
UC Davis
Electrical & Computer Engineering

Title
Benchmarking Deep Learning Frameworks with FPGA-suitable Models on a Traffic Sign 
Dataset

Permalink
https://escholarship.org/uc/item/7dc8d5vb

Authors
Lin, Zhongyi
Ota, Jeffrey M.
Owens, John D.
et al.

Publication Date
2018-06-26

Data Availability
Associated data will be made available after this publication is published.
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7dc8d5vb
https://escholarship.org/uc/item/7dc8d5vb#author
https://escholarship.org
http://www.cdlib.org/


Benchmarking Deep Learning Frameworks with FPGA-suitable Models
on a Traffic Sign Dataset

Zhongyi Lin∗1, Jeffrey M. Ota2, John D. Owens1, and Pınar Muyan-Özçelik∗3

Abstract— We benchmark several widely used deep-learning
frameworks for performing deep-learning-related automotive
tasks (e.g., traffic sign recognition) that need to achieve real-
time and high accuracy results with limited resources available
on embedded platforms such as FPGAs. In our benchmarks,
we use various input image sizes on models that are suitable
for FPGA deployment, and investigate the training speed and
inference accuracy of selected frameworks for these different
sizes on a popular traffic sign recognition dataset. We report
results by running the frameworks solely on the CPU as well as
by turning on GPU acceleration. We also provide optimizations
we apply to fine-tune the performance of the frameworks. We
discover that Neon and MXNet deliver the best training speed
and inference accuracy in general for all our test cases, while
Tensorflow is always among the frameworks with the highest
inference accuracies. We also observe that on the particular
dataset we tested on (i.e., GTSRB), the image size of the region
of interest does not necessarily affect the inference accuracy,
and that using deep models, e.g., ResNet-32, which have longer
training times, might not provide improvements to inference
accuracy.

I. INTRODUCTION

Deep learning is the driving power behind many au-
tomotive computing tasks involved in driverless cars that
are on our horizon. This technique involves deep Convo-
lutional Neural Network (CNN) models that are usually
trained offline with powerful computers then transferred to an
optimized embedded system available in cars for real-time
inference. Since embedded systems have limited resources
and automotive tasks require real-time results with high
accuracy to protect the driver’s and/or passengers’ safety, we
need deep-learning-based systems that can achieve real-time
high-accuracy inference with limited resources. As shown
by Muyan-Özçelik et al. [9], we can exploit the inherent
parallelism in automotive tasks to make efficient use of the
limited computation resources of embedded systems in order
to achieve real-time results with high accuracy. Since FPGAs
provide high parallelism and power efficiency, they may be
a preferred embedded platform for performing autonomous
driving tasks, such as real-time traffic sign recognition with

∗Corresponding authors
1Zhongyi Lin and John D. Owens are with the Department of Electrical

and Computer Engineering, University of California, Davis, CA 95616
{zhylin,jowens}@ucdavis.edu

2Jeffrey M. Ota is with the Autonomous Driving and
Sports Research Group, Intel Labs, Santa Clara, CA 95054
jeffrey.m.ota@intel.com

3Pınar Muyan-Özçelik is with the Department of Computer Science, Cal-
ifornia State University, Sacramento, CA 95819 pmuyan@csus.edu

- The source code of this benchmark can be accessed from https:
//github.com/owensgroup/TrafficSignBench, which is under
construction.

a pre-trained model. Several different popular deep-learning
frameworks are suitable to train such models for FPGAs. In
order to choose the most suitable framework, we investigate
the tradeoffs between the selected frameworks and bench-
mark them for performing a traffic-sign-recognition task
using models that are suitable for performing real-time and
high-accuracy inference on the limited resources of FPGAs.

CNNs have been used in traffic sign recognition since the
start of this decade [2]. One restriction of CNNs is that the
input image size must be fixed after the network is defined
and trained. However, in real applications, the detection
phase of the traffic sign recognition task performed prior to
the classification phase usually proposes regions of interest
(ROIs) with different sizes. It is critical to explore the size
that ROIs are resized to, which also determines the input im-
age size of the CNN due to three reasons: 1) Inferencing a big
image might not be affordable on FPGAs that have limited
resources; 2) The low level implementation and optimization
of computation of a framework is usually unclear to users.
For instance, some specific sizes might be optimized on
some frameworks (e.g., Neon’s GPU kernels are optimized
for sizes being multiples of 4); 3) An image size being
too big or too small might affect the inference accuracy.
In addition, we would also like to minimize the time we
spend on training the model. Therefore, we benchmark the
performance, i.e., training speed and inference accuracy, of
several popular deep learning frameworks on a popular traffic
sign recognition dataset by primarily focusing on different
image sizes. We collect results by running the frameworks
solely on the CPU and with GPU acceleration. Although
currently using GPUs for training CNNs is the preferred
method, we also report CPU results since training with novel
CPU backends (e.g., an Intel Xeon Phi coprocessor) may also
be preferred in the future if they deliver more power-efficient
high-performance computation than GPUs.

