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Abstract

Objective: To develop and evaluate an automated, portable algorithm to differentiate active 

corneal ulcers from healed scars using only external photographs.

Design: A convolutional neural network was trained and tested using photographs of corneal 

ulcers and scars.

Subjects: De-identified photographs of corneal ulcers were obtained from the Steroids for 

Corneal Ulcers Trial (SCUT), Mycotic Ulcer Treatment Trial (MUTT), and Byers Eye Institute at 

Stanford University.
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Methods: Photographs of corneal ulcers (n=1313) and scars (n=1132) from the SCUT and 

MUTT trials were used to train a convolutional neural network (CNN). The CNN was tested on 

two different patient populations from eye clinics in India (n=200) and the Byers Eye Institute at 

Stanford University (n=101). Accuracy was evaluated against gold standard clinical classifications. 

Feature importances for the trained model were visualized using Gradient-weighted Class 

Activation Mapping (Grad-CAM).

Main Outcome Measure: Accuracy of the CNN was assessed via F1 score. Area under the 

receiver operating characteristic curve (ROC) was used to measure the precision-recall trade-off.

Results: The CNN correctly classified 115/123 active ulcers and 65/77 scars in corneal ulcer 

patients from India (F1 score: 92.0% (95% CI: 88.2 – 95.8%), sensitivity: 93.5% (95% CI: 89.1 – 

97.9%), specificity: 84.42% (95% CI: 79.42 – 89.42%), ROC (AUC=0.9731)). The CNN correctly 

classified 43/55 active ulcers and 42/46 scars in corneal ulcer patients from Northern California 

(F1 score: 84.3% (95% CI: 77.2 – 91.4%), sensitivity: 78.2% (95% CI: 67.3 – 89.1%), specificity: 

91.3% (95% CI: 85.8 – 96.8%), ROC (AUC=0.9474)). The CNN visualizations correlated with 

clinically relevant features such as corneal infiltrate, hypopyon, and conjunctival injection.

Conclusion: The CNN classified corneal ulcers and scars with high accuracy and generalizes 

to patient populations outside of its training data. The CNN focuses on clinically relevant 

features when it makes a diagnosis. The CNN demonstrates potential as an inexpensive diagnostic 

approach that may aid triage in communities with limited access to eye care.

Precis

A deep learning algorithm was developed to classify active cornea ulcers from healed scars. The 

algorithm performed with high accuracy and generalized well to different patient populations and 

imaging modalities.

Keywords

corneal ulcer; corneal scar; artificial intelligence; deep learning; infectious keratitis

Introduction

Despite advances in our understanding of how to treat corneal infections, corneal blindness 

remains the 4th most common cause of blindness in the world, accounting for over 5% of 

the total blind population.1 Corneal opacities disproportionately affect developing countries, 

where they may constitute over 10% of preventable visual impairment cases. For example, 

in India, corneal ulcers affect around 2 million people every year.1 In such developing 

countries, delayed or inappropriate treatment due to misdiagnosis is a primary driving factor. 

Appropriate triage of these patients through accurate diagnosis of a corneal ulcer is the 

first step towards addressing this problem, but this requires a trained eye care provider, 

which often is a limited resource in these areas. India, for example, has an estimated 25,000 

ophthalmologists for its 1.3 billion residents.2 This ratio of 1:52,000 is well below typical 

public health guidelines.3 In the absence of trained eye care providers, differentiating active 

corneal ulcers from healed scars may be a more challenging, less intuitive task.
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A sophisticated form of pattern recognition – identifying key discriminating features of 

ulcers and scars – lies at the heart of proper diagnosis. For example, ophthalmologists 

look for key features such as corneal infiltrate, conjunctival injection, and hypopyon 

when making a diagnosis. Recent advancements in the fields of machine learning and 

computer vision have enabled a wide variety of new technologies, particularly in pattern 

recognition and image classification. In particular, deep learning - a specific subfield of 

machine learning that uses large neural networks - has recently been used in a variety of 

image classification tasks in medicine. Deep learning has been used to classify different 

forms of skin cancer,4 detect heart attacks,5 and diagnose neurological stroke,6 among 

other conditions. In ophthalmology, machine learning algorithms have been demonstrated 

to successfully detect age-related macular degeneration,7 classify diabetic retinopathy 

severity,8 and diagnose glaucoma.9 In this work, we train a convolutional neural network 

(CNN), a particular type of deep learning model, to distinguish corneal ulcers from scars.

