,k}, we can express Jglob(w)

from (2.1) as

Jglob(w) = J loc
k (w) +

N
X

l 6=k

J loc
l (w) (2.3)

where

J loc
k (w) ,

X

l2N
k

cl,kJl(w) (2.4)

In other words, for each node k, we are introducing a new local cost function,

28

J loc
k (w), which corresponds to a weighted combination of the costs of its neighbors.

Since the {cl,k} are all nonnegative and each Jl(w) is strongly convex, then J loc
k (w)

is also a strongly convex function.

Now, each J loc
l (w) in the second term of (2.3) can be approximated via a

second-order Taylor series expansion as:

J loc
l (w) ⇡ J loc

l (wo) + kw � wok2�
l

(2.5)

where �l=
1
2
r2

wJ
loc
l (wo) is the (scaled) Hessian matrix relative to w and evaluated

at w=wo, and the notation kak2⌃ denotes aT⌃a for any weighting matrix ⌃. The

analysis in the subsequent sections will show that the second-order approximation

(2.5) is su�cient to ensure mean-square convergence of the resulting di↵usion

algorithm. Now, substituting (2.5) into the right-hand side of (2.3) gives:

Jglob(w) ⇡ J loc
k (w)+

X

l 6=k

kw�wok2�
l

+
X

l 6=k

J loc
l (wo) (2.6)

The last term in the above expression does not depend on the unknown w. There-

fore, we can ignore it so that optimizing Jglob(w) is approximately equivalent to

optimizing the following alternative cost:

Jglob0(w) , J loc
k (w) +

X

l 6=k

kw � wok2�
l

(2.7)

2.2 Di↵usion Adaptation Strategies

2.2.1 Iterative Di↵usion Solution

Expression (2.7) relates the original global cost (2.1) to the newly-defined local

cost function J loc
k (w). The relation is through the second term on the right-

29

N
k

k

1

2

3

4

5

6

7

8

9

a
1k

a
k1

Figure 2.1: A network with N nodes; a cost function Jk(w) is associated with
each node k. The set of neighbors of node k is denoted by Nk; this set consists
of all nodes with which node k can share information.

hand side of (2.7), which corresponds to a sum of quadratic terms involving the

minimizer wo. Obviously, wo is not available at node k since the nodes wish

to estimate wo. Likewise, not all Hessian matrices �l are available to node k.

Nevertheless, expression (2.7) suggests a useful approximation that leads to a

powerful distributed solution, as we proceed to explain.

Our first step is to replace the global cost Jglob0(w) by a reasonable localized

approximation for it at every node k. Thus, initially we limit the summation on

the right-hand side of (2.7) to the neighbors of node k and introduce the cost

function:

Jglob0

k (w) , J loc
k (w) +

X

l2N
k

\{k}

kw � wok2�
l

(2.8)

Compared with (2.7), the last term in (2.8) involves only quantities that are

available in the neighborhood of node k. The argument involving steps (2.5)–

30

(2.8) therefore shows us one way by which we can adjust the earlier local cost

function J loc
k (w) defined in (2.4) by adding to it the last term that appears in (2.8).

Doing so, we end up replacing J loc
k (w) by Jglob0

k (w), and this new localized cost

function preserves the second term in (2.3) up to a second-order approximation.

This correction will help lead to a di↵usion step (see (2.14)–(2.15)).

Now, observe that the cost in (2.8) includes the quantities {�l}, which belong

to the neighbors of node k. These quantities may or may not be available. If they

are known, then we can proceed with (2.8) and rely on the use of the Hessian

matrices �l in the subsequent development. Nevertheless, the more interesting

situation in practice is when these Hessian matrices are not known beforehand

(especially since they depend on the unknown wo). For this reason, we approxi-

mate each �l in (2.8) by a multiple of the identity matrix, say,

�l ⇡ bl,kIM (2.9)

for some nonnegative coe�cients {bl,k}; observe that we are allowing the coe�-

cient bl,k to vary with the node index k. Such approximations are common in

stochastic approximation theory and help reduce the complexity of the resulting

algorithms — see [105, pp.20–28] and [116, pp.142–147]. Approximation (2.9) is

reasonable since, in view of the Rayleigh-Ritz characterization of eigenvalues [59],

we can always bound the weighted squared norm kw � wok2�
l

by the unweighted

squared norm as follows

�min(�l) · kw�wok2  kw�wok2�
l

 �max(�l) · kw�wok2

31

Thus, we replace (2.8) by

Jglob00

k (w) , J loc
k (w) +

X

l2N
k

\{k}

bl,kkw � wok2 (2.10)

As the derivation will show, we do not need to worry at this stage about how the

scalars {bl,k} are selected; they will be embedded into other combination weights

that the designer selects. If we replace J loc
k (w) by its definition (2.4), we can

rewrite (2.10) as

Jglob00

k (w) =
X

l2N
k

cl,kJl(w) +
X

l2N
k

\{k}

bl,kkw�wok2 (2.11)

Observe that cost (2.11) is di↵erent for di↵erent nodes; this is because the choices

of the weighting scalars {cl,k, bl,k} vary across nodes k; moreover, the neighbor-

hoods vary with k. Nevertheless, these localized cost functions now constitute

the important starting point for the development of di↵usion strategies for the

online and distributed optimization of (2.1).

Each node k can apply a steepest-descent iteration to minimize Jglob00

k (w) by

moving along the negative direction of the gradient (column) vector of the cost

function, namely,

wk,i = wk,i�1 � µk

X

l2N
k

cl,krwJl(wk,i�1)� µk

X

l2N
k

\{k}

2bl,k(wk,i�1 � wo), i � 0

(2.12)

where wk,i denotes the estimate for wo at node k at time i, and µk denotes

a small constant positive step-size parameter. While vanishing step-sizes, such

as µk(i) = 1/i, can be used in (2.12), we consider the case of constant step-

sizes. This is because we are interested in distributed strategies that are able to

32

continue adapting and learning. An important question to address therefore is

how close each of the wk,i gets to the optimal solution wo; we answer this question

later in Chapters 4–6 under general conditions by means of a mean-square-error

convergence analysis. It will be seen then that the mean-square-error (MSE)

of the algorithm will be of the order of the step-size; hence, su�ciently small

step-sizes will lead to su�ciently small MSEs.

Expression (2.12) adds two correction terms to the previous estimate, wk,i�1,

in order to update it to wk,i. The correction terms can be added one at a time

in a succession of two steps, for example, as:

 k,i = wk,i�1 � µk

X

l2N
k

cl,krwJl(wk,i�1) (2.13)

wk,i = k,i � µk

X

l2N
k

\{k}

2bl,k(wk,i�1 � wo) (2.14)

Step (2.13) updates wk,i�1 to an intermediate value k,i by using a combination

of local gradient vectors. Step (2.14) further updates k,i to wk,i by using a

combination of local estimates. However, two issues arise while examining (2.14):

(a) First, iteration (2.14) requires knowledge of the optimizer wo. However, all

nodes are running similar updates to estimate the wo. By the time node

k wishes to apply (2.14), each of its neighbors would have performed its

own update similar to (2.13) and would have available their intermediate

estimates, { l,i}. Therefore, we replace wo in (2.14) by l,i. This step helps

di↵use information over the network and brings into node k information

that exists beyond its immediate neighborhood; this is because each l,i

is influenced by data from the neighbors of node l. We observe that this

di↵usive term arises from the quadratic approximation (2.5) we have made

to the second term in (2.3).

33

(b) Second, the intermediate value k,i in (2.13) is generally a better estimate

for wo than wk,i�1 since it is obtained by incorporating information from

the neighbors through (2.13). Therefore, we further replace wk,i�1 in (2.14)

by k,i. This step is reminiscent of incremental-type approaches to opti-

mization, which have been widely studied in the literature [9, 88, 96, 108].

Performing the substitutions described in items (a) and (b) into (2.14), we obtain:

wk,i = k,i � µk

X

l2N
k

\{k}

2bl,k(k,i � l,i) (2.15)

Now introduce the coe�cients

al,k , 2µkbl,k (l 6=k), ak,k , 1�µk

X

l2N
k

\{k}

2bl,k (2.16)

Note that the {al,k} are nonnegative for l 6= k and ak,k � 0 for su�ciently small

step-sizes. Moreover, the coe�cients {al,k} satisfy

N
X

l=1

al,k = 1, al,k = 0 if l /2 Nk (2.17)

Using (2.16) in (2.15), we arrive at the following Adapt-then-Combine (ATC)

di↵usion strategy (whose structure is the same as the ATC algorithm originally

proposed in [25,26,89] for mean-square-error estimation):

(ATC)

 k,i = wk,i�1 � µk

X

l2N
k

cl,krwJl(wk,i�1)

wk,i =
X

l2N
k

al,k l,i

(2.18)

To run algorithm (2.18), we only need to select combination coe�cients {al,k, cl,k}

34

satisfying (2.2) and (2.17), respectively; there is no need to worry about the

intermediate coe�cients {bl,k} any more, since they have been blended into the

{al,k}. The ATC algorithm (2.18) involves two steps. In the first step, node k

receives gradient vector information from its neighbors and uses it to update its

estimate wk,i�1 to an intermediate value k,i. All other nodes in the network

are performing a similar step and generating their intermediate estimate l,i.

In the second step, node k aggregates the estimates { l,i} of its neighbors and

generates wk,i. Again, all other nodes are performing a similar step. Similarly,

if we reverse the order of steps (2.13) and (2.14) to implement (2.12), we can

motivate the following alternative Combine-then-Adapt (CTA) di↵usion strategy

(whose structure is similar to the CTA algorithm originally proposed in [23, 25,

26,87,89, 90,118] for mean-square-error estimation):

(CTA)

 k,i�1 =
X

l2N
k

al,kwl,i�1

wk,i = k,i�1 � µk

X

l2N
k

cl,krwJl(k,i�1)
(2.19)

Adaptive di↵usion strategies of the above ATC and CTA types were first pro-

posed and extended in [23–27,87,89,90,118] for the solution of distributed mean-

square-error, least-squares, and state-space estimation problems over networks.

The special form of ATC strategy (2.18) for minimum-mean-square-error esti-

mation is listed further ahead as Eq. (2.30) in Example 2.3; the same strategy

as (2.30) was used [126] albeit with a vanishing step-size sequence to ensure

convergence towards consensus. A special case of the di↵usion strategy (2.19)

(corresponding to choosing cl,k = 0 for l 6= k and ck,k = 1, i.e., without sharing

gradient information) was used in the works [14, 109, 125] to solve distributed

optimization problems that require all nodes to reach agreement about wo by

35

relying on step-sizes that decay to zero with time. Di↵usion recursions of the

forms (2.18) and (2.19) are more general than these earlier investigations in a

couple of respects. First, they do not only di↵use the local estimates, but they

can also di↵use the local gradient vectors. In other words, two sets of combi-

nation coe�cients {al,k, cl,k} are used. Second, the combination weights {al,k}

are not required to be doubly stochastic (which would require both the rows and

columns of the weighting matrix A = [al,k] to add up to one; as seen from (2.17),

we only require the entries on the columns of A to add up to one). Finally, and

most importantly, the step-size parameters {µk} in (2.18) and (2.19) are not re-

quired to depend on the time index i and are not required to vanish as i ! 1.

Instead, they can assume constant values, which is critical to endow the network

with continuous adaptation and learning abilities (otherwise, when step-sizes die

out, the network stops learning). Constant step-sizes also endow networks with

tracking abilities, in which case the algorithms can track time changes in the

optimal wo.

We note that these strategies di↵er in important ways from traditional consensus-

based distributed solutions, which are of the following form [12,75, 97,98]:

wk,i =
X

l2N
k

al,kwk,i�1 � µk(i) ·rwJl(wk,i�1) (2.20)

usually with a time-variant step-size sequence, µk(i), that decays to zero. For

example, if we set C , [cl,k] = I in the CTA algorithm (2.19) and substitute the

combination step into the adaptation step, we obtain:

wk,i =
X

l2N
k

al,kwk,i�1 � µkrwJl
⇣

X

l2N
k

al,kwk,i�1

⌘

(2.21)

Thus, note that the gradient vector in (2.21) is evaluated at k,i�1, while in

36

(2.20) it is evaluated at wk,i�1. Since k,i�1 already incorporates information

from neighbors, we would expect the di↵usion algorithm to perform better. Ac-

tually, it is shown in [117, 139] that, for mean-square-error estimation problems,

di↵usion strategies achieve higher convergence rate and lower mean-square-error

than consensus strategies due to these di↵erences in the dynamics of the algo-

rithms.

2.2.2 Adaptive Di↵usion Solution

The di↵usion algorithms (2.18) and (2.19) depend on sharing local gradient vec-

tors rwJl(·). In many cases of practical relevance, the exact gradient vectors are

not available and approximations are instead used. We model the inaccuracy in

the gradient vectors as some random additive noise component, say, of the form:

[rwJl(w) = rwJl(w) + vl,i(w) (2.22)

where vl,i(·) denotes the perturbation and is often referred to as gradient noise.

Note that we are using a boldface symbol v to refer to the gradient noise since it

is generally stochastic in nature. Using the perturbed gradient vectors (4.8), the

di↵usion algorithms (2.18)–(2.19) become the following:

(ATC)

 k,i = wk,i�1�µk

X

l2N
k

cl,k [rwJl(wk,i�1)

wk,i =
X

l2N
k

al,k l,i

(2.23)

37

(CTA)

 k,i�1 =
X

l2N
k

al,kwl,i�1

wk,i = k,i�1�µk

X

l2N
k

cl,k [rwJl(k,i�1)
(2.24)

Example 2.1. Assume the individual cost Jl(w) at node l can be expressed as

the expected value of a certain loss function Ql(·, ·), i.e., Jl(w) = E{Ql(w,xl,i)},

where the expectation is with respect to the randomness in the data samples

{xl,i} that are collected at node l at time i. Then, if we replace the true gradient

rwJl(w) with its stochastic gradient approximation [rwJl(w) = rwQl(w,xl,i),

we find that the gradient noise in this case can be expressed as

vl,i(w) = rwQl(w,xl,i)�rwE{Ql(w,xl,i)} (2.25)

Example 2.2. Consider an example in which the loss function at node l is

chosen to be of the following quadratic form:

Ql(w, {ul,i,dl(i)}) = |dl(i)� ul,iw|2

for some scalars {dl(i)} and 1⇥M regression vectors {ul,i}. The corresponding

cost function is then:

Jl(w) = E|dl(i)� ul,iw|2 (2.26)

Assume further that the data {ul,i,dl(i)} satisfy the linear regression model

dl(i) = ul,iw
o + zl(i) (2.27)

38

where the regressors {ul,i} are zero mean and independent over time with covari-

ance matrix Ru,l = E{uT
l,iul,i}, and the noise sequence {zk(j)} is also zero mean,

white, with variance �2
z,k, and independent of the regressors {ul,i} for all l, k, i, j.

Then, using (2.27) and (2.25), the gradient noise in this case can be expressed

as:

vl,i(w) = 2(Ru,l � uT
l,iul,i)(w

o �w)� 2uT
l,izl(i) (2.28)

Example 2.3. Quadratic costs of the form (2.26) are common in mean-square-

error estimation for linear regression models of the type (2.27). If we use instanta-

neous approximations, as is common in the context of stochastic approximation

and adaptive filtering [64, 105, 116], then the actual gradient rwJl(w) can be

approximated by

[rwJl(w) = rwQl(w, {ul,i,dl(i)})

= �2uT
l,i[dl(i)� ul,iw] (2.29)

Substituting into (2.23)–(2.24), and assuming C = I for illustration purposes, we

arrive at the following ATC and CTA di↵usion strategies originally proposed and

extended in [25,26,87,89,90,118] for the solution of distributed mean-square-error

estimation problems:

(ATC)
 k,i = wk,i�1 + 2µku

T
k,i[dk(i)� uk,iwk,i�1]

wk,i =
X

l2N
k

al,k l,i
(2.30)

39

(CTA)
 k,i�1 =

X

l2N
k

al,kwl,i�1

wk,i = k,i�1 + 2µku
T
k,i[dk(i)� uk,i k,i�1]

(2.31)

2.3 Simulation Results

In this section we illustrate the performance of the di↵usion strategies (2.23)–

(2.24) by considering two applications. We consider a randomly generated con-

nected network topology with a cyclic path so that the incremental strategy could

also be implemented and compared. There are a total of N = 10 nodes in the

network, and nodes are assumed to be connected when they are close enough

geographically. In the simulations, we consider two applications: a regularized

least-mean-squares estimation problem with sparse data, and a collaborative lo-

calization problem.

2.3.1 Distributed Estimation with Sparse Data

Assume each node k has access to data {Uk,i,dk,i}, generated according to the

following model:

dk,i = Uk,iw
o + vk,i (2.32)

where {Uk,i} is a sequence of K ⇥ M i.i.d. Gaussian random matrices, the

entries of each Uk,i are i.i.d. Gaussian random variables with zero mean and

unit variance, and vk,i ⇠ N (0, �2
vIK) is the measurement noise that is temporally

and spatially white and is independent of Ul,j for all k, l, i, j. Our objective is

40

to estimate wo from the data set {Uk,i,dk,i} in a distributed manner. In many

applications, the vector wo is sparse such as wo = [1 0 . . . 0 1]T . One way to

search for sparse solutions is to consider a global cost function of the following

form:

Jglob(w) =
N
X

l=1

Ekdl,i �Ul,iwk22 + �R(w) (2.33)

where R(w) and � are the regularization function and regularization factor, re-

spectively. A popular choice is R(w) = kwk1, which helps enforce sparsity and is

convex. However, this choice is non-di↵erentiable, and we would need to apply

sub-gradient methods [105, pp.138–144] for a proper implementation. Instead,

we use the following twice-di↵erentiable approximation for kwk1:

R(w) =
M
X

m=1

p

[w]2m + ✏2 (2.34)

where [w]m denotes the m-th entry of w, and ✏ is a small number. We see that,

as ✏ goes to zero, R(w) ⇡ kwk1. Obviously, R(w) is convex, and we can apply

the di↵usion algorithms to minimize (2.33) in a distributed manner. To do this,

we decompose the global cost as a sum of N individual costs:

Jl(w) = Ekdl,i �Ul,iwk22 +
�

N
R(w), l = 1, . . . , N (2.35)

Then, by algorithms (2.18) and (2.19), each node k would update its estimate of

wo by using the gradient vectors of {Jl(w)}l2N
k

, which are given by:

rwJl(w) = 2E
�

UT
l,iUl,i

�

w � 2E
�

UT
l,idl,i

�

+
�

N
rwR(w) (2.36)

41

However, the nodes are assumed to have access to measurements {Ul,i, dl,k} and

not to the second-order moments E
�

UT
l,iUl,i

�

and E
�

UT
l,idl,i

�

. In this case, nodes

can use the available measurements to approximate the gradient vectors in (2.23)

and (2.24) as:

brwJl(w) = 2UT
l,i [Ul,iw�dl,i]+

�

N
rwR(w) (2.37)

where

rwR(w) =



[w]1
p

[w]21 + ✏2
· · · [w]N

p

[w]2N + ✏2

�T

(2.38)

In the simulation, we set M = 50, K = 5, �2
v = 1, and wo = [1 0 . . . 0 1]T . We

apply both di↵usion and incremental methods to solve the distributed learning

problem, where the incremental approach [9, 88, 96, 108, 117] uses the following

construction to determine wi:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Start with 0,i = wi�1 at the node at the beginning of the incremental cycle
Cycle through the nodes :

 k,i = k�1,i � µk
\rwJk(k�1,i), k = 1, . . . , N

Set wi N,i

Repeat

(2.39)

The results are averaged over 100 trials. The step-sizes for ATC and CTA are set

to µ = 10�3, and the step-size for the incremental algorithm is set to µ = 10�3/N .

This is because the incremental algorithm cycles through all N nodes every itera-

tion. We therefore need to ensure the same convergence rate for both algorithms

for a fair comparison [127, 144]. For ATC and CTA strategies, we use simple

averaging weights for the combination step, and for ATC and CTA with gradient

42

0 500 1000 1500 2000
−30

−25

−20

−15

−10

−5

0

5

Number of Iterations

Av
er

ag
e

N
et

w
or

k
M

SD
 (d

B)

Incremental
ATC (S=I)
CTA (S=I)
ATC (S=C)
CTA (S=C)
Non−cooperation

1600 1650 1700 1750 1800
−28

−27.5

−27

−26.5

−26

−25.5

−25

−24.5

−24

−23.5

−23

Number of Iterations

(a) Learning curves (� = 2 and ✏ = 10

�3

).

0 5 10 15 20
−28

−26

−24

−22

−20

−18

−16

−14

−12

−10

Regularization factor γ

St
ea

dy
 s

ta
te

 N
et

w
or

k
M

SD
 (d

B)

Incremental
ATC (S=I)
CTA (S=I)
ATC (S=C)
CTA (S=C)
Non−cooperation

ε=1

ε=10−4

(b) Steady-state MSD (µ = 10

�3

).

Figure 2.2: Transient and steady-state performance of distributed estimation
with sparse data.

exchange, we use Metropolis weights for {cl,k} to combine the gradients (see Table

III in [26]). Fig. 2.2(a) shows the learning curves for di↵erent algorithms for � = 2

43

and ✏ = 10�3. We see that the di↵usion and incremental schemes have similar

performance, and both of them have about 10 dB gain over the non-cooperation

case. To examine the impact of the parameter ✏ and the regularization factor

�, we show the steady-state MSD for di↵erent values of � and ✏ in Fig. 2.2(b).

When ✏ is small (✏ = 10�4), adding a reasonable regularization (� = 1 ⇠ 4)

decreases the steady-state MSD (even for the individual case). However, when ✏

is large (✏ = 1), expression (2.34) is no longer a good approximation for kwk1,

and regularization does not improve the MSD.

2.3.2 Distributed Collaborative Localization

The previous example deals with a convex cost (2.33). Now, we consider a local-

ization problem that has a non-convex cost function and apply the same di↵usion

strategies to its solution. Assume each node is interested in locating a common

target located at wo = [0 0]T . Each node k knows its position xk and has a noisy

measurement of the squared distance to the target:

dk(i) = kwo � xkk2 + vk(i), k = 1, 2, . . . , N

where vk(i) ⇠ N (0, �2
v,k) is the measurement noise of node k at time i. The

component cost function Jk(w) at node k is chosen as

Jk(w) = E
�

�dk(i)� kw � xkk2
�

�

2
(2.40)

If each node k minimizes Jk(w) individually, it is not possible to solve for wo.

Therefore, we should use information from other nodes, and instead seek to min-

44

0 200 400 600 800 1000
−50

−40

−30

−20

−10

0

10

Number of Iterations

Av
er

ag
e

N
et

w
or

k
M

SD
 (d

B)

Incremental
ATC (S=I)
CTA (S=I)
ATC (S=C)
CTA (S=C)
Non−cooperation

400 450 500 550 600

−42

−40

−38

−36

−34

(a) Learning curves for stationary target (µ = 0.0025).

10−310−2−50

−40

−30

−20

−10

0

10

Step−size µ

St
ea

dy
 s

ta
te

 N
et

w
or

k
M

SD
 (d

B)

Incremental
ATC (S=I)
CTA (S=I)
ATC (S=C)
CTA (S=C)
Non−cooperation

(b) Steady-state performance for stationary target.

Figure 2.3: Performance of distributed localization for a stationary target.

imize the following global cost:

Jglob(w) =
N
X

k=1

E
�

�dk(i)� kw � xkk2
�

�

2
(2.41)

45

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x (km)

y
(k

m
)

Target Trajectory
Incremental
ATC (S=I)
CTA (S=I)
ATC (S=C)
CTA (S=C)
Approach in [34]
Non−cooperation

(a) Tracking a moving-target by node 1 (µ = 0.01).

0 200 400 600 800 1000
−30

−25

−20

−15

−10

−5

0

5

10

15

20

Number of Iterations

Av
er

ag
e

N
et

w
or

k
M

SD
 (d

B)

Incremental
ATC (S=I)
CTA (S=I)
ATC (S=C)
CTA (S=C)
Approach from [38]
Non−cooperation450 500 550 600 650

−29

−28

−27

−26

−25

−24

−23

−22

−21

−20

−19

(b) Learning curves for moving target (µ = 0.01).

Figure 2.4: Performance of distributed localization for a target. Di↵usion strate-
gies employ constant step-sizes, which enable continuous adaptation and learning
even when the target moves (which corresponds to a changing cost function).

This problem arises, for example, in cellular communication systems, where mul-

tiple base-stations are interested in locating users using the measured distances

between themselves and the user [119]. Di↵usion algorithms (2.18) and (2.19)

46

can be applied to solve the problem in a distributed manner. Each node k would

update its estimate of wo by using the gradient vectors of {Jl(w)}l2N
k

, which are

given by:

rwJl(w) = �4 Edl(i) (w � xl) + 4kw � xlk2(w � xl) (2.42)

However, the nodes are assumed to have access to measurements {dl(i), xl} and

not to Edl(i). In this case, nodes can use the available measurements to approx-

imate the gradient vectors in (2.23) and (2.24) as:

[rwJl(w) = �4dl(i)(w � xl) + 4kw � xlk2(w � xl) (2.43)

If we do not exchange the local gradients with neighbors, i.e., if we set S = C = I,

then the base-stations only share the local estimates of the target position wo with

their neighbors (no exchange of {xl}l2N
k

).

We first simulate the stationary case, where the target stays at wo. In Fig.

2.3(a), we show the MSD curves for non-cooperative, ATC, CTA, and incremental

algorithms. The noise variance is set to �2
v,k = 1. We set the step-sizes to

µ = 0.0025 for ATC and CTA, and µ = 0.0025/N for the incremental algorithm.

For ATC and CTA strategies, we use simple averaging for the combination step

{al,k}, and for ATC and CTA with gradient exchange, we use Metropolis weights

for {cl,k} to combine the gradients. The performance of CTA and ATC algorithms

are close to each other, and both of them are close to the incremental scheme.

In Fig. 2.3(b), we show the steady state MSD with respect to di↵erent values of

µ. As the step-size becomes small, the performances of di↵usion and incremental

algorithms are close, and the MSD decreases as µ decreases. Furthermore, we see

that exchanging only local estimates (S = I) is enough for localization, compared

47

to the case of exchanging both local estimates and gradients (S = C).

Next, we apply the algorithms to a non-stationary case, where the target

moves along a trajectory, as shown in Fig. 2.4(a). The step-size is set to µ = 0.01

for di↵usion algorithms, and to µ = 0.01/N for the incremental approach. To see

the advantage of using a constant step-size for continuous tracking, we also sim-

ulate the vanishing step-size version of the algorithm from [109] (µk,i = 0.01/i).

The di↵usion algorithms track well the target but not the non-cooperative algo-

rithm and the algorithm from [109], because a decaying step-size is not helpful

for tracking. The tracking performance is shown in Fig. 2.4(b).

2.4 Conclusion

This chapter proposed di↵usion adaptation strategies to optimize global cost

functions over a network of nodes, where the cost is the sum of several compo-

nents, i.e., in the “sum-of-costs” form. Di↵usion adaptation allows the nodes to

solve the distributed optimization problem via local interaction and online learn-

ing. We employ gradient approximations and constant step-sizes to endow the

networks with continuous learning and tracking abilities. We applied the scheme

to two examples: distributed sparse parameter estimation and distributed local-

ization. Compared to incremental methods, di↵usion strategies do not require

a cyclic path over the nodes, which makes them more robust to node and link

failure.

48

CHAPTER 3

Cost-of-Sum Formulations

In this chapter, we consider an alternative form of global cost function to be

optimized over a network of agents, namely, regularized “cost-of-sum” forms such

as

Jglob(y) = J0

N
X

k=1

Wkyk

!

+
N
X

k=1

hy
k

(yk) (3.1)

where each agent k is in charge of finding a sub-vector yk of y , col{y1, . . . , yN}.

Furthermore, the cost functions hy
k

(yk) and the matrices Wk are only known to

agent k, and the form of the cost J0(·) is known to all agents. We will motivate

and solve this problem in the context of a typical application, namely, dictionary

learning over large-scale distributed models. We will show that cost (3.1) can be

transformed into a “sum-of-costs” problem of the form studied in Chapter 2 us-

ing the technique of dual decomposition and the concept of conjugate functions.

Accordingly, the problem can be solved in the dual domain by using the meth-

ods developed in Chapter 2. Besides its close connection to the “sum-of-costs”

problem, the cost (3.1) has another special structure: its dual solution will be

shown to provide a global gradient information for J0(·) evaluated at
PN

k=1 Wkyk.

This property will prove to be especially useful for learning large-scale distributed

models. The following presentation in this chapter is based on [39].

49

3.1 Motivation

Dictionary learning is a useful procedure by which dependencies among input

features can be represented in terms of suitable bases [2, 41, 53, 78, 83, 93, 94,

123, 131, 149]. It has found applications in many machine learning and infer-

ence tasks including image denoising [53,93], dimensionality-reduction [123,149],

bi-clustering [83], feature-extraction and classification [94], and novel document

detection [78]. Dictionary learning usually alternates between two steps: (i) an

inference (sparse coding) step and (ii) a dictionary update step. The first step

finds a sparse representation for the input data using the existing dictionary by

solving, for example, an `1-regularized regression problem, and the second step

usually employs gradient descent approximation to update the dictionary entries.

With the increasing complexity of various learning tasks, it is natural that the

size of the learning dictionaries is becoming demanding in terms of memory and

computing requirements. It is therefore important to study scenarios where the

dictionary need not be available in a single central location but is possibly spread

out over multiple locations. This is particularly true in big data scenarios where

multiple large dictionary models may already be available at separate locations

and it is not feasible to aggregate all dictionaries in one location due to commu-

nication and privacy considerations. This observation motivates us to examine

how to learn a dictionary model that is stored over a network of agents, where

each agent is in charge of only a portion of the dictionary elements. Compared

with other works, the problem we solve in this chapter and also in [39,40] is how

to learn a distributed dictionary model, which is, for example, di↵erent from the

useful work in [31,32] where it is assumed instead that each agent maintains the

entire dictionary model.

50

3.2 Problem Formulation

3.2.1 General Dictionary Learning Problem

We seek to solve the following global general dictionary learning problem over a

network of N agents connected by a topology:

min
W

E
h

f(xt �Wyo
t) + hy(y

o
t)
i

+ hW (W) (3.2)

s.t. W 2W (3.3)

where E[·] denotes the expectation operator, xt is the M ⇥ 1 input data vector

at time t (we use boldface letters to represent random quantities), yo
t is a K ⇥

1 coding vector defined further ahead as the solution to (3.8), and W is an

M ⇥K dictionary matrix. Moreover, the q-th column of W , denoted by [W]:,q, is

called the q-th dictionary element (or atom), f(u) in (3.2) denotes a di↵erentiable

convex loss function for the residual error, hy(y) and hW (W) are convex (but not

necessarily di↵erentiable) regularization terms on y and W , respectively, and W

denotes the convex constraint set on W . Depending on the application problem

of interest, there are di↵erent choices for f(u), hy(y) and hW (W). Table 3.1 lists

some typical tasks and the corresponding choices for these functions. In regular

dictionary learning [93], the constraint set W can be

W = {W : k[W]:,qk2  1} (3.4)

and in applications of nonnegative matrix factorization [93] and novel document

detection (topic modeling) [78], it can be

W = {W : k[W]:,qk2  1, W ⌫ 0} (3.5)

51

where the notation [W]:,q denotes the q-th column of the matrix W , the notation

W ⌫ 0 means each entry of the matrix W is nonnegative. We note that if there

is a constraint on y, it can be absorbed into the regularization factor hy(y), by

including an indicator function of the constraint into this regularization term.

For example, if y is required to satisfy y 2 Y = {y : 0 � y � 1}, where 1 denotes

an all-one vector, we can modify the original regularization hy(y) by adding an

additional indicator function:

hy(y) hy(y) + IY(y) (3.6)

where the indicator function IY(y) for Y is defined as

IY(y) ,

8

>

<

>

:

0 if 0 � y � 1

+1 otherwise
(3.7)

The vector yo
t in (3.2) is the solution to the following general inference problem

for each input data sample xt at time t for a given W (the regular font for xt and

yot denotes realizations for the random quantities xt and yo
t):

yot , argmin
y

[f(xt �Wy) + hy(y)] (3.8)

Note that dictionary learning consists of two steps: the inference step (e.g., sparse

coding) for the realization xt at each time t in (3.8), and the dictionary update

step (learning) in (3.2)–(3.3).

52

W
1

W
2 W

3

W
4

W
5

W
6

W
k

N
k

N
I

yo

1,t

yo

2,t

yo

3,t

yo

4,t

yo

5,t

yo

6,t

yo

k,t

{x
t

}

Figure 3.1: The data sample xt at each time t is available to a subset NI of agents
in the network (e.g., agents 3 and 6 in the figure), and each agent k is in charge of
one sub-dictionary, Wk, and the corresponding optimal sub-vector of coe�cients
estimated at time t, yok,t. Each agent k can only exchange information with its
immediate neighbors (e.g., agents 5, 2 and 6 in the figure and k itself). We use
Nk to denote the set of neighbors of agent k.

53

T
ab

le
3.
1:

E
xa

m
p
le
s
of

ta
sk
s
so
lv
ed

by
th
e
ge
n
er
al

fo
rm

u
la
ti
on

(3
.2
)–
(3
.3
).

T
h
e
lo
ss

fu
n
ct
io
n
s

f
(u
)
ar
e
il
lu
st
ra
te
d
in

F
ig
.
3.
2.

T
a
sk

s
f
(u

)
h
y

(y
)

h
W

(W
)

h
W

k

(W
k

)
W

k

S
p
a
r
se

S
V
D

1 2

ku
k2 2

�
ky

k 1
+

� 2

ky
k2 2

0
0

{W
k

:
k[
W

k

] :
,
q

k 2


1
}

B
i-
C
lu

st
e
r
in

g
1 2

ku
k2 2

�
ky

k 1
+

� 2

ky
k2 2

�
·|
||W

||| 1
a

�
·|
||W

k

||| 1
{W

k

:
k[
W

k

] :
,
q

k 2


1
}

N
o
n
n
e
g
a
ti
v
e
M

a
tr
ix

1 2

ku
k2 2

�
ky

k 1
,
+

+
� 2

ky
k2 2

b

0
0

{W
k

:
k[
W

k

] :
,
q

k 2


1
,
W

k

⌫
0
}

F
a
c
to

r
iz
a
ti
o
n

M

X

m
=
1

L
(u

m

)
c

�
ky

k 1
,
+

+
� 2

ky
k2 2

0
0

{W
k

:
k[
W

k

] :
,
q

k 2


1
,
W

k

⌫
0
}

a

T
h
e
n
o
ta
ti
o
n
|||W

||| 1
is

u
se
d
to

d
en

o
te

th
e
a
b
so
lu
te

su
m

o
f
a
ll
th

e
en

tr
ie
s
in

th
e
m
a
tr
ix

W
:
|||W

||| 1
=

P

M m
=
1

P

K q
=
1

|W
m

q

|,
w
h
ic
h

is
d
i↵
er
en

t
fr
o
m

th
e

co
n
v
en

ti
o
n
a
l
m
a
tr
ix

1
�
n
o
rm

d
efi

n
ed

a
s

th
e

m
a
x
im

u
m

a
b
so
lu
te

co
lu
m
n

su
m
:

kW
k 1

=

m
a
x
1

q

K

P

M m
=
1

|W
m

q

|.
b

T
h
e
n
o
ta
ti
o
n
ky

k 1
,
+

is
d
efi

n
ed

a
s
ky

k 1
,
+

=
ky

k 1
if
y
⌫

0
a
n
d
ky

k 1
,
+

=
+
1

o
th

er
w
is
e.

It
im

p
o
se
s
in
fi
n
it
e
p
en

a
lt
y
o
n
a
n
y

n
eg

a
ti
v
e
en

tr
y
a
p
p
ea

ri
n
g
in

th
e
v
ec
to
r
y
.
S
in
ce

n
eg

a
ti
v
e
en

tr
ie
s
a
re

a
lr
ea

d
y
p
en

a
li
ze
d
in

ky
k 1

,
+

,
th

er
e
is

n
o
n
ee
d
to

p
en

a
li
ze

it
a
g
a
in

in
th

e
� 2

ky
k2 2

te
rm

.

c

T
h
e
sc
a
la
r
H
u
b
er

lo
ss

fu
n
ct
io
n
is

d
efi

n
ed

a
s
L
(u

m

)
,

(

1

2
⌘

u
2 m

,
|u

m

|<
⌘

|u
m

|�
⌘

2

,
o
th

er
w
is
e
,
w
h
er
e
⌘
is

a
p
o
si
ti
v
e
p
a
ra
m
et
er
.

54

3.2.2 Dictionary Learning over Networked Agents

Let the matrix W and the vector y be partitioned in the following block forms:

W =
h

W1 · · · WN

i

(3.9)

y = col{y1, . . . , yN} (3.10)

where Wk is an M ⇥ Nk sub-dictionary matrix and yk is an Nk ⇥ 1 sub-vector.

Furthermore, we assume the regularization terms hy(y) and hW (W) admit the

following decompositions:

hy(y) =
N
X

k=1

hy
k

(yk) (3.11)

hW (W) =
N
X

k=1

hW
k

(Wk) (3.12)

Then, the objective function of the inference step (3.8) can be written as

Q(W, y; xt) , f
⇣

xt �
N
X

k=1

Wkyk
⌘

+
N
X

k=1

hy
k

(yk) (3.13)

We observe from (3.13) that the sub-dictionary matrices {Wk} are linearly com-

bined to represent the input data xt. By minimizing Q(W, y; xt) over y, the first

term in (3.13) helps ensure that the representation error for xt is small. The sec-

ond term in (3.13), which usually involves a combination of `1 and `2 measures,

as indicated in Table 3.1, helps ensure that each of the resulting combination

coe�cients {yk} is sparse and small. We require the regularization terms hy
k

(yk)

to be strongly convex, which will allow us to develop a fully distributed strategy

that enables the sub-dictionaries {Wk} and the corresponding coe�cients {yk}

55

−3 −2 −1 0 1 2 30

1

2

3

4

5

u

1
2u

2

|u|
L(u), η = 1

Figure 3.2: Illustration of the functions 1
2
u2, |u|, and L(u).

to be stored and learned in a distributed manner over the network; each agent

k will infer its own yk and update its own sub-dictionary Wk with limited inter-

action with its neighboring agents. Requiring {hy
k

(yk)} to be strongly convex is

not restrictive since we can always add a small `2 regularization term to make it

strongly convex. For example, in Table 3.1, we add an `2 term to `1 regularization

so that the resulting hy
k

(yk) ends up amounting to elastic net regularization [149].

Figure 3.1 shows the configuration of the knowledge and data distribution over

the network. The sub-dictionaries {Wk} can be interpreted as the “wisdom” that

is distributed over the network, and which we wish to combine in a distributed

manner to form a greater “intelligence” for interpreting the data xt. Observe

that we are allowing xt to be observed by only a subset of the agents. By

having the dictionary distributed over the agents, we would then like to develop a

procedure that enables these networked agents to find the global solutions to both

the inference problem (3.8) and the learning problem (3.2)–(3.3) with interactions

that are limited to their neighborhoods.

56

3.2.3 Relation to Prior Work

The problem we are solving in this chapter is di↵erent from the useful work

[31, 32] on distributed dictionary learning and from the traditional distributed

learning setting [26, 36, 42, 120], where it is assumed that the entire dictionary

W [31, 32] or the entire data model [26, 36, 42, 47, 120] is maintained at each

agent in the network, whereas individual data samples generated by the same

distribution, denoted by xk,t, are observed by the agents at each time t. That is,

these previous works study data distributed formulations. What we are studying

in this chapter is to find a distributed solution where each agent is only in charge

of a portion of the dictionary (Wk for each agent k) while the incoming data,

xt, is common and is observed by only a subset of the agents. This scenario

corresponds to a model distributed (or dictionary-distributed) formulation. A

related albeit di↵erent model was considered in [43] in the context of distributed

deep neural network (DNN) models over computer networks. In these models,

each computer is in charge of a portion of neurons in the DNN, which exchange

their private activation signals with neurons over the network to perform the

classification task. As we will see further ahead, our distributed model does not

require exchanging either the private combination coe�cients {yk} or the sub-

dictionaries {Wk} while still being able to model the data using the collective

“wisdom” over the network. Another related but di↵erent work is [142], where

the authors study a special form of a distributed sparse basis pursuit problem

under fixed sub-dictionaries at each agent. In this chapter, we allow the sub-

dictionaries to be updated dynamically over time (rather than staying fixed)

and this is accomplished without exchanging any further information after the

distributed inference step — see Sec. 3.3.5 further ahead.

The distributed model setting is important in practice because agents tend to

57

be limited in their memory and computing power and they may not be able to

store large dictionaries locally. Even if the agents were powerful enough, di↵erent

agents may have access to di↵erent databases and di↵erent sources of information.

Rather than aggregate the information in the form of large dictionaries at every

single location, it is more advantageous to keep the information distributed due

to potential excessive costs in exchanging large data sets, and also due to privacy

considerations where di↵erent agents may not be in favor of sharing their data

and dictionary. Therefore, by having distributed sub-dictionaries, and by having

many agents cooperate with each other, a large model that is beyond the ability

or reach of any single agent can be analyzed by the network in a distributed

manner.

3.3 Learning over Distributed Models

3.3.1 “Cost-of-Sum” vs. “Sum-of-Costs”

Observe that the cost function (3.13) is a regularized “cost-of-sum”; it consists

of two terms: the first term has a sum of quantities associated to di↵erent agents

inside a cost function f(·) and the second term is a collection of separable reg-

ularization terms {hy
k

(yk)}. This is di↵erent from the classical “sum-of-costs”

problem, where the global cost function Jglob(w) is an aggregation of individual

costs {Jk(w)}:

Jglob(w) =
N
X

k=1

Jk(w) (3.14)

The “sum-of-costs” problem (3.14) is amenable to distributed implementations

— see Chapter 2 and [12, 26, 35, 36, 77, 84, 120, 137]. However, minimizing the

58

regularized “cost-of-sum” problem in (3.13) directly for inference (sparse coding)

at any agent would require knowledge of all sub-dictionaries {Wk} and coe�cients

{yk} from the other agents due to the sum that runs from k = 1 up to N .

Therefore, this formulation is not directly amenable to the distributed techniques

from [12,26,35,36,77,84,120,137]. In [33], the authors propose a useful consensus-

based primal-dual perturbation method to solve a similar constrained “cost-of-

sum” problem for smart grid control, where an averaging consensus step is used

to compute the sum inside the cost. However, di↵erent from [33], we arrive at

a more e�cient distributed strategy by transforming the original optimization

problem into a dual problem that has the same form as (3.14) — see (3.31a)–

(3.31b) further ahead. More importantly, we will reveal in Sec. 3.3.5 that the dual

solution provides critical information for fully distributed dictionary updates. In

particular, for each new input data sample xt, after the dual inference problem is

solved, there will be no need to exchange any further information among agents

or use a consensus step to evaluate the sum inside the cost in order to update

their own sub-dictionaries.

3.3.2 Inference over Distributed Models

To begin with, we first transform the minimization of (3.13) into the following

equivalent constrained optimization problem:

min
{y

k

},z
f(xt � z) +

N
X

k=1

hy
k

(yk) (3.15a)

s.t. z =
N
X

k=1

Wkyk (3.15b)

59

Note that the above problem is convex over both {yk} and z since the objective is

convex and the equality constraint is linear. Problem (3.15a)–(3.15b) is a convex

optimization problem with linear constraints so that strong duality holds [10,

p.514], meaning that the optimal solution to (3.15a)–(3.15b) can be found by

solving its corresponding dual problem and then recovering the optimal {yk} and

z. To arrive at the dual problem, we write the Lagrangian of (3.15a)–(3.15b) for

each input realization xt as

L({yk}, z, ⌫; xt)

= f(xt � z) +
N
X

k=1

hy
k

(yk) + ⌫T
⇣

z �
N
X

k=1

Wkyk
⌘

= f(xt � z) + ⌫T z +
N
X

k=1

h

hy
k

(yk)� ⌫TWkyk
i

(3.16)

where {yk} and z are the primal variables and ⌫ is the Lagrange multiplier (also

known as dual variable) of size M ⇥ 1. The dual function g(⌫; xt) is defined as

the infinum of the Lagrangian L({yk}, z, ⌫; xt) over the primal variables {yk} and

z for each given ⌫:

g(⌫; xt) , inf
{y

k

},z
L({yk}, z, ⌫; xt)

= inf
z

⇥

f(xt�z)+⌫T z
⇤

+
N
X

k=1

inf
y
k

h

hy
k

(yk)�⌫TWkyk
i

(3.17)

With strong duality [20, p. 226] (a brief overview of duality can be found in

Appendix 3.B), it is known that the minimum value of the cost function obtained

from the original optimization problem (3.15a)–(3.15b) is equal to the maximum

60

value of g(⌫; xt) obtained from the following dual problem:

max
⌫

g(⌫; xt) (3.18)

Furthermore, if f(u) and {hy
k

(yk)} are strongly convex, the infimum in (3.17)

can be attained and the infimums become minimizations [105, p.15]. As a result,

the optimal solution of (3.15a)–(3.15b) can be found by solving the above dual

problem (3.18) to obtain:

⌫ot = argmax
⌫

g(⌫; xt) (3.19)

and then uniquely recovering the optimal primal variables zo and yok via

zot = argmin
z

�

f(xt � z) + (⌫ot)
T z

(3.20)

yok,t = argmin
y
k

n

hy
k

(yk)�(⌫ot)TWkyk
o

(3.21)

The strong convexity of f(u) and {hy
k

(yk)} is needed if we want to uniquely

recover zot and {yok,t} from the dual problem (3.19). As we will show further

ahead in (3.52), the quantities {yok,t} are always needed in the dictionary update.

Therefore, we shall assume that the {hy
k

(yk)} are strongly convex throughout

our presentation, which can always be satisfied by means of elastic net regular-

ization as explained earlier. On the other hand, depending on the application,

the recovery of zot is not always needed and neither is the strong convexity of

f(u) (in these cases, it is su�cient to assume that f(u)) is convex). For example,

as we will show in Sec. 3.4, the image denoising application requires recovery

of zot as the final reconstructed image. On the other hand, the novel document

detection application in the same section does not require recovery of zot . In-

61

stead, in this application, it su�ces to recover the maximum value of the dual

function, g(⌫; xt), which, by strong duality, is equal to the minimum value of the

cost function (3.15a).

To continue, observe that the infimum in (3.17) over the variables {yk} and z

for a given ⌫ is decoupled, and the minimization1 over each yk is also decoupled

for di↵erent k. Therefore, the infimum (minimization) over the primal variables

can be done independently. However, we still need to determine the optimal dual

variable ⌫ot by solving (3.19). This requires us to derive the closed-form expression

for g(⌫; xt) by solving the infimum (minimizations) in (3.17). To do so, we shall

explain first how the optimization over {z, yk} in (3.17) is related to the concept

of conjugate functions in convex optimization [20, pp.90-95].

Thus, recall that for a function r(x), its conjugate function, r?(⌫), is defined

as

r?(⌫) , sup
x

⇥

⌫Tx� r(x)
⇤

, ⌫ 2 Vr (3.22)

where the domain Vr is defined as the set of ⌫ where the above supremun is finite.

The conjugate function r?(⌫) and its domain Vr are always convex regardless of

whether r(x) is convex or not [10, p.530] [20, p.91]. In particular, it holds that

Vr = RM if r(x) is strongly convex [66, p.240]. To see this, let x1 denote a point

where r(x) is di↵erentiable. Then, by strong convexity, we have

r(x) � r(x1) + [rxr(x1)]
T (x� x1) +

�r
2
kx� x1k22 (3.23)

1

The infimum over y
k

in (3.17) becomes minimization since we assume h
y

k

(y
k

) is strongly

convex so that the infimum can be attained.

62

where �r is some positive constant. Substituting (3.23) into (3.22), we obtain

r?(⌫) , sup
x

⇥

⌫Tx� r(x)
⇤

 sup
x

h

⌫Tx�r(x1)�[rxr(x1)]
T (x�x1)�

�r
2
kx�x1k22

i

(a)
= sup

x

⇢

� �r
2

�

�

�

x� x1 +
1

�r
(rxr(x1)� ⌫)

�

�

�

2

2

+
1

2�r

�

�rxr(x1)� ⌫
�

�

2

2
+ ⌫Tx1 � r(x1)

�

=
1

2�r

�

�rxr(x1)� ⌫
�

�

2

2
+ ⌫Tx1 � r(x1) (3.24)

where in step (a) we completed the square. Therefore, r?(⌫) is always upper

bounded by a finite value for any given ⌫ 2 RM , i.e., the domain V for r?(⌫) is

RM .

Applying the concept of conjugate functions to the first term in (3.17) we

have:

inf
z

⇥

f(xt � z) + ⌫T z
⇤ (a)
= inf

u

⇥

f(u)� ⌫Tu+ ⌫Txt

⇤

= � sup
u

⇥

⌫Tu� f(u)
⇤

+ ⌫Txt

= �f ?(⌫) + ⌫Txt, ⌫ 2 Vf (3.25)

Likewise, applying the concept of conjugate functions again to the second term

in (3.17) we get

inf
y
k

⇥

hy
k

(yk)� ⌫TWkyk
⇤

= � sup
y
k

⇥

(W T
k ⌫)

Tyk � hy
k

(yk)
⇤

= �h?
y
k

(W T
k ⌫), ⌫ 2 Vh

y

k

(3.26)

where in step (a) of (3.25) we introduced u , xt� z, and f ?(·) and h?
y
k

(·) are the

63

conjugate functions of f(·) and hy
k

(·), respectively, with corresponding domains

being Vf and Vh
y

k

, respectively. Now since hy
k

(·) is strongly convex, its domain

Vh
y

k

is the entire RM [66, p.240]. If f(u) happens to be strongly convex (rather

than only convex, e.g., if f(u) = 1
2
kuk22), then Vf would also be RM , otherwise it

is a convex subset of RM . Therefore, the dual function defined by (3.17) becomes

g(⌫; xt) = �f ?(⌫) + ⌫Txt �
N
X

k=1

h?
y
k

(W T
k ⌫) (3.27)

and the domain is ⌫ 2 Vf . The dual problem (3.19) can then be expressed as

max
⌫

g(⌫; xt) (3.28a)

s.t. ⌫ 2 Vf (3.28b)

which is equivalent to

min
⌫

f ?(⌫)� ⌫Txt +
N
X

k=1

h?
y
k

(W T
k ⌫) (3.29a)

s.t. ⌫ 2 Vf (3.29b)

Note that the objective function in the above optimization problem is an ag-

gregation of many individual costs associated with sub-dictionaries at di↵erent

agents (last term in (3.29a)), a component associated with data sample xt (second

term in (3.29a)), and a component that is the conjugate function of the residual

cost (first term in (3.29a)). In contrast to (3.13), the cost function in (3.29a) is

now in a form that is amenable to distributed processing. Specifically, di↵usion

strategies of the form described in Chapter 2 and [34,120] can now be applied to

obtain the optimal dual variable ⌫ot in a distributed manner at the various agents.

Depending on how we assign f ?(·) and ⌫Txt, there can be many di↵erent config-

64

urations. For example, we can assign the term associated with data to a subset

of agents. Then, only these agents will be required to know the data sample, and

all other agents will learn and benefit from the cooperative process and attain

the same variable ⌫ot as if they had seen the data xt.

To arrive at the distributed solution, we proceed as follows. We denote the

set of agents that observe the data sample xt by NI . Motivated by (3.29a), with

each agent k, we associate the local cost function:

Jk(⌫; xt) ,

8

>

>

<

>

>

:

� 1

|NI |
⌫Txt+

1

N
f ?(⌫)+h?

y
k

(W T
k ⌫), k 2 NI

1

N
f ?(⌫)+h?

y
k

(W T
k ⌫), k /2 NI

(3.30)

where |NI | denotes the cardinality of NI . Then, the optimization problem

(3.29a)–(3.29b) can be rewritten as

min
⌫

N
X

k=1

Jk(⌫; xt) (3.31a)

s.t. ⌫ 2 Vf (3.31b)

Note that the new equivalent form (3.31a) is an aggregation of individual costs

associated with di↵erent agents; each cost Jk(⌫; xt) only requires knowledge of

Wk. Consider first the case in which f(u) is strongly convex. Then, it holds that

Vf = RM and problem (3.31a)–(3.31b) becomes an unconstrained optimization

problem and of the same general nature as problems studied in [35,36]. Therefore,

we can directly apply the di↵usion strategies developed in these works to solve

(3.31a)–(3.31b) in a fully distributed manner. The algorithm takes the following

65

form:

 k,i = ⌫k,i�1 � µ ·r⌫Jk(⌫k,i�1; xt) (3.32a)

⌫k,i =
X

`2N
k

a`k `,i (3.32b)

where ⌫k,i denotes the estimate of the optimal ⌫ot at agent k at iteration i (we will

use i to denote the i-th iteration of the inference, and use t to denote the t-th

data sample), k,i is an intermediate variable, Nk denotes the neighborhood of

agent k, µ is the step-size parameter chosen to be a small positive number, and

a`k is the combination coe�cient that agent k assigns to the information shared

from agent ` and it satisfies

X

`2N
k

a`k = 1, a`k > 0 if ` 2 Nk, a`k = 0 if ` /2 Nk (3.33)

Let A denote the N ⇥ N matrix that collects a`k as its (`, k)-th entry. Then, it

will be shown in Chapter 4 that there exists a small µ0 > 0 such that as long as

the matrix A is doubly-stochastic and the step-size is su�ciently small satisfying

µ < µ0, then the algorithm (3.32a)–(3.32b) converges to a fixed point that is

O(µ2) away from the optimal solution of (3.31a) in squared Euclidean distance.

We remark that a doubly-stochastic matrix is one that satisfies A1 = AT1 = 1.

Consider now the case in which the constraint set Vf is not equal to RM but

is still known to all agents. In general, we need to solve the maximization in

the second line of (3.25) to derive the expression for f ?(⌫) and determine the set

Vf that makes the maximization in (3.25) finite. Fortunately, this can be done

in closed-form for many typical choices of f(u) that are of practical interest —

see [20, pp.90-95]. Here we list in Table 3.2 the results that will be used in Sec.

3.4; part of results are derived in Appendix 3.A and the rest is from [20, pp.90-

66

T
ab

le
3.
2:

C
on

ju
ga
te

fu
n
ct
io
n
s
u
se
d
in

th
is
ch
ap

te
r
fo
r
d
i↵
er
en
t
ta
sk
s

T
a
sk

s
f
(u

)
f
?

(⌫
)

V f
z
o

t

h
y

k

(y
k

)
h
? y

k

(W
T

k

⌫
)

V h
y

k

y
o

k
,
t

S
p
a
r
se

S
V
D

1 2

ku
k2 2

1 2

k⌫
k2 2

R
M

x
t

�
⌫
o

t

�
ky

k

k 1
+

� 2

ky
k

k2 2

S
�

�

✓

W

T

k

⌫

�

◆

b

R
M

T
�

�

✓

W

T

k

⌫

o

t

�

◆

a

B
i-
C
lu

st
e
r
in

g
1 2

ku
k2 2

1 2

k⌫
k2 2

R
M

x
t

�
⌫
o

t

�
ky

k

k 1
+

� 2

ky
k

k2 2

S
�

�

✓

W

T

k

⌫

�

◆

R
M

T
�

�

✓

W

T

k

⌫

o

t

�

◆

N
o
n
n
e
g
a
ti
v
e
M

a
tr
ix

1 2

ku
k2 2

1 2

k⌫
k2 2

R
M

x
t

�
⌫
o

t

�
ky

k

k 1
,
+

+
� 2

ky
k

k2 2

S
+

�

�

✓

W

T

k

⌫

�

◆

d

R
M

T
+

�

�

✓

W

T

k

⌫

o

t

�

◆

c

F
a
c
to

r
iz
a
ti
o
n

M

X

m
=
1

L
(u

m

)
⌘

2

k⌫
k2 2

{⌫
:
k⌫

k 1


1
}

⇠
⇠
⇠⇠

�
ky

k

k 1
,
+

+
� 2

ky
k

k2 2

S
+

�

�

✓

W

T

k

⌫

�

◆

R
M

T
+

�

�

✓

W

T

k

⌫

o

t

�

◆

a

T �
(x

)
d
en

o
te
s
th

e
en

tr
y
-w

is
e
so
ft
-t
h
re
sh

o
ld
in
g
o
p
er
a
to
r
o
n
th

e
v
ec
to
r
x
:
[T

�

(x
)]
n

,
(|
[x
] n
|�

�
) +

sg
n
([
x
] n
),

w
h
er
e
(x

) +
=

m
a
x
(x

,0
).

b

S
�

�

(x
)
is

th
e
fu
n
ct
io
n
d
efi

n
ed

b
y
S

�

�

(x
)
,

�
� 2

·� �

T
�

�

(x
)� �

2 2

�
�
·� �

T
�

�

(x
)� �

1

+
�
·x

T

T
�

�

(x
)
fo
r
x
2

R
M

.

c

T
+

�

(x
)
d
en

o
te
s
th

e
en

tr
y
-w

is
e
o
n
e-
si
d
e
so
ft
-t
h
re
sh

o
ld
in
g
o
p
er
a
to
r
o
n
th

e
v
ec
to
r
x
:
[T

+

�

(x
)]
n

,
([
x
] n

�
�
) +

.

d

S
+

�

�

(x
)
is

d
efi

n
ed

b
y
S
+

�

�

(x
)
,

�
� 2

·� �

T
+

�

�

(x
)� �

2 2

�
�
·� �

T
+

�

�

(x
)� �

1

+
�
·x

T

T
+

�

�

(x
)
fo
r
x
2

R
M

.

e

T
h
e
fu
n
ct
io
n
s
T �

(x
),

T
+

�

(x
),

S
�

�

(x
),

a
n
d
S
+

�

�

(x
)
fo
r
th

e
sc
a
la
r
x
ca

se
a
re

il
lu
st
ra
te
d
in

F
ig
.
3
.3
.

67

95]. Usually, Vf for these typical choices of f(u) are simple sets whose projection

operators2 can be found in closed-form — see [103]. For example, the projection

operator onto the set

Vf = {⌫ : k⌫k1  1} = {⌫ : �1 � ⌫ � 1} (3.34)

that is listed in the third row of Table 3.2 is given by

[⇧V
f

(⌫)]m =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if ⌫m > 1

⌫m if � 1  ⌫m  1

�1 if ⌫m < �1

(3.35)

where [x]m denotes the m-th entry of the vector x and ⌫m denotes the m-th

entry of the vector ⌫. Now, the constraint set Vf can be enforced either by

incorporating local projections onto Vf into the combination step (3.32b) at each

agent [130] or by using the penalized di↵usion method [134,135]. Specifically, the

projection-based strategy is given by

 k,i = ⌫k,i�1 � µ ·r⌫Jk(⌫k,i�1; xt) (3.36a)

⌫k,i = ⇧V
f

"

X

`2N
k

a`k `,i

#

(3.36b)

where ⇧V
f

[·] is a projection operator onto Vf . On the other hand, the penalty-

based approach is given by

⇣k,i = ⌫k,i�1 � µ ·r⌫Jk(⌫k,i�1; xt) (3.37a)

 k,i = ⇣k,i � µ ·r⌫J
pen
V
f

(⇣k,i) (3.37b)

2

The projection operator onto the set V
f

is defined as ⇧V
f

(⌫) , arg min

x2V
f

kx� ⌫k
2

.

68

⌫k,i =
X

`2N
k

a`k `,i (3.37c)

where Jpen
V
f

(⌫) is a penalty function that is equal to zero when ⌫ 2 Vf and assumes

a large value when ⌫ /2 Vf . Examples of choices for the penalty function can be

found in [134,135].

3.3.3 Recovery of the Primal Variables

After the optimal dual variable ⌫ot has been estimated by the various agents, the

optimal primal variable yok,t can be recovered from (3.21) since hk(yk) is strongly

convex; hk(yk) being strongly convex makes the term hy
k

(yk) � (⌫ot)
TWkyk in

(3.21) also strongly convex so that the minimum in (3.21) exists and is unique.

Based on the argument in (3.26), expression (3.21) is equivalent to:

yok,t = argmax
y
k

⇥

(W T
k ⌫

o
t)

Tyk � hy
k

(yk)
⇤

(3.38)

Fortunately, for many typical choices of hy
k

(·), the optimal yok,t can be expressed

in closed form in terms of ⌫ot . In Table 3.2, we list the results that will be used

later in Sec. 3.4 with the derivation given in Appendix 3.A. Now, with regards

to zot , we indicated earlier that depending on the application, we may need to

recover zot or not. For cases when zot should be recovered, we need to assume

f(u) is strongly convex (e.g., 1
2
kuk22). In these cases, zot can be recovered from

(3.20), which, according to the argument in (3.25) and the fact that u = xt � z,

is equivalent to following expression:

zot = xt � argmax
u

⇥

(⌫ot)
Tu� f(u)

⇤

(3.39)

69

When f(u) is strongly convex, the term (⌫ot)
Tu� f(u) to be maximized in (3.39)

will become strongly concave so that there is a unique maximizer in (3.39). Prob-

lem (3.39) can be solved in closed-form for many typical choices of f(u) and we

list in Table 3.2 the results that will be used in Sec. 3.4. For more examples,

readers are referred to [20, pp.90-94].

3.3.4 Choice of Residual and Regularization Functions

In Tables 3.1–3.2, we list several typical choices for the residual function, f(u),

and the regularization functions, {hy
k

(yk)}. In general, a careful choice of f(u)

and {hy
k

(yk)} can make the dual cost (3.29a) better conditioned than in the

primal cost (3.15a). Recall that the primal cost (3.15a) may not be di↵eren-

tiable due to the choice of hy
k

(yk) (e.g., the elastic net). However, if f(u) is

chosen to be strictly convex with Lipschitz gradients and the {hy
k

(yk)} are cho-

sen to be strongly convex (not necessarily di↵erentiable), then the conjugate

function f ?(·) will be a di↵erentiable strongly convex function with Lipschitz

gradient and the {h?
y
k

(·)} will be di↵erentiable convex functions with Lipschitz

gradients [66, pp.238–240]. Adding these two parts from f ?(·) and {h?
y
k

(·)} to-

gether in (3.29a) essentially transforms a non-di↵erentiable primal cost (3.15a)

into a di↵erentiable strongly convex dual cost (3.29a) with Lipschitz gradients.

As a result, the algorithms that optimize the dual problem (3.29a)–(3.29b) can

generally enjoy a fast (geometric) convergence rate [36,105].

