
UC Berkeley
UC Berkeley Previously Published Works

Title
Troubleshooting Bayesian Cognitive Models

Permalink
https://escholarship.org/uc/item/7dj2k6mk

Authors
Baribault, Beth
Collins, Anne GE

Publication Date
2023-03-27

DOI
10.1037/met0000554

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7dj2k6mk
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

Troubleshooting Bayesian cognitive models

Beth Baribault & Anne G.E. Collins
University of California, Berkeley

Abstract
Using Bayesian methods to apply computational models of cognitive pro-
cesses, or Bayesian cognitive modeling, is an important new trend in psycho-
logical research. The rise of Bayesian cognitive modeling has been acceler-
ated by the introduction of software that efficiently automates the Markov
chain Monte Carlo sampling used for Bayesian model fitting — including the
popular Stan and PyMC packages, which automate the dynamic Hamilto-
nian Monte Carlo and No-U-Turn Sampler (HMC/NUTS) algorithms that
we spotlight here. Unfortunately, Bayesian cognitive models can struggle
to pass the growing number of diagnostic checks required of Bayesian mod-
els. If any failures are left undetected, inferences about cognition based on
the model’s output may be biased or incorrect. As such, Bayesian cognitive
models almost always require troubleshooting before being used for inference.
Here, we present a deep treatment of the diagnostic checks and procedures
that are critical for effective troubleshooting, but are often left underspeci-
fied by tutorial papers. After a conceptual introduction to Bayesian cogni-
tive modeling and HMC/NUTS sampling, we outline the diagnostic metrics,
procedures, and plots necessary to detect problems in model output with
an emphasis on how these requirements have recently been changed and ex-
tended. Throughout, we explain how uncovering the exact nature of the
problem is often the key to identifying solutions. We also demonstrate the
troubleshooting process for an example hierarchical Bayesian model of rein-
forcement learning, including supplementary code. With this comprehensive
guide to techniques for detecting, identifying, and overcoming problems in
fitting Bayesian cognitive models, psychologists across subfields can more
confidently build and use Bayesian cognitive models in their research.

Keywords: cognitive modeling, Bayesian methods, computational models,
Hamiltonian Monte Carlo

The Bayesian revolution of the last few decades (S. P. Brooks, 2003) has enabled a
much larger pool of psychologists than ever before to apply Bayesian methods in their work
(Andrews & Baguley, 2013; van de Schoot et al., 2017). Thanks to tutorial books and papers
targeted at psychologists (e.g., Rouder et al., 2009; Kruschke, 2014), it is no longer rare to
see Bayesian hypothesis tests and Bayesian linear models reported in psychological research.
However, Bayesian data analysis is not the only approach to using Bayesian methods in
psychological research: In this paper, we will discuss a different approach, Bayesian cognitive

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 2

modeling, in which Bayesian methods are used to implement cognitive process models (Lee
& Wagenmakers, 2013; not to be confused with Bayesian models of mind1). Process models
are increasingly being used (Jarecki et al., 2020) to provide formal, testable accounts of the
possible psychological mechanisms underlying observed behavior (Navarro, 2021). Using
hierarchical Bayesian methods for cognitive modeling confers many benefits, such as the
ability to quantify uncertainty in parameter estimates while simultaneously accounting for
individual differences and other meaningful structures directly in a model (Lee, 2011).
Bayesian cognitive modeling is a principled and coherent approach to quantitative evaluation
of psychological theory.

While using Bayesian methods for cognitive modeling had long been the province of
mathematical psychologists, as it required comfort with mathematical statistics and statis-
tical programming (Gilks et al., 1995; Gelman et al., 2013; for an example, see Rouder & Lu,
2005), this has changed with the maturation of software that automates the Markov chain
Monte Carlo methods (MCMC; S. Brooks et al., 2011) most popularly used for Bayesian
model fitting2 (such as JAGS: Plummer, 2003; and Stan: Carpenter et al., 2017) and soft-
ware that likewise automates Bayesian model specification (for linear models: Bürkner,
2017; and for select cognitive models: Ahn et al., 2017). These developments have made
Bayesian cognitive modeling accessible to psychologists across subfields, including cognitive
psychologists (e.g., Donkin et al., 2016; Navarro et al., 2016; Westfall & Lee, 2021), cogni-
tive neuroscientists (e.g., Frank et al., 2015; Nunez et al., 2019; Peters & D’Esposito, 2020),
clinical psychologists (e.g., Haines et al., 2020; Brown et al., 2021; Lasagna et al., 2022),
and social psychologists (e.g., Pleskac et al., 2018; Golubickis et al., 2018; Schaper et al.,
2019).

However, while linear statistical models (e.g., multilevel regression models) can be
relatively easily implemented in a Bayesian framework, Bayesian implementations of cogni-

1It is important to note that Bayesian cognitive modeling is also distinct from a Bayesian theory of mind
approach (which is sometimes termed “Bayes in the head”; e.g., Griffiths et al., 2008). Bayesian models of
mind view Bayes’ theorem as a cognitive mechanism in and of itself, that is capable of capturing how one
might rationally update their beliefs about the world in light of their experiences. In contrast, Bayesian
cognitive models are used to express a wide variety of other candidate cognitive mechanisms and processes
(which are not required to be rational — and as such, models may even be explicitly designed to capture non-
optimal behavioral patterns; e.g., Busemeyer et al., 2011); Bayesian methods are only used as the technique
for parameter estimation.

2Although other state-of-the-art methods including variational Bayes (Blei et al., 2017; Galdo et al.,
2020) and Sequential Monte Carlo (Dai et al., 2022; Gunawan et al., 2020) are also used, MCMC methods
remain the most widely used family of algorithms for Bayesian cognitive model fitting.

We would like to thank Michael Lee for his generous comments, which helped to substantively improve
the manuscript. We also wish to thank our reviewers for their perspective and comments, as well as Aspen
Yoo, Amy Zou, Milena Rmus, Gaia Molinaro, and Soobin Hong for their comments on an earlier draft. This
work was supported by NIH grant #R01MH119383.

The code has been made publicly available as part of the matstanlib library and can be accessed at
https://github.com/baribault/matstanlib.

Beth Baribault https://orcid.org/0000-0001-7370-2183
Correspondence concerning this article should be addressed to Beth Baribault, Helen Wills Neuroscience

Institute, Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA
94720. E-mail: baribault@berkeley.edu

https://github.com/baribault/matstanlib
https://orcid.org/0000-0001-7370-2183

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 3

tive models tend to require more careful testing and tweaking before they may be confidently
applied to data. This is because most Bayesian cognitive models have characteristics which
are known to pose challenges for Bayesian model fitting, even for the dynamic Hamiltonian
Monte Carlo algorithms (e.g., Hoffman & Gelman, 2014) that we restrict our attention to
here. In order to quantitatively express cognitive mechanisms, Bayesian cognitive mod-
els often require complicated, nonlinear likelihood functions, and to incorporate relevant
domain knowledge, non-conjugate priors over restricted domains are often used. In some
families of cognitive models, correlations among model parameters are closer to the rule
than the exception (Turner et al., 2013; Krefeld-Schwalb et al., 2022). Hierarchical model
structures are common, if not universally encouraged (Boehm et al., 2018), as they allow
for the simultaneous account of group- and individual-level effects (among other meaningful
dependencies; Lee, 2011; Scheibehenne & Pachur, 2015). These features all tend to produce
posterior geometries that are challenging for MCMC algorithms to navigate, and therefore
heighten the risk of computational failures. If active steps are not taken to conduct com-
putational checks for such failures, as well as consistency checks of other key assumptions
about model behavior, then any inference based on model output risks being fundamentally
flawed.

As such, the ability to detect, diagnose, and remedy problems — via procedures
which we collectively call troubleshooting — is essential for practitioners of Bayesian cog-
nitive modeling. Unfortunately, troubleshooting seems to be a blind spot in the didactic
literature on Bayesian methods aimed at cognitive scientists. Of these past tutorial papers
and books, those that introduce the core concepts of Bayesian data analysis often do not
cover Bayesian cognitive modeling (e.g., Etz & Vandekerckhove, 2018; Kruschke, 2014).
Those that focus on Bayesian cognitive model implementation, design, and development
(e.g., Rouder & Lu, 2005; Lee, 2008; Shiffrin et al., 2008; Vanpaemel, 2010; Lee & Wagen-
makers, 2013; Heathcote et al., 2015; Annis & Palmeri, 2018; Lee, 2018; Heathcote et al.,
2019; Schad et al., 2021; Greene & Rhodes, 2022) tend to underspecify the model-checking
steps required before a model may be used for inference.3 This is complicated by the fact
that model-checking techniques have evolved and improved over time, such that failure
modes that were not previously able to be detected may now be reliably exposed.

Specifically, recent advances in Bayesian statistical practice have amended and
broadened the suite of diagnostic checks of Bayesian model output that are deemed neces-
sary. Consider for a moment that the most familiar convergence diagnostic, R̂ ≤ 1.1, has
been considered standard since the 1990s (Gelman & Rubin, 1992; Gelman et al., 1995). In
just the past couple of years, the computation of R̂ has been made markedly more sensitive,
such that R̂ values must now meet the far more stringent criterion of being ≤ 1.01 (Vehtari
et al., 2021; Gelman et al., 2020). As we will discuss in detail here, recent developments
have mandated other significant changes, the collective effect of which is that some previ-
ously sufficient model output will now fail convergence checks. Other changes are a result of
the collective shift away from previously preferred MCMC methods, including Gibbs sam-
pling (via JAGS: Plummer, 2003), toward a newer, more efficient, and more robust method,
Hamiltonian Monte Carlo (via Stan: Carpenter et al., 2017; and PyMC: Salvatier et al.,

3Some of these sources also use linear models as their guiding example, rather than cognitive process
models. It is important to distinguish between the two, as some techniques for the testing and development
of linear models are of limited use or importance for cognitive models, and vice versa.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 4

2016). The increasingly popular class of Hamiltonian Monte Carlo (HMC) sampling algo-
rithms (Duane et al., 1987; Neal, 2011), including the No-U-Turn Sampler (NUTS; Hoffman
& Gelman, 2014) and the advanced dynamic HMC sampler implemented in Stan (Stan De-
velopment Team, 2022) — which we collectively call HMC/NUTS, and focus on exclusively
here — requires that multiple additional diagnostic quantities are checked as a matter of
course (e.g., BFMI; Betancourt, 2016). Despite the sharp rise in use of Bayesian cognitive
modeling and HMC/NUTS, these notable changes to the core practices of Bayesian model
fitting are still somewhat unfamiliar in the Bayesian cognitive modeling literature.

As such, the primary purpose of this tutorial is to present a current, thorough
treatment of the computational and model consistency checks required for proper use of
Bayesian cognitive models fit via HMC/NUTS sampling (see Figure 1), including clear
guidance on what to do when model output fails one or more checks. Because some of
the topics we cover here can seem arcane to psychological researchers who are not also
Bayesian statistical researchers, we have taken care to provide conceptual explanations of
all procedures, and to make connections to principles from cognitive science, if not actively
demonstrating by example, where possible. To this end, we begin with an overview of
the Bayesian cognitive modeling approach so as to build the conceptual groundwork that is
prerequisite for successful troubleshooting. Then, we explain how to check for computational
and other problems using computational diagnostics, consistency checks, and diagnostic
plots, while offering remedies for simpler issues along the way. Next, we explain how thornier
issues related to parameterization and posterior geometry can be elucidated through the
use of additional plots and other techniques. Throughout, we offer guidance on how to
better utilize and triage among the many techniques for identifying the exact nature of the
problem, and how characterization this can naturally lead to solutions. Finally, we review
more application-dependent methods, including posterior predictive checks, that check how
capable and useful a model is (or is not) for a given research context.

Troubleshooting can be an exceptionally challenging stage within a larger Bayesian
cognitive modeling workflow, as it is often an iterative, looping process through a sequence
of steps that are rarely done in sequence. As the selection of techniques is part of trou-
bleshooting, we make explicit note of many useful pathways among the various steps of
troubleshooting. We also make explicit note what computations, plots, and procedures are
expected to be manually programmed versus automated by publicly-available code libraries
that support Bayesian model evaluation. Using these support libraries, as we will call them,
is now both expected and encouraged (Gabry et al., 2019). Currently, the most widely-used
support libraries are the bayesplot package in R (Gabry & Mahr, 2021), the ArviZ package
in Python (Kumar et al., 2019), and the matstanlib library in MATLAB (which includes
the scripts and Stan files for our example models; Baribault, 2021). In the Appendix, we of-
fer a brief overview of how to use these libraries, and include Table A1 for quick reference of
the commands needed in each library to automate many of the troubleshooting techniques
recommended in this tutorial.

Above all, it is the conceptual principles and processes of troubleshooting that we
seek to emphasize here. It is our intent that this paper will serve as a general reference
for how to detect, diagnose, and correct many of the problems that are most frequently
encountered in the construction and development of Bayesian cognitive models, particularly
when they are implemented with state-of-the-art HMC/NUTS sampling methods.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 5

Bayesian cognitive modeling

We begin with a review of the Bayesian cognitive modeling approach, with an empha-
sis on the specific Bayesian techniques and methods that are currently most commonly used
in Bayesian cognitive model fitting. While we assume a general familiarity with Bayesian
principles (see Etz et al., 2018 for a first introduction, or Gelman et al., 2013 for a deeper
treatment) and computational cognitive modeling (e.g., Wilson & Collins, 2019; Farrell &
Lewandowsky, 2018), we include this overview to establish conceptual ideas and terminology
that we rely on throughout the tutorial.

DataModel specification

- Likelihood
- Priors & hyperpriors

Model fitting

Computational checks

Consistency checks

- R, divergences, BFMI
- trace plots & rank plots
- ESS & ESS plots
- other diagnostic plots

- Prior predictive checks
- Parameter recovery, SBC
- Model recovery
- Posterior predictive checks

Hamiltonian Monte Carlo
including

NUTS, other dynamic HMC

Model-based inference

- Point estimates, interval estimates
- Model comparison
...

mcmc

pass

fail

Troubleshooting

First, Simulated data
then, Experiment data

Figure 1

An abbreviated representation of the Bayesian cognitive modeling workflow that emphasizes
the subset of steps most relevant to troubleshooting. Model output that does not pass through
the filter (representing the requisite computational and consistency checks) must be rejected.
A troubleshooting process should be used to improve the model specification such that the
output might ultimately pass through all checks. Then, and only then, may the Bayesian
cognitive model output be used as the basis for inference. (Note that the model-checking
techniques listed in the figure need not be performed in the order in which they appear; prior
predictive checks, for example, would ideally be performed before model fitting; see Gelman
et al., 2020 for an exhaustive, ordered list.)

The Bayesian framework

All Bayesian analysis derives from Bayes’ theorem:

p(θ|x) = p(x|θ) p(θ)∫
p(x|θ′) p(θ′) dθ′

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 6

and Bayesian cognitive modeling, of course, is no exception. Bayes’ theorem tells us how
the prior probability, p(θ), of an unobserved parameter or set of parameters, θ, and the
likelihood, p(x|θ), of the observed data, x, may be used to derive the posterior probability,
p(θ|x), of the parameters in light of the data.

In a Bayesian cognitive model, the likelihood is specifically used to express the cog-
nitive process or mechanism theorized to have produced the behavioral data. Cognitive
model likelihoods are typically nonlinear and may be rather complex, as in an evidence
accumulator model of response times (Ratcliff & McKoon, 2008; Vandekerckhove et al.,
2008), a cumulative prospect theory-based model of decisions (Nilsson et al., 2011), or a
reinforcement learning model of action selection (Sutton & Barto, 2018; Dearden et al.,
1998). This assumed distribution of the data is conditional on the unobserved parameters,
which in a cognitive model will have meaningful psychological interpretations as they are
intended to capture one aspect or shape one dynamic of the cognitive process expressed in
the model. For example, in the respective aforementioned models, we interpret ν as the
speed of evidence accumulation, λ as the relative weighting of losses and gains, and α as the
learning rate. Bayesian analysis requires that each parameter has an associated prior distri-
bution, which should be defined over all conceivably possible values. In a cognitive model,
these priors are often seen as an opportunity to incorporate domain knowledge relevant
to each of the parameterized cognitive dynamics. In mature subfields, this knowledge can
be considerable, especially when a particular model has been long been used successfully
(Tran et al., 2021). (For a worked example of how to use domain expertise to support prior
elicitation for cognitive models, see Vanpaemel, 2010.)

