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Energy compensation and adiposity in humans

A full list of authors and affiliations appears at the end of the article.

Summary

Understanding the impacts of activity on energy balance is crucial. Increasing levels of activity 

may bring diminishing returns in energy expenditure because of compensatory responses in non­

activity energy expenditures1–3. This suggestion has profound implications for both the evolution 

of metabolism and human health. It implies that a long-term increase in activity does not directly 

translate into an increase in total energy expenditure (TEE) because other components of TEE may 

decrease in response–energy compensation. We used the largest dataset compiled on adult TEE 

and BEE (N = 1,754) of people living normal lives to find that energy compensation by a typical 

human averages 28% due to reduced BEE; this suggests that only 72% of the extra calories we 

burn from additional activity translate into extra calories burned that day. Moreover, the degree 

of energy compensation varied considerably between people of different body composition. This 

association between compensation and adiposity could be due to among-individual differences 

in compensation: people who compensate more may be more likely to accumulate body fat. 

Alternatively, the process might occur within individuals: as we get fatter, our body might 

compensate more strongly for the calories burned during activity, making losing fat progressively 

more difficult. Determining the causality of the relationship between energy compensation and 

adiposity will be key to improving public health strategies regarding obesity.

Keywords

Activity; basal metabolic rate; daily energy expenditure; energy management models; exercise; 
Homo sapiens ; trade-offs; weight loss

Results and Discussion

The contexts within which energy compensation occur, the extent to which it occurs 4, 5 

and the processes involved are far from resolved 2, 6–8. Using the largest dataset on human 

energy expenditure ever assembled, by estimating the relationships between TEE, AEE, 

and BEE we test the mutually exclusive predictions from the three energy expenditure 
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models (Figure 1) for individuals with unremarkable lifestyles generating natural variation 

in total energy expenditures over time, and without food restriction. Determining which 

of these energy expenditure models apply to humans under typical, free-living conditions, 

and quantifying its effects, will progress our understanding of the evolution and control of 

metabolism, and may provide key physiological information for management strategies for 

weight control.

We extracted paired measurements of BEE (respirometry) and TEE (doubly-labelled water 

(DLW) 9) for 1,754 adults from the International Atomic Energy Agency DLW database 

v.3.1.2 10. All estimates of TEE were made using a standard calculation across all studies 11. 

Controlling for age (y), sex, and body composition (i.e., fat free mass in kg, derived from 

the body water dilution spaces, and fat mass in kg, calculated as the difference between 

body mass and fat free mass), a multiple regression of TEE as a function of BEE revealed 

an overall positive and highly significant relationship between TEE and BEE, with a slope 

of b±se = 0.723±0.049 (Table S1A) and 95% confidence intervals (CI) that exclude both 0 

and 1 [CI: 0.626; 0.820]. The positive relationship between BEE and TEE is not surprising, 

given that BEE represents the largest component of TEE (Figure 1B). Due to the part-whole 

relationship, however, the slope between BEE and TEE should be 1 unless the active and 

basal components of energy expenditure are positively or negatively linked (as postulated in 

the performance and compensation models, see Figure 1C). Because our analysis revealed 

that the slope is significantly <1 (Figure 2A), this indicates that a considerable degree 

(27.7%) of compensation occurred between the active and basal components of energy 

expenditure.

To further illustrate compensation, we calculated the activity energy expenditure (AEE) for 

each individual by subtracting BEE from 0.9*TEE (TEE adjusted to account for the thermic 

effect to food). A multiple regression of AEE as a function of BEE (with age, sex, and body 

composition as covariates) revealed an overall negative and highly significant relationship, 

with a slope of b±se = −0.349±0.044 (t = 7.86, p < 0.0001; Table S1A; Figure 2B) and 

95% confidence interval (CI) that excludes 0 [CI: −0.436; −0.262]. These findings concur 

with those from the model regressing TEE as a function of BEE. Note that in principle one 

mechanism that does not represent energy compensation and yet could in principle create the 

observed patterns is that people who are more active (and have a higher AEE) have a greater 

proportion of muscle mass12, which increases FFM without substantively increasing BEE 13 

resulting in more active people having a low mass-corrected BEE. However, this possibility 

can be disregarded given that our analysis indicates energy compensation in people having 

accounted for variation in their FFM by its inclusion as a covariate (as both a main effect 

and as an interaction term with BEE and age).