3.3.5 Distributed Dictionary Updates

Now that we have shown how the inference task (3.8) can be solved in a dis-

tributed manner, we move on to explain how the local sub-dictionaries Wk can

be updated through the solution of the stochastic optimization problem (3.2)–

70

(3.3), which is rewritten as:

min
W

EQ(W,yo
t ;xt) +

N
X

k=1

hW
k

(Wk) (3.40a)

s.t. Wk 2Wk, k = 1, . . . , N (3.40b)

where the loss function Q(W,yo
t ;xt) is given in (3.13), yo

t , col{yo
1,t, . . . ,y

o
N,t},

the decomposition for hW (W) from (3.12) is used, and we assume the constraint

set W can be decomposed into a set of constraints {Wk} on the individual sub-

dictionaries Wk, which usually holds for typical dictionary learning applications

— see Table 3.1. Note that the cost function in (3.40a) consists of two parts,

where the first term is di↵erentiable with respect to W 3 while the second term, if

it exists, is non-di↵erentiable but usually has a simple form — see Table 3.1. A

typical approach to optimizing cost functions of this type is the proximal gradient

method [8, 55, 56, 103], which applies gradient descent to the first di↵erentiable

part followed by a proximal operator to the second non-di↵erentiable part. This

method is known to converge faster than applying the subgradient descent method

to both parts. Therefore, our strategy is to apply the proximal gradient method

to the cost function in (3.40a) and remove the expectation operator to obtain an

instantaneous approximation to the true gradient; this is the approach typically

used in adaptation [116] and stochastic approximation [81, 99]. Afterwards, we

project the iterate onto the constraint set Wk to enforce the constraint (3.40b)

[10, 105]:

Wk,t=⇧W
k

n

proxµ
w

·h
W

k

�

Wk,t�1�µwrW
k

Q(Wt�1, y
o
t ; xt)

�

o

(3.41)

3

Note from (3.13) that Q(·) depends on W via f(·), which is assumed to be di↵erentiable.

71

−λ 0 λ

0

x

Tλ(x)

T +
λ
(x)

Sλ(x)

S+
λ
(x)

Figure 3.3: Illustration of the functions T�(x), T +
� (x), S�(x), and S+

� (x). Best
viewed in color.

where Wt�1 , [W1,t�1, · · · ,WN,t�1], proxµ
w

·h
W

k

(·) denotes the proximal operator

of µw · hW
k

(Wk), and ⇧W
k

(X) is the projection operator of the matrix X onto

the set Wk. The expression for the gradient µwrW
k

Q(Wt�1, yot ; xt) will be given

further ahead in (3.49)–(3.52). The proximal operator of a vector function h(u)

is defined as [103, p.6]:

proxh(x) , argmin
u

✓

h(u) +
1

2
ku� xk22

◆

(3.42)

For a matrix function h(U), the proximal operator assumes the same form as

(3.42) except that the Euclidean norm in (3.42) is replaced by the Frobenius norm.

The proximal operator for µw · hW
k

(Wk) = µw� · |||Wk|||1 used in the bi-clustering

task in Table 3.1 is the entry-wise soft-thresholding function [103, p.191]:

proxµ
w

·h
W

k

(·) = proxµ
w

�·|||W
k

|||(·) = Tµ
w

·�(·) (3.43)

and the proximal operator for hW
k

(Wk) = 0 for other cases in Table 3.1 is the

identity mapping:

prox0(x) = x (3.44)

72

With regards to the projection operator used in (3.41), we provide some examples

of interest for the current work. If the constraint set Wk is of the form:

Wk = {Wk : k[Wk]:,qk2  1} (3.45)

then the projection operator ⇧W
k

(·) is given by [103,130]

[⇧W
k

(X)]:,n =

8

>

<

>

:

[X]:,n, k[X]:,nk2  1

[X]
:,n

k[X]
:,n

k
2

, k[X]:,nk2 > 1
(3.46)

On the other hand, if the constraint set Wk is of the form:

Wk = {Wk : k[Wk]:,qk2  1, W ⌫ 0} (3.47)

then the projection operator ⇧W
k

(·) becomes

[⇧W
k

(X)]:,n =

8

>

>

<

>

>

:

�

[X]:,n
�

+
, k

�

[X]:,n
�

+
k2  1

�

[X]:,n
�

+

k
�

[X]:,n
�

+
k2
, k

�

[X]:,n
�

+
k2 > 1

(3.48)

where (x)+ = max(x, 0), i.e., it replaces all the negative entries of a vector x with

zeros.

Now, we return to derive the expression for the gradient rW
k

Q(Wt�1, yot ; xt)

in (3.41). By (3.13), we have

rW
k

Q(Wt�1, y
o
t ; xt) = �f 0

u

⇣

xt �
N
X

k=1

Wk,t�1y
o
k,t

⌘

(yok,t)
T (3.49)

where f 0
u(u) denotes the gradient of f(u) with respect to the residual u. On

the face of it, expression (3.49) requires global knowledge by agent k of all sub-

73

dictionaries {Wk} across the network, which goes against the desired objective of

arriving at a distributed implementation. However, we can develop a distributed

algorithm by exploiting the structure of the problem as follows. Note from (3.16)

that the optimal inference result should satisfy:

8

>

<

>

:

0 = @
@zL({y

o
k,t}, zot , ⌫ot ; xt)

0 = @
@⌫L({y

o
k,t}, zot , ⌫ot ; xt)

,

8

>

>

>

<

>

>

>

:

0 = �f 0
u(xt�zot)+⌫ot

zot =
N
X

k=1

Wk,t�1y
o
k,t

(3.50)

which leads to

0 = �f 0
u

⇣

xt �
N
X

k=1

Wk,t�1y
o
k,t

⌘

+ ⌫ot

, ⌫ot = f 0
u

⇣

xt �
N
X

k=1

Wk,t�1y
o
k,t

⌘

(3.51)

and, hence, the optimal dual variable ⌫ot will be equal to the gradient. Substitut-

ing (3.51) into (3.49), the dictionary learning update (3.41) becomes

Wk,t = ⇧W
k

n

proxµ
w

·h
W

k

�

Wk,t�1 + µw⌫
o
t (y

o
k,t)

T
�

o

(3.52)

which is now in a fully-distributed form. At each agent k, the above ⌫ot can be

replaced by the estimate ⌫k,i after a su�cient number of inference iterations (large

enough i). We note that the dictionary learning update (3.52) has the following

important interpretation. Let

uo
t , xt �

N
X

k=1

Wk,t�1y
o
k,t (3.53)

which is the optimal prediction residual error using the entire existing dictionary

74

set {Wk,t�1}N
k=1. Observe from (3.51) that ⌫ot is the gradient of the residual

function f(u) at the optimal uo
t . The update term for dictionary element k

in (3.52) is e↵ectively the correlation between ⌫ot , the gradient of the residual

function f(uo
t), and the coe�cient yok,t (the activation) at agent k. In the special

case of f(u) = 1
2
kuk22, expression (3.51) implies that

⌫ot = uo
t = xt �

N
X

k=1

Wk,t�1y
o
k,t (3.54)

In this case, ⌫ot has the interpretation of being equal to the optimal prediction

residual error, uo
t , using the entire existing dictionary set {Wk,t�1}N

k=1. Then the

update term for dictionary element k in (3.52) becomes the correlation between

the optimal prediction error ⌫ot = uo
t and the coe�cient yok,t at agent k. Further-

more, recursion (3.52) reveals that, for each input data sample xt, after the dual

variable ⌫ot is obtained at each agent, there is no need to further exchange any in-

formation among agents in order to update their own sub-dictionaries. In other

words, the dual variable ⌫ot already provides su�cient and critical information

required for distributed dictionary updates. The fully distributed algorithm for

dictionary learning is listed in Algorithm 3.1 and is also illustrated in Fig. 3.4.

3.4 Important Special Cases and Experiments

In this section, we specialize the general dictionary learning algorithm and apply

it to two problems involving image denoising and novel document/topic detection.

75

Algorithm 3.1 Model-distributed di↵usion strategy for dictionary learning
(Main algorithm)

for each input data sample xt do

Compute ⌫ot by iterating (3.32a)-(3.32b) until convergence: ⌫ot ⇡ ⌫k,i. That is:

8

>

>

<

>

>

:

 k,i = ⌫k,i�1 � µ ·r⌫Jk(⌫k,i�1; xt)

⌫k,i = ⇧V
f

8

<

:

X

`2N
k

a`k `,i

9

=

;

for each agent k do

Compute coe�cient yok,t using Table 3.2 or (3.38):

yok,t = arg max

y
k

⇥

(W T
k ⌫

o
t)

T yk � hy
k

(yk)
⇤

Adjust dictionary element Wk,t using (3.52):

Wk,t = ⇧W
k

n

proxµ
w

·h
W

k

�

Wk,t�1 + µw⌫
o
t (y

o
k,t)

T
�

o

end for

end for

3.4.1 Tuning of the inference step-size

In the following experiments, it is necessary to select properly the step-size µ

for the di↵usion algorithm (3.32a)–(3.32b) to ensure that the estimate for ⌫ot

converges su�ciently close to it after a reasonable number of iterations.

To choose µ, we first choose the number of di↵usion iterations that can be

a↵orded for the task of estimating ⌫ot , say, 1000. Second, we choose a data sam-

ple x from the training dataset. Using this x, we compute the optimal solution

yo , col{yo1, . . . , yoN} and its respective dual variable ⌫o to the inference problem

(3.15a)–(3.15b) using a non-distributed optimization package such as CVX [61].

We then adjust µ by plotting the signal-to-noise measures kyok2/kyi � yok2 and

k⌫ok2/k⌫k,i � ⌫ok2 against the iteration number i, as illustrated in Fig. 3.5. The

value ⌫k,i is obtained from the distributed algorithm (see (3.32b), (3.36b) or

76

…….#…….#
x

t

x
1

x
2

N
I

{x
t

}

W
1

W
2 W

3

W
4

W
5

W
6

W
k

Exchange#the#es.mates#for##⌫o

t

Inference'step' Dic-onary'update'step'

W
k,t

= ⇧W
k

n

prox

µ

w

·h
W

k

�

W
k,t�1

+ µ
w

⌫o

t

(yo

k,t

)

T

�

o

Figure 3.4: The distributed inference step and the dictionary update step over
distributed models. In the inference step, after each data sample xt arrives at a
subset of the agents in the network, all the agents find the corresponding opti-
mal dual variable ⌫ot by exchanging the estimates of ⌫ot with neighbors. In the
dictionary update step, agents update their sub-dictionaries locally on their own
using a step of proximal stochastic gradient descent as (3.52).

0 100 200 300 400 500
0

20

40

60

Iteration

S
N
R
(d
B
)

SNR of y
SNR of ν

Figure 3.5: Learning curve for the Huber document detection example described
by Alg. 3.4 with µ = 0.5.

77

(3.37c)) at each iteration i and yi , col{y1,i, . . . , yN,i} is calculated at each iter-

ation according to:

yk,i = argmax
y
k

⇥

(W T
k ⌫k,i)

Tyk � hy
k

(yk)
⇤

(3.55)

The chosen value of µ must guarantee that both curves reach an acceptable

SNR value (around 40-50dB in this example) for the chosen number of di↵usion

iterations. Observe that the primal variable y generally reaches a high SNR value

before the dual variable ⌫, but both are required to be found with reasonable

accuracy for the dictionary update step (see (3.52)).

3.4.2 Image Denoising via Dictionary Learning

The image denoising application has been a staple of dictionary learning tasks

[53, 86, 93, 95]. The task is to denoise an image corrupted by white Gaussian

noise. In this section, we compare the performance of the proposed distributed

algorithm to that of the centralized solution from [93]. We consider two simulation

settings. In the first setting, a single agent has the image data. In the second

setting, all agents in the network are assumed to have access to the image data.

In the simulations, we choose f(u), hy
k

(yk) and hW
k

(Wk) according to the second

row of Table 3.1.

The example we consider involves learning a 100 ⇥ 196 dictionary W over a

network of N = 196 agents. The network is generated according to a random

graph, where the probability that any agent is connected to another agent is 0.5.

The network connectivity is checked by inspecting the algebraic connectivity of

the graph Laplacian matrix, and we will repeat this random graph generation

until we find a connected topology [115]. Each agent in the network is in charge

78

of one dictionary element. We extract a total of one million 10⇥ 10 patches from

images 101-200 of the non-calibrated natural image dataset [63]. Each image is

originally 1536 ⇥ 1024 pixels in size, but the outer most two-pixel border was

discarded from each image. We then consider the top-left 1019⇥ 1019 pixels for

patch extraction. With each data sample being a 10 ⇥ 10 patch, the dimension

of the input data sample is M = 100 (vertically stacked columns). In each

experiment, we randomly initialize each entry of the dictionary matrix W with a

zero mean unit variance Gaussian random variable. The columns are then scaled

to guarantee that the sub-unit-norm constraint (3.4) is satisfied. Furthermore, in

the combination step (3.32b) of the distributed inference, we use the Metropolis

rule [26,115,146], which is known to be doubly-stochastic. The patch extraction,

preprocessing, and image reconstruction code (excluding dictionary learning and

patch inference steps) is borrowed from [104].

We simulate the following two setups of the di↵usion algorithm (see (3.30)):

1. Only node 1 has access to the image data, xt (NI = {1}).

2. All nodes have access to the same image data, xt (NI = {1, . . . , N}).

In the first case, the other nodes in the network are unaware of the incoming

data. In this way, they are only helping in the inference task despite the lack of

information. To derive the algorithm, we note from (3.30) that Jk(⌫; x) is given

by:

Jk(⌫; xt) ,

8

>

>

<

>

>

:

� 1

|NI |
⌫Txt+

1

N
f ?(⌫)+h?

y
k

(wT
k ⌫), k 2 NI

1

N
f ?(⌫)+h?

y
k

(wT
k ⌫), k /2 NI

(3.56)

where we are using wk instead ofWk because each agent k is in charge of one atom

of the dictionary (i.e., the k-th column of W). Since, for this example, we are

79

setting f(u) = 1
2
kuk2 and hy

k

(yk) = �kyk1 + �
2
kyk22 (according to the second row

of Table 3.1), we have that f ?(⌫) = 1
2
k⌫k22, Vf = RM , and h?

y
k

(wT
k ⌫) = S �

�

⇣

wT

k

⌫

�

⌘

according to Table 3.2. A straightforward calculation then shows that

r⌫f
?(⌫) = ⌫ (3.57)

r⌫h
?
y
k

(wT
k ⌫) =

1

�
T�(w

T
k ⌫)wk (3.58)

Substituting (3.57)–(3.58) into the gradient of (3.56), we obtain:

r⌫Jk(⌫; xt) =

8

>

<

>

:

� x
t

|N
I

|+
⌫
N +

T
�

(wT

k

⌫)w
k

� , k 2 NI

1
N ⌫+

1
�T�(wT

k ⌫)wk, k /2 NI

(3.59)

By substituting (3.59) into the inference part of Alg. 3.1, we immediately obtain

the inference part of Alg. 3.2. The learning portion of the algorithm (adaptation

of wk) is the same for both setups. First, we need to compute yok,t at node k

once ⌫ot has been estimated. With our choices of f(u) and h(yk), we observe from

Table 3.2 that yok,t may be obtained as yok,t = T �

�

⇣

wT

k

⌫o
t

�

⌘

= 1
�T�

�

wT
k ⌫

o
t

�

(as listed

in Alg. 3.2). Now, using the fact that hw
k

(wk) = 0 (see Table 3.1), we have that

the update rule for wk from Alg. 3.1 becomes

wk,t = ⇧W
k

�

wk,t�1+µw⌫
o
t y

o
k,t

where Wk = {w : kwk2  1} (see Table I).

For the dictionary learning, we utilize � = 45, � = 0.1, and µ = 0.7. Computer

code from the SPAMS toolbox [92] was used to compare the algorithm from [93]

using its default parameters except where otherwise stated. We used � = 45 and

80

Algorithm 3.2 Model-distributed di↵usion strategy for image denoising.

for each input data sample xt, each node k do

Repeat until convergence:

(

k,i

=⌫
k,i�1

�µ
⇣

⌫

k,i�1

N

� x

t

|N
I

|✓k

⌘

� µ

�

T
�

(wT

k,t�1

⌫
k,i�1

)w
k,t�1

⌫
k,i

=

P

`2N
k

a
`k

`,i

where ✓k = 1 when k 2 NI and is zero otherwise.

Set ⌫ot = ⌫k,i. Compute yok,t =

1
�T�(w

T
k,t�1⌫

o
t).

Update the dictionary using:

wk,t = ⇧kwk
2

1

�

wk,t�1+µw⌫
o
t y

o
k,t

end for

� = 0.1 when training the dictionary with the algorithm from [93]. A step-size

of µw = 5 ⇥ 10�5 was utilized for adapting the dictionary atoms in our Alg.

3.2. The number of iterations for the di↵usion algorithm to optimize (3.8) was

chosen to be 300 iterations. The data was presented in minibatches [45] of size

four samples/minibatch and therefore the dictionary update gradients ⌫ot y
o
k,t were

averaged over the four samples at each step4. The results are shown in Fig. 3.6.

We observe that all dictionaries exhibit edge detection-like features. In denoising

Fig. 3.6, the sparsity regularizer � remained at � = 45 for all algorithms and the

step-size for our algorithm’s inference was also increased to µ = 1 to increase the

quality of the inference result (⌫). The number of iterations of the inference step

increased to 500 iterations to ensure convergence and � = 0.1 remained constant

for all algorithms. The PSNR5 of the original corrupted image is 14.06dB, while

the algorithm from [93] and our proposed distributed algorithm attain PSNR

values of 21.77dB, 21.97dB (when the data is only available at agent 1), and

4

We perform the inference for four samples at a time, for example, (x
1

, x
2

, x
3

, x
4

) to obtain

{⌫o

k,1

, ⌫o

k,2

, ⌫o

k,3

, ⌫o

k,4

} (all using the same dictionary W). Then, we update W by averaging the

gradient listed in (3.52) for those four samples.

5

PSNR is the peak-signal-to-noise ratio defined as PSNR , 10 log

10

(I2

max

/MSE), where I
max

is the maximum pixel intensity in the image and MSE is the mean-square-error over all image

pixels.

81

Figure 3.6: Application of dictionary learning to image denoising. (a) Original
image; (b) denoised image by using the centralized method from [93]; (c) dic-
tionary obtained by the centralized method from [93]; (d) image corrupted by
additive white Gaussian noise; (e) denoised image by our proposed distributed
method assuming only node 1 has access to the image; (f) dictionary obtained
by our proposed distributed method obtained by only providing node 1 with the
image data; (g) PSNR over the network if all nodes have access to the image
data; (h) denoised image by our proposed distributed method at agent 1 assum-
ing that all nodes have access to the image data, and (i) dictionary obtained by
our proposed distributed method obtained by providing all nodes with the image
data.

21.98dB (when the data is available to all nodes), respectively. Furthermore, we

also show the PSNR of the recovered image at di↵erent agents in the network for

the third case by using our distributed strategy. We can see that the performance

is relatively uniform (around 21.97dB) across the network, meaning that while

82

no agent in the network had access to the entire dictionary, all agents were able

to obtain a 7dB improvement in the PSNR of the corrupted image. In addition,

even when only a single agent in the network has access to the data samples

themselves, and does not have access to the entire dictionary, this one agent can

still obtain the 7dB improvement in PSNR by cooperation.

3.4.3 Novel Document Detection via Dictionary Learning

In this section, we demonstrate our algorithm’s performance on the novel docu-

ment detection task [3,78,128]. In this application, a stream of documents arrives

in blocks at the network, and the task is to detect which of the documents in

the incoming batch are associated with topics that have not been observed pre-

viously, and to incorporate the new block of data into the knowledge database

to detect new topics/documents in future incoming batches. We will simulate

our dictionary learning algorithm on two di↵erent setups: 1) using the square-

Euclidean norm as the residual metric f(·), and 2) using the Huber cost function

as the residual metric. In the first setup, we compare our algorithm performance

to that of the SPAMS toolbox [92,93] on the NIST Topic Detection and Tracking

corpus (TDT2) dataset [22] where a test set from the corpus is separated out

and the algorithm is repeatedly tested on it. In the second case, we use the same

setup as in [78]. The TDT2 dataset contains news documents associated with

their dominant topics collected over the first 27 weeks of 1998. The documents

have been processed so that only the most frequent 30 topics (and documents as-

sociated with them) are preserved. In this experiment, we allow all agents in the

network to observe the incoming data. The key observation is that if a document

belongs to a topic that has been observed previously, then it is expected that the

objective value of the optimization problem (3.15a)–(3.15b) will be “small” since

83

the document should be well modeled by the available dictionary. On the other

hand, when the objective value is “large,” then this is an indication that the doc-

ument is not well modeled by the available dictionary, and hence the document

is most likely associated with a topic that has not yet been observed.

The experiment setup is as follows. A collection of 1000 documents are pre-

sented to the algorithms in order to initialize the dictionary. The algorithm

from [78] utilizes the data as a block, while the di↵usion-based algorithms utilize

the data incrementally. Once the dictionary is initialized, a new collection of 1000

documents are presented to the algorithms. The algorithms then process the data

samples in order to determine if each of the new documents belong to a topic

that has been previously observed, or not. This is done by determining if the

value of the cost function is su�ciently large, in order to deem the data sample

“novel.” The detection result then produces a receiver operating characteristic

(ROC) curve [79, p. 74], illustrated in Figs. 3.7–3.8. Following the production of

the ROC curve, the previously new data set becomes the training dataset for the

classifier in order to update the dictionary (the dictionary is also expanded at

this point by adding nodes to the network). The process then repeats by testing

the newly updated dictionary on a new set of documents that later become the

training set, etc. We will call each generation of an ROC curve a “time-step” and

we will designate it with the variable 1  s  8 (since the TDT2 dataset only

contains enough data for eight time-steps plus an initialization dataset). It is also

important to observe that in some time-steps, no documents that are associated

with novel classes are introduced to the algorithm, so an ROC curve is thus not

generated.

84

3.4.3.1 Squared-Euclidean-norm Residual

We test our online algorithm on the top 30-category TDT2 dataset [22]. The data

is compiled into a term frequency-inverse document frequency matrix X 2 RM⇥T ,

where M = 19527 and T = 9394, and normalized so that each column would pos-

sess a unit Euclidean norm. Out of the entire 9394 samples, we choose 1000 sam-

ples at random and set those aside as a test set. We verify that all 30 categories

appear in this test set. The remaining data are ordered in the order of topics and

used as the training set. For each algorithm, we create a non-negative random

dictionary, initially of size M ⇥ 10, but after each examination, the dictionary

size is increased by 10 atoms. In the distributed algorithm implementation, each

node in the network is responsible for a single atom (therefore, after each time

step, 10 new nodes enter the network). When the dictionary size is increased, the

previous atoms are preserved for all algorithms. All algorithms utilize � = 0.05

and � = 0.1, and we do not utilize minibatches for any algorithm.

At each time step, each algorithm receives the same batch of 1000 document

feature vectors. We test our algorithm in two cases: 1) fully connected, and

2) distributed. In the distributed case, a random topology is generated at each

time step, where the probability of any two nodes being connected is 0.5. All

algorithms are only allowed to observe each data sample once during the training

of the dictionary (single epoch learning). We once again utilize the Metropolis rule

to generate the combination matrix in a fully distributed manner. Both the fully

connected and distributed algorithms utilize a learning step-size of µw(s) = 10/s,

where s is the current time-step for learning of the dictionary. For the inference,

the fully connected algorithm utilizes µFC = 0.7, while the distributed algorithm

uses µ = 0.05. The fully connected algorithm performs 100 iterations for the

inference, while the distributed algorithm utilizes 1000 iterations for the inference

85

(the choice of the number of iterations and µ is discussed earlier in Sec. 3.4.1).

To obtain the distributed algorithm, we have from (3.30) that

Jk(⌫; xt) ,
1

N
(f ?(⌫)� ⌫Txt)+h?

y
k

(wT
k ⌫), (3.60)

where we let NI = N and all the agents in the network have access to xt and

each agent is in charge of one atom of the dictionary, i.e., wk. Since we now

choose f(u) = 1
2
kuk2 and hy

k

(yk) = �kyk1,++ �
2
kyk22 (according to the fourth row

of Table 3.1), we have that f ?(⌫) = 1
2
k⌫k22, h?

y
k

(wT
k ⌫) = S+

�

�

⇣

wT

k

⌫

�

⌘

, and Vf = RM

according to Table 3.2. A straightforward calculation then gives

r⌫f
?(⌫) = ⌫ (3.61)

r⌫h
?
y
k

(wT
k ⌫) =

1

�
T +
� (wT

k ⌫)wk (3.62)

Substituting (3.61)–(3.62) into the gradient of (3.60), we obtain:

r⌫Jk(⌫; xt) =
1

N
(⌫ � xt)+

1

�
T +
� (wT

k ⌫)wk (3.63)

By substituting (3.63) into the inference part of Alg. 3.1, we immediately obtain

the inference part of Alg. 3.3. For the learning portion of the algorithm, we need

to compute yok,t at node k once ⌫ot has been estimated. With our choices of f(u)

and hy
k

(yk), we observe from Table 3.2 that yok,t may be obtained as

yok,t = T +
�

�

✓

wT
k ⌫

o
t

�

◆

=
1

�
T +
�

�

wT
k ⌫

o
t

�

(3.64)

Now, using the fact that hw
k

(wk) = 0 (see Table 3.1), we have that the update

86

rule for wk from Alg. 3.1 becomes

wk,t = ⇧W
k

�

wk,t�1+µw⌫
o
t y

o
k,t

(3.65)

where Wk = {w : kwk2  1, w ⌫ 0} (see Table 3.1).

The fully connected version of the algorithm may be attained by replacing µ

with µFC and the combination matrix with A = 1
N11

T . In the algorithm, � is

the threshold used to distinguish between novel and non-novel documents; it is

treated as a tunable parameter in order to generate the ROC curves. Interestingly,

since strong duality holds for this example, we do not need to recover zot in (3.39),

but we only need to recover the cost value, g(⌫ot , ht) for a test data sample ht;

we use ht to di↵erentiate it from the training data sample xt. This can be done

in many ways, one of them being the di↵usion strategy. In order to obtain a

scaled multiple of g(⌫ot , xt) = �
PN

k=1 Jk(⌫
o
t , ht), we setup the following scalar

optimization problem:

min
g

N
X

k=1

Vk(g) (3.66)

where

Vk(g) ,
1

2
(Jk(⌫

o
t , ht) + g)2 (3.67)

from which we can obtain the following scalar di↵usion algorithm [36]:

8

>

>

<

>

>

:

�k(i) = gk(i� 1)� µg(Jk(⌫
o
t , ht) + gk(i� 1))

gk(i) =
X

`2N
k

a`k�`(i)
(3.68)

87

After su�cient iterations, recursion (3.68) approximates the following value:

got = �
1

N

N
X

k=1

Jk(⌫
o
t , ht) (3.69)

This is su�cient since the positive scaling factor, 1/N , may be absorbed into the

threshold parameter, �.

In Fig. 3.7, we show the result of the experiment for the three algorithms. We

observe that for the first two time steps, the algorithm from [93] slightly outper-

forms our fully connected and distributed algorithms. Recall, however, that the

algorithm from [93] fully optimizes yk, while we stop at 100 and 1000 iterations

for fully connected and distributed algorithms, respectively. After the first two

time steps, the algorithm from [93] never again outperforms our algorithms.

We also list the area under the curves in Table 3.3. The cases where the

distributed algorithm outperforms the fully connected algorithm (although by a

small amount) can be explained by di↵erent random initialization of the dictio-

nary atoms.

Table 3.3: Area under the curve measure for the three tested algorithms.

Time Step [93] Di↵usion (Fully Connected) Di↵usion
1 0.97 0.93 0.94
2 0.95 0.91 0.90
3 0.75 0.89 0.91
4 0.78 0.91 0.92
5 0.78 0.91 0.91
6 0.72 0.92 0.92
7 0.66 0.90 0.85
8 0.55 0.87 0.78

88

Algorithm 3.3 Model-distributed di↵usion strategy for distributed novel docu-
ment detection (Square Euclidean Norm Residual).

for each time step s = 1, 2, . . . , 8 do
Dictionary Learning:

for each training data sample xs

t

from time-step s, each node k do

Repeat until convergence:

(

 k,i=⌫k,i�1� µ
N (⌫k,i�1�xs

t)�
µ
� T +

� (wT
k,t�1⌫k,i�1)wk,t�1

⌫k,i =

P

`2N
k

a`k `,i

Set ⌫o
t

= ⌫
k,i

. Compute yo
k,t

= 1

�

T +

�

(wT

k,t�1

⌫o
t

).

Update the dictionary using:

w
k,t

= ⇧kwk21

n

⇧
w⌫0

n

w
k,t�1

+µ
w

(s)⌫o
t

yo
k,t

oo

end for
Novel Document Detection:

for each test data sample h
t

, each node k do

Repeat until convergence:

(

k,i

=⌫
k,i�1

�µ

N

(⌫
k,i�1

�h
t

)� µ

�

T +

�

(wT

k,t�1

⌫
k,i�1

)w
k,t�1

⌫
k,i

=

P

`2N
k

a
`k

`,i

Set ⌫o
t

= ⌫
k,i

.
Perform di↵usion strategy to optimize (3.66) until convergence:

(

�
k

(i) = g
k

(i� 1)� µ
g

(J
k

(⌫o
t

, h
t

) + g
k

(i� 1))

g
k

(i) =
P

`2N
k

a
`k

�
`

(i)

where J
k

(⌫, ·) is defined in (3.60).
Set go

t

= g
k,i

.
if go

t

> � then
declare document as novel.

else
declare document as not novel.

end if
end for
Add nodes to network (expand the dictionary)

end for

3.4.3.2 Huber Residual

We now test our algorithm on f(u) =
PM

m=1 L(um), where L(um) is the scalar

Huber function defined in Table 3.2. Interestingly, the conjugate function f ?(·)

of the Huber residual is strongly-convex. This allows our algorithm to guarantee

89

0 1
0

1
s=1

0 1
0

1
s=2

0 1
0

1
s=3

0 1
0

1
s=4

0 1
0

1
s=5

0 1
0

1
s=6

0 1
0

1
s=7

0 1
0

1
s=8

Mairal et al. [6]
Diffusion (Fully Connected)
Diffusion (Adhoc Network)

Figure 3.7: Application of dictionary learning to novel document/topic detec-
tion. At each time step, the algorithms receive 1000 documents. The task is
to determine which documents are associated with topics that have already been
observed, and which documents are associated with topics that have not yet been
observed. These curves represent the ROC associated with each time step against
a fixed test set. The x-axis represents probability of false alarm while the y-axis
represents the probability of detection. The area under each curve is listed in
Table 3.3.

relatively fast convergence. The setup for this section is the same as in [78]6,

except that we start with only ten dictionary atoms, and add ten additional

atoms after each time-step. We simulate the last line of the non-negative matrix

factorization setup in Table 3.2. We compare our algorithm to the one proposed

in [78], which simulates the setup where f(u) = kuk1, hy(y) = kyk1, and Wk =

{w : kwk1  1}.

6

We would like to thank S. P. Kasiviswanathan for kindly sharing his MATLAB code though

e-mail communication in order to reproduce the simulation in [78], including the ordered data.

90

Algorithm 3.4 Model-distributed di↵usion strategy for distributed novel docu-
ment detection (Huber Loss Residual).

for each time step s = 1, 2, . . . , 8 do
Dictionary Learning:

for each training data sample xs

t

from time-step s, each node k do

Repeat until convergence:

(

k,i

=⌫
k,i�1

�µ

N

(⌘⌫
k,i�1

�xs

t

)� µ

�

T +

�

(wT

k,t�1

⌫
k,i�1

)w
k,t�1

⌫
k,i

=⇧

⌫2[�1,1]

�

P

`2N
k

a
`k

`,i

where the above projection is carried out according to (3.35).
Set ⌫o

t

= ⌫
k,i

. Compute yo
k,t

= 1

�

T +

�

(wT

k,t�1

⌫o
t

).

Update the dictionary using:

w
k,t

= ⇧kwk21

n

⇧
w⌫0

n

w
k,t�1

+µ
w

(s)⌫o
t

yo
k,t

oo

end for
Novel Document Detection:

for each test data sample h
t

, each node k do

Repeat until convergence:

(

k,i

=⌫
k,i�1

�µ

N

(⌘⌫
k,i�1

�h
t

)� µ

�

T +

�

(wT

k,t�1

⌫
k,i�1

)w
k,t�1

⌫
k,i

= ⇧

⌫2[�1,1]

�

P

`2N
k

a
`k

`,i

Set ⌫o
t

= ⌫
k,i

.
Perform di↵usion strategy to optimize (3.66) until convergence:

(

�
k

(i) = g
k

(i� 1)� µ
g

(J
k

(⌫o
t

, h
t

) + g
k

(i� 1))

g
k

(i) =
P

`2N
k

a
`k

�
`

(i)

where J
k

(⌫, ·) is defined in (3.70).
Set go

t

= g
k,i

.
if go

t

> � then
declare document as novel.

else
declare document as not novel.

end if
end for
Add nodes to network (expand the dictionary)

end for

For the simulation of the di↵usion algorithm, the data are normalized so that

kxtk2 = 1. On the other hand, when testing on the centralized ADMM-based

algorithm from [78], the data are normalized so that kxtk1 = 1, in keeping with

the proposed simulation setup there. The constraint set for W for the di↵usion-

based algorithm is {W : k[W]:,qk2  1, W ⌫ 0}, while the constraint set for the

ADMM-based algorithm from [78] is {W : k[W]:,qk1  1, W ⌫ 0}. We choose

91

0 1
0

1 s=1

0 1
0

1 s=2

0 1
0

1 s=5

0 1
0

1 s=6

0 1
0

1 s=8

ADMM [11]
Fully Connected
Diffusion

Figure 3.8: Application of dictionary learning to novel document/topic detec-
tion. At each time step, the algorithms receive 1000 documents. The task is
to determine which documents are associated with topics that have already been
observed, and which documents are associated with topics that have not yet been
observed. These curves represent the ROC curve associated with each time step
against a changing test set. The x-axis represents probability of false alarm while
the y-axis represents probability of detection. The area under each cuve is listed
in Table 3.4.

� = 1 and � = 0.1. For the initialization of the dictionary for the ADMM

algorithm from [78], we let the algorithm iterate between the sparse coding step

and the dictionary learning step 35 times. The di↵usion algorithm runs through

the data once. We choose ⌘ = 0.2 for the connection point between the quadratic

part and the linear part of the Huber loss function. We use the same step-

size choices as in the square Euclidean norm simulation described in Sec.3.4.3.1.

Samples 1-1000 are used for the initialization of the dictionary. In this simulation

setup, since the data is ordered di↵erently from the last section (although it is

still the TDT2 corpus data), novel documents are only introduced at the first

92

(samples 1001-2000), second (2001-3000), fifth (5001-6000), sixth (6001-7000),

and eighth (8001-9000) time-steps. For this reason, we only execute the novel

document detection part of the algorithm at those time-steps, and present the

ROC curves for those time-steps. We run our algorithm using the fully connected

case, where A = 1
N11

T and the distributed case where the probability that two

nodes are connected is 0.5, and the combination matrix is the Metropolis rule.

To obtain the distributed algorithm, we note from (3.30) that

Jk(⌫; xt) ,
1

N
(f ?(⌫)� ⌫Txt)+h?

y
k

(wT
k ⌫) (3.70)

Since we now use f(u) =
PM

m=1 L(um) and hy
k

(yk) = �kyk1,++ �
2
kyk22 (according

to the last row of Table 3.1), we obtain that f ?(⌫) = ⌘
2
k⌫k22, Vf = {⌫ : k⌫k1  1},

and h?
y
k

(wT
k ⌫) = S+

�

�

⇣

wT

k

⌫

�

⌘

according to Table 3.2. A straightforward calculation

then shows that

r⌫f
?(⌫) = ⌘ · ⌫ (3.71)

r⌫h
?
y
k

(wT
k ⌫) =

1

�
T +
� (wT

k ⌫)wk (3.72)

Substituting (3.71)–(3.72) into the gradient of (3.70), we obtain:

r⌫Jk(⌫; xt) =
1

N
(⌘ · ⌫ � xt)+

1

�
T +
� (wT

k ⌫)wk (3.73)

where we let NI = N and all the agents in the network have access to xt. By

substituting (3.73) into the inference part of Alg. 3.1, we immediately obtain the

inference part of Alg. 3.4. For the learning portion of the algorithm, we need to

compute yok,t at node k once ⌫ot has been estimated. With our choices of f(u) and

h(yk), we observe from Table 3.2 that yok,t may be obtained as yok,t = T +
�

�

⇣

wT

k

⌫o
t

�

⌘

=

93

1
�T

+
�

�

wT
k ⌫

o
t

�

(as listed in Alg. 3.4). Now, using the fact that hw
k

(wk) = 0 (see

Table 3.1), we have that the update rule for wk from Alg. 3.1 becomes

wk,t = ⇧W
k

�

wk,t�1+µw⌫
o
t y

o
k,t

(3.74)

where Wk = {w : kwk2  1, w ⌫ 0} (see Table 3.1).

The final algorithm is listed in Alg. 3.4. Again, each node in the network is

responsible for a single dictionary atom. The sparse coding stages of the central-

ized ADMM-based algorithm from [78] utilize 35 iterations, and the number of

iterations of the dictionary update steps are capped at 10 for all iterations other

than the initialization step. We observe that the performance of the centralized

ADMM-based algorithm reproduced in this manuscript is competitive with that

in [78], even though the initial dictionary size is chosen to be ten, as opposed to

200 atoms (as was done in the experiment in [78]).

The performance of the algorithms is illustrated in Fig. 3.8. We observe that

the Huber loss function improves performance relative to the `1 function. The

area under each ROC curve is listed in Table 3.4. Since the di↵erent algorithms

were initialized with di↵erent dictionaries, it may be possible for the sparsely-

connected di↵usion strategy to slightly outperform the fully-connected di↵usion

strategy. We observe this e↵ect in Table 3.4, where the sparsely-connected net-

work outperforms the fully-connected network by 0.01 (area under the curve

measure).

3.5 Conclusion

In this chapter, we studied the “cost-of-sum” problem in the context of dictio-

nary learning problems over distributed models, where each agent in a connected

94

Table 3.4: Area under the curve measure for the three tested algorithms. No
novel documents were presented in time-steps 3, 5, and 7.

Time Step ADMM [78] Di↵usion (Fully Connected) Di↵usion
1 0.69 0.79 0.79
2 0.61 0.94 0.93
5 0.69 0.94 0.95
6 0.73 0.96 0.95
8 0.69 0.93 0.94

network is in charge of a portion of the dictionary atoms and the agents collab-

orate to represent the data. Using the concepts of conjugate function and dual

decomposition, we transform the original global dictionary learning problem into

a form that is amenable to distributed optimization, which is solved by di↵u-

sion strategy. The collaborative inference step generates the dual variables that

can be used by the agents to update their dictionary atoms without the need

to share these dictionaries or even the coe�cient models for the training data.

The proposed algorithm is tested over two typical tasks of dictionary learning,

namely, image denoising and novel document detection. The results illustrate the

superior performance of our proposed algorithm.

3.A Derivation of Some Typical Conjugate Functions

In this appendix, we derive the conjugate functions listed in Table 3.2. The

conjugate functions for 1
2
kuk22, and their corresponding domains can be found

in [20, pp.90-94]. The conjugate function for the scalar Huber loss L(um) can be

found in [143] as

L?(⌫m) =
1

2
⌫2m, |⌫m|  1 (3.75)

95

Therefore, by the “sums of independent functions” property7 in [20, p.95], the

conjugate function of
PM

m=1 L(um) is given by

M
X

m=1

L?(⌫m) =
M
X

m=1

1

2
⌫2m =

1

2
k⌫k22, (3.76)

where the domain is given by

|⌫m|  1, m = 1, . . . ,M , k⌫k1  1 (3.77)

Next, we derive the conjugate functions for the elastic net regularization term:

hy
k

(yk) = �kykk1 +
�

2
kykk22 (3.78)

By the definition of conjugate functions in (3.22), we have

h?
y
k

(W T
k ⌫) = sup

y
k

⇥

(W T
k ⌫)

Tyk � hy
k

(yk)
⇤

= � inf
y
k

⇥

hy
k

(yk)� (W T
k ⌫)

Tyk
⇤

= � inf
y
k



�kykk1+
�

2
kykk22�(W T

k ⌫)
Tyk

�

(3.79)

= �� ·inf
y
k



�

�
kykk1+

1

2

�

�

�

yk�
1

�
W T

k ⌫
�

�

�

2

2

�

+
1

2�
kW T

k ⌫k22 (3.80)

where the last step completes the square. Note from (3.42) that the optimal

yk that minimizes the term inside the bracket of (3.80) can be expressed as the

proximal operator of (�/�)kykk1, which is known to be given by the entry-wise

7

If f(x
1

, . . . , x
N

) = f
1

(x
1

) + · · · f
N

(x
N

), then the conjugate function for f(x
1

, . . . , x
N

) is

given by f?

(y
1

, . . . , y
N

) = f?

1

(y
1

) + · · · + f?

N

(y
N

), where f?

1

(y
1

), . . . , f?

N

(y
N

) are the conjugate

functions for f
1

(x
1

), . . . , f
N

(x
N

), respectively.

96

soft-thresholding operator [103, p.188] [50]:

yok,t = argmin
y
k



�

�
kykk1 +

1

2

�

�

�

yk�
1

�
W T

k ⌫
�

�

�

2

2

�

= prox �

�

k·k
1

✓

W T
k ⌫

�

◆

= T �

�

✓

W T
k ⌫

�

◆

(3.81)

where

[T�(x)]n , (|[x]n|� �)+sgn([x]n) (3.82)

and

(x)+ = max(x, 0) (3.83)

Substituting (3.81) into (3.79), we obtain

h?
y
k

(W T
k ⌫) = S �

�

✓

W T
k ⌫

�

◆

(3.84)

where

S �

�

(x) , �� ·
�

�T �

�

(x)
�

�

1
� �
2

�

�T �

�

(x)
�

�

2

2
+� · xTT �

�

(x) (3.85)

Finally, we derive the conjugate function for the nonnegative elastic net reg-

ularization function:

hy
k

(yk) = �kykk1,+ +
�

2
kykk22 (3.86)

97

Following the same line of argument from (3.79) and (3.80), we get

h?
y
k

(W T
k ⌫) = � inf

y
k



�kykk1,++
�

2
kykk22�(W T

k ⌫)
Tyk

�

(3.87a)

= �� ·inf
y
k



�

�
kykk1,++

1

2

�

�

�

yk�
1

�
W T

k ⌫
�

�

�

2

2

�

+
1

2�
kW T

k ⌫k22 (3.87b)

By (3.42), the optimal yok,t that minimizes the term inside the bracket of (3.87b)

is given by

yok,t = argmin
y
k



�

�
kykk1,+ +

1

2

�

�

�

yk�
1

�
W T

k ⌫
�

�

�

2

2

�

(3.88)

Applying an argument similar to the one used in [8], we can express the optimal

yok,t in (3.88) as

yok,t = T +
�

�

✓

W T
k ⌫

�

◆

(3.89)

where T +
� (·) is the one-sided soft-thresholding operator:

[T +
� (x)]n , ([x]n � �)+ (3.90)

Substituting (3.89) into (3.87a), we obtain

h?
y
k

(W T
k ⌫) = S+

�

�

✓

W T
k ⌫

�

◆

(3.91)

where

S+
�

�

(x) , �� ·
�

�T +
�

�

(x)
�

�

1,+
� �
2

�

�T +
�

�

(x)
�

�

2

2
+� · xTT +

�

�

(x)

98

= �� ·
�

�T +
�

�

(x)
�

�

1
� �
2

�

�T +
�

�

(x)
�

�

2

2
+� · xTT +

�

�

(x) (3.92)

where the last step uses the fact that the output of T +
� (·) is always nonnegative

so that kT +
�

�

(x) k1,+ = kT +
�

�

(x) k1.

3.B Overview of Duality Theory

In this appendix, we give a brief overview of duality theory in convex optimization.

For more thorough treatments of duality theory, the readers are referred to [10,

20,105]. First, consider the following convex optimization problem:

min
x

f0(x) (3.93a)

s.t. fk(x)  0, k = 1, . . . , K (3.93b)

Ax = b (3.93c)

where f0(x), f1(x), . . . , fK(x) are convex cost functions defined over RM , A is

an N ⇥M matrix, and b is an N ⇥ 1 vector. Problem (3.93a)–(3.93c) is called

the primal problem, and the variable x is called the primal variable. Then, the

Lagrangian corresponding to the primal problem (3.93a)–(3.93c) is defined as

L(x, ⌫,�) = f0(x) + ⌫T (Ax� b) +
K
X

k=1

�kfk(x) (3.94)

= f0(x) + ⌫T (Ax� b) + �Tf(x) (3.95)

where f(x) , col{f1(x), . . . , fK(x)}, ⌫ 2 RN is the Lagrange multiplier vector

associated with the equality constraint (3.93c), � , col{�1, . . . ,�K} is the La-

grange multiplier vector associated with the inequality constraints (3.93b) and is

99

required to satisfy � ⌫ 0. The dual function is constructed as

g(⌫,�) , inf
x
L(x, ⌫,�) (3.96)

and the dual problem corresponding to (3.93a)–(3.93c) is defined as

max
⌫,�

g(⌫,�) (3.97a)

s.t. � ⌫ 0 (3.97b)

We now introduce the concept of weak duality [20, pp.225-226].

Theorem 3.1 (Weak duality). Let p? denote the value of f0(x) at the optimal

solution to the primal problem (3.93a)–(3.93c), and let d? denote the value of

g(⌫,�) corresponding to the optimal solution to the dual problem (3.97a)–(3.97b).

Then, it always holds that

p? � d? (3.98)

In other words, the optimal value of the dual problem is always a lower bound

for the optimal value of the primal problem. In fact, the weak duality inequality

(3.98) holds even when the primal problem (3.93a)–(3.93c) is not convex (i.e.,

even when none of the functions f0(x), f1(x), . . . , fK(x) is convex).

We say that strong duality [20, p.226] holds if, and only if

p? = d? (3.99)

That is, the optimal value of the dual problem (3.97a)–(3.97b) is equal to the

100

optimal value of the primal problem (3.93a)–(3.93c). In general, strong dual-

ity does not hold for non-convex problems, and it may not even hold for some

convex problems. Nevertheless, if certain additional conditions (called constraint

qualifications) hold in convex optimization problems, then strong duality can be

established. One simple and useful (su�cient) constraint qualification is Slater’s

condition [20, p.226–227], which requires that there should exist an x 2 RM such

that

fk(x) < 0, k = 1, . . . , K, Ax = b (3.100)

That is, there exists a point x such that the equality constraint is satisfied and the

inequality constraint (3.93b) is strictly satisfied. Such a point is called a strictly

feasible point. If Slater’s condition holds for a convex optimization problem,

then strong duality (3.99) holds. Another su�cient condition occurs when the

inequality constraints (3.93c) happen to be a�ne, such that

min
x

f0(x) (3.101a)

s.t. Bx � 0 (3.101b)

Ax = b (3.101c)

Then, strong duality also holds [20, p.226], [10, p.514].

Once we get the optimal solutions (⌫o,�o) for the dual problem (3.97a)–

(3.97b), then the optimal solution to the primal problem (3.93a)–(3.93c) can

be obtained as

xo = argmin
x

L(x, ⌫o,�o) (3.102)

101

if the minimizer of L(x, ⌫o,�o) is unique. However, if there are multiple minimiz-

ers for L(x, ⌫o,�o), then some of the minimizers might be primal-infeasible [10,

p.603]. That is, some of the minimizers of L(x, ⌫o,�o) may not satisfy the fea-

sibility conditions (3.93b)–(3.93c). In this case, we need to select the xo to be

the ones that satisfy the constraint (3.93b)–(3.93c) from all the minimizers of

L(x, ⌫o,�o). In this chapter, we only use (3.102) because the cost functions are

selected to ensure a unique minimizer of L(x, ⌫o,�o) — see Sec. 3.3.3.

3.C Overview of Proximal Gradient Algorithms

In this appendix, we give a short overview of proximal gradient algorithms and

the proximal operator. For a useful survey, the readers are referred to [103]. The

proximal gradient algorithm is applicable to optimization problems that assume

the following form:

min
x

f(x) + h(x) (3.103)

where f(x) is a continuously di↵erentiable convex function defined over RM , and

h(x) is a non-di↵erentiable convex function over RM . That is, the cost func-

tion consists of the sum of a di↵erentiable part and a non-di↵erentiable part.

One approach to minimizing non-di↵erentiable cost functions is to employ the

sub-gradient method [10, 105]. However, sub-gradient methods tend to converge

slowly at the rate of O(1/
p
i), where i is the number of iterations. Neverthe-

less, if h(x) in (3.103) assumes certain forms such that its proximal operator

(defined by (3.104) below) can be evaluated easily, then the proximal gradient

algorithm provides a more e�cient technique to minimize (3.103) by exploiting

the di↵erentiable nature of f(x) and the structure of h(x).

102

Table 3.5: Examples of proximal operators

h(x) prox�h(x), � > 0

0 x

aTx+ b x� �a
1
2
xTAx+ bTx+ c, A is positive definite (I + �A)�1(x� �b)

1
2
kxk22 1

1+� · x

� ln(x) 1
2

⇣

x+
p

x2 + 4�
⌘

kxk1 T�(x)

kxk1 + �
2
kxk22 1

1+�� · T�(x)

The proximal operator of a function h(x) is defined as

proxh(x) = argmin
u

✓

h(u) +
1

2
ku� xk22

◆

(3.104)

Note that the above definition of the proximal operator is for both di↵erentiable

and non-di↵erentiable functions. Closed-form expressions for some useful choices

for h(x) can be found in Table 3.5 and [103, pp.172–195]. For example, if h(x) =

kxk1, then the proximal operator for � ·h(x) is the (entry-wise) soft-thresholding

operator:

[prox�·kxk
1

(x)]m = [T�(x)]m =

8

>

>

>

>

>

<

>

>

>

>

>

:

xm � � xm � �

0 |xm|  �

xm + � xm  ��

(3.105)

where [·]m denotes the mth entry of the vector argument, and xm denotes the

103

mth entry of the vector x.

The proximal gradient method for solving the problem (3.103) is given by the

following iteration:

xi = proxµ·h
�

xi�1 � µrxf(xi�1)
�

(3.106)

where µ is a positive step-size parameter. That is, the algorithm applies gradi-

ent descent step to the di↵erentiable part, f(x), and then applies the proximal

operator to the non-di↵erentiable part. By doing so, it is shown in [8] that the

convergence rate becomes O(1/i) for any convex function f(x) with Lipschitz

gradients, which is faster than the O(1/
p
i) rate for sub-gradient methods.

A useful interpretation of the proximal gradient method (3.106) is the ma-

jorization minimization strategy [69, 103], which minimizes a function g(x) by

iteratively minimizing a particular upper bound defined using the previous it-

erate xi�1. Assume f(x) in (3.103) is continuously di↵erentiable with Lipschitz

gradients, i.e.,

krf(x)�rf(y)k  L · kx� yk, 8x, y (3.107)

where L is the Lipschitz constant. Then, f(x) can be upper bounded as

f(x) = f(xi�1) +



Z 1

0

rf(xi�1 + t(x� xi�1))dt

�T

(x� xi�1)

= f(xi�1)

+



Z 1

0

⇥

rf(xi�1) +rf(xi�1 + t(x� xi�1))�rf(xi�1)
⇤

dt

�T

(x� xi�1)

= f(xi�1) + [rf(xi�1)]
T (x� xi�1)

104

+

✓

Z 1

0

[rf(xi�1 + t(x� xi�1))�rf(xi�1)] dt

◆T

(x� xi�1)

(a)

 f(xi�1) + [rf(xi�1)]
T (x� xi�1)

+

Z 1

0

krf(xi�1 + t(x� xi�1))�rf(xi�1)k dt · kx� xi�1k

(b)

 f(xi�1) + [rf(xi�1)]
T (x� xi�1) +

Z 1

0

tdt · L · kx� xi�1k2

= f(xi�1) + [rf(xi�1)]
T (x� xi�1) +

L

2
· kx� xi�1k2

(c)

 f(xi�1) + [rf(xi�1)]
T (x� xi�1) +

1

2µ
· kx� xi�1k2

| {z }

,f
µ

(x,x
i�1

)

(3.108)

where step (a) uses Cauchy-Schwartz inequality (xTy  |xTy|  kxk · kyk), step

(b) uses the Lipshitz condition (3.107) on the gradient, and step (c) holds for any

µ that satisfies 0 < µ  1/L. That is, for any µ 2 (0, 1/L], we have the following

majorization relation for f(x):

f(x)  fµ(x, xi�1) (3.109)

which implies the following majorzation relation for f(x) + h(x):

f(x) + h(x)  fµ(x, xi�1) + h(x)

= f(xi�1) + [rf(xi�1)]
T (x� xi�1) +

1

2µ
· kx� xi�1k2 + h(x)

(3.110)

The majorization minimization strategy minimizes f(x)+h(x) by minimizing its

upper bound fµ(x, xi�1) + h(x) at each iteration i:

xi = argmin
x

(fµ(x, xi�1) + h(x))

105

= argmin
x

✓

f(xi�1) + [rf(xi�1)]
T (x� xi�1) +

1

2µ
· kx� xi�1k2 + h(x)

◆

(a)
= argmin

x

✓

[rf(xi�1)]
Tx+

1

2µ
· kx� xi�1k2 + h(x)

◆

= argmin
x

✓

µ · h(x) + µ[rf(xi�1)]
Tx+

1

2
kx� xi�1k2

◆

(b)
= argmin

x

⇣

µ · h(x) + 1

2
kx� [xi�1 � µrf(xi�1)]k2

+
1

2
kxi�1k2 �

1

2
kxi�1 � µrf(xi�1)k2

⌘

(c)
= argmin

x

⇣

µ · h(x) + 1

2
kx� [xi�1 � µrf(xi�1)]k2

⌘

= proxµh
�

xi�1 � µrf(xi�1)
�

(3.111)

where steps (a) and (c) drop the terms that are independent of x, and step (b)

completes the square to absorb the linear term of x into the quadratic term.

From the above derivation (3.111), the majorization process is only performed

on the di↵erentiable part, f(x), in (3.103). The non-di↵erentiable part, h(x),

remains unchanged. The majorization is approximating f(x) by a quadratic

function using its local gradient at the previous iterate xi�1 and a su�ciently

large Hessian I/µ, which provides local information about f(x) around xi�1. On

the other hand, by keeping h(x) unchanged during the majorization process, we

retain its global information. Therefore, the proximal gradient algorithm (3.106)

is exploiting local information for f(x) and global information for h(x) during the

iteration, which is expected to achieve a faster convergence than the sub-gradient

method, which uses only the local information for both f(x) and h(x).

106

CHAPTER 4

Mean-Square Analysis

From Chapters 2–3, we know that both the “sum-of-costs” and “cost-of-sum”

problems can be e↵ectively solved by di↵usion strategies. Starting from this

chapter, we proceed to analyze the performance of the di↵usion strategies. In this

chapter, we first analyze the stability and performance of the algorithm under

the assumption that each cost function Jk(w) is strongly convex. In later chap-

ters, we will relax this assumption to require only the aggregate cost Jglob(w) =
PN

k=1 Jk(w) to be strongly convex. The analysis in the latter case is more involved.

Nevertheless, studying the performance of di↵usion strategies under the stronger

assumptions (“where each cost function is strongly convex”) is still important

since this assumption typically holds in practical applications. This is because

quadratic regularization can be added to convert each Jk(w) into a strongly con-

vex function. The following presentation in this chapter is based on [36].

4.1 General Di↵usion Adaptation Strategies

In Chapter 2, we motivated and derived di↵usion strategies for distributed opti-

mization of the following aggregate cost

Jglob(w) =
N
X

k=1

Jk(w) (4.1)

107

where we assumed that the cost functions {Jk(w)} share a common minimizer.

In this chapter, we are going to show that this assumption is not necessary

and di↵usion strategies still work even when the minimizers of {Jk(w)} are not

necessarily equal to each other. Recall that the di↵usion strategies (ATC and

CTA strategies) are captured by the following general description:

�k,i�1 =
N
X

l=1

a1,lkwl,i�1 (4.2)

 k,i = �k,i�1 � µk

N
X

l=1

clkrwJl(�k,i�1) (4.3)

wk,i =
N
X

l=1

a2,lk l,i (4.4)

where wk,i is the local estimate for wo at node k and time i, µk is the step-size

parameter used by node k, and {�k,i�1, k,i} are intermediate estimates for wo.

Moreover, rwJl(·) is the (column) gradient vector of Jl(·) relative to w. The non-

negative coe�cients {a1,lk}, {clk}, and {a2,lk} are the (l, k)-th entries of matrices

A1, C, and A2, respectively, and they are required to satisfy:

8

<

:

AT
1 1 = 1, AT

2 1 = 1, C1 = 1,

a1,lk = 0, a2,lk = 0, clk = 0 if l /2 Nk

(4.5)

where 1 denotes a vector with all entries equal to one, Nk denotes the neighbor-

hood of node k (including node k itself); the neighbors of node k consist of all

nodes with which node k can share information. Note from (4.5) that the combi-

nation coe�cients {a1,lk, a2,lk, clk} are nonzero only for those l 2 Nk. Therefore,

the sums in (4.2)–(4.4) are confined within the neighborhood of node k. Condi-

tion (4.5) requires the combination matrices {A1, A2} to be left-stochastic, while

C is right-stochastic. We therefore note that each node k first aggregates the ex-

108

isting estimates from its neighbors through (4.2) and generates the intermediate

estimate �k,i�1. Then, node k aggregates gradient information from its neighbor-

hood and updates �k,i�1 to k,i through (4.3). All other nodes in the network

are performing these same steps simultaneously. Finally, node k aggregates the

estimates {�l,i} through step (4.4) to update its weight estimate to wk,i.

Algorithm (4.2)–(4.4) can be simplified to several special cases for di↵erent

choices of the matrices {A1, A2, C}. For example, the choice A1 = I, A2 = A and

C = I reduces to the adapt-then-combine (ATC) strategy that has no exchange

of gradient information [26, 34,89]:

 k,i = wk,i�1 � µkrwJk(wk,i�1)

wk,i =
X

l2N
k

alk l,i
(ATC, C = I) (4.6)

while the choice A1 = A, A2 = I and C = I reduces to the combine-then-adapt

(CTA) strategy, where the order of the combination and adaptation steps are

reversed relative to (4.6) [26, 89]:

 k,i�1 =
X

l2N
k

alkwl,i�1

wk,i = k,i�1 � µkrwJk(k,i�1)

(CTA, C = I) (4.7)

Furthermore, if in the CTA implementation (4.7) we enforce A to be doubly

stochastic, replace rwJk(·) by a subgradient, and use a time-decaying step-size

parameter (µk(i) ! 0), then we obtain the unconstrained version used by [109].

In the sequel, we continue with the general recursions (4.2)–(4.4), which allow us

to examine the convergence properties of several algorithms in a unified manner.

The challenge we encounter now is to show that this class of algorithms can

109

optimize the cost (2.1) in a distributed manner when the individual costs {Jl(w)}

do not necessarily have the same minimizer. This is a demanding task, as the

analysis in the coming sections reveals.

4.2 Modeling Assumptions

In situations of adaptation and learning, the true gradient vectors needed in (4.3)

are not available. Instead, these gradients are replaced by approximate values,

which we model as:

[rwJl(w) = rwJl(w) + vl,i(w) (4.8)

where the random noise term, vl,i(w), may depend on w and will be required to

satisfy certain conditions given by (4.13)–(4.14). We refer to the perturbation in

(4.8) as gradient noise. Using (4.8), the di↵usion algorithm (4.2)–(4.4) becomes

the following, where we are using boldface letters for various quantities to high-

light the fact that they are now stochastic in nature due to the randomness in

the gradient noise component:

�k,i�1 =
N
X

l=1

a1,lkwl,i�1 (4.9)

 k,i = �k,i�1 � µk

N
X

l=1

clk
⇥

rwJl(�k,i�1) + vl,i(�k,i�1)
⇤

(4.10)

wk,i =
N
X

l=1

a2,lk l,i (4.11)

Using (4.9)–(4.11), we now proceed to examine the mean-square performance of

the di↵usion strategies. Specifically, in the sequel, we study: (i) how fast and (ii)

how close the estimator wk,i at each node k approaches the minimizer wo of the

110

aggregate cost (4.1) in the mean-square-error sense. We establish the convergence

of all nodes towards the same wo within a small MSE bound. The approach

we employ to examine the convergence properties of the di↵usion strategy is a

system-theoretic approach that examines the flow of energy through the network,

and calls upon the fixed-point theorem for contractive mappings [80, pp.299–303].

To proceed with the analysis, we introduce the following assumptions on the

cost functions and gradient noise.

Assumption 4.1 (Bounded Hessian). Each component cost function Jl(w) has

a Hessian matrix that is bounded from below and from above, i.e., there exist

�l,min � 0 and �l,max > 0 such that, for each k = 1, . . . , N :

�l,minIM  r2
wJl(w)  �l,maxIM (4.12)

with
PN

l=1 clk�l,min > 0. Inequality (4.12) means that the eigenvalues of r2
wJl(w)

are upper and lower bounded by �l,max and �l,min, respectively.

Assumption 4.2 (Gradient noise). There exist ↵ � 0 and �2
v � 0 such that, for

all w 2 Fi�1:

E {vl,i(w) | Fi�1} = 0 (4.13)

E
�

kvl,i(w)k2

 ↵ · EkrwJl(w)k2 + �2
v (4.14)

for all i, l, where Fi�1 denotes the past history of estimators {wk,j} for j  i� 1

and all k.

Remark 4.1. Assumption 4.1 ensures the strong convexity of the aggregate cost

Jglob(w) defined by (4.1); condition (4.12) would require the individual costs to

be strongly convex when C = I. This condition is applicable to many situations

111

of interest; one of its main benefits is that it ensures that the Hessian matrix

is not close-to-singular or ill-conditioned. Strong convexity is prevalent in many

other studies on optimization techniques as well. For example, the individual

costs Jl(w) are assumed to be stronlgy convex in [125, 132] in order to derive

upper bounds on the limit superior (“lim sup”) of the mean-square-error of their

estimates wk,i or the expected value of their cost function at wk,i when constant

step-sizes are used, i.e., to derive results of the form

lim sup
i!1

Ekwk,i � wok2  ⌘ (4.15)

lim sup
i!1

EJglob(wk,i)  Jglob(wo) + ⌘ (4.16)

where ⌘ is the upper bound. For example, in Theorem 5 of [125], each individual

cost function is assumed to be continuously di↵erentiable and strongly convex.