The various dependencies among the parameters and data is called the structure of
the model. It is common for Bayesian cognitive models to incorporate hierarchical structure
in order to instantiate theoretically meaningful dependencies among the parameters and/or
data (Lee, 2011; Scheibehenne & Pachur, 2015). For example, hierarchical structure may be
used to simultaneously account for data from multiple participants, groups, conditions, and
so on, at advanced levels of abstraction (Lee, 2011). A hierarchical extension of a Bayesian
cognitive model over participants might specify that each participant is allowed a unique
set of parameter values (e.g., in a reinforcement learning model, their own learning rate,
α), but all instances of each parameter (e.g., all participants’ α parameters) are assumed
to be drawn from a common group-level hyperprior distribution. (In other words, Bayesian
cognitive models can be multilevel models.) This example hierarchical extension confers
dual benefits of sharing informative power, which can be helpful in small-data situations,
and regularizing parameter estimates across participants, which engenders more reliable
estimates (Gelman & Hill, 2006; Scheibehenne & Pachur, 2015; Katahira, 2016). Hierarchy
is also commonly used to enable Bayesian cognitive models to capture how multiple cogni-
tive processes simultaneously contribute to behavior, or how the same cognitive process is
responsible for performance in multiple tasks. In the context of troubleshooting, it is im-
portant to keep the structure of the model in mind — especially hierarchical prior structure
— as it is often necessary context for diagnostic interpretation.

Taken together, the likelihood and all priors compose a Bayesian model specification.
Because deriving the exact posterior analytically is feasible only for the simplest of models,
virtually all Bayesian cognitive model fitting relies on methods to approximate the joint
posterior distribution, including MCMC sampling algorithms. MCMC algorithms allow for

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 7

samples to be drawn from the joint posterior in such a way that each possible value of a
given parameter should be drawn with a probability proportional to its posterior density:

p(θ|x) ∝ p(x|θ)p(θ)

If an infinite number of samples were to be collected, one would be guaranteed to recover
the true posterior (among other mathematical guarantees; Gilks et al., 1995; S. Brooks
et al., 2011; Gelman et al., 2013). The finite number of posterior samples collected in
practice serve to approximate the true posterior in much the same way that one might use
a histogram of collected scores as an approximation of the true distribution of scores in the
population.

Ultimately, the goal is to use these posterior samples as the basis for inference
about the nature of the cognitive process or processes the model was designed to capture.
A wide variety of posterior estimates may be computed, but most frequently, the mean
or median of the posterior samples for a given parameter will serve as its point estimate,
and a credible interval, such as a 90% highest-density interval, will be used to express the
posterior uncertainty in that estimate. The exact estimates, analyses, and tests that are
of greatest interest will depend on the capabilities of your model as well as your research
goals.

An example Bayesian cognitive model

As an example of a Bayesian cognitive model, we consider a hierarchical Bayesian
implementation of a reinforcement learning (RL) model (that we will reference throughout
the paper as we explain various troubleshooting techniques). The model will be applied to
simulated data, assuming an experimental design in which each of 30 “participants” com-
pletes four blocks of a probabilistic three-armed bandit task. In each block, the simulated
participant sees the bandit stimuli 20 times and must learn from the results of their choices,
over time, which arm is most likely to give a point reward (see Figure 2a). Across the trials
within each block, the participant should more and more often select the bandit with the
highest reward probability. If this choice of bandit is considered correct, then we will expect
accuracy to start at chance (1

3), rise, and asymptote, in a classic learning curve (as seen in
Figure 2b).

Our reinforcement learning model (Sutton & Barto, 2018) captures participants’
learning process by allowing for each stimulus to be assigned a separate value. At the start
of each block, we assume that every participant begins by assigning each stimulus the same
starting value, such as Q0 = [0, 0, 0]. Then, on every trial, t, the values, Q, are scaled by
an inverse temperature parameter, β, and run through a softmax function to determine the
probability of selecting each stimulus, π. The participant then makes a choice, c, according
to those probabilities:

πt i = eβQt i∑3
j=1 eβQt j

∀i

ct ∼ Categorical(πt)

The difference between the reward resulting from that choice, r, and the current value of
the chosen stimulus constitutes a prediction error, δ. The prediction error is used to update

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 8

c
3

c
1

c
1

c
2

c
3

+0

+1

0.7

0.2

0.1

b

a →

→

→

4 8 12 16 20

trial

0

0.2

0.4

0.6

0.8

1

p
ro

p
o

rt
io

n
 c

o
rr

e
c
t

reward

probability

. . .

. . .

choice

Figure 2

Many figures throughout this paper present output from our hierarchical Bayesian imple-
mentation of a classic delta-rule reinforcement learning model (detailed in text). When
behavioral data for a probabilistic 3-armed bandit task (a) was simulated according to the
model specification, characteristic learning curves (b) are seen in the simulated data at the
group level (thick black line) and for individual subjects (lighter gray lines), which are all
above chance (dotted line) by the final trials.

the chosen stimulus’ value according to a learning rate, α:

δt = rt − Qt(ct)
Qt(ct) = Qt(ct) + αδt

Finally, to capture how participants may forget over time, all Q-values are subject to decay
with rate ϕ before the next trial begins:

Qt+1 = Qt + ϕ(Q0 − Qt)

Together, the action selection, value updating, and forgetting mechanisms describe the cog-
nitive process of learning over time. As the exact dynamics of the process will be unique to
each individual, each participant p is allowed to have a different β, α, and ϕ. However, we
also assume that all participants come from a group4 that shares common cognitive pro-
cesses. To express this knowledge in the model, we incorporate a hierarchy over participants,

4Humans.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 9

and we set participant-level priors for each parameter:

βp ∼ Normal(µβ, σβ)T [0,]

αp ∼ Normal(µα, σα)T [0,1]

ϕp ∼ Normal(µϕ, σϕ)T [0,1]

that are dependent on group-level hyperparameters, with associated hyperpriors:

µβ ∼ Normal(10, 5)T [0,]

σβ ∼ Normal(0, 5)T [0,]

µα ∼ Uniform(0, 1)
σα ∼ Normal(0, 0.5)T [0,1]

µϕ ∼ Uniform(0, 1)
σϕ ∼ Normal(0, 0.5)T [0,1]

(The subscript T indicates a truncation of the distribution to between the specified bounds
or bound.)

We selected this simple delta-rule learning model because it has many of the fea-
tures common to Bayesian cognitive models that are known to pose problems for MCMC
algorithms, such as the aforementioned nonlinear and complicated likelihood and the hier-
archical model structure. In addition, its parameters require restricted ranges (α, ϕ ∈ [0, 1],
β ∈ R+, exclusive of 0), are decidedly not normally-distributed (e.g., the empirical distribu-
tion for β is positively skewed), and are well-known to be correlated (in some reinforcement
learning experiments and models, though certainly not all). As such, this popular cognitive
model presents good opportunities for demonstrating the principles of troubleshooting.

In fact, while the model specification above may appear sufficient at first glance, it
will reliably fail most of the required computational and consistency checks (as described
in the next section). As a supplement to this tutorial, we include a MATLAB script,
example_RL.m, available in the examples folder of the matstanlib library, that will specify,
apply, and troubleshoot this model. The script will run both this initial, flawed version of
the model and a final, improved version of the model. For readers who are not MATLAB
users but wish to follow along, we also include standalone files containing Stan code for
each version of the model (as RL_broken.stan and RL_fixed.stan, respectively) — but
the model specification detailed above is sufficient to implement the model in PyMC or any
other HMC/NUTS sampling package.

Running the RL model script and another example script, example_funnel.m, will
collectively reproduce many of the figure panels in the remainder of this paper (all of which
present real Bayesian cognitive model output).

A brief introduction to sampling algorithms

By fitting or running a model, we specifically mean using MCMC sampling to esti-
mate the joint posterior of the model (see Van Ravenzwaaij et al., 2018, for an accessible
introduction to MCMC sampling that emphasizes many core principles). In practice, this
entails submitting the model specification and the data — whether experimentally collected

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 10

or simulated — to software designed to automate MCMC sampling, via an interface specific
to the programming language used.

For the remainder of this tutorial, our discussion of MCMC sampling will implicitly
assume the use of HMC/NUTS sampling, as currently HMC/NUTS algorithms represent
the state-of-the-art in MCMC methods (Gelman et al., 2020), and are immensely popular
due to their automation in the well-supported Stan and PyMC software packages. How-
ever, we wish to note that much of this conceptual introduction — and a majority of the
troubleshooting procedures we discuss beginning in the next section — will also be applica-
ble to other MCMC sampling algorithms (for overviews, see Robert & Casella, 2011; Van
Ravenzwaaij et al., 2018). It is important to build intuition for how posterior samples are
generated in order to understand the computational diagnostics, as failed diagnostic checks
will motivate many of the troubleshooting techniques we recommend.

To begin, the sampler is initialized at a random point in the parameter space as
defined by the model. This place and every subsequent place the sampler visits in the
posterior parameter space is recorded as a sample from the joint posterior. From the random
initial position, the sampling algorithm is used to compute a trajectory within the parameter
space from the current position to the next, and again from there to another position, and
so on, until a pre-specified number of joint posterior samples have been collected. These
samples, in order, are called a chain. Because the first few samples or iterations in the chain
will usually be more representative of the initializing value than of the true posterior (called
the target distribution), the first handful or more of iterations in a chain are discarded. In
modern sampling software, this warmup period (or burn-in, in older sources) is also used
for adaptation of the sampler itself. For example, roughly how big of a step in the joint
parameter space is taken with each successive iteration is a tuning parameter that is adjusted
during warmup (for a review of HMC/NUTS sampler dynamics, see Betancourt, 2018).

In practice, multiple chains are run simultaneously, because without multiple chains
we cannot perform some of the computational checks required to assess the quality of the
sampling (Gelman & Rubin, 1991) — in addition to saving precious time. A good expecta-
tion for Bayesian cognitive model applications is to collect at least 2000 total iterations per
each of four chains, with at least the first 500 apportioned for warmup, and the remaining
1500 kept and used for inference.5 Ultimately, the warmup period should be long enough
that the chains have converged (or agreed) on a stationary distribution, and the subsequent
period of collecting kept iterations should be sufficient both to pass the computational
checks and to support all planned uses of the marginal posteriors for inference. However,
when one is first beginning to work with a model, we recommend starting by collecting only
50 warmup and 50 kept iterations, just to ensure the model runs. Then, we recommend
observing whether shorter runs of the model, such as 150 warmup and 500 kept iterations,

5If you are familiar with Gibbs sampling, then you may notice that the recommended numbers of kept
(and burned) iterations are far lower than than the number of iterations recommended for Gibbs sampling.
With HMC/NUTS, fewer posterior samples are required due to the the much higher efficiency per iteration,
especially with respect to the ability of HMC/NUTS to move throughout the kinds of correlated and high-
dimensional parameter spaces that are common in Bayesian cognitive modeling (Turner et al., 2013), which
greatly hinder Gibbs sampling (but not HMC/NUTS; Neal, 2011; Hoffman & Gelman, 2014). As a result,
where Gibbs sampling via JAGS might require 10,000–100,000 samples, HMC/NUTS sampling via Stan
or PyMC might require only 1000–2000 samples. You may also notice that we do not mention thinning
samples. Thinning samples is no longer recommended (Link & Eaton, 2012).

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 11

might reveal problems. These abbreviated runs will allow one to begin the iterative process
of troubleshooting (which requires repeated model runs) without spending as much time
waiting for failures (Gelman et al., 2020). A high-level view of the Bayesian cognitive mod-
eling approach that emphases the iterative nature of model testing and troubleshooting is
presented in Figure 1.

Sampler output

The output of a Bayesian cognitive model is a collection of samples from the marginal
posterior distribution for every parameter of the model, as well as various diagnostic quan-
tities from the computation the sampler used to generate each iteration in each chain. One
should be mindful that which chain a sample was collected in, and the order in which
the samples were collected within each chain is crucially important information. As such,
one should never engage a ‘permute’ option during sample extraction: Scrambling the
iteration order and chain identity will prevent the use of multiple required model-checking
diagnostics, and as such, will make your output unusable.

In the Appendix, we explain in more detail how the libraries mentioned earlier —
including bayesplot in R, ArviZ in Python, and matstanlib in MATLAB — are not
only useful for extracting samples, but are critical to facilitate many of the troubleshooting
procedures we now describe. We recommend using Table A1 to check the command needed
to facilitate each troubleshooting procedure we discuss as you work through the rest of the
tutorial.

Detecting problems

After the Bayesian cognitive model finishes running and posterior samples and sam-
pler diagnostics have been extracted, we first must check whether we can detect any prob-
lems in the output, and if so, initiate a troubleshooting process to identify a potential un-
derlying cause. For a Bayesian cognitive model, these checks will likely be performed many
times. At an absolute minimum, they should be performed twice: first, after applying the
model to simulated data, and again after applying the model to experimentally-collected
data. The model will tend to be run many more times as the troubleshooting process is
iterative: Each time a check fails, one should investigate the output, tweak the model setup,
and run the model again.

In the simulation study, data should be simulated according to the data distribution
in the model specification, using known or true parameter values. While these values may
be hand-selected, it is better to randomly generate the true values directly from the prior
distributions, and to let new values be drawn each time the simulation study script is called.
The simulated data should also mimic the experimental design as closely as possible (e.g., a
similar number of participants, similar stimulus sequences, etc.). Once the troubleshooting
process is complete for the simulation study, we can progress to troubleshooting the model’s
performance with experimentally-collected data (as needed).

In both applications, problems can be detected using the recommended suite of com-
putational checks and consistency checks to probe, respectively, whether the HMC/NUTS
sampling and the model itself have functioned as intended. The computational checks are

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 12

primarily concerned with evaluating the computational diagnostics for HMC/NUTS sam-
pling, including R̂, divergences, BFMI, and ESS (as discussed in detail below). Other
quantities, such as R∗ (a multivariate convergence metric for the entire model; Lambert
& Vehtari, 2022) and k̂ (which is computed as part of Bayesian cross-validation; Vehtari
et al., 2017), are diagnostically useful, but as they are not currently recommended default
diagnostics, and some require a deeper technical understanding, we consider them to be
beyond the scope of the present paper. The assessments that we call consistency checks are
a necessary complement to the computational checks, as they are designed to evaluate key
assumptions and expectations about model behavior, including whether the model might
be misspecified given the research context. These computational and consistency checks (or
collectively, diagnostic checks) all have associated visualizations, which we call diagnostic
plots.

Each diagnostic check presents a different opportunity for troubleshooting of a
Bayesian cognitive model, as each is geared toward the detection of different types of prob-
lems. It is intuitive to see these diagnostic checks in terms of the questions they are most
helpful in answering. These questions are:

1. Is there any evidence that the chains disagree about any of the marginal posteriors?

2. Is there any evidence that the posterior distribution was not fully explored?

3. Is there any evidence that sampling was not efficient enough to support good posterior
estimates?

4. Is the model failing to generate coherent parameter estimates?

5. Is the data the model expects to encounter unreasonable or otherwise inconsistent
with my domain expertise?

If the diagnostics suggest that the answer to any of these questions is “yes”, then there is a
problem with the model setup that absolutely must be corrected. By understanding what
each diagnostic metric, plot, and procedure is designed to measure or assess, one can begin
to identify the problem and, accordingly, a solution.

Computational checks

Convergence and divergence

The most familiar MCMC diagnostic is R̂ (which is sometimes called the “Gelman-
Rubin statistic” in older sources; Gelman & Rubin, 1992). If all of the chains have converged
on the target distribution, then the chains should agree so strongly that they are function-
ally identical, in which case R̂ will be close to 1. For each parameter, the chains should
specifically agree with respect to both the location and spread of the marginal posterior
distribution. Furthermore, there should be no remaining influence of any chain’s starting
value and, over the full range of the kept iterations, all chains should appear stationary. In
this ideal case, R̂ will be exactly 1; a value of R̂ that is meaningfully greater than 1 suggests
that the chains have failed to converge (Gelman et al., 2013; Vehtari et al., 2021).

Understanding how R̂ is computed can build intuition for what kinds of problems
can be detected by high R̂ (as we review below). After splitting the chains (such that the

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 13

first and second half might temporarily be considered as separate chains), the base R̂ com-
putation essentially compares the between-chain variance to the within-chain variance. R̂
will be high if the chains are not mixing (meaning failing to sample from similar ranges of
values), or if any of the chains are not stationary (meaning that a notably different range of
values is sampled over time), as in both cases the between-chain variance will be dispropor-
tionately high (Gelman et al., 2013). In the most recent reformulation of R̂ (Vehtari et al.,
2021), the samples are converted to ranks and (approximately) inverse normal transformed
before the base R̂ formula is applied. The combined effect of this transformation and a
few other adjustments is that the new and improved R̂ is simultaneously more robust (to
monotone transformations) and more sensitive (to some instances of poor mixing that were
not able to be detected by previous formulations; Vehtari et al., 2021). (In other words,
the Type I and Type II error rates are both lower for convergence checks with the new
formulation of R̂; when viewed in this light, it is less surprising that the criterion has been
tightened from 1.1 to 1.01.)

0 200 400 600 800 1000

iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000

iteration

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000

iteration

-8

-6

-4

-2

0

2

4

0 200 400 600 800 1000

iteration

0.048

0.049

0.05

0.051

0.052

0.053

0.054

0.055

0 200 400 600 800 1000

iteration

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4

marginal
posterior
density

0 200 400 600 800

iteration

0.25

0.3

0.35

0.4

0.45

0.5

a

d

b

e

c

f

Figure 3

Trace plots can be used to visualize chain (dis)agreement, and support troubleshooting of
convergence issues signaled by high R̂. Only the chain traces in (a) and (b) are acceptable;
the traces in (c–f) each have a common yet serious problem. Extreme autocorrelation (c),
drift (d), label-switching (e), and sticking (f), all tend to cause high R̂, and all are unac-
ceptable. Troubleshooting techniques are necessary to identify the root of these problems.