Thus, humans living typical modern lives – not undertaking exceptional levels of activity 

or experiencing chronic food shortages – exhibit a fairly strong compensation between 

the energy they expend on activity and that expended on basal metabolic processes; over 

the long term more than a quarter of the extra calories burned by people during activity 

do not translate into extra calories expended that day. Presumably, such compensation 

would have been adaptive for our ancestors because it minimised food energy demands and 

hence reduced the time needed for foraging, the advantages of which may include reducing 
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exposure to predation. However, it is potentially maladaptive for modern-living humans 

exercising to try to burn off excess food consumption, given the chain of association linking 

high-density foods to greater energy intake 14, obesity 15 and its related diseases 16.

Public health initiatives often include prescribed increases in activity in part to increase TEE 

and thereby control weight gain or promote fat loss 17. Such a prescription, however, often 

assumes that costs of activity are additively related to basal costs 18, which our analyses 

suggests is untrue. It will therefore be important when prescribing personalized exercise 

plans for controlling or reducing weight, and managing patient expectations, to know if the 

degree of long-term energy compensation changes with age and other demographic variables 

such as sex. It is well known that older individuals are more at risk of obesity than are 

younger individuals. To test if older people, and potentially one sex more than the other, 

exhibit greater energy compensation, we took advantage of the information on sex, age, and 

body composition (measured by isotope dilution) included in our dataset, which consisted 

of 692 men and 1,062 women aged 18 to 96 y, with fat free mass ranging from 24.3 to 

97.1 (median: 47.64 kg) and body mass index (BMI) ranging from 12.5 to 61.7 (median: 

25.2 kg/m2). To test if the slope (b) of the TEE-BEE and AEE-BEE relationships changes 

according to sex, age, and body composition, we added the interaction terms between BEE 

and each of these factors to the multiple regression model (in addition to other two-way 

interactions between sex, age, and body composition that control for sex differences and 

age-related changes in body composition; see Table S1B). Overall, energy compensation 

was not different in men vs women and did not vary with age (i.e., BEE × sex and 

BEE × age interactions, Table S1B). Hence, energy compensation seems to be a general 

phenomenon that applies equally to men and women, young and old. Note that FFM and FM 

were derived from isotope dilution, assuming a constant ratio for FFM hydration (73.2%) 

but according to published literature, FFM hydration may not be constant with adult age. 

However, any variation is probably small 19, and indeed unpublished analyses on data for 

over 1000 adults with ages ranging from 20 to over 70 indicates that the ratio of total body 

weight to FFM hardly changes (S. Heymsfield, pers. comm.).

Interestingly, the BEE × fat mass interaction was significant with a negative estimate (Table 

S1B), indicating that the slope of the TEE-BEE and AEE-BEE relationships decreases as fat 

mass increases. In other words, controlling for sex, age, and FFM, compensation increases 

with fat mass. People that are at the 10th percentile of the BMI distribution compensate 

29.7% of activity calories, whereas people at the 90th percentile compensate 45.7% of 

activity calories (Figure 3). It appears then, that either individuals with greater fat levels 

are predisposed to increased adiposity because they are stronger energy compensators or 

because they become stronger compensators as they get fatter. If the former, then two people 

can be equally active yet one puts on fat mass while the other stays lean. If the latter, 

then such a positive feedback loop may imply that using exercise as a strategy to escape 

high adiposity becomes less and less effective. Resolving the causality of this relationship 

between fat mass and energy compensation might be key to better deploying exercise in the 

fight against the growing obesity pandemic.

