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Abstract. We test the current generation of global

chemistry–climate models in their ability to simulate ob-

served, present-day surface ozone. Models are evaluated

against hourly surface ozone from 4217 stations in North

America and Europe that are averaged over 1◦× 1◦ grid

cells, allowing commensurate model–measurement compari-

son. Models are generally biased high during all hours of the

day and in all regions. Most models simulate the shape of re-

gional summertime diurnal and annual cycles well, correctly

matching the timing of hourly (∼ 15:00 local time (LT)) and

monthly (mid-June) peak surface ozone abundance. The am-

plitude of these cycles is less successfully matched. The ob-

served summertime diurnal range (∼ 25 ppb) is underesti-

mated in all regions by about 7 ppb, and the observed sea-

sonal range (∼ 21 ppb) is underestimated by about 5 ppb ex-

cept in the most polluted regions, where it is overestimated

by about 5 ppb. The models generally match the pattern of the

observed summertime ozone enhancement, but they overes-

timate its magnitude in most regions. Most models capture

the observed distribution of extreme episode sizes, correctly

showing that about 80 % of individual extreme events oc-

cur in large-scale, multi-day episodes of more than 100 grid

cells. The models also match the observed linear relation-

ship between episode size and a measure of episode intensity,

which shows increases in ozone abundance by up to 6 ppb for

larger-sized episodes. We conclude that the skill of the mod-

els evaluated here provides confidence in their projections of

future surface ozone.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

We test simulated present-day surface ozone in global

chemistry–climate models on temporal scales from diurnal

to multi-year variability and on statistics from median geo-

graphic patterns to the timing and size of extreme air quality

episodes. The tests use gridded hourly surface ozone abun-

dances based on a decade of observations from 4217 air

quality monitoring sites in North America (NA) and Europe

(EU). Chemistry-climate models provide a valuable means

for projecting future air quality in a changing climate (Kirt-

man et al., 2013), but recent assessments have lacked com-

mensurate observational comparisons to establish their cred-

ibility in reproducing current cycles of surface ozone over

polluted regions (Young et al., 2013). Model–measurement

comparisons to date have identified model faults, yet they

have often been limited to monthly statistics, biased to pick-

ing clean-air sites over limited parts of the continents (Fiore

et al., 2009; Doherty et al., 2013), and avoided evaluating

diurnal cycles and the patterns of major pollution episodes

(Schnell et al., 2014, henceforth S2014).

The factors driving future surface ozone (O3) changes in-

clude (1) local-to-regional emissions, (2) global-scale emis-

sions of air pollution transported across continents and

oceans, (3) global emissions and physical climate change

that alters the hemispheric-scale abundances of tropospheric

O3, and (4) climatic shifts in the meteorology that creates the

worst pollution episodes. Factors (1), (2), and (3) have been

studied extensively with global chemical transport models

(CTMs) and chemistry–climate models (CCMs), and there

is some agreement on model projections given an emissions

scenario (e.g., Prather et al., 2003; Reidmiller et al., 2009;

HTAP, 2010; Wild et al, 2012; Doherty et al., 2013; Young et

al., 2013). The importance of (4), however, lies in the recog-

nition that air quality extremes (AQX), the worst pollution

episodes in a decade, are triggered by meteorological condi-

tions. Air quality absolute exceedances are known to occur in

multi-day, spatially extensive episodes over the USA (Logan,

1989; Seinfeld et al., 1991), but it was not until the regular

gridding of all station data over North America and Europe

and the statistical definition of extremes in S2014 that the

extent, coherence, and decadal variability of the episodes be-

came clear. If climate change increases the duration and/or

extent of the worst decadal AQX episodes, then the over-

all health impact of poor air quality may be worse than ex-

pected based on precursor emission changes alone (Fiore et

al., 2012). A warming climate appears to increase the num-

ber of stagnation days (Horton et al., 2014) and may decrease

the frequency of ventilating midlatitude cyclones (e.g., Mick-

ley et al., 2004), but it is unclear how these meteorologi-

cal indices relate to surface O3 or particulate matter, espe-

cially with respect to the worst AQX episodes as identified

in S2014.

The models in the Atmospheric Chemistry and Climate

Model Intercomparison Project (ACCMIP; Lamarque et al.,

2013) were used in the recent assessment of the Intergov-

ernmental Panel on Climate Change (IPCC; Kirtman et al.,

2013) and represent the most advanced attempt to simulate

global surface O3 in a future climate. However, in order to

place any confidence in their projections, their ability to sim-

ulate the observed, present-day surface O3 climatology must

be evaluated. In this paper we present the first such model–

measurement comparisons, specifically addressing (4) by ap-

plying the methodologies from S2014 to the current genera-

tion of CCMs in an effort to quantify their ability to simu-

late the decadal statistics of the AQX episodes. Due to the

complexity and nonlinearity of the underlying processes, ac-

curately simulating surface O3 over both clean and polluted

environments is a formidable task for global models with res-

olutions of 100 km at best. For example, it has been shown

that choices in the parameterization of surface deposition can

shift modeled surface O3 levels by 10 ppb or more (Val Mar-

tin et al., 2014). Moreover, there are new, phenologically

based land-surface models for interactions between atmo-

spheric chemistry and the biosphere (Büeker et al., 2012)

that have yet to be fully implemented in global models. In

any case, both recent and future land-use change is expected

to impact surface O3 abundances (Ganzeveld et al., 2010).

Thus, we recognize that this model–measurement compari-

son is just one of the first steps in evaluating global model

simulations of surface O3 pollution. A summary of the ob-

servational and model data sets as well as a brief overview of

the methods developed in S2014, and used here, is presented

in Sect. 2. Model–measurement comparisons are presented

in Sect. 3 with concluding remarks and further discussion in

Sect. 4.

2 Data and methods

2.1 Observations of surface O3

We use 10 years (2000–2009) of hourly surface O3 mea-

surements from air quality networks in NA and EU. Fol-

lowing S2014, in NA we use 1633 stations from the US

Environmental Protection Agency’s (EPA) Air Quality Sys-

tem (AQS) and also increase the spatial coverage in NA by

including 92 stations from the US EPA’s Clean Air Status

and Trends Network (CASTNet) and 207 stations from En-

vironment Canada’s National Air Pollution Surveillance Pro-

gram (NAPS). The data sets used for EU remain the same

as S2014: 2123 stations from the European Environment

Agency’s air quality database (AirBase) and 162 stations

from the European Monitoring and Evaluation Programme

(EMEP; Hjellbrekke et al., 2013). Table 1 provides a sum-

mary of the observational data sets.

A major advance by S2014 was the generation of aver-

age surface O3 abundance in a grid cell from observational

products, one that could be directly compared to gridded

model output. The station measurements are used to gen-

Atmos. Chem. Phys., 15, 10581–10596, 2015 www.atmos-chem-phys.net/15/10581/2015/
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Table 1. Observational data sets (2000 to 2009).

Domain Surface ozone network No. stations URL or reference

North US EPA Air Quality System (AQS) 1633 http://www.epa.gov/ttn/airs/aqsdatamart

America (NA) US EPA Clean Air Status and Trends

Network (CASTNet)

92 http://epa.gov/castnet/javaweb/index.html

Environment Canada’s National Air

Pollution Surveillance Program (NAPS)

207 http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx?lang=en

Europe (EU) European Monitoring and Evaluation

Programme (EMEP)

162 Hjellbrekke et al. (2013)

European Environment Agency’s air

quality database (AirBase)

2123 www.eea.europa.eu/data-and-maps/data/

Table 2. Model summary.

(Abbreviation) model Modeling center Member∗ Resolution (lat.× lon) No. years Reference(s)

(A) MOCAGE MeteoFrance r2i1p1, v2 2◦× 2◦ 4 Josse et al. (2004)

Teyssèdre et al. (2007)

(B) GFDL-AM3 GFDL r1i1p1, v2 2◦× 2.5◦ 10 Donner et al. (2011)

Naik et al. (2013)

(C) CESM-CAM-SF LLNL-NCAR r1i1p1, v4 ∼ 1.9◦× 2.5◦ 10 Cameron-Smith et al. (2006)

Lamarque et al. (2013)

(D) UM-CAM NIWA r1i1p1, v2 2.5◦× 3.75◦ 10 Zeng et al. (2008, 2010)

(E) CMAM CCCma r1i1p1, v2 ∼ 3.7◦× 3.75◦ 10 Scinocca et al. (2008)

(F) MIROC-CHEM JAMSTEC-NU-NIES r1i1p1, v2 ∼ 2.8◦× 2.8125◦ 10 Watanabe et al. (2011)

(G) GISS-E2-R GISS r1i1p3, v1 2◦× 2.5◦ 5 Koch et al. (2006)

Shindell et al. (2013)

(H) GEOSCCM NASA-GSFC r1i1p1, v1 2◦× 2.5◦ 10 Oman et al. (2011)

(I) UCI CTM UCI – ∼ 2.8◦× 2.8125◦ 10 Holmes et al. (2013)

∗ The format r <N > i <M >p <L>, vX distinguishes among closely related simulations by a single model where the set of integers (N, M, L, X) formatted as shown (e.g.,

r2i1p1, v2) define each model simulation’s realization number (N), initialization method (M), perturbed physics version (L), and version of publication-level data set (X).

erate a 1◦× 1◦ hourly grid-cell average surface O3 prod-

uct over NA and EU using the interpolation scheme de-

scribed in S2014. The interpolation is similar to an inverse

distance-weighted interpolation but additionally incorporates

a declustering technique employed to reduce data redun-

dancy, similar to that of Kriging (Wackernagel, 2003). The

method also avoids disproportionately representing stations

that often are preferentially placed in the most polluted ur-

ban environments. S2014 first derived the maximum daily

8 h averages (MDA8) of the individual stations and then in-

terpolated onto the 1◦× 1◦ grid, while here we interpolate

the hourly measurements and subsequently derive the MDA8

at each grid cell. Differences between the two methods are

small (e.g., some missing station data, different 8 h periods

for nearby stations), but the new approach allows modeled di-

urnal cycles to be analyzed. The effects of (i) the new hourly

1◦× 1◦ cells being used to calculate MDA8 and (ii) the ad-

dition of CASTNet and NAPS stations on the decadal 25th,

50th, and 95th percentiles at each grid cell in NA are shown

in Fig. S1 in the Supplement. Overall, the difference (this

work minus S2014) is about −0.6 parts per billion (ppb) O3

for each of the three percentiles. These decreases are most

likely a result of deriving MDA8 from the interpolated hourly

abundances rather than first deriving each station’s MDA8

and then interpolating. Other notable changes are the north-

east edge of the domain (−5 ppb) for all three percentiles due

to the generally lower O3 abundances of Canadian NAPS

stations, and Wyoming and Colorado at the 25th percentile

(+5 ppb) possibly from CASTNet stations, reflecting either

cumulative production of O3 as polluted air reaches them or

else more prevalent stratospheric influx.