Likewise, in Proposition 2 of [132], each individual cost function is also assumed

to be strongly convex. When the strong convexity assumption is relaxed, no

upper bounds on the limit superiors similar to (4.15) or (4.16) are established

in [97, 109, 132]. Instead, only upper bounds on the limit inferior (“lim inf”) of

EJglob(wk,i) are derived in the presence of noise [109, 132], or in the absence of

noise [71, 97], such as the bound

lim inf
i!1

EJglob(wk,i)  Jglob(wo) + ⌘ (4.17)

By the definitions of lim sup and lim inf [4, p.353–355], inequality (4.17) means

that EJglob(wk,i) can only be smaller than the upper bound on the right-hand

side infinitely often as i!1. However, it can also be arbitrarily far away from

the upper bound infinitely often. On the contrary, the bound on lim sup means

that, as i ! 1, eventually the mean-square-error or the expected cost function

112

value at wk,i would be uniformly smaller than the upper bound. For this reason,

it is more critical to establish an upper bound on the limit superior rather than

the limit inferior. It is for this purpose that Polyak-Ruppert averaging [106,111]

is applied in [97,109,132] to obtain a new time-averaged estimate at each node k

as:

zk,i =
1

i

i
X

t=1

wk,t (4.18)

which is then shown to satisfy the lim sup bound:

lim sup
i!1

EJglob(zk,i)  Jglob(wo) + ⌘ (4.19)

This is a useful technique in enhancing the convergence behavior when the envi-

ronment is stationary. However, over non-stationary environments, the technique

is problematic since it reduces the adaptation and tracking ability of the algo-

rithm because averaging of the estimates is performed over the entire history up

to the current time i. Therefore, in terms of better adaptation ability, it is more

favorable to seek estimates {wk,i} that satisfy a “lim sup” bound directly on their

mean-square-error. This objective can be achieved by adding a small regulariza-

tion term. For example, we can convert a non-strongly convex function Jl(w) to

a strongly convex one by redefining Jl(w) as Jl(w) Jl(w)+ ✏kwk2, where ✏ > 0

is a small regularization factor.

Remark 4.2. In Chapters 5–6, we relax Assumption 4.1 and only require the

aggregate cost Jglob(w) to be strongly convex. We show that the di↵usion strate-

gies (4.2)–(4.7) still achieve the convergence rate and steady-state performance

of a centralized strategy.

Remark 4.3. We further note that assumption (4.14) is a mix of the “relative

113

random noise” and “absolute random noise” model usually assumed in stochastic

approximation [105]. Condition (4.14) implies that the gradient noise grows when

the estimate is away from the optimum (large gradient). Condition (4.14) also

states that even when the gradient vector is zero, there is still some residual noise

variance �2
v . On the other hand, in [109, 125, 132], the variance of the gradient

noise was instead assumed to be uniformly upper bounded, i.e.,

E{kvl,ik2}  �2
v or E{kvl,ik2|Fi�1}  �2

v (4.20)

with only an absolute noise term appearing in (4.20). Such an assumption is useful

in constrained optimization over a compact set. However, for the unconstrained

optimization problems that we consider here, we need a model that incorporates

both “relative random noise” and “absolute random noise” [34, 105]. Without

the relative noise term factor, the analyses and the gradient model would not

be able to handle situations involving adaptation and learning (see the following

Example 4.1).

Example 4.1. Such a mix of “relative random noise” and “absolute random

noise” is of practical importance. For instance, consider an example in which the

loss function at node l is chosen to be of the following quadratic form:

Ql(w, {ul,i,dl(i)}) = |dl(i)� ul,iw|2

for some scalars {dl(i)} and 1⇥M regression vectors {ul,i}. The corresponding

cost function is then:

Jl(w) = E|dl(i)� ul,iw|2 (4.21)

114

Assume further that the data {ul,i,dl(i)} satisfy the linear regression model

dl(i) = ul,iw
o + zl(i) (4.22)

where the regressors {ul,i} are zero mean and independent over time with covari-

ance matrix Ru,l = E{uT
l,iul,i}, and the noise sequence {zk(j)} is also zero mean,

white, with variance �2
z,k, and independent of the regressors {ul,i} for all l, k, i, j.

Then, as we pointed out in Example 2.1 in Chapter 2 that the gradient noise in

this case can be expressed as:

vl,i(w) = 2(Ru,l � uT
l,iul,i)(w

o �w)� 2uT
l,izl(i) (4.23)

It can easily be verified that this noise satisfies both conditions stated in Assump-

tion 4.2, namely, (4.13) and also:

E
�

kvl,i(w)k2

 4EkRu,l�uT
l,iul,ik2 · Ekwo�wk2+4�2

z,lTr(Ru,l) (4.24)

for all w 2 Fi�1. Note that both relative random noise and absolute random

noise components appear in (4.24) and are necessary to model the statistical

gradient perturbation even for quadratic costs. Such costs, and linear regression

models of the form (4.22), arise frequently in the context of adaptive filters —

see, e.g., [5, 23–26,28,64, 87–90,116,118,124,130].

4.3 Di↵usion Adaptation Operators

To analyze the performance of the di↵usion adaptation strategies, we first repre-

sent the mappings performed by (4.9)–(4.11) in terms of useful operators.

Definition 4.1 (Combination Operator). Suppose x = col{x1, . . . , xN} is an

115

arbitrary N ⇥ 1 block column vector that is formed by stacking M ⇥ 1 vectors

x1, . . . , xN on top of each other. The combination operator TA : RMN ! RMN is

defined as the linear mapping:

TA(x) , (AT ⌦ IM) x (4.25)

where A is an N⇥N left-stochastic matrix, and ⌦ denotes the Kronecker product

operation.

Definition 4.2 (Gradient-Descent Operator). Consider the same N ⇥ 1 block

column vector x. Then, the gradient-descent operator TG : RMN ! RMN is the

nonlinear mapping defined by:

TG(x) ,

2

6

6

6

4

x1 � µ1

PN
l=1 cl1rwJl(x1)
...

xN � µN

PN
l=1 clNrwJl(xN)

3

7

7

7

5

(4.26)

Definition 4.3 (Power Operator). Consider the same N ⇥ 1 block vector x. The

power operator P : RMN ! RN is defined as the mapping:

P [x] , col{kx1k2, . . . , kxNk2} (4.27)

where k · k denotes the Euclidean norm of a vector.

We will use the power operator to study how error variances propagate after

a specific operator TA(·) or TG(·) is applied to a random vector. We remark that

we are using the notation “P [·]” rather than “P (·)” to highlight the fact that P

is a mapping from RMN to a lower dimensional space RN . In addition to the

116

above three operators, we define the following aggregate vector of gradient noise

that depends on the state x:

v(x) , �col
n

µ1

N
X

l=1

cl1vl(x1), . . . , µN

N
X

l=1

clNvl(xN)
o

(4.28)

where we are dropping the subscript i for simplicity. With these definitions, we

can now represent the two combination steps (4.9) and (4.11) as two combination

operators TA
1

(·) and TA
2

(·). We can also represent the adaptation step (4.10) by

a gradient-descent operator perturbed by the noise operator (4.28):

bTG(x) , TG(x) + v(x) (4.29)

We can view bTG(x) as a random operator that maps each input x 2 RMN into

an RMN random vector, and we use boldface T to highlight this random nature.

Let

wi , col{w1,i,w2,i, . . . ,wN,i} (4.30)

denote the vector that collects the estimators across all nodes. Then, the overall

di↵usion adaptation steps (4.9)–(4.11) that update wi�1 to wi can be represented

as a cascade composition of three operators:

bTd(·) , TA
2

� bTG � TA
1

(·) (4.31)

where we use � to denote the composition of any two operators, i.e., T1 �T2(x) ,
T1(T2(x)). If there is no gradient noise, then the di↵usion adaptation operator

117

(¢) (¢) (¢)+

v(¢)
bT (¢)

bT (¢)

w¡ w

bT (¢)
w w …… bT (¢)

w w¡
bT (¢)

w

Figure 4.1: Representation of the di↵usion adaptation strategy (4.9)–(4.11) in
terms of operators. Each di↵usion adaptation step can be viewed as a cascade
composition of three operators: TA

1

(·), TG(·), and TA
2

(·) with gradient perturba-
tion v(·). If v(·) = 0, then bTd(·) becomes Td(·).

(4.31) reduces to

Td(·) , TA
2

� TG � TA
1

(·) (4.32)

In other words, the di↵usion adaptation over the entire network with and without

gradient noise can be described in the following compact forms:

wi = bTd(wi�1) (4.33)

wi = Td(wi�1) (4.34)

The combination operator TA(·) aggregates the estimates from the neighborhood

(social learning), while the gradient-descent operator TG(·) incorporates informa-

tion from the local gradient vector (self-learning). In Fig. 4.1, we show that each

di↵usion adaptation step can be represented as the cascade composition of three

operators, with perturbation from the gradient noise operator. Next, in Lemma

4.1, we examine some of the properties of the operators {TA
1

, TA
2

, TG}, which are

118

proved in Appendix 4.A.

Lemma 4.1 (Useful Properties). Consider N⇥1 block vectors x = col{x1, . . . , xN}

and y = col{y1, . . . , yN} with M ⇥ 1 entries {xk, yk}. Then, the operators TA(·),

TG(·) and P [·] satisfy the following properties:

1. (Linearity): TA(·) is a linear operator.

2. (Nonnegativity): P [x] ⌫ 0.

3. (Scaling): For any scalar a 2 R, we have P [ax] = a2P [x].

4. (Convexity): suppose x(1), . . . , x(K) are N ⇥ 1 block vectors formed in the

same manner as x, and let a1, . . . , aK be non-negative real scalars that add

up to one. Then,

P [a1x
(1) + · · · + aKx

(K)] � a1P [x(1)] + · · · + aKP [x(K)] (4.35)

5. (Additivity): Suppose x = col{x1, . . . ,xN} and y = col{y1, . . . ,yN} are

N ⇥ 1 block random vectors that satisfy ExT
k yk = 0 for k = 1, . . . , N .

Then, EP [x + y] = EP [x] + EP [y].

6. (Variance relations):

P [TA(x)] � ATP [x] (4.36)

P [TG(x)� TG(y)] � �2P [x� y] (4.37)

where

� , diag{�1, . . . , �N} (4.38)

�k , max{|1� µk�k,max|, |1� µk�k,min|} (4.39)

119

�k,min ,
N
X

l=1

clk�l,min, �k,max ,
N
X

l=1

clk�l,max (4.40)

7. (Block Maximum Norm): The 1�norm of P [x] is the squared block maxi-

mum norm of x [115]:

kP [x]k1 = kxk2b,1 ,
�

max
1kN

kxkk
�2

(4.41)

8. (Preservation of Inequality): Suppose vectors x, y and matrix F have non-

negative entries, then x � y implies Fx � Fy.

4.4 Transient Analysis

Using the operator representation developed above, we now analyze the transient

behavior of the di↵usion algorithm (4.9)–(4.11). From Fig. 4.1 and the previous

discussion, we know that the stochastic recursion wi = bTd(wi�1) is a perturbed

version of the noise-free recursion wi = Td(wi�1). Therefore, we first study the

convergence of the noise free recursion, and then analyze the e↵ect of gradient

perturbation on the stochastic recursion.

The operator Td is a continuous operator, which is guaranteed by the twice-

di↵erentiability of the cost functions. Therefore, if wi converges to a vector w1,

then this vector should be a fixed point of Td [80, p.299]:

w1 = Td(w1) (4.42)

We need to answer four questions pertaining to the fixed point. First, does the

fixed point exist? Second, is it unique? Third, under which condition does the

120

recursion wi = Td(wi�1) converge to the fixed point? Fourth, how far is the fixed

point w1 away from the minimizer wo of (2.1)? We answer the first two ques-

tions using the Banach Fixed Point Theorem (Contraction Theorem) [80, pp.2–

9, pp.299–300]. Afterwards, we study convergence under gradient perturbation.

The last question will be considered in the next subsection.

Definition 4.4 (Metric Space). A set X, whose elements we shall call points,

is said to be a metric space if we can associate a real number d(p, q) with any

two points p and q of X, such that (i). d(p, q) > 0 if p 6= q, and d(p, q) = 0

if and only if p = q; (ii). d(p, q) = d(q, p); (iii). d(p, q)  d(p, r) + d(r, q), for

any r 2 X. Any function d(p, q) with these three properties is called a distance

function, or a metric, and we denote a metric space X with distance d(·, ·) as

(X, d).

Definition 4.5 (Contraction). Let (X, d) be a metric space. A mapping T :

X �! X is called a contraction on X if there is a positive real number � < 1

such that d(T (x), T (y))  � · d(x, y) for all x, y 2 X

Lemma 4.2 (Banach Fixed Point Theorem [80]). Consider a metric space (X, d),

where X 6= ;. Suppose that X is complete1 and let T : X ! X be a contraction.

Then, T has precisely one fixed point.

As long as we can prove that the di↵usion operator Td(·) is a contraction, i.e.,

for any two points x, y 2 RMN , after we apply the operator Td(·), the distance

between Td(x) and Td(y) scales down by a scalar that is uniformly bounded away

from one, then the fixed point w1 defined in (4.42) exists and is unique. We

now proceed to show that Td(·) is a contraction operator in X = RMN when the

step-size parameters {µk} satisfy certain conditions.

1

A metric space (X, d) is complete if any of its Cauchy sequences converges to a point in the

space; a sequence {x
n

} is Cauchy in (X, d) if 8✏ > 0, there exists N such that d(x
n

, x
m

) < ✏
for all n, m > N .

121

Theorem 4.1 (Fixed Point). Suppose the step-size parameters {µk} satisfy the

following conditions

0 < µk <
2

�k,max

, k = 1, 2, . . . , N (4.43)

Then, there exists a unique fixed point w1 for the unperturbed di↵usion operator

Td(·) in (4.32).

Proof. Let x = col{x1, . . . , xN} 2 RMN⇥1 be formed by stacking M ⇥ 1 vectors

x1, . . . , xN on top of each other. Similarly, let y = col{y1, . . . , yN}. The distance

function d(x, y) that we will use is induced from the block maximum norm (5.110):

d(x, y) = kx� ykb,1 = max1kN kxk � ykk. From the definition of the di↵usion

operator Td(·) in (4.32), we have

P [Td(x)� Td(y)]
(a)
= P

⇥

TA
2

�

TG � TA
1

(x)� TG � TA
1

(y)
�⇤

(b)

� AT
2 P
⇥

TG � TA
1

(x)� TG � TA
1

(y)
⇤

(c)

� AT
2 �

2P [TA
1

(x)� TA
1

(y)]

(d)
= AT

2 �
2P [TA

1

(x� y)]

(e)

� AT
2 �

2AT
1 P [x� y] (4.44)

where steps (a) and (d) are because of the linearity of TA
1

(·) and TA
2

(·), steps

(b) and (e) are because of the variance relation property (4.36), and step (c) is

due to the variance relation property (4.37). Taking the 1�norm of both sides

of (4.44), we have

kP [Td(x)� Td(y)]k1  kAT
2 �

2AT
1 k1 · kP [x� y]k1

 k�k21 · kP [x� y]k1 (4.45)

122

where, in the second inequality, we used the fact that kAT
1 k1 = kAT

2 k1 = 1

since AT
1 and AT

2 are right-stochastic matrices. Using property (5.110), we can

conclude from (4.45) that: kTd(x)�Td(y)kb,1  k�k1 ·kx�ykb,1. Therefore, the

operator Td(·) is a contraction if k�k1 < 1, which, by substituting (4.38)–(4.39),

becomes

|1� µk�k,max| < 1, |1� µk�k,min| < 1, k = 1, . . . ,N (4.46)

and we arrive at the condition (4.43) on the step-sizes In other words, if condition

(4.43) holds for each k = 1, . . . , N , then Td(·) is a contraction operator. By

Lemma 4.2, the operator Td(·) will have a unique fixed point w1 that satisfies

equation (4.42).

Given the existence and uniqueness of the fixed point, the third question to

answer is if recursion wi = Td(wi�1) converges to this fixed point. The answer

is a�mative under (4.43). However, we are not going to study this question

separately. Instead, we will analyze the convergence of the more demanding

stochastic recursion (4.33). Therefore, we now study how fast and how close the

successive estimators {wi} generated by recursion (4.33) approach w1. Once

this issue is addressed, we will then examine how close w1 is to the desired wo.

Introduce the following mean-square-perturbation (MSP) vector at time i:

MSPi , EP [wi � w1] (4.47)

The k-th entry of MSPi characterizes how far away the estimate wk,i at node k

and time i is from wk,1 in the mean-square sense. To study the closeness of wi to

w1, we shall study how the quantity MSPi evolves over time. By (4.33), (4.42)

123

and the definitions of bTd(·) and Td(·) in (4.31) and (4.32), we obtain

MSPi = EP [wi � w1]

= EP
⇥

TA
2

� bTG�TA
1

(wi�1)�TA
2

�TG�TA
1

(w1)
⇤

(a)
= EP

⇥

TA
2

�

bTG � TA
1

(wi�1)� TG � TA
1

(w1)
�⇤

(b)

� AT
2EP

⇥

bTG � TA
1

(wi�1)� TG � TA
1

(w1)
⇤

(c)
= AT

2EP
⇥

TG

�

TA
1

(wi�1)
�

� TG

�

TA
1

(w1)
�

+ v
�

TA
1

(wi�1)
�⇤

(d)
= AT

2

�

EP
⇥

TG

�

TA
1

(wi�1)
�

� TG

�

TA
1

(w1)
�⇤

+ EP
⇥

v
�

TA
1

(wi�1)
�⇤

(e)

� AT
2 �

2EP [TA
1

(wi�1)� TA
1

(w1)] + AT
2EP [v(TA

1

(wi�1))]

(f)

� AT
2 �

2AT
1 · EP [wi�1 � w1] + AT

2EP [v(TA
1

(wi�1))]

= AT
2 �

2AT
1 · MSPi�1 + AT

2EP [v(TA
1

(wi�1))] (4.48)

where step (a) is by the linearity of TA
1

(·), steps (b) and (f) are by property

(4.36), step (c) is by the substitution of (4.29), step (d) is by Property 5 in

Lemma 4.1 and assumption (4.13), and step (e) is by (4.37). To proceed with the

analysis, we establish the following lemma to bound the second term in (4.48).

Lemma 4.3 (Bound on Gradient Perturbation). It holds that

EP [v(TA
1

(wi�1))] � 4↵�2maxkCk21 ·⌦2AT
1 ·EP [wi�1�w1]+kCk21⌦2bv (4.49)

where k · k1 denotes the maximum absolute column sum and

�max , max
1kN

�k,max (4.50)

bv , 4↵�2maxA
T
1 P [w1 � 1N ⌦ wo]

+ max
1kN

{2↵krwJk(w
o)k2 + �2

v} · 1N (4.51)

124

⌦ , diag{µ1, . . . , µN} (4.52)

Proof. By the definition of v(x) in (4.28) with x = TA
1

(wi�1) being a random

vector, we get

EP [v(x)] =

2

6

6

6

4

µ2
1E
�

�

PN
l=1 cl1vl(x1),

�

�

2

...

µ2
NE
�

�

PN
l=1 clNvl(xN)

�

�

2

3

7

7

7

5

(4.53)

For each block in (4.53), using Jensen’s inequality, we have

E
�

�

N
X

l=1

clkvl(xk)
�

�

2
=
�

N
X

l=1

clk
�2 · E

�

�

N
X

l=1

clk
PN

l=1 clk
vl(xk)

�

�

2


�

N
X

l=1

clk
�2 ·

N
X

l=1

clk
PN

l=1 clk
Ekvl(xk)k2

 kCk1
N
X

l=1

clk
⇥

↵EkrwJl(xk)k2 + �2
v

⇤

(4.54)

where we used (4.14) in the last step. Using (4.120),

rwJl(xk) = rwJl(w
o) +

⇥

Z 1

0

r2
wJl
�

wo + t(xk � wo)
�

dt
⇤

(xk � wo) (4.55)

From (4.121) and the norm inequality kx+ yk2  2kxk2 + 2kyk2, we obtain

krwJl(xk)k2  2krwJl(w
o)k2+2�2l,max ·kxk � wok2

 2krwJl(w
o)k2+2�2max ·kxk � wok2 (4.56)

125

Substituting (4.56) into (4.54), we obtain

E
�

�

N
X

l=1

clkvl(xk)
�

�

2

 kCk1
N
X

l=1

clk
⇥

2↵�2maxEkxk�wok2+2↵krwJl(w
o)k2+�2

v

⇤

 2↵�2maxkCk21 · Ekxk � wok2 + kCk21 · �2
v (4.57)

where �2
v , max

1lN
{2↵krwJl(w

o)k2+�2
v}. Substituting (4.57) and x = TA

1

(wi�1)

into (4.53) leads to

EP [v(TA
1

(wi�1))]

� ⌦2
�

2↵kCk21�2max · EP [TA
1

(wi�1)� 1N ⌦ wo]

+ kCk21�2
v1N

(a)
= ⌦2

�

2↵kCk21�2max · EP
⇥

TA
1

(wi�1)� TA
1

(1N ⌦ wo)
⇤

+ kCk21�2
v1N

(b)
= ⌦2

�

2↵kCk21�2max · EP
⇥

TA
1

�

wi�1 � 1N ⌦ wo
�⇤

+ kCk21�2
v1N

(c)

� ⌦2
�

2↵kCk21�2maxA
T
1 · EP [wi�1 � 1N ⌦ wo]

+ kCk21�2
v1N

(d)
= ⌦2

n

2↵kCk21�2maxA
T
1 ·4EP

hwi�1�w1

2
+
w1�1N ⌦ wo

2

i

+ kCk21�2
v1N

o

(e)

� ⌦2
�

2↵kCk21�2maxA
T
1 ·
�

2EP [wi�1�w1]

+2P [w1�1N ⌦ wo]
�

+kCk21�2
v1N

= 4↵kCk21�2max ·⌦2AT
1 ·EP [wi�1�w1]+kCk21⌦2 ·bv (4.58)

126

where step (a) is due to the fact that AT
1 is right-stochastic so that TA

1

(1N⌦wo) =

1N ⌦wo, step (b) is because of the linearity of TA
1

(·), step (c) is due to property

(4.36), step (d) is a consequence of Property 3 of Lemma 4.1, and step (e) is due

to the convexity property (5.102).

Substituting (4.49) into (4.48), we obtain

MSPi � AT
2 �dA

T
1 · MSPi�1 + kCk21 · AT

2⌦
2bv (4.59)

where

�d , �2 + 4↵�2maxkCk21 · ⌦2 (4.60)

The following theorem gives the stability conditions on the inequality recursion

(4.59) and derives both asymptotic and non-asymptotic bounds for MSP.

Theorem 4.2 (Mean-Square Stability and Bounds). Suppose AT
2 �dAT

1 is a stable

matrix, i.e., ⇢(AT
2 �dAT

1) < 1, where ⇢(·) denotes the spectral radius of its matrix

argument. Then, the following non-asymptotic bound holds for all i � 0:

MSPi � (AT
2 �dA

T
1)

i[MSP0 �MSPub
1] + MSPub

1 (4.61)

where MSPub
1 is the asymptotic upper bound on MSP defined as

MSPub
1 , kCk21(IN � AT

2 �dA
T
1)

�1AT
2⌦

2bv (4.62)

And, as i!1, we have the following asymptotic bound

lim sup
i!1

MSPi � MSPub
1 (4.63)

127

Furthermore, a su�cient condition that guarantees the stability of the matrix

AT
2 �dAT

1 is that

0<µk<min
n �k,max

�2
k,max+4↵�2maxkCk21

,
�k,min

�2
k,min+4↵�2maxkCk21

o

(4.64)

for all k = 1, . . . , N , where �k,max and �k,min were defined earlier in (4.40).

Proof. Iterating inequality (4.59), we obtain

MSPi � (AT
2 �dA

T
1)

iMSP0 + kCk21 ·
⇥

i�1
X

j=0

(AT
2 �dA

T
1)

j
⇤

AT
2⌦

2bv (4.65)

For the second term in (4.65), we note that (I+X+ · · ·+X i�1)(I�X) = I�X i.

If X is a stable matrix so that (I �X) is invertible, then it leads to
Pi�1

j=0 X
j =

(I � X i)(I � X)�1. Using this relation and given that the matrix AT
2 �dAT

1 is

stable, we can express (4.65) as

MSPi � (AT
2 �dA

T
1)

iMSP0

+ kCk21 ·
⇥

IN�(AT
2 �dA

T
1)

i
⇤

(IN�AT
2 �dA

T
1)

�1AT
2⌦

2bv

= (AT
2 �dA

T
1)

i[MSP0 �MSPub
1] + MSPub

1 (4.66)

Letting i ! 1 on both sides of the above inequality, we get lim sup
i!1

MSPi �

MSPub
1 . In the last step, we need to show that the conditions on the step-sizes

{µk} guarantee stability of the matrix AT
2 �dAT

1 . Note that the spectral radius of

a matrix is upper bounded by its matrix norms. Therefore,

⇢(AT
2 �dA

T
1)  kAT

2 �dA
T
1 k1

 kAT
2 k1 · k�dk1 · kAT

1 k1

128

= k�dk1

=
�

��2 + 4↵�2maxkCk21 · ⌦2
�

�

1

If the right-hand side of the above inequality is strictly less than one, then the

matrix AT
2 �dAT

2 is stable. Using (4.38)–(4.39), this condition is satisfied by the

following quadratic inequalities in µk :

(1� µk�k,max)
2 + µ2

k · 4↵�2maxkCk21 < 1 (4.67)

(1� µk�k,min)
2 + µ2

k · 4↵�2maxkCk21 < 1 (4.68)

for all k = 1, . . . , N . Solving the above inequalities, we obtain condition (4.64).

The non-asymptotic bound (4.61) characterizes how the MSP at each node evolves

over time. It shows that the MSP converges to steady state at a geometric

rate determined by the spectral radius of the matrix AT
2 �dAT

1 . The transient

term is determined by the di↵erence between the initial MSP and the steay-state

MSP. At steady state, the MSP is upper bounded by MSPub
1 . We now examine

closely how small the steady-state MSP can be for small step-size parameters

{µk}. Taking the 1�norm of both sides of (4.62) and using the Neuman series

(IN � AT
2 �dAT

1)
�1 =

P1
j=0(A

T
2 �dAT

1)
j, we obtain

kMSPub
1k1 =

�

�kCk21 · (IN � AT
2 �dA

T
1)

�1 · AT
2⌦

2bv
�

�

1

 kCk21 ·
⇣

1
X

j=0

kAT
2 kj1 · k�dkj1 · kAT

1 kj1
⌘

· kAT
2 k1 · k⌦k21 · kbvk1

(a)

 kCk21 ·
⇣

1
X

j=0

k�dkj1
⌘

·
�

max
1kN

µk

�2 · kbvk1

129

=
kCk21 · kbvk1
1� k�dk1

·
�

max
1kN

µk

�2
(4.69)

where step (a) is because AT
1 and AT

2 are right-stochastic matrices so that their

1�norms (maximum absolute row sum) are one. Let µmax and µmin denote the

maximum and minimum values of {µk}, respectively, and let � , µmin/µmax. For

su�ciently small step-sizes, i.e.,

0 < µk <
2

�k,max + �k,min

(4.70)

by the definitions of �d and � in (4.60) and (4.38), we have

k�dk1  k�k21 + 4↵�maxkCk21 · k⌦k21
(a)
= max

1kN
{|1� µk�k,min|2} + 4↵�maxµ

2
maxkCk21

 1�2µmin�min+µ2
max(�

2
max+4↵�maxkCk21)

= 1�2�µmax�min+µ2
max(�

2
max+4↵�maxkCk21) (4.71)

where �max and �min are the maximum and minimum values of {�k,max} and

{�k,min}, respectively, and step (a) holds for su�ciently small step-sizes satisfy-

ing (4.70). Note that (4.69) is a monotonically increasing function of k�dk1.

Substituting (4.71) into (4.69), we get

lim sup
i!1

kMSPik1  kMSPub
1k1

 kCk21 · kbvk1 · µmax

2��min�µmax(�2
max+4↵�maxkCk21)

⇠O(µmax)
(4.72)

Note that, for su�ciently small step-sizes, the right-hand side of (4.72) is ap-

proximately kCk2
1

·kb
v

k1
2��

min

µmax, which is on the order of O(µmax). In other words, the

130

steady-state MSP can be made be arbitrarily small for small step-sizes, and the

estimators wi = col{w1,i, . . . ,wN,i} will be close to the fixed point w1 (in the

mean-square sense) even under gradient perturbations. To understand how close

the estimate wk,i at each node k is to the optimal solution wo, a natural question

to consider is how close the fixed point w1 is to 1N ⌦ wo, which we study next.

4.5 Bias Analysis

Our objective is to examine how large k1N ⌦ wo � w1k2 is when the step-sizes

are small. We carry out the analysis in two steps: first, we derive an expression

for w̃1 , 1N ⌦wo�w1, and then we derive the conditions that guarantee small

bias.

To begin with, recall that w1 is the fixed point of Td(·), to which the recursion

wi = Td(wi�1) converges. In other words, both wk,i and wk,i�1 converge to wk,1,

which is the kth block of the vector w1. By (4.2), this implies that �k,i�1 also

converges to its limit, denoted by �k,1. And by (4.3), the convergence of �k,i�1

further guarantees the convergence of k,i to its limit k,1. Also note that Td(·)

is an operator representation of the recursions (4.2)–(4.4). We let i!1 on both

sides of (4.2)–(4.4) and obtain

�k,1 =
N
X

l=1

a1,lk wl,1 (4.73)

 k,1 = �k,1 � µk

N
X

l=1

clkrwJl(�k,1) (4.74)

wk,1 =
N
X

l=1

a2,lk l,1 (4.75)

where wk,1, �k,1 and k,1 denote the limits of wk,i, �k,i and k,i as i ! 1,

131

respectively. Introduce the following bias vectors at node k

w̃k,1 , wo�wk,1, �̃k,1 , wo��k,1, ̃k,1 , wo� k,1 (4.76)

Subtracting each equation of (4.73)–(4.75) from wo and using relationrwJl(�k,1) =

rwJl(wo)�Hlk,1�̃k,1 that can be derived from Lemma 4.4 in Appendix 4.A, we

obtain

�̃k,1 =
N
X

l=1

a1,lk w̃l,1 (4.77)

 ̃k,1 =
h

IM�µk

N
X

l=1

clkHlk,1

i

�̃k,1+µk

N
X

l=1

clkrwJl(w
o) (4.78)

w̃k,1 =
N
X

l=1

a2,lk ̃l,1 (4.79)

where Hlk,1 is a positive semi-definite symmetric matrix defined as

Hlk,1 ,
Z 1

0

r2
wJl
�

wo�t
N
X

l=1

a1,lkw̃l,1)
�

dt (4.80)

Introduce the following global vectors and matrices

w̃1 , 1N ⌦ wo � w1 = col{w̃1,1, . . . , w̃N,1} (4.81)

A1 , A1 ⌦ IM , A2 , A2 ⌦ IM , C , C ⌦ IM , (4.82)

M , diag{µ1, . . . , µN}⌦ IM (4.83)

R1 ,
N
X

l=1

diag
�

cl1Hl1,1, · · · , clNHlN,1

, (4.84)

go , col{rwJ1(w
o), . . . ,rwJN(w

o)} (4.85)

132

Then, expressions (4.77), (4.79) and (4.78) lead to

w̃1 =
⇥

IMN�AT
2 (IMN�MR1)AT

1

⇤�1AT
2 MCT go (4.86)

Theorem 4.3 (Bias at Small Step-sizes). Suppose that the N⇥N matrix product

Ā , A1A2 is a primitive left-stochastic matrix, so that its eigenvalue of largest

magnitude is one with multiplicity one, and all other eigenvalues are strictly

smaller than one. Let ✓ denote the right eigenvector of Ā of eigenvalue one

and whose entries are normalized to add up to one, i.e., 1T ✓ = 1. Furthermore,

assume the following condition holds:

✓TAT
2⌦C

T = c01
T (4.87)

where ⌦ , diag{µ1, . . . , µN} was defined earlier in Lemma 4.3, and c0 is some

constant. Then,

kw̃1k2 = k1N ⌦ wo � w1k2 ⇠ O(µ2
max) (4.88)

Proof. See Appendix 4.B.

Let Ā = [ālk] denote the entries of Ā. The matrix Ā is a primitive left-stochastic

matrix if the network is connected (not necessarily fully connected) and there

is at least one ākk > 0 for some node k, i.e., ĀT1 = 1 and there exists a finite

integer jo such that all entries of Āj
o are strictly positive. It then follows from

the Perron-Frobenius Theorem [68] that the matrix Ā = A1A2 has an eigenvalue

equal to one of multiplicity one while all other eigenvalues are strictly less than

one. Obviously, 1T is a left eigenvector of A1A2 corresponding to the eigenvalue

at one. For the right eigenvector ✓ that corresponds to the eigenvalue at one,

133

the Perron-Frobenius Theorem further ensures that all entries of ✓ are positive.

Furthermore, if condition (4.87) holds as well, then Theorem 4.3 implies that the

bias would become arbitrarily small for small step-size. For condition (4.87) to

hold, one choice is to require the matrices AT
1 and AT

2 to be doubly stochastic,

and all nodes to use the same step-size µ, namely, ⌦ = µIN . In that case, the

matrix AT
2A

T
1 is doubly-stochastic so that the left eigenvector of eigenvalue one

is ✓T = 1T and (4.87) holds. The matrix AT
1 or AT

2 does not need to be doubly

stochastic or the step-size parameters {µk} do not need to be the same across

nodes. We can also have other possible choices that satisfy (4.87). Consider

the ATC case where A2 = A, A1 = I and C = I, where A is a left-stochastic

matrix with nonnegative entries. Then, ✓ is the right eigenvector of A1A2 = A

corresponding to the eigenvalue at one. In this case, condition (4.87) becomes

✓T⌦ = c01T , which is equivalent to ✓kµk = c0, where ✓k is the kth entry of the

vector ✓. Therefore, if we choose to use di↵erent step-sizes µk at di↵erent nodes,

then we need to choose the right eigenvector ✓ of the matrix A at eigenvalue one

to be

✓ = c0 · col
�

µ�1
1 , µ�1

2 , . . . , µ�1
N

(4.89)

where c0 = (
PN

k=1 µ
�1
k)�1 so that ✓T1 = 1. Such a left-stochastic matrix A can

be implemented by using the Metropolis-Hasting rule [18, 62, 146].

Finally, we combine the results from Theorems 4.2 and 4.3 to bound the

mean-square-error (MSE) of the estimators {wk,i} from the desired solution wo.

Introduce the N ⇥ 1 MSE vector

MSEi , EP [w̃i] = col
�

Ekw̃1,ik2, . . . ,Ekw̃N,ik2

(4.90)

134

where w̃k,i , wo �wk,i. Using Properties 3–4 in Lemma 4.1, we obtain

MSEi = EP
⇥

2
�1N ⌦ wo�w1

2
+
w1�wi

2

�⇤

� 2P [w̃1]+2 EP [w1�wi]

= 2P [w̃1]+2 MSPi (4.91)

Taking the1�norm of both sides of above inequality and using property (5.110),

we obtain

lim sup
i!1

kMSEik1  2kP [w̃1]k1 + 2 lim sup
i!1

kMSPik1

= 2kw̃1k2b,1 + 2 lim sup
i!1

kMSPik1

⇠ O(µ2
max) +O(µmax) (4.92)

where in the last step, we used (4.72) and (4.88), and the fact that all vector norms

are equivalent. Therefore, as the step-sizes become small, the MSEs become small

and the estimates {wk,i} get arbitrarily close to the optimal solution wo. We also

observe that, for small step-sizes, the dominating steady-state error is MSP, which

is caused by the gradient noise and is on the order of O(µmax). On the other hand,

the bias term is a high order component, i.e., O(µ2
max), and can be ignored.

The fact that the bias term w̃1 is small also gives us a useful approximation

for R1 in (4.84). Since w̃1 = col{w̃1,1, . . . , w̃N,1} is small for small step-sizes,

the matrix Hlk,1 defined in (4.80) can be approximated as Hlk,1 ⇡ r2
wJl(w

o).

Then, by definition (4.84), we have

R1 ⇡
N
X

l=1

diag
�

cl1r2
wJl(w

o), . . . , clNr2
wJl(w

o)

(4.93)

135

Expressing (4.93) is useful for evaluating closed-form expressions of the steady-

state MSE in sequel.

4.6 Steady-State Performance

So far, we derived inequalities (4.92) to bound the steady-state performance, and

showed that, for small step-sizes, the solution at each node k approaches the same

optimal solution wo. In this section, we derive closed-form expressions (rather

than bounds) for the steady-state MSE at small step-sizes. Introduce the error

vectors2

�̃k,i , wo��k,i, ̃k,i , wo� k,i, w̃k,i , wo�wk,i (4.94)

and the following global random quantities

w̃i ,col{w̃1,i, . . . , w̃N,i} (4.95)

Ri�1 ,
N
X

l=1

diag
�

cl1Hl1,i�1, · · · , clNHlN,i�1

(4.96)

Hlk,i�1 ,
Z 1

0

r2
wJl
⇣

wo�t
N
X

l=1

a1,lkw̃l,i�1

⌘

dt (4.97)

gi ,
N
X

l=1

col
�

cl1vl,i(�1,i�1), · · ·, clNvl,i(�N,i�1)

(4.98)

Then, we can establish that

w̃i = AT
2 [IMN �MRi�1]AT

1 w̃i�1 + AT
2 MCT go + AT

2 Mgi (4.99)

2

We always use the notation w̃ = wo � w to denote the error relative to wo

. For the error

between w and the fixed point w1, we do not define a separate notation, but instead write

w1 � w explicitly to avoid confusion.

136

According to (4.92), the error w̃k,i at each node k would be small for small step-

sizes and after long enough time. In other words, wk,i is close to wo. And recalling

from (4.9) that �k,i�1 is a convex combination of {wl,i}, we conclude that the

quantities {�l,i�1} are also close to wo. Therefore, we can approximate Hlk,i�1,

Ri�1 and gi in (4.96)–(4.98) by

Hlk,i�1⇡
Z 1

0

r2
wJl(w

o)dt=r2
wJl(w

o) (4.100)

Ri�1⇡
N
X

l=1

diag
�

cl1r2
wJl(w

o), . . . , clNr2
wJl(w

o)

⇡R1 (4.101)

Then, the error recursion (4.99) can be approximated by

w̃i = AT
2 [IMN�MR1]AT

1 w̃i�1+AT
2 MCT go+AT

2 Mgi (4.102)

Note that our analysis proceeds with the above approximate relations (4.100)–

(4.101). In Chapter 6, we will perform a rigorous analysis of the steady-state

performance under more relaxed conditions. Furthermore, we will also quantify

the error introduced by these approximations and show that it only adds a high

order correct term of o(µmax), where µmax denotes the largest step-size across

nodes and o(µmax) denotes a strictly higher order term of µmax.

First, let us examine the behavior of Ew̃i. Taking expectation of both sides

of recursion (4.102), we obtain

Ew̃i = AT
2 [IMN �MR1]AT

1Ew̃i�1 + AT
2 MCTgo (4.103)

This recursion converges when the matrix AT
2 [IMN �MR1]AT

1 is stable, which

is guaranteed by (4.43) (see Appendix C of [34]). Let i ! 1 on both sides of

137

(4.103) so that

Ew̃1 , lim
i!1

Ew̃i

=
⇥

IMN�AT
2 (IMN�MR1)AT

1

⇤�1AT
2 MCTgo

(4.104)

Note that Ew̃1 coincides with (4.86). By Theorem 4.3, we know that the squared

norm of this expression is on the order of O(µ2
max) at small step-sizes — see (4.88).

Next, we derive closed-form expressions for the MSEs, i.e., Ekw̃k,ik2. Let Rv

denote the covariance matrix of gi evaluated at wo as i!1:

Rv = E
nh

N
X

l=1

col
�

cl1vl,i(w
o), · · · , clNvl,i(w

o)

i

⇥
h

N
X

l=1

col
�

cl1vl,i(w
o), · · · , clNvl,i(w

o)

iTo

(4.105)

In practice, we can evaluate Rv from the expressions of {vl,i(wo)}. Equating

the squared weighted Euclidean “norm” of both sides of (4.102), applying the

expectation operator with assumption (4.13), we can establish the following ap-

proximate variance relation at small step-sizes:

Ekw̃ik2⌃ ⇡ Ekw̃i�1k2⌃0 + Tr(⌃AT
2 MRvMA2) + Tr{⌃AT

2MCTgo(AT
2MCTgo)T}

+ 2(AT
2 MCT go)T · ⌃AT

2 (IMN�MR1)AT
1Ew̃i�1 (4.106)

⌃0 ⇡A1(IMN�MR1)A2⌃AT
2(IMN�MR1)AT

1 (4.107)

where ⌃ is a positive semi-definite weighting matrix that we are free to choose

and the notation kxk2⌃ denotes x⇤⌃x. Let � = vec(⌃) denote the vectorization

operation that stacks the columns of a matrix ⌃ on top of each other. We shall use

the notation kxk2� and kxk2⌃ interchangeably. Following the argument from [34],

138

we can rewrite (4.106) as

Ekw̃ik2� ⇡ Ekw̃i�1k2F� + rT� + �TQ Ew̃i�1 (4.108)

where

F , A1[IMN�MR1]A2 ⌦A1[IMN�MR1]A2 (4.109)

B = AT
2 [IMN �MR1]AT

1 (4.110)

r , vec
�

AT
2 MRvMA2

�

+AT
2 MCT go⌦AT

2 MCTgo (4.111)

Q , 2AT
2 (IMN�MR1)AT

1 ⌦AT
2 MCT go (4.112)

We already established that Ew̃i�1 on the right-hand side of (4.108) converges

to its limit Ew̃1 under condition (4.43). And, it was shown in [116, pp.344-346]

that such recursion converges to a steady-state value if the matrix F is stable,

i.e., ⇢(F) < 1. This condition is guaranteed when the step-sizes are su�ciently

small (or chosen according to (4.43)) — see the proof in Appendix 4.D. Letting

i!1 on both sides of expression (4.108), we obtain:

lim
i!1

Ekw̃ik2(I�F)� ⇡ (r +Q Ew̃1)T � (4.113)

We can now resort to (4.113) and use it to evaluate various performance metrics by

choosing proper weighting matrices ⌃ (or �). For example, the MSE of any node

k can be obtained by computing limi!1 Ekw̃ik2T with a block weighting matrix T

that has an identity matrix at block (k, k) and zeros elsewhere: lim
i!1

Ekw̃k,ik2 =

lim
i!1

Ekw̃ik2T . Denote the vectorized version of this matrix by tk , vec(diag(ek)⌦

IM), where ek is a vector whose kth entry is one and zeros elsewhere. Then, if

we select � in (4.113) as � = (I�F)�1tk, the term on the left-hand side becomes

139

the desired limi!1 Ekw̃k,ik2 and the MSE for node k is therefore given by:

MSEk , lim
i!1

Ekw̃k,ik2⇡(r+Q Ew̃1)T(I�F)�1tk (4.114)

If we are interested in the average network MSE, then it is given by

MSE , 1

N

N
X

k=1

MSEk (4.115)

4.7 Conclusion

In this chapter, we analyzed the mean-square-error performance of the di↵usion

strategy, and showed that the solution at each node gets arbitrarily close to the

minimizer of the aggregate cost for small step-sizes. The result holds even when

the minimizers of the individual costs are not necessarily equal to each other.

4.A Properties of the Operators

Properties 1-3 are straightforward from the definitions of TA(·) and P [·]. We

therefore omit the proof for brevity, and start with property 4.

(Property 4: Convexity)

We can express each N ⇥ 1 block vector x(k) in the form x(k) = col{x(k)
1 , . . . , x(k)

N }

for k = 1, . . . , N . Then, the convex combination of x(1), . . . , x(N) can be expressed

as

K
X

k=1

ak x
(k) = col

n

K
X

k=1

akx
(k)
1 , . . . ,

K
X

k=1

akx
(k)
N

o

(4.116)

140

According to the definition of the operator P [·], and in view of the convexity of

k · k2, we have

P
h

K
X

k=1

al x
(k)
i

= col
n

�

�

K
X

k=1

alx
(k)
1

�

�

2
, . . . ,

�

�

K
X

k=1

alx
(k)
N

�

�

2
o

� col
n

K
X

k=1

alkx(k)
1 k2, . . . ,

K
X

k=1

alkx(k)
N k2

o

=
K
X

k=1

al P [x(k)] (4.117)

(Property 5: Additivity)

By the definition of P [·] and the assumption that ExT
k yk = 0 for each k =

1, . . . , N , we obtain

EP [x + y]=col{Ekx1 + y1k2, . . . , EkxN + yNk2}

=col{Ekx1k2+Eky1k2, . . .,EkxNk2+EkyNk2}=EP [x]+EP [y]

(Property 6: Variance Relations)

We first prove (4.36). From the definition of TA(·) in (4.25) and the definition of

P [·] in (4.27), we express

P [TA(x)] = col
n

�

�

N
X

l=1

al1xl

�

�

2
, . . . ,

�

�

N
X

l=1

alNxl

�

�

2
o

(4.118)

Since k · k2 is a convex function and each sum inside the squared norm operator

is a convex combination of x1, . . . , xN (AT is right stochastic), then by Jensen’s

inequality [20, p.77]:

P [TA(x)] � col
n

N
X

l=1

al1kxlk2, . . . ,
N
X

l=1

alNkxlk2
o

= AT col{kx1k2, . . . , kxNk2} = ATP [x] (4.119)

141

Next, we proceed to prove (4.37). We need to call upon the following useful

lemmas from [105, p.24], and Lemmas 1–2 in [34], respectively.

Lemma 4.4 (Mean-Value Theorem). For any twice-di↵erentiable function f(·),

it holds that

rf(y) = rf(x)+


Z 1

0

r2f
�

x+t(y�x)
�

dt

�

(y � x) (4.120)

where r2f(·) denotes the symmetric Hessian of f(·).

Lemma 4.5 (Bounds on the Integral of Hessian). Under Assumption 4.1, it holds

that for any vectors x and y:

�l,minIM 
Z 1

0

r2
wJl(x+ ty)dt  �l,maxIM (4.121)

�

�

�

�

�

I � µk

N
X

l=1

clk



Z 1

0

r2
wJl(x+ ty)dt

�

�

�

�

�

�

 �k (4.122)

where k · k denotes the 2�induced norm, and �k, �k,min and �k,max were defined

in (4.39)–(4.40).

By the definition of the operator TG(·) in (4.26) and the expression (4.120), we

express TG(x)� TG(y) as

TG(x)� TG(y) =
2

6

6

6

6

6

6

6

4

h

IM�µ1

N
X

l=1

cl1

Z 1

0

r2
wJl(y1+t(x1�y1))dt

i

(x1�y1)

...
h

IM�µN

N
X

l=1

clN

Z 1

0

r2
wJl(yN+t(xN�yN))dt

i

(xN�yN)

3

7

7

7

7

7

7

7

5

142

Therefore, using (4.122) and the definition of P [·] in (4.27), we obtain

P [TG(x)�TG(y)]�col
�

�21kx1 � y1k2, . . . , �2NkxN � yNk2

= �2P [x� y] (4.123)

(Property 7: Block Maximum Norm)

According to the definition of P [·] and the definition of block maximum norm [34],

we have

kP [x]k1 =
�

�col{kx1k2, . . . , kxNk2}
�

�

1

= max
1kN

kxkk2 =
�

max
1kN

kxkk
�2

= kxk2b,1 (4.124)

(Property 8: Preservation of Inequality)

To prove Fx � Fy, it su�ces to prove 0 � F (y � x). Since x � y, we have

0 � y�x, i.e., all entries of the vector y�x are nonnegative. Furthermore, since

all entries of the matrix F are nonnegative, the entries of the vector F (y�x) are

all nonnegative, which means 0 � F (y � x).

4.B Bias at Small Step-Sizes

It su�ces to show that limµ
max

!0 k1⌦wo �w1k/µmax = ⇠ where ⇠ is a constant

independent of µmax. It is known that any matrix is similar to a Jordan canonical

form [82]. Hence, there exists an invertible matrix Y such that AT
2A

T
1 = Y JY �1,

where J is the Jordan canonical form of the matrix AT
2A

T
1 , and the columns of

the matrix Y are the corresponding right principal vectors of various degrees

[82, pp.82–88]; the right principal vector of degree one is the right eigenvector.

Obviously, the matrices J and Y are independent of µmax. Using the Kronecker

143

product property [82, p.140]: (A⌦ B)(C ⌦D) = AC ⌦ BD, we obtain

AT
2 AT

1 =AT
2A

T
1 ⌦IM =(Y ⌦IM)(J⌦IM)(Y �1⌦IM) (4.125)

Denote µk = �kµmax, where �k is some positive scalar such that 0 < �k  1.

Substituting (4.125) into (4.86), we obtain

1⌦wo�w1=
⇥

IMN�AT
2 AT

1 +AT
2 MR1AT

1

⇤�1AT
2 MCTgo

= (Y ⌦ IM) [IMN � J ⌦ IM + µmaxE]�1

⇥ (Y �1 ⌦ IM)AT
2 MCTgo (4.126)

where

E = (Y �1 ⌦ IM)AT
2 M0R1AT

1 (Y ⌦ IM) (4.127)

M0 , M/µmax = diag{�1, . . . , �N}⌦ IM (4.128)

where we shall define ⌦0 , diag{�1, . . . , �N}. By (4.5), the matrix AT
2A

T
1 is

right-stochastic, and since AT
2A

T
1 is primitive, it will have an eigenvalue of one

that has multiplicity one and is strictly greater than all other eigenvalues [68].

Furthermore, the corresponding left and right eigenvectors are ✓T and 1, with

✓T � 0 (all entries of the row vector ✓T are real positive numbers). For this

reason, we can partition J , Y �1 and Y in the following block forms:

J=diag{1, J0}, Y �1=col

⇢

✓T

✓T1
, YR

�

, Y =[1 YL] (4.129)

where J0 is an (N � 1) ⇥ (N � 1) matrix that contains the Jordan blocks of

eigenvalues strictly within unit circle, i.e., ⇢(J0) < 1. The first row of the matrix

144

Y �1 in (4.129) is normalized by ✓T1 so that Y �1Y = I. (Note that Y �1Y = I

requires the product of the first row of Y �1 and the first column of Y to be one:

✓T

✓T11 = 1.) Substituting these partitionings into (4.127):

E =

2

4

E11 E12

E21 E22

3

5 (4.130)

E11 ,
� ✓T

✓T1
⌦ IM

�

AT
2 M0R1AT

1 (1⌦ IM) (4.131)

E12 ,
� ✓T

✓T1
⌦ IM

�

AT
2 M0R1AT

1 (YL ⌦ IM) (4.132)

E21 , (YR ⌦ IM)AT
2 M0R1AT

1 (1⌦ IM) (4.133)

E22 , (YR ⌦ IM)AT
2 M0R1AT

1 (YL ⌦ IM) (4.134)

Observe that the matrices E11, E12, E21 and E22 are independent of µmax. Sub-

stituting (4.129)-(4.130) into (4.126), we obtain

1⌦wo�w1=(Y⌦IM)

2

4

µmaxE11 µmaxE12

µmaxE21 I�J0⌦IM+µmaxE22

3

5

�1

⇥

2

4

1
✓T1(✓

T ⌦ IM)AT
2 MCTgo

(YR ⌦ IM)AT
2 MCTgo

3

5 (4.135)

Let us denote

2

4

G11 G12

G21 G22

3

5 ,

2

4

µmaxE11 µmaxE12

µmaxE21 I�J0⌦IM+µmaxE22

3

5

�1

(4.136)

145

Furthermore, recalling that wo is the minimizer of the global cost function (2.1),

we have

N
X

l=1

rwJl(w
o) = 0 , (1T ⌦ IM) go = 0 (4.137)

which, together with condition (4.87), implies that

(✓T⌦IM)AT
2 MCTgo=(✓TAT

2⌦C
T⌦IM)go=c0(1

T⌦IM)go=0

where we also used the facts that AT
2 = AT

2 ⌦ IM , CT = CT ⌦ IM , M = ⌦⌦ IM

and the Kronecker product property: (A ⌦ B)(C ⌦ D). Substituting the above

result and (4.136) into (4.135) and using (4.128) lead to

1⌦wo�w1=µmax(Y⌦IM)

2

4

G12

G22

3

5(YRA
T
2⌦0C

T⌦IM)go (4.138)

To proceed with analysis, we need to evaluate G12 and G22. We call upon the

relation from [82, pp.48]:

2

4

P Q

U V

3

5

�1

=

2

4

P�1 + P�1QSUP�1 �P�1QS

�SUP�1 S

3

5 (4.139)

where S=(V �UP�1Q)�1. To apply the above relation to (4.136), we first need

to verify that E11 is invertible. By (4.131),

E11 =
� ✓T

✓T1
AT

2⌦0 ⌦ IM
�

R1(AT
1 1⌦ IM)

= (zT⌦IM)R1(1⌦IM) =
N
X

k=1

zk

N
X

l=1

clkHlk,1 (4.140)

146

where zk denotes the kth entry of the vector z , ⌦0A2✓/✓T1 (note that all entries

of z are non-negative, i.e., zk � 0). Recall from (4.80) that Hlk,1 is a symmetric

positive semi-definite matrix. Moreover, since zk and clk are nonnegative, we

can conclude from (4.140) that E11 is a symmetric positive semi-definite matrix.

Next, we show that E11 is actually strictly positive definite. Applying (4.121) to

the expression of Hlk,1 in (4.80), we obtain Hlk,1 � �l,minIM . Substituting into

(4.140):

E11�
"

N
X

k=1

zk

N
X

l=1

clk�l,min

#

IM�

N
X

k=1

zk

!

min
1kN

(

N
X

l=1

clk�l,min

)

IM

=
1T⌦0A2✓

✓T1
· min
1kN

n

N
X

l=1

clk�l,min

o

· IM (4.141)

Noting that the matrices ⌦0 and A0 have nonnegative entries with some entries

being positive, and that all entries of ✓ are positive, we have (1T⌦0A2✓)/(✓T1) >

0. Furthermore, by Assumption 4.1, we know
PN

l=1 clk�l,min > 0 for each k =

1, . . . , N . Therefore, we conclude that E11 > 0 and is invertible. Applying

(4.139) to (4.136), we get

G12 = �E�1
11 E12G22 (4.142)

G22 =
⇥

I�J0 ⌦ IM+µmax(E22�E21E
�1
11 E

T
12)
⇤�1

(4.143)

Substituting (4.143) into (4.138) leads to

1⌦wo�w1=µmax(Y⌦IM)

2

4

�E�1
11E12

I

3

5G22(YRA
T
2⌦0C

T⌦IM)go

147

Substituting into lim
µ
max

!0
k1⌦ wo � w1k/µmax, we get

lim
µ
max

!0

k1⌦ wo � w1k
µmax

= lim
µ
max

!0

�

�

�

�

(Y ⌦ IM)

2

4

�E�1
11 E12

I

3

5G22(YRA
T
2⌦0C

T⌦IM)go
�

�

�

�

Observe that the only term on the right-hand side of the above expression that de-

pends on µmax is G22. From its expression (4.143), we observe that, as µmax ! 0,

the matrix G22 tends to (I�J0⌦IM)�1, which is independent of µmax. Therefore,

the limit on the right-hand side is independent of µmax.

4.C Block Maximum Norm of a Matrix

Consider a block matrix X with blocks of size M ⇥M each. Its block maximum

norm is defined as [127]:

kXkb,1 , max
x 6=0

kXxkb,1
kxkb,1

(4.144)

where the block maximum norm of a vector x , col{x1, . . . , xN}, formed by

stacking N vectors of size M each on top of each other, is defined as [127]:

kxkb,1 , max
1kN

kxkk (4.145)

where k · k denotes the Euclidean norm of its vector argument.

Lemma 4.6 (Block maximum norm). If a block diagonal matrix

X , diag{X1, . . . , XN} 2 RNM⇥NM (4.146)

148

consists of N blocks along the diagonal with dimension M ⇥M each, then the

block maximum norm of X is bounded as

kXkb,1  max
1kN

kXkk (4.147)

in terms of the 2-induced norms of {Xk} (largest singular values). Moreover, if

X is symmetric, then equality holds in (4.147).

Proof. Note that Xx = col{X1x1,. . . ,XNxN}. Evaluating the block maximum

norm of vector Xx leads to

kXxkb,1 = max
1kN

kXkxkk

 max
1kN

kXkk · kxkk

 max
1kN

kXkk · max
1kN

kxkk (4.148)

Substituting (4.148) and (4.145) into (4.144), we establish (4.147) as

kXkb,1 , max
x 6=0

kXxkb,1
kxkb,1

 max
x 6=0

max1kN kXkk · max1kN kxkk
max1kN kxkk

= max
1kN

kXkk (4.149)

Next, we prove that, if all the diagonal blocks of X are symmetric, then

equality should hold in (4.149). To do this, we only need to show that there

exists an x0 6= 0, such that

kXx0kb,1
kx0kb,1

= max
1kN

kXkk (4.150)

149

which would mean that

kXkb,1 , max
x 6=0

kXxkb,1
kxkb,1

� kXx0kb,1
kx0kb,1

= max
1kN

kXkk (4.151)

Then, combining inequalities (4.149) and (4.151), we would obtain desired equal-

ity that

kXkb,1 = max
1kN

kXkk (4.152)

whenX is block diagonal and symmetric. Thus, without loss of generality, assume

the maximum in (4.150) is achieved by X1, i.e.,

max
1kN

kXkk = kX1k

For a symmetric Xk, its 2-induced norm kXkk (defined as the largest singular

value ofXk) coincides with the spectral radius ofXk. Let �0 denote the eigenvalue

of X1 of largest magnitude, with the corresponding right eigenvector given by z0.

Then,

max
1kN

kXkk = |�0|, X1z0 = �0z0

We select x0 = col{z0, 0, . . . , 0}. Then, we establish (4.150) by:

kXx0kb,1
kx0kb,1

=
kcol{X1z0, 0, . . . , 0}kb,1
kcol{z0, 0, . . . , 0}kb,1

=
kX1z0k
kz0k

=
k�0z0k
kz0k

= |�0| = max
1kN

kXkk

150

4.D Stability of B and F

Recall the definitions of the matrices B and F from (4.110) and (4.109):

B = AT
2 [IMN �MR1]AT

1 (4.153)

F =
�

A1[IMN �MR1]A2

�

⌦
�

A1[IMN �MR1]A2

�

= BT ⌦ BT (4.154)

From (4.153)–(4.154), we obtain (see Theorem 13.12 from [82, p.141]):

⇢(F) = ⇢(BT ⌦ BT) = [⇢(BT)]2 = [⇢(B)]2 (4.155)

where ⇢(·) denotes the spectral radius of its matrix argument. Therefore, the

stability of the matrix F is equivalent to the stability of the matrix B, and we

only need to examine the stability of B. Now note that the block maximum norm

(see the definition in Appendix 4.C) of the matrix B satisfies

kBkb,1  kIMN �MR1kb,1 (4.156)

since the block maximum norms of A1 and A2 are one (see [127, p.4801]):

�

�AT
1

�

�

b,1 = 1,
�

�AT
2

�

�

b,1 = 1 (4.157)

Moreover, by noting that the spectral radius of a matrix is upper bounded by any

matrix norm (Theorem 5.6.9, [68, p.297]) and that IMN �MR1 is symmetric

151

and block diagonal, we have

⇢(B)  kIMN �MR1kb,1 = ⇢(IMN �MR1) (4.158)

Therefore, the stability of B is guaranteed by the stability of IMN�MR1. Next,

we call upon the following lemma to bound kIMN�MR1kb,1.

Lemma 4.7 (Norm of IMN �MD1). It holds that the matrix R1 defined in

(4.101) satisfies

kIMN�MR1kb,1  max
1kN

�k (4.159)

where �k is defined in (4.39).

Proof. Since R1 is block diagonal and symmetric, IMN �MR1 is also block

diagonal with blocks {IM�µkRk,1}, where Rk,1 denotes the kth diagonal block

of R1. Then, from (4.147) in Lemma 4.6 in Appendix 4.C, it holds that

kIMN�MR1kb,1 = max
1kN

kIM�µkRk,1k (4.160)

By the definition of R1 in (4.101), and using condition (4.12) from Assumption

4.1, we have

⇣

N
X

l=1

cl,k�l,min

⌘

· IM  Rk,1 
⇣

N
X

l=1

cl,k�l,max

⌘

· IM

which implies that

IM � µkRk,1 �
⇣

1� µk

N
X

l=1

cl,k�l,max

⌘

· IM (4.161)

152

IM � µkRk,1 
⇣

1� µk

N
X

l=1

cl,k�l,min

⌘

· IM (4.162)

Thus, kIM�µkRk,1k�k. Substituting into (4.160), we get (4.159).

Substituting (4.159) into (4.158), we get:

⇢(B)  max
1kN

�k (4.163)

As long as max
1kN

�k < 1, then all the eigenvalues of B will lie within the unit

circle. By the definition of �k in (4.39), this is equivalent to requiring

|1� µk�k,max| < 1, |1� µk�k,min| < 1

for k = 1, . . . , N , where �k,max and �k,min are defined in (4.40). These conditions

are satisfied if we choose µk such that

0 < µk < 2/�k,max, k = 1, . . . , N (4.164)

which is obviously guaranteed for su�ciently small step-sizes (and also by condi-

tion (4.64)).

153

CHAPTER 5

Transient Analysis

5.1 Introduction

In Chapter 4, we analyzed the stability and performance of the di↵usion al-

gorithm under the assumption that each cost function Jk(w) is strongly con-

vex. In this chapter, and in Chapter 6, we relax this assumption and con-

sider a general class of distributed strategies, which includes di↵usion strate-

gies [26,34,36,42,58,89,91,115,146] and consensus strategies [48,75–77,97,98,137]

as special cases. Both classes of algorithms involve self-learning and social-

learning steps. During self-learning, each agent updates its state using its local

data. During social learning, each agent aggregates information from its neigh-

bors. A useful feature that results from these localized interactions is that the

network ends up exhibiting global patterns of behavior. For example, in dis-

tributed estimation and learning, each agent is able to attain the performance

of centralized solutions by relying solely on local cooperation [75, 146]. We now

study the resulting global learning behavior by addressing four important ques-

tions: (i) where does the distributed algorithm converge to? (ii) when does it

converge? (iii) how fast does it converge? and (iv) how close does it converge to

the intended point? We answer questions (i)–(iii) in this chapter and question

(iv) in Chapter 6. We study these four questions by dissecting and characterizing

the learning dynamics of the network in some great detail. An interesting con-

154

clusion that follows from our analysis is that the learning curve of a multi-agent

system will be shown to exhibit three di↵erent phases. In the first phase (Tran-

sient Phase I), the convergence rate of the network is determined by the second

largest eigenvalue of the combination matrix in magnitude, which is related to

the degree of network connectivity. In the second phase (Transient Phase II), the

convergence rate is determined by the entries of the right-eigenvector of the com-

bination matrix corresponding to the eigenvalue at one. And, in the third phase

(the steady-state phase) the mean-square performance of the algorithm turns out

to depend on this same right-eigenvector in a revealing way. Even more surpris-

ingly, we shall discover that the agents have the same learning behavior starting

at Transient Phase II, and are able to achieve a performance level that matches

that of a fully connected network or a centralized stochastic-gradient strategy.

Actually, we shall show that the consensus and di↵usion strategies can be rep-

resented as perturbed versions of a centralized reference recursion in a certain

transform domain. We quantify the e↵ect of the perturbations and establish the

aforementioned properties for the various phases of the learning behavior of the

networks. The results will reveal the manner by which the network topology

influences performance in some unexpected ways.