As such, R̂ may be interpreted as the degree to which the chains disagree, and a
value of R̂ ≤ 1.01 is required for every instance of every parameter in the model (Vehtari
et al., 2021; Stan Development Team, 2022). While high R̂ values do not suggest a remedy
in and of themselves, with the assistance of trace plots, we can begin to understand why the
chain disagreement flagged by R̂ might be occurring. Trace plots visualize chain behavior
by plotting the sequence of parameter values sampled at each iteration in each chain, in
order, as a line (called the chain trace). In some support libraries, it is possible to include
a histogram of the samples across all chains alongside the chain traces; this summary
representation of the marginal posterior is often helpful to interpret the trace plot. Some

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 14

classic examples of ideal, acceptable, and unacceptable chain behavior are presented in
Figure 3.

In an ideal situation where R̂ is close to 1 and the chains are stationary and mixing
well, the chain traces will tend to appear in a trace plot as they do in Figure 3a; this ap-
pearance has been said to resemble a fuzzy caterpillar or the flower of a bottlebrush plant.
More commonly in Bayesian cognitive models, there will be some degree of autocorrelation
within each chain, meaning a tendency for similar values to be sampled in successive iter-
ations versus more distant iterations (as seen in Figure 3b). Unless R̂ or other diagnostics
have failed their check (or effective sample size, as discussed below, is undesirably low), a
mild amount of autocorrelation is not of concern, and the model may simply be run for
more kept iterations (Link & Eaton, 2012). Extreme autocorrelation, on the other hand
(as in Figure 3c), should be investigated further. This behavior can indicate that some
feature of the parameter space defined by the model is — directly or indirectly — making
it difficult for the chains to move efficiently. Effective sample size plots (discussed in the
next subsection) will likely be of help in searching for the specific underlying issue.

Another unacceptable chain behavior that may be recognized in a trace plot is chain
drift (Figure 3d). This may occur if the starting points of one or more chains are still exerting
an influence on the sampled values. Alternatively, this may occur if the drifting chain was
in a local posterior maximum, and is (somewhat slowly) transitioning to a higher-density
region of the posterior space. Regardless of cause, R̂ will be high in cases of drift because
one (or more) of the chains is not stationary. The first remedy to try in this situation is
to run the model again with a longer warmup period (e.g., twice the number of warmup
iterations) to give the chains more time to find a stationary distribution.

A more challenging pattern to resolve is when each individual chain is stationary
and moving well, but collectively the chains fail to mix, as they disagree on the location of
the posterior distribution (as in Figure 3e). This kind of confident disagreement is common
to see when a cognitive model is insufficiently identified. For example, in a latent mixture
model, behavior may be modeled as a weighted combination of two or more cognitive pro-
cesses. If these component processes predict similar behavior, then the mixture parameter
may only be weakly identified, and different chains may settle on different values of the
mixture proportion (Jasra et al., 2005). This phenomenon, known as label-switching, can
also occur in models where two parameters are directly multiplied, but the priors and data
are insufficient to identify more than the parameters’ product. In both cases, a first remedy
is to make the priors more informative. However, if domain knowledge is not available or
appropriate to incorporate, and the component processes or parameters cannot be distin-
guished in another way, then the experiment in which the behavioral data was collected
may simply not be sufficient to distinguish the processes intended to be captured by model.

The last pattern that may be signaled by high R̂ is when a chain will sample the
same value over and over for an extended period of time (as in Figure 3f). When this sticking
behavior occurs, it is often a result of the sampler trying and failing to reach a nearby area
in the joint parameter space. A common scenario in which this might be observed is in a
hierarchical model, where a chain for the hyper-level dispersion parameter gets stuck near(-
ish) to 0 (due to a hierarchical funnel, as we will fully explain in the Posterior geometry
subsection; Betancourt & Girolami, 2015). Most of the time, when sticking behavior is seen
in a trace plot for one parameter, it will be seen for others as well. Unfortunately, this

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 15

can sometimes make it challenging to identify the true culprit, but if divergences (which we
discuss in a moment) occur whenever the chain sticks (as they often do), the divergences
will likely be more useful to investigate.

0 500 1000 1500

iteration

chain 1 chain 2

chain 3 chain 4

chain 1 chain 2

chain 3 chain 4

0 200 400 600 800 1000

iteration

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1500 3000 4500 6000 0 1500 3000 4500 6000

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1500 3000 4500 6000 0 1500 3000 4500 6000

chain 1

0 1000 2000 3000 4000 0 1000 2000 3000 4000

0 1000 2000 3000 4000

chain 3

0 1000 2000 3000 4000

chain 2

chain 4

0 200 400 600 800 1000

iteration

1

ba c

Figure 4

Rank plots are a new way to visualize chain (dis)agreement, and support troubleshooting
of convergence issues signaled by high R̂. In some cases, rank plots can expose problems
that were not visible in a classic trace plot. While all three trace plots look acceptable, the
corresponding rank plots of the same chains reveal that this impression is only genuine for
(a), where the ranks for all chains appear roughly uniformly distributed. In (b), the sticking
behavior is hidden under the bulk of the chain traces, but is readily apparent from the peak
in chain 1’s rank plot. Similarly, the lower variance of one chain in (c) is not discernible in
trace plot, but the skewed rank plot for chain 3 clearly suggests that this chain is sampling
a restricted range of values relative to the others.

In some situations, trace plots can be exceptionally difficult to interpret. For ex-
ample, when a very high number of samples have been collected, cramming the long traces
into a standard-sized plot can hide some problematic chain behaviors, and the traces will
spuriously appear good (see Figure 4). Trace plots can also be difficult to judge when dis-
tributions are highly skewed and/or fat-tailed, in which case the stereotypical bottlebrush
pattern (Figure 3a) would not be expected even when the chains have converged and are
mixing well (for examples of how these chain traces can look, see Vehtari et al., 2021).
For these reasons, it is now recommended to use rank plots in addition to, if not in place
of, trace plots, so that any differences in the values being sampled by each chain can be
more reliably recognized (Vehtari et al., 2021). Rank plots are a new diagnostic plot that
is generated by ranking the samples pooled across all chains, then presenting a histogram
of the ranks originating from each chain separately. If the chains have perfectly converged,
then the distribution of ranks for each chain should approximate a uniform distribution
(as in Figure 4a). Deviations from uniformity can indicate a wider variety of convergence
issues. Two examples of problems that are more easily detected in rank plots are presented
in Figure 4b and 4c (for additional examples, see Vehtari et al., 2021).

A relatively recent addition to the suite of computational checks is divergences (or
divergent transitions), which are specific to the HMC family of algorithms. For each pos-
terior sample generated through HMC/NUTS sampling, whether the numerical trajectory

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 16

sigm
a

mu

-0.4 -0.2 0 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

sigm
a

mu

-0.4 -0.2 0 0.2

reparameterization
chain 1
chain 2
chain 3
chain 4

65
5
3
2

divergent transitions

0 200 400 600 800 1000
iteration

0

0.1

0.2

0.3

0.4

0.5b

a c d

Figure 5

Diagnostic plots for troubleshooting divergences. (a) In these rug plots, a red tick marks
each iteration within a given chain where a divergence occurred. (b) It is useful to include
a similar plot of divergences (collapsed across chains) at the bottom of a trace plot. In
this case, the divergences correlate with the sticking behavior (seen for chain 1, dark green,
over iterations 650–800); the sampler is likely struggling to sample values near 0 for this
parameter. (c) If univariate plots are insufficient to localize the issue, a bivariate density plot
can demonstrate whether divergences (in red) are randomly distributed or are concentrated
in one area. Here, the divergences concentrate at the tip of this funnel, where lower values
of sigma, a standard deviation hyperparameter, increasingly constrain the values for mu, a
mean hyperparameter. (d) This common problem for hierarchical models is overcome by
reparameterizing the model (see Reparameterization subsection for details).

diverged is recorded as an indicator (1 or 0). The divergent iterations occur when a chain
has attempted to travel to a point in the joint posterior, but failed to do so as it was un-
able to navigate the high curvature in that region (Livingstone et al., 2019; Betancourt,
2018). Divergences are a critically important diagnostic because they signal that part of
the posterior distribution could not be explored, and as such, the available posterior sam-
ples are known to be biased (as is demonstrated in Figure 5; Betancourt & Girolami, 2015;
Betancourt, 2018; Monnahan et al., 2017).

As such, when using an HMC/NUTS sampler, it is required to check that no di-
vergences occurred (Betancourt, 2018; Stan Development Team, 2022). If there were any
divergences, the samples cannot be trusted (Gelman et al., 2020) and should not be used
for parameter estimation, model comparison, or any other type of inference (Betancourt,
2018; Stan Development Team, 2022). Instead, the output should be investigated in or-
der to determine what parameter or part of the model specification might be inducing the
unnavigable posterior geometry.6

6Veteran practitioners of Bayesian cognitive modeling who update their modeling pipelines from JAGS
to Stan, for example, may experience that model specifications that previously passed convergence checks
may suddenly fail due to the detection of divergences. While it is tempting to immediately conclude that
Gibbs sampling is more capable of estimating such a model, this is unlikely to be the case, as HMC/NUTS
is a more efficient sampler that circumvents many limitations of Gibbs sampling (such as being challenged
by correlated parameters, high dimensionality, etc.; Neal, 2011; Hoffman & Gelman, 2014). Rather, it is
more likely that the Gibbs sampler was silently failing to explore the posterior distribution fully, and these

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 17

Admittedly, in very rare cases, the sampler may record a divergence when the trajec-
tory did not in fact diverge. While some sources note that divergences may be disregarded
in special cases (Gabry et al., 2019; Schad et al., 2021), we find it important to note that
these sources are universally written in the context of statistical linear models. In the con-
text of Bayesian cognitive modeling, we do not recommend ever disregarding divergences.
Unlike linear models, which have been used for more than a century and are exceptionally
well-understood, cognitive models are fundamentally bespoke things: They are continually
being customized, tweaked, and extended, and entirely novel models are regularly designed.
In our experience, even established cognitive models can suddenly fail when applied to a
new dataset (as in a case where a participant is not performing the task, and produces a
series of nonsensical responses that “break” the model). For these reasons, we recommend
that practitioners of Bayesian cognitive modeling always work from the assumption that
divergences are genuine, and consider their diagnostic potential.7

The simplest strategy to use in investigating the cause of divergences is to generate
trace plots with divergence indicators included. In each support library, there is an optional
input that will tell the trace plot command to include a rug plot of divergences at the bottom
of the trace plot (wherein each iteration for which a divergence was observed for any chain
is marked by a red tick). Often if the aforementioned sticking behavior is seen in a trace
plot, this sticking will correspond directly with the occurrence of divergences for each chain
(as seen in Figure 5a and 5b). However, if a chain appears to stick in one parameter’s trace,
this often constrains sampling for other parameters such that the same chain may appear
to stick over the same iterations in their traces as well.

To be sure of which parameter is driving the divergences, one should also visualize
bivariate marginal densities with indicators for divergent samples overlaid. For example, in
Figure 5c, the divergences are concentrated at the bottom of the joint distribution, where
the sigma parameter takes lower values. After using reparameterization to fix this model, it
is apparent that a considerable portion of the joint distribution (nearby to the divergences)
was previously inaccessible, but is now able to be sampled. Reparameterization is often
a successful approach to overcome the problems flagged by divergences, by enabling the
sampler to more easily navigate the posterior geometry (without otherwise changing the
model, as we discuss in the Reparameterization subsection later on). As such, the goal
of investigating divergences is simply to identify which parameters or part of the model
specification is the best candidate for this reworking. We will return to problems indicated
by divergent transitions in the next section, Identifying the root issue.

Another recently introduced diagnostic that is specific to HMC/NUTS sampling
is the estimated Bayesian fraction of missing information (BFMI or E-BFMI; Betancourt,

failures only became detectable with the advanced diagnostics of HMC/NUTS. Some cognitive models may
have defining features that are ultimately unable to be implemented with HMC/NUTS samplers, but this
determination should be made after troubleshooting and other inquiries.

7We offer supplementary code to demonstrate exactly this issue. The example_funnel.m script (included
in the examples folder of matstanlib; Baribault, 2021) implements a toy model (adapted from Betancourt
& Girolami, 2015) that was written to demonstrate a serious structural problem common in hierarchical
models that is sometimes signaled only by divergences. We encourage you to run this script a few times:
You may notice that on some runs, only a small number, or even 0 divergences occur. Consider whether
a couple of divergences can be disregarded, given that even this model which is designed to fail may not
reliably throw divergences.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 18

chain 1 chain 2

chain 2

E - E

mu_beta

2 4 6 8

sigma_beta

0
.1

0
.1

5

0
.2

0
.2

5

mu_phi

0
.0

6

0
.1

0
.1

4

0
.1

8

sigma_phi

1
8

0
0

1
8

5
0

6

8

10

12

14

2

4

6

8

0.1

0.15

0.2

0.25

0.06
0.08
0.1
0.12
0.14
0.16
0.18

energy__

 marginal energy, π

 change in energy, π
ΔE

E

chain 1

-20 -10 0 10 20

BFMI = 0.875

-20 -10 0 10 20

BFMI = 0.849

-40 -20 0 20 40

BFMI = 0.212

-40 -20 0 20 40

BFMI = 0.147

c

b

a

Figure 6

Diagnostic plots for troubleshooting low BFMI. (a) In an energy diagnostic plot, every
chain’s marginal and transitional energy distributions should overlap. (b) If they do not,
the discrepancy suggests that the chain has likely failed to efficiently explore the posterior
distribution. (c) Including the energy diagnostic in a grid of bivariate densities may be used
to identify which parameters are the most likely contributors to this inefficiency as their
samples will tend to correlate with the energy history. (None of the parameters in this plot
are suspicious.)

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 19

2016). BFMI is computed from the energy diagnostic that is recorded during the generation
of each iteration within each chain. It is a metric of the HMC/NUTS algorithm’s accuracy at
a much deeper computational level than the other diagnostics we discuss here. Nonetheless,
the interpretation of BFMI is clear: When the BFMI value for a given chain is extremely
low, it indicates that the chain was unable to fully explore the posterior distribution, and
as such, the samples we do have are insufficient and likely biased (Betancourt, 2016).

It is currently required that BFMI is ≥ 0.2 for all chains (Betancourt, 2016; Stan
Development Team, 2022). If BFMI is less than 0.2 for one or more chains, the output
should not be used as the basis for inference (Stan Development Team, 2022) as the poste-
rior estimates will be biased (Betancourt, 2016). Most often, when the BFMI check is failed,
other computational checks will be failed also; in this case, the other diagnostics are more
targeted, and so should be investigated first. However, sometimes only the BFMI computa-
tional check will fail. In this more difficult scenario, an energy diagnostic plot (Figure 6a,b)
should be used to visualize the energy distribution differences for each chain, and a plot of
multiple bivariate densities that includes the energy diagnostic (as in Figure 6c) should be
inspected. If one or more parameters’ marginal posterior samples appear to correlate with
energy, then tweaking the places in the model specification that most directly involve those
parameters is most likely to help.

A third diagnostic that is specific to HMC/NUTS sampling is the treedepth of
the trajectory computation used to generate each sample. If the maximum treedepth was
reached, it does not signal either failure or bias as the other diagnostics do. Rather, it may
be interpreted as an indicator that the sampler is taking too long to compute each sample,
and so maximum treedepth warnings are generally not of as much concern (Livingstone
et al., 2019; Stan Development Team, 2022). If the maximum treedepth is being reached
for a considerable proportion of samples, there might be a problem — but as this is very
infrequently encountered in Bayesian cognitive modeling, we do not discuss treedepth or
other advanced topics related to sampler tuning dynamics here (but see Betancourt, 2018
or Hoffman & Gelman, 2014 for a introduction).

Sampling efficiency

The final computational check that model output must pass is related to sampling
efficiency. Before the model output is used for inference, one should check that the samples
offer enough information to support the specific sample-based estimates one intends to use
as the basis for inference (Gelman et al., 2013; Vehtari et al., 2021). (While this concept
is superficially similar to the idea of statistical power, whereas power can is assessed a
priori, sampling efficiency is assessed post hoc. This is because the sampling efficiency
check depends not just on the number of samples one set out to collect, but on the sequence
of samples that was actually collected.) Sometimes low sampling efficiency is obvious, as in
cases of significant autocorrelation (see Figure 3c), where it appears that effectively fewer
places were visited in the posterior space than we would expect considering the actual
number of samples we collected.8

Estimates of effective sample size (ESS; previously called the number of effective
samples, Neff) get at exactly this issue, by quantifying sampling efficiency in a reliable way.