The energy compensation detected in the aforementioned analysis can be the result of 

processes occurring at two distinct levels of covariation: between individuals and within 
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individuals. Energy compensation at the between-individual level would indicate that people 

with higher-than-average AEE tend to have a lower-than-average BEE – a covariance due to 

genetic and/or permanent environmental factors that would cause the between-individual 

TEE-BEE slope (bbetween) to be <1. By contrast, energy compensation at the within­

individual level would indicate that, for a given individual, reversible increases in AEE are 

accompanied by decreases in BEE, and vice versa, which would cause the within-individual 

TEE-BEE slope (bwithin) to be <1. To partition the relationship between TEE and BEE at the 

between-and within-individual levels, we re-analysed data representing paired measurements 

of 36 men and 32 women aged between 70 and 90 y sampled 7 y apart within the context 

of a longitudinal study 20. This dataset provides the opportunity to estimate the extent 

of energy compensation occurring both between and within individuals in elderly people. 

Using a bivariate mixed model, we partitioned the slope of the TEE-BEE relationship 

(while accounting for sex, age, FFM, FM, and sex-and age-related differences in FFM and 

FM) at the between-and within-individual levels (Table S2A). This analysis clearly reveals 

that energy compensation occurs only at the within-individual level (Figure 4A). While 

the between-individual slope was bbetween±se = 1.86±1.05, the within-individual slope was 

bwithin±se = 0.15 ±0.17.

To further illustrate the compensation occurring at the within-individual level, we ran a 

second bivariate mixed model with AEE and BEE as the dependant variables. In this 

model, the within-individual covariance was significantly negative (Table S2B). The within­

individual correlation (±se) between AEE and BEE was r = −0.58±0.08 (Figure 4B). 

Hence, during extended periods when the studied cohort expended more energy on activity 

they compensated by reducing energy expended on basal processes (but individuals with 

higher-than-average AEE do not necessarily have a lower-than-average BEE). The within­

individual slope in these people indicates particularly strong energy compensation between 

AEE and BEE (Figure 4B). That is, in this sample of people, the calories they burn during 

bouts of activity are almost entirely compensated for by reducing energy expended on other 

processes such that variation in activity had little impact on TEE.

Measurements of BEE and TEE provide invaluable insights into energy management; the 

next step is to elucidate the proximate and ultimate mechanisms driving these observed 

patterns of energy compensation. One possible factor is energy intake. For example, if obese 

people tend to increase their food consumption in response to increased AEE less so than 

other demographics, they have less resources for other functions and this could encourage 

the body to energy compensate, reducing BEE 21. Another possible factor involved in 

energy compensation, which is relatively hard to measure and not available in our dataset, is 

fidgeting, or non-exercise activity thermogenesis (NEAT). In principle, NEAT can decrease 

in response to increases in AEE, although few studies have directly measured it 7 and 

reviews of the literature to determine whether NEAT in humans decreases to compensate or 

partially compensate for increases in AEE conclude that there is no evidence overall that 

NEAT systematically changes e.g. 6.

If energy compensation has an underlying genetic basis, in the future it might be possible 

to screen individuals to ascertain whether exercise would be a valuable fat loss intervention 

because they are ‘weak compensators’, or a fruitless fat loss intervention because they 

Careau et al. Page 4

Curr Biol. Author manuscript; available in PMC 2021 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are strong compensators (while recognising other benefits to exercise including protecting 

against weight regain 22, 23). Moreover, we need to understand whether there are costs to 

reducing BEE. If there are, such as for example a compromised immune system or slowed 

recovery from injury 24, 25, then for some individuals the point at which exercise levels reach 

a detrimental level will be considerably lower than for others.