There have been of course many insightful works in the literature on dis-

tributed strategies and their convergence behavior. In Sections 5.2.2 and 5.4.1

further ahead, we explain in what ways the current chapter extends these earlier

investigations and what novel contributions this work leads to. In particular,

it will be seen that several new insights are discovered that clarify how dis-

tributed networks learn. For the time being, in these introductory remarks, we

limit ourselves to mentioning one important aspect of our development. Most

prior studies on distributed optimization and estimation tend to focus on the

performance and convergence of the algorithms under diminishing step-size con-

155

ditions [13, 48, 75–77, 84, 97, 109, 125, 137], or on convergence under deterministic

conditions on the data [97]. This is perfectly fine for applications involving static

optimization problems where the objective is to locate the fixed optimizer of some

aggregate cost function of interest. In this thesis, however, we examine the learn-

ing behavior of distributed strategies under constant step-size conditions. This is

because constant step-sizes are necessary to enable continuous adaptation, learn-

ing, and tracking in the presence of streaming data and drifting conditions. These

features would enable the algorithms to perform well even when the location of

the optimizer drifts with time. Nevertheless, the use of constant step-sizes en-

riches the dynamics of (stochastic-gradient) distributed algorithms in that the

gradient update term does not die out with time anymore, in clear contrast to

the diminishing step-size case where the influence of the gradient term is an-

nihilated over time due to the decaying value of the step-size parameter. For

this reason, more care is needed to examine the learning behavior of distributed

strategies in the constant step-size regime since their updates remain continually

active and the e↵ect of gradient noise is always present. This work also gener-

alizes and extends in non-trivial ways the studies in the previous chapters. For

example, while Chapter 2 assumed that the individual costs of all agents have

the same minimizer, and Chapter 4 assumed that each of these individual costs

is strongly convex, these requirements are not needed in the current chapter and

the next chapter: individual costs can have distinct minimizers and they do not

even need to be convex (see the discussion after expression (5.32)). This fact

widens significantly the class of distributed learning problems that are covered

by our framework. Moreover, the network behavior is studied under less restric-

tive assumptions and for broader scenarios, including a close study of the various

phases of evolution during the transient phase of the learning process. We also

study a larger class of distributed strategies that includes di↵usion and consensus

156

strategies as special cases.

To examine the learning behavior of adaptive networks under broader and

more relaxed conditions than usual, we pursue a new analysis route by introducing

a reference centralized recursion and by studying the perturbation of the di↵usion

and consensus strategies relative to this centralized solution over time. Insightful

new results are obtained through this perturbation analysis. For example, we are

now able to examine closely both the transient phase behavior and the steady-

state phase behavior of the learning process and to explain how behavior in these

two stages relate to the behavior of the centralized solution (see Fig. 5.2 further

ahead). Among several other results, the mean-square-error expression (5.45)

derived later in Chapter 6 following some careful analysis, which builds on the

results of this chapter, is one of the new (compact and powerful) insights; it reveals

how the performance of each agent is closely related to that of the centralized

stochastic approximation strategy — see the discussion right after (5.45). As

the reader will ascertain from the derivations in the appendices, arriving at these

conclusions for a broad class of distributed strategies and under weaker conditions

than usual is demanding and necessitates a careful study of the evolution of the

error dynamics over the network and its stability. When all is said and done,

Chapters 5–6 lead to several novel insights into the learning behavior of adaptive

networks. The following presentation in this chapter is based on [37].

5.2 Problem Formulation

5.2.1 Distributed Strategies: Consensus and Di↵usion

We consider a connected network of N agents that are linked together through

a topology — see Fig. 5.1. Each agent k implements a distributed algorithm of

157

the following form to update its state vector from wk,i�1 to wk,i:

�k,i�1 =
N
X

l=1

a1,lkwl,i�1 (5.1)

 k,i =
N
X

l=1

a0,lk�l,i�1 � µkŝk,i(�k,i�1) (5.2)

wk,i =
N
X

l=1

a2,lk l,i (5.3)

where wk,i 2 RM is the state of agent k at time i, usually an estimate for

the solution of some optimization problem, �k,i�1 2 RM and k,i 2 RM are

intermediate variables generated at node k before updating to wk,i, µk is a non-

negative constant step-size parameter used by node k, and ŝk,i(·) is an M ⇥ 1

update vector function at node k. In deterministic optimization problems, the

update vectors ŝk,i(·) can be the gradient or Newton steps associated with the

cost functions [97]. On the other hand, in stocastic approximation problems,

such as adaptation, learning and estimation problems [26,34,36,42,48,49,58,75,

77, 89, 91, 109, 115, 125, 130, 137, 146], the update vectors are usually computed

from realizations of data samples that arrive sequentially at the nodes. In the

stochastic setting, the quantities appearing in (5.1)–(5.3) become random and we

use boldface letters to highlight their stochastic nature. In Example 5.1 below,

we illustrate choices for ŝk,i(w) in di↵erent contexts.

The combination coe�cients a1,lk, a0,lk and a2,lk in (5.1)–(5.3) are nonnegative

weights that each node k assigns to the information arriving from node l; these

coe�cients are required to satisfy:

N
X

l=1

a1,lk = 1,
N
X

l=1

a0,lk = 1,
N
X

l=1

a2,lk = 1 (5.4)

158

N
k

k

1

2

3

4

5

6

7

8

9

a
1k

a
k1

10

Figure 5.1: A network representing a multi-agent system. The set of all agents
that can communicate with node k is denoted by Nk.The edge linking any two
agents is represented by two directed arrows to emphasize that information can
flow in both directions.

a1,lk � 0, a0,lk � 0, a2,lk � 0 (5.5)

a1,lk = a2,lk = a0,lk = 0, if l /2 Nk (5.6)

Observe from (5.6) that the combination coe�cients are zero if l /2 Nk, where Nk

denotes the set of neighbors of node k. Therefore, each summation in (5.1)–(5.3)

is actually confined to the neighborhood of node k. In algorithm (5.1)–(5.3),

each node k first combines the states {wl,i�1} from its neighbors and updates

wk,i�1 to the intermediate variable �k,i�1. Then, the {�l,i�1} from the neighbors

are aggregated and updated to k,i along the opposite direction of ŝk,i(�k,i�1).

Finally, the intermediate estimators { l,i} from the neighbors are combined to

generate the new state wk,i at node k.

Example 5.1. The distributed algorithm (5.1)–(5.3) can be applied to optimize

159

aggregate costs of the following form:

Jglob(w) =
N
X

k=1

Jk(w) (5.7)

or to find Pareto-optimal solutions to multi-objective optimization problems, such

as:

min
w

{J1(w), . . . , JN(w)} (5.8)

where Jk(w) is an individual convex cost associated with each agent k. Optimiza-

tion problems of the form (5.7)–(5.8) arise in various applications — see [26, 34,

36, 42, 48, 49, 51, 52, 58, 75–77, 84, 85, 89, 91, 96–98, 109, 115, 125, 130, 136, 137, 146].

Depending on the context, the update vector ŝk,i(·) may be chosen in di↵erent

ways:

• In deterministic optimization problems, the expressions for {Jk(w)} are

known and the update vector ŝk,i(·) at node k is chosen as the deterministic

gradient (column) vector rwJk(·).

• In distributed estimation and learning, the individual cost function at each

node k is usually selected as the expected value of some loss functionQk(·, ·),

i.e., Jk(w) = E{Qk(w,xk,i)} [34], where the expectation is with respect to

the randomness in the data samples {xk,i} collected at node k at time i.

The exact expression for rwJk(w) is usually unknown since the probability

distribution of the data is not known beforehand. In these situations, the

update vector ŝk,i(·) is chosen as an instantaneous approximation for the

true gradient vector, such as, ŝk,i(·) = \rwJk(·) = rwQk(·,xk,i). Note that

the update vector ŝk,i(w) is now evaluated from the random data sample

160

xk,i. Therefore, it is also random and time dependent.

The update vectors {ŝk,i(·)} may not necessarily be the gradients of cost functions

or their stochastic approximations. They may take other forms for di↵erent

reasons. For example, in [75], a certain gain matrix K is multiplied to the left

of the stochastic gradient vector \rwJk(·) to make the estimator asymptotically

e�cient for a linear observation model.

Returning to the general distributed strategy (5.1)–(5.3), we note that it can

be specialized into various useful algorithms. We let A1, A0 and A2 denote the

N ⇥ N matrices that collect the coe�cients {a1,lk}, {a0,lk} and {a2,lk}. Then,

condition (5.4) is equivalent to

AT
1 1 = 1, AT

0 1 = 1, AT
2 1 = 1 (5.9)

where 1 is the N ⇥ 1 vector with all its entries equal to one. Condition (5.9)

means that the matrices {A0, A1, A2} are left-stochastic (i.e., the entries on each

of their columns add up to one). Di↵erent choices for A1, A0 and A2 correspond

to di↵erent distributed strategies, as summarized in Table 5.1. Specifically, the

traditional consensus [48, 75–77, 97, 98, 137] and di↵usion (ATC and CTA) [26,

34, 36, 42, 89, 91, 115, 146] algorithms with constant step-sizes are given by the

following iterations:

Consensus :

8

>

>

<

>

>

:

�k,i�1 =
X

l2N
k

a0,lkwl,i�1

wk,i = �k,i�1 � µkŝk,i(wk,i�1)

(5.10)

161

Table 5.1: Di↵erent choices for A1, A0 and A2 correspond to di↵erent distributed
strategies.

Distributed Strategeis A1 A0 A2 A1A0A2

Consensus I A I A
ATC di↵usion I I A A
CTA di↵usion A I I A

CTA di↵usion :

8

>

>

<

>

>

:

�k,i�1 =
X

l2N
k

a1,lkwl,i�1

wk,i = �k,i�1 � µkŝk,i(�k,i�1)

(5.11)

ATC di↵usion :

8

>

>

<

>

>

:

 k,i = wk,i�1�µkŝk,i(wk,i�1)

wk,i =
X

l2N
k

a2,lk l,i

(5.12)

Therefore, the convex combination steps appear in di↵erent locations in the con-

sensus and di↵usion implementations. For instance, observe that the consensus

strategy (5.10) evaluates the update direction ŝk,i(·) at wk,i�1, which is the es-

timator prior to the aggregation, while the di↵usion strategy (5.11) evaluates

the update direction at �k,i�1, which is the estimator after the aggregation. In

our analysis, we will proceed with the general form (5.1)–(5.3) to study all three

schemes, and other possibilities, within a unifying framework.

We observe that there are two types of learning processes involved in the

dynamics of each agent k: (i) self-learning in (5.2) from locally sensed data and

(ii) social learning in (5.1) and (5.3) from neighbors. All nodes implement the

same self- and social learning structure. As a result, the learning dynamics of

all nodes in the network are coupled; knowledge exploited from local data at

node k will be propagated to its neighbors and from there to their neighbors in

162

a di↵usive learning process. It is expected that some global performance pattern

will emerge from these localized interactions in the multi-agent system. In this

chapter and the following Chapter 6, we address the following questions:

• Limit point: where does each state wk,i converge to?

• Stability: under which conditions does convergence occur?

• Learning rate: how fast does convergence occur?

• Performance: how close does wk,i get to the limit point?

We address the first three questions in this chapter, and examine the last ques-

tion pertaining to performance in Chapter 6. We address the four questions by

characterizing analytically the learning dynamics of the network to reveal the

global behavior that emerges in the small step-size regime. The answers to these

questions will provide useful and novel insights about how to tune the algorithm

parameters in order to reach desired performance levels — see Sec. 6.6.

5.2.2 Relation to Prior Work

In comparison with the existing literature [13,21,48,71,75–77,84,97,109,125,126,

137], it is worth noting that most prior studies on distributed optimization algo-

rithms focus on studying their performance and convergence under diminishing

step-size conditions and for doubly-stochastic combination policies (i.e., matrices

for which the entries on each of their columns and on each of their rows add up

to one). These are of course useful conditions, especially when the emphasis is

on solving static optimization problems. We focus instead on the case of con-

stant step-sizes because, as explained earlier, they enable continuous adaptation

and learning under drifting conditions; in contrast, diminishing step-sizes turn

163

o↵ learning once they approach zero. By using constant step-sizes, the result-

ing algorithms are able to track dynamic solutions that may slowly drift as the

underlying problem conditions change. Moreover, we do not limit the combina-

tion policies to be doubly-stochastic; we only require condition (5.9). It turns

out that left-stochastic matrices lead to superior mean-square error performance

(see, e.g., expression (6.66) and also [146]). Furthermore, constant step-sizes and

left-stochastic combination policies enrich the learning dynamics of the network

in interesting ways, as we are going to discover. In particular, under these condi-

tions, we derive an interesting result that reveals how the topology of the network

determines the limit point of the distributed algorithm. We will show that the

combination weights steer the convergence point away from the expected solution

and towards any of many possible Pareto optimal solutions. This is in contrast

to commonly-used doubly-stochastic combination policies where the limit point

of the network is fixed and cannot be changed regardless of the topology. We will

show that the limit point is determined by the right eigenvector that is associated

with the eigenvalue at one for the matrix product A1A0A2. We will also be able

to characterize in Chapter 6 how close each agent in the network gets to this

limit point and to explain how the limit point plays the role of a Pareto optimal

solution for a suitably defined aggregate cost function.

5.3 Modeling Assumptions

In this section, we collect the assumptions and definitions that are used in

the analysis and explain why they are justified and how they relate to sim-

ilar assumptions used in several prior studies in the literature. As the dis-

cussion will reveal, in most cases, the assumptions that we adopt here are re-

laxed (i.e., weaker) versions than conditions used before in the literature such as

164

in [11, 11, 34, 36, 52, 75, 77, 84, 97, 105, 109, 125, 137]. We do so in order to analyze

the learning behavior of networks under conditions that are similar to what is

normally assumed in the prior art, albeit ones that are generally less restrictive.

Assumption 5.1 (Strongly-connected network). The N ⇥ N matrix product

A , A1A0A2 is assumed to be a primitive left-stochastic matrix, i.e., AT1 = 1

and there exists a finite integer jo such that all entries of Aj
o are strictly positive.

This condition is satisfied for most networks and is not restrictive. Let A =

[alk] denote the entries of A. Assumption 5.1 is automatically satisfied if the

product A corresponds to a connected network and there exists at least one

akk > 0 for some node k (i.e., at least one node with a nontrivial self-loop) [115].

It then follows from the Perron-Frobenius Theorem [68] that the matrix A1A0A2

has a single eigenvalue at one of multiplicity one and all other eigenvalues are

strictly less than one in magnitude, i.e.,

1 = �1(A) > |�2(A)| � · · · � |�N(A)| (5.13)

Obviously, 1T is a left eigenvector for A1A0A2 corresponding to the eigenvalue at

one. Let ✓ denote the right eigenvector corresponding to the eigenvalue at one

and whose entries are normalized to add up to one, i.e.,

A✓ = ✓, 1T ✓ = 1 (5.14)

Then, the Perron-Frobenius Theorem further ensures that all entries of ✓ satisfy

0 < ✓k < 1. Note that, unlike [75,77,97,109,125,137], we do not require the matrix

A1A0A2 to be doubly-stochastic (in which case ✓ would be 1/N and, therefore, all

165

its entries will be identical to each other). Instead, we will study the performance

of the algorithms in the context of general left-stochastic matrices {A1, A0, A2}

and we will examine the influence of (the generally non-equal entries of) ✓ on

both the limit point and performance of the network.

Definition 5.1 (Step-sizes). Without loss of generality, we express the step-size

at each node k as µk = µmax�k, where µmax , max{µk} is the largest step-size,

and 0  �k  1. We assume �k > 0 for at least one k. Thus, observe that we are

allowing the possibility of zero step-sizes by some of the agents.

Definition 5.2 (Useful vectors). Let ⇡ and p be the following N ⇥ 1 vectors:

⇡ , A2✓ (5.15)

p , col{⇡1�1, . . . , ⇡N�N} (5.16)

where ⇡k is the kth entry of the vector ⇡.

The vector p will play a critical role in the performance of the distributed

strategy (5.1)–(5.3). Furthermore, we introduce the following assumptions on

the update vectors ŝk,i(·) in (5.1)–(5.3).

Assumption 5.2 (Update vector: Randomness). There exists an M ⇥ 1 deter-

ministic vector function sk(w) such that, for all M ⇥ 1 vectors w in the filtration

Fi�1 generated by the past history of iterates {wk,j} for j  i � 1 and all k, it

holds that

E {ŝk,i(w)|Fi�1} = sk(w) (5.17)

166

for all i, k. Furthermore, there exist ↵ � 0 and �2
v � 0 such that for all i, k and

w 2 Fi�1:

E
�

kŝk,i(w)�sk(w)k2
�

�Fi�1

 ↵·kwk2+�2
v (5.18)

Condition (5.18) requires the conditional variance of the random update di-

rection ŝk,i(w) to be bounded by the square-norm of w. Condition (5.21) is a

generalized version of Assumption 4.2 from Chapter 4; it is also a generalization

of the assumptions from [11,105,109], where ŝk,i(w) was instead modeled as the

following perturbed version of the true gradient vector:

ŝk,i(w) = \rwJk(w) = rwJk(w) + vk,i(w) (5.19)

with sk(w) = rwJk(w), in which case conditions (5.17)–(5.18) translate into the

following requirements on the gradient noise vk,i(w):

E {vk,i(w)|Fi�1} = 0 (zero mean) (5.20)

E
�

kvk,i(w)k2
�

�Fi�1

 ↵·kwk2+�2
v (5.21)

In Example 4.1 of Chapter 4, we explained how these conditions are satisfied

automatically in the context of mean-square-error adaptation over networks. As-

sumption 5.2 given by (5.17)–(5.18) is more general than (5.20)–(5.21) because

we are allowing the update vector ŝk,i(·) to be constructed in forms other than

(5.19). Furthermore, Assumption (5.21) is also more relaxed than the following

167

variant used in [11, 105]:

E
�

kvk,i(w)k2
�

�Fi�1

 ↵·krwJk(w)k2+�2
v (5.22)

This is because (5.22) implies a condition of the form (5.21). Indeed, note that

E
�

kvk,i(w)k2
�

�Fi�1

= ↵·krwJk(w)�rwJk(0) +rwJk(0)k2+�2
v

(a)

 2↵·krwJk(w)�rwJk(0)k2 + 2↵krwJk(0)k2+�2
v

(b)

 2↵�2U · kwk2 + 2↵krwJk(0)k2+�2
v

, ↵0 · kwk2 + �2
v0 (5.23)

where step (a) uses the relation kx + yk2  2kxk2 + 2kyk2, and step (b) used

(5.24) to be assumed next.

Assumption 5.3 (Update vector: Lipschitz). There exists a nonnegative �U

such that for all x, y 2 RM and all k:

ksk(x)� sk(y)k  �U · kx� yk (5.24)

where the subscript “U” in �U means “upper bound”.

A similar assumption to (5.24) was used before in the literature for the model

(5.19) by requiring the gradient vector of the individual cost functions Jk(w) to

be Lipschitz [11,52,84,105,137]. Again, condition (5.24) is more general because

we are not limiting the construction of the update direction to (5.19).

Assumption 5.4 (Update vector: Strong monotonicity). Let pk denote the kth

168

entry of the vector p defined in (5.16). There exists �L > 0 such that for all

x, y 2 RM :

(x� y)T ·
N
X

k=1

pk
h

sk(x)� sk(y)
i

� �L · kx� yk2 (5.25)

where the subscript “L” in �L means “lower bound”.

Remark 5.1. Applying the Cauchy-Schwartz inequality [68, p.15] to the left-

hand side of (5.25) and using (5.24), we deduce the following relation between

�L and �U :

�U · kpk1 � �L (5.26)

where k · k1 denotes the 1�norm of the vector argument.

The following lemma gives the equivalent forms of Assumptions 5.3–5.4 when

the {sk(w)} happen to be di↵erentiable.

Lemma 5.1 (Equivalent conditions on update vectors). Suppose {sk(w)} are

di↵erentiable in an open set S ✓ RM . Then, having conditions (5.24) and (5.25)

hold on S is equivalent to the following conditions, respectively,

krwT sk(w)k  �U (5.27)

1

2
[Hc(w) +HT

c (w)] � �L · IM (5.28)

for any w 2 S, where k · k denotes the 2� induced norm (largest singular value)

of its matrix argument and

Hc(w) ,
n
X

k=1

pkrwT sk(w) (5.29)

169

Proof. See Appendix 5.A.

Since in Assumptions 5.3–5.4 we require conditions (5.24) and (5.25) to be

hold over the entire RM , then the equivalent conditions (5.27)–(5.28) will need

to hold over the entire RM when the {sk(w)} are di↵erentiable. In the context of

distributed optimization problems of the form (5.7)–(5.8) with twice-di↵erentiable

Jk(w), where the stochastic gradient vectors are constructed as in (5.19), Lemma

5.1 implies that the above Assumptions 5.3–5.4 are equivalent to the following

conditions on the Hessian matrix of each Jk(w) [105, p.10]:

�

�r2
wJk(w)

�

�  �U (5.30)

N
X

k=1

pkr2
wJk(w) � �LIM > 0 (5.31)

Condition (5.31) is in turn equivalent to requiring the following weighted sum of

the individual cost functions {Jk(w)} to be strongly convex:

Jglob,?(w) ,
N
X

k=1

pkJk(w) (5.32)

We note that strong convexity conditions are prevalent in many studies on opti-

mization techniques in the literature. For example, each of the individual costs

Jk(w) is assumed to be stronlgy convex in [125] in order to derive upper bounds

on the limit superior (“lim sup”) of the mean-square-error of the estimates wk,i

or the expected value of the cost function at wk,i. In comparison, the framework

in this work does not require the individual costs to be strongly convex or even

convex. Actually, some of the costs {Jk(w)} can be non-convex as long as the

aggregate cost (5.32) remains strongly convex. Such relaxed assumptions on the

individual costs introduce challenges into the analysis, and we need to develop a

170

systematic approach to characterize the limiting behavior of adaptive networks

under such less restrictive conditions.

Assumption 5.5 (Jacobian matrix: Lipschitz). Let wo denote the limit point of

the distributed strategy (5.1)–(5.3), which is defined further ahead as the unique

solution to (5.35). Then, in a small neighborhood around wo, we assume that

sk(w) is di↵erentiable with respect to w and satisfies

krwT sk(w
o + �w)�rwT sk(w

o)k  �H · k�wk (5.33)

for all k�wk  rH for some small rH , and where �H is a nonnegative number

independent of �w and wo.

In the context of distributed optimization problems of the form (5.7)–(5.8)

with twice-di↵erentiable Jk(w), where the stochastic gradient vectors are con-

structed as in (5.19), the above Assumption translates into the following Lipschitz

Hessian condition:

kr2
wJk(w

o + �w)�r2
wJk(w

o)k  �H · k�wk (5.34)

Condition (5.33) is useful when we examine the convergence rate of the algorithm

later in this article. It is also useful in deriving the steady-state mean-square-error

expression (5.45) in Chapter 6.

171

5.4 Learning Behavior

5.4.1 Overview of Main Results

Before we proceed to the formal analysis, we first give a brief overview of the main

results that we are going to establish in this chapter on the learning behavior of

the distributed strategies (5.1)–(5.3) for su�ciently small step-sizes. The first

major conclusion is that for general left-stochastic matrices {A1, A0, A2}, the

agents in the network will have their estimators wk,i converge, in the mean-

square-error sense, to the same vector wo that corresponds to the unique solution

of the following algebraic equation:

N
X

k=1

pksk(w) = 0 (5.35)

For example, in the context of distributed optimization problems of the form (5.7),

this result implies that for left-stochastic matrices {A1, A0, A2}, the distributed

strategies represented by (5.1)–(5.3) will not converge to the global minimizer of

the original aggregate cost (5.7), which is the unique solution to the alternative

algebraic equation

N
X

k=1

rwJk(w) = 0 (5.36)

Instead, these distributed solutions will converge to the global minimizer of the

weighted aggregate cost Jglob,?(w) defined by (5.32) in terms of the entries pk,

i.e., to the unique solution of

N
X

k=1

pkrwJk(w) = 0 (5.37)

172

Result (5.35) also means that the distributed strategies (5.1)–(5.3) converge to a

Pareto optimal solution of the multi-objective problem (5.8); one Pareto solution

for each selection of the topology parameters {pk}. The distinction between

the aggregate costs Jglob(w) and Jglob,?(w) does not appear in earlier studies on

distributed optimization [75, 77, 97, 109, 125, 137] mainly because these studies

focus on doubly-stochastic combination matrices, for which the entries {pk} will

all become equal to each other for uniform step-sizes µk ⌘ µ or µk(i) ⌘ µ(i).

In that case, the minimizations of (5.7) and (5.32) become equivalent and the

solution of (5.36) and (5.37) would then coincide. In other words, regardless

of the choice of the doubly stochastic combination weights, when the {pk} are

identical, the limit point will be unique and correspond to the solution of

N
X

k=1

sk(w) = 0 (5.38)

In contrast, result (5.35) shows that left-stochastic combination policies add more

flexibility into the behavior of the network. By selecting di↵erent combination

weights, or even di↵erent topologies, the entries {pk} can be made to change and

the limit point can be steered towards other desired Pareto optimal solutions.

The second major conclusion of the paper is that we will show in (5.145)

further ahead that there always exist su�ciently small step-sizes such that the

learning process over the network is mean-square stable. This means that the

weight error vectors relative to wo will satisfy

lim sup
i!1

Ekw̃k,ik2 = O(µmax) (5.39)

so that the steady-state mean-square-error at each agent will be of the order of

O(µmax).

173

The third major conclusion of our analysis is that we will show that, during the

convergence process towards the limit point wo, the learning curve at each agent

exhibits three distinct phases: Transient Phase I, Transient Phase II, and Steady-

State Phase. These phases are illustrated in Fig. 5.2 and they are interpreted as

follows. Let us first introduce a reference (centralized) procedure that is described

by the following centralized-type recursion:

w̄c,i = w̄c,i�1 � µmax

N
X

k=1

pksk(w̄c,i�1) (5.40)

which is initialized at

w̄c,0 =
N
X

k=1

✓kwk,0 (5.41)

where ✓k is the kth entry of the eigenvector ✓, µmax, and {pk} are defined in

Definitions 5.1–5.2, wk,0 is the initial value of the distributed strategy at agent

k, and w̄c,i is an M ⇥ 1 vector generated by the reference recursion (5.40). The

three phases of the learning curve will be shown to have the following features:

• Transient Phase I:

If agents are initialized at di↵erent values, then the estimates of the various

agents will initially evolve in such a way to make each wk,i get closer to the

reference recursion w̄c,i. The rate at which the agents approach w̄c,i will be

determined by |�2(A)|, the second largest eigenvalue of A in magnitude. If

the agents are initialized at the same value, say, e.g., wk,0 = 0, then the

learning curves start at Transient Phase II directly.

• Transient Phase II:

In this phase, the trajectories of all agents are uniformly close to the tra-

174

Phase&I& Phase&II&

Steady,State&

M
SE
&(d

B)
&

Number&of&Itera9ons&

&Reference&(centralized)&strategy&
&
&
&

&Steady,state&MSE&
&
&
&

&

&Distributed&strategies&

Figure 5.2: A typical mean-square-error (MSE) learning curve includes a transient
stage that consists of two phases and a steady-state phase. The plot shows how
the learning curve of a network of agents compares to the learning curve of a
centralized reference solution. The analysis in this work, and in the following
Chapter 6 characterizes in detail the parameters that determine the behavior of
the network (rate, stability, and performance) during each phase of the learning
process.

jectory of the reference recursion; they converge in a coordinated manner

to steady-state. The learning curves at this phase are well modeled by the

same reference recursion (5.40) since we will show in (5.150) that:

Ekw̃k,ik2 = kw̃c,ik2 +O(µ1/2
max) · �ic +O(µmax) (5.42)

Furthermore, for small step-sizes and during the later stages of this phase,

w̄c,i will be close enough to wo and the convergence rate r will be shown to

satisfy:

r =
⇥

⇢(IM � µmaxHc)
⇤2

+O
�

(µmax✏)
1

2(M�1)

�

(5.43)

175

where ⇢(·) denotes the spectral radius of its matrix argument, ✏ is an arbi-

trarily small positive number, and Hc is the same matrix that results from

evaluating (5.29) at w = wo, i.e.,

Hc ,
N
X

k=1

pkHk = Hc(w
o) (5.44)

where Hk , rwT sk(wo).

• Steady-State Phase:

The reference recursion (5.40) continues converging towards wo so that

kw̃c,ik2 = kwo� w̄c,ik2 will converge to zero (�1 dB in Fig. 5.2). However,

for the distributed strategy (5.1)–(5.3), the mean-square-error Ekw̃k,ik2 =

Ekwo �wk,ik2 at each agent k will converge to a finite steady-state value.

We will be able to characterize this value in terms of the vector p in Chapter

6 as follows:

lim
i!1

Ekw̃k,ik2 = µmax ·Tr
�

X(pT⌦IM)Rv(p⌦IM)

+ o(µmax) (5.45)

where X is the solution to the Lyapunov equation described later in (6.42)

of Chapter 6 (when ⌃ = I). Expression (5.45) is a revealing result. It is

a non-trivial extension of a classical result pertaining to the mean-square-

error performance of stand-alone adaptive filters [54,57,72,141] to the more

demanding context when a multitude of adaptive agents are coupled to-

gether in a cooperative manner through a network topology. This result

has an important ramification, which we pursue in Chapter 6. We will show

there that no matter how the agents are connected to each other, there is

always a way to select the combination weights such that the performance

of the network is invariant to the topology. This will also imply that, for any

176

connected topology, there is always a way to select the combination weights

such that the performance of the network matches that of the centralized

solution.

5.5 Study of Error Dynamics

5.5.1 Error Quantities

We shall examine the learning behavior of the distributed strategy (5.1)–(5.3) by

examining how the perturbation between the distributed solution (5.1)–(5.3) and

the reference solution (5.40) evolves over time — see Fig. 5.3. Specifically, let

w̌k,i denote the discrepancy between wk,i and w̄c,i, i.e.,

w̌k,i , wk,i � w̄c,i (5.46)

and let wi and w̌i denote the global vectors that collect the wk,i and w̌k,i from

across the network, respectively:

wi , col{w1,i, . . . ,wN,i} (5.47)

w̌i , col{w̌1,i, . . . , w̌N,i} = wi � 1⌦ w̄c,i (5.48)

It turns out that it is insightful to study the evolution of w̌i in a transformed

domain where it is possible to express the distributed recursion (5.1)–(5.3) as a

perturbed version of the reference recursion (5.40).

Definition 5.3 (Network basis transformation). We define the transformation

by introducing the Jordan canonical decomposition of the matrix A = A1A0A2.

177

Let

AT = UDU�1 (5.49)

where U is an invertible matrix whose columns correspond to the right-eigenvevtors

of AT , and D is a block Jordan matrix with a single eigenvalue at one with mul-

tiplicity one while all other eigenvalues are strictly less than one. The Kronecker

form of A then admits the decomposition:

AT , AT ⌦ IM = UDU�1 (5.50)

where

U , U ⌦ IM , D , D ⌦ IM (5.51)

We use U to define the following basis transformation:

w0
i , U�1wi = (U�1 ⌦ IM)wi (5.52)

w̌0
i , U�1w̌i = (U�1 ⌦ IM)w̌i (5.53)

The relations between the quantities in transformations (5.52)–(5.53) are illus-

trated in Fig. 5.3(a).

We can gain useful insight into the nature of this transformation by exploiting

more directly the structure of the matrices U , D, and U�1. By Assumption 5.1,

the matrix AT has an eigenvalue one of multiplicity one, with the corresponding

left- and right-eigenvectors being ✓T and 1, respectively. All other eigenvalues

of D are strictly less than one in magnitude. Therefore, the matrices D, U , and

178

(a)

(b)

Figure 5.3: (a) Network basis transformation. (b) The diagrams show how the it-
erate wk,i is decomposed relative to the reference w̄c,i and relative to the centroid,
wc,i, of the N iterates across the network.

U�1 can be partitioned as

D =

2

4

1

DN�1

3

5 U =
h

1 UL

i

U�1 =

2

4

✓T

UR

3

5 (5.54)

where DN�1 is an (N � 1) ⇥ (N � 1) Jordan matrix with all diagonal entries

strictly less than one in magnitude, UL is an N ⇥ (N � 1) matrix, and UR is an

(N �1)⇥N matrix. Then, the Kronecker forms D, U , and U�1 can be expressed

179

as

D =

2

4

IM

DN�1

3

5 , U =
h

1⌦IM UL

i

, U�1 =

2

4

✓T⌦IM

UR

3

5 (5.55)

where

UL , UL ⌦ IM (5.56)

UR , UR ⌦ IM (5.57)

DN�1 , DN�1 ⌦ IM (5.58)

It is important to note that U�1U = IN and that

✓T1 = 1, ✓TUL = 0, UR1 = 0, URUL = IN�1 (5.59)

We first study the structure of w0
i defined in (5.52) using (5.54):

w0
i = col{(✓T ⌦ IM)wi

| {z }

,w
c,i

, (UR ⌦ IM)wi
| {z }

,w
e,i

} (5.60)

The two components wc,i and we,i have useful interpretations. Recalling that ✓k

denotes the kth entry of the vector ✓, then wc,i can be expressed as

wc,i =
N
X

k=1

✓kwk,i (5.61)

As we indicated after Assumption 5.1, the entries {✓k} are positive and add up

to one. Therefore, wc,i is a weighted average (i.e., the centroid) of the estimates

{wk,i} across all agents. To interpret we,i, we examine the inverse mapping of

180

(5.52) from w0
i to wi using the block structure of U in (5.54):

wi = (U ⌦ IM)w0
i

= (1⌦ IM)wc,i + (UL ⌦ IM)we,i

= 1⌦wc,i + (UL ⌦ IM)we,i (5.62)

which implies that the individual estimates at the various agents satisfy:

wk,i = wc,i + (uL,k ⌦ IM)we,i (5.63)

where uL,k denotes the kth row of the matrix UL. The network basis transfor-

mation defined by (5.52) represents the cluster of iterates {wk,i} by its centroid

wc,i and their positions {uL,k⌦ IM)we,i} relative to the centroid as shown in Fig.

5.3. The two parts, wc,i and we,i, of w0
i in (5.60) are the coordinates in this new

transformed representation. Then, the actual error quantity w̃k,i relative to wo

can be represented as

w̃k,i = wo � w̄c,i � (wk,i � w̄c,i)

= wo � w̄c,i � (wc,i + (uL,k ⌦ IM)we,i � w̄c,i) (5.64)

Introduce

w̃c,i , wo � w̄c,i (5.65)

w̌c,i , wc,i � w̄c,i (5.66)

Then, from (5.64) we arrive at the following critical relation for our analysis in

181

the sequel:

w̃k,i = w̃c,i � w̌c,i � (uL,k ⌦ IM)we,i (5.67)

This relation is also illustrated in Fig. 5.3. Then, the behavior of the error

quantities {w̃k,i} can be studied by examining w̃c,i, w̌c,i and we,i, respectively,

which is pursued in Sec. 5.6 further ahead. The first term is the error between

the reference recursion and wo, which is studied in Theorems 5.1–5.3. The second

quantity is the di↵erence between the weighted centroid wc,i of the cluster and

the reference vector w̄c,i, and the third quantity characterizes the positions of the

individual iterates {wk,i} relative to the centroid wc,i. As long as the second and

the third terms in (5.67), or equivalently, w̌c,i and we,i, are small (which will be

shown in Theorem 5.4), the behavior of each wk,i can be well approximated by

the behavior of the reference vector w̄c,i. Indeed, w̌c,i and we,i are the coordinates

of the transformed vector w̌0
i defined by (5.53). To see this, we substitute (5.54)

and (5.48) into (5.53) to get

w̌0
i = (U�1 ⌦ IM)(wi � 1⌦ w̄c,i)

= w0
i � (U�11)⌦ w̄c,i (5.68)

Recalling (5.59) and the expression for U�1 in (5.54), we obtain

U�11 = col{✓T1, UR1}

= col{1, 0N�1} (5.69)

where 0N�1 denotes an (N � 1) ⇥ 1 vector with all zero entries. Substituting

182

(5.69) and (5.60) into (5.68), we get

w̌0
i = col{wc,i � w̄c,i, we,i} = col{w̌c,i, we,i} (5.70)

Therefore, it su�ces to study the dynamics of w̌0
i and its mean-square perfor-

mance. We will establish joint recursions for wc,i and we,i in Sec. 5.5.2, and joint

recursions for w̌c,i and we,i in Sec. 5.5.3. Table 5.2 summarizes the definitions of

the various quantities, the recursions that they follow, and their relations.

5.5.2 Signal Recursions

We now derive the joint recursion that describes the evolution of the quantities

w̌c,i = wc,i � w̄c,i and we,i. Since w̄c,i follows the reference recursion (5.40), it

su�ces to derive the joint recursion for wc,i and we,i. To begin with, we introduce

the following global quantities:

A = A⌦ IM (5.71)

A0 = A0 ⌦ IM (5.72)

A1 = A1 ⌦ IM (5.73)

A2 = A2 ⌦ IM (5.74)

M = ⌦⌦ IM (5.75)

⌦ = diag{µ1, . . . , µN} (5.76)

We also let the notation x = col{x1, . . . , xN} denote an arbitrary N ⇥ 1 block

column vector that is formed by stacking M ⇥ 1 sub-vectors x1, . . . , xN on top of

183

T
ab

le
5.
2:

S
u
m
m
ar
y
of

va
ri
ou

s
it
er
at
es
,
er
ro
r
qu

an
ti
ti
es
,
an

d
th
ei
r
re
la
ti
on

s.

O
r
ig
in

a
l
sy

st
e
m

T
r
a
n
sf
o
r
m

e
d

sy
st
e
m

a
R
e
fe
r
e
n
c
e
sy

st
e
m

Q
u
a
n
ti
ty

w
k
,
i

w̃
k
,
i

w̌
k
,
i

w
c
,
i

w̌
c
,
i

w
e
,
i

w̄
c
,
i

w̃
c
,
i

D
e
fi
n
it
io
n

It
er
a
te

a
t
a
g
en

t
k

w
o

�
w

k
,
i

w
k
,
i

�
w̄

c
,
i

N

X

k
=
1

✓ k
w

k
,
i

w
c
,
i

�
w̄

c
,
i

U R
w

i

R
ef
.
It
er
a
te

w
o

�
w̄

c
,
i

R
e
c
u
r
si
o
n

E
q
s.

(5
.1
)–
(5
.3
)

⇠
⇠
⇠⇠

⇠
⇠
⇠⇠

E
q
.
(5
.8
9
)

E
q
.
(5
.9
7
)

E
q
.
(5
.9
8
)

E
q
.
(5
.4
0
)

⇠
⇠

⇠⇠

a

T
h
e
tr
a
n
sf
o
rm

a
ti
o
n
is

d
efi

n
ed

b
y
(5
.5
2
)–
(5
.5
3
).

184

each other. We further define the following global update vectors:

ŝi(x) , col{ŝ1,i(x1), . . . , ŝN,i(xN)} (5.77)

s(x) , col{s1(x1), . . . , sN(xN)} (5.78)

Then, the general recursion for the distributed strategy (5.1)–(5.3) can be rewrit-

ten in terms of these extended quantities as follows:

wi = ATwi�1 �AT
2 Mŝi(�i�1) (5.79)

where

�i , col{�1,i, . . . ,�N,i} (5.80)

and is related to wi and w0
i via the following relation

�i = AT
1 wi = AT

1 Uw0
i (5.81)

Applying the transformation (5.52) to both sides of (5.79), we obtain the trans-

formed global recursion:

w0
i = Dw0

i�1 � U�1AT
2 Mŝi (�i�1) (5.82)

We can now use the block structures in (5.54) and (5.60) to derive recursions for

wc,i and we,i from (5.82). Substituting (5.55) and (5.60) into (5.82), and using

properties of Kronecker products [82, p.147], we obtain

wc,i = wc,i�1 � (✓T ⌦ IM)AT
2 Mŝi (�i�1)

185

= wc,i�1 � (✓TAT
2⌦⌦ IM)ŝi (�i�1)

= wc,i�1 � µmax · (pT ⌦ IM)ŝi (�i�1) (5.83)

and

we,i = DN�1we,i�1 � URAT
2 Mŝi (�i�1) (5.84)

where in the last step of (5.83) we used the relation

µmax · p = ⌦A2✓ (5.85)

which follows from Definitions 5.1 and 5.2. Furthermore, by adding and subtract-

ing identical factors, the term ŝi (�i�1) that appears in (5.83) and (5.84) can be

expressed as

ŝi (�i�1) = s(1⌦wc,i�1) + ŝi (�i�1)�s (�i�1)
| {z }

,v
i

(�
i�1

)

+ s (�i�1)�s(1⌦wc,i�1)
| {z }

,z
i�1

(5.86)

where the first perturbation term vi(�i�1) consists of the di↵erence between the

true update vectors {sk(�k,i�1)} and their stochastic approximations {ŝk,i(�k,i�1)},

while the second perturbation term zi�1 represents the di↵erence between the

same {sk(�k,i�1)} and {sk(wc,i�1)}. The subscript i� 1 in zi�1 implies that this

variable depends on data up to time i� 1 and the subscript i in vi(�i�1) implies

that its value depends on data up to time i (since, in general, ŝi(·) can depend on

data from time i — see Eq. (6.31) in Chapter 6 for an example). Then, ŝi (�i�1)

186

can be expressed as

ŝi (�i�1) = s(1⌦wc,i�1) + vi + zi�1 (5.87)

Lemma 5.2 (Signal dynamics). In summary, the previous derivation shows that

the weight iterates at each agent evolve according to the following dynamics:

wk,i = wc,i + (uL,k ⌦ IM)we,i (5.88)

wc,i = wc,i�1 � µmax · (pT ⌦ IM)ŝi (�i�1) (5.89)

we,i = DN�1we,i�1 � URAT
2 Mŝi (�i�1) (5.90)

ŝi (�i�1) = s(1⌦wc,i�1) + vi + zi�1 (5.91)

5.5.3 Error Dynamics

To simplify the notation, we introduce the centralized operator Tc : RM ! RM

as the following mapping for any x 2 RM :

Tc(x) , x� µmax · (pT ⌦ IM) s(1⌦ x)

= x� µmax

N
X

k=1

pksk(x) (5.92)

Substituting (5.87) into (5.89)–(5.90) and using (5.92), we find that we can rewrite

(5.83) and (5.84) in the alternative form:

wc,i = Tc(wc,i�1)� µmax · (pT ⌦ IM) [zi�1 + vi] (5.93)

we,i = DN�1we,i�1 � URAT
2 M [s(1⌦wc,i�1) + zi�1+vi] (5.94)

187

Likewise, we can write the reference recursion (5.40) in the following compact

form:

w̄c,i = Tc(w̄c,i�1) (5.95)

Comparing (5.93) with (5.95), we notice that the recursion for the centroid vector,

wc,i, follows the same update rule as the reference recursion except for the two

driving perturbation terms zi�1 and vi. Therefore, we would expect the trajectory

of wc,i to be a perturbed version of that of w̄c,i. Let

w̌c,i , wc,i � w̄c,i (5.96)

To obtain the dynamics of w̌c,i, we subtract (5.95) from (5.93).

Lemma 5.3 (Error dynamics). The error quantities that appear on the right-

hand side of (5.70) evolve according to the following dynamics:

w̌c,i = Tc(wc,i�1)�Tc(w̄c,i�1)�µmax ·(pT⌦IM) [zi�1+vi] (5.97)

we,i = DN�1we,i�1�URAT
2 M [s(1⌦wc,i�1)+zi�1+vi] (5.98)

The analysis in sequel will study the dynamics of the variances of the error

quantities w̌c,i and we,i based on (5.97)–(5.98). The main challenge is that these

two recursions are coupled with each other through zi�1 and vi. To address the

di�culty, we will extend the energy operator approach developed in [36] to the

general scenario under consideration.

188

5.5.4 Energy Operator and Properties

To carry out the analysis, we need to introduce the following operators and their

corresponding properties.

Definition 5.4 (Energy vector operator). Suppose x = col{x1, . . . , xN} is an

arbitrary N ⇥ 1 block column vector that is formed by stacking M0 ⇥ 1 vectors

x1, . . . , xN on top of each other. The energy vector operator PM
0

: CM
0

N ! RN

is defined as the mapping:

PM
0

[x] , col{kx1k2, . . . , kxNk2} (5.99)

where k · k denotes the Euclidean norm of a vector.

Definition 5.5 (Norm matrix operator). Suppose X is an arbitrary K⇥N block

matrix consisting of blocks {Xkn} of size M0 ⇥M0:

X =

2

6

6

6

4

X11 · · · X1N

...
...

XK1 · · · XKN

3

7

7

7

5

(5.100)

The norm matrix operator P̄M
0

: CM
0

K⇥M
0

N ! RK⇥N is defined as the mapping:

P̄M
0

[x] ,

2

6

6

6

4

kX11k · · · kX1Nk
...

...

kXK1k · · · kXKNk

3

7

7

7

5

(5.101)

where k · k denotes the 2�induced norm of a matrix.

By default, we choose M0 to be M , the size of the vector wk,i. In this case, we

will drop the subscript inPM
0

[·] and use P [·] for convenience. However, in other

189

cases, we will keep the subscript to avoid confusion. Likewise, P̄M
0

[·] characterizes

the norms of di↵erent parts of a matrix it operates on. We will also drop the

subscript ifM0 = M . Next, we state lemmas on properties of the operators PM
0

[·]

and P̄M
0

[·]. We begin with some basic properties.

Lemma 5.4 (Basic properties). Consider N⇥1 block vectors x = col{x1, . . . , xN}

and y = col{y1, . . . , yN} with M ⇥ 1 entries {xk, yk}. Consider also the K ⇥ N

block matrix X with blocks of size M ⇥M . Then, the operators P [·] and P̄ [·]

satisfy the following properties:

1. (Nonnegativity): P [x] ⌫ 0, P̄ [X] ⌫ 0.

2. (Scaling): For any scalar a 2 C, we have P [ax] = |a|2P [x] and P̄ [aX] =

|a| · P̄ [X].

3. (Convexity): suppose x(1), . . . , x(K) are N ⇥ 1 block vectors formed in the

same manner as x, X(1), . . . , X(K) are K ⇥N block matrices formed in the

same manner as X, and let a1, . . . , aK be non-negative real scalars that add

up to one. Then,

P [a1x
(1) + · · · + aKx

(K)] � a1P [x(1)] + · · · + aKP [x(K)] (5.102)

P̄ [a1X
(1) + · · · + aKX

(K)] � a1P̄ [X(1)] + · · · + aKP̄ [X(K)] (5.103)

4. (Additivity): Suppose x = col{x1, . . . ,xN} and y = col{y1, . . . ,yN} are

N ⇥ 1 block random vectors that satisfy Ex⇤
kyk = 0 for k = 1, . . . , N , where

⇤ denotes complex conjugate transposition. Then,

EP [x + y] = EP [x] + EP [y] (5.104)

5. (Triangular inequality): Suppose X and Y are two K⇥N block matrices

190

of same block size M . Then,

P̄ [X + Y] � P̄ [X] + P̄ [Y] (5.105)

6. (Submultiplicity): Suppose X and Z are K⇥N and N⇥L block matrices

of the same block size M , respectively. Then,

P̄ [XZ] � P̄ [X]P̄ [Z] (5.106)

7. (Kronecker structure): Suppose X 2 CK⇥N , a 2 CN and b 2 CM .

Then,

P̄ [X ⌦ IM] = P̄1[X] (5.107)

P [a⌦ b] = kbk2 · P1[a] (5.108)

where by definition, P̄1[·] and P1[·] denote the operators that work on the

scalar entries of their arguments. When X consists of nonnegative entries,

relation (5.107) becomes

P̄ [X ⌦ IM] = X (5.109)

8. (Relation to norms): The 1�norm of P [x] is the squared block maxi-

mum norm of x:

kP [x]k1 = kxk2b,1 ,
�

max
1kN

kxkk
�2

(5.110)

Moreover, the sum of the entries in P [x] is the squared Euclidean norm of

191

x:

1TP [x] = kxk2 =
N
X

k=1

kxkk2 (5.111)

9. (Inequality preservation): Suppose vectors x, y and matrices F , G

have nonnegative entries, then x � y implies Fx � Fy, and F � G implies

Fx � Gx.

10. (Upper bounds): It holds that

P̄ [X] � kP̄ [X]k1 · 11T (5.112)

P̄ [X] � kP̄ [X]k1 · 11T (5.113)

where k · k1 denotes the 1�induced norm of a matrix (maximum absolute

row sum).

Proof. See Appendix 5.B.

More importantly, the following variance relations hold for the energy and

norm operators. These relations show how error variances propagate after a

certain operator is applied to a random vector.

Lemma 5.5 (Variance relations). Consider N⇥1 block vectors x = col{x1, . . . , xN}

and y = col{y1, . . . , yN} with M ⇥ 1 entries {xk, yk}. The followig variance rela-

tions are satisfied by the energy vector operator P [·]:

1. (Linear transformation): Given a K ⇥N block matrix Q with the size

of each block being M⇥M , Qx defines a linear operator on x and its energy

192

satisfies

P [Qx] � kP̄ [Q]k1 · P̄ [Q] P [x] (5.114)

� kP̄ [Q]k21 · 11T · P [x] (5.115)

As a special case, for a left-stochastic N ⇥N matrix A, we have

P [(AT ⌦ IM)x] � ATP [x] (5.116)

2. (Update operation): The global update vector defined by (5.78) satisfies

the following variance relation:

P [s(x)� s(y)] � �2UP [x� y] (5.117)

3. (Centralized operation): The centralized operator Tc(x) defined by (5.92)

satisfies the following variance relations:

P [Tc(x)� Tc(y)] � �2c · P [x� y] (5.118)

P [Tc(x)� Tc(y)] ⌫ (1� 2µmaxkpk1�U) · P [x� y] (5.119)

where

�c , 1� µmax�L +
1

2
µ2
maxkpk21�2U (5.120)

Moreover, it follows from (5.26) that

�c � 1� µmax�L +
1

2
µ2
max�

2
L

= (1� 1

2
µmax�L)

2 +
1

4
µ2
max�

2
L > 0 (5.121)

193

4. (Stable Jordan operation): Suppose DL is an L⇥ L Jordan matrix of

the following block form:

DL , diag{DL,2, . . . , DL,n
0

} (5.122)

where the nth Ln⇥Ln Jordan block is defined as (note that L = L2 + · · ·+

Ln
0

)

DL,n ,

2

6

6

6

6

6

6

4

dn 1
.

. . . 1

dn

3

7

7

7

7

7

7

5

(5.123)

We further assume DL to be stable with 0  |dn
0

|  · · ·  |d2| < 1. Then,

for any L⇥ 1 vectors x0 and y0, we have

P1[DLx
0 + y0] � �e · P1[x

0] +
2

1� |d2|
· P1[y

0] (5.124)

where �e is the L⇥ L matrix defined as

�e ,

2

6

6

6

6

6

6

4

|d2| 2
1�|d

2

|
.

. . . 2
1�|d

2

|

|d2|

3

7

7

7

7

7

7

5

(5.125)

5. (Stable Kronecker Jordan operator): Suppose DL = DL ⌦ IM , where

DL is the L ⇥ L Jordan matrix defined in (5.122)–(5.123). Then, for any

194

LM ⇥ 1 vectors xe and ye, we have

P [DLxe + ye] � �e · P [xe] +
2

1� |d2|
· P [ye] (5.126)

Proof. See Appendix 5.C.

5.6 Transient Analysis

Using the energy operators and the various properties, we can now examine the

transient behavior of the learning curve more closely. Recall from (5.67) that w̃k,i

consists of three parts: the error of the reference recursion, w̃c,i, the di↵erence be-

tween the centroid and the reference, w̌c,i, and the position of individual iterates

relative to the centroid, (uL,k ⌦ IM)we,i. The main objective in the sequel is to

study the convergence of the reference error, w̃c,i, and establish non-asymptotic

bounds for the mean-square values of w̌c,i and we,i, which will allow us to un-

derstand how fast and how close the iterates at the individual agents, {wk,i}, get

to the reference recursion. Recalling from (5.70) that w̌c,i and we,i are the two

blocks of the transformed vector w̌0
i defined by (5.53), we can examine instead

the evolution of

W̌ 0
i , EP [w̌0

i] = col {EP [w̌c,i],EP [we,i]}

= col
�

Ekw̌c,ik2,EP [we,i]

(5.127)

Specifically, we will study the convergence of w̃c,i in Sec. 5.6.1, the stability of

W̌ 0
i in Sec. 5.6.2, and the two transient phases of w̃k,i in Sec. 5.6.3.

195

5.6.1 Limit Point

Before we proceed to study W̌ 0
i, we state the following theorems on the existence

of a limit point and on the convergence of the reference recursion (5.95).

Theorem 5.1 (Limit point). Given Assumptions 5.3–5.4, there exists a unique

M ⇥ 1 vector wo that solves

N
X

k=1

pksk(w
o) = 0 (5.128)

where pk is the kth entry of the vector p defined in (5.16).

Proof. See Appendix 5.D.

Theorem 5.2 (Convergence of the reference recursion). Let w̃c,i , wo � w̄c,i

denote the error vector of the reference recursion (5.95). Then, the following

non-asymptotic bound on the squared error holds for all i � 0:

(1�2µmaxkpk1�U)i ·kw̃c,0k2  kw̃c,ik2  �2ic ·kw̃c,0k2 (5.129)

Furthermore, if the following condition on the step-size holds

0 < µmax <
2�L
kpk21�2U

(5.130)

then, the iterate w̃c,i converges to zero.

Proof. See Appendix 5.E.

Note from (5.129) that, when the step-size is su�ciently small, the reference

recursion (5.40) converges at a geometric rate between 1 � 2µmaxkpk1�U and

196

�2c = 1 � 2µmax�L + o(µmax). We can get a more precise characterization of the

convergence rate of the reference recursion.

Theorem 5.3 (Convergence rate of the reference recursion). Specifically, for any

small ✏ > 0, there exists a time instant i0 such that, for i � i0, the error vector

w̃c,i converges to zero at the following rate:

r =
⇥

⇢(IM � µmaxHc)
⇤2

+O
�

(µmax✏)
1

2(M�1)

�

(5.131)

Proof. See Appendix 5.F.

Note that since (5.131) holds for arbitrary ✏ > 0, we can choose ✏ to be an

arbitrarily small positive number. Therefore, the convergence rate of the reference

recursion is arbitrarily close to [⇢(IM � µmaxHc)]2.

5.6.2 Mean-Square Stability

Now we apply the properties from Lemmas 5.4–5.5 to derive an inequality recur-

sion for the transformed energy vector W̌ 0
i = EP [w̌0

i]. The results are summarized

in the following lemma.

Lemma 5.6 (Inequality recursion for W̌ 0
i). The N ⇥ 1 vector W̌ 0

i defined by

(5.127) satisfies the following relation for all time instants:

W̌ 0
i � �W̌ 0

i�1 + µ2
maxbv (5.132)

where

� , �0 + µ2
max 0 · 11T 2 RN⇥N (5.133)

197

�0 ,

2

4

�c µmaxhc(µmax) · 1T

0 �e

3

5 2 RN⇥N (5.134)

bv , col{bv,c, bv,e · 1} 2 RN (5.135)

and �e is an (N � 1)⇥ (N � 1) matrix of the same form as (5.125) (i.e., with the

same structure and entries with d2 replaced by |�2(A)|). The scalars 0, hc(µ),

bv,c and bv,e are defined as

 0 , max

⇢

4↵kpk21, 4↵kpk21 ·
�

�P̄ [AT
1 UL]

�

�

2

1 ,

4N ·
�

�P̄ [URAT
2]
�

�

2

1 �2U

✓

3

1� |�2(A)|
+

↵

�2U

◆

,

4N ·
�

�P̄ [URAT
2]
�

�

2

1 ·
�

�P̄ [AT
1 UL]

�

�

2

1 �2U

·
✓

1

1� |�2(A)|
+

↵

�2U

◆�

(5.136)

hc(µmax) , kpk21 ·
�

�P̄ [AT
1 UL]

�

�

2

1 �2U ·
h 1

�L� 1
2
µmaxkpk21�2U

i

(5.137)

bv,c , kpk21 ·
⇥

4↵(kw̃c,0k2 + kwok2) + �2
v

⇤

(5.138)

bv,e , N
�

�P̄ [URAT
2]
�

�

2

1

✓

12
�2Ukw̃c,0k2 + kgok1

1� |�2(A)|

+ 4↵(kw̃c,0k2 + kwok2) + �2
v

◆

(5.139)

where go , P [s(1⌦ wo)].

Proof. See Appendix 5.G.

From (5.133)–(5.134), we see that as the step-size µmax becomes small, we

have � ⇡ �0, since the second term in the expression for � depends on the square

of the step-size. Moreover, note that �0 is an upper triangular matrix. Therefore,

w̌c,i and we,i are weakly coupled for small step-sizes; EP [we,i] evolves on its own,

198

but it will seep into the evolution of EP [w̌c,i] via the o↵-diagonal term in �0,

which is O(µmax). This insight is exploited to establish a non-asymptotic bound

on W̌ 0
i = col{Ekw̌c,ik2,EP [we,i]} in the following theorem.

Theorem 5.4 (Non-asymptotic bound for W̌ 0
i). Suppose the matrix � defined in

(5.133) is stable, i.e., ⇢(�) < 1. Then, the following non-asymptotic bound holds

for all i � 0:

EP [w̌c,i] � µmaxhc(µmax)·1T (�cI��e)
�1
�

�icI��i
e

�

We,0

+ W̌ub0

c,1 (5.140)

EP [we,i] � �i
eWe,0 + W̌ub0

e,1 (5.141)

where We,0 , EP [we,0], W̌ub0
c,1 and W̌ub0

e,1 are the lim sup bounds of EP [w̌c,i] and

EP [we,i], respectively:

W̌ub0

c,1 = µmax ·
 0

�

�L + hc(0)
�

1T (I � �e)�1We,0 + bv,c�L
�2L

+ o(µmax) (5.142)

W̌ub0

e,1 = µ2
max ·

 0

�

�L + hc(0)
�

1T (I � �e)�1We,0 + bv,e�L
�L

⇥ (I��e)
�11+ o(µ2

max) (5.143)

where o(·) denotes strictly higher order terms, and hc(0) is the value of hc(µmax)

(see (5.137)) evaluated at µmax = 0. An important implication of (5.140) and

(5.142) is that

EP [w̌c,i]  O(µmax), 8i � 0 (5.144)

Furthermore, a su�cient condition that guarantees the stability of the matrix �

199

is that

0 < µmax < min

⇢

�L

1
2
kpk21�2U+ 1

3
 0

⇣

1�|�
2

(A)|
2

⌘�2N ,

s

3(1�|�2(A)|)2N+1

22N+2 0

,

�L
kpk21�2U

�

kP̄1[ATUL]k21+ 1
2

�

�

(5.145)

Proof. See Appendix 5.I.

Corollary 5.1 (Asymptotic bounds). It holds that

lim sup
i!1

Ekw̌c,ik2  O(µmax) (5.146)

lim sup
i!1

Ekwe,ik2  O(µ2
max) (5.147)

Proof. The bound (5.146) holds since Ekw̌c,ik2 = EP [w̌c,i]  O(µmax) for all

i � 0 according to (5.144). Furthermore, inequality (5.147) holds because

lim sup
i!1

Ekwe,ik2
(a)
= lim sup

i!1
1TEP [we,i]

(b)

� 1TW̌ub0

e,1

(c)
= O(µ2

max) (5.148)

where step (a) uses property (5.111), step (b) uses (5.141), and step (c) uses

(5.143).

Finally, we present following main theorem that characterizes the di↵erence

between the learning curve of w̃k,i at each agent k and that of w̃c,i generated by

the reference recursion (5.95).

200

Theorem 5.5 (Learning behavior of Ekw̃k,ik2). Suppose the stability condition

(5.145) holds. Then, the di↵erence between the learning curve of the mean-square-

error Ekw̃k,ik2 at each agent k and the learning curve of kw̃c,ik2 is bounded as

�

�Ekw̃k,ik2 � kw̃c,ik2
�

�

 2kuL,k ⌦ IMk2 · 1T�i
eWe,0

+ 2kw̃c,0k · kuL,k ⌦ IMk ·
q

1T�i
eWe,0

+ �ic · O(µ
1

2

max) +O(µmax) for all i � 0 (5.149)

where �ic was defined earlier in (5.120).

Proof. See Appendix 5.K.

5.6.3 Interpretation of Results

The result established in Theorem 5.5 is significant because it allows us to examine

the learning behavior of Ekw̃k,ik2. Note that the third and fourth terms are

small for small step-size parameter µmax. Moreover, the first and second terms

in (5.149) converge to zero at the rates of ⇢(�e) = |�2(A)|, the second largest

magnitude eigenvalue of the combination matrix A, and
p

|�2(A)|, respectively.

For su�ciently small step-sizes, these two rates will be faster than the convergence

rate of kw̃c,ik2, which is between 1 � 2µmaxkpk1�U and r2c = 1 � 2µmax�L +

o(�max) during the initial stages of adaptation and then [⇢(IM � µmaxHc)]2 later

on. Therefore, in Transient Phase I, the first and second terms in (5.149) converge

to zero at a faster rate than kw̃c,ik2. Then, in Transient Phase II, we have

Ekw̃k,ik2 = kw̃c,ik2 +O(µ1/2
max) · �ic +O(µmax) (5.150)

201

T
ab

le
5.
3:

B
eh
av
io
r
of

er
ro
r
qu

an
ti
ti
es

in
d
i↵
er
en
t
p
h
as
es
.

E
r
r
o
r
q
u
a
n
ti
ty

T
r
a
n
si
e
n
t
P
h
a
se

I
T
r
a
n
si
e
n
t
P
h
a
se

II
S
te

a
d
y
-S

ta
te

c

C
o
n
v
e
r
g
e
n
c
e
r
a
te

r
a

V
a
lu

e
C
o
n
v
e
r
g
e
n
c
e
r
a
te

r
b

V
a
lu

e
V
a
lu

e
kw̃

c
,
i

k2
1
�

2
µ
m
a
x

kp
k 1

�
U


r


�
2

c

�
O
(µ

m
a
x

)
r
=

[⇢
(I

M

�
µ
m
a
x

H
c

)]
2

�
O
(µ

m
a
x

)
0

Ek
w̌

c
,
i

k2
co

n
v
er
g
ed

O
(µ

m
a
x

)
co

n
v
er
g
ed

O
(µ

m
a
x

)
O
(µ

m
a
x

)
EP

[w̌
e
,
i

]
r


|�
2

(A
)|

�
O
(µ

m
a
x

)
co

n
v
er
g
ed

O
(µ

2 m
a
x

)
O
(µ

2 m
a
x

)
Ek

w̃
k
,
i

k2
M
u
lt
ip
le

m
o
d
es

�
O
(µ

m
a
x

)
r
=

[⇢
(I

M

�
µ
m
a
x

H
c

)]
2

�
O
(µ

m
a
x

)
O
(µ

m
a
x

)

a

�
c

is
d
efi

n
ed

in
(5
.1
2
0
),

a
n
d
�
2

c

=
1
�

2
µ
m
a
x

�
L

+
o(
µ
m
a
x

).
b

W
e
o
n
ly

sh
o
w

th
e
le
a
d
in
g
te
rm

o
f
th

e
co

n
v
er
g
en

ce
ra
te

fo
r
r.