Prior to our research, Chu et al. [16] comprehensively
evaluated five mainstream deep learning frameworks over a
series of metrics on MNIST and CIFAR datasets. For our
benchmarks, we worked with a similar set of frameworks
including CNTK [8], MXNet [1], Neon [12], PyTorch [15],
and Tensorflow [3]. However, since we focus on traffic sign
recognition, we have used a widely-used dataset, the German
Traffic Sign Recognition Benchmark (GTSRB) [17] dataset
that contains traffic sign images. In addition, we have utilized
three models in our study. These are the model designed by
Ciresan et al. [2] (referred to by the name of the institution,
IDSIA, in the rest of the paper) and two Deep Residual
Neural Networks designed by He et al. [4], ResNet-20 and

https://github.com/owensgroup/TrafficSignBench
https://github.com/owensgroup/TrafficSignBench


ResNet-32. Given that real-time traffic sign recognition on
autonomous cars needs to achieve high accuracy results with
limited resources, these three models are considered to be
suitable for real-time inference on the FPGA due to their
small sizes and high inference accuracy.

Hence, the contributions of our research include a bench-
mark of five popular frameworks over three CNN models that
are suitable for FPGA inference with three different input
sizes, a combination that was not investigated in previous
studies. We have specifically investigated the effect of using
different image sizes on training time and accuracy since
input size is important for utilizing the selected models
for the traffic sign recognition task that involves different
ROI sizes. In addition to providing in-depth discussion of
these benchmarking results, we also provide optimization
techniques that are used for each framework that can be
utilized by future studies that target these frameworks. We
believe our discussions and optimization tips can guide
engineers and researchers in choosing and fine-tuning the
most suitable frameworks in terms of runtime and accuracy
for training CNN models for traffic sign recognition on
FPGAs.

The rest of the paper starts with a section of background
information, introducing the frameworks, dataset, and models
we use in the experiments. Following that, we explain our
methodology, including image preprocessing, implementa-
tion of ResNets, and specifications and optimizations in
Section III. Results and analysis are presented in Section IV,
while in the last two sections we present potential future
work and conclusions.

II. BACKGROUND

A. Frameworks

The frameworks we use include CNTK, MXNet, Neon,
PyTorch and Tensorflow, which are all currently popular
and actively used in both industry and academia.

[CNTK] The Microsoft Cognitive Toolkit (CNTK) is a
unified deep-learning toolkit that allows constructing popular
model types like CNNs, feed-forward Deep Neural Net-
works (DNNs), Recurrent Neural Networks (RNNs), and
Long Short Term Memory networks (LSTMs) via directed
computational graphs. It is considered a framework with top-
tier performance for training neural networks across multiple
CPUs/GPUs.

[MXNet] Amazon-developed Apache MXNet is a deep
learning framework with high portability among multiple
programming languages. With MXNet, one can mix sym-
bolic and imperative programming to maximize efficiency
and productivity, since both types of execution are paral-
lelized and optimized. MXNet also claims to have great
scalability across multiple machines.

[Neon] Intel Nervana’s reference neural network frame-
work, Neon, includes optimizations for various hardware
but specifically for Intel CPUs. It is tightly integrated with
the Intel MKL library for machine learning as well as the
latest GPU kernel libraries. Neon claims to have the fastest

performance among deep learning libraries for fast iteration
and model exploration.

[PyTorch] Developed by Facebook AI, PyTorch is a deep
learning Python package that provides both GPU-accelerated
tensor computation and deep neural network implementa-
tion on a tape-based autograd system that remembers all
operations it executed in the forward phase and repeats
them in the backward phase for automatic differentiation.
Unlike many other frameworks such as Tensorflow that rely
on static computational graphs, PyTorch adopts dynamic
computational graphs, which are valuable when computation
cannot be determined and memory must be dynamically
allocated to carry out tasks such as the ones involved in
natural language processing (NLP).