8While this is technically an oversimplification, it is the correct intuition.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 20

When sampling efficiency is poor, ESS will be much lower than the actual number of samples
collected. For all Bayesian models, it is now required that the ESS is at least 100 × the
number of chains (i.e., ESS ≥ 400, assuming four chains) for all parameters (Vehtari et al.,
2021). By default, the current implementation of ESS quantifies the sampling efficiency in
both the bulk and tails of the posterior distribution, but ESS estimates can also be computed
for other applications, such as for specific quantiles and small intervals of quantiles, as well
as for the posterior mean, median, standard deviation, and mean absolute deviation (Vehtari
et al., 2021). Before reporting credible intervals for Bayesian cognitive model parameters,
one should ensure that the ESS estimates for the relevant quantiles are likewise above the
criterion.

When ESS estimates are low, trace and rank plots may again be used to probe
whether this could be the result of mild autocorrelation. If no other computational problems
were detected and the chain traces appear autocorrelated, then one may simply run the
model again with an increased number of kept iterations in hopes of a proportional increase
in the relevant ESS estimates. (While past sources may recommend thinning the samples by
a factor of n — meaning discarding every nth iteration — to reduce autocorrelation posthoc,
thinning is no longer recommended, except in cases of severe computer memory constraints,
as it degrades the precision of posterior estimates; Link & Eaton, 2012.) In many cases,
however, the poor sampling efficiency indicated by low ESS estimates is signaling a deeper
problem with the model. In particular, low ESS may suggest that one or another factor is
making it difficult for the sampler to move through the posterior space.

Diagnostic ESS plots (introduced very recently in Vehtari et al., 2021) may be used
to clarify whether low ESS is indicative of any systematic sampling inefficiencies and biases.
The first such plot visualizes the efficiency over subsets of iterations (Figure 7a). This
plot is particularly useful as some sampling inefficiencies may only become evident when
sufficiently long chains are run. Ideally, the sampling efficiency should be such that ESS
estimates grow linearly with the number of samples. One should be wary if ESS estimates
level off or decrease, as this suggests those periods of sampling were relatively less efficient;
this metric should be stable over time.

The other diagnostic ESS plots both help to visualize whether different values for
a given parameter are being more or less efficiently estimated. Visualizing whether ESS
estimates are notably lower for some quantiles (Figure 7b) or regions of quantiles (Fig-
ure 7c), especially if those quantiles seem to correlate with divergences or hitting maximum
treedepth, can help to identify what areas of the marginal posterior are driving the low ESS.
For example, while ESS might be somewhat lower for extreme quantiles, if it is so markedly
lower in one region that it is below the ESS criterion, it may suggest that that area of the
parameter space was unable to be efficiently explored. If this is the case, it might help to
explain other diagnostics, such as divergences, by isolating which part of the posterior is
problematic.

In this way, diagnostic ESS plots can be helpful to distinguish cases of too few
samples due to an acceptable amount of autocorrelation (in which case the model may
simply be run again to collect a greater number of samples) from deeper, more fundamental
problems with a model (in which case the model specification should be improved). While
the latter is more challenging to correct, we will discuss techniques to target and address
these issues also in the next section, Identifying the root issue.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 21

1000 2000 3000 4000

total number of draws

0

500

1000

1500

2000

2500

E
S

S

bulk tail

0 0.2 0.4 0.6 0.8 1

quantile

0

1000

2000

3000

4000

E
S

S
 f
o

r
q

u
a

n
ti
le

s

0 0.2 0.4 0.6 0.8 1

quantile

0

1000

2000

3000

4000

E
S

S
 f
o

r
lo

c
a

l
in

te
rv

a
ls

1000 2000 3000 4000
0

500

1000

1500

2000

E
S

S

0 0.2 0.4 0.6 0.8 1

0

1000

2000

3000

4000

E
S

S
 f
o

r
q

u
a

n
ti
le

s

0 0.2 0.4 0.6 0.8 1

0

1000

2000

3000

4000

E
S

S
 f
o

r
lo

c
a

l
in

te
rv

a
ls

total number of draws quantile quantile

a b c

Figure 7

Diagnostic plots for troubleshooting low ESS. Ideally, ESS will grow linearly with the total
number of samples (pooled across chains) in the efficiency per iteration plot (a), and all
ESS estimates will be above the dashed line representing the minimum ESS in the efficiency
of quantile estimates plot (b) and the local efficiency of small-interval estimates plot (c).
While these patterns are seen for the well-behaved model (top), they do not hold for the
problematic model (bottom), where tail ESS crashes as more samples are collected and other
ESS measures are often below the criterion. Troubleshooting techniques are necessary to
identify the root of these problems.

Consistency checks

Because the computational checks described in the previous section were designed
only to assess the quality of the HMC/NUTS sampling, additional checks are necessary to
assess whether the model itself is behaving in a way that is consistent with our intentions
and assumptions. For example, whether the model — as it is currently implemented — is
able to capture the kind of behavior that we expect to observe is important to check, as
this directly bears on whether the model is appropriate for the research context.

The two consistency checks that we discuss here are essential techniques for detecting
these sorts of problems with Bayesian cognitive model behavior, and should be seen as of
equal importance to the computational checks.

Prior predictives

Even before the simulation study is performed, prior predictive checks should be
used to check whether the patterns of behavior predicted by the model specification are
sensible, given the research context (Box, 1980; Gelman et al., 2013; Lee & Vanpaemel,
2018). The first step is to generate the prior predictive distribution by sampling a large

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 22

number of datasets from the model specification. To sample a dataset, hyperparameter
values are drawn from the hyperpriors, which are subsequently used to draw parameter
values from the priors, which are used to simulate data from the model’s data distribution,
given the experimental design (i.e., in the exact same way that a dataset is generated for a
simulation study). Next, we simply visualize the distribution of this data or, more usefully,
of a meaningful summary statistic of the data (Lee & Vanpaemel, 2018).

This is called a prior predictive check, as it allows one to observe the distribution
of behavioral data that is implied by the model a priori (i.e., before any data is seen by
the model), and evaluate whether it is reasonable and consistent with domain knowledge,
theory, the experimental design, and so on (Lee, 2018; Lee & Vanpaemel, 2018; Kennedy et
al., 2019). If the prior predictive is inconsistent with these expectations, it can reveal both
subtle and deep problems with a model specification. For example, even if each individual
prior seemed reasonable, a failed prior predictive check indicates that the joint behavior
of all priors in the context of the likelihood is unreasonable (for a discussion, see Gelman
et al., 2017).

4 8 12 16 20

trial

0

0.2

0.4

0.6

0.8

1

p
ro

p
o

rt
io

n
 c

o
rr

e
c
t

4 8 12 16 20

trial

0

0.2

0.4

0.6

0.8

1

p
ro

p
o

rt
io

n
 c

o
rr

e
c
t

4 8 12 16 20

trial

0

0.2

0.4

0.6

0.8

1

p
ro

p
o

rt
io

n
 c

o
rr

e
c
t

a cb

Figure 8

Prior predictive checks assess whether the model specification is consistent with one’s expec-
tations about behavior. Here, for three versions of the example RL model, prior predictive
learning curves are plotted as a probability density over the proportion correct relative to
to each pair of trials (where darker colors indicate higher density). The prior predictive
should not place excessive weight on unlikely patterns of behavior (a), nor should it place
too little weight on patterns of behavior that might reasonably be observed (b). The ideal
prior predictive for our RL model example (c) is consistent with the range of behaviors that
is reasonably expected, but is diffuse enough to include all possible behavioral patterns. In
practice, one should use multiple prior predictive checks to evaluate a model, each of which
visualizes a different quantity that is meaningful within the research context.

The key to a useful series of prior predictive checks is the careful selection of quan-
tities to visualize. While a simple histogram of the prior predictive data can be a good
check for some linear models, for a Bayesian cognitive model, it is far more common (and
informative) to select a variety of performance metrics and patterns of behavior, each of
which is meaningful within the specific research context. For example, in the context of a
reinforcement learning task, prior predictive checks of the learning curves and asymptotic
means would be essential. In the context of decision-making task, prior predictive checks
might include the participant-level overall accuracy, their rates of a sub-optimal behavior,
or specific error type distributions.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 23

In Figure 8, we present a prior predictive check for three different specifications of
our RL model of the bandit task. By visualizing the prior predictive accuracy distribution
across trials, we can understand what range of learning curves (as in Figure 2b) are more
or less likely under each RL model specification — and evaluate whether the predictions of
each model are reasonable and consistent with our expectations.

If the prior predictive check reveals that too much probability has been placed on
grossly unrealistic data, it strongly suggests a problem with the model as specified (Lee &
Vanpaemel, 2018). For example, if an inappropriately wide swath of behavioral patterns are
predicted (e.g., if model of response times predicted that, for an easy 2AFC task, response
times of 5 ms, 500 ms, and 5 s were equally likely), it may suggest that the parameters
of the model are too loosely constrained; in this case, more informative priors may help.
Unfortunately, another example of this issue is evident in the prior predictive for the RL
model specification that we outlined earlier in the tutorial. In Figure 8a, the prior predictive
check has revealed that the model considers it most likely for participants to have accuracy
near chance across all trials. As this is seemingly nonsensical for a model of learning to
predict, and fundamentally inconsistent with the gradual learning behavior we expect to
observe, this version of the RL model specification has failed the prior predictive check, and
is unacceptable as a model of the bandit task.

It is also a problem if a severely restricted range of behavior is predicted, as in
Figure 8b, where a significantly smaller range of learning curves is implied by the model
than we might observe in the lab. Even though the most weight is given to the more
commonly observed patterns of behavior in the bandit task, this second version of the
RL model specification has also failed the prior predictive check because it is too tightly
constrained, most likely as a result of priors that are excessively informative. Altering the
priors and/or structure of the model specification in a way that alleviates these sorts of
imbalances may not only lead to a more suitable prior predictive, but sometimes may be
sufficient to resolve some computational and recovery failures by changing the posterior
geometry.

Ideally, a prior predictive distribution will encompass a sufficiently broad range of
possible behavior such that any possible pattern of behavior that we could potentially ob-
serve should be given a nonzero amount of probability by the prior predictive, and the
typical range of behavior we are expecting to observe will be given just moderately more
weight. After developing a third version of the RL model specification, the posterior pre-
dictive matches this ideal description (Figure 8c).

In general, whether a prior predictive check might be characterized as wholly unreal-
istic, overly broad, excessively constrained, or reasonable, will be intensely dependent on the
particular behavioral pattern being predicted, the cognitive model, and the research con-
text, etc. However, a number of illustrative examples are available in the Bayesian cognitive
modeling literature, such as the effect of vague versus informed priors on a psychophysical
model in Lee (2018; see also the examples in Kennedy et al., 2019; Lee & Vanpaemel, 2018).
Even when problems are not revealed, performing a series of prior predictive checks is an
excellent way to better understand the behavior and capabilities of a model.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 24

Parameter recovery

Another way to assess the behavior of a Bayesian cognitive model is to perform
a parameter recovery check. After running a simulation study, it can be informative to
assess the correspondence between the posterior estimates and the true values, especially
with assistance from recovery plots (see Figure 9). Before we outline three ways in which we
recommend using parameter recovery checks to facilitate troubleshooting, we will first review
how parameter recovery checks are most commonly used in Bayesian cognitive modeling.

In the Bayesian cognitive modeling literature, the quality of parameter recovery
is often rather loosely defined as: (1) whether each true parameter value is contained
within the corresponding 95% credible interval for ≈95% of the parameters in the model
(Rubin, 1984; or a generalized version of this criterion if multiple simulation studies are
considered, as in Heathcote et al., 2019), and (2) whether the recovery plots, which visualize
the correspondence between the true parameter values and the model-derived estimates for
each parameter, appear satisfactory. When recovery is very good, the point estimates will
all be sprinkled closely along the diagonal unity line (representing perfect recovery), the
credible intervals will be small (suggesting the model is certain in its estimates), and no
bias will be evident across the estimates (i.e., the estimates will not appear to be consistently
concentrated either above or below the unity line). With this description in mind, we might
classify the quality of the recovery in Figure 9a as strong, and the recovery in Figure 9b as
relatively weak.

However, one must be careful in interpreting the results of these recovery checks.
While parameter recovery is frequently presented as a means to evaluate the accuracy and
reliability of posterior estimates (e.g., Heathcote et al., 2015), this would be an overzealous
interpretation of a single simulation study. Rather, each parameter recovery simulation is
simply a snapshot of a model’s performance in the context of a single dataset. There is no
guarantee that the current pattern of parameter recovery will generalize to other possible
datasets (Talts et al., 2020), and the expectation to recover true values is different than
the expectation of coherent inference (for a concise discussion, see Lee, 2018). Parameter
recovery checks are ultimately heuristic, qualitative assessments based on brief looks at
model behavior.

Performing a formal, quantitative assessment of the internal consistency of parameter
estimates for a Bayesian model requires simulation-based calibration (SBC; Talts et al.,
2020; Cook et al., 2006). As we will discuss in detail later on (in an eponymous subsection),
SBC is the correct way to test, on a parameter-by-parameter basis, whether the posterior
estimates are systematically biased or overly wide or narrow across the entire prior predictive
distribution of data. Unfortunately, the large number of small simulations required makes
the procedure rather time-intensive, and sometimes impractical. As such, while SBC is
an ideal capstone to the troubleshooting process, we still recommend parameter recovery
checks — carefully interpreted — as a quick, heuristic check of Bayesian cognitive model
behavior at the end of every simulation study (as the regular exploration of estimates is an
important support to iterative model evaluation processes, Box, 1980).

Specifically, we recommend using recovery checks in three informal, yet informa-
tive, ways to support troubleshooting for Bayesian cognitive models. The first way is as a
means to detect problems by highlighting major points of failure. Any extreme and obvious

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 25

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

true value

e
s
ti
m

a
te

d
 v

a
lu

e

e
s
ti
m

a
te

d
 v

a
lu

e

true value

e
s
ti
m

a
te

d
 v

a
lu

e

true value

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.8 1.2 1.6 20.6 1 1.4 1.8 2.2 2.4

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

e
s
ti
m

a
te

d
 v

a
lu

e

0.1 0.2 0.3 0.4 0.5 0.6

true value

0.1

0.2

0.3

0.4

0.5

0.6

e
s
ti
m

a
te

d
 v

a
lu

e

true value

e
s
ti
m

a
te

d
 v

a
lu

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

true value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ed f

ba c

Figure 9

Parameter recovery plots. When recovery is strong (a), the 95% credible intervals (vertical
lines) for around 95% of all parameters will include (i.e., recover) the true value, and the
point estimates (markers) will cluster nicely around the unity or “perfect recovery” line
(diagonal); few parameters fail to recover the true value (red x’s). The quality of recovery
in (a–c) is all potentially acceptable: Depending on the context, the weaker recovery in
(b) and mild flattening of point estimates in (c) that is characteristic of over-shrinkage
in hierarchical models, may or may not be sufficient. The quality of recovery in (d–f) is
generally unacceptable. The extreme uncertainty in (d, main panel), which would fail to
be detected if the credible intervals are omitted (inset), could signal that this parameter
is insufficiently identified. The consistent overestimation bias in (e) and abject failure to
recover in (f) may indicate more severe problems with the model. (Note that recovery plots
should be square in order to support the consistent recognition of such patterns of recovery.)

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 26

problems are useful to investigate, especially in the earliest stages of troubleshooting. For
example, if a parameter is being estimated in a way that demonstrates no relationship to
the true values whatsoever (as with the collapsed estimates in Figure 9f), or if data do not
seem to have distinguished the posterior in any way from the prior (as the similar estimates
in Figure 9d could suggest, depending on the prior), these major failures can be important
clues to the root of computational and other problems. Other times, these most extreme
modes of recovery failure actually have a simpler solution: They may be the result of a
garden-variety implementation error in the model specification. (Figure 9f was actually the
result of inadvertently commenting out a line in the data simulation code, such that the
parameter in question had no influence on the likelihood.) Other times, such an abject lack
of ability for the model to capture one or more dynamics of the proposed cognitive process
will suggest a deeper problem with the model, which should be investigated further.

Later in troubleshooting, recovery checks may also be used to better understand
important dynamics of model behavior through the descriptive characterization of patterns
in recovery plots. For example, when the hierarchical prior structure is unduly constraining
lower-level parameter estimates, this can sometimes be evident from a recovery plot. While
the regularizing influence of the hyperprior on lower-level estimates is a decidedly a feature
of hierarchical models (Lee, 2011; Scheibehenne & Pachur, 2015), it can become a bug if
this influence is pulling or shrinking (Efron & Morris, 1977) the estimates toward the hyper-
level mean to the extent that genuine individual differences are suppressed. If the true and
estimated values appear correlated, but also flattened (as in Figure 9c), such that higher
true values are underestimated while lower true values are over-estimated, then it could
suggest that such an excessive degree of shrinkage (or over-shrinkage, as in Rouder & Lu,
2005) is occurring. While a mild squashing of posterior estimates may be accepted in some
cases, extreme over-shrinkage, seen as nearly flat estimates, indicates that the parameter
estimates are being excessively constrained by the prior. This can occur if the hyperpriors
are too strongly informative, or if the data is not sufficient to meaningfully inform the
individual parameters (i.e., the realized likelihood is too flat).