M
o
re

p
re
ci
se

ex
p
re
ss
io
n
ca

n
b
e
fo
u
n
d
in

(5
.1
3
1
).

c

C
lo
se
r
st
u
d
ie
s
o
f
th

e
st
ea

d
y
-s
ta
te

p
er
fo
rm

a
n
ce

ca
n
b
e
fo
u
n
d
in

C
h
a
p
te
r
6
a
n
d
[3
8
].

202

−2
0

2
4

6
8

10
12

−20246810121416

Th
e

fir
st

el
em

en
t o

f t
he

 e
sti

m
at

ed
 v

ec
to

r

The second element of the estimated vector

O
pt

im
al

 v
al

ue
D

iff
us

io
n

in
iti

al
 it

er
at

es
D

iff
us

io
n

ite
ra

te
s

Re
fe

re
nc

e
re

cu
rs

io
n

Ce
nt

ro
id

i
=

0

i
=

5
0

i
=

1
0
0

..
.

i
=

1
5
0

(
a
)

0
20

0
40

0
60

0
80

0
10

00

-2
0

-1
001020

N
um

be
r o

f i
te

ra
tio

ns

Mean square error (dB)

R
ef

er
en

ce
 re

cu
rs

io
n

0
50

10
0

15
0

20
0

10152025

N
um

be
r o

f i
te

ra
tio

ns

Mean-square-error (dB)

(
b
)

F
ig
u
re

5.
4:

T
h
e
ev
ol
u
ti
on

an
d
le
ar
n
in
g
cu
rv
es

of
va
ri
ou

s
qu

an
ti
ti
es

in
a
d
i↵
u
si
on

L
M
S
ad

ap
ti
ve

n
et
w
or
k,

w
h
er
e

M
=

2,
an

d
th
e
re
gr
es
so
rs

ar
e
sp
at
ia
ll
y
an

d
te
m
p
or
al
ly

w
h
it
e,

an
d
is
ot
ro
p
ic

ac
ro
ss

ag
en
ts
.
(a
)
T
h
e
ev
ol
u
ti
on

of
th
e

it
er
at
es

{w
k
,i
}
at

al
l
ag
en
ts
,
th
e
ce
nt
ro
id

w
c,
i,
an

d
th
e
re
fe
re
n
ce

re
cu
rs
io
n
w̄

c,
i
on

th
e
tw

o-
d
im

en
si
on

al
so
lu
ti
on

sp
ac
e;

th
e
h
or
iz
on

ta
l
ax

is
an

d
ve
rt
ic
al

ax
is

ar
e
th
e
fi
rs
t
an

d
se
co
n
d
el
em

en
ts

of
w

k
,i
,
re
sp
ec
ti
ve
ly
.
T
h
e
cl
u
st
er
s
of

{w
k
,i
}

ar
e
p
lo
tt
ed

ev
er
y
50

it
er
at
io
n
s.

(b
)
T
h
e
M
S
E

le
ar
n
in
g
cu
rv
es
,
av
er
ag
ed

ov
er

10
00

tr
ia
ls
,
fo
r
th
e
it
er
at
es

{w
k
,i
}
at

al
l
ag
en
ts
,
an

d
th
e
re
fe
re
n
ce

re
cu
rs
io
n
w̄

c,
i.
T
h
e
zo
om

-i
n
re
gi
on

sh
ow

s
th
e
le
ar
n
in
g
cu
rv
es

fo
r
d
i↵
er
en
t
ag
en
ts
,
w
h
ic
h

qu
ic
k
sh
ri
n
k
to
ge
th
er

in
P
h
as
e
I.

203

so that the convergence rate of Ekw̃k,ik2 is the same as that of kw̃c,ik2 given by

(5.131). Afterwards, as i ! 1, we have kw̃c,ik2 ! 0 and taking the lim sup of

both sides of (5.149) implies

lim sup
i!1

Ekw̃k,ik2 = lim sup
i!1

�

�Ekw̃k,ik2 � kw̃c,ik2
�

�

 O(µmax) (5.151)

We will go a step further and evaluate this steady-state MSE for small step-sizes

in Chapter 6. Therefore, wk,i converges to wo with a small steady-state MSE that

is on the order of O(µmax). And the steady-state MSE can be made arbitrarily

small for small step-sizes.

Furthermore, the results established in Theorems 5.1–5.4 reveal the evolution

of the three components, w̃c,i, w̌c,i and we,i in (5.67) during the three distinct

phases of the learning curve. From (5.140), the centroid wc,i of the distributed

algorithm (5.1)–(5.3) stays close to w̄c,i over the entire time for su�ciently small

step-sizes since the mean-square error Ekwc,i � w̄c,ik2 = EP [w̌c,i] is always of

the order of O(µmax). However, We,0 = EP [we,i] in (5.141) is not necessarily

small at the beginning. This is because, as we pointed out in (5.63) and Fig.

5.3, we,i characterizes the deviation of the agents from their centroid. If the

agents are initialized at di↵erent values, then EP [we,0] 6= 0, and it takes some

time for EP [we,i] to decay to a small value of O(µ2
max). By (5.141), the rate

at which EP [we,i] decays is ⇢(�e) = |�2(A)|. On the other hand, recall from

Theorems 5.2–5.3 that the error of the reference recursion, w̃c,i converges at a

rate between 1� 2µmaxkpk1�U and r2c = 1� 2µmax�L + o(�max) at beginning and

then [⇢(IM � µmaxHc)]2 later on, which is slower than the convergence rate of

EP [we,i] for small step-size µmax. Now, returning to relation (5.67):

w̃k,i = w̃c,i � w̌c,i � (uL,k ⌦ IM)we,i (5.152)

204

this means that during the initial stage of adaptation, the third term in (5.152)

decays to O(µ2
max) at a faster rate than the first term, although w̃c,i will eventually

converge to zero. Recalling from (5.63) and Fig. 5.3 that we,i characterizes the

deviation of the agents from their centroid, the decay of we,i implies that the

agents are coordinating with each other so that their estimates wk,i are close

to the same wc,i — we call this stage Transient Phase I. Moreover, as we just

pointed out, the term EP [w̌c,i] is O(µmax) over the entire time domain so that the

second term in (5.152) is always small. This also means that the centroid of the

cluster in Fig. 5.3, i.e., wc,i, is always close to the reference recursion w̄c,i since

w̌c,i = wc,i � w̄c,i is always small. Now that Ekw̌c,ik2 is O(µmax) and EP [we,i] is

O(µ2
max), the error w̃k,i at each agent k is mainly dominated by the first term,

w̃c,i, in (5.152), and the estimates {wk,i} at di↵erent agents converge together

at the same rate as the reference recursion, given by (5.131), to steady-state —

we call this stage Transient Phase II. Furthermore, if We,0 = 0, i.e., the iterates

wk,i are initialized at the same value (e.g., zero vector), then (5.141) shows that

EP [we,i] is O(µ2
max) over the entire time domain so that the learning dynamics

start at Transient Phase II directly. Finally, all agents reach the third phase,

steady-state, where w̃c,i ! 0 and w̃k,i is dominated by the second and third

terms in (5.152) so that Ekw̃k,ik2 becomes O(µmax). We summarize the above

results in Table 5.3 and illustrate the evolution of the quantities in the simulated

example in Fig. 5.4. We observe from (5.4) that the radius of the cluster shrinks

quickly at the early stage of the transient phase, and then converges towards the

optimal solution.

205

5.6.4 Discussion on the Limit Point and the Fixed Point

We now discuss the relation between the iterate wk,i at agent k, the limit point

wo, and the fixed point wk,1 (defined in (5.167) and (5.170a)–(5.170c) further

ahead). First, recall that wo is the unique solution to the algebraic equation

(5.128):

wo :
N
X

k=1

pksk(w) = 0 (5.153)

To define the fixed point wk,1, we first introduce the following deterministic

recursion, which uses the actual sk(w) instead of ŝk,i(w) in (5.1)–(5.3):

�k,i�1 =
N
X

l=1

a1,lkwl,i�1 (5.154a)

 k,i =
N
X

l=1

a0,lk�l,i�1 � µksk(�k,i�1) (5.154b)

wk,i =
N
X

l=1

a2,lk l,i (5.154c)

Introduce the following global vectors and matrices:

�i , col{�1,i, . . . ,�N,i} (5.155)

 i , col{ 1,i, . . . , N,i} (5.156)

wi , col{w1,i, . . . , wN,i} (5.157)

s(�i�1) , col{s1(�1,i�1), . . . , sN(�N,i�1)} (5.158)

A1 , A1 ⌦ IM (5.159)

A2 , A2 ⌦ IM (5.160)

A0 , A0 ⌦ IM (5.161)

206

M , diag{µ1IM , . . . , µNIM} (5.162)

Then, recursions (5.154a)–(5.154c) can be written as

�i�1 = A1wi�1 (5.163)

 i = A0�i�1 �Ms(�i�1) (5.164)

wi = A2 i (5.165)

which leads to

wi = A2A0A1wi�1 �A2Ms(A1wi�1) (5.166)

The fixed point w1 of the deterministic recursion (5.166) is the solution to the

following algebraic equation:

w1 = A2A0A1w1 �A2Ms(A1w1) (5.167)

Note that, if the deterministic recursion (5.166) is stable, then it will converge

to the fixed point w1. In Chapter 4, we proved that the recursion (5.167) is

contractive so that there exists a unique fixed point for the deterministic di↵usion

recursion (A0 = I and sk(w) = rwJk(w)) under the assumption that each cost

function Jk(w) is strongly convex. Proving the result under the general conditions

assumed in this chapter could be an interesting extension of the work. Introduce

�1 = A1w1 (5.168)

 1 = A0�1 �Ms(�1) (5.169)

207

w
k,i

w
k,1

wo

O(µ
max

)

O(µ
max

)

O(µ2

max

)

Figure 5.5: Relations between the fixed point wk,1, the iterate wk,i, and the limit
point wo. In steady-state, the mean-square-error between wk,i and wo is O(µmax),
the mean-square-error between wk,i and wk,1 is O(µmax), and the square-error
(i.e., the bias) between wk,1 and wo is O(µ2

max).

and let �k,1, k,1, and wk,1 denote the kth sub-vector of �1, 1, and w1.

Then, the global fixed point equation (5.167) can also be written in the following

form for each agent k:

�k,1 =
N
X

l=1

a1,lkwl,1 (5.170a)

 k,1 =
N
X

l=1

a0,lk�l,1 � µksk(�k,1) (5.170b)

wk,1 =
N
X

l=1

a2,lk l,1 (5.170c)

We now proceed to discuss the relationship between wk,i, wk,1, and wo.

In this chapter, we showed in (5.151) that the iterate wk,i at each agent k is

close to wo in steady-state with mean-square-error being O(µmax):

lim sup
i!1

Ekwk,i � wok2 = O(µmax) (5.171)

In Chapter 4, we performed the mean-square-error analysis using a di↵erent ap-

proach for di↵usion strategies (A0 = I) with sk(w) = rwJk(w) and ŝk,i(w) =

208

\rwJk(w) under the assumption that each cost function Jk(w) is strongly convex.

Specifically, we analyzed the mean-square-error of wk,i relative the fixed point

wk,1 and show it is O(µmax) (see (4.72) and (4.47)). Then, by performing bias

analysis, we showed that the square-error between the fixed point wk,1 and the

limit point wo is O(µ2
max) (see (4.88)). Combining these two parts together, we

arrive at the same result as (5.171) (see (4.92)):

lim sup
i!1

Ekwk,i�wok2 = lim sup
i!1

Ek(wk,i � wk,1) + (wk,1 � wo)k2

 lim sup
i!1

⇥

2·Ekwk,i�wk,1k2
⇤

+lim sup
i!1

⇥

2·kwk,1�wok2
⇤

= O(µmax) +O(µ2
max) = O(µmax) (5.172)

The relations between wk,i, wk,1, and wo are illustrated in Fig. 5.5. In steady-

state, the mean-square-error between wk,i and wo is O(µmax), the mean-square-

error between wk,i and wk,1 is O(µmax), and the square-error between wk,1 and

wo (i.e., the bias) is O(µ2
max). When the recursion is a deterministic recursion

using the exact sk(w) instead of ŝk,i(w), then the iterate wk,i (we use regular

font instead of wk,i to highlight its deterministic nature in this case) converges to

wk,1 in steady-state. In this case, the error between wk,i and wo in steady-state

becomes the error between wk,1 and wo, i.e., the bias, which is O(µ2
max).

5.7 Conclusion

In this chapter, we studied the learning behavior of adaptive networks under

fairly general conditions. We showed that, in the constant and small step-size

regime, a typical learning curve of each agent exhibits three phases: Transient

Phase I, Transient Phase II, and Steady-state Phase. A key observation is that,

209

the second and third phases approach the performance of a centralized strategy.

Furthermore, we showed that the right eigenvector of the combination matrix

corresponding to the eigenvalue at one influences the limit point, the convergence

rate, and the steady-state mean-square-error (MSE) performance in a critical

way. Analytical expressions that illustrate these e↵ects were derived. Various

implications were discussed and illustrative examples were also considered.

5.A Proof of Lemma 5.1

First, we establish that conditions (5.27) and (5.28) imply (5.24) and (5.25),

respectively. Using the mean-value theorem [105, p.6], we have for any x, y 2 S:

ksk(x)� sk(y)k =
�

�

�

�

Z 1

0

rwT sk(y + t(x� y))dt · (x� y)

�

�

�

�


Z 1

0

krwT sk(y + t(x� y))k dt · kx� yk

 �U · kx� yk (5.173)

where we used the fact that y + t(x� y) = tx+ (1� t)y 2 S given x, y 2 S and

0  t  1. Likewise, we have

(x� y)T ·
N
X

k=1

pk[sk(x)� sk(y)]

= (x� y)T ·
N
X

k=1

pk

Z 1

0

rwT sk(y + t(x� y))dt · (x� y)

= (x� y)T ·
Z 1

0

N
X

k=1

pkrwT sk(y + t(x� y))dt · (x� y)

(6.22)
= (x� y)T · Hc(y + t(x� y)) · (x� y)

= (x�y)T ·Hc(y + t(x� y)) +HT
c (y + t(x� y))

2
·(x�y)

210

� �L · kx� yk2 (5.174)

Next, we establish the reverse direction that conditions (5.24) and (5.25) imply

(5.27) and (5.28). Choosing x = w + t · �w and y = w in (5.24) for any �w 6= 0

and any small positive t, we get

ksk(w + t · �w)� sk(w)k  t · �U · k�wk

) lim
t!0+

�

�

�

�

sk(w + t · �w)� sk(w)

t

�

�

�

�

 �U · k�wk

)
�

�

�

�

lim
t!0+

sk(w + t · �w)� sk(w)

t

�

�

�

�

 �U · k�wk

) krwT sk(w)�wk  �U · k�wk

) krwT sk(w)k , sup
�w 6=0

krwT sk(w)�wk
k�wk  �U (5.175)

Likewise, choosing x = w + t · �w and y = w in (5.25) for any �w 6= 0 and any

small positive t, we obtain

t · �wT ·
N
X

k=1

pk[sk(w + t · �w)� sk(w)] � t2 · �L · k�wk2

) �wT ·
N
X

k=1

pk

✓

lim
t!0+

sk(w + t · �w)� sk(w)

t

◆

� �L · k�wk2

) �wT ·
N
X

k=1

pkrwT sk(w) · �w � �L · k�wk2

) �wTHc(w)�w � �L · k�wk2

) �wT Hc(w) +HT
c (w)

2
�w � �L · k�wk2

) Hc(w) +HT
c (w)

2
� �L · IM (5.176)

211

5.B Proof of Lemma 5.4

Properties 1-2 are straightforward from the definitions of P [·] and P̄ [·]. Property

4 was proved in Chapter 4. We establish the remaining properties.

(Property 3: Convexity) The convexity of P [·] has already been proven

in Chapter 4. We now establish the convexity of the operator P̄ [·]. Let X(k)
qn

denote the (q, n)�th M ⇥M block of the matrix X(k), where q = 1, . . . , K and

n = 1, . . . , N . Then,

P̄

"

K
X

k=1

akX
(k)

#

�

2

6

6

6

4

PK
k=1 ak

�

�

�

X(k)
11

�

�

�

· · ·
PK

k=1 ak
�

�

�

X(k)
1N

�

�

�

...
...

PK
k=1 ak

�

�

�

X(k)
K1

�

�

�

· · ·
PK

k=1 ak
�

�

�

X(k)
KN

�

�

�

3

7

7

7

5

=
K
X

k=1

akP̄ [X(k)] (5.177)

(Property 5: Triangular inequality) LetXqn and Yqn denote the (q, n)�th

M ⇥M blocks of the matrices X and Y , respectively, where q = 1, . . . , K and

n = 1, . . . , N . Then, by the triangular inequality of the matrix norm k · k, we

have

P̄ [X + Y] �

2

6

6

6

4

kX11k+ kY11k · · · kX1Nk+ kY1Nk
...

...

kXK1k+ kYK1k · · · kXKNk+ kYKNk

3

7

7

7

5

= P̄ [X] + P̄ [Y] (5.178)

212

(Property 6: Submultiplicity) Let Xkn and Znl be the (k, n)�th and

(n, l)�th M ⇥M blocks of X and Z, respectively. Then, the (k, l)�th M ⇥M

block of the matrix product XZ, denoted by [XZ]k,l, is

[XZ]k,l =
N
X

n=1

XknZnl (5.179)

Therefore, the (k, l)�th entry of the matrix P̄ [XZ] can be bounded as

⇥

P̄ [XZ]
⇤

k,l
=

�

�

�

�

�

N
X

n=1

XknZnl

�

�

�

�

�


N
X

n=1

kXknk · kZnlk (5.180)

Note that kXknk and kZnlk are the (k, n)�th and (n, l)�th entries of the matrices

P̄ [X] and P̄ [Z], respectively. The right-hand side of the above inequality is

therefore the (k, l)�th entry of the matrix product P̄ [X]P̄ [Z]. Therefore, we

obtain

P̄ [XZ] � P̄ [X]P̄ [Z] (5.181)

(Property 7: Kronecker structure) For (5.107), we note that the (k, n)�th

M ⇥M block of X ⌦ IM is xknIM . Therefore, by the definition of P̄ [·], we have

P̄ [X ⌦ IM] =

2

6

6

6

4

|x11| · · · |x1N |
...

|xK1| · · · |xKN |

3

7

7

7

5

= P̄1[X] (5.182)

In the special case when X consists of nonnegative entries, P̄1[X] = X, and

we recover (5.109). To prove (5.108), we let a = col{a1, . . . , aN} and b =

213

col{b1, . . . , bM}. Then, by the definitin of P [·], we have

P [a⌦ b] = col{|a1|2 · kbk2, . . . , |aN |2 · kbk2} = kbk2 · P1[a] (5.183)

(Property 8: Relation to norms) Relations (5.110) and (5.111) are

straightforward and follow from the definition.

(Property 9: Inequality preservation) The proof that x � y implies

Fx � Fy can be found in Chapter 4. We now prove that F � G implies

Fx � Gx. This can be proved by showig that (G � F)x ⌫ 0, which is true

because all entries of G� F and x are nonnegative due to F � G and x ⌫ 0.

(Property 10: Upper bounds) By the definition of P̄ [X] in (5.101), we

get

P̄ [X] �
✓

max
l,k
kXlkk

◆

· 11T

� max
l

N
X

k=1

kXlkk
!

· 11T

= kP̄ [X]k1 · 11T (5.184)

Likewise, we can establish that P̄ [X] � kP̄ [X]k1 · 11T .

5.C Proof of Lemma 5.5

(Property 1: Linear transformation) Let Qkn be the (k, n)-th M⇥M block

of Q. Then

P [Qx] = col

8

<

:

�

�

�

�

�

N
X

n=1

Q1nxn

�

�

�

�

�

2

, . . . ,

�

�

�

�

�

N
X

n=1

QKnxn

�

�

�

�

�

2
9

=

;

(5.185)

214

Using the convexity of k · k2, we have the following bound on each n-th entry:

�

�

�

�

N
X

n=1

Qknxn

�

�

�

�

2
(a)
=

"

N
X

n=1

kQknk
#2

·

�

�

�

�

�

N
X

n=1

kQknk
PN

l=1 kQklk
· Qkn

kQknk
xn

�

�

�

�

�

2

(b)


"

N
X

n=1

kQknk
#2

·
N
X

n=1

kQknk
PN

l=1 kQklk
· kQknk2

kQknk2
kxnk2

=

"

N
X

n=1

kQknk
#

·
N
X

n=1

kQknk · kxnk2

 max
k

"

N
X

n=1

kQknk
#

·
N
X

n=1

kQknk · kxnk2

= kP̄ [Q]k1 ·
N
X

n=1

kQknk · kxnk2 (5.186)

where in step (b) we applied Jensen’s inequlity to k ·k2. Note that if some kQknk

in step (a) is zero, we eliminate the corresponding term from the sum and it can

be verified that the final result still holds. Substituting into (5.185), we establish

(5.114). The special case (5.116) can be obtained by using P̄ [AT ⌦ IM] = AT and

that kATk1 = 1 (left-stochastic) in (5.114). Finally, the upper bound (5.115)

can be proved by applying (5.113) to P̄ [Q].

(Property 2: Update operation) By the definition of P [·] and the Lips-

chitz Assumption 5.3, we have

P [s(x)� s(y)] = col{ks1(x1)� s1(y1)k2, . . . ksN(xN)� sN(yN)k2}

� col{�2U · kx1 � y1k2, . . .�2U · kxN � yNk2}

= �2U · P [x� y] (5.187)

215

(Property 3: Centralized opertion) Since Tc : RM ! RM , the output of

P [Tc(x)� Tc(y)] becomes a scalar. From the definition, we get

P [Tc(x)� Tc(y)] =
�

�x� y � µmax · (pT ⌦ IM) [s(1⌦ x)� s(1⌦ y)]
�

�

2

=
�

�x� y � µmax ·
N
X

k=1

pk [sk(x)� sk(y)]
�

�

2

= kx� yk2 � 2µmax · (x� y)T
N
X

k=1

pk [sk(x)� sk(y)]

+ µ2
max

�

�(pT ⌦ IM) [s(1⌦ x)� s(1⌦ y)]
�

�

2

= kx� yk2 � 2µmax · (x� y)T
N
X

k=1

pk [sk(x)� sk(y)]

+ µ2
maxP

⇥

(pT ⌦ IM) [s(1⌦ x)� s(1⌦ y)]
⇤

(5.188)

We first prove the upper bound (5.118) as follows:

P [Tc(x)� Tc(y)] =
�

�x� y � µmax ·
N
X

k=1

pk[sk(x)� sk(y)]
�

�

2

= kx� yk2 � 2µmax · (x� y)T
N
X

k=1

pk[sk(x)� sk(y)]

+ µ2
max ·

�

�

N
X

k=1

pk[sk(x)� sk(y)]
�

�

2

(6.18)

 kx� yk2 � 2µmax · �L · kx� yk2

+ µ2
max ·

�

�

N
X

k=1

pk[sk(x)� sk(y)]
�

�

2

 kx� yk2 � 2µmax · �L · kx� yk2

+ µ2
max ·

⇥

N
X

k=1

pkksk(x)� sk(y)k
⇤2

(5.24)

 kx� yk2 � 2µmax · �L · kx� yk2

216

+ µ2
max ·

"

N
X

k=1

pk · �U · kx� yk
#2

= kx� yk2 � 2µmax · �L · kx� yk2

+ µ2
max · kpk21�2U · kx� yk2

= (1� 2µmax�L + µ2
max�

2
Ukpk21) · kx� yk2


✓

1� µmax�L +
1

2
µ2
max�

2
Ukpk21

◆2

· kx� yk2 (5.189)

where in the last step we used the relation (1� x)  (1� 1
2
x)2.

Next, we prove the lower bound (5.119). From (5.188), we notice that the

last term in (5.188) is always nonnegative so that

P [Tc(x)� Tc(y)] ⌫ kx� yk2 � 2µmax · (x� y)T
N
X

k=1

pk [sk(x)� sk(y)]

(a)

⌫ kx� yk2 � 2µmax · kx� yk ·
�

�

N
X

k=1

pk [sk(x)� sk(y)]
�

�

⌫ kx� yk2 � 2µmax · kx� yk ·
N
X

k=1

pk ksk(x)� sk(y)k

(b)

⌫ kx� yk2 � 2µmax · kx� yk ·
N
X

k=1

pk�Ukx� yk

= (1� 2µmax�Ukpk1) · kx� yk2 (5.190)

where in step (a), we used the Cauchy-Schwartz inequality xTy  |xTy|  kxk ·

kyk, and in step (b) we used (5.24).

(Property 4: Stable Jordan operator) First, we notice that matrix DL,n

can be written as

DL,n = dn · IL
n

+⇥L
n

(5.191)

217

where ⇥L
n

is an Ln ⇥ Ln strictly upper triangular matrix of the following form:

⇥L
n

,

2

6

6

6

6

6

6

4

0 1
.

. . . 1

0

3

7

7

7

7

7

7

5

(5.192)

Define the following matrices:

⇤L , diag{d2IL
2

, . . . , dn
0

IL
n

0

} (5.193)

⇥0
L , diag{⇥L

2

, . . . ,⇥L
n

0

} (5.194)

Then, the original Jordan matrix DL can be expressed as

DL = ⇤L +⇥0
L (5.195)

so that

P1[DLx
0 + y0] = P1 [⇤Lx

0 +⇥0
Lx

0 + y0]

= P1



|d2| · 1

|d2|
⇤Lx

0 +
1� |d2|

2
· 2

1� |d2|
⇥0

Lx
0

+
1� |d2|

2
· 2

1� |d2|
y0
�

(a)

� |d2| · P1



1

|d2|
⇤Lx

0
�

+
1� |d2|

2
· P1



2

1� |d2|
⇥0

Lx
0
�

+
1� |d2|

2
· P1



2

1� |d2|
y0
�

(b)
=

1

|d2|
·P1 [⇤Lx

0]+
2

1� |d2|
·P1 [⇥

0
Lx

0]+
2

1� |d2|
·P1 [y

0]

(c)

� kP̄1[⇤L]k1
|d2|

· P̄1[⇤L] · P1 [x
0]

218

+
2kP̄1[⇥0

L]k1
1� |d2|

· P̄1[⇥
0
L] · P1 [x

0] +
2

1� |d2|
· P1 [y

0]

(d)

� P̄1[⇤L]·P1 [x
0]+

2

1�|d2|
·⇥0

L · P1 [x
0]+

2

1�|d2|
·P1 [y

0]

(e)

� |d2|·IL ·P1 [x
0]+

2

1�|d2|
·⇥L · P1 [x

0]+
2

1�|d2|
·P1 [y

0]

(f)
= �e · P1 [x

0] +
2

1� |d2|
· P1 [y

0] (5.196)

where step (a) uses the convexity property (5.102), step (b) uses the scaling

property, step (c) uses variance relation (5.114), step (d) uses kP̄1[⇤L]k1 = |d2|,

P̄1[⇥0
L] = ⇥0

L and kP̄1[⇥0
L]k1 = k⇥0

Lk1 = 1, step (e) uses P̄1[⇤L] � |d2| · IL
and ⇥0

L � ⇥L, where ⇥L denotes a matrix of the same form as (5.192) but

of size L ⇥ L, step (f) uses the definition of the matrix �e in (5.125). The

above derivation assumes |d2| 6= 0. When |d2| = 0, we can verify that the above

inequality still holds. To see this, we first notice that when |d2| = 0, the relation

0  |dn
0

|  · · ·  |d2| implies that dn
0

= · · · = d2 = 0 so that ⇤L = 0 and

DL = ⇥0
L — see (5.193) and (5.195). Therefore, similar to the steps (a)–(f) in

(5.196), we get

P1[DLx
0 + y0] = P1[⇥

0
Lx

0 + y0]

= P1

⇥1

2
· 2⇥0

Lx
0 +

1

2
· 2y0

⇤

� 1

2
· P1[2⇥

0
Lx

0] +
1

2
· P1[2y

0]

=
1

2
· 22 · P1[⇥

0
Lx

0] +
1

2
· 22 · P1[y

0]

= 2P1[⇥
0
Lx

0] + 2P1[y
0]

� 2kP̄1[⇥
0
L]k1 · P̄1[⇥

0
L]P1[x

0] + 2P1[y
0]

= 2⇥0
LP1[x

0] + 2P1[y
0]

� 2⇥LP1[x
0] + 2P1[y

0] (5.197)

219

By (5.125), we have �e = 2⇥L when |d2| = 0. Therefore, the above expression is

the same as the one on the right-hand side of (5.196).

(Property 5: Stable Kronecker Jordan operator) Using (5.195) we

have

P [DLxe + ye] = P [(⇤L ⌦ IM)xe + (⇥0
L ⌦ IM)xe + ye]

= P
h

|d2|·
1

|d2|
·(⇤L⌦IM)xe+

1�|d2|
2

· 2

1�|d2|
·(⇥0

L⌦IM)xe

+
1� |d2|

2
· 2

1� |d2|
· ye
i

(a)

� |d2|·P
h 1

|d2|
·(⇤L⌦IM)xe

i

+
1�|d2|

2
·P
h 2

1�|d2|
·(⇥0

L ⌦ IM)xe

i

+
1�|d2|

2
· P
h 2

1�|d2|
·ye
i

(b)
=

1

|d2|
· P [(⇤L ⌦ IM)xe] +

2

1� |d2|
· P [(⇥0

L ⌦ IM)xe]

+
2

1� |d2|
· P [ye]

(c)

� kP̄ [(⇤L⌦IM)]k1
|d2|

·P̄ [(⇤L ⌦ IM)]·P [xe]

+
2kP̄ [⇥0

L⌦IM]k1
1� |d2|

·P̄ [⇥0
L⌦IM]·P [xe] +

2

1�|d2|
·P [ye]

(d)

� P̄ [(⇤L ⌦ IM)] · P [xe] +
2

1� |d2|
· ⇥0

L · P [xe]

+
2

1� |d2|
· P [ye]

(e)

� |d2|·IL ·P [xe]+
2

1�|d2|
·⇥L · P [xe]+

2

1�|d2|
·P [ye]

(f)
= �e · P [xe] +

2

1� |d2|
· P [ye] (5.198)

where step (a) uses the convexity property (5.102), step (b) uses the scaling

220

property, step (c) uses variance relation (5.114), step (d) uses kP̄ [⇤L ⌦ IM]k1 =

|d2| and P̄ [⇥0
L ⌦ IM] = ⇥0

L, step (e) uses P̄ [⇤L ⌦ IM] � |d2| · IL and ⇥0
L � ⇥L,

and step (f) uses the definition of the matrix �e in (5.125). Likewise, we can

also verify that the above inequalty holds for the case |d2| = 0.

5.D Proof of Theorem 5.1

Consider the following operator:

T0(w) , w � �L
kpk21�2U

N
X

k=1

pksk(w) (5.199)

As long as we are able to show that T0(w) is a strict contraction mapping, i.e.,

8 x, y, kT0(x)� T0(y)k  �0kx� yk with �o < 1, then we can invoke the Banach

fixed point theorem [80, pp.299-300] to conclude that there exists a unique wo

such that wo = T0(wo), i.e.,

wo = wo � �L
kpk21�2U

N
X

k=1

pksk(w
o) ,

N
X

k=1

pksk(w
o) = 0 (5.200)

as desired. Now, to show that T0(·) defined in (5.199) is indeed a contraction, we

compare T0(·) with Tc(·) in (5.92) and observe that T0(w) has the same form as

Tc(·) if we set µmax = �
L

kpk2
1

�2

U

in (5.92). Therefore, calling upon property (5.118)

and using µmax =
�
L

kpk2
1

�2

U

in the expression for �c in (5.120), we obtain

P [T0(x)� T0(y)] �

1� �L
kpk21�2U

�L+
1

2

✓

�L
kpk21�2U

◆2

kpk21�2U

!2

·P [x� y]

=

✓

1� 1

2

�2L
kpk21�2U

◆2

· P [x� y] (5.201)

221

By the definition of P [·] in (5.99), the above inequality is equivalent to

kT0(x)� T0(y)k2 
✓

1� 1

2

�2L
kpk21�2U

◆2

· kx� yk2 (5.202)

It remains to show that |1� �2L/(2kpk21�2U)| < 1. By (5.26) and the fact that �L,

kpk21 and �2U are positive, we have

1

2
< 1� 1

2

�2L
kpk21�2U

< 1 (5.203)

Therefore, T0(w) is a strict contraction mapping.

5.E Proof of Theorem 5.2

By Theorem 5.1, wo is the unique solution to equation (5.128). Subtracting both

sides of (5.128) from wo, we recognize that wo is also the unique solution to the

following equation:

wo = wo � µmax

N
X

k=1

pksk(w
o) (5.204)

so that wo = Tc(wo). Applying property (5.118), we obtain

kw̃c,ik2 = P [wo � w̄c,i]

= P [Tc(w
o)� Tc(w̄c,i�1)]

� �2c · P [wo � w̄c,i�1]

� �2ic · P [wo � w̄c,0]

= �2ic · kw̃c,0k2 (5.205)

222

Since �c > 0, the upper bound on the right-hand side will converge to zero if

�c < 1. From its definition (5.120), this condition is equivalent to requiring

1� µmax�L +
1

2
µ2
maxkpk21�2U < 1 (5.206)

Solving the above quadratic inequality in µmax, we obtain (5.130). On the other

hand, to prove the lower bound in (5.130), we apply (5.119) and obtain

kw̃c,ik2 = P [wo � w̄c,i]

= P [Tc(w
o)� Tc(w̄c,i�1)]

⌫ (1� 2µmaxkpk1�U) · P [wo � w̄c,i�1]

⌫ (1� 2µmaxkpk1�U)i · P [wo � w̄c,0]

= (1� 2µmaxkpk1�U)i · kw̃c,0k2 (5.207)

5.F Proof of Theorem 5.3

Since (5.129) already establishes that w̄c,i approaches wo asymptotically (so that

w̃c,i ! 0), and since from Assumption 5.5 we know that sk(w) is di↵erentiable

when kw̃c,ik  rH for large enough i, we are justified to use the mean-value

theorem [105, p.24] to obtain the following useful relation:

sk(w̄c,i�1)� sk(w
o)

= �


Z 1

0

rwT sk(w
o � tw̃c,i�1)dt

�

w̃c,i�1

= �rwT sk(w
o) · w̃c,i�1

�
Z 1

0

⇥

rwT sk(w
o � tw̃c,i�1)�rwT sk(w

o)
⇤

dt · w̃c,i�1 (5.208)

223

Therefore, subtracting wo from both sides of (5.40) and using (5.128) we get,

w̃c,i = w̃c,i�1 + µmax

N
X

k=1

pk(sk(w̄c,i�1)� sk(w
o))

= [I � µmaxHc]w̃c,i�1 � µmax · ei�1 (5.209)

where

Hc ,
N
X

k=1

pkrwT sk(w
o) (5.210)

ei�1 ,
N
X

k=1

pk

Z 1

0

⇥

rwT sk(w
o�tw̃c,i�1)�rwT sk(w

o)
⇤

dt·w̃c,i�1 (5.211)

Furthermore, the perturbation term ei�1 satisfies the following bound:

kei�1k 
N
X

k=1

pk

Z 1

0

�

�rwT sk(w
o�tw̃c,i�1)�rwT sk(w

o)
�

�dt · kw̃c,i�1k


N
X

k=1

pk

Z 1

0

�H · t · kw̃c,i�1kdt · kw̃c,i�1k

=
1

2
kpk1�H · kw̃c,i�1k2 (5.212)

Evaluating the weighted Euclidean norm of both sides of (5.209), we get

kw̃c,ik2⌃ = kw̃c,i�1k2BT

c

⌃B
c

� 2µmax · w̃T
c,i�1B

T
c ⌃ei�1 + µ2

max · kei�1k2⌃ (5.213)

where

Bc = I � µmaxHc (5.214)

224

Moreover, kxk2⌃ = xT⌃x, and ⌃ is an arbitrary positive semi-definite weighting

matrix. The second and third terms on the right-hand side of (5.213) satisfy the

following bounds:

�

�w̃T
c,i�1B

T
c ⌃ei�1

�

�

(a)

 kw̃c,i�1k · kBT
c k · k⌃k · kei�1k

 kw̃c,i�1k · kBT
c k · Tr(⌃) · kei�1k

 kw̃c,i�1k · kBT
c k · Tr(⌃) · �Hkpk1

2
· kw̃c,i�1k2 (5.215)

and

kei�1k2⌃
(b)

 k⌃k · kei�1k2

 Tr(⌃) · kei�1k2

 Tr(⌃) · �
2
Hkpk21
4

· kw̃c,i�1k4 (5.216)

where for steps (a) and (b) in the above inequalities we used the property k⌃k 

⇢(⌃)  Tr(⌃) for real symmetric (or Hermitian) nonnegative-definite ⌃. Now, for

any given small ✏ > 0, there exists i0 such that, for i � i0, we have kw̃c,i�1k  ✏

so that

�

�w̃T
c,i�1B

T
c ⌃ei�1

�

�  ✏ · kBT
c k·Tr(⌃)·

�Hkpk1
2

·kw̃c,i�1k2 (5.217)

kei�1k2⌃  ✏2 · Tr(⌃) · �
2
Hkpk21
4

· kw̃c,i�1k2 (5.218)

Substituting (5.217)–(5.218) into (5.213), we obtain

kw̃c,i�1k2BT

c

⌃B
c

��  kw̃c,ik2⌃  kw̃c,i�1k2BT

c

⌃B
c

+� (5.219)

225

where

� , µmax✏ · �Hkpk1 ·
⇥

kBT
c k+ µmax✏

�Hkpk1
4

⇤

· Tr(⌃) · IM

= O(µmax✏) · Tr(⌃) · IM (5.220)

Let � = vec(⌃) denote the vectorization operation that stacks the columns of a

matrix ⌃ on top of each other. We shall use the notation kxk2� and kxk2⌃ inter-

changeably to denote the weighted squared Euclidean norm of a vector. Using

the Kronecker product property [82, p.147]: vec(U⌃V) = (V T ⌦ U)vec(⌃), we

can vectorize the matrices BT
c ⌃Bc + � and BT

c ⌃Bc � � in (5.219) as F+� and

F��, respectively, where

F+ , BT
c ⌦BT

c +µmax✏·�Hkpk1 ·
⇥

kBT
c k+µmax✏

�Hkpk1
4

⇤

qqT

= BT
c ⌦ BT

c +O(µmax✏) (5.221)

F� , BT
c ⌦BT

c �µmax✏·�Hkpk1 ·
⇥

kBT
c k+µmax✏

�Hkpk1
4

⇤

qqT

= BT
c ⌦ BT

c �O(µmax✏) (5.222)

where q , vec(IM), and we have used the fact that Tr(⌃) = Tr(⌃IM) =

vec(IM)Tvec(⌃) = qT�. In this way, we can write relation (5.219) as

kw̃c,i�1k2F��  kw̃c,ik2�  kw̃c,i�1k2F
+

� (5.223)

Using a state-space technique from [116, pp.344-346], we conclude that kw̃c,ik2⌃
converges at a rate that is between ⇢(F�) and ⇢(F+). Recalling from (5.221)–

(5.222) that F+ and F� are perturbed matrices of BT
c ⌦BT

c , and since the pertur-

bation term is O(✏µmax) which is small for small ✏, we would expect the spectral

radii of F+ and F� to be small perturbations of ⇢(BT
c ⌦ BT

c). This claim is

226

justified below.

Lemma 5.7 (Perturbation of spectral radius). Let ✏⌧ 1 be a su�ciently small

positive number. For any M ⇥M matrix X, the spectral radius of the perturbed

matrix X + E for E = O(✏) is

⇢(X + E) = ⇢(X) +O
�

✏
1

2(M�1)

�

(5.224)

Proof. Let X = TJT�1 be the Jordan canonical form of the matrix X. Without

loss of generality, we consider the case where there are two Jordan blocks:

J = diag{J1, J2} (5.225)

where J1 2 RL⇥L and J2 2 R(M�L)⇥(M�L) are Jordan blocks of the form

Jk =

2

6

6

6

6

6

6

4

�k 1
.

. . . 1

�k

3

7

7

7

7

7

7

5

(5.226)

with |�1| > |�2|. Since X +E is similar to T�1(X +E)T , the matrix X +E has

the same set of eigenvalues as J + E0 where

E0 , T�1ET = O(✏) (5.227)

Let

✏0 , ✏
1

2(M�1) (5.228)

D✏
0

, diag
�

1, ✏0, . . . , ✏
M�1
0

(5.229)

227

Then, by similarity again, the matrix J + E0 has the same set of eigenvalues as

D�1
✏
0

(J + E0)D✏
0

= D�1
✏
0

JD✏
0

+ E1 (5.230)

where E1 , D�1
✏
0

E0D✏
0

. Note that the 1-induced norm (the maximum absolute

row sum) of E1 is bounded by

kE1k1  kD�1
✏
0

k1 · kE0k1 · kD✏
0

k1

=
1

✏M�1
0

· O(✏) · 1 =
1

✏
1

2

· O(✏) = O(✏
1

2) (5.231)

and that

D�1
✏
0

JD✏
0

= diag{J 0
1, J

0
2} (5.232)

where

J 0
k =

2

6

6

6

6

6

6

4

�k ✏0
.

. . . ✏0

�k

3

7

7

7

7

7

7

5

(5.233)

Then, by appealing to Geršgorin Theorem [68, p.344], we conclude that the eigen-

values of the matrix D�1
✏
0

JD✏
0

+E1, which are also the eigenvalues of the matrices

J + E0 and X + E, lie inside the union of the Geršgorin discs, namely,

M
[

m=1

Gm (5.234)

228

where Gm is the mth Geršgorin disc defined as

Gm ,

8

>

>

>

>

<

>

>

>

>

:

(

� : |�� �1|  ✏0 +
M
X

`=1

|E1,m`|
)

, 1  m  L

(

� : |�� �2|  ✏0 +
M
X

`=1

|E1,m`|
)

, L < m M

=

8

>

<

>

:

n

� : |���1|  O
�

✏
1

2(M�1)

�

o

, 1m  L
n

� : |���2|  O
�

✏
1

2(M�1)

�

o

, L<mM
(5.235)

and where E1,m` denotes the (m, `)-th entry of the matrix E1. In the last step

we used (5.228) and (5.231). Observe from (5.235) that there are two clusters of

Geršgorin discs that are centered around �1 and �2, respectively, and have radii

on the order of O(✏
1

2(M�1)). A further statement from Geršgorin theorem shows

that if the these two clusters of discs happen to be disjoint, which is true in our

case since |�1| > |�2| and we can select ✏ to be su�ciently small to ensure this

property. Then there are exactly L eigenvalues of X + E in [Lm=1Gm while the

remaining M � L eigenvalues are in [Mm=M�LGm. From |�1| > |�2|, we conclude

that the largest eigenvalue of D�1
✏
0

JD✏
0

+E1 is �1+O(✏
1

2(M�1)), which establishes

(5.224).

Using (5.224) for F+ and F� in (5.221)–(5.222), we conclude that

⇢(F+) =
⇥

⇢(IM � µmaxHc)]
2 +O

�

(µmax✏)
1

2(M�1)

�

(5.236)

⇢(F�) =
⇥

⇢(IM � µmaxHc)]
2 +O

�

(µmax✏)
1

2(M�1)

�

(5.237)

which holds for arbitrarily small ✏. Since the convergence rate of kw̃c,ik2 is between

⇢(F+) and ⇢(F�), we arrive at (5.131).

229

5.G Proof of Lemma 5.6

From the definition in (5.127), it su�ces to establish a joint inequality recursion

for both EP [w̌c,i] and EP [we,i]. To begin with, we state the following bounds on

the perturbation terms in (5.86).

Lemma 5.8 (Bounds on the perturbation terms). The following bounds hold for

any i � 0.

P [zi�1] � �2U ·
�

�P̄1[A
T
1UL]

�

�

2

1 ·11T ·P [we,i�1] (5.238)

P [s(1⌦wc,i�1)] � 3�2U ·P [w̌c,i�1]·1+3�2Ukw̃c,0k2 ·1+3go (5.239)

E{P [vi]|Fi�1} � 4↵ · 1 · P [w̌c,i�1]

+ 4↵ · kP̄ [AT
1 UL]k21 · 11TP [we,i�1]

+
⇥

4↵ · (kw̃c,0k2+kwok2)+�2
v

⇤

· 1 (5.240)

EP [vi] � 4↵ · 1 · EP [w̌c,i�1]

+ 4↵ · kP̄ [AT
1 UL]k21 · 11TEP [we,i�1]

+
⇥

4↵ · (kw̃c,0k2+kwok2)+�2
v

⇤

·1 (5.241)

where P [w̌c,i�1] = kw̌c,i�1k2, and go , P [s(1⌦ wo)].

Proof. See Appendix 5.H.

Now, we derive an inequality recursion for EP [w̌c,i] from (5.97). Note that

EP [w̌c,i] = Ekw̌c,ik2

= EP
⇥

Tc(wc,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM)zi�1

� µmax · (pT ⌦ IM)vi)
⇤

(a)
= EP

⇥

Tc(wc,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM)zi�1

⇤

230

+ µ2
max · EP

⇥

(pT ⌦ IM)vi)
⇤

= EP


�c · 1

�c
(Tc(wc,i�1)� Tc(w̄c,i�1))

+ (1� �c) · �µmax

1� �c
(pT ⌦ IM)zi�1

�

+ µ2
max · EP

⇥

(pT ⌦ IM)vi)
⇤

(b)

� �c · 1

�2c
EP [Tc(wc,i�1)� Tc(w̄c,i�1)]

+ (1� �c) · µ2
max

(1� �c)2
EP

⇥

(pT ⌦ IM)zi�1

⇤

+ µ2
maxEP

⇥

(pT ⌦ IM)vi

⇤

(c)

� �c · EP [w̌c,i�1] +
µ2
max

1� �c
EP

⇥

(pT ⌦ IM)zi�1

⇤

+ µ2
maxEP

⇥

(pT ⌦ IM)vi

⇤

= �c · EP [w̌c,i�1] +
µ2
max

1� �c
E
�

�(pT ⌦ IM)zi�1

�

�

2

+ µ2
maxE

�

�(pT ⌦ IM)vi

�

�

2

(d)
= �c · EP [w̌c,i�1] +

µ2
max

1� �c
E
�

�

�

�

�

N
X

k=1

pkzk,i�1

�

�

�

�

�

2

+ µ2
maxE

�

�

�

�

�

N
X

k=1

pkvk,i

�

�

�

�

�

2

= �c · EP [w̌c,i�1]

+
µ2
max

1� �c
·

N
X

l=1

pl

!2

·E
�

�

�

�

�

N
X

k=1

pk
PN

l=1 pl
zk,i�1

�

�

�

�

�

2

+ µ2
max·

N
X

l=1

pl

!2

·E
�

�

�

�

�

N
X

k=1

pk
PN

l=1 pl
vk,i

�

�

�

�

�

2

(e)

 �c · EP [w̌c,i�1]

+
µ2
max

1� �c
·

N
X

l=1

pl

!2

·
N
X

k=1

pk
PN

l=1 pl
E kzk,i�1k2

231

+ µ2
max·

N
X

l=1

pl

!2

·
N
X

k=1

pk
PN

l=1 pl
E kvk,ik2

= �c · EP [w̌c,i�1] +
µ2
max

1� �c
·

N
X

l=1

pl

!

·
N
X

k=1

pkE kzk,i�1k2

+ µ2
max ·

N
X

l=1

pl

!

·
N
X

k=1

pkE kvk,ik2

= �c · EP [w̌c,i�1] +
µ2
max

1� �c
· kpk1 · pTEP [zi�1]

+ µ2
max · kpk1 · pTEP [vi]

(f)
= �c · EP [w̌c,i�1] +

µmax · kpk1
�L � 1

2
µmaxkpk21�2U

· pTEP [zi�1]

+ µ2
max · kpk1 · pTEP [vi]

(g)

� �c · EP [w̌c,i�1]

+
µmaxkpk1

�L � µmax
1
2
kpk21�2U

· pT
n

�2U ·
�

�P̄ [AT
1 UL]

�

�

2

1 · 11T · EP [we,i�1]
o

+ µ2
max · kpk1 · pT

n

4↵ · 1 · EP [w̌c,i�1]

+ 4↵ · kP̄ [AT
1 UL]k21 · 11TEP [we,i�1]

+
⇥

4↵ · (kw̃c,0k2 + kwok2) + �2
v

⇤

· 1
o

(h)
=
⇥

�c + µ2
max · 4↵kpk21

⇤

· EP [w̌c,i�1]

+ kpk21 ·
�

�P̄ [AT
1 UL]

�

�

2

1 · �2U

·
h µmax

�L � 1
2
µmaxkpk21�2U

+ 4µ2
max

↵

�2U

i

· 1TEP [we,i�1]

+ µ2
max · kpk21 ·

⇥

4↵
�

kw̃c,0k2 + kwok2
�

+ �2
v

⇤

(5.242)

where step (a) uses the additivity property in Lemma 5.4 since the definition of

zi�1 and vi in (5.86) and the definition of wc,i�1 in (5.60) imply that zi�1 and

232

wc,i�1 depend on all {wj} for j  i� 1, meaning that the cross terms are zero:

E[viz
T
i�1] = E

�

E [vi|Fi�1] z
T
i�1

= 0

E
�

vi[Tc(wc,i�1)� Tc(w̄c,i�1)]
T

= E
�

E [vi|Fi�1] [Tc(wc,i�1)�Tc(w̄c,i�1)]
T

= 0

Step (b) uses the convexity property in Lemma 5.4, step (c) uses the variance

property (5.118), step (d) uses the notation zk,i�1 and vk,i to denote the kth

M ⇥ 1 block of the NM ⇥ 1 vector zi�1 and vi, respectively, step (e) applies

Jensen’s inequality to the convex function k · k2, step (f) substitutes expression

(5.120) for �c, step (g) substitutes the bounds for the perturbation terms from

(5.238), (5.239), and (5.241), step (h) uses the fact that pT1 = kpk1.

Next, we derive the bound for EP [we,i] from the recursion for we,i in (5.94):

EP [we,i]

= EP
⇥

DN�1we,i�1 � URAT
2 M s(1⌦wc,i�1)

� URAT
2 Mzi�1 � URAT

2 Mvi

⇤

(a)
= EP

⇥

DN�1we,i�1 � URAT
2 M (s(1⌦wc,i�1) + zi�1)

⇤

+ EP
⇥

URAT
2 Mvi

⇤

(b)

� �e · EP [we,i�1]

+
2

1� |�2(A)|
·EP

⇥

URAT
2 M

�

s(1⌦wc,i�1)+zi�1

�⇤

+EP
⇥

URAT
2 Mvi

⇤

(c)

� �e · EP [we,i�1]

+
2

1� |�2(A)|
·
�

�P̄ [URAT
2 M]

�

�

2

1

233

· 11T · EP [s(1⌦wc,i�1) + zi�1]

+
�

�P̄ [URAT
2 M]

�

�

2

1 · 11T · EP [vi]

(d)

� �e · EP [we,i�1]

+µ2
max ·

4
�

�P̄ [URAT
2]
�

�

2

1
1�|�2(A)|

·11T

·
�

EP [s(1⌦wc,i�1)]+EP [zi�1]

+ µ2
max ·

�

�P̄ [URAT
2]
�

�

2

1 · 11T · EP [vi]

(e)

�


�e+4µ2
max ·

�

�P̄ [URAT
2]
�

�

2

1 ·
�

�P̄ [AT
1 UL]

�

�

2

1 �2UN

⇥
✓

1

1�|�2(A)|
+
↵

�2U

◆

11T

�

·EP [we,i�1]

+ 4µ2
max ·

�

�P̄ [URAT
2]
�

�

2

1 �2UN

✓

3

1� |�2(A)|
+

↵

�2U

◆

· 1 · Ekw̌c,i�1k2

+ µ2
max ·

�

�P̄ [URAT
2]
�

�

2

1 ·


12
�2Ukw̃c,0k2N+1T go

1� |�2(A)|

+N [4↵(kw̃c,0k2+kwok2)+�2
v]

�

·1

(f)

�


�e+4µ2
max ·

�

�P̄ [URAT
2]
�

�

2

1 ·
�

�P̄ [AT
1 UL]

�

�

2

1 �2UN

⇥
✓

1

1�|�2(A)|
+
↵

�2U

◆

11T

�

·EP [we,i�1]

+ 4µ2
max ·

�

�P̄ [URAT
2]
�

�

2

1 �2UN

✓

3

1� |�2(A)|
+

↵

�2U

◆

· 1 · Ekw̌c,i�1k2

+ µ2
max ·N

�

�P̄ [URAT
2]
�

�

2

1 ·


12
�2Ukw̃c,0k2+kgok1

1� |�2(A)|

+4↵(kw̃c,0k2+kwok2)+�2
v

�

·1 (5.243)

where step (a) uses the additivity property in Lemma 5.4 since the definition of

234

zi�1 and vi in (5.86) and the definitions of wc,i�1 and we,i�1 in (5.60) imply that

zi�1, wc,i�1 and we,i�1 depend on all {wj} for j  i� 1, meanng that the cross

terms between vi and all other terms are zero, just as in step (a) of (5.242), step

(b) uses the variance relation of stable Kronecker Jordan operators from (5.126)

with d2 = �2(A), step (c) uses the variance relation of linear operator (5.115),

step (d) uses the submultiplictive property (5.106) and P [x+ y] � 2P [x] + 2P [y]

derived from the convexity property (5.102) and the scaling property in (5.238),

(5.239), and (5.241), step (e) substitutes the bounds on the perturbation terms

from (5.238)–(5.241), and step (f) uses the inequality |1Tgo|  Nkgok1.

Finally, using the quantities defined in (5.136)–(5.139), we can rewrite recur-

sions (5.242) and (5.243) as

EP [w̌c,i] � (�c+µ2
max 0)·EP [w̌c,i�1]

+(µmaxhc(µmax)+µ2
max 0) · 1TEP [we,i�1]

+µ2
maxbv,c (5.244)

EP [we,i] � µ2
max 01 · EP [w̌c,i�1]

+ (�e + µ2
max 011

T) · EP [we,i�1]

+ µ2
maxbv,e · 1 (5.245)

where EP [w̌c,i] = Ekw̌c,ik2. Using the matrices and vectors defined in (5.133)–

(5.135), we can write the above two recursions in a joint form as in (5.132).

235

5.H Proof of Lemma 5.8

First, we establish the bound for P [zi�1] in (5.238). Substituting (5.62) and

(5.81) into the definition of zi�1 in (5.86) we get:

P [zi�1] � P
⇥

s
�

1⌦wc,i�1+(AT
1UL⌦IM)we,i�1

�

�s(1⌦wc,i�1)
⇤

(a)

� �2U · P
⇥

(AT
1UL ⌦ IM)we,i�1

⇤

(b)

� �2U ·
�

�P̄ [AT
1 UL]

�

�

2

1 · 11T · P [we,i�1] (5.246)

where step (a) uses the variance relation (5.117), and step (b) uses property

(5.115).

Next, we prove the bound on P [s(1⌦wc,i�1)]. It holds that

P [s(1⌦wc,i�1)] = P
h1

3
· 3
�

s(1⌦wc,i�1)� s(1⌦ w̄c,i�1)
�

+
1

3
· 3
�

s(1⌦ w̄c,i�1)� s(1⌦ wo)
�

+
1

3
· 3 · s(1⌦ wo)

i

(a)

� 1

3
· P
⇥

3
�

s(1⌦wc,i�1)� s(1⌦ w̄c,i�1)
�⇤

+
1

3
· P
⇥

3
�

s(1⌦ w̄c,i�1)� s(1⌦ wo)
�⇤

+
1

3
· P
⇥

3 · s(1⌦ wo)
⇤

(b)
= 3P

⇥

s(1⌦wc,i�1)�s(1⌦ w̄c,i�1)
⇤

+ 3P
⇥

s(1⌦ w̄c,i�1)�s(1⌦ wo)
⇤

+ 3P
⇥

s(1⌦ wo)
⇤

(c)

� 3�2U · P
⇥

1⌦ (wc,i�1 � w̄c,i�1)
⇤

+ 3�2U · P [1⌦ (w̄c,i�1 � wo)] + 3P [s(1⌦ wo)]

(d)
= 3�2U · kw̌c,i�1k2 · 1+ 3�2U · kw̄c,i�1 � wok2 · 1

236

+ 3P [s(1⌦ wo)]

(e)

� 3�2U · kw̌c,i�1k2 ·1+3�2Ukw̃c,0k2 ·1+3P [s(1⌦ wo)] (5.247)

where step (a) uses the convexity property (5.102), step (b) uses the scaling

property in Lemma 5.4, step (c) uses the variance relation (5.117), step (d) uses

property (5.108), and step (e) uses the bound (5.129) and the fact that �c < 1.

Finally, we establish the bounds on P [vi] in (5.240)–(5.241). Introduce the

MN ⇥ 1 vector x:

x , 1⌦wc,i�1 + AT
1 ULwe,i�1 ⌘ �i�1 (5.248)

We partitin x in block form as x = col{x1, . . . ,xN}, where each xk is M ⇥ 1.

Then, by the definition of vi from (5.86), we have

E{P [vi]|Fi�1} = E{P [ŝi(x)� s(x)]|Fi�1}

= col
�

E
⇥

kŝ1,i(x1)� s1(x1)k2
�

�Fi�1

⇤

,

. . . ,E
⇥

kŝN,i(xN)� sN(xN)k2
�

�Fi�1

⇤

(a)

� col
�

↵ · kx1k2+�2
v , . . . , ↵ · kxNk2+�2

v

= ↵ · P [x] + �2
v1 (5.249)

where step (a) uses Assumption (5.18). Now we bound P [x]:

P [x] = P
⇥

1⌦wc,i�1 + AT
1 ULwe,i�1

⇤

= P
h1

4
·4·1⌦ (wc,i�1�w̄c,i�1)+

1

4
·4·1⌦ (w̄c,i�1�wo)

+
1

4
·4·AT

1 ULwe,i�1+
1

4
·4·1⌦ wo

i

237

= P
h1

4
·4·1⌦ w̌c,i�1+

1

4
·4·1⌦ w̃c,i�1

+
1

4
·4·AT

1 ULwe,i�1+
1

4
·4·1⌦ wo

i

(a)

� 1

4
· 42 ·P [1⌦ w̌c,i�1] +

1

4
· 42 ·P [1⌦ w̃c,i�1]

+
1

4
· 42 ·P [AT

1 ULwe,i�1] +
1

4
· 42 ·P [1⌦ wo]

(b)
= 4 · kw̌c,i�1k2 · 1+ 4 · kw̃c,i�1k2 · 1

+ 4 · P [AT
1 ULwe,i�1] + 4 · kwok2 · 1

(c)

� 4 · kw̌c,i�1k2 ·1+4·kP̄ [AT
1 UL]k21 ·11T ·P [we,i�1]

+ 4 · kw̃c,0k2 · 1+ 4 · kwok2 · 1 (5.250)

where step (a) uses the convexity property (5.102) and the scaling property in

Lemma 5.4, step (b) uses the Kronecker property (5.108), step (c) uses the vari-

ance relation (5.114) and the bound (5.129). Substituting (5.250) into (5.249),

we obtain (5.240), and taking expectation of (5.240) with respect to Fi�1 leads

to (5.241).

5.I Proof of Theorem 5.4

Assume initially that the matrix � is stable (we show further ahead how the

step-size parameter µmax can be selected to ensure this property). Then, we can

iterate the inequality recursion (5.132) and obtain

W̌ 0
i � �iW̌ 0

0 + µ2
max

i�1
X

j=0

�jbv

�
1
X

j=0

�jW̌ 0
0 + µ2

max

1
X

j=0

�jbv

238

� (I � �)�1(W̌ 0
0 + µ2

maxbv) (5.251)

where the first two inequalities use the fact that all entries of � are nonnegative.

Moreover, substituting (5.133) into (5.132), we get

W̌ 0
i � �0W̌ 0

i�1 + µ2
max 011

TW̌ 0
i�1 + µ2

maxbv (5.252)

Substituting (5.251) into the second term on the right-hand side of (5.252) leads

to

W̌ 0
i � �0W̌ 0

i�1 + µ2
max · cv(µmax) (5.253)

where

cv(µmax) , 0 · 1T (I � �)�1(W̌ 0
0 + µ2

maxbv) · 1+ bv (5.254)

Now iterating (5.253) leads to the following non-asymptotic bound:

W̌i
0 � �i

0W̌ 0
0 +

i�1
X

j=0

µ2
max�

j
0 · cv(µmax) � �i

0W̌ 0
0 + W̌ub0

1 (5.255)

where

W̌ub0

1 , µ2
max(I � �0)

�1 · cv(µmax) (5.256)

We now derive the non-asymptotic bounds (5.140)–(5.141) from (5.255). To this

end, we need to study the structure of the term �i
0W̌ 0

0. Our approach relies on

applying the unilateral z�transform to the causal matrix sequence {�i
0, i � 0} to

239

get

�0(z) , Z
�

�i
0

= z(zI � �0)
�1 (5.257)

since �0 is a stable matrix. Note from (5.134) that �0 is a 2 ⇥ 2 block upper

triangular matrix. Substituting (5.134) into the above expression and using the

formula for inverting 2⇥2 block upper triangular matrices (see formula (4) in [82,

p.48]), we obtain

�0(z) =

2

4

z
z��

c

µmaxhc(µmax) · z
z��

c

· 1T (zI � �e)�1

0 z(zI � �e)�1

3

5 (5.258)

Next we compute the inverse z�transform to obtain �i
0. Thus, observe that the

inverse z�transform of the (1, 1) entry, the (2, 1) block, and the (2, 2) block are

the causal sequences �ic, 0, and �i
e, respectively. For the (1, 2) block, it can be

expressed in partial fractions as

µmaxhc(µmax) · z

z � �c
· 1T (zI � �e)

�1

= µmaxhc(µmax)·1T (�cI��e)
�1

✓

z

z��c
I�z(zI��e)

�1

◆

from which we conclude that the inverse z�transform of the (1, 2) block is

µmaxhc(µmax)·1T (�cI��e)
�1
�

�icI��i
e

�

, i � 0 (5.259)

It follows that

�i
0 =

2

4

�ic µmaxhc(µmax) · 1T (�cI � �e)�1 (�icI � �i
e)

0 �i
e

3

5 (5.260)

240

Furthermore, as indicated by (5.41) in Sec. 5.4.1, the reference recursion (5.40)

is initialized at the centroid of the network, i.e., w̄c,0 =
PN

k=1 ✓kwk,0. This fact,

together with (5.61) leads to w̄c,0 = wc,0, which means that w̌c,0 = 0. As a result,

we get the following form for W 0
0:

W̌ 0
0 = col {0, EP [we,0]} (5.261)

Multiplying (5.260) to the left of (5.261) gives

�i
0W̌ 0

0 =

2

4

µmaxhc(µmax) · 1T (�cI��e)�1 (�icI��i
e)We,0

�i
eWe,0

3

5 (5.262)

where We,0 = EP [we,0]. Substituting (5.262) into (5.255), we obtain

W̌ 0
i �

2

4

µmaxhc(µmax)·1T (�cI��e)�1 (�icI��i
e)EP [we,0]

�i
e EP [we,0]

3

5

+ W̌ub0

1 (5.263)

Finally, we study the behavior of the asymptotic bound W̌ub0
1 by calling upon

the following lemma.