[Tensorflow] Introduced as Google Brain’s tool for
machine learning and deep neural network research,
Tensorflow soon became a widely used deep learning
framework and currently owns one of the largest
communities among deep learning frameworks. It is
known for its flexible architecture and easy deployment on
various hardware.

In our research, we use the native APIs of CNTK (v2.5.1),
Neon (v2.6.0), MXNet (v1.1.0), PyTorch (v0.4.0), and Ten-
sorflow (v1.7).

B. Dataset

The GTSRB dataset is a popular multi-class traffic sign
dataset with detailed annotation for classification and/or
detection purpose. It originates from the International Joint
Conference on Neural Networks (IJCNN) 2011 and is main-
tained by Ruhr University of Bochum. It contains more than
50000 images in total comprising 43 different classes of
traffic signs. Images are in ppm format and have sizes varying
from 15×15 to 250×250. Each image contains a traffic sign
that belongs to one of the 43 classes. A tightly bounded ROI
of each image is annotated in the dataset for further cropping.
GTSRB provides RGB images as well as Haar, HueHist, and
HOG representations of images.

C. Models

The models we train on include the CNN model designed
by Ciresan et al. [2] (IDSIA), which is memory-friendly on
FPGAs and achieves greater than 99% classification accuracy
with proper preprocessing (ranked first in the IJCNN com-
petition in 2011). Ciresan et al. showed that with appropriate
preprocessing, CNNs can achieve high accuracy even with
only a small number of layers. The structure of the IDSIA
model is shown in Table I:

We also investigate models that are developed more re-
cently. He et al. [4] introduced ResNets (ranked first in
the ImageNet competition in 2015) to address the vanish-
ing/exploding gradient problem, which liberated CNNs from
the limit of depth. In addition to having high accuracy,
ResNets are also considered FPGA-friendly for three rea-
sons: 1) Different from other models that originated from
ImageNet competitions, their input sizes are flexible. This



Layer Type # maps & neurons Kernel

0 input 3 maps of 48x48 neurons
1 convolutional 100 maps of 46x46 neurons 3x3
2 max pooling 100 maps of 23x23 neurons 2x2
3 convolutional 150 maps of 20x20 neurons 4x4
4 max pooling 150 maps of 10x10 neurons 2x2
5 convolutional 250 maps of 8x8 neurons 3x3
6 max pooling 250 maps of 4x4 neurons 2x2
7 fully connected 200 neurons
8 fully connected 43 neurons

TABLE I: Structure of the IDSIA model

Fig. 1: ResNet’s basic/bottleneck building blocks

means ResNets can be used in many different applications;
2) ResNets consist of repetitive basic/bottleneck building
blocks depicted in Table I, which makes them suitable to
be deployed on FPGAs; 3) The number of parameters of a
ResNet model is comparatively small. For instance, ResNet-
32 with input size 32 by 32 has only 0.46 million parameters,
while AlexNet and VGG, both of which are used in the
acceleration of CNNs on FPGAs by researchers like Suda
et al. [18] and Wang et al. [19], have 60 million and 138
million parameters respectively.

III. METHODOLOGY

Our experiments are completed on a Ubuntu 16.04 LTS
machine with an Intel i7-7700K 4.2 GHz CPU and an
NVIDIA GTX 1050 Ti GPU with 16 GB memory. CUDA
(v9.0) and MKLML (v20171227) are used as packages to
support GPU and CPU acceleration. The experiment code is
programmed with Python 3.5 and libraries including MKL
(v2018.0.0), PyCuda (v2017.1.1), and PyGPU (v0.7.5).

A. Image Preprocessing

Generally, datasets for traffic sign recognition have small
but varying image size, and a medium number of classes, i.e.,
fewer than 100. These images usually suffer from various
illumination conditions that require some preprocessing. For
instance, histogram equalization can be used as a preprocess-
ing step to improve the image quality. Hence, we perform im-
age preprocessing on the dataset images before they are used
to construct a data source for the CNN model training. The
original images are first cropped according to the annotated
bounding boxes, then resized to 32 by 32, 64 by 64 (only
for ResNets), and 48 by 48 (for IDSIA and ResNets). These
images are further processed with contrast limited adaptive
histogram equalization (CLAHE) [20]. We have decided to
apply CLAHE, since it resulted in a minimum error rate
among four preprocessing techniques used by Ciresan et al.