The ever growing and diversifying range of fat loss plans and fads available to the public 

reflects the reality, well known to researchers, that prescribed exercise programmes for 

weight reduction rarely result in substantive or long-term changes in body mass 26. The few 

national guidelines that have been published converge on the recommendation of a 500-600 

kcal/d deficit through exercising and dieting to instigate fat loss 27. These guidelines are 

general for the population and do not factor in the variation in energy compensation 

exhibited by people with different levels of fat mass, as demonstrated in the current study. 

Public health strategies for fat loss should be revised to recognise energy compensation as 

our understanding progresses about which individuals compensate and by how much. In this 

vein, more research is needed on the potentially substantial diversity of energy compensation 

between sub-populations. In the future, personalised exercise plans targeting fat loss might 

be developed partly based on an individual’s genetic propensity for energy compensation.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests should be directed to and will be 

fulfilled by the lead contact, Lewis Halsey (l.halsey@roehampton.ac.uk).

Materials availability—All the data used in this study have already been published and 

are available in the public domain; the current manuscript presents a secondary analysis.

Data and code availability

• The data reported in this study cannot be deposited in a public repository 

because they are held by the management group of the IAEA DLW database. To 

request access, follow the instructions available at https://doubly-labelled-water­

database.iaea.org/dataAnalysisInstructions.

• The code used for all statistical analyses and the production of data figures has 

been deposited at Figshare and is publicly available as of the date of publication. 

The DOI is listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The International Atomic Energy Agency DLW database (v 3.1.2) is a world-wide collection 

of total energy expenditure (TEE) measurements 10. All TEE measurements were made 

using the stable isotope method of doubly-labelled water analysis 34, 39, and are based on 

recalculations of the original data using the latest DLW equations 11. Although the entire 
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database includes over 6,500 DLW measurements between 1981 and 2017, for the purpose 

of this study the database was restricted to TEE measures accompanied by measurements of 

BEE via indirect calorimetry. The database was also restricted to adult subjects (>18 y old) 

and we excluded subjects undergoing intense physical activity including professional sports 

training, and those who were pregnant, lactating, or diseased. Fat free (lean) mass (FFM) 

was derived from isotope dilution and fat mass (FM) was calculated by subtracting FFM 

from total body weight. Note that using total body weight and height-normalized indices 

of FFM and FM yielded similar results to using FFM and FM. Activity energy expenditure 

(AEE) was calculated as 0.9*TEE – BEE, assuming that the thermic effect of food accounts 

for 10% of the total energy budget 40. The average (±sd) physical activity level (PAL=TEE/

BEE) of the analysed database was 1.74±0.27 (range: 0.76 – 3.30) and 90% of observations 

were between 1.35 and 2.18 PAL (5th and 95th quartiles).

METHOD DETAILS

To test the mutually exclusive predictions arising from the energy management models 

(Figure 1C), we used multiple linear regressions with TEE as the dependent variable and 

sex, age, FFM, FM, and BEE as independent variables, on some or all of a dataset on 

1754 adults. FFM and FM were square-root transformed to reduce the influence of some 

potentially influential observations at the extreme upper end of the distribution (e.g., 6 

observations with >80 kg fat mass).

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were conducted in R using bespoke code. Details of the results of those 

analyses are found in the Results and Discussion section, and the Tables S1 and S2, with 

visualisation provided in Figures 2–4. Confidence intervals are provided for all regression 

slope estimates. Results were interpreted as statistically significant when associated with 

p<0.05. The first multiple regression model was run on the entire dataset to get an overall 

estimate of the TEE-BEE and AEE-BEE relationships after accounting for sex, age, FFM, 

and FM (Table S1A). We were then interested to test if the TEE-BEE and AEE-BEE 

relationships varied by sex, age, and body composition. To do so, we introduced two-way 

interactions between BEE and sex, age, FFM, and FM (Table S1B). To control for possible 

sex-and age-related changes in the effects of FFM and FM, we also included two-way 

interactions between body composition variables (FFM and FM) and sex and age (Table 

S1B). All independent variables (including sex) were centered prior to analysis, such 

that significance of main effects are estimated at the average values despite significant 

interactions in the model 41. We used the visreg function 42 to plot the partial residuals and 

illustrate the TEE-BEE and AEE-BEE slopes (Figure 2) and the interaction between BEE 

and FM (Figure 3). For these models, the residuals had homogeneity of variance and were 

normally distributed, and there were suitably low variance inflation factors for all covariates 

indicating limited linear covariance between the predictor variables 43.