2.2 Description of models (ACCMIP + UCI CTM)

The ACCMIP consists of 16 global models (12 CCMs,

two CTMs, and two chemistry general circulation models,

CGCMs) and was designed with the intent to better under-

stand the relationships between atmospheric chemistry and

climate change (Lamarque et al., 2013). We focus on the ac-

chist experiment, designed to test the models’ ability to re-

produce the observed climatology of quantities specifically

relevant to chemistry modeling (Lamarque et al., 2013). We

use the eight ACCMIP models (six CCMs, one CTM, and

www.atmos-chem-phys.net/15/10581/2015/ Atmos. Chem. Phys., 15, 10581–10596, 2015
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one CGCM) with archived hourly surface O3, incorporating

the years from each model most closely aligned with obser-

vations. Most models provide 10 years of data, starting in

either model year 2000 or 2001. In any case, all ACCMIP

simulations are climatologically representative of the aver-

age 2000s with respect to meteorology and emissions. Ta-

ble 2 provides a brief summary and the references of the

models used in this study. Detailed descriptions of the AC-

CMIP models can be found in Lamarque et al. (2013) and

references therein.

We also include a hindcast simulation over the same pe-

riod as the observations from the University of California

Irvine Chemical Transport Model (UCI CTM) performed at

T42L60 resolution (Holmes et al., 2013) to both compare our

model with the current generation models and to highlight

differences between model simulations using free-running

and hindcast meteorological conditions. The UCI CTM had

many updates since the 1◦× 1◦×L40 version (Tang and

Prather, 2010) used by S2014, but calculates similar, not un-

expectedly high-biased patterns of surface O3.

For commensurate comparison of the models and mea-

surements, we regrid the modeled hourly O3 abundances

(typically at 2 to 3◦ resolution) to the same 1◦× 1◦ cells as

the observations using first-order conservative mapping (i.e.,

proportion of overlapping grid-cell areas). Modeled hourly

abundances are adjusted by 1 h per 15◦ longitude to be con-

sistent with the local time of the observations. Our two major

domains are NA bounded by 25–49◦ N and 125–67◦W and

EU bounded by 36–71◦ N and 11◦W–34◦ E. A further mask-

ing drops coastal grid cells for which the quality of predic-

tion index, QP < 2/3 (the number of independent stations at

an effective distance of 100 km used to calculate the grid-cell

values), see S2014 and Fig. S2 in the Supplement. Table S1

in the Supplement provides the latitudes and longitudes used

in the final masking for both domains. Because of their dif-

fering chemical regimes, some of our analyses split the NA

domain into western (WNA) and eastern (ENA) regions at

96◦W, and EU into southern (SEU) and northern (NEU) re-

gions at 53◦ N.

2.3 Air quality extremes

We define AQX events on a daily basis using local (i.e., grid-

cell) climatologies to identify the 10 times N worst days (i.e.,

highest MDA8) in an N-year period (i.e., the ∼ 97.3 per-

centile; e.g., the 100 worst days in a decade). The space–time

connectedness of the AQX events into episodes is defined

using a hierarchal clustering algorithm described in S2014.

Because AQX episodes span across the regions, statistics

for these analyses are done only on the two major domains

NA and EU. The total size of an AQX episode (S, units

= km2 days) is calculated by integrating the areal extent of

an episode (km2) through time (days). For a given set of

episodes, the mean size (S) is calculated as a weighted ge-

ometric mean, with the weights equal to the AQX episode

sizes (Eq. 6 in S2014). Because the lower native resolutions

of the models typically map onto four to eight contiguous

1◦× 1◦ grid cells, the modeled episode sizes have artificial

minima; however, S2014 demonstrated that this has little ef-

fect on the resultant episode size distributions.

3 Results

3.1 Diurnal cycles

We test the models’ abilities to reproduce the observed shape

(i.e., phase and amplitude) of the diurnal cycle, averaged over

summer (JJA) and winter (DJF) months. For each of the four

regions, average hourly values (local solar time) are calcu-

lated as the area-weighted mean of all grid cells’ O3 abun-

dances. We calculate the phase (h, hour of peak O3 abun-

dance, with h= 0.0 corresponding to 00:00 LT) and peak-to-

peak amplitude (H , ppb difference from minimum to max-

imum) of the diurnal cycle using a cosine fit with a period

of 24 h. Although the diurnal cycle could be more accurately

represented by a higher-order fit, this simple method provides

objective and continuous measures of h and H for each data

set, avoiding subjective, ambiguous results in cases of flat

and/or multiple maxima.

Figure 1a–h show the diurnal cycle of the observations and

models averaged over JJA (top row) and DJF (second row) in

WNA, ENA, SEU, and NEU (columns from left to right). A

triangle for each data set is plotted as (x, y)= (h, H ). The

large number of data points (∼ 106
× 24 h per model) pro-

vides a smooth and robust estimate of each data set’s diur-

nal cycle. The color scheme and model abbreviations in the

legend of Fig. 1 are common to all similar figures and text

throughout. The Taylor diagrams (Taylor, 2001) in Fig. S3a–

h in the Supplement show an alternate, commonly used sum-

mary of the results in terms of the correlation coefficient (R),

the normalized standard deviation (NSD), and centered root-

mean-square difference. Figures 1 and S3 in the Supplement

show very similar quantities (e.g., model–measurement dis-

crepancies in h andH roughly correspond to R and NSD, re-

spectively); however, we consider the representation in Fig. 1

to be more useful. The panels of Fig. S3 in the Supplement

correspond to panels in Fig. 1 in terms of region and vari-

able. Summary statistics on diurnal cycles, annual cycles, and

AQX events for ENA are presented in Table 3, with all re-

gions and additional statistics provided in Tables S2–S4 in

the Supplement.

The shape of the diurnal cycle of O3 is driven primarily

by sunlight, meteorology (e.g., temperature and variations in

boundary layer mixing), surface deposition, and the daily cy-

cle of precursor emissions. The hour of the maximum phase

h occurs when these factors align, usually in midafternoon.

Indeed, for seven of eight region-seasons in Fig. 1a–h, the

observed value of h ranges from 14.8 to 15.5 h. For DJF in

NEU, where photochemical O3 formation is negligible, there

Atmos. Chem. Phys., 15, 10581–10596, 2015 www.atmos-chem-phys.net/15/10581/2015/
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Table 3. Example summary statistics for the observations (OBS), the ACCMIP models (A–H), and the UCI CTM (I) for eastern North

American (ENA) summer (JJA) and winter (DJF) diurnal cycles, annual cycle of MDA8, annual cycle of AQX events, and North American

(NA, combined western North America (WNA) and ENA) AQX episodes (100 AQX events per decade case).

Data Metric, description (unit) OBS A B C D E F G H I

JJA diurnal cycle h, maximum phase (hour) 15.0 17.0 16.1 16.5 15.5 15.8 15.2 15.7 16.0 12.7

H , peak-to-peak amplitude (ppb) 29.1 28.3 28.4 21.8 22.7 21.8 22.6 12.1 18.5 54.0

MB, mean bias (ppb) – 19.0 24.4 1.1 12.2 3.5 17.9 21.1 12.9 37.0

DJF diurnal cycle h, maximum phase (hour) 15.1 18.0 16.7 15.7 15.3 14.0 15.9 14.8 16.3 16.1

H , peak-to-peak amplitude (ppb) 9.1 6.7 7.5 11.3 7.8 5.8 6.9 2.4 10.6 12.6

MB, mean bias (ppb) – 10.2 13.2 9.8 −1.5 −4.6 4.0 30.1 5.5 4.8

MDA8 annual cycle m, maximum phase (month) 5.3 5.8 6.0 3.7 5.8 5.7 6.1 6.0 6.2 6.3

M , peak-to-peak amplitude (ppb) 20.7 29.8 29.1 12.8 32.7 25.9 31.5 3.5 20.3 64.6

MB, mean bias (ppb) – 16.9 16.6 6.8 4.2 −4.2 8.1 20.1 8.0 24.8

EJJA, 87th–30th percentile (ppb) 22.8 33.0 27.5 19.4 27.0 22.4 28.3 19.1 21.9 56.0

RE−JJA, spatial correlation of EJJA maps 1.00 0.70 0.81 0.52 0.69 0.69 0.34 0.27 0.69 0.71