Methods

External photographs were acquired from the Steroid for Corneal Ulcer Trial (SCUT) 

and the Mycotic Ulcer Treatment Trial (MUTT).10,11 Photographs from both studies were 

captured using a handheld Nikon D-series digital SLR camera with a 105-mm f/2.8D AF 

Micro Nikkor Autofocus Lens and a modified Nikon SB29s electronic flash or Nikon R1 

Wireless Close-up Speedlight system. In the SCUT study, 500 patients with bacterial corneal 

ulcers had photographs taken at enrollment, 3-week, 3-month, and 12-months follow-up 

visits.10 In the MUTT study, 323 patients with fungal corneal ulcers had photographs taken 

at enrollment, 3-week, and 3-month follow-ups.11 Both the SCUT and MUTT studies were 

conducted at the Aravind Eye Hospital in Tamil Nadu, India.

Inclusion criteria in both the SCUT and MUTT studies required an active, culture-proven 

bacterial or fungal corneal ulcer. As such, photographs taken at enrollment were labeled 

as active corneal ulcers. When clinical review indicated resolution of the ulcer, defined as 

complete epithelialization, images from the 3 month follow-up visits were labeled as healed 

corneal scars. The majority of ulcers healed well before 3 months and the mean elapsed 

time between clinical resolution to the 3 month follow-up visit was 76.9 days (standard 

deviation of 12.1 days). As some cases, especially fungal ulcers, can remain active despite 

epithelialization, if there was ambiguity regarding clinical resolution based on chart records, 

such as worsening with cessation of antimicrobials, these cases and photographs were 

excluded.

For both SCUT and MUTT studies, multiple photographs were taken at each study visit. 

Except for using different external flash devices, the SCUT and MUTT studies used the 

same cameras and aperture priority settings, centered and focused on the corneal apex. Due 

to differences in data management of the image collections, only 1 photogragh from each 

study visit was available for SCUT patients whereas an average of 4.8 and 4.2 photographs 

for the enrollment and 3-month visits, respectively, were available for MUTT. To maximize 

the number of photographs that could be used, only exact duplicates and out of focus images 

were excluded.
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Patients from the SCUT and MUTT studies were pooled into a single list, and randomly 

assigned to the train, validation, and test datasets according to a 60/20/20 split. The train, 

validation, and test datasets were stratified in this way (by patient) to ensure that no patient 

cross-contamination occurred between the test set and other sets. A total of 612, 200, and 

200 patients were allocated to the training, validation, and test sets, respectively. For MUTT 

patients, multiple images from the same patient study visit could be used for the training set 

whereas for patients stratified to the test set, only 1 image each from their enrollment and 3 

month visit could be included. This test set, called Test Set 1, contains patients and images 

from SCUT and MUTT that were not seen by the CNN during training.

A separate dataset of 101 slit lamp photographs was acquired from the Byers Eye Institute at 

Stanford University in Northern California (Canon 7D digital camera, Haag-Streit BX900) 

and comprised 55 active corneal ulcers and 46 corneal scars from 101 unique patients. These 

photographs were classified based on clinical interpretation by a cornea specialist (CCL). 

None of the images in this dataset, called Test Set 2, were used for training the CNN and 

were only used for testing.

All images were normalized to the training dataset and rescaled to 224 pixels by 224 

pixels. The training images from the SCUT and MUTT studies were used to train a deep 

learning model to classify active corneal infections and corneal scars. We used the VGG-16 

architecture for the CNN, a specific type of deep learning model.12 The model architecture 

is depicted in Figure 1. The model was pretrained on the 2014 ImageNet Large Scale Visual 

Recognition Challenge, a database of approximately 1.28 million images of 1,000 object 

categories, which is currently the standard form of pretraining in PyTorch, a deep learning 

software package.13,14 The final 1,000-node layer typically used for ImageNet was replaced 

with a 2-node layer for our task.12 The pretrained model was fine-tuned using the training 

dataset from the SCUT and MUTT studies. The model was trained to perform a binary 

classification task (active ulcer versus healed scar) using cross-entropy loss, optimized via 

Adam with an initial learning rate of 10−5 that decayed by a factor of 10 every 5 training 

epochs. Training was continued for 13 epochs, when the validation loss began to increase 

which indicated overfitting. When available, multiple photographs from each patient was 

used during fine-tuning.