It is important to note that recovery plots can easily be mischaracterized if credible
intervals are omitted, as the degree of uncertainty can substantively change the interpreta-
tion of a recovery plot. The omission of credible intervals can be particularly detrimental
for the detection of weakly identified and unidentified parameters. For example, Figure 9d
includes two versions of the same recovery plot for the mixture proportion in a hierarchical
latent mixture model. When the credible intervals are included, it is readily apparent that
the most pressing issue is the extreme uncertainty, which should certainly be investigated.
However, this important pattern would have been impossible to glean from the point esti-
mates alone. Only the complete plot could lead us to correctly characterize this mixture
parameter as being weakly informed, which suggests that either not enough data is available
to update this parameter’s value, or the data that is available is not informative enough.
The omission of uncertainty can also make it challenging to recognize some hallmarks of
structurally unidentified parameters. For example, the posteriors for an unidentified pa-
rameter might appear quite certain about estimates that fail to meaningfully correspond to
the true values; recognizing this unusual pattern of confidently incorrect recovery relies on
the availability of information about the posterior certainty (for examples, see Spektor &
Kellen, 2018).

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 27

Another important pattern that recovery plots may reveal is bias, such that a pa-
rameter is being consistently being over- or under-estimated (as in Figure 9e). This can
occur if the prior places most of its weight on values that are far from the values it would
otherwise infer; depending on the model, this can bias all estimates in the same direction.
Prior simulation (introduced later on in the Parameterization subsection) is a good ap-
proach to investigate this possibility, especially in hierarchical models when hyperpriors
can be challenging to specify. This kind of consistent bias may also occur when two or
more parameters are trading off, in which case a pathological inverse coupling is observable
each time the model is fit. While this behavior is sometimes just a structural fact of some
cognitive models (e.g., Turner et al., 2013; Krefeld-Schwalb et al., 2022), in other cases,
it can be ameliorated by making the priors for the relevant parameters more informative.
That these two rather different issues can cause the same pattern in a recovery plot raises
an important point: While Figure 9 showcases some classic recovery patterns, these are
not uniquely mapped to a singular underlying problem (e.g., while shrinkage often causes
estimates to appear squashed as in Figure 9c, the converse is certainly not always true).

Finally, recovery checks can be an excellent tool to explore how different design
choices might change these patterns of parameter recovery (Apgar et al., 2010; Lee, 2018).
For example, if the decay rate parameter in our example RL model seemed to be weakly-
informed, we could perform additional simulation studies to explore how increasing the
number of participants, the number of bandit problems per participant, and the number
trials per bandit problem each might affect the strength of recovery differently. These sorts
of informal simulation-based investigations can be particularly useful towards the end of the
troubleshooting process, at which point the model specification may be in good shape but
whether the planned experimental design is sufficiently informative for the parameters of
interest may yet be unclear. Additional simulation studies can shed much-needed light on
whether the final experimental design will strike a good balance between informativeness
and efficiency — which is particularly important in research contexts where every data point
is at a premium (Gluth & Jarecki, 2019). While this is currently a less common application
of parameter recovery checks (but for a recent example, see Danwitz et al., 2022), it is likely
to be one that will increase in prevalence and importance as the use of Bayesian cognitive
models continue to broaden.

Identifying the root issue

While some problems that have been detected by the computational and consistency
checks will be easier to identify, other problems will require a longer and more investigative
troubleshooting process before the nature of the problem — and therefore a candidate
solution — can be identified. In many cases, visualizing the posterior samples for multiple
parameters simultaneously, with key diagnostics included, will be a fruitful approach to
understand the root cause of the detected problems.

Posterior geometry

These visualizations are especially important tools when attempting to identify the
cause of issues related to posterior geometry, such as the regions of extreme curvature that
HMC/NUTS samplers will loudly struggle to traverse. As mentioned earlier, whenever

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 28

mu_beta

sigma_beta

mu_phi

sigma_phi

mu_alpha

sigma_alpha
-4

-3

-2

-1

z = 0

1

2

3

4

5

mu_beta

2

4

6

8

0.05

0.1

0.15

0.2

0.25

6

1
0

1
4

1
8

0.02

0.04

0.06

0.08

0.1

0.12

2 4 6 8

sigma_beta

2 4 6 8

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

mu_phi

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

6
8
10
12
14
16
18

2

4

6

8

0.05

0.1

0.15

0.2

0.25

sigma_phi

a

b

Figure 10

Visualizing the posterior samples for multiple parameters simultaneously using (a) grids of
bivariate marginal densities with diagnostic overlays and (b) parallel coordinate plots are
both are useful to search for problems related to posterior geometry. In the grid of densities,
one should look for parameters where divergences (red x’s) are not randomly distributed,
but rather are clustered together. In the (z-scored) parallel coordinate plot, where each line
represents a joint posterior sample, one should look for where the red lines representing
divergent samples seem to “pull together.” Both of these plots loudly suggest that root of the
issue is an unnavigable region of high posterior curvature at the lower bound for sigma_phi.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 29

the sampler reports divergences, it indicates that an unnavigable region of high curvature
was encountered. The goal is to uncover where exactly in the joint posterior that region is
located, and which parameters are most directly implicated in creating the high curvature, so
that the relevant section(s) of the model specification might be reparameterized or otherwise
improved.

Grids of many bivariate marginal posterior densities (as in Figure 10) are often the
most useful diagnostic visualizations in this pursuit as they allow one to simultaneously
search for concentrations of divergences as well as posterior dependencies among pairs of
parameters that signal specific problems. This style of plot (which is available in all support
libraries; see Table A1) makes it readily apparent when parameters are correlated, as their
joint density will appear as an oblong shape. While parameter correlations are well-known
to harm the quality of Metropolis and Gibbs sampling (e.g., Turner et al., 2013), param-
eter correlations are rarely a cause for concern for HMC/NUTS sampling, due to HMC
algorithms’ avoidance of random walk behavior (Neal, 2011). However, extreme correla-
tions that seem to approach collinearity, or other strange shapes like bananas, will require
investigation as these features can suggests nonidentifiability with respect to that pair of
parameters, or other degenerate model configurations, may be the root of the issue.

One should also be suspicious of bivariate densities with a funnel shape, as is com-
monly observed in models with hierarchical prior structure. For example, when setting
priors directly on mean and standard deviation hyperparameters, progressively smaller val-
ues of the standard deviation hyperparameter will increasingly constrain the range of the
lower-level parameter values, which in turn constrain the value of the mean hyperparame-
ter. This can induce the progressively narrow funnel shape in the bivariate density. If the
“tip” of the funnel takes on a much higher curvature than the rest of the posterior, then
the sampler will struggle to access this region, leading to a concentration of divergences
close by (as is seen at the bottom of the joint distribution in Figure 5c). If this pattern is
recognized, the issue is often easy to correct by converting to a non-centered parameteri-
zation (as demonstrated at the conclusion of this section), which enables the funnel to be
fully explored by breaking the dependency between the relevant parameters (Betancourt &
Girolami, 2015).

Other potentially difficult to navigate posterior regions can occur at parameter
boundaries, especially when the boundary was introduced by truncation. For example,
a Normal prior that has been truncated such that its lower boundary of −1 should not
pose a problem except if the highest density in the target distribution is very close to −1.
For computational reasons that are beyond our scope, this can make it challenging for the
sampler to both enter and exit this region, leading to a variety of problems. If it is at all
possible for the boundary to be adjusted while still respecting the relevant domain knowl-
edge or original theoretical justification, moving the truncation further out should help to
resolve these issues.

Unfortunately, when a very high proportion of the posterior samples are the result
of divergences, it can be difficult to use the bivariate density plots for troubleshooting
as the densities can seem to all be thoroughly covered in the red divergence indicators.
In these cases, a bivariate density plot can still be useful as a quick way to view many
univariate marginal densities (as shown along the diagonal of the Figure 10a). If bumps or
multimodality are observed in the univariate distribution, this may suggest a place where

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 30

the divergences are more highly concentrated, even when it is not otherwise apparent.
We can also search for concentrations of divergences with parallel coordinate plots.

In this diagnostic plot, each joint posterior sample for a given subset of model parameters
is presented as a separate line, with divergent samples shown in red (as in Figure 10b).
If the divergent sample lines appear to “pull together” for one of the parameters (while
appearing randomly distributed across the values of other parameters), it indicates that
this parameter may be responsible for the divergences, and naturally highlights the range
of values that might be inaccessible. How this issue should be resolved will depend on that
parameter’s role in the model specification.

A challenge in using either of these plots as diagnostic tools is that there will almost
always be too many parameters to include on the plot at once. A strategy that we have
found useful is to begin with the parameters at the highest levels of hierarchy in the model,
investigating all possible pairs, then working downward. At lower hierarchical levels where
there are many parameter instances, including one or two instances of any parameter at
most is also generally more useful than visualizing many instances of the same parame-
ter. However, in some cases, neither the parallel sample plots nor the bivariate density
plots, or any other previously discussed diagnostic techniques will clearly implicate any
particular part of the model specification. If the nature of the issue is still unclear after a
thorough troubleshooting process, critical review of the model specification, combined with
exploratory changes, may prove more worthwhile.

Parameterization

When the troubleshooting process has led to the identification of a parameter or
segment of the model specification that is problematic, one or more strategies to adjust
this portion of the model specification may be used to attempt to resolve the model’s
issues. Here, we review a number of useful techniques to change the parameterization of
the model, which may have small or large consequences for domain knowledge expressed
in the priors and the theoretical implications of the model overall. If the questionable part
of the model specification cannot be altered without severe undesirable consequences for
the interpretation of a key parameter, or the model’s ability to express a specific cognitive
process, one should instead try to reparameterize the model, as we discuss in the next
subsection.

In Bayesian cognitive models, it is not uncommon to use non-conjugate, non-normal
priors, nor is it uncommon to include hierarchical structure in the model. Unfortunately the
conjunction of these two design decisions can make it exceptionally difficult to specify good
hyperpriors. For example, while one may have an intuition for what a good participant-level
Gamma prior distribution would be, one may feel at a loss in determining suitable group-
level hyperpriors for the shape and rate hyperparameters of that Gamma prior. In this
scenario, using prior simulation to visualize the distribution of priors implied by different
hyperpriors, and their collective effect on the distribution of prior probability across the
domain of a given parameter, can offer the support needed to specify reasonable hyperpriors.

In Figure 11, we demonstrate how prior simulation can be used to both identify
problems and investigate solutions. Given the specified hyperprior distributions (top left),
random samples from each distribution (or function of them; top right) are used to define a
random selection of priors (bottom). If prior simulation reveals that extremely undesirable

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 31

0 5 10
0

0.5

1

0 2 4 6
function of [1]

0

2

4

6

fu
nc

tio
n

of
 [2

]

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 5 10
0

0.5

1

0 2 4 6
[1]

0

2

4

6

[2
]

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

hyperpriors
[1] gamma(1,1)
[2] gamma(1,1)

hyperparameter draws

simulated prior distributions

hyperpriors
[1] gamma(1,1)
[2] gamma(1,1)

hyperparameter draws

simulated prior distributions
250 simulated Beta priors
average of simulated priors
Beta(2,2)

a b

Figure 11

Prior simulation may be used to check whether the priors and hyperpriors imply an alloca-
tion of prior density are consistent with domain knowledge and other expectations. In this
example, a Gamma hyperprior is specified for each hyperparameter of a Beta prior. (a)
The original hyperpriors lead to undesirably high prior weight at the extreme values of the
parameter of interest. (b) Enforcing a minimum value of 1 on both hyperparameters (by
specifying ∼ Beta(1 + a, 1 + b) instead of ∼ Beta(a, b)) prevents the selection of U-shaped
priors, allowing for a more appropriate distribution over priors that, on average, allows for
a more even spread of prior weight across the whole range of the parameter value, excluding
the bounds.

priors are too often being sampled, prior simulation should continue to be used to explore
alternative hyperpriors. In these subsequent simulations, it can sometimes be useful to
constrain or transform the hyperparameters in such a way that the unsuitable priors are no
longer possible.

For example, in our efforts to improve the specification of our example RL model,
we used prior simulation to help specify a different prior and hyperprior for the learning rate
parameter, α. In place of the truncated Normal prior (that was likely unsuitable in light of
the failed prior predictive check), we decided to use a Beta prior, as it is naturally defined
over the same (0, 1) interval as the learning rate. Our goal was to set hyperpriors that
would imply a distribution over Beta priors that would not be unduly biased toward any
part of the parameter space (i.e., that is lightly informative, given the research context).
In Figure 11a, our initial choice of Gamma(1,1) hyperpriors was revealed to lead to the
overselection of priors that placed infinite weight over 0 and/or 1 (approximately 40% of
priors!), which is inconsistent with our intentions (represented by the Beta(2,2) distribution)
and unreasonable for a learning rate (a prior that suggests no learning and perfect learning
are both more likely than gradual learning is silly). After we enforced a minimum value of
1 for each hyperparmeter, as in Figure 11b, horseshoe priors were no longer possible, and a
more reasonable distribution over priors was achieved. In our final, corrected specification
of the example RL model, we used exactly this specification for the prior and hyperpriors
for the learning rate, and a similar setup for the decay rate, ϕ (but with slightly different

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 32

hyperpriors, so that most prior weight allocated to lower values).
These sorts of bounding tricks are especially useful when there is a need to exert

control over the prior near a boundary to avoid model misspecification (as for parameters
whose values cannot conceivably be 0 and sufficient domain knowledge is available to further
specify what parameter values should qualify as “near 0” or ”practically equivalent to 0”).
In our example RL model, an inverse temperature of β = 0 breaks the model (i.e., leads to
a degenerate model configuration), as the learned Q values will have no bearing on action
selection (and so α and ϕ will be unidentified). As such, a prior for β that apportions most
of the prior probability to 0 and values near 0 is effectively a model misspecification, as
the most prior weight is given to not just the least likely values, but values that are so
inappropriate that one would conclude the model is malfunctioning rather than accept the
estimates. One approach to cope with exactly this scenario is to use a boundary-avoiding
prior (Gelman et al., 2013; Chung et al., 2013). These parameterizations should approached
with caution for dispersion parameters in hierarchical models, where reparameterization
may be preferable (as discussed at the end of this section), and in Bayesian linear statistical
models, where recommendations may be entirely different (for a recent account, see Röver
et al., 2021). However, for parameters in Bayesian cognitive models, boundary-avoiding
priors are sometimes not only permissible, but more appropriate than alternative prior
specifications. In our final, corrected specification of the example RL model, we use a
Gamma prior for the inverse temperature parameter where the shape hyperparameter is
required to be be greater than 1; this creates a zero-avoiding prior by ensuring the Gamma
distribution allocates zero probability to a value of 0. In our earlier prior simulation example,
in which we set lower bounds on both hyperparameters of a Beta distribution, you may
notice that the revised prior simultaneously avoids both the lower bound and the upper
bound (0 and 1; see Figure 11).

Prior simulation is often a critical support to prior predictive checks, and vice versa.
While prior predictive checks may reveal implications of the model that are inconsistent
with one’s expectations, they rarely also reveal the exact cause of that inconsistency: In
these cases, prior simulation can be used to understand why a prior predictive check failed,
and therefore help to isolate the root of the problem. However, good prior simulation results
alone are likewise insufficient: Prior predictive checks must be used to demonstrate that all
priors collectively make sense in the context of the likelihood (from which they cannot be
divorced; Gelman et al., 2017).

If one is still struggling to simulate a sensible apportionment of probability across
the distribution of priors, then changing the distributional form of the prior can open up
additional opportunities for model improvement. In particular, changing the form of a prior
may help in cases where one or more features of the model specification are known to induce
posterior geometries that are challenging for HMC/NUTS algorithms to navigate. For
example, prior distributions with fat tails, such as the Cauchy and Student’s t distributions,
can lead to divergences and an overwhelming number of maximum treedepth warnings when
sampling in the tails. If this occurs, using a lighter-tailed alternative, such as a normal
distribution, is a good alternative (although reparameterizing is also an option).