AQX event annual cycle mAQX, maximum phase (month) 5.5 6.2 6.8 3.2 6.2 6.4 6.6 6.8 7.7 6.6

RMDA8, correlation of AQX and MDA8

cycles

0.84 0.76 0.78 0.88 0.78 0.82 0.80 0.78 0.70 0.83

EAQX, AQX threshold – 30th percentile (ppb) 34.7 53.8 39.9 29.1 36.1 30.4 41.1 32.1 31.5 82.3

RE−AQX, spatial correlation of EAQX maps 1.00 0.70 0.78 0.28 0.63 0.53 0.44 0.60 0.74 0.68

NA AQX episodes (S), weighted geometric mean AQX episode

size (104 km2 days)

415 128 229 1426 461 290 522 243 774 463

CCD100, fraction of AQX events’ areas in

AQX episodes > 100× 104 km2 days (%)

79.0 56.1 73.7 92.6 85.3 76.1 80.3 73.0 83.0 80.2

CCD1000, fraction of AQX events’ areas in

AQX episodes > 1000× 104 km2 days (%)

38.0 9.7 12.8 69.2 30.8 19.2 43.6 12.7 48.7 37.5

1ES, average increase in ES for AQX

episodes of size S (ppb dec−1)

2.9 9.9 4.6 0.8 2.3 2.9 −0.1 3.5 2.9 6.0

is no obvious diurnal cycle in observations and the double

minimum may simply reflect the titration of O3 from the

morning and afternoon peaks in transport NOx emissions.

In this case there is little information from the diurnal cycle

except that the amplitude H is small. The ACCMIP models,

but not the UCI CTM, mostly show h within± 1 h, generally

later than observed (Tables 3 and S2 in the Supplement).

Although the ACCMIP models’ diurnal phase closely

matches the observed, the peak-to-peak amplitude H is less

successfully simulated. For JJA the observed H is 27, 29,

24, and 14 ppb in WNA, ENA, SEU, and NEU, respectively;

for DJF, H is 10, 9, 5, and 0.2 ppb. We characterize the

three largest H ’s as high-photochemical region-seasons (JJA

in WNA, ENA, and SEU) and the remaining five as low-

photochemical. In this sense JJA in NEU is closer to DJF

in ENA in terms of near-surface O3 production. The AC-

CMIP models generally underestimate H by about 7 ppb in

the highest three region-seasons but cluster around H for the

lowest five. Model A is the only ACCMIP model to over-

estimate H in any of the highest three, possibly as a result

of its large total VOC (volatile organic compounds, exclud-

ing methane) emissions (55 % larger than the average of the

other seven models). The 24 h mean bias (MB, see Tables 3

and S2 in the Supplement) for the ACCMIP models is typ-

ically positive in all eight region-seasons (up to 28 ppb), al-

though some models (e.g., C and E in JJA, E in DJF) show

little or no mean bias, even though they underestimate H in

JJA by about 25 % like all ACCMIP models.

The underestimation of the summertime diurnal amplitude

H by most ACCMIP models suggests that they either un-

derestimate net daytime production or have too little night-

time loss of O3 or its precursors through either in situ chem-

ical loss or dry deposition. From the derivative of the di-

urnal cycles in Fig. 1a–d, there are two periods of model–

observation discrepancy: in the early morning (∼ 06:00 LT)

models underestimate the observed slope and in the early

evening (∼ 19:00 LT) they overestimate it. The models gen-

erally match the observed slope to within ± 1 % h−1 during

midday and throughout the night. Thus the model error is to

underestimate net O3 production in the early morning and

overestimate it in early evening, which may be caused by the

lack of a diurnal emission cycle in these global models. The

mismatch of the slope in the early morning, during which the

boundary layer grows rapidly, may be caused by the models

underestimating entrainment of free troposphere air. We find

no clear evidence that modeling errors in the nocturnal plane-

tary boundary layer (Lin et al., 2008) or missing near-surface

processes affect the diurnal cycle on a regional average.

Underestimated daytime production could result from lim-

ited representation of VOC chemistry, since discrepancies

are largest in summer when VOCs play a larger role. In-

deed, model A, which simulates the most chemical species of

www.atmos-chem-phys.net/15/10581/2015/ Atmos. Chem. Phys., 15, 10581–10596, 2015
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Figure 1. (a–h) Diurnal cycles of hourly O3 abundances (ppb) for the observations (O), ACCMIP models (A–H), and UCI CTM (I) averaged

over (a–d) summer (JJA) and (e–h) winter (DJF) months in (a, e) WNA, (b, f) ENA, (c, g) SEU, and (d, h) NEU. Triangles show the

observation’s and models’ cosine fit derived values of the hour of maximum phase h and peak-to-peak amplitude H plotted as (x, y)= (h,

H ) for each season, region, observation, and model. (i-p) Annual cycles of (i–l) MDA8 O3 and (m–p) AQX events in (i, m) WNA, (j, n)

ENA, (k, o) SEU, and (l, p) NEU. The filled gray curve shows ± 1σ for each month (calculated across years) for the observations. Triangles

show the observations’ and models’ cosine fit derived values of the MDA8 cycle month of maximum phase m and peak-to-peak amplitude

M plotted as (x, y)= (m, M) for each region, observation, and model.

all the ACCMIP models in addition having the largest VOC

emissions, is one of the few models to consistently overesti-

mateH . In contrast, C and E are two of the better-performing

models despite their comparatively simple representation of

VOC chemistry (C – only isoprene, E – none). The only mod-

els to include the small and relatively uncertain fractional

yield of HNO3 from the reaction of HO2 and NO are A, G,

and H (Lamarque et al., 2013). This reduces daytime produc-

tion and could partly explain why the models G and H con-

sistently underestimate H more than others, however model

A overestimates H .

The ACCMIP models reproduce the phase of the observed

diurnal cycle in both seasons despite not accounting for

hourly variation in emissions. The weekly emission-driven

cycles in MDA8 O3 were diagnosed by S2014, but we do

not apply that diagnostic here because the models did not in-

clude such variability in emissions. The lack of hourly varia-

tion of emissions may account for the overall underestimates

of H by the ACCMIP models, since NO emissions can be

lost heterogeneously at night, less effectively than those dur-

ing the morning and afternoon peaks in traffic. In addition,

if the early morning peak in transport NOx emission was in-

cluded, the modeled morning rise in O3 would most likely
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be augmented, thus yielding larger values of H . The AC-

CMIP models use a wide range of boundary layer mixing

schemes but consistently underestimate H . The boundary

layer schemes may be responsible for these underestimates;

however, Menut et al. (2013) notes that at least for one model,

increasing its vertical resolution results in very small surface

O3 changes.

The UCI CTM’s values of h andH show that it drastically

overestimates net daytime O3 production, especially during

early morning hours. Its values of h are about 2.4 h earlier

than observed in the highest three region-seasons, and in con-

trast to the ACCMIP models itsH values are too large by 10 s

of ppb. This diagnostic identifies a serious problem with the

UCI CTM diurnal cycle over polluted regions that needs to

be investigated (e.g., missing heterogeneous loss of NO2 at

night, capped boundary layer in the morning) and which will

be done after publication of this research. S2014 found that

the UCI CTM accurately hindcast the summertime probabil-

ity distribution of MDA8 O3, the occurrence of AQX events,

and the size of these episodes, albeit with high bias of about

+29 ppb in JJA over both NA and EU. This new diurnal di-

agnostic has clearly identified model errors and pathways to

improve our model as well as models like G, which gravely

underpredicts the amplitude of the diurnal cycle. The tests

shown here emphasize a large-scale average over different

photochemical regimes in the four regions, and thus individ-

ual model developers may wish to analyze the observations

for smaller regions using the data sets generated here, which

are available by request from the corresponding author.

3.2 Annual cycle

We test the models’ abilities to reproduce the observed phase

and amplitude of the annual cycle over the four regions. Av-

erage monthly values for each region are calculated as the

area-weighted mean of all encompassed cells’ MDA8 O3

abundance, reflecting the EPA air quality metric (www.epa.

gov/air/criteria.html). Similar to the diurnal cycle, we derive

the phase (m, month of peak O3 abundance, with m= 0.0

corresponding to 1 January) and peak-to-peak amplitude (M ,

ppb difference from minimum to maximum) using a cosine

fit assuming 12 equally spaced monthly means. Figure 1i–l

show the annual cycle of the observations and models over

our four regions with triangles plotted for each model and

data set as (x, y) = (m, M). The filled gray curve shows ± 1

standard deviation of each monthly mean based on 10 years

of observations. This interannual variability is quite narrow,

much less than the spread across models. As for the diurnal

cycle, the Taylor diagrams in Fig. S3i–l show an alternate

presentation of the annual cycle results with summary statis-

tics given in Tables 3 and S3 in the Supplement.

In northern midlatitudes, processes that drive the shape

of the annual cycle are similar to those of the diurnal cy-

cle (i.e., sunlight, temperature, and precursor emissions) but

occur on continental to hemispheric scales. Dry deposition

through stomatal uptake and large-scale meteorological con-

ditions including stratosphere–troposphere exchange and the

position of the jet stream (Barnes and Fiore, 2013) also

play important roles. These surface observations show the

same well-known cycle that has been seen in the northern

hemispheric midlatitude troposphere from ozone sondes and

clean-air remote sites (Logan, 1989; Fiore et al., 2009): low-

est values in late fall (ND), increasing through winter (JFM)

followed by a broad flat peak over spring–summer (AMJJA).