Lemma 5.9 (Useful matrix expressions). It holds that

1T (I � �)�1 = ⇣(µmax)

·
h

µ�1

max

�
L

�µ

max

2

kpk2
1

�2

U

⇣

1 + h
c

(µ
max

)

�
L

�µ

max

2

kpk2
1

�2

U

⌘

1T (I � �e)�1
i

(5.264)

(I � �0)
�1 =

2

4

µ�1

max

�
L

�µ

max

2

kpk2
1

�2

U

h
c

(µ
max

)

�
L

�µ

max

2

kpk2
1

�2

U

1T (I��e)�1

0 (I � �e)�1

3

5 (5.265)

241

where

⇣(µmax) =

⇢

1� 0 ·
h µmax

�L� µ
max

2
kpk21�2U

+µ2
max

✓

1+
hc(µmax)

�L� µ
max

2
kpk21�2U

◆

1T (I��e)
�11
i

��1

(5.266)

Proof. See Appendix 5.J.

Substituting (5.254), (5.261), (5.264) and (5.265) into (5.256) and after some

algebra, we obtain

W̌ub0

1 = 0 ·⇣(µmax)f(µmax)

·

2

4

µmax
1+µ

max

h
c

(µ
max

)1T (I��
e

)�11

�
L

�µ

max

2

kpk2
1

�2

U

µ2
max · (I � �e)�11

3

5

+

2

4

µmax
b
v,c

+µ
max

h
c

(µ
max

)1T (I��
e

)�11b
v,e

�
L

�µ

max

2

kpk2
1

�2

U

µ2
maxbv,e · (I � �e)�11

3

5 (5.267)

where

f(µmax) ,
µmaxbv,c

�L� µ
max

2
kpk21�2U

+

✓

1+
hc(µmax)

�L� µ
max

2
kpk21�2U

◆

·1T (I��e)
�1

⇥
�

EP [we,0]+µ2
max1bv,e

�

(5.268)

Introduce

W̌ub0

c,1 , 0 ·⇣(µmax)f(µmax)

· µmax
1 + µmaxhc(µmax)1T (I � �e)�11

�L � µ
max

2
kpk21�2U

242

+ µmax
bv,c + µmaxhc(µmax)1T (I � �e)�11bv,e

�L � µ
max

2
kpk21�2U

(5.269)

W̌ub0

e,1 , 0 ·⇣(µmax)f(µmax) · µ2
max · (I � �e)

�11

+ µ2
maxbv,e · (I � �e)

�11 (5.270)

Then, we have

W̌ub0

1 = col{W̌ub0

c,1, W̌ub0

e,1} (5.271)

Substituting (5.271) into (5.263), we conclude (5.140)–(5.141). Now, to prove

(5.142)–(5.143), it su�ces to prove

lim
µ
max

!0

W̌ub0
c,1

µmax

=
 0

�

�L+hc(0)
�

1T (I��e)�1We,0+bv,c�L
�2L

(5.272)

lim
µ
max

!0

W̌ub0
e,1

µ2
max

=
 0

�

�L+hc(0)
�

1T (I � �e)�1We,0+bv,e�L
�L

· (I��e)
�11 (5.273)

Substituting (5.269) and (5.270) into the left-hand side of (5.272) and (5.273),

respectively, we get

lim
µ
max

!0

W̌ub0
c,1

µmax

= lim
µ
max

!0

⇢

 0 ·⇣(µmax)f(µmax)·
1+µmaxhc(µmax)1T (I��e)�11

�L � µ
max

2
kpk21�2U

+
bv,c + µmaxhc(µmax)1T (I � �e)�11bv,e

�L � µ
max

2
kpk21�2U

�

= 0 ·⇣(0)f(0) · 1

�L
+

bv,c
�L

(a)
= 0 ·1 ·

✓

1+
hc(0)

�L

◆

·1T (I��e)
�1EP [we,0]

�

· 1

�L
+

bv,c
�L

=
 0

�

�L + hc(0)
�

1T (I � �e)�1We,0 + bv,c�L
�2L

(5.274)

lim
µ
max

!0

W̌ub0
e,1

µ2
max

= lim
µ
max

!0

�

 0 ·⇣(µmax)f(µmax) · (I � �e)
�11+ bv,e · (I � �e)

�11

243

= 0 ·⇣(0)f(0) · (I � �e)
�11+ bv,e · (I � �e)

�11

(b)
= 0 ·

✓

1+
hc(0)

�L

◆

·1T (I��e)
�1EP [we,0]

�

· (I � �e)
�11

+ bv,e · (I � �e)
�11

=
 0

�

�L + hc(0)
�

1T (I � �e)�1We,0 + bv,e�L
�L

·(I��e)
�11 (5.275)

where steps (a) and (b) use the expressions for ⇣(µmax) and f(µmax) from (5.266)

and (5.268).

Now we proceed to prove (5.144). We already know that the second term on

the right-hand side of (5.140), W̌ub0
c,1, is O(µmax) because of (5.142). Therefore,

we only need to show that the first term on the right-hand side of (5.140) is

O(µmax) for all i � 0. To this end, it su�ces to prove that

lim
µ
max

!0

�

�µmaxhc(µmax)·1T (�cI��e)�1 (�icI��i
e)We,0

�

�

µmax

 constant (5.276)

where the constant on the right-hand side should be independent of i. This can

be proved as below:

lim
µ
max

!0

�

�µmaxhc(µmax)·1T (�cI��e)�1 (�icI��i
e)We,0

�

�

µmax

= lim
µ
max

!0

�

�hc(µmax)·1T (�cI��e)
�1
�

�icI��i
e

�

We,0

�

�

 lim
µ
max

!0
|hc(µmax)| · k1k · k(�cI��e)

�1k

·
�

�

��icI
�

�+
�

��i
e

�

�

�

· kWe,0k
(a)

 lim
µ
max

!0
|hc(µmax)| · N · k(�cI��e)

�1k

·
⇣

1 + Ce ·
�

⇢(�e) + ✏
�i
⌘

· kWe,0k
(b)

 lim
µ
max

!0
|hc(µmax)|·N ·k(�cI��e)

�1k·(1+Ce)·kWe,0k

244

(c)
= |hc(0)| · N · k(I��e)

�1k · [1 + Ce] · kWe,0k

= constant (5.277)

where step (a) uses �c = 1�µmax�L+
1
2
µ2
max�

2
L < 1 for su�ciently small step-sizes,

and uses the property that for any small ✏ > 0 there exists a constant C such

that kX ik  C · [⇢(X) + ✏]i for all i � 0 [105, p.38], step (b) uses the fact that

⇢(�e) = |�2(A)| < 1 so that ⇢(�e) + ✏ < 1 for small ✏ (e.g., ✏ = (1 � ⇢(�e))/2),

and step (c) uses �c = 1� µmax�L + 1
2
µ2
max�

2
L ! 1 when µmax ! 0.

It remains to prove that condition (5.145) guaranees the stability of the

matrix �, i.e., ⇢(�) < 1. First, we introduce the diagonal matrices D✏,0 ,
diag{✏, · · · , ✏N�1} and D✏ = diag{1, D✏,0}, where ✏ is chosen to be

✏ , 1

4
(1� |�2(A)|)2 

1

4
(5.278)

It holds that ⇢(�) = ⇢(D�1
✏ �D✏) since similarity transformations do not alter

eigenvalues. By the definition of � in (5.133), we have

D�1
✏ �D✏ = D�1

✏ �0D✏ + µ2
max 0 · D�1

✏ 11TD✏ (5.279)

We now recall that the spectral radius of a matrix is upper bounded by any of its

matrix norms. Thus, taking the 1�norm (the maximum absolute column sum of

the matrix) of both sides of the above expression and using the triangle inequality

and the fact that 0 < ✏  1/4, we get

⇢(�) = ⇢(D�1
✏ �D✏)

 kD�1
✏ �0D✏k1 + kµ2

max 0 · D�1
✏ 11TD✏k1

 kD�1
✏ �0D✏k1 + µ2

max 0 · kD�1
✏ 11TD✏k1

245

= kD�1
✏ �0D✏k1 + µ2

max 0 ·
�

1 + ✏�1 + · · · + ✏�(N�1)
�

= kD�1
✏ �0D✏k1 + µ2

max 0 · 1� ✏
�N

1� ✏�1

= kD�1
✏ �0D✏k1 + µ2

max 0 · ✏(✏
�N � 1)

1� ✏

 kD�1
✏ �0D✏k1 + µ2

max 0 ·
1
4
(✏�N � 1)

1� 1
4

 kD�1
✏ �0D✏k1 +

1

3
µ2
max 0✏

�N (5.280)

Moreover, we can use (5.134) to write:

D�1
✏ �0D✏ =

2

4

�c µmaxhc(µmax)1TD✏,0

0 D�1
✏,0�eD✏,0

3

5 (5.281)

where (recall the expression for �e from (5.125) where we replace d2 by �2(A)):

D�1
✏,0�eD✏,0 =

2

6

6

6

6

6

6

4

|�2(A)| 1�|�
2

(A)|
2

.

. . . 1�|�
2

(A)|
2

|�2(A)|

3

7

7

7

7

7

7

5

(5.282)

µmaxhc(µmax)1
TD✏,0 = µmaxhc(µmax)

h

✏ · · · ✏N�1

i

(5.283)

Therefore, the 1-norm of D�1
✏ �0D✏ can be evaluatd as

kD�1
✏,0�0D✏,0k1 = max

n

�c, |�2(A)| + µmaxhc(µmax)✏,

1 + |�2(A)|
2

+ µmaxhc(µmax)✏
2, · · · ,

1 + |�2(A)|
2

+ µmaxhc(µmax)✏
N�1
o

(5.284)

246

Since 0 < ✏  1/4, we have ✏ > ✏2 > · · · > ✏N�1 > 0. Therefore,

kD�1
✏,0�0D✏,0k1 = max

n

�c, |�2(A)| + µmaxhc(µ)✏,

1 + |�2(A)|
2

+ µmaxhc(µmax)✏
2
o

(5.285)

Substituting the above expression for kD�1
✏,0�0D✏,0k1 into (5.280) leads to

⇢(�)  max
n

�c, |�2(A)| + µmaxhc(µmax)✏,

1+|�2(A)|
2

+µmaxhc(µmax)✏
2
o

+
1

3
µ2
max 0✏

�N (5.286)

We recall from (5.121) that �c > 0. To ensure ⇢(�) < 1, it su�ces to require that

µmax is such that the following conditions are satisfied:

�c +
1

3
µ2
max 0✏

�N < 1 (5.287)

|�2(A)| + µmaxhc(µmax)✏+
1

3
µ2
max 0✏

�N < 1 (5.288)

1 + |�2(A)|
2

+ µmaxhc(µmax)✏
2 +

1

3
µ2
max 0✏

�N < 1 (5.289)

We now solve these three inequalities to get a condition on µmax. Substituting

the expression for �c from (5.120) into (5.287), we get

1� µmax�L + µ2
max

⇣1

3
 0✏

�N +
1

2
kpk21�2U

⌘

< 1 (5.290)

the solution of which is given by

0 < µmax <
�L

1
3
 0✏�N + 1

2
kpk21�2U

(5.291)

For (5.288)–(5.289), if we substitute the expression for hc(µmax) from (5.137) into

247

(5.288)–(5.289), we get a third-order inequality in µmax, which is di�cult to solve

in closed-form. However, inequalities (5.288)–(5.289) can be guaranteed by the

following conditions:

µmaxhc(µmax)✏ <
(1�|�2(A)|)2

4
,
µ2
max 0✏�N

3
<

1�|�2(A)|
4

(5.292)

This is because we would then have:

|�2(A)| + µmaxhc(µmax)✏+
1

3
µ2
max 0✏

�N

< |�2(A)| +
(1�|�2(A)|)2

4
+

1�|�2(A)|
4

 |�2(A)| +
1�|�2(A)|

4
+

1�|�2(A)|
4

=
1+|�2(A)|

2
< 1 (5.293)

Likewise, by the fact that 0 < ✏  1/4 < 1,

1 + |�2(A)|
2

+ µmaxhc(µmax)✏
2 +

1

3
µ2
max 0✏

�N

<
1 + |�2(A)|

2
+ µmaxhc(µmax)✏+

1

3
µ2
max 0✏

�N

<
1 + |�2(A)|

2
+

(1�|�2(A)|)2

4
+

1�|�2(A)|
4

 1 + |�2(A)|
2

+
1�|�2(A)|

4
+

1�|�2(A)|
4

= 1 (5.294)

Substituting (5.137) and (5.278) into (5.292), we find that the latter conditions

248

are satisfied for

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 < µmax <
�L

kpk21�2U
�

kP̄ [ATU2]k21+ 1
2

�

0 < µmax <

s

3(1� |�2(A)|)2N+1

22N+2 0

(5.295)

Combining (5.287), (5.289) and (5.295) , we arrive at condition (5.145).

5.J Proof of Lemma 5.9

Applying the matrix inversion lemma [68] to (5.133), we get

(I � �)�1 = (I � �0 � µ2
max 0 · 11T)�1

= (I��0)
�1+

µ2
max 0 · (I��0)�111T (I��0)�1

1�µ2
max 0 · 1T (I � �0)�11

(5.296)

so that

1T (I � �)�1 =
1

1� µ2
max 0 · 1T (I � �0)�11

· 1T (I � �0)
�1 (5.297)

By (5.134), the matrix �0 is a 2⇥ 2 block upper triangular matrix whose inverse

is given by

(I � �0)
�1 =

2

4

(1� �c)�1 µ
max

h
c

(µ
max

)
1��

c

1T (I � �e)�1)

0 (I � �e)�1

3

5 (5.298)

249

Substituting (5.120) into the above expression leads to (5.265). Furthermore,

from (5.265), we have

1T (I � �0)
�11 =

µ�1
max

�L� µ
max

2
kpk21�2U

+

✓

1+
hc(µmax)

�L� µ
2
kpk21�2U

◆

1T (I��e)
�11 (5.299)

Substituting (5.299) into (5.297), we obtain (5.264).

5.K Proof of Theorem 5.5

Taking the squared Euclidean norm of both sides of (5.67) and applying the

expectation operator, we obtain

Ekw̃k,ik2 = kw̃c,ik2 + E kw̌c,i + (uL,k ⌦ IM)we,ik2

� 2w̃T
c,i [Ew̌c,i + (uL,k ⌦ IM)we,i] (5.300)

which means that, for all i � 0,

�

�Ekw̃k,ik2 � kw̃c,ik2
�

�

=
�

�

�

E kw̌c,i + (uL,k ⌦ IM)we,ik2

� 2w̃T
c,i

⇥

Ew̌c,i + (uL,k ⌦ IM)Ewe,i

⇤

�

�

�

(a)

 E kw̌c,i + (uL,k ⌦ IM)we,ik2

+ 2kw̃c,ik ·
⇥

kEw̌c,ik+ kuL,k ⌦ IMk · kEwe,ik
⇤

(b)

 2Ekw̌c,ik2 + 2kuL,k ⌦ IMk2 · Ekwe,ik2

+ 2kw̃c,ik ·
⇥

Ekw̌c,ik+ kuL,k ⌦ IMk · Ekwe,ik
⇤

250

(c)

 2Ekw̌c,ik2 + 2kuL,k ⌦ IMk2 · Ekwe,ik2

+ 2kw̃c,ik ·
⇥

q

Ekw̌c,ik2 + kuL,k ⌦ IMk ·
q

Ekwe,ik2
⇤

(d)
= 2EP [w̌c,i] + 2kuL,k ⌦ IMk2 · 1TEP [we,i]

+ 2kw̃c,ik ·
h

q

EP [w̌c,i] + kuL,k ⌦ IMk ·
q

1TEP [we,i]
i

(e)

 O(µmax) + 2kuL,k ⌦ IMk2 ·
�

1T�i
eWe,0 + 1TW̌ub0

e,1
�

+ 2�ickw̃c,0k ·
h

O(µ
1

2

max)

+ kuL,k ⌦ IMk ·
q

1T�i
eWe,0 + 1TW̌ub0

e,1

i

(f)

 O(µmax) + 2kuL,k ⌦ IMk2 ·
�

1T�i
eWe,0 +O(µ2

max)
�

+ 2�ickw̃c,0k ·
⇥

O(µ
1

2

max)

+ kuL,k ⌦ IMk ·
✓

q

1T�i
eWe,0 +

p

O(µ2
max)

◆

⇤

= 2kuL,k ⌦ IMk2 · 1T�i
eWe,0

+ 2�ic · kw̃c,0k · kuL,k ⌦ IMk ·
q

1T�i
eWe,0

+ 2�ickw̃c,0k ·
h

O(µ
1

2

max) + kuL,k ⌦ IMk · O(µmax)
i

+O(µmax) +O(µ2
max)

(g)

 2kuL,k ⌦ IMk2 ·1T�i
eWe,0

+2kw̃c,0k·kuL,k ⌦ IMk·
q

1T�i
eWe,0

+�ic ·O(µ
1

2

max)+O(µmax) (5.301)

where step (a) used Cauchy-Schwartz inequality, step (b) used kx+yk2  2kxk2+

2kyk2, step (c) applied Jensen’s inequality to the concave function
p

·, step (d)

used property (5.111), step (e) substituted the non-asymptotic bounds (5.140)

and (5.141) and the fact that EP [w̌c,i]  O(µmax) for all i � 0 from (5.144), step

(f) used (5.143) and the fact that
p
x+ y 

p
x +
p
y for x, y � 0, and step (g)

251

used �c < 1 for su�ciently small step-sizes (guaranteed by (5.130)).

252

CHAPTER 6

Performance Analysis

6.1 Introduction

In Chapter 5, we carried out a detailed transient analysis of the learning be-

havior of multi-agent networks, which have applications in di↵erent contexts

[7, 19, 26, 29, 34, 36, 42, 46, 48, 49, 51, 52, 58, 67, 70, 75–77, 84, 85, 89, 91, 96–98, 100,

102,107,109,110,113–115,125,130,136,137,140,146]. The analysis revealed inter-

esting results about the learning abilities of distributed strategies when constant

step-sizes are used to ensure continuous tracking of drifts in the data. It was

noted that when constant step-sizes are employed to drive the learning process,

the dynamics of the distributed strategies is modified in a critical manner. Specif-

ically, components that relate to gradient noise are not annihilated any longer, as

happens when diminishing step-sizes are used. These noise components remain

persistently active throughout the adaptation process and it becomes necessary

to examine their impact on network performance, such as examining questions of

the following nature: (a) can these persistent noise components drive the network

unstable? (b) can the degradation in performance be controlled and minimized?

(c) what is the size of the degradation? Motivated by these questions, we provided

in Chapter 5 detailed answers to the following three inquiries: (i) where does the

distributed strategy converge to? (ii) under what conditions on the data and

network topology does it converge? (iii) and what are the rates of convergence

253

of the learning process? In particular, we showed in Chapter 5 that there always

exist su�ciently small constant step-sizes that ensure the mean-square conver-

gence of the learning process to a well-defined limit point even in the presence of

persistent gradient noise. We characterized this limit point as the unique fixed

point solution of a nonlinear algebraic equation consisting of the weighted sum of

individual update functions — see Eq. (6.5) further ahead. The scaling weights

{pk} that appear in this equation were shown to be determined by the entries of

the right-eigenvector ✓ of the network combination policy corresponding to the

eigenvalue at one (also called the Perron eigenvector; its entries are normalized

to add up to one and are all strictly positive for strongly-connected networks) —

see Eq. (6.6). The analysis from Chapter 5 further revealed that the learning

curve of the multi-agent system exhibits three distinct phases. In the first phase

(Transient Phase I), the convergence rate of the network is determined by the

second largest eigenvalue of the combination policy in magnitude, which is related

to the degree of network connectivity. In the second phase (Transient Phase II),

the convergence rate is determined by the Perron eigenvector. And, in the third

phase (the steady-state phase) the mean-square error (MSE) performance attains

a bound on the order of O(µmax), where µmax is the largest step-size among all

agents.

In this chapter, we address in some detail two additional questions related to

network performance, namely, iv) how close do the individual agents get to the

limit point of the network? and v) can the system of networked agents be made to

match the learning performance of a centralized solution where all information is

collected and processed centrally by a fusion center? In the process of answering

these questions, we shall derive a closed-form expression for the steady-state MSE

of each agent — see (6.14) further ahead. Expression (6.14) turns out to be a

revealing result; it amounts to a non-trivial extension of a classical result for

254

stand-alone adaptive agents [54, 57, 72, 141] to the more demanding context of

networked agents and for cost functions that are not necessarily quadratic or of

the mean-square-error type. As we are going to explain in the sequel, relation

(6.14) captures the e↵ect of the network topology (through the {pk}), gradient

noise (through the covariance matrix Rv) , and data characteristics (through

the Lyapunov solution X) in an integrated manner and shows how these various

factors influence performance. Result (6.14) applies to connected networks under

fairly general conditions and for fairly general aggregate cost functions.

We shall also explain later in Sections 6.5 and 6.6 of this chapter that, as

long as the network is strongly connected, a left-stochastic combination matrix

can always be constructed to have any desired Perron-eigenvector — see expres-

sions (6.66) and (6.73). This observation has an important ramification for the

following reason. Starting from any collection of N agents, there exists a finite

number of topologies that can link these agents together. And for each possible

topology, there are infinitely many combination policies that can be used to train

the network. Since the performance of the network is dependent on the Perron-

eigenvector of its combination policy, one of the important conclusions that will

follow is that regardless of the network topology, there will always exist choices

for the respective combination policies such that the steady-state performance of

all topologies can be made identical to each other to first-order in µmax. In other

words, no matter how the agents are connected to each other, there is always a

way to select the combination weights such that the performance of the network is

invariant to the topology. This will also mean that, for any connected topology,

there is always a way to select the combination weights such that the perfor-

mance of the network matches that of the centralized stochastic-approximation

(since a centralized solution can be viewed as corresponding to a fully-connected

network). The following presentation in this chapter is based on [38].

255

6.2 Family of Distributed Strategies

6.2.1 Distributed Strategies: Consensus and Di↵usion

We consider a connected network of N agents that are linked together through

a topology — see Fig. 5.1 in Chapter 5. Each agent k implements a distributed

algorithm of the following form to update its state vector from wk,i�1 to wk,i:

�k,i�1 =
N
X

l=1

a1,lkwl,i�1 (6.1)

 k,i =
N
X

l=1

a0,lk�l,i�1 � µkŝk,i(�k,i�1) (6.2)

wk,i =
N
X

l=1

a2,lk l,i (6.3)

where wk,i 2 RM is the state of agent k at time i, usually an estimate for

the solution of some optimization problem, �k,i�1 2 RM and k,i 2 RM are

intermediate variables generated at node k before updating to wk,i, µk is a non-

negative constant step-size parameter used by node k, and ŝk,i(·) is an M ⇥ 1

update vector function at node k. We explained in Chapter 5 that in deterministic

optimization problems, the update vectors ŝk,i(·) can be selected as the gradient

or Newton steps associated with the individual utility functions at the agents [97].

On the other hand, in stocastic approximation problems, such as adaptation,

learning and estimation problems [26,34,36,42,48,49,58,75,77,89,91,109,115,125,

130, 137, 146], the update vectors ŝk,i(·) are usually computed from realizations

of data samples that arrive sequentially at the nodes. In the stochastic setting,

the quantities appearing in (6.1)–(6.3) become random variables and we shall use

boldface letters to highlight their stochastic nature. In Example 5.1 of Chapter

5, we illustrated various choices for ŝk,i(w) in di↵erent contexts.

256

The combination coe�cients a1,lk, a0,lk and a2,lk in (6.1)–(6.3) are nonnegative

convex-combination weights that each node k assigns to the information arriving

from node l and will be zero if agent l is not in the neighborhood of agent k.

Therefore, each summation in (6.1)–(6.3) is actually confined to the neighborhood

of node k. We let A1, A0 and A2 denote the N ⇥ N matrices that collect the

coe�cients {a1,lk}, {a0,lk} and {a2,lk}. Then, the matrices A1, A0 and A2 satisfy

AT
1 1 = 1, AT

0 1 = 1, AT
2 1 = 1 (6.4)

where 1 is the N ⇥ 1 vector with all its entries equal to one. Condition (6.4)

means that the matrices {A0, A1, A2} are left-stochastic (i.e., the entries on each

of their columns add up to one). We also explained in Chapter 5 that di↵erent

choices for A1, A0 and A2 correspond to di↵erent distributed strategies, such as

the traditional consensus [48, 75–77, 97, 98, 137] and di↵usion (ATC and CTA)

[26, 34, 36, 42, 89, 91, 115, 146] algorithms. In our analysis, we will proceed with

the general form (6.1)–(6.3) to study all three schemes, and other possibilities,

within a unifying framework.

6.2.2 Review of the Main Results from Chapter 5

Due the coupled nature of the social and self-learning steps in (6.1)–(6.3), infor-

mation derived from local data at agent k will be propagated to its neighbors and

from there to their neighbors in a di↵usive learning process. It is expected that

some global performance pattern will emerge from these localized interactions in

the multi-agent system. As mentioned in the introductory remarks, in Chapter

5 and in this chapter, we examine the following five questions:

• Limit point: where does each state wk,i converge to?

257

• Stability: under which condition does convergence occur?

• Learning rate: how fast does convergence occur?

• Performance: how close does wk,i get to the limit point?

• Generalization: can wk,i match the performance of a centralized solution?

In Chapter 5, we addressed the first three questions in detail and derived ex-

pressions that fully characterize the answer in each case. One of the major and

interesting conclusions established in Chapter 5 is that for general left-stochastic

matrices {A1, A0, A2}, the agents in the network will have their iterates wk,i

converge, in the mean-square-error sense, to the same limit vector wo that cor-

responds to the unique solution of the following algebraic equation:

N
X

k=1

pksk(w) = 0 (6.5)

where the update functions sk(·) are defined further ahead in (6.15) as the condi-

tional means of the update directions ŝk,i(·) used in (6.1)–(6.3), and each positive

coe�cient pk is the kth entry of the following vector:

p = col

⇢

µ1

µmax

⇡1, . . . ,
µN

µmax

⇡N

�

(6.6)

Here, µmax is the largest step-size among all agents, ⇡k is the kth entry of the

vector ⇡ , A2✓, and ✓ is the right eigenvector of A , A1A0A2 corresponding to

the eigenvalue at one with its entries normalized to add up to one, i.e.,

A✓ = ✓, 1T ✓ = 1 (6.7)

258

We refer to ✓ as the Perron eigenvector of A. The unique solution wo of (6.5)

has the interpretation of a Pareto optimal solution corresponding to the weights

{pk} [20, 36, 37]. By selecting di↵erent combination policies A, or even di↵erent

topologies, the entries {pk} can be made to change (since ✓ will change) and

the limit point wo resulting from (6.5) can be steered towards di↵erent Pareto

optimal solutions.

The second major conclusion from Chapter 5 is that, during the convergence

process towards the limit point wo, the learning curve at each agent exhibits three

distinct phases (see Fig. 5.2 in Chapter 5): Transient Phase I, Transient Phase

II, and Steady-State Phase. These phases were shown in Chapter 5 to have the

following features:

• Transient Phase I:

If the agents are initialized at di↵erent values, then the iterates at the

various agents will initially evolve in such a way to make each wk,i get

closer to the following reference (centralized) recursion w̄c,i:

w̄c,i = w̄c,i�1 � µmax

N
X

k=1

pksk(w̄c,i�1) (6.8)

which is initialized at

w̄c,0 =
N
X

k=1

✓kwk,0 (6.9)

where wk,0 is the initial value of the distributed strategy at agent k. The

rate at which the agents approach w̄c,i is determined by |�2(A)|, the second

largest eigenvalue of A in magnitude. If the agents are initialized at the

same value, say, e.g., wk,0 = 0, then the learning curves start at Transient

259

Phase II directly.

• Transient Phase II:

In this phase, the trajectories of all agents are uniformly close to the tra-

jectory of the reference recursion; they converge in a coordinated manner

to steady-state. The learning curves at this phase are well modeled by the

same reference recursion (6.8) since we showed in (6.10) from Chapter 5

that:

Ekw̃k,ik2 = kw̃c,ik2 +O(µ1/2
max) · �ic +O(µmax) (6.10)

where the error vectors are defined by w̃k,i = wo�wk,i and w̃c,i = wo� w̄c,i.

Furthermore, for small step-sizes and during the later stages of this phase,

w̄c,i will be close enough to wo and the convergence rate r was shown in

expression (5.131) from Chapter 5 to be given by

r =
⇥

⇢(IM � µmaxHc)
⇤2

+O
�

(µmax✏)
1

2(M�1)

�

(6.11)

where ⇢(·) denotes the spectral radius of its matrix argument, ✏ is an arbi-

trarily small positive number, and Hc is defined as the aggregate (Hessian-

type) sum:

Hc ,
N
X

k=1

pkrwT sk(w
o) (6.12)

• Steady-State Phase:

The reference recursion (6.8) continues converging towards wo so that kw̃c,ik2

will converge to zero (�1 dB in Fig. 5.2 of Chapter 5). However, for the

distributed strategy (6.1)–(6.3), the mean-square-error Ekw̃k,ik2 at each

260

agent k will converge to a finite steady-state value that is on the order of

O(µmax):

lim sup
i!

Ekw̃k,ik2  O(µmax) (6.13)

Note that the bound (6.13) provides a partial answer to the fourth question

we are interested in, namely, how close the wk,i get to the network limit point

wo. Expression (6.13) indicates that the mean-square error is on the order of

µmax. However, in this chapter, we will examine this mean-square error more

closely and provide a more accurate characterization of the steady-state MSE

value by deriving a closed-form expression for it. In particular, we will be able

to characterize this MSE value in terms of the vector p as follows:

lim
i!1

Ekw̃k,ik2 = µmax ·Tr
�

X(pT⌦IM) · Rv · (p⌦IM)

+ o(µmax) (6.14)

where X is the solution to a certain Lyapunov equation described later in (6.42)

(when ⌃ = I), Rv is a gradient noise covariance matrix defined below in (6.25),

and o(µmax) denotes a strictly higher order term of µmax. Expression (6.14) is a

most revealing result; it captures the e↵ect of the network topology through the

eigenvector p, and it captures the e↵ects of gradient noise and data characteristics

through the matrices Rv and X, respectively. Expression (6.14) is a non-trivial

extension of a classical and famous result pertaining to the mean-square-error

performance of stand-alone adaptive agents [54,57,72,141] to the more demanding

context of networked agents. In particular, it can be easily verified that (6.14)

reduces to the well-known µM�2
v/2 expression for the mean-square deviation of

single LMS learners when the network size is set to N = 1 and the topology is

removed [54,57,72,141]. However, expression (6.14) is not limited to single agents

261

or to mean-square-error costs. It applies to rather general connected networks

and to fairly general cost functions.

6.2.3 Relation to Prior Work

As pointed out in Chapter 5 (see Sec. 5.2.2), most prior works in the literature

[13,21,48,71,75–77,84,97,109,125,126,137] focus on studying the performance and

convergence of their respective distributed strategies under diminishing step-size

conditions and for doubly-stochastic combination policies. In contrast, we focus

on constant step-sizes in order to enable continuous adaptation and learning

under drifting conditions. We also focus on left-stochastic combination matrices

in order to induce flexibility about the network limit point; this is because doubly-

stochastic policies force the network to converge to the same limit point, while

left-stochastic policies enable the networks to converge to any of infinitely many

Pareto optimal solutions. Moreover, the value of the limit point can be controlled

through the selection of the Perron eigenvector.

Furthermore, the performance of distributed strategies has usually been char-

acterized in terms of bounds on their steady-state mean-square-error performance

— see, e.g., [71,84,97,109,125,126,137]. In Chapter 5 of the work, as a byproduct

of our study of the three stages of the learning process, we were able to derive

performance bounds for the steady-state MSE of a fairly general class of dis-

tributed strategies under broader (weaker) conditions than normally considered

in the literature. In this chapter, we push the analysis noticeably further and

derive a closed-form expression for the steady-state MSE in the slow adapta-

tion regime, such as expression (6.14), which captures in an integrated manner

how various network parameters (topology, combination policy, utilities) influ-

ence performance.

262

Other useful and related works in the literature appear in [13, 75–77]. These

works, however, study the distribution of the error vector in steady-state under di-

minishing step-size conditions and using central limit theorem (CLT) arguments.

They showed a Gaussian distribution for the error quantities in steady-state and

derived an expression for the error variance but their expression naturally tends

to zero as i ! 1 since, under the conditions assumed in these works, the error

vector w̃k,i approaches zero almost surely. Such results are possible because, in

the diminishing step-size case, the influence of gradient noise is annihilated by

the decaying step-size. However, in the constant step-size regime, the influence

of gradient noise is always present and seeps into the operation of the algorithm.

In this case, the error vector does not approach zero any longer and its vari-

ance approaches instead a steady-state positive-definite value. Our objective is

to characterize this steady-state value and to examine how it is influenced by the

network topology, by the persistent gradient noise conditions, and by the data

characteristics and utility functions. In the constant step-size regime, CLT argu-

ments cannot be employed anymore because the Gaussianity result does not hold

any longer. Indeed, reference [145] illustrates this situation clearly; it derived an

expression for the characteristic function of the limiting error distribution in the

case of mean-square-error estimation and it was shown that the distribution is not

Gaussian. For these reasons, the analysis in this work is based on alternative tech-

niques that do not pursue any specific form for the steady-state distribution and

that rely instead on the use of energy conservation arguments [34, 115, 116]. As

the analysis and detailed derivations in the appendices show, this is a formidable

task to pursue due to the coupling among the agents and the persistent noise

conditions. Nevertheless, under certain conditions that are generally weaker than

similar conditions used in related contexts in the literature, we will be able to de-

rive accurate expressions for the network MSE performance and its convergence

263

rate in small constant step-size regime.

6.3 Modeling Assumptions

In this section, we first recall the assumptions used in Chapter 5 and then in-

troduce two conditions that are required to carry out the MSE analysis in this

chapter. We already explained in Sec. 5.3 of Chapter 5 how the assumptions

listed below relate to, and extend, similar conditions used in the literature.

Assumption 6.1 (Strongly-connected network). The N ⇥ N matrix product

A , A1A0A2 is assumed to be a primitive left-stochastic matrix, i.e., AT1 = 1

and there exists a finite integer jo such that all entries of Aj
o are strictly positive.

Assumption 6.2 (Update vector: Randomness). There exists an M ⇥ 1 deter-

ministic vector function sk(w) such that, for all M ⇥ 1 vectors w in the filtration

Fi�1 generated by the past history of iterates {wk,j} for j  i � 1 and all k, it

holds that

E {ŝk,i(w)|Fi�1} = sk(w) (6.15)

for all i, k. Furthermore, there exist ↵ � 0 and �2
v � 0 such that for all i, k and

w 2 Fi�1:

E
�

kŝk,i(w)�sk(w)k2
�

�Fi�1

 ↵·kwk2+�2
v (6.16)

264

Assumption 6.3 (Update vector: Lipschitz). There exists a nonnegative �U

such that for all x, y 2 RM and all k:

ksk(x)� sk(y)k  �U · kx� yk (6.17)

where the subscript “U” in �U means “upper bound”.

Assumption 6.4 (Update vector: Strong monotonicity). Let pk denote the kth

entry of the vector p defined in (6.6). There exists �L > 0 such that for all

x, y 2 RM :

(x� y)T ·
N
X

k=1

pk
h

sk(x)� sk(y)
i

� �L · kx� yk2 (6.18)

where the subscript “L” in �L means “lower bound”.

Assumption 6.5 (Jacobian matrix: Lipschitz). Let wo denote the limit point

of the distributed strategy (6.1)–(6.3), which was defined earlier as the unique

solution to (6.5) and was characterized in Theorem 5.1. Then, in a small neigh-

borhood around wo, we assume that sk(w) is di↵erentiable with respect to w and

satisfies

krwT sk(w
o + �w)�rwT sk(w

o)k  �H · k�wk (6.19)

for all k�wk  rH for some small rH , and where �H is a nonnegative number

independent of �w and wo.

The following lemma gives the equivalent forms of Assumptions 6.3–6.4 when

265

the {sk(w)} happen to be di↵erentiable.

Lemma 6.1 (Equivalent conditions on update vectors). Suppose {sk(w)} are

di↵erentiable in an open set S ✓ RM . Then, having conditions (6.17) and (6.18)

hold on S is equivalent to the following conditions, respectively,

krwT sk(w)k  �U (6.20)

1

2
[Hc(w) +HT

c (w)] � �L · IM (6.21)

for any w 2 S, where k · k denotes the 2� induced norm (largest singular value)

of its matrix argument and

Hc(w) ,
n
X

k=1

pkrwT sk(w) (6.22)

Proof. See Appendix 5.A in Chapter 5.

Next, we introduce two new assumptions on ŝk,i(w), which are needed for the

MSE analysis of this chapter. Assumption 6.6 below has been used before in the

stochastic approximation literature — see, for example, [112] and Eq. (6.2) in

Theorem 6.1 of [99, p.147].

Assumption 6.6 (Second-order moment of gradient noise). Let vi(x) denote

the MN ⇥ 1 global vector that collects the statistical fluctuations in the stochastic

update vectors across all agents:

vi(x) , col{ŝ1,i(x1)� s1(x1), . . . , ŝN,i(xN)� sN(xN)} (6.23)

where we are using the vector x to denote a block vector consisting of entries xk

of size M ⇥ 1 each, i.e., x , col{x1, . . . , xN}. For any xk 2 Fi�1, 1  k  N ,

266

we introduce the covariance matrix:

Rv,i(x) , E
�

vi(x)v
T
i (x)

�

�Fi�1

(6.24)

where, again, we are using the notation x to refer to the block vector x =

col{x1, . . . ,xN} with stochastic entries of size M ⇥ 1 each. Note that Rv,i(x)

generally depends on time i. This is because the distribution of ŝk,i(·) given Fi�1

usually varies with time. We assume that, in the limit, this second-order mo-

ment of the distribution becomes invariant and tends to a constant value when

evaluated at x = 1⌦ wo:

lim
i!1

Rv,i(1⌦ wo) , Rv (6.25)

Furthermore, in a small neighborhood around 1⌦wo, we assume that there exists

a �v � 0 and a 0 <   4 such that for all i � 0:

kRv,i(1⌦ wo + �x)�Rv,i(1⌦ wo)k  �v · k�xk (6.26)

for all k�xk  rV for some rV .

Example 6.1. We illustrate how Assumption 6.6 holds automatically in the

context of distributed least-mean-squares estimation. Suppose each agent k re-

ceives a stream of data samples {uk,i,dk(i)} that are generated by the following

linear model:

dk(i) = uk,iw
o + nk(i) (6.27)

where the 1⇥M regressors {uk,i} are zero mean and independent over time and

space with covariance matrix Ru,k = E{uT
k,iuk,i} � 0 and the noise sequence

267

{nl(j)} is also zero mean, white, with variance �2
n,l, and independent of the

regressors {uk,i} for all l, k, i, j. The objective is to estimate the M⇥1 parameter

vector wo by minimizing the following global cost function

Jglob(w) =
N
X

k=1

Jk(w) (6.28)

where

Jk(w) = E|dk(i)� uk,iw|2 (6.29)

In this case, the actual gradient vector when evaluated at an M ⇥ 1 vector xk is

given by

sk(xk) = rwE|dk(i)� uk,ixk|2 (6.30)

and it can be replaced by the instantaneous approximation

ŝk,i(xk) = �2uT
l,i[dl(i)� ul,ixk] (6.31)

(Recall from (6.2) that the stochastic gradient at each agent k is evaluated at

�k,i�1 and in this case xk = �k,i�1.) It follows that the gradient noise vector

vk,i(xk) evaluated at xk, at each agent k is given by

vk,i(xk) = 2(Ru,k � uT
k,iuk,i)(w

o � xk)� 2uT
k,ink(i) (6.32)

and it is straightforward to verify that

Rv,i(1⌦ wo) = diag{4�2
n,1Ru,1, · · · , 4�2

n,NRu,N} (6.33)

268

which is independent of i and, therefore, condition (6.25) holds with Rv given

by (6.33). Furthermore, condition (6.26) is also satisfied. Indeed, let x =

col{x1, . . . , xN} 2 RMN , and from (6.32) we find that

Rv,i(x) = diag{G1, . . . , GN} + Rv,i(1⌦ wo) (6.34)

where each Gk is a function of wo � xk and is given by

Gk , 4 · E
�

(Ru,k � uT
k,iuk,i)(w

o � xk)

(wo � xk)
T (Ru,k � uT

k,iuk,i)
T

(6.35)

Note that

kGkk  4 · E
�

�Ru,k � uT
k,iuk,i

�

�

2 · kwo � xkk2 (6.36)

so that

�

�Rv,i(x)�Rv,i(1⌦ wo)
�

�

= max
1kN

kGkk

 max
1kN

�

4 · EkRu,k � uT
k,iuk,ik2 · kwo � xkk2

 max
1kN

�

4 · EkRu,k � uT
k,iuk,ik2

· max
1kN

kwo � xkk2

 max
1kN

�

4 · EkRu,k � uT
k,iuk,ik2

·
N
X

k=1

kwo � xkk2

= max
1kN

�

4 · EkRu,k�uT
k,iuk,ik2

· k1⌦ wo�xk2 (6.37)

In other words, condition (6.26) holds for the least-mean-squares estimation case.

269

Assumption 6.7 (Fourth-order moment of gradient noise). There exist nonneg-

ative numbers ↵4 and �2
v4 such that for any M ⇥ 1 random vector w 2 Fi�1,

E
�

kvk,i(w)k4
�

�Fi�1

 ↵4 · kwk4 + �4
v4 (6.38)

This assumption will be used in the analysis for constant step-size adaptation

to arrive at accurate expressions for the steady-state MSE of the agents. By

assuming that the fourth-order moment of the gradient noise is bounded as in

(6.38), it becomes possible to derive MSE expressions that can be shown to be

at most O(µmin(3/2,1+/2)
max) away from the actual MSE performance. When the

step-sizes are su�ciently small, the size of the term µmin(3/2,1+/2)
max is even smaller

and, for all practical purposes, this term is negligible — see expression (6.1) in

Theorem 6.1.

Example 6.2. It turns out that condition (6.38) is automatically satisfied in

the context of distributed least-mean-squares estimation. We continue with the

setting of Example 6.1. From expression (6.32), we have that for any M ⇥ 1

random vector w 2 Fi�1,

kvk,i(w)k4 = 16
�

�(Ru,k � uT
k,iuk,i)(w

o �w)� uT
k,ink(i)

�

�

4

(a)

 16⇥ 8
⇣

�

�Ru,k � uT
k,iuk,i

�

�

4 · kwo �wk4 + kuk,ik4 · knk(i)k4
⌘

(b)

 128
⇣

8
�

�Ru,k � uT
k,iuk,i

�

�

4 · kwk4 + 8
�

�Ru,k � uT
k,iuk,i

�

�

4 · kwok4

+ kuk,ik4 · knk(i)k4
⌘

(6.39)

where steps (a) and (b) use the inequality kx+yk4  8kxk4+8kyk4, which can be

obtained by applying Jensen’s inequality to the convex function k · k4. Applying

270

the expectation operator conditioned on Fi�1, we obtain

E
�

kvk,i(w)k4|Fi�1

(a)

 1024 · E
n

�

�Ru,k � uT
k,iuk,i

�

�

4 |Fi�1

o

· kwk4+

1024 · E
n

�

�Ru,k � uT
k,iuk,i

�

�

4 |Fi�1

o

· kwok4+

128 · E
�

kuk,ik4 |Fi�1

· E
�

knk(i)k4 |Fi�1

(b)
= 1024 · E

n

�

�Ru,k � uT
k,iuk,i

�

�

4
o

· kwk4+

1024 · E
n

�

�Ru,k � uT
k,iuk,i

�

�

4
o

· kwok4+

128 · E kuk,ik4 · E knk(i)k4

, ↵4 · kwk4 + �4
v4 (6.40)

where step (a) uses the fact that w 2 Fi�1 and is thus determined given Fi�1,

and step (b) uses the fact that uk,i and vk,i(i) are independent of Fi�1.

6.4 Performance of Multi-Agent Learning Strategy

In this section, we are interested in evaluating Ekw̃k,ik2⌃ as i ! 1 for arbitrary

positive semi-definite weighting matrices ⌃. The main result is summarized in

the following theorem.

Theorem 6.1 (Steady-state performance). For small step-sizes, the weighted

mean-square-error of the distributed strategy (6.1)–(6.3) (which includes di↵usion

and consensus algorithms as special cases) is given by

lim
i!1

Ekw̃k,ik2⌃ = µmax ·Tr
�

X(pT⌦IM) · Rv · (p⌦IM)

+O
�

µmin(3/2,1+/2)
max

�

(6.41)

271

where ⌃ is any positive semi-definite weighting matrix, and X is the unique pos-

itive semi-definite solution to the following Lyapunov equation:

HT
c X +XHc = ⌃ (6.42)

where Hc was defined earlier in (6.12). The unique solution of (6.42) can be

represented by the integral expression [73, p.769]:

X =

Z 1

0

e�HT

c

t · ⌃ · e�H
c

tdt (6.43)

Moreover, if ⌃ is strictly positive-definite, then X is also strictly positive-definite.

Proof. The argument is nontrivial and involves several steps. The details are

provided in Appendix 6.A.

Example 6.3. (Distributed stochastic gradient-descent: General case) When

stochastic gradients are used to define the update directions ŝk,i(·) in (6.1)–(6.3),

then we can simplify the mean-square-error expression (6.41) as follows. We first

substitute sk(w) = rwJk(w) into (6.12) to obtain

Hc =
N
X

k=1

pkr2
wJk(w

o) (6.44)

Now the matrix Hc is the weighted sum of the Hessian matrices of the individual

costs {Jk(w)} and is therefore symmetric. Then, the Lyapunov equation (6.42)

becomes

HcX +XHc = ⌃ (6.45)

We have simple solutions to (6.45) for the following two choices of ⌃:

272

1. When ⌃ = IM , we have X = 1
2
H�1

c and

lim
i!1

Ekw̃k,ik2 =
µmax

2
· Tr

�

H�1
c (pT⌦IM)·Rv ·(p⌦IM)

+O
�

µmin(3/2,1+/2)
max

�

(6.46)

2. When ⌃ = 1
2
Hc, we have X = 1

4
IM and

lim
i!1

Ekw̃k,ik2H
c

=
µmax

4
· Tr

�

(pT⌦IM) · Rv · (p⌦IM)

+O
�

µmin(3/2,1+/2)
max

�

(6.47)

Example 6.4. (Distributed stochastic gradient descent: Uncorrelated noise) In

the special case that the gradient noises at the di↵erent agents are uncorrelated

with each other, then Rv is block diagonal and we write it as

Rv = diag{Rv,1, . . . , Rv,N} (6.48)

where Rv,k is the M ⇥ M covariance matrix of the gradient noise at agent k.

Then, the MSE expression (6.46) at each agent k can be written as

lim
i!1

Ekw̃k,ik2 =
µmax

2
· Tr

8

<

:

N
X

k=1

pkr2
wJk(w

o)

!�1

·

N
X

k=1

p2kRv,k

!

9

=

;

+O
�

µmin(3/2,1+/2)
max

�

(6.49)

and expression (6.47) for the weighted MSE becomes

lim
i!1

Ekw̃k,ik2H
c

=
µmax

4
· Tr

(

N
X

k=1

p2kRv,k

)

+O
�

µmin(3/2,1+/2)
max

�

(6.50)

273

6.5 Performance of Centralized Solution

We conclude from (6.41) that the weighted mean-square-error at each node k

will be the same across all agents in the network for small step-sizes. This is

an important “equalization” e↵ect. Moreover, as we now verify, the performance

level given by (6.41) is close to the performance of a centralized strategy that

collects all the data from the agents and processes them using the following

recursion:

wcent,i = wcent,i�1 � µmax

N
X

k=1

pkŝk,i(wcent,i�1) (6.51)

To establish this fact, we first note that the performance of the above centralized

strategy can be analyzed in the same manner as the distributed strategy. Indeed,

let w̌cent,i , wcent,i � w̄c,i denote the discrepancy between the above centralized

recursion and reference recursion (6.8). Then, we obtain from (6.8) and (6.51)

that

w̌cent,i = Tc(wcent,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM)vi(wcent,i�1) (6.52)

where the operator Tc(w) is defined as the following mapping from RM to RM :

Tc(w) , w � µmax

N
X

k=1

pksk(w) (6.53)

Comparing (6.52) with expression (6.80) from Chapter 5, we note that these two

recursions take similar forms except for an additionl perturbation term zi�1 in

274

(6.80) of Chapter 5. Therefore, following the same line of transient analysis as in

Chapter 5 and steady-state analysis as in the proof of Theorem 6.1 stated earlier,

we can conclude that, in the small step-size regime, the transient behavior of

the centralized strategy (6.51) is close to the reference recursion (6.8), and the

steady-state performance is again given by (6.41).

Theorem 6.2 (Centralized performance). Suppose the step-size parameter µmax

in the centralized recursion (6.51) satisfies the following condition

0 < µmax <
�L

kpk2 ·
⇣

�2

U

2
+ 2↵

⌘ (6.54)

Then, the MSE term Ekw̃cent,ik2 converges at the rate of

r =
⇥

⇢(IM � µmaxHc)
⇤2

+O
�

(µmax✏)
1

2(M�1)

�

(6.55)

where ✏ is an arbitrarily small positive number. Furthermore, in the small step-

size regime, the steady-state MSE of (6.51) is also given by (6.41)

lim
i!1

Ekw̃cent,ik2⌃ = µmax ·Tr
�

X(pT⌦IM) · Rv · (p⌦IM)

+O
�

µmin(3/2,1+/2)
max

�

(6.56)

6.6 Benefits of Coopeartion

In this section, we illustrate the implications of the main results of this work

in the context of distributed learning and distributed optimization. Consider a

network of N connected agents, where each agent k receives a stream of data

275

{xk,i} arising from some underlying distribution. The networked multi-agent

system would like to extract from the distributed data some useful information

about the underlying process. To measure the quality of the inference task, an

individual cost function Jk(w) is associated with each agent k, where w denotes

an M ⇥ 1 parameter vector. The agents are generally interested in minimizing

some aggregate cost function of the form (6.28):

Jglob(w) =
N
X

k=1

Jk(w) (6.57)

Based on whether the individual costs {Jk(w)} share a common minimizer or

not, we can classify problems of the form (6.57) into two broad categories.

6.6.1 Category I: Distributed Learning

In this case, the data streams {xk,i} are assumed to be generated by (possibly

di↵erent) distributions that nevertheless depend on the same parameter vector

wo 2 RM . The objective is then to estimate this common parameter wo in a

distributed manner. To do so, we first need to associate with each agent k a cost

function Jk(w) that measures how well some arbitrary parameter w approximates

wo. The cost Jk(w) should be such that wo is one of its minimizers. More

formally, let Wo
k denote the set of vectors that minimize the selected Jk(w), then

it is expected that

wo 2Wo
k ,

n

w : argmin
w

Jk(w)
o

(6.58)

276

for k = 1, . . . , N . Since Jglob(w) is assumed to be strongly convex, then the

intersection of the sets Wo
k should contain the single element wo:

wo 2Wo =
N
\

k=1

Wo
k (6.59)

The main motivation for cooperation in this case is that the data collected at each

agent k may not be su�cient to uniquely identify wo since wo is not necessarily

the unique element in Wo
k ; this happens, for example, when the individual costs

Jk(w) are not strictly convex. However, once the individual costs are aggregated

into (6.57) and the aggregate function is strongly convex, then wo is the unique

element in Wo. In this way, the cooperative minimization of Jglob(w) allows the

agents to estimate wo.

6.6.1.1 Working under Partial Observation

Under the scenario described by (6.59), the solution of (6.5) agrees with the

unique minimizer wo for Jglob(w) given by (6.57) regardless of the {pk} and,

therefore, regardless of the combination policy A. Therefore, the results from

Sec. 5.4 of Chapter 5 show that the iterate wk,i at each agent k converges to

this unique wo at a centralized rate and the results from Sec. 6.4 of this chapter

show that this iterate achieves the centralized steady-state MSE performance.

Note that Assumption 6.4 can be satisfied without requiring each Jk(w) to be

strongly convex. Instead, we only require Jglob(w) to be strongly convex. In

other words, we do not need each agent to have complete information about wo;

we only need the network to have enough information to determine wo uniquely.

Although the individual agents in this case have partial information about wo,

the distributed strategies (6.1)–(6.3) enable them to attain the same performance

277

level as a centralized solution. The following example illustrates the idea in the

context of distributed least-mean-squares estimation over networks.

Example 6.5. Consider Example 6.1 again. When the covariance matrix Ru,k ,
E[uT

k,iuk,i] is rank deficient, then Jk(w) in (6.29) would not be strongly convex and

there would be infinitely many minimizers to Jk(w). In this case, the information

provided to agent k via (6.27) is not su�cient to determine wo uniquely. However,

if the global cost function is strongly convex, which can be verified to be equivalent

to requiring:

N
X

k=1

pkRu,k > �LIM > 0 (6.60)

then the information collected over the entire network is rich enough to learn the

unique wo. As long as (6.60) holds for one set of positive {pk}, it will hold for all

other {pk}. A “network observability” condition similar to (6.60) was used in [75]

to characterize the su�ciency of information over the network in the context of

distributed estimation over linear models albeit with diminishing step-sizes.

6.6.1.2 Optimizing the MSE Performance

Since the distributed strategies (6.1)–(6.3) converge to the minimizer wo of (6.57)

for any set of {pk}, we can then consider selecting the {pk} to optimize the MSE

performance. Consider the case where Hk ⌘ H and µk ⌘ µ and assume the

gradient noises vk,i(w) are asymptotically uncorrelated across the agents so that

Rv from (6.25) is block diagonal with entries denoted by:

Rv = diag{Rv,1, . . . , Rv,N} (6.61)

278

Then, we have �k = 1, pk = ✓k and

Hc = H = r2
wJ1(w

o) = · · · = r2
wJN(w

o) (6.62)

in which case expression (6.46) becomes

lim
i!1

Ekw̃k,ik2 =
µmax

2
·

N
X

k=1

✓2kTr
�

H�1Rv,k

�

+O
�

µmin(3/2,1+/2)
max

�

(6.63)

The optimal positive coe�cients {✓k} that minimize (6.63) subject to
PN

k=1 ✓k = 1

are given by

✓ok =
[Tr(H�1Rv,k)]

�1

N
X

`=1

[Tr(H�1Rv,`)]
�1

, k = 1, . . . , N (6.64)

and, substituting into (6.63), the optimal MSE is then given by

MSEopt =
µmax

2
·
"

N
X

`=1

1

Tr(H�1Rv,`)

#�1

+O
�

µmin(3/2,1+/2)
max

�

(6.65)

The optimal Perron-eigenvector ✓o = col{✓o1, . . . , ✓oN} can be implemented by

selecting the combination policy A as the following Hasting’s rule [18, 62, 146]:

aolk =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(✓ok)
�1

max {|Nk|·(✓ok)�1, |N`|·(✓o`)�1} , `2Nk\{k}

1�
X

m2N
k

\{k}

aomk, ` = k

(6.66)

where |Nk| denotes the cardinality of the set Nk. The above combination matrix

can be constructed in a decentralized manner, where each node only requires

279

information from its own neighbors. In practice, the noise covariance matrices

{Rv,`} need to be estimated from the local data and an adaptive estimation

scheme is proposed in [146] to address this issue.

6.6.1.3 Matching Performance across Topologies

Note that the steady-state mean-square error depends on the vector p, which

is determined by the Perron eigenvector ✓ of the matrix A. The above result

implies that, as long as the network is strongly connected, i.e., Assumption 6.1

holds, a left-stochastic matrix A can always be constructed to have any desired

Perron eigenvector ✓ with positive entries according to (6.66). Now, starting

from any collection of N agents, there exists a finite number of topologies that

can link these agents together. For each possible topology, there are infinitely

many combination policies that can be used to train the network. One important

conclusion that follows from the above results is that regardless of the topology,

there always exists a choice for A such that the performance of all topologies

are identical to each other to first-order in µmax. In other words, no matter

how the agents are connected to each other, there is always a way to select the

combination weights such that the performance of the network is invariant to the

topology. This also means that, for any connected topology, there is always a

way to select the combination weights such that the performance of the network

matches that of the centralized solution.

Example 6.6. We illustrate the result using the di↵usion least-mean-square

estimation context discussed earlier in Examples 6.1–6.2. Consider a network of

30 agents (N = 30), where each agent has access to a stream of data samples

{uk,i,dk(i)} that are generated by the linear model (6.27). As assumed in Exam-

ple 6.1, the 1⇥M regressors {uk,i} are zero mean and independent over time and

280

(a)

0 5 10 15 20 25 30
2

4

6

8

10

12

14

16

Index of the agents

N
oi

se
 v

ar
ia

nc
e

(d
B

)

(b)

0 0.5 1 1.5 2
x 104

−30

−20

−10

0

10

20

30

Number of iterations

M
ea

n
sq

ua
re

 e
rr

or
 (d

B
)

Centralized strategy
Steady−state MSE (theory)

Diffusion strategy

(c)

0 5 10 15 20 25 30

−30

−20

−10

0

10

20

30

Index of the agents

St
ea

dy
−s

ta
te

 M
SE

 (d
B

)

Diffusion strategy
Centralized strategy
Theory

(d)

Figure 6.1: Comparing the performance of a 30-node di↵usion LMS network
with that of the centralized strategy (6.51), where M = 10, µk = 0.0005 for all
agents, and Hasting’s rule (6.66) is used as the combination policy. The result
is obtained by averaging over 1000 Monte Carlo experiments. (a) A randomly
generated topology. (b) The noise profile across the network. (c) The learning
curves for di↵erent agents in the di↵usion LMS network, the centralized strategy,
and the theoretical steady-state MSE. (d) The steady-state MSE of di↵usion
LMS, centralized strategy, and the theoretical value.

281

space with covariance matrix Ru,k, and the noise sequence {nl(j)} is also zero

mean, white, with variance �2
n,l, and independent of the regressors {uk,i} for all

l, k, i, j. In the simulation here, we consider the case where M = 2, Ru,k = IM . In

di↵usion LMS estimation, each agent k uses (6.29) as its cost function Jk(w) and

(6.31) as the stochastic gradient vector ŝk,i(·). Therefore, each agent k adopts

the following recursion to adaptively estimate the model parameter wo, which is

the minimizer of the global cost function (6.28):

 k,i = wk,i + 2µku
T
k,i[dk(i)� uk,iwk,i�1] (6.67)

wk,i =
X

l2N
k

alk l,i (6.68)

We randomly generate a topology as shown in Fig. 6.1 (a) and noise variance

profile across agents as shown in Fig. 6.1 (b). We choose µk ⌘ µ = 0.0005

to be the step-size for all agents and Hasting’s rule (6.66) as the combination

policy. In the simulation, we assume the noise variances are known to the agents.

Alternatively, they can also be estimated in an adaptive manner using approaches

proposed in [146]. In Figs. 6.1 (c)–(d), we illustrate the learning curves and

steady-state MSE of all agents, respectively, and compare them to the theoretical

value and to the following centralized LMS strategy:

wcent,i = wcent,i�1 + 2µ
N
X

k=1

pk · uT
k,i[dk(i)� uk,iwcent,i�1] (6.69)

where pk = ✓ok is given by (6.64). The results are obtained by averaging over

1000 Monte Carlo experiments. We observe from Fig. 6.1 (c) that the learning

curves of all agents are close to each other and to the centralized strategy. Fur-

thermore, Fig. 6.1 illustrates the equalization e↵ect over the network; each agent

in the network achieves almost the same steady-state MSE that is close to the

282

centralized strategy although the noise variances in the data are di↵erent across

the agents.

6.6.2 Category II: Distributed Optimization

In this case, we include situations where the individual costs Jk(w) do not have

a common minimizer, i.e., Wo = ;. The optimization problem should then be

viewed as one of solving a multi-objective minimization problem

min
w

{J1(w), . . . , JN(w)} (6.70)

where Jk(w) is an individual convex cost associated with each agent k. A vector

wo is said to be a Pareto optimal solution to (6.70) if there does not exist another

vector w that is able to improve (i.e., reduce) any individual cost without degrad-

ing (increasing) some of the other costs. Pareto optimal solutions are not unique.

The question we would like to address now is the following. Given individual costs

{Jk(w)} and a combination policy A, what is the limit point of the distributed

strategies (6.1)–(6.3)? From Theorem 5.4 in Chapter 5, the distributed strategy

(6.1)–(6.3) converges to the limit point wo defined as the unique solution to (6.5).

Substituting sk(w) = rwJk(w) into (6.5), we obtain

N
X

k=1

pkrwJk(w
o) = 0 (6.71)

In other words, wo is the minimizer of the following global cost function:

Jglob(w) =
N
X

k=1

pkJk(w) (6.72)

283

It is shown in [20, pp.178–180] that the minimizer of (6.72) is a Pareto-optimal so-

lution for the multi-objective optimization problem (6.70). And di↵erent choices

for the vector p lead to di↵erent Pareto-optimal points on the tradeo↵ curve.

Therefore, in order to converge to a certain Pareto-optimal point corresponding

to a given set of positive coe�cients {pk}, we need to design a left-stochastic

matrix A so that its Perron eigenvector leads to the {pk}. This can be achieved

by constructing A according to the following Hasting’s rule:

alk =

8

>

>

>

<

>

>

>

:

p�1
k

max
�

|Nk| · p�1
k , |Nl| · p�1

l

 , l 2 Nk\{k}

1�
X

m2N
k

\{k}

amk, l = k
(6.73)

6.7 Conclusion

Along with Chapter 5, this chapter examined in some detail the mean-square per-

formance, convergence, and stability of distributed strategies for adaptation and

learning over graphs under constant step-size update rules. Keeping the step-size

fixed allows the network to track drifts in the underlying data models, their sta-

tistical distributions, and even drifts in the utility functions. Earlier work [147]

has shown that constant adaptation regimes endow networks with tracking abili-

ties and derived results that quantify how the performance of adaptive networks

is a↵ected by the level of non-stationarity in the data. Similar conclusions ex-

tend to the general scenario studied in Chapter 5 and this chapter, which is the

reason why step-sizes have been set to a constant value throughout our treat-

ment. When this is done, the dynamics of the learning process is enriched in a

nontrivial manner. This is because the e↵ect of gradient noise does not die out

anymore with time (in comparison, when diminishing step-sizes are used, gradi-

284

ent noise is annihilated by the decaying step-sizes). And since agents are coupled

through their interactions over the network, it follows that their gradient noises

will continually influence the performance of their neighbors. As a result, the

network mean-square performance does not tend to zero anymore. Instead, it

approaches a steady-state level. One of the main objectives of this chapter has

been to quantify this level and to show explicitly how its value is a↵ected by three

parameters: the network topology, the gradient noise, and the data characteris-

tics. As the analysis and the detailed derivations in the appendices of the current

manuscript show, this is a formidable task to pursue due to the coupling among

the agents. Nevertheless, under certain conditions that are generally weaker than

similar conditions used in related contexts in the literature, we were able to de-

rive accurate expressions for the network MSE performance and its convergence

rate. For example, the MSE expression we derived is accurate in the first order

term of µmax. Once an MSE expression has been derived, we were then able to

optimize it over the network topology (for the important case of uniform Hessian

matrices across the network, as is common for example in machine learning [129]

and mean-square-error estimation problems [116]). We were able to show that

arbitrary connected topologies for the same set of agents can always be made to

perform similarly. We were also able to show that arbitrary connected topolo-

gies for the same set of agents can be made to match the performance of a fully

connected network. These are useful insights and they follow from the analytical

results derived in this work.