After fine-tuning was completed, the performance of the model was measured on Test Set 1 

and Test Set 2. A single photograph from each patient in each test set was used to measure 

final performance. Confidence intervals for final test performance were computed using the 

bootstrap method.

A precision-recall curve was generated to assess the false positive rate and false negative rate 

tradeoff as a function of model confidence. A receiver operating characteristic (ROC) curve 

to assess true positive rate and false positive rate tradeoff was also calculated. A calibration 

curve was created by binning the patient predictions into separate confidence bins of being 

an active ulcer, and then plotting the proportion of patients in each bin that were determined 

by the ophthalmologist to be active ulcers. The bins were selected to provide a sufficient 

level of granularity that may be relevant for clinicial predictions, while still permitted at least 

10 patients per bin.
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As a metric of model performance, the F1 score was chosen as it is a commonly used 

statistic in settings where test sets may be imbalanced. It is computed as the harmonic mean 

of the precision and recall. Recall is defined as the number of predicted and true positives 

divided by the number of true positives and is a measure of the model’s ability to accurately 

identify active ulcers. Precision is the number of predicted and true positives divided by 

the number of false positives and is a measure of the model’s ability to identify healed 

infections.

The deep learning model was also compared to a simple baseline model that classifies 

images as ulcers and scars based on the proportion of red pixels. The exact proportion 

of red pixels that served as the cutoff for classifying an image as an active ulcer is a 

hyperparameter that was tuned on the training dataset.

Gradient-weighted Class Activation Mapping (Grad-CAM) was used to visualize the model 

and determine salient regions of active ulcers. Grad-CAM uses the gradients of the target 

class (in this case, active ulcer) and creates a localization map that highlights regions of 

importance that were used to make the active ulcer versus healed scar prediction.15

A cornea specialist (CCL) manually annotated 40 random photographs with an active 

ulcer from Test Set 1 to highlight areas of clinical relevance. Pixels in each image 

were then manually marked as important according to the cornea specialist’s annotations, 

as well as by thresholding the Grad-CAM heatmap. The similarity between Grad-CAM 

heatmaps and manually annotated photographs was calculated using the overlap coefficient, 

or Szymkiewicz–Simpson coefficient, defined as the number of pixels common to both 

importance maps divided by the number of pixels in the image with the smaller number of 

important pixels.16 This segmentation analysis was not used to augment our deep learning 

classification model.

This study was approved by the Institutional Review Board at Stanford University and 

adhered to the tenets of the Declaration of Helsinki.

Results

On Test Set 1, comprised of held out images from the SCUT and MUTT studies, the model 

accurately classified 115 out of 123 active corneal ulcers and 65 out of 77 corneal scars, 

with an F1 score of 92.0% (95% CI: 88.2 – 95.8%). The sensitivity, or the ability of our 

model to correctly identify active corneal ulcers, was 93.5% (95% CI: 89.1 – 97.9%). The 

specificity, or the ability of our model to identify true negatives, was 84.42% (95% CI: 79.42 

– 89.42%). Figure 2a shows the receiver operating characteristic (ROC) curve, which plots 

the true positive rate (TPR) against the false positive rate (FPR) for the trained model (AUC 

= 0.9731). Figure 2b shows the precision-recall (PR) curve, which indicates the tradeoff 

between the false positive rate (FPR) and false negative rates (FNR) as a function of decision 

threshold (AUC = 0.9811). More formally, the PR curve plots TPR/(TPR + FPR) against 

TPR/(TPR+FNR). Figure 2c shows the calibration curve for Test Set 1.

On Test Set 2, comprised of images from the Stanford Byers Eye Institute, the model 

correctly classified 43 out of 55 active corneal ulcers and 42 out of 46 corneal scars in 
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patients, with an F1 score of 84.3% (95% CI: 77.2 – 91.4%), sensitivity of 78.2% (95% CI: 

67.3 – 89.1%), and specificity of 91.3% (95% CI: 85.8 – 96.8%). Figures 2d, 2e, and 2f 

show the ROC (AUC = 0.9474), PR (AUC = 0.9524), and calibration curves for Test Set 2, 

respectively.

The baseline classifier, which used the proportion of red pixels (defined as having a hue 

value between 0 and 10) in each achieved a lower accuracy of 76.0% (95% CI: 74.9 – 

77.1%) on the training set.

Figure 3 demonstrates a sample of heatmaps created by Grad-CAM. The heatmaps identify 

areas of the images that are relevant to the trained model’s classification decisions. 