The lower reactivity region NEU peaks in April and declines

until January, indicating meteorologically driven increases

through the winter (e.g., stratospheric influx). The observa-

tions show a phase m= 5.6, 5.3, 5.5, and 4.3 month of year

for WNA, ENA, SEU, and NEU, respectively; and corre-

sponding amplitudes M = 22, 21, 26, and 17 ppb. By fitting

a cosine curve to each grid cell’s time series, we find that in

terms of specific locations, the earliest m occur in Canada,

Florida, and NEU while the latest m occur in California,

south-central NA, and SEU (not shown). Most ACCMIP

models have m within ± 1 month of the observations, gener-

ally earlier in NEU, later in ENA and SEU, and split in WNA.

Models C and G have difficulty producing the observed sea-

sonal cycles, and their derived phases are not meaningful.

The amplitude M is controlled by both meteorology and

photochemistry. For the very large regional values of M , it

is clearly chemical, occurring in regions with large O3 pre-

cursor emissions: California with ∼ 40 ppb, the Great Lakes

region with ∼ 30 ppb, and northern Italy with ∼ 45 ppb (not

shown). The smallest values of M (∼ 15 ppb) are found in

northwest and southeast NA and in NEU. The ACCMIP

models generally underestimate M by about 5 ppb in WNA,

SEU, and NEU, while they overestimate it by about 5 ppb

in ENA. The low values of M for C and G suggest they are

either overestimating net production of O3 in winter or un-

derestimating it in summer; however, their wintertime biases

(see Fig. 1e–h, Tables 3 and S2 in the Supplement) indicate

that wintertime production or representation of wintertime

physical climate could be causing the low M values.

The annual cycles here are constructed using the MDA8

O3 derived from hourly data. Many models, including eight

other ACCMIP models not analyzed here, do not report

hourly surface O3 but only monthly means (i.e., the aver-

age of all hours within a month). We chose MDA8 values

to conform to the US EPA primary air quality standards and

statistics, but if we used monthly averages then more mod-

els could be evaluated. Unfortunately, without at least daily

diagnostics (e.g., daily mean or maximum value) analysis of

percentile patterns and AQX events and episodes (see Sects.

3.3–3.7) are precluded. Further, we tested the difference in

annual cycles diagnosed both ways and found that the bias of

a model can differ and thus these two diagnostics cannot be

mixed. For example, the ACCMIP ensemble mean bias for

JJA using MDA8 averages is 2, 11, 11, and 8 ppb in WNA,

ENA, SEU, and NEU, respectively; however, the correspond-

ing bias using 24 h averages is consistently larger at 6, 14,

www.atmos-chem-phys.net/15/10581/2015/ Atmos. Chem. Phys., 15, 10581–10596, 2015
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13, and 9 ppb. This result was expected since the ACCMIP

model ensemble generally has the largest biases outside of

MDA8 hours. These conclusions are generally true for all

seasons and models, as illustrated in Fig. S4 in the Supple-

ment, which shows the mean bias (model minus observed)

of MDA8 minus 24 h average for each model, season, and

region.

For the UCI model, excess production in the diurnal cycle

is also evident in the annual cycle, overestimating M in all

regions, most in ENA (+44 ppb) and least in NEU (+9 ppb).

In addition, the month of peak abundance is always later

than observed, sometimes by more than 1 month. Not un-

expectedly, the bias in M using 24 h averages is significantly

less than that using MDA8 (e.g., +30 vs. +44 ppb in ENA)

because the largest errors occur near midday. We conclude

that using 24 h averages to construct the annual cycle is ba-

sically a different, almost independent diagnostic than that

constructed from the daily MDA8 O3, and further it would

predict different health impacts if used to project summer-

time surface O3 in a future climate.

3.3 AQX events

Next, we test the models’ ability to reproduce the annual cy-

cle of the individual AQX events, identified for each grid cell

as the 100 days with the highest MDA8 in the decade (40 in

4 years for A, 50 in 5 years for G). Figure 1m–p show the

annual cycle of AQX events for the observations and models

over our four regions. The filled gray curve shows ± 1 stan-

dard deviation for each month based on 10 years of obser-

vations. The interannual variability is much larger than that

seen in the observed MDA8 cycle with most models falling

in its range in SEU and NEU but not in WNA or ENA. An al-

ternate presentation as Taylor diagrams is shown in Fig. S3 in

the Supplement, and the summary statistics are given in Ta-

bles 3 and S4 in the Supplement. The month of maximum

AQX events for most models is within ± 1 month of that

observed in each region (mAQX in Tables 3 and S4 in the

Supplement). Based on S2014, we expect the annual cycle

of AQX events to be highly correlated with that of MDA8,

as the observations show correlations RMDA8 (i.e., AQX vs.

MDA8) of 0.81 to 0.87 for all regions. For the ACCMIP

models this correlation is not as good, but they still show

RMDA8 > 0.70 (Tables 3 and S4 in the Supplement). Models

whose monthly MDA8 correlates well with observed MDA8

also have monthly AQX events that correlate well with ob-

served. Nevertheless, matching the AQX events annual cycle

is more difficult than matching the cycle of MDA8 (Tables 3,

S3, S4, and Fig. S3 in the Supplement) because AQX events

are driven by meteorological extremes which are not neces-

sarily represented in these climatological simulations.

The UCI CTM also reproduces the annual AQX events

well, and since it is a hindcast, we can extend the analysis to

how well it identifies each AQX event on an exact-match ba-

sis (“model skill” by S2014). For a climatological model that

exactly matches the annual cycle (i.e., matching the number

of AQX events in each month) but is synoptically random

in each month, a skill score of ∼ 8 % is expected; however,

the UCI hindcast correctly identifies 28, 33, 33, and 21 % of

AQX individual cell events in WNA, ENA, SEU, and NEU,

respectively.

3.4 Mapping O3 percentiles and enhancements

We can define baseline levels of O3 from observations as the

statistically lowest percentiles (National Research Council,

2009). Baseline levels are independent of attribution to spe-

cific emissions or policy relevance implied by US EPA’s use

of the term background. We can expect, or possibly assume,

that baseline levels are not influenced by recent, locally emit-

ted or produced pollution (HTAP, 2010). To estimate the day-

time enhancement in summertime O3, presumably caused by

continental emissions, we first want to define a baseline level

for each grid cell as a lower percentile of the daily surface O3.

We seek a percentile that represents the cleanest air possible

over the summer season (even if it is never realized during

the summer), and one that does not change across years. We

use MDA8 rather than 24 h average data to prevent night-

time values from determining the baseline. We calculate per-

centiles for each cell on an annual basis and then derive re-

gional area-weighted averages of the percentiles. The result-

ing percentiles by region (Fig. 2) show that the year-to-year

variability is small below the 40th percentile, but the largest

pollution years are evident at and above the 50th percentile.

Thus, we select the 30th percentile as each grid cell’s base-

line level, which corresponds roughly to the lower levels of

spring–fall days. One might argue choosing, for example, the

10th percentile of JJA to estimate summertime enhancement;

however, this assumes JJA in all models is the peak of the an-

nual cycle and still sees clean air. We define O3 enhancement

(EX, unit= ppb) here as the difference between the 30th per-

centile and any larger value, where subscripts will describe

the reference value.

To estimate the summertime O3 enhancement from local

to continental-scale pollution, we assume that the 92 days of

JJA are the highest O3 values of the year, pick their median

value (87th percentile), and subtract from it the spring–fall

baseline (30th percentile). Maps of the summer enhancement

EJJA (i.e., 87th minus 30th percentile) in NA and EU in ob-

servations and models are shown in Fig. 3. While O3 levels

for the 87th, 30th, and other percentiles vary considerably

from cell to cell (see S2014), the maps of observedEJJA show

mostly large-scale structures.

Many models (A, B, D, E, F, H, I) have similar patterns of

EJJA over NA, with large enhancements (30 to 50 ppb) from

the Mississippi through the Ohio River valley to the north-

east, whereas the observations show such a pattern but with

smaller enhancements (25 to 30 ppb). Model A greatly over-

estimates EJJA in the most polluted areas (e.g., California,

northeast NA, south and central EU) as well as coastal ar-
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Figure 2. Values of MDA8 O3 (ppb) for years 2000 to 2009 corresponding to the 10th, 20th,. . . , 90th, 95th, and 97.3 (i.e., AQX threshold)

percentiles in (a) WNA, (b) ENA, (c) SEU, and (d) NEU. The percentile for each line is shown at the beginning of the curves in each panel.

Figure 3. Summertime O3 enhancement EJJA is the difference between the 87th and 30th percentile of the gridded surface MDA8 O3 (ppb)

over (left two columns) NA and (right two columns) EU for the observations (O), ACCMIP models (A–H), and UCI CTM (I). The values of

model I are scaled by 0.5 so the same color scale can be used.

eas near the Gulf of Mexico. The extremely large bias near

the Gulf of Mexico is unique to model A, presumably result-

ing from natural JJA emission sources such as lighting NOx ,

wildfires, or biogenic VOCs since the area is not known for
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per-decade case) as a function of AQX episode size (S, 104 km2 days) for the observations (O), ACCMIP models (A–H), and UCI CTM (I)

in (a) NA and (b) EU. Dashed vertical lines show the graphical representations of CCD100 and CCD1000. Mean episode size (S) for each

data set and domain is given in the legend as (NA/EU). (c–d) Density scatterplot of the observations enhancement of AQX episodes ES vs.

their size S (ES binned at 2.5 ppb increments from < 15 ppb to > 55 ppb, S binned at each log decade) in (c) NA and (d) EU. The gray scale

represents the relative percentage of AQX episodes in each (x, y)= (S, ES) bin and includes percent ranges of ≤ 5 % (white), 5–10, 10–15,

and > 15 % (darkest gray) where the size bins (i.e., columns) are normalized to sum to 100 %. The overlain curves show the observation’s

and each model’s area-weighted mean enhancement ES for each size bin. The values of ES in each size bin for models A and I have been

scaled by 0.5 since they are largely outside the range of the others.

large anthropogenic sources. Two models (C, G) are unusu-

ally uniform across NA (except California). Surprisingly, this

sorting of the models does not hold for EU. For example,

there must be some clue as to why model B greatly overesti-

mates EJJA over NA but underestimates it over EU. Such be-

havior from model C (uniform EJJA) may be expected since

the tropospheric VOC chemistry is highly simplified. The

uniform pattern of EJJA is also somewhat evident in EU for

model E, which has even simpler VOC chemistry compared

to C, although this may be due to biases in the representation

of physical climate rather than chemistry.