Bivariate mixed model analysis—The Health, Aging, and Body Composition (Health 

ABC) study has produced repeated paired measurements of TEE and BEE in elderly men 

and women 44. The first set of measurements were taken between 1998 and 2000 on 

subjects in their 8th decade of life. A second set of measurements was carried out in 2006, 
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approximately 7 years after the first 20. We used bivariate mixed models in ASReml-R 45 

to partition the relationship between TEE and BEE at the between-vs. within-individual 

levels in men and women separately. Both TEE and BEE were fitted as response variables 

in a model that included (anonymous) individual identity as a random effect. This enabled 

modelling of the between-individual variances (Vbetween) in TEE and BEE as well as the 

between-individual covariance (COVbetween) between the two. The residuals were also 

modelled as an unstructured variance-covariance matrix, effectively capturing the within­

individual variances (Vwithin) in TEE and BEE as well as the within-individual covariance 

(COVwithin). The between-individual slope (bbetween) between TEE and BEE was calculated 

as COVbetween divided by Vbetween in BEE, while the within-individual slope (bwithin) was 

calculated as COVwithin divided by Vwithin in BEE. Note that the bivariate mixed model 

included age, FFM, and FM as fixed effects fitted to both TEE and BEE, and as such the 

slope estimates are conditioned on these variables. Moreover, interactions between age and 

FFM and age and FM were included to control for potential age-related changes in body 

composition. To better illustrate the relationship between AEE and BEE, we ran a second 

bivariate mixed model that was identical to the above except that TEE was replaced by 

AEE. For each model, assessment of the residuals indicated homogeneity of variance and 

normality, and suitably low variance inflation factors for all covariates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Energy budgets and competing hypotheses.
(A) Representation of the total energy expenditure (TEE) of endothermic animals as the sum 

of the energy invested in activity, reproduction, growth, thermoregulation, digestion (thermic 

effect of food; TEF), and basal energy expenditure (BEE; the minimum amount of energy 

required for the functioning [e.g., breathing] and the maintenance [e.g., tissue turnover] of 

vital systems). Proportions are somewhat arbitrary but recognize that in vertebrates BEE 

is typically a minor element of TEE 28. Any source of energy expenditure above BEE 

(except TEF) is apportioned as activity energy expenditure (AEE), which includes the costs 

of thermoregulation, reproduction and growth when present. (B) Representation of the TEE 

of most non-reproductive adult humans, in which there are no energy costs of growth or 

reproduction, and the cost of thermoregulation is assumed to be negligible. In this simplified 

energy budget, the proportions recognize that in adult humans ~60% of energy is spent on 

BEE (categorized into proportions based loosely on 29) and most of the AEE component 

is indeed represented by activity: locomotion, posture and ‘fidgeting’ 30. (C) Illustration 

of the various models that have been proposed to describe how humans and other animals 

manage their energy budget 31–35, and their associated predictions about the slope (b) of 

the relationship between TEE and BEE and between AEE and BEE. The left stack bar 

shows a simplified baseline version of TEE as the sum of BEE and AEE. Comparing the 
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left vs. right stacks shows the mean effect of an increase in AEE on BEE and TEE. The 

regression lines in the panels to the right show the predicted relationships between TEE 

and BEE and between AEE and BEE; example individual data points have been included 

to illustrate the predicted relationship in addition to some unexplained variation. The 