We did not conduct more complicated preprocessing on the
current color channels (BGR) or other channels since while
performing real-time inference, extra preprocessing will add
an additional burden to FPGA’s performance.

B. Construction of ResNets for Experiments

We follow He et al.’s way of constructing ResNets for
the CIFAR-10 dataset to construct our ResNet models for
different input sizes. The total number of layers of a ResNet
model, l, can be specified as l = 6n+2, where n is conven-
tionally an odd number starting from 3. In our experiments,
we pick n = 3 and n = 5 to build two models, ResNet-20
and ResNet-32. Since the side length of the feature maps
will be halved twice in a ResNet model, which requires the
input size to be a multiple of 4, it is appropriate for us to
use 32, 48, and 64 as sizes of the input images after resizing.
The implementations of ResNets are ported from the official
model “zoo” of each framework. We make necessary changes
to the code to guarantee images of different sizes can be fed
to each model correctly, and the global average pooling layer
at the end works properly.

C. Specifications and Optimizations

In our experiments, we use a Stochastic Gradient Descent
(SGD) learner with 0.01 learning rate and 0.9 momentum as
the optimizer, and set batch size to 64 and epoch number
to 25. We also use BGR channel order and image size
(3, n, n), where n = 32, 48, and 64. Weights of convolutional
layers are initialized with the he normal (also named the
kaiming normal) initializer [5], which claims to have better
convergence.

To obtain the best performance for each framework, es-
pecially on the CPU, we optimize them individually by
building them from source or installing optimized Python
wheels. Usually doing these optimizations will improve the
performance by adding MKL support or taking advantages
of the local machine (e.g., utilizing multiple CPUs and/or
advanced instruction sets like SSE and AVX). We test each
framework with a single epoch (to reduce the testing time)
with the IDSIA model on the GTSRB dataset with training
set size 31367. The input size we use in these tests is 48 by
48 and the batch size is 64.

We apply system optimizations to improve performance
of the frameworks when they solely run on the CPU as well
as when GPU acceleration was turned on. We also perform
code optimizations to enhance the speed and accuracy of
these frameworks. All these optimizations are explained in
the following sub-sections.

1) System optimizations to improve the CPU performance:
We improve the speed of MXNet running on the CPU from
219.9 s/epoch to 114.4 s/epoch by setting USE MKL=1
and USE MKL EXPERIMENTAL=1 before building, or al-
ternatively, installing the mxnet-cu90mkl wheel. We boost
the CPU performance of Neon from 198.8 s/epoch to
141.5 s/epoch by setting OMP NUM THREADS to the num-
ber of physical cores of the local machine (i.e., 4 in this



Fig. 2: GPU average batch training time versus (a) input sizes, on ResNet-20, (b) input sizes, on ResNet-32 and (c) all
models, with the same input size 48x48.

Fig. 3: CPU average batch training time versus (a) input sizes, on ResNet-20, (b) input sizes, on ResNet-32, and (c) all
models, with the same input size 48x48.

Framework
GPU CPU

ResNet-20 ResNet-32 ResNet-20 ResNet-32

ttrain acc ttrain acc ttrain acc ttrain acc

CNTK 313.80 96.93% 502.60 97.24% 1731.30 96.63% 2582.35 97.12%
Neon 288.65 97.68% 461.50 97.72% 888.14 97.54% 1434.08 97.78%

MXNet 344.82 96.61% 531.36 96.26% 983.94 97.30% 1560.08 96.40%
PyTorch 319.53 94.00% 509.17 97.00% 3372.83 96.00% 5420.62 97.00%

Tensorflow 357.01 97.32% 558.48 97.60% 3964.77 97.63% 6260.26 97.85%

TABLE II: Training time (in seconds) and inference accuracy for input size 32 by 32.

Framework
GPU CPU

ResNet-20 ResNet-32 ResNet-20 ResNet-32

ttrain acc ttrain acc ttrain acc ttrain acc

CNTK 1109.80 96.49% 1771.54 96.79% 7763.12 96.86% 11297.63 96.90%
Neon 1081.47 97.35% 1760.56 97.76% 3263.59 96.80% 5309.61 97.40%

MXNet 1179.94 96.73% 1849.95 97.34% 4084.95 97.48% 6494.11 97.35%
PyTorch 1177.42 95.00% 1877.46 96.00% 12944.11 96.00% 21551.92 97.00%

Tensorflow 1267.75 98.00% 2001.53 98.34% 12747.86 97.96% 19912.17 96.40%

TABLE III: Training time (in seconds) and inference accuracy for input size 64 by 64.