6.A Proof of Theorem 6.1

The argument involves several steps, labeled steps 6.A.1 through 6.A.5, and relies

also on intermediate results that are proven in this appendix. We start with step

285

6.A.1.

6.A.1 Relating the weighted MSE to the steady-state error covariance

matrix ⇧1

Let ⇧i , E
�

w̃iw̃
T
i

denote the error covariance matrix of the global error vector

w̃i , col{w̃1,i, . . . , w̃N,i} (6.74)

where w̃k,i , wo � w̃k,i. Note that if we are able to evaluate ⇧i as i ! 1,

i.e., ⇧1, then we can obtain the steaty-state weighted mean-square-error for any

individual agent via the following relation:

lim
i!1

Ekw̃k,ik2⌃ = lim
i!1

E
n

col{w̃1,i, . . . , w̃N,i}T

· diag{0, . . . ,⌃, . . . , 0}

· col{w̃1,i, . . . , w̃N,i}
o

= lim
i!1

E
�

w̃T
i (Ekk ⌦ ⌃)w̃i

= lim
i!1

E
�

Tr
�

w̃iw̃
T
i (Ekk ⌦ ⌃)

 �

= lim
i!1

Tr
�

E
⇥

w̃iw̃
T
i

⇤

(Ekk ⌦ ⌃)

= Tr{⇧1(Ekk ⌦ ⌃)} (6.75)

where Ekk is an M⇥M matrix with (k, k)-entry equal to one and all other entries

equal to zero. We could proceed with the analysis by deriving a recursion of w̃i

from (6.1)–(6.3) and examining the corresponding error covariance matrix, ⇧i.

However, we will take an alternative approach here by calling upon the following

286

decomposition of the error quantity w̃k,i from Chapter 5 (see Eq. (6.76) therein):

w̃k,i = w̃c,i � w̌c,i � (uL,k ⌦ IM)we,i (6.76)

where w̃c,i , wo � wc,i denotes the error of the reference recursion (6.8) relative

to wo, the vectors w̌c,i and we,i are the two transformed quantities introduced

in Eqs. (5.70) and (5.60) in Chapter 5, and uL,k is the kth row of the matrix

UL which is a sub-matrix of the transform matrix introduced in Eq. (5.54) in

Chapter 5. In particular, w̌c,i represents the error of the centroid of the iterates

{wk,i} relative to the reference recursion:

w̌c,i , wc,i � w̄c,i (6.77)

where the centroid wc,i is defined as

wc,i ,
N
X

k=1

✓kwk,i (6.78)

and (uL,k ⌦ IM)we,i represents the error of the iterate wk,i at agent k relative to

the centroid wc,i. The details and derivation of the decomposition (6.76) appear

in Sec. 5.5.1 of Chapter 5. Relation (6.76) can also be written in the following

equivalent global form:

w̃i = 1⌦ w̃c,i � 1⌦ w̌c,i � (UL ⌦ IM)we,i (6.79)

The major motivation to use (6.79) in our steady-state analysis is that the con-

vergence results and non-asymptotic MSE bounds for each term in (6.79) will

reveal that some quantities will either disappear or become higher order terms

in steady-state for small step-sizes. In particular, we are going to show that the

287

mean-square-error of w̃i is dominated by the mean-square-error of w̌c,i. There-

fore, it will su�ce to examine the mean-square-error of w̌c,i. We derived in

expression (5.97) from Chapter 5 the following relation for w̌c,i:

w̌c,i = Tc(wc,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM) [zi�1 + vi] (6.80)

where

Tc(x) , x� µmax

N
X

k=1

pksk(x) (6.81)

vi , ŝi (�i�1)�s (�i�1) (6.82)

zi�1 , s (�i�1)�s(1⌦wc,i�1) (6.83)

The two perturbation terms vi(�i�1) and zi�1 were further shown to satisfy the

following bounds in Appendix 5.H in Chapter 5.

P [zi�1] � �2U ·
�

�P̄1[A
T
1UL]

�

�

2

1 ·11T ·P [we,i�1] (6.84)

P [s(1⌦wc,i�1)] � 3�2U ·P [w̌c,i�1]·1+3�2Ukw̃c,0k2 · 1+3go (6.85)

E{P [vi]|Fi�1} � 4↵ · 1 · P [w̌c,i�1]

+ 4↵ · kP̄ [AT
1 UL]k21 · 11TP [we,i�1]

+
⇥

4↵ · (kw̃c,0k2+kwok2)+�2
v

⇤

· 1 (6.86)

EP [vi] � 4↵ · 1 · EP [w̌c,i�1]

+ 4↵ · kP̄ [AT
1 UL]k21 · 11TEP [we,i�1]

+
⇥

4↵ · (kw̃c,0k2+kwok2)+�2
v

⇤

· 1 (6.87)

288

where P [w̌c,i�1] = kw̌c,i�1k2, and go , P [s(1⌦ wo)]. We further showed in Eqs.

(5.146) and (5.147) from Chapter 5 that

lim sup
i!1

Ekw̌c,ik2  O(µmax) (6.88)

lim sup
i!1

Ekwe,ik2  O(µ2
max) (6.89)

6.A.2 Approximation of ⇧1 by 11T ⌦ ⇧̌c,1

In order to evaluate ⇧1, which is needed for (6.75), we first establish the following

observation using (6.79): in steady-state, the error covariance matrix of w̃i (i.e.,

⇧1) is equal to the error covaraince matrix of the component 1 ⌦ w̌c,i to the

first order of µmax. Indeed, let ⇧̌c,i denote the covariance matrix of w̌c,i, i.e.,

⇧̌c,i , E{w̌c,iw̌
T
c,i}. By (6.79), we have

⇧i = E
�

w̃iw̃
T
i

= 11T ⌦ [w̃c,iw̃
T
c,i] + 11T ⌦ ⇧̌c,i

+ E
�

[(UL ⌦ IM)we,i][(UL ⌦ IM)we,i]
T

� (1⌦ w̃c,i)
�

1⌦ Ew̌c,i + (UL ⌦ IM)Ewe,i

�T

�
�

1⌦ Ew̌c,i + (UL ⌦ IM)Ewe,i

�

(1⌦ w̃c,i)
T

+ E
�

(1⌦ w̌c,i)[(UL ⌦ IM)we,i]
T

+ E
�

[(UL ⌦ IM)we,i](1⌦ w̌c,i)
T

(6.90)

so that

�

�⇧i � 11T ⌦ ⇧̌c,i

�

�

(a)


�

�11T ⌦ [w̃c,iw̃
T
c,i]
�

�

+
�

�E
�

[(UL ⌦ IM)we,i][(UL ⌦ IM)we,i]
T

�

�

289

+ 2 k1⌦ w̃c,ik ·
�

�1⌦ Ew̌c,i + (UL ⌦ IM)Ewe,i

�

�

+ 2
�

�E
�

(1⌦ w̌c,i)[(UL ⌦ IM)we,i]
T

�

�

(b)


�

�11T ⌦ [w̃c,iw̃
T
c,i]
�

�+ E k(UL ⌦ IM)we,i]k2

+ 2 k1⌦ w̃c,ik ·
�

�1⌦ Ew̌c,i + (UL ⌦ IM)Ewe,i

�

�

+ 2
�

�E
�

(1⌦ w̌c,i)[(UL ⌦ IM)we,i]
T

�

� (6.91)

where step (a) uses triangular inequality, and step (b) applies Jensen’s inequality

kE[·]k  Ek · k to the convex function k · k and the inequality kxyTk  kxk · kyk.

Taking lim sup of both sides as i!1, we obtain

lim sup
i!1

�

�⇧i � 11T ⌦ ⇧̌c,i

�

�

 lim sup
i!1

E k(UL ⌦ IM)we,i]k2

+ lim sup
i!1

�

2
�

�E
�

(1⌦ w̌c,i)[(UL ⌦ IM)we,i]
T

�

�

(6.92)

since w̃c,i ! 0 as i!1 according to Theorem 5.2 in Chapter 5. We now bound

the two terms on the right-hand side of (6.92) using (6.88)–(6.89) and show that

they are higher order terms of µmax. By (6.89), the first term on the right-hand

side of (6.92) is O(µ2
max) because

lim sup
i!1

E k(UL ⌦ IM)we,i]k2

 lim sup
i!1

kUL ⌦ IMk2 · Ekwe,ik2  O(µ2
max) (6.93)

Moreover, for any random variables x and y, we have |E{xy}|2  E{x2} ·E{y2}.

Applying this result to the last term in (6.92) we have

�

�E
⇥

(1⌦ w̌c,i)[(UL ⌦ IM)we,i]
T
⇤

�

�

290


q

Ek1⌦ w̌c,ik2 · Ek(UL ⌦ IM)we,ik2 (6.94)

Using (6.88) and (6.89), we conclude that

lim sup
i!1

�

�E
⇥

(1⌦ w̌c,i)[(UL ⌦ IM)we,i]
T
⇤

�

�  O(µ3/2
max) (6.95)

Therefore, substituting (6.93) and (6.95) into (6.92), we conclude that

lim sup
i!1

�

�⇧i � 11T ⌦ ⇧̌c,i

�

�  O(µ3/2
max) (6.96)

so that, as claimed earlier, in steady-state (i!1):

⇧1 = 11T ⌦ ⇧̌c,1 +O(µ3/2
max) (6.97)

6.A.3 Approximation of ⇧̌c,1 by ⇧̌a,1

Now we evaluate the expression for ⇧̌c,1. To do this, we rewrite expressions

(6.80)–(6.83) for w̌c,i as

w̌c,i = w̌c,i�1�µmax

N
X

k=1

pk
⇥

sk(wc,i�1)�sk(w̄c,i�1)
⇤

� µmax · (pT ⌦ IM) [zi�1 + vi]

= [IM � µmaxHc] w̌c,i�1 � µmax · (pT ⌦ IM)vi � µmax · (pT ⌦ IM)zi�1

� µmax

�

sc(wc,i�1)� sc(w̄c,i�1)�Hcw̌c,i�1

�

(6.98)

where

Hc ,
N
X

k=1

pkrwT sk(w
o) (6.99)

291

sc(w) ,
N
X

k=1

pksk(w) (6.100)

Next, we show that the mean-square-error between w̌c,i generated by (6.98) and

the w̌a,i generated by the following auxiliary recursion is small for small step-sizes:

w̌a,i = [IM � µmaxHc] w̌a,i�1 � µmax · (pT ⌦ IM)vi (6.101)

Indeed, subtracting (6.101) from (6.98) leads to

w̌c,i � w̌a,i = [IM � µmaxHc] (w̌c,i�1 � w̌a,i�1)

� µmax

�

sc(wc,i�1)� sc(w̄c,i�1)�Hcw̌c,i�1

�

� µmax · (pT ⌦ IM)zi�1 (6.102)

We recall the definition of the scalar factor �c from Eq. (5.120) in Chapter 5:

�c , 1� µmax�L +
1

2
µ2
maxkpk21�2U (6.103)

Now evaluating the squared Euclidean norm of both sides of (6.102), we get

kw̌c,i � w̌a,ik2

=
�

��c · 1

�c
[IM � µmaxHc] (w̌c,i�1 � w̌a,i�1)

+
1� �c

2
· �2µmax

1� �c
·
�

sc(wc,i�1)�sc(w̄c,i�1)�Hcw̌c,i�1

�

+
1� �c

2
· �2µmax

1� �c
· (pT⌦IM)zi�1

�

�

2

(a)

 �c ·
�

�

1

�c
[IM�µmaxHc] (w̌c,i�1�w̌a,i�1)

�

�

2

+
1��c
2

·
�

�

�2µmax

1� �c
·
�

sc(wc,i�1)�sc(w̄c,i�1)�Hcw̌c,i�1

�

�

�

2

292

+
1� �c

2
·
�

�

�2µmax

1� �c
· (pT⌦IM)zi�1

�

�

2

 1

�c
· kIM � µmaxHck2 · kw̌c,i�1 � w̌a,i�1k2

+
2µ2

max

1� �c
·
�

�sc(wc,i�1)� sc(w̄c,i�1)�Hcw̌c,i�1

�

�

2

+
2µ2

max

1� �c
· k(pT⌦IM)k2 · kzi�1k2

(b)
=

1

�c
· kBck2 · kw̌c,i�1 � w̌a,i�1k2

+
2µmax

�L� 1
2
µmaxkpk21�2U

·
�

�sc(wc,i�1)�sc(w̄c,i�1)�Hcw̌c,i�1

�

�

2

+
2µmax

�L� 1
2
µmaxkpk21�2U

·k(pT⌦IM)k2 ·1TP [zi�1] (6.104)

where in step (a) we used the convexity of the squared norm k · k2, and in step

(b) we introduced Bc , IM �µmaxHc. We now proceed to bound the three terms

on the right-hand side of the above inequality. First note that

BT
c Bc = (I � µmaxHc)

T (I � µmaxHc)

= I � µmax(Hc +HT
c) + µ2

maxH
T
c Hc (6.105)

Under Assumption 6.5, conditions (6.20) and (6.21) hold in the ball ||�wk  rH

around wo. Recall from (6.99) that Hc is evaluated at wo. Therefore, from (6.21)

we have

Hc +HT
c � 2�L · IM (6.106)

and by (6.20), we have

kHck =

�

�

�

�

�

N
X

k=1

pkrwT sk(w
o)

�

�

�

�

�

293


N
X

k=1

pkkrwT sk(w
o)k


N
X

k=1

pk · �U = kpk1 · �U (6.107)

Note further that kHck2 ⌘ �max(HT
c Hc), where �max(·) denotes the largest eigen-

value of the matrix argument. This implies that

0  HT
c Hc  kpk21�2U · IM (6.108)

Substituting (6.106) and (6.108) into (6.105), we obtain

BT
c Bc 

�

1� 2µmax�L + µ2
maxkpk21�2U

�

· I (6.109)

so that

kBck2  1� 2µmax�L + µ2
maxkpk21�2U


✓

1� µmax�L +
1

2
µ2
maxkpk21�2U

◆2

= �2c (6.110)

where in the last inequality we used (1 � x)  (1 � 1
2
x)2. Next, we bound the

second term on the right-hand side of (6.104). To do this, we need to bound it

in two separate cases:

1. Case 1: kw̃c,i�1k+ kw̌c,i�1k  rH

This condition implies that, for any 0  t  1, the vector w̄c,i�1 + tw̌c,i�1

is inside a ball that is centered at wo with radius rH since:

k(w̄c,i�1 + tw̌c,i�1)� wok = kw̃c,i�1 + tw̌c,i�1k

 kw̃c,i�1k+ tkw̌c,i�1k

294

 kw̃c,i�1k+ kw̌c,i�1k

 rH (6.111)

By Assumption 6.5, the function sk(w) is di↵erentiable at w̄c,i�1 + tw̌c,i�1

so that using the following mean-value theorem [105, p.6]:

sk(wc,i�1) = sk(w̄c,i�1) +

✓

Z 1

0

rwT sk(w̄c,i�1 + tw̌c,i�1)dt

◆

· w̌c,i�1

(6.112)

Then, we have

�

�sc(wc,i�1)� sc(w̄c,i�1)�Hcw̌c,i�1

�

�

2

=
�

�

N
X

k=1

pk[sk(wc,i�1)� sk(w̄c,i�1)]�Hcw̌c,i�1

�

�

2

=
�

�

N
X

k=1

pk

Z 1

0

rwT sk(w̄c,i�1+tw̌c,i�1)dt·w̌c,i�1�
N
X

k=1

pkrwT sk(w
o)·w̌c,i�1

�

�

2

=
�

�

�

N
X

k=1

pk ·
Z 1

0

⇥

rwT sk(w̄c,i�1 + tw̌c,i�1)�rwT sk(w
o)
⇤

dt · w̌c,i�1

�

�

�

2


n

N
X

k=1

pk ·
Z 1

0

�

�rwT sk(w̄c,i�1 + tw̌c,i�1)�rwT sk(w
o)
�

�dt · kw̌c,i�1k
o2

(a)


n

N
X

k=1

pk ·
Z 1

0

�H · k(w̄c,i�1 + tw̌c,i�1)� wokdt · kw̌c,i�1k
o2


n

N
X

k=1

pk ·
Z 1

0

�H · (kw̄c,i�1 � wok+ tkw̌c,i�1k)dt · kw̌c,i�1k
o2


n

N
X

k=1

pk ·
Z 1

0

�H · (kw̄c,i�1 � wok+ kw̌c,i�1k)dt · kw̌c,i�1k
o2

=
n

N
X

k=1

pk · �H · (kw̃c,i�1k+ kw̌c,i�1k) · kw̌c,i�1k
o2

295

=
n

kpk1 · �H · (kw̃c,i�1k+ kw̌c,i�1k) · kw̌c,i�1k
o2

= kpk21 · �2H · (kw̃c,i�1k+ kw̌c,i�1k)2 · kw̌c,i�1k2

 2kpk21 · �2H · (kw̃c,i�1k2 + kw̌c,i�1k2) · kw̌c,i�1k2 (6.113)

where step (a) uses Assumption 6.5 and the last inequality uses (x+ y)2 

2x2 + 2y2.

2. Case 2: kw̃c,i�1k+ kw̌c,i�1k > rH

It holds that

�

�sc(wc,i�1)� sc(w̄c,i�1)�Hcw̌c,i�1

�

�

2

=
�

�

N
X

k=1

pk
⇥

sk(wc,i�1)� sk(w̄c,i�1)�rwT sk(w
o) · w̌c,i�1

⇤

�

�

2


n

N
X

k=1

pk
�

�sk(wc,i�1)� sk(w̄c,i�1)�rwT sk(w
o) · w̌c,i�1

�

�

o2


n

N
X

k=1

pk
�

ksk(wc,i�1)� sk(w̄c,i�1)k+ krwT sk(w
o)k · kw̌c,i�1k

�

o2

(a)


n

N
X

k=1

pk · (�U · kw̌c,i�1k+ �U · kw̌c,i�1k)
o2

=
n

2kpk1 · �U · kw̌c,i�1k
o2

 4kpk21 · �2U · kw̌c,i�1k2

(b)

 4kpk21 · �2U ·
✓

kw̃c,i�1k+ kw̌c,i�1k
rH

◆2

· kw̌c,i�1k2

(c)

 2kpk21 · 4�
2
U

r2H
· (kw̃c,i�1k2 + kw̌c,i�1k2) · kw̌c,i�1k2 (6.114)

where in step (a) we used (6.17) and (6.20), in step (b) we used the fact

that kw̃c,i�1k + kw̌c,i�1k > rH in the current case, and in step (c) we used

the relation kx+ yk2  2kxk2 + 2kyk2.

296

Based on (6.113) and (6.114) from both cases, we have

�

�sc(wc,i�1)� sc(w̄c,i�1)�Hcw̌c,i�1

�

�

2

 2kpk21 ·�2HU ·(kw̃c,i�1k2+kw̌c,i�1k2) · kw̌c,i�1k2 (6.115)

where

�2HU , max

⇢

�2H ,
4�2U
r2H

�

(6.116)

The third term on the right-hand side of (6.104) can be bounded by (6.84).

Therefore, substituting (6.110), (6.115) and (6.84) into (6.104) and applying the

expectation operator, we get

Ekw̌c,i � w̌a,ik2  �c · Ekw̌c,i�1 � w̌a,i�1k2

+
4µmaxkpk21�2HU

�L � 1
2
µmaxkpk21�2U

·
�

Ekw̌c,i�1k2 · kw̃c,i�1k2 + Ekw̌c,i�1k4
�

+
2NµmaxkpT⌦IMk2

�L� 1
2
µmaxkpk21�2U

·�2U ·kP̄1[A
T
1U1]k21 ·Ekwe,i�1k2 (6.117)

where in the last term on the right-hand side of (6.117) we used 1TP [x] = kxk2

from property (5.111) in Chapter 5. Recall from Theorem 5.2 in Chapter 5 that

w̃c,i�1 ! 0, and from (6.88)–(6.89) that Ekw̌c,i�1k2  O(µmax) and Ekwe,i�1k2 

O(µ2
max) in steady-state. Moreover, we also have the following result regarding

Ekw̌c,i�1k4 in steady-state.

Lemma 6.2 (Asymptotic bound on the 4th order moment). Using Assumptions

6.1–6.7, it holds that

lim sup
i!1

Ekw̌c,ik4  O(µ2
max) (6.118)

297

lim sup
i!1

Ekwe,ik4  O(µ4
max) (6.119)

Proof. See Appendix 6.B.

Therefore, inequality recursion (6.117) becomes

Ekw̌c,i�w̌a,ik2  �c ·Ekw̌c,i�1�w̌a,i�1k2+O(µ3
max) (6.120)

As long as �c < 1, which is guaranteed by the stability condition (5.145) from

Chapter 5, the above recursion (6.120) leads to

lim sup
i!1

Ekw̌c,i � w̌a,ik2 
1

1� �c
· O(µ3

max)

=
1

µmax � 1
2
µ2
maxkpk21�2U

· O(µ3
max)

= O(µ2
max) (6.121)

Based on (6.121), we can now show that the steady-state covariance matrix of

w̌c,i is equal to the covariance matrix of w̌a,i plus a high order perturbation term.

First, we have

⇧̌c,i = E[w̌c,iw̌
T
c,i]

= E[(w̌a,i + w̌c,i � w̌a,i)(w̌a,i + w̌c,i � w̌a,i)
T]

= E[w̌a,iw̌
T
a,i] + E[w̌a,i(w̌c,i � w̌a,i)

T]

+E[(w̌c,i�w̌a,i)w̌
T
a,i]+E[(w̌c,i�w̌a,i)(w̌c,i�w̌a,i)

T]

= ⇧̌a,i + E[w̌c,i(w̌c,i � w̌a,i)
T] + E[(w̌c,i � w̌a,i)w̌

T
c,i]

� E[(w̌c,i � w̌a,i)(w̌c,i � w̌a,i)
T] (6.122)

298

The second to the fourth terms in (6.122) are asymptotically high order terms of

µmax. Indeed, for the second term, we have as i!1:

lim sup
i!1

�

�E[w̌c,i(w̌c,i � w̌a,i)
T]
�

�

 lim sup
i!1

E
�

�w̌c,i(w̌c,i � w̌a,i)
T
�

�

 lim sup
i!1

E[kw̌c,ik · kw̌c,i � w̌a,ik]

 lim sup
i!1

q

Ekw̌c,ik2 · Ekw̌c,i � w̌a,ik2

 O(µ3/2
max) (6.123)

Likewise, the third term in (6.122) is asymptotically O(µ3/2
max). For the fourth

term in (6.122), we have as i!1:

lim sup
i!1

�

�E[(w̌c,i � w̌a,i)(w̌c,i � w̌a,i)
T]
�

�

(a)

 lim sup
i!1

E
�

�(w̌c,i � w̌a,i)(w̌c,i � w̌a,i)
T
�

�

(b)

 lim sup
i!1

E kw̌c,i � w̌a,ik2

(c)

 O(µ2
max) (6.124)

where step (a) applies Jensen’s inequality to the convex function k · k, step (b)

uses the relation kxyTk  kxk · kyk, and step (c) uses (6.121). Substituting

(6.123)–(6.124) into (6.122), we get,

lim sup
i!1

�

�⇧̌c,i � ⇧̌a,i

�

�  O(µ3/2
max) (6.125)

299

or equivalently, in steady-state,

⇧̌c,i = ⇧̌a,i +O(µ3/2
max) (6.126)

Combining with (6.97) we therefore find that

⇧1 = 11T ⌦ ⇧̌a,i + O(µ3/2
max) (6.127)

6.A.4 Evaluation of ⇧̌a,1

We now proceed to evaluate ⇧̌a,i from recursion (6.101):

⇧̌a,i = Bc⇧̌a,i�1B
T
c + µ2

max(p
T ⌦ IM)ERv,i(�i�1)(p⌦ IM)

= Bc⇧̌a,i�1B
T
c +µ2

max(p
T ⌦ IM)ERv,i(1⌦wo)(p⌦IM)

+µ2
max(p

T⌦IM)E
⇥

Rv,i(�i�1)�Rv,i(1⌦wo)
⇤

(p⌦IM) (6.128)

We will verify that the last perturbation term in (6.128) is also a high-order term

in µmax. First note that

�

�µ2
max(p

T ⌦ IM)E
⇥

Rv,i(�i�1)�Rv,i(1⌦ wo)
⇤

(p⌦ IM)
�

�

 µ2
max ·kp⌦ IMk2 ·E

�

�Rv,i(�i�1)�Rv,i(1⌦ wo)
�

� (6.129)

Next, we bound the rightmost term inside the expectation of (6.129). We also

need to bound it in two separate cases before arriving at a universal bound:

1. Case 1: k�̃i�1k  rV

By (6.26) in Assumption 6.6, we have

�

�Rv,i(�i�1)�Rv,i(1⌦ wo)
�

�

300

 �v · k�i�1 � 1⌦ wok = �v · k�̃i�1k (6.130)

2. Case 2: k�̃i�1k > rV

In this case, we have

�

�Rv,i(�i�1)�Rv,i(1⌦ wo)
�

�

 kRv,i(�i�1)k+ kRv,i(1⌦ wo)k (6.131)

To proceed, we first bound kRv,i(w)k as follows, where w , col{w1, . . . ,wN}.

From the definition of Rv,i(w) in (6.24), we have

kRv,i(w)k
(a)

 Tr[Rv,i(w)]

= Tr
⇥

E{vi(w)vT
i (w)|Fi�1}

⇤

= E{Tr[vi(w)vT
i (w)]|Fi�1}

= E{kvi(w)k2|Fi�1}

(b)
=

N
X

k=1

E{kvk,i(wk)k2|Fi�1}

(c)


N
X

k=1

{↵ · kwkk2 + �2
v |Fi�1}

=
N
X

k=1

{↵ · kwk � wo + wok2 + �2
v |Fi�1}


N
X

k=1

{2↵kwk�wok2+2↵kwok2+�2
v |Fi�1}

= 2↵ · kw�1⌦ wok2+2↵Nkwok2+N�2
v (6.132)

where in step (a) we used kXk  Tr(X) for any symmetric positive semi-

definite matrix X, in step (b) we used the definition of vi(w) in (6.23), and

301

in step (c) we used (6.16). Using (6.132) with w = �i�1 and w = 1⌦ wo,

respectively, for the two terms on the right-hand side of (6.131), we get

�

�Rv,i(�i�1)�Rv,i(1⌦ wo)
�

�

 2↵ · k�̃i�1k2 + 4↵Nkwok2 + 2N�2
v

(a)

 2↵ · k�̃i�1k2 +
�

4↵Nkwok2 + 2N�2
v

�

· k�̃i�1k2

r2V

=
�

2↵ +
4↵Nkwok2 + 2N�2

v

r2V

�

· k�̃i�1k2 (6.133)

where in step (a) we used the fact that k�̃i�1k > rV in the current case.

In summary, from (6.130) and (6.133), we obtain the following bound that holds

in general:

�

�Rv,i(�i�1)�Rv,i(1⌦ wo)
�

�

 max

⇢

�v ·k�̃i�1k,
✓

2↵+
4↵Nkwok2+2N�2

v

r2V

◆

·k�̃i�1k2
�

 �V U · max
n

k�̃i�1k2, k�̃i�1k
o

 �V U ·
n

k�̃i�1k2 + k�̃i�1k
o

(6.134)

where

�V U , max
�

�v, 2↵ +
4↵Nkwok2 + 2N�2

v

r2V

(6.135)

Substituting (6.134) into (6.129), we arrive at

lim sup
i!1

�

�

�

µ2
max(p

T ⌦ IM)E
⇥

Rv,i(�i�1)�Rv,i(1⌦ wo)
⇤

(p⌦ IM)
�

�

�

 lim sup
i!1

µ2
max · kp⌦ IMk2 · �V U ·

h

Ek�̃i�1k2 + Ek�̃i�1k
i

302

(a)
= lim sup

i!1
µ2
max · kp⌦ IMk2 · �V U ·

⇥

EkAT
1 w̃i�1k2 + EkAT

1 w̃i�1k
⇤

 lim sup
i!1

µ2
max · kp⌦ IMk2 · �V U ·

⇥

kAT
1 k2 · Ekw̃i�1k2 + kAT

1 k · Ekw̃i�1k
⇤

= lim sup
i!1

µ2
max ·kp⌦ IMk2 ·�V U ·

h

kAT
1 k2 · Ekw̃i�1k2+kAT

1 k · E
�

(kw̃i�1k4)/4

i

(b)

 lim sup
i!1

µ2
max · kp⌦ IMk2 · �V U ·

h

kAT
1 k2 · Ekw̃i�1k2 + kAT

1 k · (Ekw̃i�1k4)/4
i

(c)

 µ2
max · [O(µmax) +O(µ/2

max)]

= O(µ3
max) +O(µ/2+2

max) (6.136)

where in step (a) we used the relation �̃i�1 = AT
1 w̃i�1 from (5.81) in Chapter

5, in step (b) we applied Jensen’s inequality E(x/4)  (Ex)/4 since x/4 is a

concave function when 0 <   4, and in step (c) we used the fact that Ekw̃i�1k2

is on the order of O(µmax) in steady-state and that Ekw̃i�1k4 is on the order of

O(µ2
max) in steady-state. Using (6.136) in recursion (6.128) leads to the following

relation as i!1:

⇧̌a,i = Bc⇧̌a,i�1B
T
c +µ2

max(p
T⌦IM)ERv,i(1⌦wo)(p⌦IM)

+O(µ3
max) +O(µ/2+2

max) (6.137)

which is a perturbed version of the following recursion

⇧̌o
a,i = Bc⇧̌

o
a,i�1B

T
c +µ2

max(p
T⌦IM)ERv,i(1⌦wo)(p⌦IM) (6.138)

We now show that the covariance matrices obtained from these two recursions

are close to each other in the sense that

lim sup
i!1

k⇧̌a,i � ⇧̌o
a,1k  O

�

µmin(2,1+/2)
max

�

(6.139)

303

which also means that, in steady-state,

⇧̌a,i = ⇧̌o
a,i +O

�

µmin(2,1+/2)
max

�

(6.140)

Subtracting (6.138) from (6.137), we get

⇧̌a,i � ⇧̌o
a,i = Bc(⇧̌a,i�1 � ⇧̌o

a,i�1)B
T
c

+O(µ3
max) +O(µ/2+2

max) (6.141)

Taking the 2�induced norm of both sides, we get

�

�⇧̌a,i � ⇧̌o
a,i

�

�

 kBck2 ·
�

�⇧̌a,i�1 � ⇧̌o
a,i�1

�

�+O(µ3
max) +O(µ/2+2

max)

(a)

 �2c ·
�

�⇧̌a,i�1 � ⇧̌o
a,i�1

�

�+O(µ3
max) +O(µ/2+2

max)

 �2ic ·
�

�⇧̌a,0 � ⇧̌o
a,0

�

�+
i�1
X

j=0

�2jc ⇥ [O(µ3
max) +O(µ/2+2

max)]

 �2ic ·
�

�⇧̌a,0 � ⇧̌o
a,0

�

�+
1
X

j=0

�2jc ⇥ [O(µ3
max) +O(µ/2+2

max)]

(b)
= �2ic ·

�

�⇧̌a,0 � ⇧̌o
a,0

�

�+
O(µ3

max) +O(µ/2+2
max)

1� �2c

 �2ic ·
�

�⇧̌a,0 � ⇧̌o
a,0

�

�+
O(µ3

max) +O(µ/2+2
max)

1� �c

 �2ic ·
�

�⇧̌a,0 � ⇧̌o
a,0

�

�+
O(µ3

max) +O(µ/2+2
max)

µmax�L � 1
2
µ2
maxkpk1�2U

= �2ic ·
�

�⇧̌a,0 � ⇧̌o
a,0

�

�+
O(µ2

max) +O(µ/2+1
max)

�L � 1
2
µmaxkpk1�2U

= �2ic ·
�

�⇧̌a,0 � ⇧̌o
a,0

�

�+
O
�

µmin(2,1+/2)
max

�

�L � 1
2
µmaxkpk1�2U

(6.142)

304

where in step (a) we are using (6.110) and in step (b) we are using the fact that

�c < 1, which is already guaranteed by choosing µmax according to the stability

condition (5.145) in Chapter 5. Taking lim sup of both sides of (6.142), we arrive

at (6.139).

6.A.5 Final expression for ⇧1

Therefore, by (6.126) and (6.140), we have

⇧̌c,1 = ⇧̌o
a,1 +O(µ3/2

max) +O
�

µmin(2,1+/2)
max

�

= ⇧̌o
a,1 +O

�

µmin(3/2,1+/2)
max

�

(6.143)

Now we proceed to derive the expression for ⇧̌o
a,1. As i ! 1, the unperturbed

recursion (6.138) converges to a unique solution ⇧̌o
a,1 that satisfies the following

discrete Lyapunov equation:

⇧̌o
a,1 = Bc⇧̌

o
a,1BT

c + µ2
max(p

T ⌦ IM) · Rv · (p⌦ IM) (6.144)

where we used (6.25) from Assumption 6.6. Vectorizing both sides of the above

equation, we obtain

vec(⇧̌o
a,1) = µ2

max · (IM2 � Bc ⌦ Bc)
�1vec

�

(pT ⌦ IM) · Rv · (p⌦ IM)

= µmax · (IM ⌦Hc+Hc ⌦ IM�µmaxHc ⌦Hc)
�1

⇥ vec
�

(pT ⌦ IM) · Rv · (p⌦ IM)

(a)
= µmax · (IM ⌦Hc +Hc ⌦ IM)�1

⇥
⇥

IM2�µmax(Hc⌦Hc)(IM⌦Hc+Hc⌦IM)�1
⇤�1

⇥ vec
�

(pT ⌦ IM) · Rv · (p⌦ IM)

(6.145)

305

where step (a) uses the fact that (X + Y)�1 = X�1(I + Y X�1)�1 given X

is invertible. Note that the existence of the inverse of IM ⌦ Hc + Hc ⌦ IM is

guaranteed by (6.21) for the following reason. First, condition (6.21) ensures

that all the eigenvalues of Hc have positive real parts. To see this, let �(Hc)

and x0 (x0 6= 0) denote an eigenvalue of Hc and the corresponding eigenvector1.

Then,

Hcx0 = �(Hc) · x0) x⇤
0Hcx0 = �(Hc) · kx0k2 (6.146)

) (x⇤
0Hcx0)

⇤ = �⇤(Hc) · kx0k2

) x⇤
0H

⇤
cx0 = �⇤(Hc) · kx0k2

) x⇤
0H

T
c x0 = �⇤(Hc) · kx0k2 (6.147)

where (·)⇤ denotes the conjugate transpose operator, and the last step uses the

fact that Hc is real so that H⇤
c = HT

c . Summing (6.146) and (6.147) leads to

x⇤
0(Hc +Hc)

Tx0 = 2Re{�(Hc)} · kx0k2

) Re{�(Hc)} =
x⇤
0(Hc +Hc)Tx0

2kx0k2
� �L > 0 (6.148)

where the last step uses (6.21). Furthermore, the M2 eigenvalues of IM ⌦Hc +

Hc ⌦ IM are �m
1

(Hc) + �m
2

(Hc) for m1,m2 = 1, . . . ,M , where �m(·) denotes the

mth eigenvalue of a matrix [82, p.143]. Therefore, the real parts of the eigenvalues

of IM ⌦Hc +Hc ⌦ IM are Re {�m
1

(Hc)} +Re {�m
2

(Hc)} > 0 so that the matrix

IM⌦Hc+Hc⌦IM is not singular and is invertible. Observing that for any matrix

1

Note that the matrix H
c

need not be symmetric and hence its eigenvalues and eigenvectors

need not be real.

306

X where the necessary inverse holds, we have

(I � µmaxX)�1(I � µmaxX) = I

,(I � µmaxX)�1 � µmax(I � µmaxX)�1X = I

,(I � µmaxX)�1 = I + µmax(I � µmaxX)�1X (6.149)

and, hence,

⇥

IM2 � µmax(Hc ⌦Hc)(IM ⌦Hc +Hc ⌦ IM)�1
⇤�1

= IM2+µmax

⇥

I�µmax(Hc⌦Hc)(IM⌦Hc+Hc⌦IM)�1
⇤�1

⇥ (Hc ⌦Hc)(IM ⌦Hc +Hc ⌦ IM)�1

(a)
= IM2 +O(µmax) (6.150)

where step (a) is because

lim
µ
max

!0

1

µmax

⇥
n

µmax

⇥

I�µmax(Hc⌦Hc)(IM⌦Hc+Hc⌦IM)�1
⇤�1

(Hc⌦Hc)(IM⌦Hc+Hc⌦IM)�1
o

= lim
µ
max

!0

⇥

I � µmax(Hc ⌦Hc)(IM ⌦Hc +Hc ⌦ IM)�1
⇤�1

⇥ (Hc ⌦Hc)(IM ⌦Hc +Hc ⌦ IM)�1

= (Hc ⌦Hc)(IM ⌦Hc +Hc ⌦ IM)�1

= constant (6.151)

Therefore, substituting (6.150) into (6.145) leads to

vec(⇧̌o
a,1) = µmax ·

⇥

(IM ⌦Hc +Hc ⌦ IM)�1 +O(µmax)
⇤

307

⇥ vec
�

(pT ⌦ IM)Rv(p⌦ IM)

= µmax · (IM ⌦Hc +Hc ⌦ IM)�1

⇥ vec
�

(pT ⌦ IM)Rv(p⌦ IM)

+O(µ2
max) (6.152)

Combining (6.143) and (6.152), we get

vec(⇧̌c,1) = µmax · (IM ⌦Hc +Hc ⌦ IM)�1vec
�

(pT ⌦ IM)Rv(p⌦ IM)

+O
�

µmin(3/2,1+/2)
max

�

(6.153)

By (6.75) and (6.97), the weighted MSE, Ekw̃k,ik2⌃, is given by

lim
i!1

Ekw̃k,ik2⌃ = Tr
�

(11T ⌦ ⇧̌c,1)(Ekk ⌦ ⌃)

+O(µ3/2
max)

= Tr
�

(11TEkk)⌦ (⇧̌c,1⌃)

+O(µ3/2
max)

(a)
= Tr

�

11TEkk

· Tr
�

⇧̌c,1⌃

+O(µ3/2
max)

= Tr
�

⇧̌c,1⌃

+O(µ3/2
max)

(b)
= Tr(⌃⇧̌c,1) +O(µ3/2

max)

(c)
= Tr(⌃T ⇧̌c,1) +O(µ3/2

max)

(d)
= (vec(⌃))T vec(⇧̌c,1) +O(µ3/2

max)

(e)
= µmax ·

�

vec
�

(pT ⌦ IM) · Rv · (p⌦ IM)
 �T

⇥ (IM ⌦HT
c +HT

c ⌦ IM)�1vec(⌃)

+O(µ3/2
max) +O

�

µmin(3/2,1+/2)
max

�

= µmax ·
�

vec
�

(pT ⌦ IM) · Rv · (p⌦ IM)
 �T

⇥ (IM ⌦HT
c +HT

c ⌦ IM)�1vec(⌃)

+O
�

µmin(3/2,1+/2)
max

�

(6.154)

308

where step (a) uses the property Tr(X⌦Y) = Tr(X)Tr(Y) for Kronecker products

[82, p.142], step (b) uses the property Tr(XY) = Tr(Y X), step (c) uses the fact

that ⌃ is symmetric, step (d) uses the property Tr(XY) =
�

vec(XT)
�T

vec(Y),

and step (e) substitutes (6.143). Note that the term (IM⌦HT
c +H

T
c ⌦IM)�1vec(⌃)

is in fact the vectorized version of the solution matrix X to the Lyapunov

equation (6.42) for any given positive semi-definite weighting matrix ⌃. Using

again the relation Tr(XY) =
�

vec(XT)
�T

vec(Y) =
⇣

�

vec(XT)
�T

vec(Y)
⌘T

=

vec(Y)Tvec(XT), the weighted MSE expression (6.154) becomes (6.41). As a

final remark, since condition (6.21) ensures that all the eigenvalues of Hc have

positive real parts, i.e., the matrix �Hc is asymptotically stable, the following

Lyapunov equation, which is equivalent to (6.42),

(�HT
c)X +X(�Hc) = �⌃ (6.155)

will have a unique solution given by (6.43) [82, pp.145-146] and is positive semi-

definite (strictly positive definite) if ⌃ is symmetric and positive semi-definite

(strictly positive definite) (see [105, p.39] and [73, p.769]).

6.B Proof of Lemma 6.2

The arguments in the previous appendix relied on results (6.118) and (6.119)

from Lemma 6.2. To establish these results, we first need to introduce a fourth-

order version of the energy operator we dealt with in Appendices 5.B and 5.C in

Chapter 5, and establish some of its properties.

Definition 6.1 (Fourth order moment operator). Let x = col{x1, . . . , xN} with

sub-vectors of size M ⇥ 1 each. We define P (4)[x] to be an operator that maps

309

from RMN to RN :

P (4)[x] , col{kx1k4, kx2k4, . . . , kxNk4} (6.156)

By following the same line of reasoning as the one used for the energy operator

P [·] in Appendices 5.B and 5.C in Chapter 5, we can establish the following

properties for P (4)[·].

Lemma 6.3 (Properties of the 4th order moment operator). The operator P (4)[·]

satisfies the following properties:

1. (Nonnegativity): P (4)[x] ⌫ 0

2. (Scaling): P (4)[ax] = |a|4 · P (4)[x]

3. (Convexity): Suppose x(1), . . . , x(K) are N ⇥ 1 block vectors formed in

the same manner as x, and let a1, . . . , aK be non-negative real scalars that

add up to one. Then,

P (4)
⇥

a1x
(1) + · · · + aKx

(K)
⇤

� a1P
(4)
⇥

x(1)
⇤

+ · · · + aKP
(4)
⇥

x(K)
⇤

(6.157)

4. (Super-additivity):

P (4)[x+ y] � 8 · P (4)[x] + 8 · P (4)[y] (6.158)

5. (Linear transformation):

P (4)[Qx] � kP̄ [Q]k31 · P̄ [Q] P (4)[x] (6.159)

310

� kP̄ [Q]k41 · 11T · P (4)[x] (6.160)

6. (Update operation): The global update vector s(x) , col{s1(x1), . . . , sN(xN)}

satisfies the following relation on P (4)[·]:

P (4)[s(x)� s(y)] � �4U · P (4)[x� y] (6.161)

7. (Centralizd operation):

P (4)[Tc(x)� Tc(y)] � �4c · P (4)[x� y] (6.162)

with the same factor

�c , 1� µmax�L +
1

2
µ2
maxkpk21�2U (6.163)

8. (Stable Kronecker Jordan operator): Suppose DL = DL ⌦ IM , where

DL is the L ⇥ L Jordan matrix defined by (5.122)–(5.123) in Chapter 5.

Then, for any LM ⇥ 1 vectors xe and ye, we have

P (4)[DLxe + ye] � �e,4 ·P (4)[xe]+
8

(1�|d2|)3
·P (4)[ye] (6.164)

where �e,4 is the L⇥ L matrix defined as

�e,4 ,

2

6

6

6

6

6

6

4

|d2| 8
(1�|d

2

|)3
.

. . . 8
(1�|d

2

|)3

|d2|

3

7

7

7

7

7

7

5

(6.165)

311

To proceed, we recall the transformed recursions (5.97)–(5.98) from Chapter 5,

namely,

w̌c,i = Tc(wc,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM) [zi�1 + vi] (6.166)

we,i = DN�1we,i�1�URAT
2 M [s(1⌦wc,i�1)+zi�1+vi] (6.167)

If we now apply the operator P (4)[·] to recursions (6.166)–(6.167), and follow

arguments similar to the those employed in Appendices 5.G and 5.H from Chapter

5, we arrive at the following result. The statement extends Lemma 5.6 in Chapter

5 to 4th order moments.

Lemma 6.4 (Recursion for the 4th order moments). The fourth order moments

satisfy the following inequality recursion

W̌ 0
4,i � F4 W̌ 0

4,i�1 +H4W̌ 0
i�1 + µ4

max · bv,4 (6.168)

where

W̌ 0
4,i , col

�

EP (4)[w̌c,i], EP (4)[we,i]

(6.169)

W̌ 0
i , col

�

EP [w̌c,i], EP [we,i]

(6.170)

F4 ,

2

4

fcc(µmax) fce(µmax) · 1T

fec(µmax) · 1 Fee(µmax)

3

5 (6.171)

H4 ,

2

4

hcc(µmax) hce(µmax) · 1T

0 0

3

5 (6.172)

bv,4 , col
�

bv
4

,c, bv
4

,e · 1

(6.173)

312

where �c is defined in (6.103), and �e,4 is defined in (6.165), Moreover, the entries

in (6.171)–(6.172) are given by:

fcc(µmax) , �c + µ4
max · 432↵4kpk41

+ µ2
max · 20↵kpk21 ·

⇣

2 + kP̄ [AT
1 UL]k21 ·

�L + 1
2
µmaxkpk21�2U

�L � 1
2
µmaxkpk21�2U

⌘

= �c +O(µ2
max) (6.174)

fce(µmax) , µmax ·
kpk41 · �4U ·

�

�P̄ [AT
1 UL]

�

�

4

1
(�L � 1

2
µmaxkpk21�2U)3

+ 432µ4
max↵4kpk41 · kP̄ [AT

1 UL]k41

+ 20µ2
max↵kpk21 · kP̄ [AT

1 UL]k21

·
⇣

µmax · 2kpk
2
1 · �2U · kP̄ [AT

1 UL]k21
�L � 1

2
µmaxkpk21�2U

+
�L + 1

2
µmaxkpk21�2U

�L � 1
2
µmaxkpk21�2U

⌘

= O(µmax) (6.175)

hcc(µmax) , 10µ2
max ·

⇣

4↵kpk21 · kw̃c,0k2 + 4↵kpk21 · kwok2 + �2
v · kpk21

⌘

= O(µ2
max) (6.176)

hce(µmax) ,
10kpk41�2U · µ3

max

�L� 1
2
µmaxkpk21�2U

·
�

�P̄ [AT
1 UL]

�

�

2

1 ·
⇣

4↵·kw̃c,0k2+4↵·kwok2+�2
v ·
⌘

= O(µ3
max) (6.177)

bv
4

,c , 2kpk41 ·
�

27↵4 · (kw̃c,0k4 + kwok4) + �4
v4

�

= constant (6.178)

Fee(µmax) , �e,4 + µ4
max · 216N · (�4U + 216↵4)

(1� |�2(A)|)3
·kP̄ [AT

1 UL]k41 ·kP̄ [URAT
2]k41 ·11T

= �e,4 +O(µ4
max) (6.179)

fec(µmax) , µ4
max · 5832N · (�4U + 8↵4)

(1� |�2(A)|)3
kP̄ [URAT

2]k41

= O(µ4
max) (6.180)

313

bv
4

,e ,
216N · kP̄ [URAT

2]k41
(1� |�2(A)|)3

·
n

27
⇥

(�4U + ↵4) · kw̃c,0k4

+ kgo4k1 + ↵4 · kwok4
⇤

+ �4
v4

o

= constant (6.181)

Proof. See Appendix 6.C.

Observe from (6.168) that the recursion of the fourth order moments are

coupled with the second order moments contained in W̌ 0
i�1. Therefore, we will

augment recursion (6.168) together with the following recursion for the second-

order moment developed in (6.182) of Chapter 5:

W̌ 0
i � �W̌ 0

i�1 + µ2
maxbv (6.182)

to form the following joint recursion:

2

4

W̌ 0
i

W̌ 0
4,i

3

5 �

2

4

� 0

H4 F4

3

5

2

4

W̌ 0
i�1

W̌ 0
4,i�1

3

5+

2

4

µ2
max · bv

µ4
max · bv,4

3

5 (6.183)

The stability of the above recursion is guaranteed by the stability of the matrices

� and F4, i.e.,

⇢(�) < 1 and ⇢(F4) < 1 (6.184)

The stability of � has already been established in Appendix 5.I of Chapter 5.

Now, we discuss the stability of F4. Using (6.174)–(6.179) and the definition of

314

�c in (6.110), we can express F4 as

F4 =

2

4

�c +O(µ2
max) O(µmax) · 1T

O(µ4
max) �e,4 +O(µ4

max)

3

5 (6.185)

=

2

4

1� µmax�L O(µmax)

0 �e,4

3

5+O(µ2
max) (6.186)

which has a similar structure to � — see expressions (5.133)–(5.134) in Chapter

5, and where in the last step we absorb the factor 1T in the (1, 2)-th block into

O(µmax). Therefore, following the same line of argument from (5.278) to (5.295)

in Appendix 5.I of Chapter 5, we can show that F4 is also stable when the step-size

parameter µmax is su�ciently small. Iterating (6.183), we get

2

4

W̌ 0
i

W̌ 0
4,i

3

5 �

2

4

� 0

H4 F4

3

5

i2

4

W̌ 0
0

W̌ 0
4,0

3

5+
i�1
X

j=0

2

4

� 0

H4 F4

3

5

j

·

2

4

µ2
max ·bv

µ4
max ·bv,4

3

5 (6.187)

When both � and F4 are stable, we have

lim sup
i!1

2

4

W̌ 0
i

W̌ 0
4,i

3

5 �

0

@I �

2

4

� 0

H4 F4

3

5

1

A

�1

·

2

4

µ2
max · bv

µ4
max · bv,4

3

5

=

2

4

µ2
max ·(I��)�1bv

(I�F4)�1H4 ·µ2
max · (I��)�1bv+µ4

max ·(I�F4)�1bv,4

3

5

(6.188)

which implies that, for the fourth-order moment, we get

lim sup
i!1

W̌ 0
4,i � (I � F4)

�1H4 · µ2
max · (I � �)�1bv + µ4

max · (I � F4)
�1bv,4 (6.189)

To evaluate the right-hand side of the above expression, we derive expressions for

315

(I � F4)�1 and (I � �)�1 using the following formula for inverting a 2⇥ 2 block

matrix [82, p.48], [116, p.16]:

2

4

A B

C D

3

5

�1

=

2

4

A�1 + A�1BECA�1 �A�1BE

�ECA�1 E

3

5 (6.190)

where E = (D � CA�1B)�1. By (6.186), we have the following expression for

(I � F4)�1:

(I � F4)
�1 =

0

@I�

2

4

1�µmax�L O(µmax)

0 �e,4

3

5�O(µ2
max)

1

A

�1

=

2

4

µmax�L �O(µ2
max) �O(µmax)�O(µ2

max)

�O(µ2
max) I��e,4�O(µ2

max)

3

5

�1

=

2

4

µmax�L �O(µ2
max) O(µmax)

O(µ2
max) I � �e,4 �O(µ2

max)

3

5

�1

(6.191)

Applying relation (6.190) to (6.191), we have

E4 =

✓

I � �e,4 �O(µ2
max)�

O(µ2
max)O(µmax)

µmax�L �O(µ2
max)

◆�1

=
�

I � �e,4 +O(µ2
max)

��1
(6.192)

(I � F4)
�1 =

2

4

1
µ
max

�
L

�O(µ2

max

)
+O(µmax) � O(1)·E

4

�
L

�O(µ
max

)

� E
4

·O(µ
max

)
�
L

�O(µ
max

)
E4

3

5 (6.193)

Furthermore, recall from (5.133)–(5.134) of Chapter 5 for the expression of �:

� =

2

4

�c µmaxhc(µmax) · 1T

0 �e

3

5+ µ2
max 0 · 11T

316

=

2

4

1� µmax�L O(µmax)

0 �e

3

5+O(µ2
max) (6.194)

Observing that � and F4 have a similar structure, we can similarly get the ex-

pression for (I � �)�1 as

(I � �)�1 =

2

4

1
µ
max

�
L

�O(µ2

max

)
+O(µmax) � O(1)·E

2

�
L

�O(µ
max

)

� E
2

·O(µ
max

)
�
L

�O(µ
max

)
E2

3

5 (6.195)

E2 =



I � �e �O(µ2
max)�

O(µ2
max)O(µmax)

µmax�L �O(µ2
max)

��1

=
�

I � �e +O(µ2
max)

��1
(6.196)

In addition, by substituting (6.176)–(6.177) into (6.172), we note that

H4 =

2

4

O(µ2
max) O(µ3

max)

0 0

3

5 (6.197)

Substituting (6.193), (6.195) and (6.197) into the right-hand side of (6.189) and

using we obtain

lim sup
i!1

W̌ 0
4,i �

2

4

1
µ
max

�
L

�O(µ2

max

)
+O(µmax) � O(1)·E

4

�
L

�O(µ
max

)

� E
4

·O(µ
max

)
�
L

�O(µ
max

)
E4

3

5⇥

2

4

O(µ2
max) O(µ3

max)

0 0

3

5

⇥µ2
max ·

2

4

1
µ
max

�
L

�O(µ2

max

)
+O(µmax) � O(1)·E

2

�
L

�O(µ
max

)

� E
2

·O(µ
max

)
�
L

�O(µ
max

)
E2

3

5

2

4

bv,c

bv,e ·1

3

5

+µ4
max ·

2

4

1
µ
max

�
L

�O(µ2

max

)
+O(µmax) � O(1)·E

4

�
L

�O(µ
max

)

�E
4

·O(µ
max

)
�
L

�O(µ
max

)
E4

3

5

2

4

bv
4

,c

bv
4

,e ·1

3

5

=

2

4

O(µ2
max)

O(µ4
max)

3

5 (6.198)

317

where the last step follows from basic matrix algebra. Recalling the definition of

W̌ 0
4,i in (6.169), we conclude (6.118)–(6.119) from (6.198).

6.C Proof of Lemma 6.4

6.C.1 Perturbation Bounds

Before pursuing the proof of Lemma 6.4, we first state a result that bounds

the fourth-order moments of the perturbation terms that appear in (6.166), in a

manner similar to the bounds we already have for the second-order moments in

(6.84)–(6.87).

Lemma 6.5 (Fourth-order bounds on the perturbation terms). Referring to

(6.166), the following bounds hold for any i � 0.

P (4)[zi�1] � �4U ·
�

�P̄ [AT
1 UL]

�

�

4

1 ·11T ·P (4)[we,i�1] (6.199)

P (4)[s(1⌦wc,i�1)] � 27�4U ·kw̌c,i�1k4 ·1+27�4Ukw̃c,0k4 ·1+27·go4 (6.200)

E
�

P (4)[vi]
�

�Fi�1

� 216↵4 · 1 · P (4)[w̌c,i�1]

+ 216↵4 ·
�

�P̄ [AT
1 UL]

�

�

4

1 ·11T ·P (4)[we,i�1]

+27↵4 ·(kw̃c,0k4+kwok4)·1+�4
v4 ·1 (6.201)

where go4 , P (4)[s(1⌦ wo)].

Proof. See Appendix 6.D.

318

6.C.2 Recursion for the 4th order moment of w̌c,i

To begin with, note that by evaluating the squared Euclidean norm of both sides

of (6.166) we obtain:

kw̌c,ik2 =
�

�Tc(wc,i�1)�Tc(w̄c,i�1)�µmax ·(pT⌦IM)(zi�1+vi)
�

�

2

=
�

�Tc(wc,i�1)�Tc(w̄c,i�1)�µmax · (pT⌦IM)zi�1

�

�

2
+µ2

max ·
�

�(pT⌦IM)vi

�

�

2

�2µmax ·
⇥

Tc(wc,i�1)�Tc(w̄c,i�1)�µmax ·(pT⌦IM)zi�1

⇤T · (pT ⌦ IM)vi

(6.202)

By further squaring both sides of the above expression, we get

kw̌c,ik4 =
�

�Tc(wc,i�1)�Tc(w̄c,i�1)�µmax ·(pT⌦IM)zi�1

�

�

4

+
�

µ2
max ·k(pT⌦IM)vik2�2µmax ·

⇥

Tc(wc,i�1)�Tc(w̄c,i�1)

�µmax ·(pT⌦IM)zi�1
⇤

(pT⌦IM)vi

 2

�4µmax ·
�

�Tc(wc,i�1)�Tc(w̄c,i�1)�µmax ·(pT⌦IM)zi�1

�

�

2

·
⇥

Tc(wc,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM)zi�1

⇤T · (pT ⌦ IM)vi

+2µ2
max·

�

�Tc(wc,i�1)�Tc(w̄c,i�1)�µmax ·(pT ⌦ IM)zi�1

�

�

2 ·k(pT⌦IM)vik2

(6.203)

Taking the conditional expectation of both sides of the above expression given

Fi�1 and recalling that E[vi|Fi�1] = 0 based on (6.15), we get

E[kw̌c,ik4|Fi�1] = E
n

�

�Tc(wc,i�1)�Tc(w̄c,i�1)�µmax ·(pT⌦IM)zi�1

�

�

4
�

�

�

Fi�1

o

+E
⇣

�

µ2
maxk(pT⌦IM)vik2�2µmax

⇥

Tc(wc,i�1)�Tc(w̄c,i�1)

�µmax(p
T⌦IM)zi�1

⇤

(pT⌦IM)vi

 2�
�Fi�1

⌘

+2µ2
max ·

�

�Tc(wc,i�1)�Tc(w̄c,i�1)�µmax ·(pT⌦IM)zi�1

�

�

2

319

· E
⇥

k(pT ⌦ IM)vik2
�

�Fi�1

⇤

(a)


�

�Tc(wc,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM)zi�1

�

�

4

+ 2µ4
max · Ek(pT ⌦ IM)vik4

+8µ2
max ·

�

�Tc(wc,i�1)�Tc(w̄c,i�1)�µmax ·(pT⌦IM)zi�1

�

�

2

· E
⇥

k(pT ⌦ IM)vik2
�

�Fi�1

⇤

+2µ2
max ·

�

�Tc(wc,i�1)�Tc(w̄c,i�1)�µmax ·(pT⌦IM)zi�1

�

�

2

· E
⇥

k(pT ⌦ IM)vik2
�

�Fi�1

⇤

=
�

�Tc(wc,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM)zi�1

�

�

4

+ 2µ4
max · E

⇥

k(pT ⌦ IM)vik4
�

�Fi�1

⇤

+10µ2
max ·

�

�Tc(wc,i�1)�Tc(w̄c,i�1)�µmax ·(pT⌦IM)zi�1

�

�

2

·E
⇥

k(pT⌦IM)vik2
�

�Fi�1

⇤

(6.204)

where step (a) uses the inequality (x+ y)2  2x2+2y2. To proceed, we call upon

the following bounds.

Lemma 6.6 (Useful bounds). The following bounds hold for arbitrary i:

�

�Tc(wc,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM)zi�1

�

�

4

 �c · kw̌c,i�1k4

+
µmax

(�L � 1
2
µmaxkpk21�2U)3

· kpk41 · �4U ·
�

�P̄ [AT
1 UL]

�

�

4

1 · 1TP (4)[we,i�1] (6.205)

E
⇥

�

�(pT ⌦ IM)vi

�

�

4 �
�Fi�1

⇤

 216↵4kpk41 · kw̌c,i�1k4 + 216↵4kpk41 ·
�

�P̄ [AT
1 UL]

�

�

4

1 · 1T · P (4)[we,i�1]

+ 27↵4kpk41 · kw̃c,0k4 + 27↵4 · kpk41 · kwok4 + �4
v4 · kpk41 (6.206)

�

�Tc(wc,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM)zi�1

�

�

2

320

 �c · kw̌c,i�1k2 +
µmax

�L � 1
2
µmaxkpk21�2U

· kpk21 · �2U ·
�

�P̄ [AT
1 UL]

�

�

2

1 · 1TP [we,i�1]

(6.207)

E
⇥

�

�(pT ⌦ IM)vi

�

�

2 �
�Fi�1

⇤

 4↵kpk21 · P [w̌c,i�1] + 4↵ · kP̄ [AT
1 UL]k21 · kpk21 · 1TP [we,i�1]

+4↵kw̃c,0k2 ·kpk21+4↵kpk21 ·kwok2+�2
v ·kpk21 (6.208)

Proof. See Appendix 6.E.