These areas align with clinical features associated with an active corneal ulcer, including 

conjunctival injection and corneal infiltrate (Fig. 4).

Among the 40 randomly selected photographs with an active ulcer manually annotated 

by a cornea specialist to indicate areas of clinical relevance, some annotations overlapped 

significantly with areas highlighted by heatmaps (Fig. 4), while in others, there was little 

or no overlap (Fig. 5). The average overlap, or Szymkiewicz–Simpson coefficient was 

0.48. In cases of significant overlap (Szymkiewicz–Simpson coefficient >0.7), the model 

accurately classified 10 out of 12 ulcers (accuracy 83%) whereas in cases of little overlap 

(Szymkiewicz–Simpson coefficient <0.3), the model accurately classified only 9 out of 

16 ulcers (accuracy 56%). As such, greater overlap is associated with better algorithm 

performance.

Discussion

In this work, we developed a deep learning model that can accurately differentiate between 

active corneal infections and healed scars. In particular, the model achieved a high level 

of accuracy in classifying corneal ulcers and scars when trained on photographs from 

the SCUT and MUTT studies. These results compare favorably with the performance of 

human experts in completing this task. A recent study from the University of Michigan 

evaluating cornea specialists’ accuracy in diagnosing corneal ulcers from images captured 

from portable cameras reported a sensitivity of 82 – 94%.17 Results from our model are 

similar, with sensitivities of 93.5 +/− 4.4% and 78.2 +/− 8.0% in Test Sets 1 and 2, 

respectively. These are promising results when taken in light of the proposed accuracy 

threshold of 80% sensitivity for telemedicine screening for conditions such as diabetic 

retinopathy.18

Crucial to the assessment of any machine learning model is its ability to “generalize”, 

or perform well on data which was not used in the training dataset. Our model not 

only generalized to patients in Test Set 1 that it had never seen before, but also to a 

different patient population from the United States in Test Set 2. Notably, the Northern 

California population had significantly different patient demographics and microbiological 

epidemiology than the training data from the Indian clinics. The SCUT and MUTT studies 

enrolled patients predominantly from the Tamil Nadu state in South India, where a leading 

cause of corneal ulcers is agricultural trauma. In this tropical environment, fungal ulcers 
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are more common than bacterial.19 In contrast, in the coastal temperate climate of Northern 

California, the majority of corneal ulcers are bacterial in origin and are most often caused 

by contact lens wear.20 The generalizability of our model indicates that the algorithm 

identifies salient features of corneal ulcers and scars that are present despite epidemiological 

differences.

In addition, the model generalizes well to a different imaging modality, suggesting greater 

potential for a portable telemedicine implementation. The model was trained on images 

captured with a handheld camera yet performed well on photographs captured with a 

slit lamp mounted camera. A robust evaluation of the performance of a model beyond 

simply overall accuracy is important as the ramifications of misdiagnosis are significant. 

For example, misclassifying an active infection as a scar (false negative) can lead to 

corneal blindness and classifying a scar as an active infection (false positive) can lead to 

unnecessary evaluations and treatment. The PR, ROC, and calibration curves in Figure 2 

provide additional information to evaluate the model’s performance. The high AUCs of the 

PR and ROC curves suggests that the FPR and FNR are relatively low at reasonable decision 

thresholds. In practice, the decision threshold can be varied to balance the disparate costs 

associated with false negatives and false positives.

Furthermore, Figure 2 also contains calibration plots for the model’s predictions on Test Sets 

1 and 2. The Expected Calibration Error (ECE), a standard metric of calibration error, for 

both Test Sets 1 and 2 is approximately 7 percentage points, which is promising though may 

demonstrate mild overfitting in data-scarce regions. The 5 bins in the calibration plots were 

chosen to provide sufficient granularity in predicted confidence level to clinicians while 

ensuring more than 10 datapoints per bin.

The more sophisticated CNN outperformed the simple baseline classifier based solely on 

the number of red pixels in an image. This suggests that the CNN identifies features that 

are not accessible to this baseline classifier, such as the arrangement of redness (e.g. around 

the limbus). Furthermore, the Grad-CAM heatmaps (Figures 4 and 5) demonstrate that 

the model focuses on features beyond ciliary flush and conjunctival injection. Indeed, the 

heatmaps demonstrate the model’s emphasis on clinically relevant features of an active 

infection, such as the presence of a hypopyon or purulent corneal infiltrate. Additionally, the 

generation of Grad-CAM visualizations does not require retraining or otherwise modifying 

the CNN, in contrast with some other CNN visualization techniques.15 Such heatmaps may 

be presented to a medical provider for real-time human oversight of an automated diagnosis. 