Framework
GPU CPU

IDSIA ResNet-20 ResNet-32 IDSIA ResNet-20 ResNet-32

ttrain acc ttrain acc ttrain acc ttrain acc ttrain acc ttrain acc

CNTK 393.4 96.78% 655.72 96.37% 1047.60 96.64% 3657.14 96.45% 4041.97 96.63% 5994.42 96.77%
Neon 432.2 95.87% 618.46 97.35% 1001.42 98.27% 3557.70 96.07% 1877.23 97.49% 3057.35 98.02%

MXNet 392.7 96.55% 712.59 96.80% 1116.57 97.32% 2711.96 96.76% 2268.31 97.36% 3605.97 97.14%
PyTorch 455.5 96.00% 697.94 97.00% 1114.56 96.00% 6029.23 96.00% 7037.74 97.00% 11368.58 97.00%

Tensorflow 491.92 96.37% 778.71 97.36% 1220.48 97.26% 6355.15 96.29% 8086.93 97.77% 12268.18 97.49%

TABLE IV: Training time (in seconds) and inference accuracy for input size 48 by 48.



case), and KMP AFFINITY to compact,1,0,granularity=fine
as Intel Nervana suggests [10]. We improve Tensorflow’s
CPU training speed from 298.6 s/epoch to 167.8 s/epoch
after installing a Python wheel that is prepared by TinyMind
and optimized with SSE4.1, SSE4.2, AVX, AVX2, FMA, and
MKL support available on the local machine. Notice that
OMP NUM THREADS and KMP AFFINITY should also be
set with the same values we set for Neon to achieve this
speedup. Also note that this wheel may not contain the latest
Intel optimizations to Tensorflow. Since CNTK and PyTorch
all come with MKL support by default, there are no such
optimizations to be done on them.

2) System optimizations to improve the GPU perfor-
mance: Since currently almost all the mainstream frame-
works rely on the cuDNN library for CUDA-based GPU
computation, as long as cuDNN and CUDA are correctly in-
stalled and configured, building frameworks from source will
not affect their performance on the GPU. One exception is
PyTorch. We boost its GPU performance from 22.4 s/epoch
to 21.1 s/epoch after adding LAPACK support by installing
the magma-cuda90 library.

Notice that the optimization techniques mentioned above
might affect the training convergence rate. However, since
the number of epochs we use (e.g., 25) guarantees the models
to be overfitted in our tests, it is unnecessary to consider the
effect of different convergence rates on inference accuracy.

3) Code optimizations to improve speed and accuracy:
Code optimization can also be done to improve speed and
accuracy. For CNTK, before being passed to minibatch
source constructor, numpy arrays of data are converted to
contiguous arrays if they were not in order to improve com-
putation efficiency. Since delicate time measurement cannot
be done merely with the callbacks passed to the common
training session function, we create a training loop for more
flexible time measurement. This might sacrifice some of
CNTK’s speed advantage (especially on the GPU). In fact,
it is suggested that rather than creating a customer training
loop for each epoch, the training session function should
be used for a higher training speed. Another difference of
CNTK is that it sums the gradient of each minibatch for
parameter updates instead of averaging the minibatches like
other frameworks such as Tensorflow. CNTK also differs
from other frameworks in the sense that it normalizes the
gain for SGD learner with momentum. These two features
of CNTK usually decrease the inference accuracy of CNTK
compared to other frameworks. To resolve this problem we
set unit gain to False and use mean gradient to True for the
SGD learner, and bring CNTK back to the same evaluation
standard with other frameworks. We show the related results
in Section IV.

We also explore code optimization opportunities on Py-
Torch. One optional parameter of the Dataloader function,
num workers, can be set to use multiple threads for data
loading. We try 0 (default), 4, and 16, but find that the
training speed per batch is decreased from 21.1 s/epoch to
22.3 s/epoch and 23.4 s/epoch, which contradicts our expec-
tation. One possible reason is that compared to huge datasets

like ImageNet, the datasets we use has a much smaller size,
for which the overhead of multithreading dominates the code
running time. As a result, we use the default value 0 for our
experiments.