Substituting (6.205)–(6.208) into (6.204), we obtain

E[kw̌c,ik4|Fi�1] � �c · kw̌c,i�1k4

+
µmax

(�L � 1
2
µmaxkpk21�2U)3

· kpk41 · �4U ·
�

�P̄ [AT
1 UL]

�

�

4

1

· 1TP (4)[we,i�1]

+ 2µ4
max ·

n

216↵4kpk41 · kw̌c,i�1k4

+ 216↵4kpk41 ·
�

�P̄ [AT
1 UL]

�

�

4

1 · 1T · P (4)[we,i�1]

+27↵4kpk41 ·kw̃c,0k4+27↵4kpk41 ·kwok4+�4
v4 ·kpk41

o

+ 10µ2
max ·

n

�c · kw̌c,i�1k2

+
µmax

�L � 1
2
µmaxkpk21�2U

· kpk21 · �2U ·
�

�P̄ [AT
1 UL]

�

�

2

1

· 1TP [we,i�1]
o

·
n

4↵kpk21 ·P [w̌c,i�1]

+4↵·kP̄ [AT
1 UL]k21 ·kpk21 ·1TP [we,i�1]

+4↵kpk21(kw̃c,0k2+kwok2)+�2
v ·kpk21

o

(6.209)

321

We further call upon the following inequality to bound the last term in (6.209):

(a · x+ b · y)(c · x+ d · y + e)

= ac · x2 + bd · y2 + (ad+ bc)xy + ae · x+ be · y

 ac·x2+bd·y2 + (ad+ bc)
1

2
(x2 + y2) + ae · x+ be · y

=

✓

ac+
ad+bc

2

◆

x2+

✓

bd+
ad+bc

2

◆

y2+ae·x+be·y (6.210)

Applying the above inequality to the last term in (6.209) with

a = �c

b =
µmax

�L � 1
2
µmaxkpk21�2U

· kpk21 · �2U ·
�

�P̄ [AT
1 UL]

�

�

2

1

c = 4↵kpk21

d = 4↵kpk21 ·
�

�P̄ [AT
1 UL]

�

�

2

1

e = 4↵kpk21 · kw̃c,0k2 + 4↵kpk21 · kwok2 + �2
v · kpk21

x = kw̌c,i�1k2

y = 1T · P (4)[we,i�1] = kwe,i�1k4

we get

n

�c · kw̌c,i�1k2 +
µmax

�L � 1
2
µmaxkpk21�2U

· kpk21 · �2U ·
�

�P̄ [AT
1 UL]

�

�

2

1 · 1TP [we,i�1]
o

⇥
n

4↵kpk21 ·P [w̌c,i�1]+4↵·kP̄ [AT
1 UL]k21 ·kpk21 ·1TP [we,i�1]

+4↵kpk21(kw̃c,0k2+kwok2)+�2
v ·kpk21

o


✓

ac+
ad+ bc

2

◆

·kw̌c,i�1k4+
✓

bd+
ad+ bc

2

◆

·kwe,i�1k4

+ ae · kw̌c,i�1k2 + be · kwe,i�1k2

322

(a)


✓

c+
d+ bc

2

◆

· kw̌c,i�1k4 +
✓

bd+
d+ bc

2

◆

· kwe,i�1k4

+ e · kw̌c,i�1k2 + be · kwe,i�1k2

=
⇣

4↵kpk21 + 2↵kpk21 · kP̄ [AT
1 UL]k21

+
2↵kpk21 · µmax

�L� 1
2
µmaxkpk21�2U

kpk21 ·�2U ·kP̄ [AT
1 UL]k21

⌘

·kw̌c,i�1k4

+
⇣ 4↵kpk41�2Uµmax

�L�1
2
µmaxkpk21�2U

·kP̄ [AT
1 UL]k41+2↵kpk21 ·kP̄ [AT

1 UL]k21

+
2↵kpk41�2U · µmax

�L � 1
2
µmaxkpk21�2U

· kP̄ [AT
1 UL]k21

⌘

· kwe,i�1k4

+
⇣

4↵kpk21 ·kw̃c,0k2+4↵kpk21 ·kwok2+�2
v ·kpk21

⌘

·kw̌c,i�1k2

+
kpk41�2U · µmax

�L� 1
2
µmaxkpk21�2U

·
�

�P̄ [AT
1 UL]

�

�

2

1 ·
⇣

4↵·kw̃c,0k2+4↵·kwok2+�2
v ·
⌘

·kwe,i�1k2

(6.211)

where inequality (a) is using a = �c < 1, which is guaranteed for su�ciently small

step-sizes. Substituting (6.211) into (6.209), we get

E[kw̌c,ik4|Fi�1]

� �c · kw̌c,i�1k4

+
µmax

(�L � 1
2
µmaxkpk21�2U)3

· kpk41 · �4U ·
�

�P̄ [AT
1 UL]

�

�

4

1

· 1TP (4)[we,i�1]

+ 2µ4
maxkpk41 ·

n

216↵4 · kw̌c,i�1k4

+216↵4 ·
�

�P̄ [AT
1 UL]

�

�

4

1 ·1TP (4)[we,i�1]+27↵4 ·kw̃c,0k4

+ 27↵4 · kwok4 + �4
v4

o

+ 10µ2
max ·

n⇣

4↵kpk21+2↵kpk21 · kP̄ [AT
1 UL]k21

+
2↵kpk41�2U · µmax

�L � 1
2
µmaxkpk21�2U

·kP̄ [AT
1 UL]k21

⌘

·kw̌c,i�1k4

323

+
⇣ 4↵kpk41 · �2U · µmax

�L � 1
2
µmaxkpk21�2U

· kP̄ [AT
1 UL]k41

+ 2↵kpk21 · kP̄ [AT
1 UL]k21

+
2↵kpk41�2U · µmax

�L � 1
2
µmaxkpk21�2U

· kP̄ [AT
1 UL]k21

⌘

· kwe,i�1k4

+
⇣

4↵kpk21 · kw̃c,0k2 + 4↵kpk21 · kwok2 + �2
v · kpk21

⌘

· kw̌c,i�1k2

+
kpk41�2U · µmax

�L� 1
2
µmaxkpk21�2U

·
�

�P̄ [AT
1 UL]

�

�

2

1

·
⇣

4↵·kw̃c,0k2+4↵·kwok2+�2
v ·
⌘

·kwe,i�1k2
o

(a)
= �c · P (4)[w̌c,i�1]

+
µmax

(�L � 1
2
µmaxkpk21�2U)3

· kpk41 · �4U ·
�

�P̄ [AT
1 UL]

�

�

4

1

· 1TP (4)[we,i�1]

+ 2µ4
maxkpk41 ·

n

216↵4 · P (4)[w̌c,i�1]

+ 216↵4 ·
�

�P̄ [AT
1 UL]

�

�

4

1 · 1TP (4)[we,i�1]

+ 27↵4 · kw̃c,0k4 + 27↵4 · kwok4 + �4
v4

o

+ 10µ2
max ·

n⇣

4↵kpk21+2↵kpk21 · kP̄ [AT
1 UL]k21

+
2↵kpk41�2U · µmax

�L � 1
2
µmaxkpk21�2U

·kP̄ [AT
1 UL]k21

⌘

·P (4)[w̌c,i�1]

+
⇣ 4↵kpk41 · �2U · µmax

�L � 1
2
µmaxkpk21�2U

· kP̄ [AT
1 UL]k41

+ 2↵kpk21 · kP̄ [AT
1 UL]k21

+
2↵kpk41�2U · µmax

�L � 1
2
µmaxkpk21�2U

· kP̄ [AT
1 UL]k21

⌘

· 1TP (4)[we,i�1]

+
⇣

4↵kpk21 · kw̃c,0k2 + 4↵kpk21 · kwok2 + �2
v · kpk21

⌘

324

· P [w̌c,i�1]

+
kpk41�2U · µmax

�L� 1
2
µmaxkpk21�2U

·
�

�P̄ [AT
1 UL]

�

�

2

1

·
⇣

4↵·kw̃c,0k2+4↵·kwok2+�2
v ·
⌘

·1TP [we,i�1]
o

=

⇢

�c + 432µ4
max↵4kpk41

+ 10µ2
max ·

⇣

4↵kpk21+2↵kpk21 · kP̄ [AT
1 UL]k21

+
2↵kpk41�2U · µmax

�L � 1
2
µmaxkpk21�2U

·kP̄ [AT
1 UL]k21

⌘

�

·P (4)[w̌c,i�1]

+

⇢

µmax ·
kpk41 · �4U ·

�

�P̄ [AT
1 UL]

�

�

4

1
(�L � 1

2
µmaxkpk21�2U)3

+ 432µ4
max↵4kpk41 · kP̄ [AT

1 UL]k41

+ 10µ2
max ·

⇣ 4↵kpk41 · �2U · µmax

�L � 1
2
µmaxkpk21�2U

· kP̄ [AT
1 UL]k41

+ 2↵kpk21 · kP̄ [AT
1 UL]k21

+
2↵kpk41�2U · µmax

�L � 1
2
µmaxkpk21�2U

· kP̄ [AT
1 UL]k21

⌘

�

· 1T · P (4)[we,i�1]

+10µ2
max ·

⇣

4↵kpk21 ·kw̃c,0k2+4↵kpk21 ·kwok2+�2
v ·kpk21

⌘

· P [w̌c,i�1]

+
10kpk41�2U · µ3

max

�L� 1
2
µmaxkpk21�2U

·
�

�P̄ [AT
1 UL]

�

�

2

1

·
⇣

4↵·kw̃c,0k2+4↵·kwok2+�2
v ·
⌘

· 1T · P [we,i�1]

+ 2µ4
max · kpk41 ·

�

27↵4 · (kw̃c,0k4 + kwok4) + �4
v4

�

=

⇢

�c + µ4
max · 432↵4kpk41

+ µ2
max · 20↵kpk21

325

·
⇣

2 + kP̄ [AT
1 UL]k21 ·

�L + 1
2
µmaxkpk21�2U

�L � 1
2
µmaxkpk21�2U

⌘

�

· P (4)[w̌c,i�1]

+

⇢

µmax ·
kpk41 · �4U ·

�

�P̄ [AT
1 UL]

�

�

4

1
(�L � 1

2
µmaxkpk21�2U)3

+ 432µ4
max↵4kpk41 · kP̄ [AT

1 UL]k41

+ 20µ2
max↵kpk21 · kP̄ [AT

1 UL]k21

·
⇣

µmax · 2kpk
2
1 · �2U · kP̄ [AT

1 UL]k21
�L � 1

2
µmaxkpk21�2U

+
�L+

1
2
µmaxkpk21�2U

�L� 1
2
µmaxkpk21�2U

⌘

�

·1T ·P (4)[we,i�1]

+ 10µ2
max ·

⇣

4↵kpk21 · kw̃c,0k2 + 4↵kpk21 · kwok2

+ �2
v · kpk21

⌘

· P [w̌c,i�1]

+
10kpk41�2U · µ3

max

�L� 1
2
µmaxkpk21�2U

·
�

�P̄ [AT
1 UL]

�

�

2

1

·
⇣

4↵·kw̃c,0k2+4↵·kwok2+�2
v ·
⌘

· 1T · P [we,i�1]

+ 2µ4
max ·kpk41 ·

�

27↵4 ·(kw̃c,0k4+kwok4)+�4
v4

�

(6.212)

where step (a) is using the following relations:

kwe,i�1k4 = 1T · P (4)[we,i�1] (6.213)

kwe,i�1k2 = 1T · P [we,i�1] (6.214)

kw̌c,i�1k4 = P (4)[w̌c,i�1] (6.215)

kw̌c,i�1k2 = P [w̌c,i�1] (6.216)

Using the notation defined in (6.174)–(6.178) and taking expectations of both

326

sides of (6.212) with respect to Fi�1, we obtain

EP (4)[w̌c,i] � fcc(µmax) · EP (4)[w̌c,i�1]

+ fce(µmax) · 1T · EP (4)[we,i�1]

+ hcc(µmax) · EP [w̌c,i�1]

+ hce(µmax) · 1T · EP [we,i�1]

+ µ4
max · bv

4

,c (6.217)

6.C.3 Recursion for the 4th order moment of we,i

We now derive an inequality recursion for Ekwe,ik4. First, applying P (4)[·] oper-

ator to both sides of (6.167), we get

P (4)[we,i]

= P (4)
h

DN�1we,i�1�URAT
2 M

�

s(1⌦we,i�1)+zi�1+vi

�

i

(a)

� �e,4 · P (4)[we,i�1] +
8

(1�|�2(A)|)3
·P (4)

⇥

URAT
2 M

�

s(1⌦wc,i�1)+zi�1+vi

�⇤

(b)

� �e,4 ·P (4)[we,i�1]

+
8

(1�|�2(A)|)3
·
�

�P̄ [URAT
2 M]

�

�

4

1 ·11T ·P (4)
⇥

s(1⌦wc,i�1)+zi�1+vi

⇤

(c)

� �e,4 ·P (4)[we,i�1]

+µ4
max ·

8

(1�|�2(A)|)3
·
�

�P̄ [URAT
2]
�

�

4

1 ·11T ·P (4)
⇥

s(1⌦wc,i�1)+zi�1+vi

⇤

= �e,4 · P (4)[we,i�1]

+
8µ4

max

�

�P̄ [URAT
2]
�

�

4

1
(1� |�2(A)|)3

·11T · P (4)
h1

3
·3s(1⌦wc,i�1)+

1

3
·3zi�1+

1

3
· 3vi

i

(d)

� �e,4 · P (4)[we,i�1]

327

+
8µ4

max

�

�P̄ [URAT
2]
�

�

4

1
(1� |�2(A)|)3

· 11T ⇥
n1

3
· P (4)

⇥

3s(1⌦wc,i�1)
⇤

+
1

3
· P (4)

⇥

3zi�1

⇤

+
1

3
· P (4)

⇥

3vi

⇤

o

(e)
= �e,4 · P (4)[we,i�1]

+ µ4
max · 8

(1� |�2(A)|)3
·
�

�P̄ [URAT
2]
�

�

4

1 · 11T

⇥
�

27 · P (4)[s(1⌦wc,i�1)] + 27 · P (4)[zi�1] + 27 · P (4)[vi]

(6.218)

where step (a) uses (6.164), step (b) uses (6.160), step (c) uses the sub-multiplicative

property (5.106) from Chapter 5 and the sub-multiplicative property of matrix

norms:

P̄ [URAT
2 M] � P̄ [UR] · P̄ [AT

2] · P̄ [M]

)
�

�P̄ [URAT
2 M]

�

�

1 
�

�P̄ [UR]
�

�

1 ·
�

�P̄ [AT
2]
�

�

1 ·
�

�P̄ [M]
�

�

1

)
�

�P̄ [URAT
2 M]

�

�

1  µmax ·
�

�P̄ [UR]
�

�

1·
�

�P̄ [AT
2]
�

�

1 (6.219)

step (d) uses the convex property (6.157), and step (e) uses the scaling property

in Lemma 6.3. Applying the expectation operator to both sides of the above

inequality conditioned on Fi�1, we obtain

E
⇥

P (4)[we,i]
�

�Fi�1

⇤

� �e,4 · P (4)[we,i�1]

+
8µ4

max

�

�P̄ [URAT
2]
�

�

4

1
(1� |�2(A)|)3

·11T ·
n

27·P (4)[s(1⌦wc,i�1)]

+27·P (4)[zi�1]+27·E{P (4)[vi]|Fi�1}
o

(6.220)

In the above expression, we are using the fact that wc,i�1 and zi�1 are determined

by the history up to time i � 1. Therefore, given Fi�1, these two quantities are

328

deterministic and known so that

E
�

P (4)[s(1⌦wc,i�1)]
�

�Fi�1

= P (4)[s(1⌦wc,i�1)] (6.221)

E
�

P (4)[zi�1]
�

�Fi�1

= P (4)[zi�1] (6.222)

Substituting (6.199)–(6.201) into the right-hand side of the above inequality, we

get

E
⇥

P (4)[we,i]
�

�Fi�1

⇤

� �e,4 · P (4)[we,i�1]

+ µ4
max · 8

(1� |�2(A)|)3
·
�

�P̄ [URAT
2]
�

�

4

1 · 11T

·
⇢

27·
h

27�4U ·kw̌c,i�1k4 ·1+27�4Ukw̃c,0k4 ·1+27·go4
i

+ 27 ·
h

�4U ·
�

�P̄ [AT
1 UL]

�

�

4

1 · 11T · P (4)[we,i�1]
i

+ 27 ·
h

216↵4 · 1 · P (4)[w̌c,i�1] + 216↵4 ·
�

�P̄ [AT
1 UL]

�

�

4

1 ·11T ·P (4)[we,i�1]

+ 27↵4 · (kw̃c,0k4 + kwok4) · 1+ �4
v4 · 1

i

�

=
h

�e,4 + µ4
max · 216N · (�4U + 216↵4)

(1� |�2(A)|)3
· kP̄ [AT

1 UL]k41

· kP̄ [URAT
2]k41 · 11T

i

· P (4)[we,i�1]

+µ4
max ·

5832N · (�4U+8↵4)

(1�|�2(A)|)3
kP̄ [URAT

2]k41 ·P (4)[wc,i�1]·1

+µ4
max · 216·kP̄ [URAT

2]k41
(1�|�2(A)|)3

·
n

27
⇥

(�4U+↵4)·kw̃c,0k4 ·N

+1Tgo4+↵4 ·Nkwok4
⇤

+�4
v4 · N

o

· 1

�
h

�e,4 + µ4
max · 216N · (�4U + 216↵4)

(1� |�2(A)|)3
· kP̄ [AT

1 UL]k41

· kP̄ [URAT
2]k41 · 11T

i

· P (4)[we,i�1]

329

+ µ4
max · 5832N · (�4U + 8↵4)

(1�|�2(A)|)3
kP̄ [URAT

2]k41 · P (4)[wc,i�1] · 1

+ µ4
max · 216N · kP̄ [URAT

2]k41
(1�|�2(A)|)3

·
n

27
⇥

(�4U + ↵4)·kw̃c,0k4

+kgo4k1+↵4 ·kwok4
⇤

+ �4
v4

o

· 1 (6.223)

where the last step uses 1T go4  |1T go4|  Nkgo4k1. Using the notation defined

in (6.179)–(6.180) and applying the expectation operator to both sides of (6.223)

with respect to Fi�1, we arrive at

EP (4)[we,i] � Fee(µmax) · EP (4)[we,i�1] + fec(µmax) · 1 · EP (4)[w̌c,i�1]

+ µ4
max · bv

4

,e · 1 (6.224)

6.D Proof of Lemma 6.5

First, we establish the bound for P [zi�1] in (6.199). To begin with, recall the

following two relations from (5.81) and (5.62) in Chapter 5:

�i = AT
1 wi (6.225)

wi = 1⌦wc,,i + (UL ⌦ IM)we,i (6.226)

By the definition of zi�1 in (6.83), we get:

P (4)[zi�1] = P (4)[s(�i�1)� s(1⌦wc,i�1)]

(a)
= P (4)[s(AT

1 wi�1)� s(1⌦wc,i�1)]

(b)
= P (4)

⇥

s
�

1⌦wc,i�1+(AT
1UL ⌦ IM)we,i�1

�

� s(1⌦wc,i�1)
⇤

(c)

� �4U · P (4)
⇥

(AT
1UL ⌦ IM)we,i�1

⇤

330

(d)

� �4U ·
�

�P̄ [AT
1 UL]

�

�

4

1 ·11T ·P (4)[we,i�1] (6.227)

where step (a) substitutes (6.225), step (b) substitutes (6.226), step (c) uses the

variance relation (6.161), and step (d) uses property (6.160).

Next, we prove the bound for P (4)[s(1⌦wc,i�1)]. It holds that

P (4)[s(1⌦wc,i�1)]

= P (4)
h1

3
·3
�

s(1⌦wc,i�1)�s(1⌦ w̄c,i�1)
�

+
1

3
·3
�

s(1⌦ w̄c,i�1)�s(1⌦ wo)
�

+
1

3
·3·s(1⌦ wo)

i

(a)

� 1

3
· P (4)

⇥

3
�

s(1⌦wc,i�1)� s(1⌦ w̄c,i�1)
�⇤

+
1

3
· P (4)

⇥

3
�

s(1⌦ w̄c,i�1)� s(1⌦ wo)
�⇤

+
1

3
· P (4)

⇥

3 · s(1⌦ wo)
⇤

(b)
= 33 · P (4)

⇥

s(1⌦wc,i�1)�s(1⌦ w̄c,i�1)
⇤

+ 33 · P (4)
⇥

s(1⌦ w̄c,i�1)�s(1⌦ wo)
⇤

+ 33 · P (4)
⇥

s(1⌦ wo)
⇤

(c)

� 27�4U · P (4)
⇥

1⌦ (wc,i�1 � w̄c,i�1)
⇤

+27�4U ·P (4)[1⌦(w̄c,i�1�wo)]+27 · P (4)[s(1⌦ wo)]

(d)
= 27�4U · kw̌c,i�1k4 · 1+ 27�4U · kw̄c,i�1 � wok4 · 1+ 27 · P (4)[s(1⌦ wo)]

(e)

� 27�4U · kw̌c,i�1k4 ·1+27�4Ukw̃c,0k4 ·1+27 · P (4)[s(1⌦ wo)] (6.228)

where step (a) uses the convexity property (6.157), step (b) uses the scaling

property in Lemma 6.3, step (c) uses the variance relation (6.161), step (d) uses

the definition of the operator P (4)[·], and step (e) uses the bound kw̃c,ik2 

�2ic · kw̃c,0k2 from (5.129) of Chapter 5 and the fact that �c < 1.

Finally, we establish the bound on P (4)[vi] in (6.201). Introduce the MN ⇥ 1

331

vector x according to (6.225)–(6.226):

x , 1⌦wc,i�1 + AT
1 ULwe,i�1 ⌘ AT

1 wi�1 = �i�1 (6.229)

We partition x into block form as x = col{x1, . . . ,xN}, where each xk is M ⇥ 1.

Then, by the definition of vi from (6.82), we have

E
�

P (4)[vi]
�

�Fi�1

= E
�

P (4)
⇥

ŝi(x)� s(x)
⇤

�

�Fi�1

= col
�

E
⇥

kŝ1,i(x1)� s1(x1)k4|Fi�1

⇤

, . . . ,E
⇥

kŝN,i(xN)� sN(xN)k4|Fi�1

⇤

(a)

�

2

6

6

6

4

↵4 · kx1k4 + �4
v4

...

↵4 · kxNk4 + �4
v4

3

7

7

7

5

= ↵4 · P (4)[x] + �4
v4 · 1 (6.230)

where step (a) uses (6.38). Now we bound EP (4)[x] to complete the proof:

P (4)[x] = P (4)
⇥

1⌦wc,i�1 + AT
1 ULwe,i�1

⇤

= P (4)
h1

3
·3
�

1⌦wc,i�1+AT
1 ULwe,i�1�1⌦w̄c,i�1

�

+
1

3
·3
�

1⌦w̄c,i�1�1⌦wo
�

+
1

3
·3·1⌦wo

i

(a)

� 27 · P (4)
⇥

1⌦wc,i�1+AT
1 ULwe,i�1�1⌦w̄c,i�1

⇤

+27 · P (4)
⇥

1⌦ w̄c,i�1�1⌦ wo
⇤

+ 27 · P (4)
⇥

1⌦ wo
⇤

(b)
= 27 · P (4)

⇥

1⌦ w̌c,i�1 + AT
1 ULwe,i�1

⇤

+ 27 · P (4)
⇥

1⌦ w̃c,i�1

⇤

+ 27 · P (4)
⇥

1⌦ wo
⇤

(c)

� 27·
�

8·P (4)
⇥

1⌦w̌c,i�1

⇤

+8·P (4)
⇥

AT
1 ULwe,i�1

⇤�

332

+27·P (4)
⇥

1⌦w̃c,i�1

⇤

+27·P (4)
⇥

1⌦wo
⇤

(d)
= 216·kw̌c,i�1k4 ·1+216·P (4)

⇥

AT
1 ULwe,i�1

⇤

+ 27 · kw̃c,i�1k4 · 1+ 27 · P (4)
⇥

1⌦ wo
⇤

(e)

� 216·kw̌c,i�1k4·1+216·
�

�P̄
⇥

AT
1 UL

⇤

�

�

4

1·11T ·P (4)[we,i�1]

+27·kw̃c,i�1k4 ·1+27·P (4)
⇥

1⌦wo
⇤

(f)

� 216·kw̌c,i�1k4 ·1+216·
�

�P̄
⇥

AT
1 UL

⇤

�

�

4

1 ·11T ·P (4)[we,i�1]

+27 · kw̃c,0k4 ·1+27·P (4)
⇥

1⌦wo
⇤

= 216·kw̌c,i�1k4 ·1+216·
�

�P̄
⇥

AT
1 UL

⇤

�

�

4

1 ·11T ·P (4)[we,i�1]

+27 · (kw̃c,0k4+kwok4) · 1 (6.231)

where step (a) uses the convexity property (6.157) and the scaling property in

Lemma 6.3, step (b) uses the variance relation (6.161), step (c) uses the convexity

property (6.157), step (d) uses the definition of the operator P (4)[·], step (e) uses

the variance relation (6.159), and step (f) uses the bound kw̃c,ik2  �2ic · kw̃c,0k2

from (5.129) of Chapter 5 and �c < 1. Substituting (6.231) into (6.230), we

obtain (6.201).

6.E Proof of Lemma 6.6

First, we prove (6.205). It holds that

�

�Tc(wc,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM)zi�1

�

�

4

= P (4)
⇥

Tc(wc,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM)zi�1

⇤

= P (4)
h

�c · 1

�c

�

Tc(wc,i�1)� Tc(w̄c,i�1)
�

+ (1� �c) · �µmax

1� �c
· (pT ⌦ IM)zi�1

i

333

(a)

� �c · P (4)
⇥ 1

�c

�

Tc(wc,i�1)�Tc(w̄c,i�1)
�⇤

+(1� �c) · P (4)
⇥�µmax

1��c
· (pT⌦IM)zi�1

⇤

(b)
= �c · 1

�4c
· P (4)

⇥�

Tc(wc,i�1)� Tc(w̄c,i�1)
�⇤

+ (1� �c) · µ4
max

(1� �c)4
· P (4)

⇥

(pT ⌦ IM)zi�1

⇤

(c)

� �c · P (4)[wc,i�1 � w̄c,i�1] +
µ4
max

(1� �c)3
· P (4)

⇥

(pT ⌦ IM)zi�1

⇤

(d)
= �c · P (4)[w̃c,i�1] +

µ4
max

(1� �c)3
·

�

�

�

�

�

N
X

k=1

pkzk,i�1

�

�

�

�

�

4

= �c · P (4)[w̃c,i�1] +
µ4
max

(1� �c)3
·

N
X

l=1

pl

!4

·

�

�

�

�

�

N
X

k=1

pk
PN

l=1 pl
zk,i�1

�

�

�

�

�

4

(e)

� �c · P (4)[w̃c,i�1] +
µ4
max

(1� �c)3
·

N
X

l=1

pl

!4

·
N
X

k=1

pk
PN

l=1 pl
kzk,i�1k4

= �c ·P (4)[w̃c,i�1]+
µ4
max

(1� �c)3
·kpk31 ·

N
X

k=1

pkkzk,i�1k4

(f)
= �c ·P (4)[w̃c,i�1]+

µmaxkpk31
(�L�1

2
µmaxkpk21�2U)3

·pT ·P (4)[zi�1]

(g)

� �c · P (4)[w̃c,i�1]

+
µmaxkpk31

(�L � 1
2
µmaxkpk21�2U)3

· pT · �4U ·
�

�P̄ [AT
1 UL]

�

�

4

1 · 11TP (4)[we,i�1]

= �c · kw̃c,i�1k4 +
µmax�4U ·kpk41 ·

�

�P̄ [AT
1 UL]

�

�

4

1
(�L�1

2
µmaxkpk21�2U)3

·1TP (4)[we,i�1] (6.232)

where step (a) uses property (6.157), step (b) uses the scaling property in Lemma

6.3, step (c) uses property (6.162), step (d) introduces zk,i�1 as the kth M ⇥ 1

sub-vector of z1�1 = col{z1,i�1, . . . , zN,i�1}, step (e) applies Jensen’s inequality

to the convex function k · k4, step (f) uses the definition of the operator P (4)[·],

and step (g) uses bound (6.199).

Second, we prove (6.206). Let vk,i denote the kth M ⇥ 1 sub-vector of vi =

334

col{v1,i, . . . ,vN,i}. Then,

E
⇥

�

�(pT ⌦ IM)vi

�

�

4 �
�Fi�1

⇤

= E
h

�

�

�

N
X

k=1

pkvk,i

�

�

�

4�
�

�

Fi�1

i

=

N
X

l=1

pl

!4

· E
h

�

�

�

�

�

N
X

k=1

pk
PN

l=1 pl
vk,i

�

�

�

�

�

4
�

�

�

Fi�1

i

(a)



N
X

l=1

pl

!4

·
N
X

k=1

pk
PN

l=1 pl
E
⇥

kvk,ik4 |Fi�1

⇤

(b)
= kpk31 · pT · E

�

P (4)[vi]
�

�Fi�1

(c)

� kpk31 · pT ·
n

216↵4 · 1 · P (4)[w̌c,i�1]

+ 216↵4 ·
�

�P̄ [AT
1 UL]

�

�

4

1 ·11T ·P (4)[we,i�1]

+ 27↵4 · (kw̃c,0k4 + kwok4) · 1+ �4
v4 · 1

o

= 216↵4kpk41 · kw̌c,i�1k4

+ 216↵4kpk41 ·
�

�P̄ [AT
1 UL]

�

�

4

1 · 1T · P (4)[we,i�1]

+ 27↵4kpk41 · kw̃c,0k4 + 27↵4 · kpk41 · kwok4 + �4
v4 · kpk41 (6.233)

where step (a) applies Jensen’s inequality to the convex function k · k4, step (b)

uses the definition of the operator P (4)[·], and step (c) substitutes (6.201).

Third, we prove (6.207):

�

�Tc(wc,i�1)� Tc(w̄c,i�1)� µmax · (pT ⌦ IM)zi�1

�

�

2

=
�

�

�

�c · 1

�c

�

Tc(wc,i�1)� Tc(w̄c,i�1)
�

+ (1� �c) · �µmax

1� �c
· (pT ⌦ IM)zi�1

�

�

�

2

(a)

 �c ·
�

�

�

�

1

�c

�

Tc(wc,i�1)� Tc(w̄c,i�1)
�

�

�

�

�

2

+ (1� �c) ·
�

�

�

�

�µmax

1� �c
· (pT ⌦ IM)zi�1

�

�

�

�

2

= �c · 1

�2c
· kTc(wc,i�1)� Tc(w̄c,i�1)k2 + (1� �c) · µ2

max

(1� �c)2
·
�

�(pT ⌦ IM)zi�1

�

�

2

335

= �c · 1

�2c
· P [Tc(wc,i�1)� Tc(w̄c,i�1)] + (1� �c) · µ2

max

(1� �c)2
·
�

�(pT ⌦ IM)zi�1

�

�

2

(b)

� �c · P [wc,i�1 � w̄c,i�1] +
µ2
max

1� �c
·
�

�(pT ⌦ IM)zi�1

�

�

2

= �c · kw̌c,i�1k2 +
µmax

�L � 1
2
kpk21�2U

·
�

�(pT ⌦ IM)zi�1

�

�

2

= �c · kw̌c,i�1k2 +
µmax

�L � 1
2
kpk21�2U

·

�

�

�

�

�

N
X

k=1

pkzk,i�1

�

�

�

�

�

2

= �c · kw̌c,i�1k2 +
µmax

�L � 1
2
kpk21�2U

·
⇣

N
X

l=1

pl
⌘2

·

�

�

�

�

�

N
X

k=1

pk
PN

l=1 pl
zk,i�1

�

�

�

�

�

2

(c)

 �c · kw̌c,i�1k2 +
µmax

�L � 1
2
kpk21�2U

·
⇣

N
X

l=1

pl
⌘2

·
N
X

k=1

pk
PN

l=1 pl
kzk,i�1k2

= �c · kw̌c,i�1k2 +
µmax

�L � 1
2
kpk21�2U

· kpk1 · pT · P [zi�1]

(d)

 �c · kw̌c,i�1k2 +
µmax

�L � 1
2
kpk21�2U

· kpk1 · pT · �2U · kP̄ [AT
1 UL]k21 · 11T · P [we,i�1]

= �c · kw̌c,i�1k2 +
µmax

�L� 1
2
kpk21�2U

·kpk21 ·�2U ·kP̄ [AT
1 UL]k21 ·1TP [we,i�1] (6.234)

where steps (a) and (c) apply Jensen’s inequality to the convex function k · k2,

step (b) uses property P [Tc(x) � Tc(y)] � �2c · P [x � y] from (5.118) in Chapter

5, and step (d) substitutes the bound in (6.84).

Finally, we prove (6.208). With the block structure vi = col{v1,i, . . . ,vN,i}

defined previously, we have

E
⇥

�

�(pT ⌦ IM)vi

�

�

2 �
�Fi�1

⇤

= E
h

�

�

�

N
X

k=1

pkvk,i

�

�

�

2�
�

�

Fi�1

i

=
⇣

N
X

l=1

pl
⌘2

· E
h

�

�

�

N
X

k=1

pk
PN

l=1 pl
vk,i

�

�

�

2�
�

�

Fi�1

i

336

(a)


⇣

N
X

l=1

pl
⌘2

·
N
X

k=1

pk
PN

l=1 pl
E
h

�

�

�

vk,i

�

�

�

2

|Fi�1

i

=
⇣

N
X

l=1

pl
⌘

·
N
X

k=1

pkE
h

�

�

�

vk,i

�

�

�

2

|Fi�1

i

= kpk1 · pT · E
�

P [vi]
�

�Fi�1

(b)

 kpk1 · pT ·
n

4↵ · 1 · P [w̌c,i�1] + 4↵ · kP̄ [AT
1 UL]k21 · 11TP [we,i�1]

+
⇥

4↵ · (kw̃c,0k2 + kwok2) + �2
v

⇤

· 1
o

= 4↵kpk21 · P [w̌c,i�1] + 4↵ · kP̄ [AT
1 UL]k21 · kpk21 · 1TP [we,i�1]

+4↵kw̃c,0k2 ·kpk21+4↵kpk21 ·kwok2+�2
v ·kpk21 (6.235)

where step (a) applies Jensen’s inequality to the convex function k · k2, and step

(b) substituting (6.86).

337

CHAPTER 7

Future Issues

In this dissertation, we addressed several important aspects of adaptation and

learning over large-scale multi-agent systems. Based on the “data-distributed”

and “model-distributed” nature of multi-agent systems, we formulated two forms

of global cost functions: “sum-of-costs” and “cost-of-sum”. Both di↵usion and

consensus strategies can be used to solve these problems. We addressed a crit-

ical question in multi-agent adaptation: whether the distributed strategies can

approach the performance of a centralized strategy? The answer to the question

was in the a�rmative in the small step-size regime. That is, when the step-size

is small enough, the learning behavior of each agent approaches that of the cen-

tralized strategy. This is an important conclusion, especially in the design and

application of multi-agent system to big data problems, where “data-distributed”

and “model-distributed” features are prevalent. In the following, we list three po-

tential topics for future exploration:

• We have not investigated the information flow over the network when dif-

fusive learning approaches are performed. That is, how much information

should be shared in order to guarantee a certain performance level? It is

useful to understand what kind of information is important and should be

shared with neighbors. Viewing such problems from an information theo-

retic perspective might be a promising direction to gain deeper insights.

338

• One of the important motivations for distributed processing is that it allows

the agents to maintain their private data and sub-models while sharing only

the necessary information. Studying the the multi-agent system from the

perspective of information security and analyzing the tradeo↵ between data

privacy/security and learning performance are important future directions.

• We discussed the application of “cost-of-sum” to large-scale dictionary

learning problems. Applying it to other machine learning and distributed

decision making problems can be a useful direction. Besides, it is also

interesting to explore other forms of global cost functions other than “sum-

of-costs” and “cost-of-sum” in multi-agent adaptation and learning.

339

References

[1] A. Agarwal and J. Duchi. Distributed delayed stochastic optimization.
In Proc. Neural Information Processing Systems (NIPS), pages 873–881,
Granada, Spain, Dec. 2011.

[2] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for de-
signing overcomplete dictionaries for sparse representation. IEEE Trans.
Signal Process., 54(11):4311–4322, Nov. 2006.

[3] L. M. Aiello, G. Petkos, C. Martin, D. Corney, S. Papadopoulos, R. Skraba,
A. Goker, I. Kompatsiaris, and A. Jaimes. Sensing trending topics in twit-
ter. IEEE Trans. Multimedia, 15(6):1268–1282, Oct. 2013.

[4] T. M. Apostol. Mathematical Analysis: A Modern Approach to Advanced
Calculus. Addison-Wesley Publishing Company, Inc., 1957.

[5] J. Arenas-Garcia, M. Martinez-Ramon, A. Navia-Vazquez, and A. R.
Figueiras-Vidal. Plant identification via adaptive combination of transver-
sal filters. Signal Processing, 86(9):2430–2438, 2006.

[6] F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approxi-
mation algorithms for machine learning. In Proc. of the 25th Annual Conf.
Neural Inf. Process. Syst. (NIPS), pages 451–459, Granada, Spain, Dec.
2011.

[7] S. Barbarossa and G. Scutari. Bio-inspired sensor network design. IEEE
Signal Process. Mag., 24(3):26–35, May 2007.

[8] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–
202, 2009.

[9] D. P. Bertsekas. A new class of incremental gradient methods for least
squares problems. SIAM J. Optim., 7(4):913–926, 1997.

[10] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition,
1999.

[11] D. P. Bertsekas and J. N. Tsitsiklis. Gradient convergence in gradient
methods with errors. SIAM J. Optim., 10(3):627–642, 2000.

[12] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, Belmont, 1997.

340

[13] P. Bianchi, G. Fort, and W. Hachem. Performance of a distributed stochas-
tic approximation algorithm. IEEE Trans. Inf. Theory, 59(11):7405–7418,
Nov. 2013.

[14] P. Bianchi, G. Fort, W. Hachem, and J. Jakubowicz. Convergence of a
distributed parameter estimator for sensor networks with local averaging of
the estimates. In Proc. IEEE ICASSP, pages 3764–3767, Prague, Czech,
May 2011.

[15] L. Bottou. Online learning and stochastic approximations. On-line learning
in neural networks, 17(9), 1998.

[16] L. Bottou and Y. LeCun. Large scale online learning. In Proc. Neural
Information Processing Systems (NIPS), pages 1–8, Lake Tahoe, Nevada,
Dec. 2003.

[17] L. Bottou and Y. LeCun. On-line learning for very large data sets. Applied
Stochastic Models in Business and Industry, 21(2):137–151, 2005.

[18] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov chain on a graph.
SIAM Rev., 46(4):667–689, Dec. 2004.

[19] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algo-
rithms. IEEE Trans. Inf. Theory, 52(6):2508–2530, Jun. 2006.

[20] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

[21] P. Braca, S. Marano, and V. Matta. Running consensus in wireless sensor
networks. In Proc. 11th IEEE Int. Conf. on Information Fusion, pages 1–6,
Cologne, Germany, June 2008.

[22] D. Cai, X. Wang, and X. He. Probabilistic dyadic data analysis with local
and global consistency. In Proceedings of the 26th International Conference
on Machine Learning, pages 105–112, Montreal, Canada, Jun. 2009.

[23] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed. A di↵usion RLS scheme for
distributed estimation over adaptive networks. In Proc. IEEE Workshop on
Signal Process. Advances Wireless Comm. (SPAWC), pages 1–5, Helsinki,
Finland, June 2007.

[24] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed. Di↵usion recursive least-
squares for distributed estimation over adaptive networks. IEEE Trans.
Signal Process., 56(5):1865–1877, May 2008.

341

[25] F. S. Cattivelli and A. H. Sayed. Di↵usion LMS algorithms with infor-
mation exchange. In Proc. Asilomar Conf. Signals, Syst. Comput., pages
251–255, Pacific Grove, CA, Nov. 2008.

[26] F. S. Cattivelli and A. H. Sayed. Di↵usion LMS strategies for distributed
estimation. IEEE Trans. Signal Process., 58(3):1035–1048, Mar. 2010.

[27] F. S. Cattivelli and A. H. Sayed. Di↵usion strategies for distributed Kalman
filtering and smoothing. IEEE Trans. Autom. Control, 55(9):2069–2084,
Sep. 2010.

[28] F. S. Cattivelli and A. H. Sayed. Modeling bird flight formations using
di↵usion adaptation. IEEE Trans. Signal Process., 59(5):2038–2051, May
2011.

[29] F. S. Cattivelli and A. H. Sayed. Self-organization in bird flight forma-
tions using di↵usion adaptation. In Proc. 3rd International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing, pages 49–52,
Aruba, Dutch Antilles, Dec. 2009.

[30] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability
of on-line learning algorithms. IEEE Trans. Inf. Theory, 50(9):2050–2057,
Sep. 2004.

[31] P. Chainais and C. Richard. Distributed dictionary learning over a sensor
network. arXiv:1304.3568, Apr. 2013.

[32] P. Chainais and C. Richard. Learning a common dictionary over a sensor
network. In Proc. IEEE CAMSAP, St Martin, French West Indies, Dec.
2013.

[33] T.-H. Chang, A. Nedic, and A. Scaglione. Distributed constrained opti-
mization by consensus-based primal-dual perturbation method. available
as arXiv:1304.5590, Apr. 2013.

[34] J. Chen and A. H. Sayed. Di↵usion adaptation strategies for distributed
optimization and learning over networks. IEEE Trans. Signal Process.,
60(8):4289–4305, Aug. 2012.

[35] J. Chen and A. H. Sayed. On the limiting behavior of distributed optimiza-
tion strategies. In Proc. Allerton Conf., pages 1535–1542, Monticello, IL,
Oct. 2012.

[36] J. Chen and A. H. Sayed. Distributed Pareto optimization via di↵usion
adaptation. IEEE J. Sel. Topics Signal Process., 7(2):205–220, Apr. 2013.

342

[37] J. Chen and A. H. Sayed. On the learning behavior of adaptive networks
— Part I: Transient analysis. Submitted for publication [also available as
arXiv:1312.7581], Dec. 2013.

[38] J. Chen and A. H. Sayed. On the learning behavior of adaptive networks
— Part II: Performance analysis. Submitted for publication [also available
as arXiv:1312.7580], Dec. 2013.

[39] J. Chen, Z. J. Towfic, and A. H. Sayed. Dictionary learning over distributed
models. Submitted for publication, [also available as arXiv: 1402.1515], Feb.
2014.

[40] J. Chen, Z. J. Towfic, and A. H. Sayed. Online dictionary learning over
distributed models. In Proc. IEEE ICASSP, pages 1–5, Florence, Italy,
May 2014.

[41] Y. Chi, Y. Eldar, and R. Calderbank. PETRELS: Parallel subspace esti-
mation and tracking by recursive least squares from partial observations.
IEEE Trans. Signal Process., 61(23):5947–5959, Dec. 2013.

[42] S. Chouvardas, K. Slavakis, and S. Theodoridis. Adaptive robust dis-
tributed learning in di↵usion sensor networks. IEEE Trans. Signal Process.,
59(10):4692–4707, Oct. 2011.

[43] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng. Large
scale distributed deep networks. In Proc. NIPS, pages 1–9, Lake Tahoe,
NV, Dec. 2012.

[44] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed
online prediction. In Proc. International Conference on Machine Learning
(ICML), pages 713–720, Bellevue, WA, Jun. 2011.

[45] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed
online prediction using mini-batches. The Journal of Machine Learning
Research, 13:165–202, Jan. 2012.

[46] P. Di Lorenzo and S. Barbarossa. A bio-inspired swarming algorithm
for decentralized access in cognitive radio. IEEE Trans. Signal Process.,
59(12):6160–6174, Dec. 2011.

[47] P. Di Lorenzo and A. H. Sayed. Sparse distributed learning based on dif-
fusion adaptation. IEEE Trans. Signal Process., 61(6):1419–1433, Mar.
2013.

343

[48] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione.
Gossip algorithms for distributed signal processing. Proc. IEEE,
98(11):1847–1864, Nov. 2010.

[49] D. H. Dini and D. P. Mandic. Cooperative adaptive estimation of dis-
tributed noncircular complex signals. In Proc. Asilomar Conf. Signals,
Syst. and Comput., pages 1518–1522, Pacific Grove, CA, Nov. 2012.

[50] D. L. Donoho. De-noising by soft-thresholding. IEEE Trans. Inf. Theory
Theory, 41(3):613–627, May 1995.

[51] C. Eksin, P. Molavi, A. Ribeiro, and A. Jadbabaie. Learning in network
games with incomplete information: Asymptotic analysis and tractable im-
plementation of rational behavior. IEEE Signal Process. Mag., 30(3):30–42,
May 2013.

[52] C. Eksin and A. Ribeiro. Distributed network optimization with heuristic
rational agents. IEEE Trans. Signal Proc., 60(10):5396–5411, Oct. 2012.

[53] M. Elad and M. Aharon. Image denoising via sparse and redundant
representations over learned dictionaries. IEEE Trans. Image Process.,
15(12):3736–3745, Dec. 2006.

[54] A. Feuer and E. Weinstein. Convergence analysis of LMS filters with un-
correlated gaussian data. IEEE Trans. Acoust., Speech, Signal Process.,
33(1):222–230, Feb. 1985.

[55] M. Figueiredo and R. D. Nowak. A bound optimization approach to
wavelet-based image deconvolution. In Proc. IEEE ICIP, volume 2, pages
779–782, Genoa, Italy, Sep. 2005.

[56] M. A. T. Figueiredo, J. M. Bioucas-Dias, and R. D. Nowak. Majorization–
minimization algorithms for wavelet-based image restoration. IEEE Trans.
Image Process.,, 16(12):2980–2991, Nov. 2007.

[57] W. A. Gardner. Learning characteristics of stochastic-gradient-descent al-
gorithms: A general study, analysis, and critique. Signal Process., 6(2):113–
133, Apr. 1984.

[58] O. N. Gharehshiran, V. Krishnamurthy, and G. Yin. Distributed energy-
aware di↵usion least mean squares: Game-theoretic learning. IEEE Journal
Sel. Topics Signal Process., 7(5):821–836, Jun. 2013.

[59] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd Edition).
Johns Hopkins University Press, 1996.

344

[60] G. J. Gordon. No-regret algorithms for online convex programs. Advances
in Neural Information Processing Systems, 19:489, 2007.

[61] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex pro-
gramming, version 2.0 beta. http://cvxr.com/cvx, September 2013.

[62] W. K. Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1):97–109, Apr. 1970.

[63] J. H. van Hateren and A. van der Schaaf. Independent component filters of
natural images compared with simple cells in primary visual cortex. Proc.
Biological Sciences, 265(1394):359–366, Mar. 1998.

[64] S. Haykin. Adaptive Filter Theory, 2nd Edition. Prentice Hall, 2002.

[65] E. Hazan, A. Kalai, S. Kale, and A. Agarwal. Logarithmic regret algo-
rithms for online convex optimization. In Learning Theory, pages 499–513.
Springer, 2006.

[66] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis.
Springer, 2001.

[67] Y.-W. Hong and A. Scaglione. A scalable synchronization protocol for large
scale sensor networks and its applications. IEEE J. Sel. Areas Comm.,
23(5):1085–1099, May 2005.

[68] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, 1990.

[69] D. Hunter and K. Lange. A tutorial on MM algorithms. The American
Statistician, 58(1):30–37, Feb. 2004.

[70] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mo-
bile autonomous agents using nearest neighbor rules. IEEE Trans. Autom.
Control, 48(6):988–1001, 2003.

[71] B. Johansson, T. Keviczky, M. Johansson, and K.H. Johansson. Subgra-
dient methods and consensus algorithms for solving convex optimization
problems. In Proc. IEEE Conf. Decision and Control (CDC), pages 4185–
4190, Cancun, Mexico, Dec. 2008. IEEE.

[72] S. Jones, R. Cavin III, and W. Reed. Analysis of error-gradient adaptive
linear estimators for a class of stationary dependent processes. IEEE Trans.
Inf. Theory, 28(2):318–329, Mar. 1982.

345

http://cvxr.com/cvx

[73] T. Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice-Hall,
Inc., 2000.

[74] S. M. Kakade and A. Tewari. On the generalization ability of online strongly
convex programming algorithms. In NIPS, pages 801–808, Lake Tahoe, NV,
Dec. 2008.

[75] S. Kar and J. M. F. Moura. Convergence rate analysis of distributed gossip
(linear parameter) estimation: Fundamental limits and tradeo↵s. IEEE J.
Sel. Topics. Signal Process., 5(4):674–690, Aug. 2011.

[76] S. Kar, J. M. F. Moura, and H. V. Poor. Distributed linear parameter
estimation: Asymptotically e�cient adaptive strategies. SIAM Journal on
Control and Optimization, 51(3):2200–2229, 2013.

[77] S. Kar, J. M. F. Moura, and K. Ramanan. Distributed parameter esti-
mation in sensor networks: Nonlinear observation models and imperfect
communication. IEEE Trans. Inf. Theory, 58(6):3575–3605, Jun. 2012.

[78] S. P. Kasiviswanathan, H. Wangy, A. Banerjeey, and P. Melville. Online
`1-dictionary learning with application to novel document detection. In
Proc. NIPS, pages 2267–2275, Lake Tahoe, Nevada, Dec. 2012.

[79] S.M. Kay. Fundamentals of Statistical Signal Processing, Volume 2: Detec-
tion Theory. Prentice Hall PTR, 1998.

[80] E. Kreyszig. Introductory Functional Analysis with Applications. Wiley,
NY, 1989.

[81] H. J. Kushner and G. Yin. Stochastic Approximation and Recursive Algo-
rithms and Applications. Springer, 2003.

[82] A. J. Laub. Matrix Analysis for Scientists and Engineers. SIAM, PA, 2005.

[83] M. Lee, H. Shen, J. Z. Huang, and J. S. Marron. Biclustering via sparse
singular value decomposition. Biometrics, 66(4):1087–1095, Dec. 2010.

[84] S. Lee and A. Nedic. Distributed random projection algorithm for convex
optimization. IEEE Journal Sel. Topics Signal Process., 7(2):221–229, Apr.
2013.

[85] L. Li and J. A. Chambers. A new incremental a�ne projection-based adap-
tive algorithm for distributed networks. Signal Processing, 88(10):2599–
2603, Oct. 2008.

346

[86] J. Liu, X.-C. Tai, H. Huang, and Z. Huan. A weighted dictionary learning
model for denoising images corrupted by mixed noise. IEEE Trans. Image
Process., 22(3):1108–1120, Mar. 2013.

[87] C. G. Lopes and A. H. Sayed. Distributed processing over adaptive net-
works. In Proc. Adaptive Sensor Array Processing Workshop, MIT Lincoln
Laboratory, MA, June 2006.

[88] C. G. Lopes and A. H. Sayed. Incremental adaptive strategies over dis-
tributed networks. IEEE Trans. Signal Process., 55(8):4064–4077, Aug.
2007.

[89] C. G. Lopes and A. H. Sayed. Di↵usion least-mean squares over adap-
tive networks: Formulation and performance analysis. IEEE Trans. Signal
Process., 56(7):3122–3136, Jul. 2008.

[90] C.G. Lopes and A.H. Sayed. Di↵usion least-mean squares over adaptive
networks. In Proc. IEEE ICASSP, volume 3, pages 917–920, Honolulu, HI,
Apr. 2007.

[91] S. V. Macua, P. Belanovic, and S. Zazo. Di↵usion gradient temporal dif-
ference for cooperative reinforcement learning with linear function approx-
imation. In Proc. IEEE International Workshop on Cognitive Information
Process. (CIP), pages 1–6, Parador de Baiona, Spain, May 2012.

[92] J. Mairal. SPAMS: SPAMS (SPArse Modeling Software), version 2.4.
http://spams-devel.gforge.inria.fr/, December 2013.

[93] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix fac-
torization and sparse coding. The Journal of Machine Learning Research,
11:19–60, Mar. 2010.

[94] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised
dictionary learning. In Proc. NIPS, pages 1033–1040, Lake Tahoe, Nevada,
Dec. 2008.

[95] J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image
restoration. IEEE Trans. Image Process., 17(1):53–69, Jan. 2008.

[96] A. Nedic and D. P. Bertsekas. Incremental subgradient methods for non-
di↵erentiable optimization. SIAM J. Optim., 12(1):109–138, 2001.

[97] A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-
agent optimization. IEEE Trans. Autom. Control, 54(1):48–61, 2009.

347

http://spams-devel.gforge.inria.fr/

[98] A. Nedic and A. Ozdaglar. Cooperative distributed multi-agent optimiza-
tion. Convex Optimization in Signal Processing and Communications, Y.
Eldar and D. Palomar (Eds.), Cambridge University Press, pages 340–386,
2010.

[99] M. B. Nevelson and R. Z. Hasminskii. Stochastic Approximation and Re-
cursive Estimation. American Mathematical Society, 1976.

[100] R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and cooperation
in networked multi-agent systems. Proc. IEEE, 95(1):215–233, Jan. 2007.

[101] H. Ouyang and A. Gray. Data-distributed weighted majority and online
mirror descent. Arxiv preprint arXiv:1105.2274, 2011.

[102] D.P. Palomar and M. Chiang. A tutorial on decomposition methods for
network utility maximization. IEEE J. Sel. Areas Commun., 24(8):1439–
1451, Aug. 2006.

[103] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in
Optimization, 1(3):123–231, 2013.

[104] G. Peyré. The numerical tours of signal processing - advanced compu-
tational signal and image processing. IEEE Computing in Science and
Engineering, 13(4):94–97, Jul. 2011.

[105] B. Polyak. Introduction to Optimization. Optimization Software, NY, 1987.

[106] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation
by averaging. SIAM Journal on Control and Optimization, 30(4):838–855,
1992.

[107] J. B. Predd, S. R. Kulkarni, and H. V. Poor. A collaborative training
algorithm for distributed learning. IEEE Trans. Inf. Theory, 55(4):1856–
1871, Apr. 2009.

[108] M. G. Rabbat and R. D. Nowak. Quantized incremental algorithms for
distributed optimization. IEEE J. Sel. Areas Commun., 23(4):798–808,
2005.

[109] S. S. Ram, A. Nedic, and V. V. Veeravalli. Distributed stochastic subgradi-
ent projection algorithms for convex optimization. J. Optim. Theory Appl.,
147(3):516–545, 2010.

[110] W. Ren and R. W. Beard. Consensus seeking in multiagent systems under
dynamically changing interaction topologies. IEEE Trans. Autom. Control,
50(5):655–661, May 2005.

348

[111] D. Ruppert. E�cient estimations from a slowly convergent robbins-monro
process. Technical Report 781, Cornell University Operations Research and
Industrial Engineering, 1988.

[112] J. Sacks. Asymptotic distribution of stochastic approximation procedures.
The Annals of Mathematical Statistics, 29(2):373–405, Jun. 1958.

[113] V. Saligrama, M. Alanyali, and O. Savas. Distributed detection in sensor
networks with packet losses and finite capacity links. IEEE Trans. Signal
Proc., 54(11):4118–4132, Oct. 2006.

[114] S. Sardellitti, M. Giona, and S. Barbarossa. Fast distributed average con-
sensus algorithms based on advection-di↵usion processes. IEEE Trans. Sig-
nal Process., 58(2):826–842, Feb. 2010.

[115] A. H. Sayed. Di↵usion adaptation over networks. in Academic Press Li-
brary in Signal Processing, vol. 3, R. Chellapa and S. Theodoridis, editors,
pp. 323–454, Elsevier, 2014 [also available online as arXiv:1205.4220v2, May
2012].

[116] A. H. Sayed. Adaptive Filters. Wiley, NJ, 2008.

[117] A. H. Sayed. Adaptive networks. Proc. IEEE, 102(4):460–497, Apr. 2014.

[118] A. H. Sayed and C. G. Lopes. Adaptive processing over distributed
networks. IEICE Trans. Fund. Electron., Commun. Comput. Sci., E90-
A(8):1504–1510, Aug. 2007.

[119] A. H. Sayed, A. Tarighat, and N. Khajehnouri. Network-based wireless
location: challenges faced in developing techniques for accurate wireless
location information. IEEE Signal Process. Mag., 22(4):24–40, 2005.

[120] A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic. Di↵usion
strategies for adaptation and learning over networks. IEEE Signal Process.
Mag., 30(3):155–171, May 2013.

[121] S. Shalev-Shwartz. Online learning: Theory, algorithms, and applications.
PhD thesis, Hebrew University. Hebrew University. Hebrew University,
2007.

[122] S. Shalev-Shwartz. Online learning and online convex optimization. Foun-
dations and Trends in Machine Learning, 4(2):107–194, 2011.

[123] H. Shen and J. Z. Huang. Sparse principal component analysis via regu-
larized low rank matrix approximation. Journal of Multivariate Analysis,
99(6):1015–1034, Jul. 2008.

349

[124] M. T. M. Silva and V. H. Nascimento. Improving the tracking capability
of adaptive filters via convex combination. IEEE Trans. Signal Process.,
56(7):3137–3149, 2008.

[125] K. Srivastava and A. Nedic. Distributed asynchronous constrained stochas-
tic optimization. IEEE J. Sel. Topics Signal Process., 5(4):772–790, Aug.
2011.

[126] S. S. Stankovic, M. S. Stankovic, and D. M. Stipanovic. Decentralized
parameter estimation by consensus based stochastic approximation. IEEE
Trans. Autom. Control, 56(3):531–543, Mar. 2011.

[127] N. Takahashi, I. Yamada, and A. H. Sayed. Di↵usion least-mean squares
with adaptive combiners: Formulation and performance analysis. IEEE
Trans. Signal Process., 58(9):4795–4810, Sep. 2010.

[128] T. Takahashi, R. Tomioka, and K. Yamanishi. Discovering emerging topics
in social streams via link-anomaly detection. IEEE Trans. Knowl. Data
Eng., 26(1):120–130, Jan. 2014.

[129] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press,
4th edition, 2008.

[130] S. Theodoridis, K. Slavakis, and I. Yamada. Adaptive learning in a world
of projections. IEEE Signal Process. Mag., 28(1):97–123, Jan. 2011.

[131] I. Tosic and P. Frossard. Dictionary learning. IEEE Signal Processing
Magazine, 28(2):27–38, Mar. 2011.

[132] B. Touri, A. Nedic, and S. S. Ram. Asynchronous stochastic convex opti-
mization over random networks: Error bounds. In Proc. Inf. Theory and
Appl. Workshop (ITA), pages 1–10, San Diego, CA, Jan. 2010. IEEE.

[133] Z. J. Towfic, J. Chen, and A. H. Sayed. Collaborative learning of mixture
models using di↵usion adaptation. In Proc. IEEE Workshop on Mach.
Learning Signal Process. (MLSP), pages 1–6, Beijing, China, Sept. 2011.

[134] Z. J. Towfic and A. H. Sayed. Adaptive penalty-based distributed stochastic
convex optimization. accepted for publication, IEEE Trans. Signal Process.
[also available as arXiv:1312.4415], Dec. 2013.

[135] Z. J. Towfic and A. H. Sayed. Adaptive stochastic convex optimization over
networks. In Proc. Allerton Conf., pages 1–6, Monticello, IL, Oct. 2013.

350

[136] K. I. Tsianos, S. Lawlor, and M. G. Rabbat. Consensus-based distributed
optimization: Practical issues and applications in large-scale machine learn-
ing. In Proc. Annual Allerton Conference on Commun. Control and Com-
put., pages 1543–1550, Monticello, IL, Oct. 2012.

[137] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asyn-
chronous deterministic and stochastic gradient optimization algorithms.
IEEE Trans. Autom. Control, 31(9):803–812, 1986.

[138] S.-Y. Tu and A. H. Sayed. Mobile adaptive networks. IEEE J. Sel. Topics.
Signal Process., 5(4):649–664, Aug. 2011.

[139] S.-Y. Tu and A. H. Sayed. Di↵usion strategies outperform consensus strate-
gies for distributed estimation over adaptive networks. IEEE Trans. Signal
Process., 60(12):6217–6234, Dec. 2012.

[140] S-Y. Tu and A. H. Sayed. Mobile adaptive networks with self-organization
abilities. In Proc. 7th International Symposium on Wireless Communica-
tion Systems, pages 379–383, York, United Kingdom, Sep. 2010.

[141] B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson Jr. Station-
ary and nonstationary learning characterisitcs of the LMS adaptive filter.
Proc. IEEE, 64(8):1151—1162, Aug. 1976.

[142] K. Yuan, Q. Ling, and W. Yin. On the convergence of decentralized gra-
dient descent. to appear in SIAM Journal on Optimization, [also avaiable
as arXiv:1310.7063], 2014.

[143] C. Zach and M. Pollefeys. Practical methods for convex multi-view recon-
struction. In Proc. ECCV, pages 354–367. Heraklion, Greece, Sep. 2010.

[144] X. Zhao and A. H. Sayed. Performance limits of LMS-based adaptive net-
works. In Proc. IEEE ICASSP, pages 3768–3771, Prague, Czech, May
2011.

[145] X. Zhao and A. H. Sayed. Probability distribution of steady-state errors
and adaptation over networks. In Proc. IEEE Statistical Signal Processing
Workshop (SSP), pages 253–256, Nice, France, Jun. 2011.

[146] X. Zhao and A. H. Sayed. Performance limits for distributed estimation
over LMS adaptive networks. IEEE Trans. Signal Process., 60(10):5107–
5124, Oct. 2012.

351

[147] X. Zhao, S.-Y. Tu, and A. H. Sayed. Di↵usion adaptation over networks un-
der imperfect information exchange and non-stationary data. IEEE Trans.
Signal Process., 60(7):3460–3475, July 2012.

[148] M. Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proc. International Conference on Machine Learning
(ICML), pages 928–936, Washington, DC, USA, Aug. 2003. School of Com-
puter Science, Carnegie Mellon University.

[149] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analy-
sis. Journal of Computational and Graphical Statistics, 15(2):265–286, Jan.
2006.

352

	Introduction
	Single-Agent Adaptation
	Multi-Agent Adaptation
	Sum-of-Costs Formulation
	Cost-of-Sum Formulations
	Social Learning

	Objectives
	Overview of Main Results
	Organization
	Notation

	Sum-of-Costs Formulation
	Problem Formulation
	Diffusion Adaptation Strategies
	Iterative Diffusion Solution
	Adaptive Diffusion Solution

	Simulation Results
	Distributed Estimation with Sparse Data
	Distributed Collaborative Localization

	Conclusion

	Cost-of-Sum Formulations
	Motivation
	Problem Formulation
	General Dictionary Learning Problem
	Dictionary Learning over Networked Agents
	Relation to Prior Work

	Learning over Distributed Models
	``Cost-of-Sum'' vs. ``Sum-of-Costs''
	Inference over Distributed Models
	Recovery of the Primal Variables
	Choice of Residual and Regularization Functions
	Distributed Dictionary Updates

	Important Special Cases and Experiments
	Tuning of the inference step-size
	Image Denoising via Dictionary Learning
	Novel Document Detection via Dictionary Learning

	Conclusion
	Derivation of Some Typical Conjugate Functions
	Overview of Duality Theory
	Overview of Proximal Gradient Algorithms

	Mean-Square Analysis
	General Diffusion Adaptation Strategies
	Modeling Assumptions
	Diffusion Adaptation Operators
	Transient Analysis
	Bias Analysis
	Steady-State Performance
	Conclusion
	Properties of the Operators
	Bias at Small Step-Sizes
	Block Maximum Norm of a Matrix
	Stability of B and F

	Transient Analysis
	Introduction
	Problem Formulation
	Distributed Strategies: Consensus and Diffusion
	Relation to Prior Work

	Modeling Assumptions
	Learning Behavior
	Overview of Main Results

	Study of Error Dynamics
	Error Quantities
	Signal Recursions
	Error Dynamics
	Energy Operator and Properties

	Transient Analysis
	Limit Point
	Mean-Square Stability
	Interpretation of Results
	Discussion on the Limit Point and the Fixed Point

	Conclusion
	Proof of Lemma 5.1
	Proof of Lemma 5.4
	Proof of Lemma 5.5
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3
	Proof of Lemma 5.6
	Proof of Lemma 5.8
	Proof of Theorem 5.4
	Proof of Lemma 5.9
	Proof of Theorem 5.5

	Performance Analysis
	Introduction
	Family of Distributed Strategies
	Distributed Strategies: Consensus and Diffusion
	Review of the Main Results from Chapter 5
	Relation to Prior Work

	Modeling Assumptions
	Performance of Multi-Agent Learning Strategy
	Performance of Centralized Solution
	Benefits of Coopeartion
	Category I: Distributed Learning
	Category II: Distributed Optimization

	Conclusion
	Proof of Theorem 6.1
	Relating the weighted MSE to the steady-state error covariance matrix
	Approximation of by 11T c,
	Approximation of c, by a,
	Evaluation of a,
	Final expression for

	Proof of Lemma 6.2
	Proof of Lemma 6.4
	Perturbation Bounds
	Recursion for the 4th order moment of c,i
	Recursion for the 4th order moment of we,i

	Proof of Lemma 6.5
	Proof of Lemma 6.6

	Future Issues
	References