Notably, the salient regions of an image in a classification prediction may not always be 

readily interpretable or even visible to the naked human eye. For example, features such 

as the amount of blood in sparsely or densely clustered blood vessels in an eye are harder 

to visually quantify. For these reasons, the regions highlighted by the model should be 

further reviewed by medical professionals. Discrepancies amongst model predictions and 

ophthalmologist predictions may allow for novel insights into clinical features of corneal 

ulcers. Furthermore, the human supervision provided by the ophthalmologist could be used 

to improve the model towards more fully-automated AI diagnosis.
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The trained model is a step towards a portable system that can differentiate active corneal 

ulcers from healed infections, which may be helpful in areas with limited access to eye care. 

This model only requires low-resolution (224 pixels by 224 pixels) photographs, which is 

well within the capabilities of most smartphones. The incorporation of this model into a 

smartphone-enabled application could provide a mobile diagnostic aid to assist triage efforts 

by a healthcare provider. While much work lies ahead, including training providers to use 

the developed technology, there is potential to make a significant impact in developing 

countries that are disproportionately impacted by corneal blindness. In India, for example, 

there is only 1 ophthalmologist for every 52,000 residents but almost 1 in every 3 people 

has a smartphone.2,21 This model may help the triage process for primary care providers, 

who generally have limited experience with eye care. While patient history can provide 

important clues to providers regarding diagnosis, there are many conditions that can mitigate 

symptoms of an active corneal ulcer such as a neurotrophic cornea, treatment with topical 

steroids that mask inflammation, and an infection in its early stages. Patient reported 

symptoms also vary considerably. For example, a scar can lead to debilitating photophobia 

for 1 patient and be relatively asymptomatic for another. Visualizing corneal pathology 

is crucial to accurate diagnosis and our algorithm aims to support the diagnostic process 

through analysis of photographs. If a primary care provider flags a potential infection with 

this model, the patient could then be referred to an eye specialist. As telemedicine becomes 

more prevalent, especially in the era of COVID-19, mobile diagnostic tools will likely 

become even more important.

Furthermore, the trained model could potentially be used to help patients determine 

treatment efficacy. For example, patients could take serial photos of their corneal ulcer 

to assess disease resolution. An ulcer that is not responding to treatment may be flagged as 

still active and prompt additional consultation.

There are a few limitations to this study. First, there is a slight drop in generalization 

performance when testing the model on Test Set 2, a patient population geographically and 

epidemiologically different from the training set. In practice, this could be remediated by 

continually retraining the model on new patients from each location in which the model is 

to be deployed. Second, all images in this study were obtained using high resolution digital 

cameras. In these photographs, ambient lighting was relatively uniform and out-of-focus 

images were excluded. Our model may not be as accurate with poorer quality photographs 

where camera conditions such as lighting and focus are inconsistent. In practice, this may be 

ameliorated by publishing standardization guidelines for taking photographs to be classified 

by our model. Finally, our model was trained only on bacterial and fungal eye infections, 

and may perform worse when tested on parasitic or viral infections. Future work could 

include additional data from such cases to improve our model.

In this work, we developed a deep learning model to classify corneal ulcers and scars that 

performs well on out-of-sample data. Our model offers a promising, inexpensive diagnostic 

approach wth potential to aid triage in communities with limited access to eye care. 

In addition, the model may also be used as an adjunctive tool to help monitor clinical 

progression and prompt re-evaluation in refractory cases.
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Figure 1. 
Architecture diagram for convolutional neural network VGG-16.
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Figure 2. 
Test Set 1 Receiver operating characteristic curve (2a), Precision-Recall curve (2b), and 

calibration curve (2c). Test Set 2 Receiver operating characteristic curve (2d), Precision-

Recall curve (2e), and calibration (2f) curve.
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Figure 3. 
Examples of Grad-CAM visualizations.
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Figure 4. 
Comparison of a manually annotated photograph of a corneal ulcer and its corresponding 

Grad-CAM heatmap with good agreement.
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Figure 5. 
Comparison of a manually annotated photograph of a corneal ulcer and its corresponding 

Grad-CAM heatmap with poor overlap.
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