The EJJA diagnostic provides an excellent geographically

resolved test for CCM development. It also provides a useful

measure of O3 regional pollution changes in a future climate

with shifting O3 baselines due to hemispheric-scale changes

in methane, water vapor, temperature, and stratospheric in-

flux. Over each of our four regions, we calculate the aver-

age summertime enhancement EJJA (see Tables 3 and S3 in

the Supplement), expecting to find the values and model–

measurement differences similar to those found in the sea-

sonal amplitude M . Indeed, this is true, albeit EJJA is gen-

erally smaller than M . In addition, the spatial pattern of the

values and model–measurement differences are also consis-

tent between EJJA and M (not shown).

3.5 AQX episode size

We examine the models’ ability to simulate the observed dis-

tribution of AQX episode sizes over the decade 2000–2009.

Our hierarchical clustering analysis identifies connected-cell,

multi-day AQX episodes of size S (given here in units of

104 km2 days). We do not split the NA and EU domains

here because episodes span across regions. Figure 4a–b show

the distribution of episode sizes in the observations and each

model as the complementary cumulative distribution (CCD,

%), i.e., the fraction of total AQX area-day events occurring

in episodes of size S or larger.
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For NA observations, the fraction of AQX area-weighted

events that occur in episodes with S > 100× 104 km2 days

(CCD100) is 79 %; and those with S > 1000× 104 km2

days (CCD1000) is 38 %. For EU observations, most AQX

events also occur in large episodes: CCD100= 80 % and

CCD1000= 35 %. Model C is aberrant in having extremely

large episodes (e.g., NA CCD100= 93 %), which fall mostly

in the spring rather than summer months (see Fig. 1m–p).

This may result from the model’s simplified chemistry or

unrealistic widespread stratospheric intrusion of O3. In any

case, this model’s summertime high ozone events are ob-

scured. Model A, with much more complex chemistry, how-

ever, shows significantly smaller episodes. For CCD100, the

other models (B, D–I) are close to the observed: 73–85 % for

NA and 71–85 % for EU. For CCD1000, however, this model

spread diverges substantially: 13–69 % for NA and 15–70 %

for EU. In general, models A, B, E, and G do not produce the

larger episodes and thus their physical climate may lack the

synoptically correlated persistent stagnation episodes. The

UCI CTM, using observed meteorology, captures the shape

of the observed CCDs extremely well compared to the free-

running climate of the ACCMIP models.

Integrating over all episodes, we calculate the weighted

geometric mean size (S) (see S2014). Observations have

mean episode sizes (S) of 415 (104 km2 days) and 444 in

NA and EU, respectively. Models C, D, F, H, and I are bi-

ased high in (S), while models A, B, E, and G are biased

low for both NA and EU (Fig. 4a–b, Tables 3 and S4 in the

Supplement).

3.6 Non-stationarity and possible trends

One problem with diagnosing decadal AQX size statistics

is that they can be biased when more AQX events occur at

one end of the decade due to a trend in O3 precursor emis-

sions. A greater density of events in one summer generally

means larger episodes. A linear fit of annually derived O3

percentiles calculated over years 2000–2008 (2009 was ex-

cluded due to lack of NOx and VOC emission data, see be-

low) for each of the four regions (Fig. S5 in the Supple-

ment) shows clearly decreasing surface O3 abundances at the

higher percentiles (see also Fig. 2), presumably through re-

ductions in NOx and VOC emissions (Hudman et al., 2009;

Xing et al., 2014). To test if these trends are emission-driven

or artifacts of the meteorological time slice, we analyze the

UCI CTM results (dashed lines, Fig. S5 in the Supplement),

which are forced by observed meteorology but have constant

anthropogenic pollution emissions over the time period. We

also obtain total NOx and VOC emissions from version 4.2

of the Emission Database for Global Atmospheric Research

(EDGAR, EC-JRC/PBL, 2009) for years 2000–2008 (2009

was unavailable at time of publication) and calculate their

trends over the period. Over WNA and ENA, meteorology

seems to be driving the small positive trends at lower O3 per-

centiles (where UCI and observed trends roughly agree), but

above the 60th percentile (where UCI and observed trends

diverge) emissions reductions are the most likely cause. In

SEU and NEU the trends are less conclusive for either me-

teorology or emission based, but most EU NOx reductions

occurred prior to 2000 (Xing et al., 2015). Koumoutsaris and

Bey (2012) compare GEOS-Chem hindcasts with NA and

EU trends at a limited number of stations from CASTNet

and EMEP (∼ 40 in each domain) and find similar trends.

They also attribute the negative trends at high percentiles to

reduced precursor emissions; however, they attribute the pos-

itive trends at low percentiles to changing background O3 as

opposed to changing meteorology posited here.

In an effort to correct the AQX decadal statistics for

changes in O3 precursors, we searched for correlations on

a cell-by-cell basis between high-percentile MDA8 O3 vs.

NOx emissions on an annual basis for years 2000–2008. No

simple linear relation emerged, and we could find no satis-

factory way to “correct” the observations for this regionally

varying, monotonic but nonlinear, decline in NOx and VOC

emissions that did not corrupt the data. The post-CMIP5

plans for the Chemistry-Climate Model Initiative (CCMI)

include hindcast simulations with time-dependent emissions

that will allow for the simulation of the observed O3 non-

stationarity.

One option for analyzing extremes in a non-stationary

decadal data set is to define AQX events annually on a 10-

per-year basis. This approach greatly dampens the observed

episode mean size and across-year standard deviation from

415± 307 (100 per decade) to 249± 67 (10 per year) in NA

and from 444± 720 to 355± 48 in EU. Moreover, it gives

a false positive impression of the severity of air pollution in

extreme years. Thus, we maintain our primary analysis with

AQX defined as 100-per-decade. In parallel with Fig. 4a–b,

we show the CCDs using a 10-per-year basis for AQX in

Fig. S6a–b in the Supplement.

3.7 Severity of pollution in largest episodes

As a measure of O3 produced during AQX events/episodes,

we map out the enhancement at the AQX threshold level

EAQX (∼ 97.3 percentile) as shown in Fig. S7 in the Sup-

plement (parallel to Fig. 3, also relative to the local 30th

percentile). We also calculate the average AQX enhance-

ment EAQX over our regions (Tables 3 and S4 in the Sup-

plement). For ENA, the ACCMIP modeled range of EAQX is

29–52 ppb, spanning the observed of 35 ppb (Table 3). This

average result is encouraging for the ACCMIP models except

that, as forEJJA (Fig. 3), the pattern match is not as good (Ta-

bles 3, S3 and S4 in the Supplement).

Of the 100 AQX events in each cell, many will lie above

the local AQX threshold value. We expect that larger, longer-

duration episodes accumulate more O3, and thus these su-

per episodes might have O3 enhancements (relative to the

30th percentile) well above the AQX threshold enhancement,

EAQX. For each AQX event, we calculate an enhancement
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(ppb) as the MDA8 value of that AQX event minus the local

30th percentile value. For each episode of size S, we calcu-

late the area-weighted average enhancementES. Figure 4c–d

plot the observed density distribution of allES, quantized ev-

ery 2.5 ppb for ES and every decade in 104 km2 days for S.

These plots show large variability in the observed ES fre-

quency (gray pixels) and yet a consistent picture of the mean

enhancements as a function of S (open circles). For episode

sizes of 0.3 (i.e., 0.1 to 0.99), 3, and 30,ES is almost constant

(∼ 32 ppb for both NA and EU), but for sizes 300 and 3000 it

increases almost linearly per decade. We calculate this slope

1ES as the average of the 30-to-300 increase (1 decade in

S) plus half of the 30-to-3000 increase (2 decades), getting

values of 2.9 (NA) and 1.7 (EU) ppb increase per decade

of episode size. Similar results are seen for the 10-per-year

AQX definition (Fig. S6c–d in the Supplement), with 1ES

of 2.7 (NA) and 3.3 (EU). The slope 1ES is not simply an

expected result from our statistical sorting since in NA we

find that compared to the observations, model C has slope

that is a factor of about 4 smaller, while A has a slope nearly

a factor of 4 larger, and F has a negative slope.

The models generally produce the shape of ES vs. S, al-

though most models (except A and I, see Fig. 4 caption) un-

derestimate the enhancement for all sizes. The obvious dis-

crepancies are for NA episodes, where many models predict

that the largest enhancements occur in the smallest episodes

(S = 0.3). This anomaly does not occur for EU episodes.

These small episodes are uncommon, representing only a

small fraction of events (see Sect. 3.5), and we find them

mostly along the coasts at the edge of the mask. We under-

stand them to be the effect of very polluted air masses being

advected to the neighboring ocean cells which are typically

low-O3 regions with very low 30th percentile baselines, re-

sulting in large enhancements from the highly polluted air.