Changing the form of the prior is especially likely to help in cases where the cognitive
model demands that a parameter be defined over just a subset of the reals and truncation is
currently being used to effect the domain constraint. In some cases, selecting an alternative

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 33

prior form that is naturally defined on the desired domain may help to resolve a variety of
issues (as in our revised specification of the example RL model). For example, rather than
truncating a distribution to the positive reals (when it is naturally defined over the entire
real line), one might use a distribution that is already defined only on the positive reals,
such as an Exponential or Lognormal distribution. In a similar fashion, rather than doubly
truncating a distribution when both a lower and upper bound is needed, the generalized
Beta distribution (meaning, a Beta distribution that has been scaled and/or shifted such
that it is defined over a domain other than [0, 1]) is likewise a handy alternative.9

If such a change of prior leads to less interpretable hyperparameters, one can of-
ten use known formulae to derive more useful quantities (e.g., samples for a Gamma prior’s
shape and rate hyperparameters may be used to compute, sample by sample, the hyper-level
mean and standard deviation). These kinds of posthoc reparameterizations are straight-
forward to implement (and may be automated; for example, the MATLAB support library
matstanlib can apply select commonly used transformations, see Table A1). Some priors
with less-easily-interpreted parameters also have established alternative parameterizations
that are more intuitive to work with, and may facilitate the setting of hyperpriors in hierar-
chical models. Not all parameterizations are useful: For example, the Gamma distribution
may be parameterized by a shape parameter, α and a rate parameter, β (as in Stan), or in
terms of a shape and scale parameter, where the scale is simply the inverse of the rate (as in
MATLAB), but a more interesting alternative parameterization of the Gamma distribution
is in terms of its mean. The mean of a Gamma distribution is defined as the ratio of its
hyperparameters, µ = α

β . A simple variable substitution permits the reparameterization
Gamma(α, α

µ). Other distributions have known mean-based reparameterizations; we have
found these to be helpful to strike an easier balance between sampler-friendly geometry and
parameter interpretabilty in a variety of contexts.

Reparameterization

While each technique discussed in the previous subsection required a making a
change to the model, in some cases one may need to strictly preserve the model to protect the
psychological interpretation of one or more model parameters, or the theoretical implications
of the model overall. In this scenario, the preferred approach would be reparameterization,
which allows for a part of the model specification to be converted to a form that is more
computationally efficient, but ultimately equivalent (Gelman, 2004; Gelman & Hill, 2006).
The goal of many reparameterization techniques is to permit easier sampling and faster
convergence by reducing correlations or other dependencies in the joint posterior (Gelman
et al., 2008).

Some reparameterization techniques are quite tailored to the particular Bayesian
cognitive model at hand, such as those that serve to better distinguish the role of key
parameters within the model (for a recent example, see Park et al., 2021). Other reparame-
terization techniques are more general-purpose, and might apply to any Bayesian cognitive
model where a certain structure is incorporated. For example, order constraints may be
reparameterized such that the same idea is re-expressed as a multiplicative scaling between

9We also caution against truncations generally, even when they work well in a model, because they can
make extending the model later on extremely difficult.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 34

independent parameters (Knapp & Batchelder, 2004); while this technique is very com-
monly used with multinomial processing tree models (Batchelder & Riefer, 1999; Klauer
et al., 2015), it might be more broadly applied to other models.

There are a number of other general-purpose reparameterization techniques (Gel-
man, 2004), including many that are of particular use for hierarchical models (for an in-
depth discussion with specific techniques and examples, see Gelman & Hill, 2006). Many
such approaches rely on the inclusion of redundant parameters which, while not identified,
often are effective in facilitating more reliable posterior exploration and sampling for the
parameters of interest. These additive or multiplicative parameter expansion techniques can
improve the quality sampling and recovery (Gelman et al., 2008; Browne et al., 2009), and
have been successfully applied in Bayesian cognitive models (for an example, see Matzke
et al., 2015).

Another widely-applicable repararmeterization technique for hierarchical models is
non-centered parameterization (Betancourt & Girolami, 2015, previously called the “Matt
trick” in some older sources), which we have obliquely referenced throughout this tutorial.
A pathological funnel-shaped posterior geometry (as shown earlier in Figure 5c) can be
induced when a centered parameterization was used:

µ ∼ Normal(0,
√

10)
σ ∼ Gamma(2, 1)

θn ∼ Normal(µ, σ)

so called because the prior is centered on the mean parameter. This section of the model
may be rewritten to use a non-centered parameterization:

µ ∼ Normal(0,
√

10)
σ ∼ Gamma(2, 1)

ηn ∼ Normal(0, 1)
θn = σ · ηn + µ

which is mathematically equivalent. Even though the same hyperpriors are used, this expan-
sion allows the entirety of the funnel to be explored efficiently, by introducing an auxilliary
sampled variable η that is independent of µ, and then rescaling it by the sampled standard
deviation σ (Figure 5d). While non-centered parameterizations are most frequently applied
in the context of Normal prior distributions, they are also applicable to any prior distribu-
tion that is parameterized in terms of a location and dispersion hyperparameters. However,
it is important to note that the non-centered parameterization is not always superior: If
a wealth of informative data is available, the centered parameterization may offer better
performance, while the non-centered parameterization would cause issues (Betancourt &
Girolami, 2015). The example_funnel.m script included in matstanlib demonstrates both
the centered and non-centered parameterizations for a toy model, exactly as specified above.

Of course, parameterization and reparameterization are such broad terms that we
cannot hope to cover even most of the most popular methods, techniques, and tricks in
this level of depth. We encourage you to explore the referenced sources and recent work
on similar models to further investigate techniques that might be of greatest use for your
specific Bayesian cognitive model.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 35

From troubleshooting to model development

At this point in the tutorial, we have described in great detail how diagnostic checks
and plots may be used to detect and identify the most commonly encountered problems
in Bayesian cognitive modeling. We have suggested a handful of remedies along the way,
and highlighted specific changes in parameterization and reparameterizations that often
constitute good solutions for Bayesian cognitive models. Each time you apply a Bayesian
cognitive model, it is always necessary to perform the model-checking steps and any subse-
quently needed troubleshooting as outlined here to ensure that the output from your model
is (1) computationally sufficient and (2) consistent with your intentions. Even if you are
using an established Bayesian cognitive model, diagnostic checks and plots can suddenly re-
veal problems when the model is applied to a new dataset, or is fit with a different sampling
algorithm.

In this section, we discuss a few final techniques that may vary in relevance depend-
ing on your analysis plan, but all test additional important expectations and assumptions
about model behavior. While some techniques are more often seen in terms of their role
in a wider Bayesian cognitive modeling workflow, all should also be considered as possible
steps in the troubleshooting process, as each can support the identification of shortcomings
that can compromise the validity of model-based inference.

Depending on how one is planning to apply a given Bayesian cognitive model (or
models), some or all of these final checks may be needed to ensure your model capable of
doing what you will ask of it. Most of these techniques may need to be customized to your
model and research context to even be implemented at all.

Simulation-based calibration

As we discussed earlier, while parameter recovery studies have been the most com-
monly used method to explore the quality of Bayesian cognitive model estimates, they are
far more useful as a qualitative troubleshooting tool. If one does intend to assess the ac-
curacy or reliability of posterior estimates, particularly in the sense of whether a Bayesian
cognitive model’s estimates are internally consistent, then the correct Bayesian approach is
simulation-based model calibration (SBC; Talts et al., 2020; Cook et al., 2006). Whereas pa-
rameter recovery is a heuristic assessment of model behavior for a single simulated dataset,
SBC offers a more principled, comprehensive approach to quantify the coherence of posterior
estimates over the entire prior predictive distribution of data and, ultimately, to formally
validate a Bayesian model as it is currently implemented. Unlike a recovery check, SBC
allows for a quantitative assessment of whether the posteriors tend to be overly wide, overly
narrow, or otherwise biased on a parameter-by-parameter basis. This is exceptionally useful
information for troubleshooting as these biases and other miscalibrations may be targeted
and ultimately corrected through many of the investigative and model-adjusting techniques
previously discussed.

The SBC procedure entails running Nreps replications of a recovery scoring routine.
For each replication, a small simulation study is run: true parameter values θ̃ drawn from
the priors are used to simulate a dataset ỹ, which is then submitted to the Bayesian cognitive
model to collect a relatively small number L of post-warmup iterations. The result of each
replication is each true parameter value’s rank within the corresponding posterior samples

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 36

for all parameters in the model (Talts et al., 2020; vs. the earlier approach of Cook et al.,
2006 which uses quantiles). If the model is correctly implemented, then the ranks across
the Nrep replications will be uniformly distributed for every parameter in the model. A
calibration failure in the posterior estimates is detected when deviations from uniformity
are evident in the rank histograms or other SBC diagnostic plots for a given parameter (Talts
et al., 2020). Because chain autocorrelation violates an assumption of SBC, adjustments
to this base SBC procedure are required when the ESS estimate is notably lower than L.
Namely, the samples should be thinned (during the SBC procedure only) by a factor of ESS

L
to overcome the influence of autocorrelation on the SBC plots (Talts et al., 2020). This
amended and extended version of the base SBC procedure will often need to be used to
properly validate Bayesian cognitive model scripts.

There has been a recent push to consider SBC as less of an option and more of a
requirement in Bayesian workflows, yet SBC has only rarely been applied in the Bayesian
cognitive modeling literature to date (but for an example, see Hartmann & Klauer, 2020).
While we encourage psychologists to consider incorporating SBC toward the end of their
troubleshooting workflow, especially for Bayesian cognitive models that are novel or rela-
tively untested, there are some limitations on SBC’s usability in practice. The first caveat
is a practical limitation: Depending on the computational demands of the model (and on
Nrep and L), performing SBC may take a considerable amount of time and/or computa-
tional resources. Using back-of-the-envelope calculations to estimate SBC runtime (from
the time of a single simulation study with L iterations, multiplying by the highest thinning
factor and Nrep, and dividing by one’s ability to parallelize) is helpful to gauge feasibility.
Another practical consideration is whether automation of the SBC routine is available (as
via the SBC package in R) or unavailable (no dice for MATLAB users) in your preferred
programming language, as one may also need to account for time to code the SBC routine
and diagnostic plots.

Second, it is important to note that SBC is an active area of statistical research
where methods and recommendations are still evolving. For example, whether subtler
problems will be detected by SBC can depend on the values selected for Nrep and L, but
there is relatively little published guidance on how to select appropriate values. Similarly,
there are many ways to tweak the rank histogram and empirical cumulative distribution
function plots used to draw conclusions from SBC results; as such, the effectiveness of SBC
in assessing posterior calibration can depend to some extent on one’s ability to perform these
hands-on exploratory adjustments. Because these finer points of SBC procedure are still
being actively tested and refined by Bayesian statistical researchers, we urge psychologists
to keep up to date with the SBC literature if they intend to apply SBC to Bayesian cognitive
models.

While SBC is currently unfamiliar in the cognitive modeling literature, we expect
that SBC will begin to take the place of larger recovery simulations, and ultimately emerge
as another key tool in the Bayesian cognitive modeling toolbox.

Model recovery

In research that involves the comparison of multiple models applied to the same
experimentally-collected dataset, we recommend assessing in some way whether the planned
model comparison will be capable of distinguishing among the candidate models. While

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 37

it would be ideal to rigorously test the accuracy and reliability of comparisons among
Bayesian cognitive models, it is currently more common in Bayesian cognitive modeling
to assess whether one can sufficiently recover the identity of the model that generated the
data, given the set of candidate models (for a discussion of this distinction, see Lee, Gluck,
et al., 2019). Whether you find either of the techniques we discuss here to be useful for
troubleshooting will depend on your choice of model comparison metric, the goal of your
planned comparison, and the exact expectation about model behavior that you intend to
evaluate.

By far, the most prevalent approach used in Bayesian cognitive modeling research
is the model recovery study (e.g., Pitt et al., 2003). The model recovery procedure is simple
to explain: First, N datasets are to be simulated from each of M models. Then, for each
dataset, all M models are applied and compared using a fully-Bayesian model comparison
metric (e.g., WAIC or LOO; Vehtari et al., 2017). The output of the study is typically a
contingency table summarizing the frequency with which each data-generating model was
judged to be the best-fitting model (i.e., a confusion matrix, although other summaries
and metrics may be used). If the models are sufficiently distinguishable, then the model
comparisons should identify the true generating model for the majority of the M ·N datasets.
Even though model recovery is not a means to evaluate the quality of model-based inference
(Lee, Gluck, et al., 2019; Schad et al., 2022), it may still be informative when the intent is
only to perform a consistency check of the expectation for a model comparison to regularly
identify the true generating model: If confusion matrix is confused, then this expectation
of model inversion is not supported. In the context of troubleshooting, model recovery may
also be quite useful as a means to explore the influence of experimental design on model
comparison outcomes (for a recent example, see Evans & Brown, 2018).

If the planned method of model comparison is a Bayes factor (as is now feasible for
Bayesian cognitive models via methods such as bridge sampling; Gronau et al., 2017), then
a new, alternative approach is to perform SBC specifically for the Bayes factor comparison
(Schad et al., 2022). Similar to how SBC is a principled way to quantify the internal
consistency and accuracy of posterior estimates, SBC for Bayes factors is a principled way
to quantify the expected accuracy for a planned comparison via Bayes factor, and uncover
the degree of variability in that Bayes factor that one might reasonably expect to encounter.

Unfortunately, running either of these two procedures can require a considerable
investment of time. Still, both techniques offer opportunities for directly troubleshooting
comparisons among Bayesian cognitive models, unlike any other techniques in this tutorial.
We expect that SBC for Bayes factors will find good use within the Bayesian cognitive
modeling community, particularly in applied research where there may be a stronger need
to plan for precision in the comparison of Bayesian cognitive models.

Posterior predictives

Another way to better understand the behavior of a Bayesian cognitive model is to
perform a series of posterior predictive checks (Rubin, 1984; Gelman et al., 2013). As the
name might suggest, posterior predictive checks (which are generated after the model has
been applied to a particular behavioral dataset) are similar in many ways to prior predictive
checks (which are generated before the model was exposed to any data). After the posterior
predictive distribution has been generated by using each joint posterior sample in turn to

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 38

simulate a new dataset,10 performing each posterior predictive check is simply a matter of
comparing a summary statistic of the observed data to the same summary statistic across
the posterior predictive distribution of data. For a Bayesian cognitive model, these summary
statistics are expected to be both nontrivial and meaningful within the research context.
As such, the same carefully chosen set of behavioral patterns and performance metrics can
and ideally would be visualized in both the prior and posterior predictive checks (Berkhof
et al., 2000).

In the context of a simulation study, the posterior predictive checks together are the
final assessment of the internal consistency of a Bayesian cognitive model. If the model is
behaving as intended, then the data used to estimate the parameters of the model should
easily fall within the spread of the posterior predictive distribution of data based on those
same estimates. If this is not the case, then further troubleshooting is needed to investigate
in case this is signaling a serious problem in the model specification (or a serious error in
the code).

When the model has been applied to an experimentally-collected dataset, poste-
rior predictive checks should be used to evaluate the descriptive adequacy of the Bayesian
cognitive model (Shiffrin et al., 2008). Each systematic discrepancy or misfit between the
posterior predictive and the observed data can reveal a different way in which the model
was unable to capture the true data-generating process (i.e., the cognitive process that
participants actually used to perform the task). While formal discrepancy measures are
regularly used in statistical linear modeling (e.g., posterior predictive p-values; Gelman et
al., 1996), these posterior predictive checks are typically qualitative assessments only in
Bayesian cognitive modeling. As such, how to characterize the severity and importance
of any misfits will depend heavily on the research context. While misfits characterized as
small may sometimes simply be acknowledged, numerous severe misfits may indicate that
the model is neither useful nor valid as a model of the latent cognitive process (or, again,
suggest a need for further troubleshooting).

At this late stage of troubleshooting, it can be frustrating to find that further loops
of diagnostic investigation are required. While the troubleshooting process can be a long
slog, a side-benefit is often that a rich understanding of the inner workings and behavior of
the model is developed along the way. Through the wide variety of checks and assessments
needed, you might have noticed trade-offs among key parameters; found conditions under
which the model is unidentified; learned which estimates are especially sensitive or robust
to their priors; discovered patterns of behavior that the model presently fails to capture;
and so on. It can be fruitful to make note of these types of tendencies, strengths, and
limitations, particularly if you might continue to use this particular Bayesian cognitive
model in subsequent work.

After the current research project has come to a close, future projects might be
both inspired and facilitated by this kind of knowledge. For example, one may begin a new

10It is important to note that this is different than using the collection of point parameter estimates for
each parameter to simulate new data, which is an incorrect approach for Bayesian models. Using only the
point estimates ignores the uncertainty associated with these estimates, and as such is unlikely to capture
the full range of behavioral data seen as likely by the fitted model. (Also consider that the collection of
marginal posterior point estimates is not necessarily a point in the joint parameter space that was visited
during sampling, let alone guaranteed to be the most likely point in the joint parameter space.)

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 39

project later on to explore whether one or more theory-driven extensions to the model could
account for patterns of behavior left unaccounted for by the original version of the model.
In other words, the knowledge gained though troubleshooting process might guide a future
model development process — but at this point, the lines between model checking, model
adjustment, and model usage have become rather blurred. A number of the techniques
in this tutorial, particularly in this last collection of troubleshooting procedures, are also
important steps in a larger Bayesian cognitive modeling workflow that, like all Bayesian
workflows (Gelman et al., 2020; Schad et al., 2021), may be used to work toward a wider
variety of analytic and research purposes.

The troubleshooting process ends when no further problems of any kind are able to
be detected, and as such, from both a computational perspective and a model consistency
perspective, one is reasonably confident that any inferences one will make based on the
final Bayesian cognitive model will be computationally sufficient, internally consistent, and
reasonable for the task at hand.