IV. RESULTS AND ANALYSIS

In Fig. 2, we present plots that provide the batch training
time on the GPU vs. the following variables: two ResNets
with different input sizes and all models with a fixed input
size 48 by 48. In Fig. 3, we show the CPU counterparts
of the same plots. We also present the total training time
and inference accuracy of all frameworks, models, and input
sizes on the GPU and CPU in Tables II, III, and IV, where
the best results are shown in bold.

A. Training Speed on the GPU

Training speed results on the GPU show that Neon is the
fastest in most cases. There is only one exception: MXNet
ranks first on IDSIA when the input size is 48 by 48. In
general, the runtime of all frameworks are fairly close to
each other. In most of the test cases, the training speed of
the frameworks has the following descending order: Neon,
CNTK, PyTorch, MXNet, and Tensorflow.

B. Training Speed on the CPU

Training speed results on the CPU show that Neon and
MXNet have the fastest speed. Similar to the GPU results,
Neon ranks first in most of the cases, except for the IDSIA
case, where it is surpassed by MXNet. An interesting discov-
ery is that the CPU runtimes of MXNet and Neon training
for IDSIA are longer than that of for ResNet-20, which is
deeper than IDSIA. The reason could be that the massive
computation at the two final fully-connected layers may not
be optimized for CPUs as effectively as for GPUs on these
two frameworks.

Compared with the GPU results where CNTK has a
runtime that is very close to Neon and MXNet, on the CPU,
CNTK does not scale as well as Neon and MXNet do when
the model becomes deeper and the input size becomes larger.
Similar to CNTK, PyTorch’s and Tensorflow’s runtime on the
CPU is not as close to Neon and MXNet as it is on the GPU.
In general except for the IDSIA case, the training speed of
the frameworks has the following descending order: Neon,
MXNet, CNTK, PyTorch, and Tensorflow.

C. Inference Accuracy on the GPU

In terms of inference accuracy, Neon and Tensorflow
provide the best performance. Over the seven cases we test,
Neon and Tensorflow rank first in three cases each, while
CNTK ranks first in the remaining case. However, the gap
between their inference accuracies and that of other frame-
works is not very big. For all frameworks, the two ResNet
models have a clear advantage against the IDSIA model as
expected. However, one ResNet model does not dominate
over the other. Among all the three input sizes we tested,
although we do not observe any of these sizes resulting in
a dominating inference accuracy, the best performance on



average was reported with the 64 by 64 input size on ResNet-
32.

D. Inference Accuracy on the CPU

Similar to the GPU results, Neon and Tensorflow still have
the best inference accuracy on the CPU. One or the other
ranks first in all cases, except for the IDSIA case where
MXNet ranks first. Again, the two ResNet models outper-
form the IDSIA model as expected, while their accuracies
are almost the same. In addition, just like on the GPU, no
input size results in a dominating inference accuracy.

E. Summary of Findings

Based on these results, we see that among the five frame-
works Neon has the fastest average training speed. Its infer-
ence accuracy is also one of the best, along with Tensorflow,
which has slower training speed on both the CPU and GPU.
MXNet also provides outstanding performance on the two
metrics, which is comparable with that of Neon. CNTK,
PyTorch, and MXNet all have training speeds very close to
that of Neon and inference accuracy close to Tensorflow on
the GPU. However, CNTK, PyTorch, and Tensorflow suffer
from a training speed degradation on the CPU. Overall, in
terms of both training speed and inference accuracy, we
consider Neon and MXNet to be the most suitable framework
for training CNNs on both GPUs and CPUs.

We observe that on both the CPU and GPU, while the
two ResNet models achieve higher accuracies than the ID-
SIA model as expected, ResNet-32 does not dominate over
ResNet-20 and instead, they both have similar accuracies.
This could be explained by overfitting, as ResNet-32 might
be unnecessarily big for our dataset. Thus, for datasets
similar to GTSRB, we do not recommend using models
deeper than ResNet-20 since they would require longer
training time and in return might not bring any improvements
to inference accuracy. We also observe that changing the
input size does not necessarily affect the inference accuracy
nor the scalability of the training runtime of ResNet-20 and
ResNet-32 on the GTSRB dataset. Hence, we expect that
reshaping the ROIs to a larger size might not improve the
inference accuracy on FPGAs either. In our experiments, we
observe that 32 by 32 is a computationally economical input
size for training traffic sign dataset without compromising
inference accuracy.