The observations are interpolated and not capable of follow-

ing a pollution shift offshore. Thus the models are probably

correct, but the method of masking and station interpolation

makes this discrepancy a systematic feature. The lack of such

a feature in EU can be understood by the lack of such sharp

coastal gradients. Overall, most models agree with the obser-

vations, showing that the super-episodes have the largest O3

enhancements.

4 Conclusions and discussion

Confidence in modeled projections of future air quality is

based fundamentally on our ability to accurately simulate the

present-day observed climatology of surface O3 and particu-

late matter over NA and EU where dense, long-term, reliable

measurements are available. In this work we evaluate the sur-

face O3 climatologies from eight global models (six CCMs,

one CTM, and one CGCM) that reported hourly surface O3

as part of the ACCMIP. In addition we test the UCI CTM

simulation as an exact hindcast of the 2000–2009 decade

of observations used here. Our tests follow the unique ap-

proach of S2014 in which over 4000 heterogeneously spaced

air quality stations are used to calculate the hourly O3 aver-

aged over 1◦× 1◦ grid cells that can then be compared un-

ambiguously with the modeled grid. Diagnostics include the

hourly diurnal cycle, monthly seasonal cycles, and sizes and

intensity of air quality extreme episodes. For the most part,

the models are biased high during all hours of the day, all

months of the year, and in all regions.

Averaged over large regions, the ACCMIP models sim-

ulate the shape of the observed summertime diurnal cycle

well, with the hour of maximum within ± 1 h of observed

(∼ 15:00 LT). The observed peak-to-peak amplitude (25 to

29 ppb over the more polluted regions) is not as well matched

and typically underestimated by about 7 ppb. The UCI CTM

hindcast, which performed well in the S2014 tests except for

a uniform high bias, clearly fails these new diurnal tests and

indicates model error in the morning boundary layer chem-

istry. In general, the ACCMIP models simulate the observed

regional annual cycle of monthly mean MDA8 O3. They

match the month of maximum to within ± 1 month of ob-

served (mid-June), although two models are in error with al-

most no annual cycle and no clear maximum. The other mod-

els overestimate the peak-to-peak amplitude of the observed

cycle by about 5 ppb (20 %) in the most polluted region (east-

ern North America) while underestimating it by about 5 ppb

in the other three regions. Model skill in matching the annual

cycle of AQX events is fair but not good. This annual cycle

has much larger interannual variability than that of MDA8

O3, and many models shift the month of maximum AQX

events to later in the summer than is observed.

Measures of the enhancement in surface O3 driven by pol-

lution are derived from the statistics of the decade of daily

gridded MDA8 values. For our measure of summertime en-

hancement (87th minus 30th percentile), the models gener-

ally replicate the observed spatial structures but overestimate

the magnitude in the most polluted regions. Two models are

surprisingly uniform across both continents and fail to high-

light areas with the largest emissions of O3 precursors. Typ-

ically, modeled high biases appear in the upper percentiles,

not the 30th percentile, which appears to be a good measure

of the baseline O3 across the decade.

About 80 % of the AQX events in NA and EU occur in

large, connected, multi-day episodes consisting of 100 grid

cells or more. This result is closely matched by all but two

models, with C producing much larger episodes and A much

smaller ones. It remains unclear whether such errors result

from chemical or physical processes. The observations show

that super-sized episodes of 100 cells or more have succes-

sively greater O3 levels as they become bigger, with the 100-

times-larger episodes having 4–6 ppb greater O3. Most, but

not all of the models match this increase. It is likely that

larger, longer-lasting episodes allow for greater accumula-

tion of O3 from neighboring pollution sources.
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4.1 What are the best air quality diagnostics for model

development?

For testing and identifying the model strengths and weak-

nesses and improving simulations of air quality, modelers

save a large number of diagnostics during the model devel-

opment process. This typical model development process is

far less limiting than the experiment analyzed here, which

is based on the voluntary contributions of many models and

many terabytes of diagnostics imposed in the ACCMIP. We

would still recommend saving the diagnostic of hourly sur-

face O3 over a decade or more of simulation from which

all of the primary diagnostics here can be readily derived

and compared with the observations. To segue from the sur-

face O3 over NA and EU to the sondes and remote sites, a

monthly averaged 3-D O3 would probably suffice. Hourly

data observed at coastal or mountain sites likely include a di-

urnal meteorology that is not represented in the global mod-

els, even at a resolution of 0.5◦× 0.5◦. Furthermore, the 24 h

and MDA8 averages show different biases and should not be

treated as the same diagnostic. There may be inventive ways

to avoid the massive hourly data sets by storing the diurnal

cycle as a monthly mean and calculating MDA8 inline or just

storing the maximum daily O3 value, which would then re-

quire similar analysis of the observations.

The open questions are what model simulations are prac-

tical and which would be most useful to identify model er-

rors. The ACCMIP simulations forced by a decade of 2000s

climate-model sea surface temperatures are useful in com-

paring decadal statistics, but the UCI CTM hindcast pro-

vides unique tests on the ability to simulate specific events

and years. Even if the observed sea surface temperatures

were used, the synoptic extreme events would not likely co-

incide with the observed, so a hindcast meteorology based on

reanalysis for forecast fields provides an important test of the

model.

The surface O3 data here are based on an interpolation al-

gorithm that was optimized for the 50–100 km scale aver-

ages. Thus, the supplied grid-cell averaged data could be re-

generated at 0.5◦ resolution, but if one wants 10 km cell av-

erages for regional models then the parameters in the current

algorithm would need to be revised and re-optimized. The

surface O3 data set will be expanded to include more than 2

decades (1993–2015) and thus longer simulations would be

desirable to investigate interannual variability.

4.2 What are the most important tests for these

chemistry–climate models, assuming that hindcasts

and detailed emission data are not being used?

Another major question is what emissions to use. With AC-

CMIP the choice of a single year of representative emissions

for the decade was the optimal choice. The downward trend-

ing emissions in NA and EU over the 2000–2009 decade,

however, created a non-stationary data set. Going to a longer

data set, 1993–2015, will make the comparison between

models and measurements more awkward. Model develop-

ers will need to take some account of this non-stationarity,

possibly as a sensitivity study using two different emissions

sets representative of the early and late periods of observa-

tions, when not tracking emission changes each year.

An emissions problem not resolved here is whether the

modeled diurnal cycle over heavily polluted regions in sum-

mer would be affected by imposing a more accurate diurnal

and weekly cycle in emissions. This is probably beyond what

can be imposed in a model intercomparison project such as

the ACCMIP but should be part of the individual model de-

velopment as a sensitivity assessment.

The four-region decadal average statistics here provide a

fairly broad view of the models’ ability to predict the buildup

of O3 and extreme events in polluted regions. Clear examples

of model error are identified. The general agreement of the

diurnal cycle between models and measurements still needs

to be tested with diurnal emissions. Going beyond the mean

regional cycles, the ability to test models at the grid-cell level

provides clear geographic coverage, identifying patterns of

the discrepancy that are sometimes disturbing, as shown in

Fig. 3, but not developed further in this paper. The next study

of the CMIP-generated surface O3 needs to evaluate this.

4.3 What tests provide the best confidence in model

prediction of future air quality?

Accurate projections of future air quality rely on our ability

to predict the changes in both baseline level and pollution

buildup in response to both specified future climatic con-

ditions and a change in local-to-global emissions. Both the

baseline and the amount of O3 produced from pollution are

likely to change and need to be assessed separately. For that

purpose, we find that the maps of summertime (87th per-

centile) and baseline (30th percentile) and their difference

are one of the more important tests of a model’s simulation

of the present day. The annual cycle of monthly means is

also in some way a measure of the summertime enhance-

ment but not as useful as the percentiles. One key measure

of future change would be in the size and intensity of ex-

treme episodes. The intensity needs to be assessed relative

to the baseline, but the size of the episodes clearly relates to

their intensity and would be independent of shifts in base-

line. Thus the AQX statistics based on the daily MDA8 val-

ues here are an important model test.

The Supplement related to this article is available online

at doi:10.5194/acp-15-10581-2015-supplement.

www.atmos-chem-phys.net/15/10581/2015/ Atmos. Chem. Phys., 15, 10581–10596, 2015

http://dx.doi.org/10.5194/acp-15-10581-2015-supplement


10594 J. L. Schnell et al.: Use of air quality networks to evaluate modeling of surface ozone

Acknowledgements. Research at UCI was supported by NASA

grants NNX09AJ47G, NNX13AL12G, NNX15AE35G, and DOE

award DE-SC0007021. J. L. Schnell was supported by the National

Science Foundation’s Graduate Research Fellowship Program

(DGE-1321846). The work of D. Bergmann and P. Cameron-Smith

was funded by the US Dept. of Energy (BER), performed under

the auspices of LLNL under contract DE-AC52-07NA27344, and

used the supercomputing resources of NERSC under contract

no. DE-AC02-05CH11231. G. Zeng acknowledges the use of

New Zealand’s national HPC facilities that are provided by

the NZ eScience Infrastructure and funded jointly by NeSI’s

collaborator institutions and through the Ministry of Business,

Innovation & Employment’s Research Infrastructure Programme.

The simulations with MIROC-CHEM was supported by the

Global Environment Research Fund (S-7) by the Ministry of the

Environment Japan and completed with the supercomputer (NEC

SX-8R) at the National Institute for Environmental Studies (NIES).