additive model assumes that AEE and BEE are independent, thus uncorrelated. Therefore, 

variation in BEE should add up to variation in TEE, with a b = 1 due to part-whole 

correlation. In other words, the additive model predicts that additional calories burned by 

undertaking extra activity results in an equivalent increase in total energy expenditure. By 

contrast, the performance model assumes that a greater ‘metabolic machinery’ is needed 

to support higher AEE due to increased assimilation of energy, and thus a b > 1 for 

the relationship between TEE and BEE. That is, the performance model predicts that the 

resultant total calories burned due to activity will be higher than just the calories expended 

during the activity because of additional energy spent on subsequent physical recovery 

and maintenance of a more expensive metabolic machinery to support this behaviour. 

Alternatively, both humans and animals may respond to greater energy being expended 

on activity over the long term by reducing the energy expended on other processes, a 

phenomenon captured by the compensation model. The compensation model assumes that 

energy budgets are somewhat constrained which forces trade-offs between energy invested 

into AEE and BEE, thus predicting a negative relationship between AEE and BEE and 

therefore a b < 1 for the relationship between TEE and BEE. It is currently unknown 

whether energy compensation occurs only under extreme conditions, or at least only during 

periods of prescribed exercise, where measured or inferred energy compensation has been 

documented on a number of occasions 36–38, or instead whether it is the default model of 

energy expenditure in humans living typical lives, who naturally adjust their activity and 

energy intake over time.
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Figure 2. Energy compensation in humans.
(A) Total energy expenditure (TEE; MJ·d−1) and (B) activity energy expenditure (AEE; 

MJ·d−1) as a function of basal energy expenditure (BEE; MJ·d−1) in 1,754 subjects included 

in this study, controlling for sex, age, and body composition. Panel A illustrates how the 

slope of the TEE-BEE relationship is <1 (compared to the 1:1 dotted line), whereas panel B 
illustrates the negative relationship between AEE and BEE.
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Figure 3. Compensation increases with fat mass.
(A) Frequency distribution of body mass index in the 1,754 subjects included in this study, 

showing where lie the 10th, 50th, and 90th percentiles (long dash, short dash, and dash-dot 

lines, respectively). (B) Total energy expenditure (TEE; MJ·d−1) as a function of basal 

energy expenditure (BEE; MJ·d−1), controlling for sex, age, and body composition. This 

figure illustrates the significant BEE × fat mass interaction (Table S1B), showing how 

compensation increases from 29.7% in people at the 10th percentile of the BMI distribution 

(red long dash line), to 45.8% in people at the 90th percentile of the BMI distribution (blue 

dash-dot line). Relationships are plotted separately for three broad BMI categories, but fat 

mass is treated as a continuous variable in the analysis (see Table S1B for estimates). The 

thin solid line indicates a 1:1 relationship.
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Figure 4. Energy trade-offs within individuals.
Residual (A) total energy expenditure (TEE; MJ·d−1) and (B) activity energy expenditure 

(AEE; MJ·d−1) as a function of basal energy expenditure (BEE; MJ·d−1) in elderly men and 

women (N = 68) with two pairs of TEE-BEE measures each. Within-individual slopes are 

illustrated by the thin black lines connecting the two residual values (grey dots; extracted 

from the bivariate mixed model, see Table S2) for each individual.

Careau et al. Page 18

Curr Biol. Author manuscript; available in PMC 2021 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Careau et al. Page 19

Key resources table

REAGENT or 
RESOURCE SOURCE IDENTIFIER

Software and algorithms

Custom-written R 
code (script) for 
the analysis and 
generation of data 
figures.

Custom-
written by the 
authors.

Figshare. Entitled ‘R script for Current Biology paper ‘Energy 
compensation and adiposity in humans’: https://figshare.com/articles/software/
R_script_for_Current_Biology_paper_Energy_compensation_and_adiposity_in_humans_/15054129
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