Reporting results

When publishing results from research using Bayesian cognitive modeling, authors
should explicitly mention that the required model checks were performed. It is not necessary
to record and report exhaustively every detail of your troubleshooting and model develop-
ment process (although this may be done as a “postregistration” of model-based work;
Lee, Criss, et al., 2019). However, the final specification of the model that is being used
and what diagnostic checks were performed should always be made clear (for an example,
see Kruschke, 2021). All reports of results from Bayesian cognitive models should include
the model specification (i.e., the likelihood and priors used), the sampling algorithm used
(including any actively given sampler-specific inputs), the criteria used to evaluate the com-
putational sufficiency of the model, and some reference to the checks of model consistency
performed. An example of how this may be reported is:

... Finally, we performed prior predictive checks to demonstrate that each model
specification was reasonable in the context of our experiment (see Figure X).
With these model specifications and our behavioral data in hand, we used Stan
(Carpenter et al., 2017) to estimate the joint posterior distribution of each model
via dynamic Hamiltonian Monte Carlo sampling. For each model, we ran 4
chains of 500 warmup iterations and 1500 kept iterations each, then performed
a series of diagnostic checks. We required an R̂ value of ≤ 1.01 and an effective
sample size of ≥ 400 for all parameters, a BFMI of ≥ 0.2 for all chains, and that
no divergences were observed. When we report 90% credible intervals (equal-
tailed), we also required effective sample size estimates of ≥ 400 for the 5% and
95% quantiles of those parameters. These checks were supported by a visual
inspection of diagnostic and other plots. Only kept iterations from models that
met these criteria were used for inference.

Conclusion

While Bayesian cognitive modeling can be a challenging method to use properly, it
is also a rewarding approach to psychological research that is only increasing in popularity

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 40

(Jarecki et al., 2020; van de Schoot et al., 2017). In this tutorial, we have sought to make
the troubleshooting process clear and accessible, especially for psychologists who may be
new to Bayesian methods for cognitive modeling.

Of course, one may sometimes find it is justified or necessary to deviate from the
exact recommendations outlined here. Practical concerns, including the time and compu-
tational power available, may shape the troubleshooting process in a number of ways. As
touched on earlier, some Bayesian cognitive models can require a rather long time to run,
and some more time-intensive troubleshooting procedures, such as SBC, may not always be
feasible within a reasonable research timeline. Experienced practitioners of Bayesian cogni-
tive modeling one may realize conditions under which it is reasonable to relax — or necessary
to tighten — the criteria for certain diagnostic checks. The procedures recommended here
are also not an exhaustive list of model-checking techniques: Further troubleshooting pro-
cedures including as prior sensitivity analyses, while beyond the scope of this tutorial, are
important tools for certain applications.

While the exact sequence of troubleshooting steps needed will be different depending
on one’s choice of cognitive model, experimental design, and planned application, one should
now have a firm enough grasp on the core tenets of Bayesian troubleshooting to investigate
one’s own models. One will not only now know the most essential steps — from the
requisite automated computational checks, to more custom methods to ensure the model
is functioning as intended, alongside the full investigative toolbox of diagnostic plots —
but should also be able to judge the quality of the output at each step. Ultimately, it
is our hope that this guide will not only encourage more vigilant and conscientious use
of Bayesian cognitive models, but also might empower psychologists to build and apply
Bayesian cognitive models in their own research with confidence in the quality of their
work.

References

Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing neurocomputational mechanisms of
reinforcement learning and decision-making with the hBayesDM package. Compu-
tational Psychiatry, 1, 24–57.

Andrews, M., & Baguley, T. (2013). Prior approval: The growth of Bayesian methods in
psychology. British Journal of Mathematical and Statistical Psychology, 66 (1), 1–7.

Annis, J., & Palmeri, T. J. (2018). Bayesian statistical approaches to evaluating cognitive
models. Wiley Interdisciplinary Reviews: Cognitive Science, 9 (2), e1458.

Apgar, J. F., Witmer, D. K., White, F. M., & Tidor, B. (2010). Sloppy models, parameter
uncertainty, and the role of experimental design. Molecular BioSystems, 6 (10), 1890–
1900.

Baribault, B. (2021). matstanlib: A library of MATLAB functions for visualization, process-
ing, and analysis of output from Bayesian models (Version 1.0) [MATLAB library].
https://github.com/baribault/matstanlib

Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial
process tree modeling. Psychonomic Bulletin & Review, 6 (1), 57–86.

Berkhof, J., Van Mechelen, I., & Hoijtink, H. (2000). Posterior predictive checks: Principles
and discussion. Computational Statistics, 15 (3), 337–354.

https://github.com/baribault/matstanlib

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 41

Betancourt, M. (2016). Diagnosing suboptimal cotangent disintegrations in Hamiltonian
Monte Carlo. https://arxiv.org/abs/1604.00695

Betancourt, M. (2018). A conceptual introduction to Hamiltonian Monte Carlo. https://
arxiv.org/abs/1701.02434

Betancourt, M., & Girolami, M. (2015). Hamiltonian Monte Carlo for hierarchical models.
In S. Upadhyay, U. Singh, D. Dey, & A. Loganathan (Eds.), Current trends in
bayesian methodology with applications (pp. 79–101). Chapman & Hall/CRC.

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112 (518), 859–877.

Boehm, U., Marsman, M., Matzke, D., & Wagenmakers, E.-J. (2018). On the importance
of avoiding shortcuts in applying cognitive models to hierarchical data. Behavior
Research Methods, 50 (4), 1614–1631.

Box, G. E. (1980). Sampling and Bayes’ inference in scientific modelling and robustness.
Journal of the Royal Statistical Society: Series A (General), 143 (4), 383–404.

Brooks, S. P. (2003). Bayesian computation: A statistical revolution. Philosophical Trans-
actions of the Royal Society of London. Series A: Mathematical, Physical and En-
gineering Sciences, 361 (1813), 2681–2697.

Brooks, S., Gelman, A., Jones, G., & Meng, X.-L. (2011). Handbook of markov chain monte
carlo. Chapman & Hall/CRC.

Brown, V. M., Zhu, L., Solway, A., Wang, J. M., McCurry, K. L., King-Casas, B., & Chiu,
P. H. (2021). Reinforcement learning disruptions in individuals with depression and
sensitivity to symptom change following cognitive behavioral therapy. JAMA Psy-
chiatry, 78 (10), 1113–1122.

Browne, W. J., Steele, F., Golalizadeh, M., & Green, M. J. (2009). The use of simple repa-
rameterizations to improve the efficiency of Markov chain Monte Carlo estimation
for multilevel models with applications to discrete time survival models. Journal of
the Royal Statistical Society: Series A (Statistics in Society), 172 (3), 579–598.

Bürkner, P.-C. (2017). Advanced Bayesian multilevel modeling with the R package brms.
https://arxiv.org/abs/1705.11123

Busemeyer, J. R., Pothos, E. M., Franco, R., & Trueblood, J. S. (2011). A quantum the-
oretical explanation for probability judgment errors. Psychological Review, 118 (2),
193–218.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic program-
ming language. Journal of Statistical Software, 76 (1).

Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., & Liu, J. (2013). A nondegenerate
penalized likelihood estimator for variance parameters in multilevel models. Psy-
chometrika, 78 (4), 685–709.

Cook, S. R., Gelman, A., & Rubin, D. B. (2006). Validation of software for Bayesian models
using posterior quantiles. Journal of Computational and Graphical Statistics, 15 (3),
675–692.

Dai, C., Heng, J., Jacob, P. E., & Whiteley, N. (2022). An invitation to Sequential Monte
Carlo samplers. Journal of the American Statistical Association, 1–38.

https://arxiv.org/abs/1604.00695
https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1705.11123

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 42

Danwitz, L., Mathar, D., Smith, E., Tuzsus, D., & Peters, J. (2022). Parameter and model
recovery of reinforcement learning models for restless bandit problems. Computa-
tional Brain & Behavior.

Dearden, R., Friedman, N., & Andre, D. (1998). Bayesian Q-learning. Proceedings of the
Fifteenth National Conference on Artificial Intelligence, 761–768.

Donkin, C., Kary, A., Tahir, F., & Taylor, R. (2016). Resources masquerading as slots:
Flexible allocation of visual working memory. Cognitive Psychology, 85, 30–42.

Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid monte carlo.
Physics Letters B, 195 (2), 216–222.

Efron, B., & Morris, C. (1977). Stein’s paradox in statistics. Scientific American, 236 (5),
119–127.

Etz, A., Gronau, Q. F., Dablander, F., Edelsbrunner, P. A., & Baribault, B. (2018). How
to become a Bayesian in eight easy steps: An annotated reading list. Psychonomic
Bulletin & Review, 25 (1), 219–234.

Etz, A., & Vandekerckhove, J. (2018). Introduction to Bayesian inference for psychology.
Psychonomic Bulletin & Review, 25 (1), 5–34.

Evans, N. J., & Brown, S. D. (2018). Bayes factors for the linear ballistic accumulator model
of decision-making. Behavior Research Methods, 50 (2), 589–603.

Farrell, S., & Lewandowsky, S. (2018). Computational modeling of cognition and behavior.
Cambridge University Press.

Frank, M. J., Gagne, C., Nyhus, E., Masters, S., Wiecki, T. V., Cavanagh, J. F., & Badre,
D. (2015). fMRI and EEG predictors of dynamic decision parameters during human
reinforcement learning. Journal of Neuroscience, 35 (2), 485–494.

Gabry, J., & Mahr, T. (2021). bayesplot: Plotting for Bayesian models (Version 1.8.0) [R
package]. https://mc-stan.org/bayesplot/

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in
Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in
Society), 182 (2), 389–402.

Galdo, M., Bahg, G., & Turner, B. M. (2020). Variational Bayesian methods for cognitive
science. Psychological Methods, 25 (5), 535–559.

Gelman, A. (2004). Parameterization and Bayesian modeling. Journal of the American
Statistical Association, 99 (466), 537–545.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).
Bayesian data analysis (3rd ed.). Chapman & Hall/CRC.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis (1st
ed.). Chapman & Hall/CRC.

Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical
models. Cambridge University Press.

Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assessment of model
fitness via realized discrepancies. Statistica Sinica, 733–760.

Gelman, A., & Rubin, D. B. (1991). A single series from the Gibbs sampler provides a false
sense of security. Bayesian Statistics, 4, 625–631.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 7 (4), 457–472.

https://mc-stan.org/bayesplot/

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 43

Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can often only be understood
in the context of the likelihood. Entropy, 19 (10), 555.

Gelman, A., Van Dyk, D. A., Huang, Z., & Boscardin, J. W. (2008). Using redundant pa-
rameterizations to fit hierarchical models. Journal of Computational and Graphical
Statistics, 17 (1), 95–122.

Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao, Y., Kennedy,
L., Gabry, J., Bürkner, P.-C., & Modrák, M. (2020). Bayesian workflow. https :
//arxiv.org/abs/2011.01808

Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995). Markov chain Monte Carlo in
practice. Chapman & Hall/CRC.

Gluth, S., & Jarecki, J. B. (2019). On the importance of power analyses for cognitive
modeling. Computational Brain & Behavior, 2 (3), 266–270.

Golubickis, M., Falben, J. K., Cunningham, W. A., & Macrae, C. N. (2018). Exploring the
self-ownership effect: Separating stimulus and response biases. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 44 (2), 295–306.

Greene, N. R., & Rhodes, S. (2022). A tutorial on cognitive modeling for cognitive aging
research. Psychology and Aging, 37 (1), 30–42.

Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition.
In R. Sun (Ed.), Cambridge handbook of computational psychology (pp. 59–100).
Cambridge University Press.

Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Marsman, M., Leslie, D. S.,
Forster, J. J., Wagenmakers, E.-J., & Steingroever, H. (2017). A tutorial on bridge
sampling. Journal of Mathematical Psychology, 81, 80–97.

Gunawan, D., Hawkins, G. E., Tran, M.-N., Kohn, R., & Brown, S. (2020). New estima-
tion approaches for the hierarchical Linear Ballistic Accumulator model. Journal of
Mathematical Psychology, 96, 102368.

Haines, N., Beauchaine, T. P., Galdo, M., Rogers, A. H., Hahn, H., Pitt, M. A., Myung, J. I.,
Turner, B. M., & Ahn, W.-Y. (2020). Anxiety modulates preference for immediate
rewards among trait-impulsive individuals: A hierarchical Bayesian analysis. Clinical
Psychological Science, 8 (6), 1017–1036.

Hartmann, R., & Klauer, K. C. (2020). Extending RT-MPTs to enable equal process times.
Journal of Mathematical Psychology, 96, 102340.

Heathcote, A., Brown, S. D., & Wagenmakers, E.-J. (2015). An introduction to good prac-
tices in cognitive modeling. In B. U. Forstmann & E.-J. Wagenmakers (Eds.), An
introduction to model-based cognitive neuroscience (pp. 25–48). Springer.

Heathcote, A., Lin, Y.-S., Reynolds, A., Strickland, L., Gretton, M., & Matzke, D. (2019).
Dynamic models of choice. Behavior Research Methods, 51 (2), 961–985.

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15 (1),
1593–1623.

Jarecki, J. B., Tan, J. H., & Jenny, M. A. (2020). A framework for building cognitive process
models. Psychonomic Bulletin & Review, 27 (1), 1218–1229.

Jasra, A., Holmes, C. C., & Stephens, D. A. (2005). Markov chain Monte Carlo methods
and the label switching problem in Bayesian mixture modeling. Statistical Science,
20 (1), 50–67.

https://arxiv.org/abs/2011.01808
https://arxiv.org/abs/2011.01808

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 44

Katahira, K. (2016). How hierarchical models improve point estimates of model parameters
at the individual level. Journal of Mathematical Psychology, 73, 37–58.

Kennedy, L., Simpson, D., & Gelman, A. (2019). The experiment is just as important as
the likelihood in understanding the prior: A cautionary note on robust cognitive
modeling. Computational Brain & Behavior, 2 (3), 210–217.

Klauer, K. C., Singmann, H., & Kellen, D. (2015). Parametric order constraints in multino-
mial processing tree models: An extension of Knapp and Batchelder (2004). Journal
of Mathematical Psychology, 64, 1–7.

Knapp, B. R., & Batchelder, W. H. (2004). Representing parametric order constraints in
multi-trial applications of multinomial processing tree models. Journal of Mathe-
matical Psychology, 48 (4), 215–229.

Krefeld-Schwalb, A., Pachur, T., & Scheibehenne, B. (2022). Structural parameter inter-
dependencies in computational models of cognition. Psychological Review, 129 (2),
313–339.

Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan.
Academic Press.

Kruschke, J. K. (2021). Bayesian analysis reporting guidelines. Nature Human Behaviour,
5 (10), 1282–1291.

Kumar, R., Carroll, C., Hartikainen, A., & Martin, O. A. (2019). ArviZ a unified library
for exploratory analysis of Bayesian models in Python. Journal of Open Source
Software, 4 (33), 1143.

Lambert, B., & Vehtari, A. (2022). R*: A robust MCMC convergence diagnostic with un-
certainty using decision tree classifiers. Bayesian Analysis, 17 (2), 353–379.

Lasagna, C. A., Pleskac, T. J., Burton, C. Z., McInnis, M. G., Taylor, S. F., & Tso, I. F.
(2022). Mathematical modeling of risk-taking in bipolar disorder: Evidence of re-
duced behavioral consistency, with altered loss aversion specific to those with history
of substance use disorder. Computational Psychiatry, 6 (1), 96–116.

Lee, M. D. (2008). Three case studies in the Bayesian analysis of cognitive models. Psycho-
nomic Bulletin & Review, 15 (1), 1–15.

Lee, M. D. (2011). How cognitive modeling can benefit from hierarchical Bayesian models.
Journal of Mathematical Psychology, 55 (1), 1–7.

Lee, M. D. (2018). Bayesian methods in cognitive modeling. In J. T. Wixted & E.-J. Wa-
genmakers (Eds.), The stevens’ handbook of experimental psychology and cognitive
neuroscience (pp. 37–84).

Lee, M. D., Criss, A. H., Devezer, B., Donkin, C., Etz, A., Leite, F. P., Matzke, D., Rouder,
J. N., Trueblood, J. S., White, C. N., et al. (2019). Robust modeling in cognitive
science. Computational Brain & Behavior, 2 (3), 141–153.

Lee, M. D., Gluck, K. A., & Walsh, M. M. (2019). Understanding the complexity of simple
decisions: Modeling multiple behaviors and switching strategies. Decision, 6 (4), 335.

Lee, M. D., & Vanpaemel, W. (2018). Determining informative priors for cognitive models.
Psychonomic Bulletin & Review, 25 (1), 114–127.

Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian cognitive modeling: A practical course.
Cambridge University Press.

Link, W. A., & Eaton, M. J. (2012). On thinning of chains in MCMC. Methods in Ecology
and Evolution, 3 (1), 112–115.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 45

Livingstone, S., Betancourt, M., Byrne, S., & Girolami, M. (2019). On the geometric er-
godicity of hamiltonian monte carlo. Bernoulli, 25 (4A), 3109–3138.