We are grateful to the US Environmental Protection Agency’s

(EPA) Air Quality System (AQS) and Clean Air Status and Trends

Network (CASTNet), Environment Canada’s National Air Pollu-

tion Surveillance Program (NAPS), the European Monitoring and

Evaluation Programme (EMEP), and the European Environment

Agency’s (EEA) air quality database (AirBase) for providing the

observational data sets used in this study. We are also grateful to

the British Atmospheric Data Centre (BADC), which is part of

the NERC National Centre for Atmospheric Science (NCAS), for

collecting and archiving the ACCMIP data.

Edited by: L. Ganzeveld

References

Barnes, E. A. and Fiore, A. M.: Surface ozone variability and the jet

position: Implications for projecting future air quality, Geophys.

Res. Lett., 40, 2839–2844, doi:10.1002/grl.50411, 2013.

Büeker, P., Morrissey, T., Briolat, A., Falk, R., Simpson, D., Tuovi-

nen, J.-P., Alonso, R., Barth, S., Baumgarten, M., Grulke, N.,

Karlsson, P. E., King, J., Lagergren, F., Matyssek, R., Nunn, A.,

Ogaya, R., Peñuelas, J., Rhea, L., Schaub, M., Uddling, J.,

Werner, W., and Emberson, L. D.: DO3SE modelling of soil

moisture to determine ozone flux to forest trees, Atmos. Chem.

Phys., 12, 5537–5562, doi:10.5194/acp-12-5537-2012, 2012.

Cameron-Smith, P., Lamarque, J. F., Connell, P., Chuang, C., and

Vitt, F.: Toward an Earth system model: atmospheric chemistry,

coupling, and petascale computing, J. Phys.-Conf. Ser., 46, 343–

350, doi:10.1088/1742-6596/46/1/048, 2006.

Doherty, R. M., Wild, O., Shindell, D. T., Zeng, G., MacKenzie, I.

A., Collins, W. J., Fiore, A. M., Stevenson, D. S., Dentener, F.

J., Schultz, M. G., Hess, P., Derwent, R. G., and Keating, T. J.:

Impacts of climate change on surface ozone and intercontinental

ozone pollution: A multi-model study, J. Geophys. Res.-Atmos,

118, 3744–3763, doi:10.1002/jgrd.50266, 2013.

Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming,

Y., Zhao, M., Golaz, J.-C., Ginoux, P., Lin, S. J., Schwarzkopf,

M. D., Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L.,

Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M.,

Hurlin, W. J., Klein, S. A., Knutson, T. R., Langenhorst, A. R.,

Lee, H.-C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C. D.,

Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V.,

Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer,

R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng,

F.: The Dynamical Core, Physical Parameterizations, and Basic

Simulation Characteristics of the Atmospheric Component AM3

of the GFDL Global Coupled Model CM3, J. Climate, 24, 3484–

3519, doi:10.1175/2011jcli3955.1, 2011.

European Commission, Joint Research Centre (JRC)/Netherlands

Environmental Assessment Agency (PBL), EC-JRC/PBL, Emis-

sion Database for Global Atmospheric Research (EDGAR), re-

lease version 4.0., http://edgar.jrc.ec.europa.eu (last access: 23

August 2014), 2009.

Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M.

G., Hess, P., Textor, C., Schulz, M., Doherty, R. M., Horowitz,

L. W., MacKenzie, I. A., Sanderson, M. G., Shindell, D. T.,

Stevenson, D. S., Szopa, S., Van Dingenen, R., Zeng, G., Ather-

ton, C., Bergmann, D., Bey, I., Carmichael, G., Collins, W. J.,

Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong,

S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D.

J., Jonson, J. E., Kaminski, J. W., Keating, T. J., Lupu, A.,

Marmer, E., Montanaro, V., Park, R. J., Pitari, G., Pringle, K. J.,

Pyle, J. A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G.,

Wu, S., and Zuber, A.: Multimodel estimates of intercontinen-

tal source-receptor relationships for ozone pollution, J. Geophys.

Res.-Atmos, 114, D04301, doi:10.1029/2008jd010816, 2009.

Ganzeveld, L., Bouwman, L., Stehfest, E., van Vuuren, D. P., Eick-

hout, B., and Lelieveld, J.: Impact of future land use and land

cover changes on atmospheric chemistry-climate interactions, J.

Geophys. Res., 115, D23301, doi:10.1029/2010JD014041, 2010.

Hjellbrekke, A.-G., Solberg, S., and Fjæraa, A. M.: Ozone mea-

surements 2011, EMEP/CCC-Report 3/2013, 0-7726, Tech.

Rep., Norwegian Institute for Air Research, Norway, avail-

able at: http://www.nilu.no/projects/CCC/reports/cccr3-2013.

pdf (last access: 25 July 2013), 2013.

Holmes, C. D., Prather, M. J., Sovde, O. A., and Myhre, G.: Fu-

ture methane, hydroxyl, and their uncertainties: key climate and

emission parameters for future predictions, Atmos. Chem. Phys.,

13, 285–302, doi:10.5194/acp-13-285-2013, 2013.

Horton, D. E., Skinner, C. B., Singh, D., and Diffenbaugh,

N. S.: Occurrence and persistence of future atmospheric

stagnation events, Nature Clim. Change, 4, 698–703,

doi:10.1038/nclimate2272, 2014.

HTAP: Hemispheric Transport Of Air Pollution 2010, Part A:

Ozone And Particulate Matter, United Nations, Geneva, Switzer-

land, 2010.

Hudman, R. C., Murray, L. T., Jacob, D. J., Turquety, S., Wu,

S., Millet, D. B., Avery, M., Goldstein, A. H., and Hol-

loway, J.: North American influence on tropospheric ozone

and the effects of recent emission reductions: Constraints from

ICARTT observations, J. Geophys. Res.-Atmos, 114, D07302,

doi:10.1029/2008jd010126, 2009.

Josse, B., Simon, P., and Peuch, V. H.: Radon global simulations

with the multiscale chemistry and transport model MOCAGE,

Tellus B, 56, 339–356, doi:10.1111/j.1600-0889.2004.00112.x,

2004.

Kirtman, B., Power, S., Adedoyin, A. J., Boer, G., Bojariu, R.,

Camilloni, I., Doblas-Reyes, F., Fiore, A., Kimoto, M., Meehl,

G., Prather, M., Sarr, A., Schaer, C., Sutton, R., Oldenborgh, G. J.

v., Vecchi, G., and Wang, H.-J.: Near-term Climate Change: Pro-

Atmos. Chem. Phys., 15, 10581–10596, 2015 www.atmos-chem-phys.net/15/10581/2015/

http://dx.doi.org/10.1002/grl.50411
http://dx.doi.org/10.5194/acp-12-5537-2012
http://dx.doi.org/10.1088/1742-6596/46/1/048
http://dx.doi.org/10.1002/jgrd.50266
http://dx.doi.org/10.1175/2011jcli3955.1
http://edgar.jrc.ec.europa.eu
http://dx.doi.org/10.1029/2008jd010816
http://dx.doi.org/10.1029/2010JD014041
http://www.nilu.no/projects/CCC/reports/cccr3-2013.pdf
http://www.nilu.no/projects/CCC/reports/cccr3-2013.pdf
http://dx.doi.org/10.5194/acp-13-285-2013
http://dx.doi.org/10.1038/nclimate2272
http://dx.doi.org/10.1029/2008jd010126
http://dx.doi.org/10.1111/j.1600-0889.2004.00112.x


J. L. Schnell et al.: Use of air quality networks to evaluate modeling of surface ozone 10595

jections and Predictability, in Climate Change 2013: The Phys-

ical Science Basis, chapter 11, IPCC WGI Contribution to the

Fifth Assessment Report, 2013.

Koch, D., Schmidt, G. A., and Field, C. V.: Sulfur, sea salt, and

radionuclide aerosols in GISS ModelE, J. Geophys. Res.-Atmos,

111, D06206, doi:10.1029/2004jd005550, 2006.

Koumoutsaris, S. and Bey, I.: Can a global model reproduce ob-

served trends in summertime surface ozone levels?, Atmos.

Chem. Phys., 12, 6983–6998, doi:10.5194/acp-12-6983-2012,

2012.

Lamarque, J. F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I.,

Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Do-

herty, R., Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J.,

Horowitz, L. W., Lee, Y. H., MacKenzie, I. A., Nagashima, T.,

Naik, V., Plummer, D., Righi, M., Rumbold, S. T., Schulz, M.,

Skeie, R. B., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S.,

Voulgarakis, A., and Zeng, G.: The Atmospheric Chemistry and

Climate Model Intercomparison Project (ACCMIP): overview

and description of models, simulations and climate diagnostics,

Geosci. Model Dev., 6, 179–206, doi:10.5194/gmd-6-179-2013,

2013.

Lin, J. T., Youn, D., Liang, X. Z., and Wuebbles, D. J.: Global model

simulation of summertime US ozone diurnal cycle and its sensi-

tivity to PBL mixing, spatial resolution, and emissions, Atmos.

Environ., 42, 8470–8483, doi:10.1016/j.atmosenv.2008.08.012,

2008.

Logan, J. A.: Ozone in rural-areas of the united-states, J. Geophys.

Res.-Atmos, 94, 8511–8532, doi:10.1029/JD094iD06p08511,

1989.

Menut, L., Bessagnet, B., Colette, A., and Khvorostiyanov,

D.: On the impact of the vertical resolution on chemistry-

transport modelling, Atmos. Environ., 67, 370–384,

doi:10.1016/j.atmosenv.2012.11.026, 2013.

Mickley, L., Jacob, D., Field, B., and Rind, D.: Effects of

future climate change on regional air pollution episodes

in the United States, Geophys. Res. Lett., 31, L24103,

doi:10.1029/2004GL021216, 2004.