In addition, for each framework, when the input size,
model architecture and other settings are fixed, we notice
that the inference accuracy on the CPU and the GPU are dif-
ferent. This is because the CPU training process is generally
deterministic (by fixing a random seed) and the GPU training
process is generally not (at least in part because of scheduling
thread blocks to processors is non-deterministic). By fixing
the random seed in CPU training, we can reproduce training
results on the CPU, but cannot do the same on the GPU,
and thus we cannot generate identical pre-trained models
across devices. In fact, in our experiments, no framework
can reproduce training results on the GPU. CNTK is the only
framework that can reproduce the training result of the initial

20–30 batches by forcing deterministic algorithms, but the
training loss deviates after this point. Forcing deterministic
algorithms also reduces training speed: we run the one-
epoch test introduced previously and find that this setting
slows down CNTK’s training speed from 16.6 s/epoch to
29.4 s/epoch on the GPU.

Finally, given the fact some of the frameworks have a
longer CPU runtime while training IDSIA than training
ResNet-20, possibly due to the non-optimized feature map
sizes and massive computation at fully-connected layers,
we expect CNNs that are not tested in this study and that
have these two features might also go through the same
bottlenecks, especially when training on the CPU using these
frameworks.

V. FUTURE WORK

Our ultimate goal is to deploy the models we train onto
the FPGA using OpenCL and perform real-time inference on
the FPGA. There are several OpenCL frameworks for DNN
deployment on FPGAs. Among these available frameworks,
we are using PipeCNN created by Wang et al. [19], which
is the only open-source one. Our next step is to deploy pre-
trained models to the FPGA using PipeCNN and investigate
the real-time inference performance of the FPGA for dif-
ferent models and input image sizes. Although currently we
only focus on classification, in the future we would like to
perform detection and classification of objects in one pass.
We plan to investigate alternative solutions for realizing this
extension (e.g., YOLOv2 [14], SSD [7] and MobileNets [6])
and deploy the best alternative for performing real-time
detection and classification on the FPGA. Because of the
high inference accuracy, the two ResNet models could be
used as the base network of SSD in the future. For traffic
sign detection and classification purpose, the neural network
could be trained on GTSDB dataset [13], the “detection”
counterpart of GTSRB.

Training on larger traffic sign datasets and benchmarking
each framework’s data loading speed is another future re-
search direction we plan to explore. The GTSRB dataset we
train on has a relatively small size, which causes no problems
for data loading. Large datasets like ImageNet challenge the
framework for a better data loading solution. Fortunately,
many frameworks have developed data loaders for large raw
datasets. For instance, Intel Nervana’s Aeon loader [11] has
support on reading images, videos and audios, and perform-
ing specific preprocessing like cropping, deformations, and
shuffling before feeding the data to computation on deep
learning frameworks including Neon. Hence, we plan to
explore the Aeon loader’s capabilities for larger traffic sign
datasets that we plan to utilize in the future.

VI. CONCLUSIONS

In our research, we benchmark training speed and infer-
ence accuracy of CNTK, MXNet, Neon, PyTorch, and Ten-
sorflow on three models that are suitable for achieving real-
time and high accuracy inference on the limited resources of
the FPGA, namely IDSIA, ResNet-20, and ResNet-32, with



different input sizes. We present optimization techniques that
we have used for each framework and provide in-depth
discussion of CPU and GPU results. In our experiments,
we investigate the effect of using different image sizes on
results, which is important for models that can be utilized in
traffic sign recognition tasks involving different ROI sizes.
Our study provides insights on identifying and optimizing the
most suitable framework in terms of runtime and accuracy
for training models that are suitable for performing traffic
sign recognition on FPGAs.

We conclude that generally Neon and MXNet have the
best training speed and inference accuracy in all our test
cases. In addition, we observe that Tensorflow has one
of the highest accuracies among the five frameworks on
both the GPU and CPU. Since changing the input size
does not necessarily affect the inference accuracy, while
training ResNet-20 and ResNet-32 on the GTSRB dataset,
we propose 32 by 32 as the input size for traffic sign
classification, which is computationally economical without
sacrificing inference accuracy. We also compare the models
and see that ResNet-32 has almost the same inference
accuracy as ResNet-20. This indicates that although ResNet-
32 and other deeper models have much longer training times
than shallower models, in return they might not provide
improvement on the inference accuracy for datasets that have
similar characteristics to GTSRB. Our future plan includes
both benchmarking frameworks on larger and/or augmented
traffic sign datasets as well as testing the pre-trained models
deployed on FPGAs.