Matzke, D., Dolan, C. V., Batchelder, W. H., & Wagenmakers, E.-J. (2015). Bayesian
estimation of multinomial processing tree models with heterogeneity in participants
and items. Psychometrika, 80 (1), 205–235.

Monnahan, C. C., Thorson, J. T., & Branch, T. A. (2017). Faster estimation of bayesian
models in ecology using hamiltonian monte carlo. Methods in Ecology and Evolution,
8 (3), 339–348.

Navarro, D. J. (2021). If mathematical psychology did not exist we might need to invent it:
A comment on theory building in psychology. Perspectives on Psychological Science,
16 (4), 707–716.

Navarro, D. J., Newell, B. R., & Schulze, C. (2016). Learning and choosing in an uncer-
tain world: An investigation of the explore–exploit dilemma in static and dynamic
environments. Cognitive Psychology, 85, 43–77.

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G.
Jones, & X.-L. Meng (Eds.), Handbook of markov chain monte carlo (pp. 113–160).
Chapman & Hall/CRC.

Nilsson, H., Rieskamp, J., & Wagenmakers, E.-J. (2011). Hierarchical bayesian parameter
estimation for cumulative prospect theory. Journal of Mathematical Psychology,
55 (1), 84–93.

Nunez, M. D., Gosai, A., Vandekerckhove, J., & Srinivasan, R. (2019). The latency of a
visual evoked potential tracks the onset of decision making. Neuroimage, 197, 93–
108.

Park, H., Yang, J., Vassileva, J., & Ahn, W.-Y. (2021). Development of a novel computa-
tional model for the Balloon Analogue Risk Task: The exponential-weight mean–
variance model. Journal of Mathematical Psychology, 102, 102532.

Peters, J., & D’Esposito, M. (2020). The drift diffusion model as the choice rule in inter-
temporal and risky choice: A case study in medial orbitofrontal cortex lesion patients
and controls. PLoS Computational Biology, 16 (4), e1007615.

Pitt, M. A., Kim, W., & Myung, I. J. (2003). Flexibility versus generalizability in model
selection. Psychonomic Bulletin & Review, 10 (1), 29–44.

Pleskac, T. J., Cesario, J., & Johnson, D. J. (2018). How race affects evidence accumulation
during the decision to shoot. Psychonomic Bulletin & Review, 25 (4), 1301–1330.

Plummer, M. (2003). Jags: A program for analysis of Bayesian graphical models using
Gibbs sampling. In K. Hornik, F. Leisch, & A. Zeileis (Eds.), Proceedings of the 3rd
international workshop on distributed statistical computing (pp. 1–10).

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for
two-choice decision tasks. Neural Computation, 20 (4), 873–922.

Robert, C., & Casella, G. (2011). A short history of Markov chain Monte Carlo: Subjective
recollections from incomplete data. In S. Brooks, A. Gelman, G. Jones, & X.-L. Meng
(Eds.), Handbook of markov chain monte carlo (pp. 49–67). Chapman & Hall/CRC.

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an
application in the theory of signal detection. Psychonomic bulletin & review, 12 (4),
573–604.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 46

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian
t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin &
Review, 16 (2), 225–237.

Röver, C., Bender, R., Dias, S., Schmid, C. H., Schmidli, H., Sturtz, S., Weber, S., & Friede,
T. (2021). On weakly informative prior distributions for the heterogeneity parameter
in bayesian random-effects meta-analysis. Research Synthesis Methods, 12 (4), 448–
474.

Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the ap-
plied statistician. The Annals of Statistics, 1151–1172.

Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. (2016). Probabilistic programming in Python
using PyMC3. PeerJ Computer Science, 2, e55.

Schad, D. J., Betancourt, M., & Vasishth, S. (2021). Toward a principled Bayesian workflow
in cognitive science. Psychological Methods, 26 (1), 103–126.

Schad, D. J., Nicenboim, B., Bürkner, P.-C., Betancourt, M., & Vasishth, S. (2022). Work-
flow techniques for the robust use of Bayes factors. Psychological Methods.

Schaper, M. L., Mieth, L., & Bell, R. (2019). Adaptive memory: Source memory is positively
associated with adaptive social decision making. Cognition, 186, 7–14.

Scheibehenne, B., & Pachur, T. (2015). Using Bayesian hierarchical parameter estimation
to assess the generalizability of cognitive models of choice. Psychonomic Bulletin &
Review, 22 (2), 391–407.

Shiffrin, R. M., Lee, M. D., Kim, W., & Wagenmakers, E.-J. (2008). A survey of model
evaluation approaches with a tutorial on hierarchical Bayesian methods. Cognitive
Science, 32 (8), 1248–1284.

Spektor, M. S., & Kellen, D. (2018). The relative merit of empirical priors in non-identifiable
and sloppy models: Applications to models of learning and decision-making. Psy-
chonomic Bulletin & Review, 25 (6), 2047–2068.

Stan Development Team. (2022). Stan modeling language users guide and reference manual
(Version 2.30). https://mc-stan.org

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A. (2020). Validating

Bayesian inference algorithms with simulation-based calibration. https://arxiv.org/
abs/1804.06788

Tran, N.-H., Van Maanen, L., Heathcote, A., & Matzke, D. (2021). Systematic parameter
reviews in cognitive modeling: Towards a robust and cumulative characterization of
psychological processes in the diffusion decision model. Frontiers in Psychology, 11,
608287.

Turner, B. M., Sederberg, P. B., Brown, S. D., & Steyvers, M. (2013). A method for effi-
ciently sampling from distributions with correlated dimensions. Psychological Meth-
ods, 18 (3), 368–384.

van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., & Depaoli, S.
(2017). A systematic review of Bayesian articles in psychology: The last 25 years.
Psychological Methods, 22 (2), 217–239.

Van Ravenzwaaij, D., Cassey, P., & Brown, S. D. (2018). A simple introduction to Markov
Chain Monte-Carlo sampling. Psychonomic Bulletin & Teview, 25 (1), 143–154.

https://mc-stan.org
https://arxiv.org/abs/1804.06788
https://arxiv.org/abs/1804.06788

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 47

Vandekerckhove, J., Tuerlinckx, F., & Lee, M. (2008). A bayesian approach to diffusion
process models of decision-making. Proceedings of the 30th annual conference of the
Cognitive Science Society, 1429–1434.

Vanpaemel, W. (2010). Prior sensitivity in theory testing: An apologia for the Bayes factor.
Journal of Mathematical Psychology, 54 (6), 491–498.

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing, 27 (5), 1413–
1432.

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2021). Rank-
normalization, folding, and localization: An improved R̂ for assessing convergence
of MCMC. Bayesian Analysis, 16 (2), 667–718.

Westfall, H. A., & Lee, M. D. (2021). A model-based analysis of the impairment of semantic
memory. Psychonomic Bulletin & Review, 28 (5), 1484–1494.

Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of
behavioral data. eLife, 8, e49547.

Appendix
Code libraries to support troubleshooting in R, Python, and MATLAB

Libraries that facilitate many of the troubleshooting procedures recommended here are
freely available in each of the three programming languages — R, Python, and MATLAB —
that are most commonly used for Bayesian cognitive modeling. As of this writing (8/2022),
the most comprehensive support libraries available are bayesplot in R (Gabry & Mahr,
2021), ArviZ in Python (and Julia; Kumar et al., 2019), and matstanlib in MATLAB
(Baribault, 2021).

Below, we outline exactly how these support libraries may be used to automate the
computations and plots described in the main text.

Using matstanlib for troubleshooting in MATLAB

While an abundance of tutorials are available that demonstrate the use of bayesplot
and ArviZ, scarcely any demonstrate use of matstanlib as it has just recently been released.
As such, we offer a brief walkthrough of how this new resource may be used to automate
and/or support each the troubleshooting procedures we recommend. However, the sequence
of steps is the same in R and Python (see Table A1 below for analogous commands in
bayesplot and ArviZ).

After running the model, it is often necessary to convert the output to a format that
is compatible with the support library. For MATLAB users, neither the recognized MAT-
LAB interface to Stan, MatlabStan (https://github.com/brian-lau/MatlabStan), nor the
alternative interface, Trinity (https://github.com/joachimvandekerckhove/trinity), returns
samples in the format that is required by matstanlib. matstanlib’s extractsamples.m
function automates the reformatting process for output from either interface:

[samples,diagnostics] = extractsamples(‘MatlabStan’,fit);

[samples,diagnostics] = extractsamples(‘trinity’,chains,info);

https://github.com/brian-lau/MatlabStan
https://github.com/joachimvandekerckhove/trinity

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 48

while ensuring that chain identity and the iteration order is faithfully maintained. Posterior
samples and sampler diagnostics are returned in separate structures.

The required computational checks are fully automated by matstanlib. First, those
computational diagnostics that are based on the posterior samples (R̂ and ESS), along with
some basic posterior summary statistics, are computed and collected in a table:

posteriorTable = mcmctable(samples);

Then, an automated assessment of all HMC/NUTS diagnostics may be printed at the
command line:

interpretdiagnostics(diagnostics,posteriorTable)

This report will include a warning if any of the required computational checks for
HMC/NUTS sampling (R̂, ESS, divergences, BFMI) were not passed.

A subset of the required consistency checks are automated by matstanlib. While
prior predictive checks must be programmed manually, as they require customization to
the research context, parameter recovery checks are supported. After running a simulation
study, recovery plots may be generated using the matstanlib’s plotrecovery.m function,
as we used to create all six recovery plots in Figure 9.

If any problems are detected through these checks, a variety of diagnostic plots are
needed to investigate further. Nearly all of the diagnostic plots mentioned in the tutorial
are available in matstanlib.

matstanlib offers trace plots and rank plots to support troubleshooting high R̂, and
ESS plots to support troubleshooting low ESS. The trace plots in Figure 3, Figure 4 (top),
and Figure 5b and the rank plots in Figure 4 (bottom) were generated by matstanlib’s
tracedensity.m and rankplots.m functions, respectively. Each trio of ESS plots in Fig-
ure 7 was generated by matstanlib’s plotess.m function.

matstanlib also offers diagnostic plots for troubleshooting each diagnostics specific
to HMC/NUTS, including BFMI and divergences. Low BFMI warnings can be investi-
gated using energy plots; the energy plots in Figure 6a and 6b which were generated by
matstanlib’s plotenergy.m function. The visualization of divergent transitions by chain
in Figure 5a, generated by the plotdivergences.m function, and the parallel coordinate
plot of samples in Figure 10b, generated by the parallelsamples.m function, are useful to
recognize if divergences are more concentrated in the samples from a particular chain, or in
a specific part of the joint parameter space, respectively.

A wide variety of other matstanlib functions support visual exploration of the
joint posterior densities and estimates. As many of these functions can accept optional
inputs to trigger diagnostic overlays, they may simultaneously support troubleshooting of
HMC/NUTS diagnostics. To demonstrate the effect of reparameterization on a funnel-
shaped density, we used the jointdensity.m function to generate the bivariate density
plots, with indicators for divergent transitions (if any) overlaid, as seen in Figure 5c and 5d.
The grids of bivariate densities for multiple conjunctions of parameters in Figure 6c and
Figure 10a were generated by the multidensity.m function. Using optional inputs for
multidensity.m to request that the energy diagnostic was included in Figure 6c and that
divergence indicators were overlaid in Figure 10a these plots especially useful for trou-
bleshooting low BFMI and divergent transitions, respectively.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 49

Diagnostic overlays are also able to be included on a number of other matstanlib
plots. For example, to add a rug plot of iterations with divergences or the maximum
treedepth was reached to a trace plot, as we did for Figure 5b, the structure of diagnostic
quantities must be given as an additional input:

tracedensity(samples,parameterNames,diagnostics)

To see the most recent documentation for any matstanlib function, including a full
list of the optional inputs that are available, simply run the help command at the command
line:

help plotess

Finally, matstanlib offers limited support for improving model specifications. To
support the elicitation of new hyperpriors, prior simulation is automated through the
hyperpriortester.m function, which was used to generate both panels in Figure 11. A
small number of post hoc reparameterizations for hyperparameters of select distributions
are automated by the hypertransform.m function.

All of the supplementary code mentioned in the main text (example_RL.m,
example_funnel.m, RL_broken.stan, RL_fixed.stan) is available in the examples folder
of matstanlib.

The matstanlib library is freely available from https://github.com/baribault/
matstanlib.

https://github.com/baribault/matstanlib
https://github.com/baribault/matstanlib

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 50

T
ab

le
A

1

Es
se

nt
ia

lc
om

m
an

ds
fo

r
tr

ou
bl

es
ho

ot
in

g
in

va
ri

ou
s

pr
og

ra
m

m
in

g
la

ng
ua

ge
s’

su
pp

or
t

lib
ra

ri
es

.
co

m
m

an
d

na
m

e
M

AT
LA

B
R

Py
th

on
ma

ts
ta

nl
ib

ba
ye

sp
lo

t
Ar

vi
Z

C
or

e
fu

nc
tio

na
lit

y
re

fo
rm

at
sa

m
pl

es
an

d
di

ag
no

st
ic

s
ex

tr
ac

ts
am

pl
es

as
.a

rr
ay

,n
ut

s_
pa

ra
ms

fr
om

_p
ys

ta
n,

et
c.

ge
ne

ra
te

a
ta

bl
e

of
po

st
er

io
r

st
at

ist
ic

s
an

d
co

nv
er

ge
nc

e
di

ag
no

st
ic

s
mc

mc
ta

bl
e

mo
ni

to
r

su
mm

ar
y

di
ag

no
st

ic
s

re
po

rt
in

te
rp

re
td

ia
gn

os
ti

cs
ch

ec
k_

hm
c_

di
ag

no
st

ic
s

—

D
ia

gn
os

tic
pl

ot
s

tr
ac

e
pl

ot
tr

ac
ed

en
si

ty
mc

mc
_t

ra
ce

,m
cm

c_
co

mb
o

pl
ot

_t
ra

ce
ra

nk
pl

ot
s

ra
nk

pl
ot

s
mc

mc
_r

an
k_

hi
st

pl
ot

_r
an

k
di

ve
rg

en
ce

s
by

ch
ai

n
pl

ot
di

ve
rg

en
ce

s
—

—
en

er
gy

pl
ot

pl
ot

en
er

gy
mc

mc
_n

ut
s_

en
er

gy
pl

ot
_e

ne
rg

y
ES

S
di

ag
no

st
ic

pl
ot

s
pl

ot
es

s
—

pl
ot

_e
ss

bi
va

ria
te

de
ns

ity
w

ith
m

ar
gi

na
ls

jo
in

td
en

si
ty

mc
mc

_s
ca

tt
er

pl
ot

_p
ai

r
gr

id
of

bi
va

ria
te

de
ns

iti
es

mu
lt

id
en

si
ty

mc
mc

_p
ai

rs
pl

ot
_p

ai
r

pa
ra

lle
lc

oo
rd

in
at

es
pl

ot
pa

ra
ll

el
sa

mp
le

s
mc

mc
_p

ar
co

or
d

pl
ot

_p
ar

al
le

l
pa

ra
m

et
er

re
co

ve
ry

pl
ot

pl
ot

re
co

ve
ry

mc
mc

_r
ec

ov
er

_s
ca

tt
er

—

O
th

er
fu

nc
tio

na
lit

y
pr

io
r

sim
ul

at
io

n
hy

pe
rp

ri
or

te
st

er
—

—
po

st
ho

c
ap

pl
ic

at
io

n
of

se
le

ct
kn

ow
n

re
pa

ra
m

et
er

iz
at

io
ns

hy
pe

rt
ra

ns
fo

rm
—

—

Fu
nc

ti
on

na
m

es
in

gr
ay

in
di

ca
te

th
e

co
m

m
an

d
is

fr
om

th
e

m
ai

n
in

te
rf

ac
e

pa
ck

ag
e

(i
.e

.,
R

st
an

,P
yS

ta
n)

as
si

m
ila

r
fu

nc
ti

on
al

ity
is

no
t

in
cl

ud
ed

in
th

e
su

pp
or

t
pa

ck
ag

e
(i

.e
.,

is
no

t
av

ai
la

bl
e

in
ba

ye
sp

lo
t

or
Ar

vi
Z)

.I
fn

o
fu

nc
ti

on
na

m
e

is
gi

ve
n,

th
en

as
of

th
is

w
ri

ti
ng

(8
/2

02
2)

,t
he

re
is

no
co

un
te

rp
ar

t
in

ei
th

er
th

e
in

te
rf

ac
e

pa
ck

ag
e

or
th

e
sp

ec
ifi

ed
su

pp
or

t
pa

ck
ag

e.

	Bayesian cognitive modeling
	The Bayesian framework
	An example Bayesian cognitive model
	A brief introduction to sampling algorithms
	Sampler output

	Detecting problems
	Computational checks
	Convergence and divergence
	Sampling efficiency

	Consistency checks
	Prior predictives
	Parameter recovery

	Identifying the root issue
	Posterior geometry
	Parameterization
	Reparameterization

	From troubleshooting to model development
	Simulation-based calibration
	Model recovery
	Posterior predictives

	Reporting results
	Conclusion
	Using matstanlib for troubleshooting in MATLAB