Naik, V., Horowitz, L. W., Fiore, A. M., Ginoux, P., Mao, J.,

Aghedo, A. M., and Levy II, H.: Impact of preindustrial to

present-day changes in short-lived pollutant emissions on at-

mospheric composition and climate forcing, J. Geophys. Res.-

Atmos., 118, 8086–8110, doi:10.1002/jgrd.50608, 2013.

National Research Council (US): Committee on the Significance of

International Transport of Air Pollutants. Global Sources of Lo-

cal Pollution: An Assessment of Long-Range Transport of Key

Air Pollutants to and from the United States, National Academies

Press, Washington DC, 248 pp., 2009.

Oman, L. D., Ziemke, J. R., Douglass, A. R., Waugh, D. W., Lang,

C., Rodriguez, J. M., and Nielsen, J. E.: The response of tropical

tropospheric ozone to ENSO, Geophys. Res. Lett., 38, L13706,

doi:10.1029/2011gl047865, 2011.

Prather, M., Gauss, M., Berntsen, T., Isaksen, I., Sundet, J., Bey,

I., Brasseur, G., Dentener, F., Derwent, R., Stevenson, D., Gren-

fell, L., Hauglustaine, D., Horowitz, L., Jacob, D., Mickley,

L., Lawrence, M., von Kuhlmann, R., Muller, J. F., Pitari, G.,

Rogers, H., Johnson, M., Pyle, J., Law, K., van Weele, M., and

Wild, O.: Fresh air in the 21st century?, Geophys. Res. Lett., 30,

1100, doi:10.1029/2002gl016285, 2003.

Reidmiller, D. R., Fiore, A. M., Jaffe, D. A., Bergmann, D., Cu-

velier, C., Dentener, F. J., Duncan, B. N., Folberth, G., Gauss,

M., Gong, S., Hess, P., Jonson, J. E., Keating, T., Lupu, A.,

Marmer, E., Park, R., Schultz, M. G., Shindell, D. T., Szopa, S.,

Vivanco, M. G., Wild, O., and Zuber, A.: The influence of foreign

vs. North American emissions on surface ozone in the US, At-

mos. Chem. Phys., 9, 5027–5042, doi:10.5194/acp-9-5027-2009,

2009.

Schnell, J. L., Holmes, C. D., Jangam, A., and Prather, M. J.: Skill

in forecasting extreme ozone pollution episodes with a global

atmospheric chemistry model, Atmos. Chem. Phys., 14, 7721–

7739, doi:10.5194/acp-14-7721-2014, 2014.

Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J., and Plummer,

D.: Technical Note: The CCCma third generation AGCM and its

extension into the middle atmosphere, Atmos. Chem. Phys., 8,

7055–7074, doi:10.5194/acp-8-7055-2008, 2008.

Seinfeld, J. H., Atkinson, R., Berglund R. L., Chameides, W. L.,

Elston, J. C., Fehsenfeld, F., Finlayson-Pitts, B. J., Harriss, R.

C., Kolb, C. E., Lioy, P. J., Logan, J. A., Prather, M. J., Russell,

A., and Steigerwald, B.: Rethinking the ozone problem in urban

and regional air pollution, National Academy Press, Washington,

DC, 524 pp., 1991.

Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G.,

Nazarenko, L., Lamarque, J. F., Bowman, K., Milly, G., Kovari,

B., Ruedy, R., and Schmidt, G. A.: Interactive ozone and methane

chemistry in GISS-E2 historical and future climate simulations,

Atmos. Chem. Phys., 13, 2653-2689, doi:10.5194/acp-13-2653-

2013, 2013.

Tang, Q. and Prather, M. J.: Correlating tropospheric column ozone

with tropopause folds: the Aura-OMI satellite data, Atmos.

Chem. Phys., 10, 9681–9688, doi:10.5194/acp-10-9681-2010,

2010.

Taylor, K. E.: Summarizing multiple aspects of model performance

in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,

doi:10.1029/2000jd900719, 2001.

Teyssèdre, H., Michou, M., Clark, H. L., Josse, B., Karcher, F.,

Olivié, D., Peuch, V.-H., Saint-Martin, D., Cariolle, D., Attié,

J.-L., Nédélec, P., Ricaud, P., Thouret, V., van der A, R. J., Volz-

Thomas, A., and Chéroux, F.: A new tropospheric and strato-

spheric Chemistry and Transport Model MOCAGE-Climat for

multi-year studies: evaluation of the present-day climatology and

sensitivity to surface processes, Atmos. Chem. Phys., 7, 5815–

5860, doi:10.5194/acp-7-5815-2007, 2007.

Val Martin, M., Heald, C. L., and Arnold, S. R.: Coupling dry depo-

sition to vegetation phenology in the Community Earth System

Model: Implications for the simulation of surface O3, Geophys.

Res. Lett., 41, 2988–2996, doi:10.1002/2014GL059651, 2014.

Wackernagel, H.: Multivariate Geostatistics: An introduction with

applications, 3rd ed., Springer, Berlin, 387 pp., 2003.

Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T.,

Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T.,

Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya,

M.: MIROC-ESM 2010: model description and basic results of

CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872,

doi:10.5194/gmd-4-845-2011, 2011.

Wild, O., Fiore, A. M., Shindell, D. T., Doherty, R. M., Collins,

W. J., Dentener, F. J., Schultz, M. G., Gong, S., MacKenzie, I.

A., Zeng, G., Hess, P., Duncan, B. N., Bergmann, D. J., Szopa,

S., Jonson, J. E., Keating, T. J., and Zuber, A.: Modelling fu-

www.atmos-chem-phys.net/15/10581/2015/ Atmos. Chem. Phys., 15, 10581–10596, 2015

http://dx.doi.org/10.1029/2004jd005550
http://dx.doi.org/10.5194/acp-12-6983-2012
http://dx.doi.org/10.5194/gmd-6-179-2013
http://dx.doi.org/10.1016/j.atmosenv.2008.08.012
http://dx.doi.org/10.1029/JD094iD06p08511
http://dx.doi.org/10.1016/j.atmosenv.2012.11.026
http://dx.doi.org/10.1029/2004GL021216
http://dx.doi.org/10.1002/jgrd.50608
http://dx.doi.org/10.1029/2011gl047865
http://dx.doi.org/10.1029/2002gl016285
http://dx.doi.org/10.5194/acp-9-5027-2009
http://dx.doi.org/10.5194/acp-14-7721-2014
http://dx.doi.org/10.5194/acp-8-7055-2008
http://dx.doi.org/10.5194/acp-13-2653-2013
http://dx.doi.org/10.5194/acp-13-2653-2013
http://dx.doi.org/10.5194/acp-10-9681-2010
http://dx.doi.org/10.1029/2000jd900719
http://dx.doi.org/10.5194/acp-7-5815-2007
http://dx.doi.org/10.1002/2014GL059651
http://dx.doi.org/10.5194/gmd-4-845-2011


10596 J. L. Schnell et al.: Use of air quality networks to evaluate modeling of surface ozone

ture changes in surface ozone: a parameterized approach, At-

mos. Chem. Phys., 12, 2037–2054, doi:10.5194/acp-12-2037-

2012, 2012.

Xing, J., Mathur, R., Pleim, J., Hogrefe, C., Gan, C.-M., Wong, D.

C., Wei, C., Gilliam, R., and Pouliot, G.: Observations and mod-

eling of air quality trends over 1990-2010 across the Northern

Hemisphere: China, the United States and Europe, Atmos. Chem.

Phys., 15, 2723–2747, doi:10.5194/acp-15-2723-2015, 2015.

Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J. F.,

Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O.,

Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dal-

soren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz,

L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T.,

Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shin-

dell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Pre-

industrial to end 21st century projections of tropospheric ozone

from the Atmospheric Chemistry and Climate Model Intercom-

parison Project (ACCMIP), Atmos. Chem. Phys., 13, 2063–

2090, doi:10.5194/acp-13-2063-2013, 2013.

Zeng, G., Pyle, J. A., and Young, P. J.: Impact of climate change on

tropospheric ozone and its global budgets, Atmos. Chem. Phys.,

8, 369–387, doi:10.5194/acp-8-369-2008, 2008.

Zeng, G., Morgenstern, O., Braesicke, P., and Pyle, J. A.:

Impact of stratospheric ozone recovery on tropospheric

ozone and its budget, Geophys. Res. Lett., 37, L09805,

doi:10.1029/2010gl042812, 2010.

Atmos. Chem. Phys., 15, 10581–10596, 2015 www.atmos-chem-phys.net/15/10581/2015/

http://dx.doi.org/10.5194/acp-12-2037-2012
http://dx.doi.org/10.5194/acp-12-2037-2012
http://dx.doi.org/10.5194/acp-15-2723-2015
http://dx.doi.org/10.5194/acp-13-2063-2013
http://dx.doi.org/10.5194/acp-8-369-2008
http://dx.doi.org/10.1029/2010gl042812

	Abstract
	Introduction
	Data and methods
	Observations of surface O3
	Description of models (ACCMIP + UCI CTM)
	Air quality extremes

	Results
	Diurnal cycles
	Annual cycle
	AQX events
	Mapping O3 percentiles and enhancements
	AQX episode size
	Non-stationarity and possible trends
	Severity of pollution in largest episodes

	Conclusions and discussion
	What are the best air quality diagnostics for model development?
	What are the most important tests for these chemistry--climate models, assuming that hindcasts and detailed emission data are not being used?
	What tests provide the best confidence in model prediction of future air quality?

	Acknowledgements
	References