ACKNOWLEDGMENT

Thanks to Intel Labs for the funding and the technical
support of this project.

REFERENCES

[1] Amazon. MXNet’s official page. https://mxnet.apache.
org/. Accessed: 2018-01-28.

[2] Dan Claudiu Ciresan, Ueli Meier, Jonathan Masci, and Jürgen Schmid-
huber. A committee of neural networks for traffic sign classification.
In International Joint Conference on Neural Networks, pages 1918–
1921, 2011.

[3] Google. Tensorflow’s official page. https://www.tensorflow.
org/. Accessed: 2018-01-28.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. Computing Research Repos-
itory, abs/1512.03385, 2015.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on ImageNet
classification. Computing Research Repository, abs/1502.01852, 2015.

[6] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. Computing Research Repository, abs/1704.04861, 2017.

[7] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott E. Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD:
single shot multibox detector. Computing Research Repository,
abs/1512.02325, 2015.

[8] Microsoft. CNTK’s official page. https://www.microsoft.
com/en-us/cognitive-toolkit/. Accessed: 2018-01-28.

[9] Pınar Muyan-Özçelik, Vladimir Glavtchev, Jeffrey M. Ota, and
John D. Owens. Real-time speed-limit-sign recognition on an em-
bedded system using a GPU. In Wen-mei W. Hwu, editor, GPU
Computing Gems, volume 1, chapter 32, pages 497–516. Morgan
Kaufmann, February 2011.

[10] Intel Nervana. Neon’s github. https://github.com/
NervanaSystems/neon. Accessed: 2018-01-28.

[11] Intel Nervana. Nervana aeon’s official page. http://aeon.
nervanasys.com/index.html/. Accessed: 2018-01-28.

[12] Intel Nervana. Nervana neon’s official page. https://neon.
nervanasys.com/index.html/. Accessed: 2018-01-28.

[13] Ruhr University of Bochum. GTSRB’s official page. http://
benchmark.ini.rub.de/. Accessed: 2018-01-28.

[14] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger.
Computing Research Repository, abs/1612.08242, 2016.

[15] Facebook AI Research. PyTorch’s official page. http://pytorch.
org/. Accessed: 2018-01-28.

[16] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. Bench-
marking state-of-the-art deep learning software tools. Computing
Research Repository, abs/1608.07249, 2016.

[17] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel.
Man vs. computer: Benchmarking machine learning algorithms for
traffic sign recognition. Neural Networks, (0):–, 2012.

[18] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei
Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-optimized
OpenCL-based FPGA accelerator for large-scale convolutional neural
networks. In Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’16, pages
16–25, New York, NY, USA, 2016. ACM.

[19] Dong Wang, Jianjing An, and Ke Xu. PipeCNN: An OpenCL-
based FPGA accelerator for large-scale convolution neuron networks.
Computing Research Repository, abs/1611.02450, 2016.

[20] Karel Zuiderveld. Graphics Gems IV, Contrast Limited Adaptive
Histogram Equalization. pages 474–485. Academic Press Professional,
Inc., San Diego, CA, USA, 1994.

https://mxnet.apache.org/
https://mxnet.apache.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://github.com/NervanaSystems/neon
https://github.com/NervanaSystems/neon
http://aeon.nervanasys.com/index.html/
http://aeon.nervanasys.com/index.html/
https://neon.nervanasys.com/index.html/
https://neon.nervanasys.com/index.html/
http://benchmark.ini.rub.de/
http://benchmark.ini.rub.de/
http://pytorch.org/
http://pytorch.org/

	Introduction
	Background
	Frameworks
	Dataset
	Models

	Methodology
	Image Preprocessing
	Construction of ResNets for Experiments
	Specifications and Optimizations
	System optimizations to improve the CPU performance
	System optimizations to improve the GPU performance
	Code optimizations to improve speed and accuracy


	Results and Analysis
	Training Speed on the GPU
	Training Speed on the CPU
	Inference Accuracy on the GPU
	Inference Accuracy on the CPU
	Summary of Findings

	Future Work
	Conclusions
	References



