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Antimicrobial resistance and genomic epidemiology of enteric bacteria on the farm-to-fork 

interface 

Katie Lee 

University of California, Davis, 2024 

Antimicrobial resistance (AMR) is one of the most serious public health threats of the century. 

Resistant bacteria and AMR genes (ARGs) can spread through human and animal populations through 

pathways such that selective pressures in one population inextricably impacts others on the One Health 

continuum. This dissertation takes a farm-to-fork approach on AMR by evaluating the distribution and 

risk factors for AMR in retail products, AMR co-selection in food-producing animals, and genomic 

profiles of these bacteria. 

In Chapter 1, a cross-sectional study was conducted to assess the distribution and AMR profiles 

of Salmonella from retail meat products in California. From multivariable logistic regression, season of 

purchase and meat type were significantly associated with the isolation of Salmonella. Whole genome 

sequencing (WGS) characterized Salmonella isolates into 14 distinct serotypes corresponding to 17 

MLST patterns. Diverse ARGs including those of high public health significance and putative plasmids 

were identified. The IncFIB(pN55391) replicon previously reported in connection to the worldwide 

dissemination of pESI-like mega plasmid carriage in an emerged S. Infantis clone was detected in four of 

the six multidrug-resistant (MDR) isolates. 

In Chapter 2, Escherichia coli from samples in Chapter 1 were assessed to gain further insight on 

the clinical and epidemiologic risks associated with AMR in retail meat products from California. 

Phenotypic resistance to ampicillin, gentamicin, streptomycin, and tetracycline were significantly 

associated with meat type, with poultry counterparts (chicken or ground turkey) exhibiting higher odds 

for resistance compared to non-poultry meats (beef and pork). Clustering analysis and co-occurrence 

networks revealed that genomic AMR determinants of E. coli from retail meat were highly heterogeneous 

with sparsity of shared gene networks and minimally driven by retail-level factors of meat type, season of  

purchase, packaging, and antibiotic label claims.  

v 
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In Chapter 3, the impact of dietary zinc supplementation in pre-weaned dairy calves on 

phenotypic AMR of fecal Enterococcus spp. and E. coli was investigated. Accelerated failure time (AFT) 

models were constructed to determine the association between zinc treatment and AMR, with 

exponentiated coefficients adapted for minimum inhibitory concentration (MIC) values instead of time 

representing the degree of change in AMR (MIC Ratio, MR). Zinc supplementation did not significantly 

alter the MIC in Enterococcus spp. for 13 tested antimicrobials and in E. coli for azithromycin and 

ceftriaxone. However, a significant reduction in E. coli MIC values was observed for ciprofloxacin (MR= 

0.17, 95% CI 0.03–0.97) and nalidixic acid (MR= 0.28, 95% CI 0.15–0.53) for zinc-treated compared to 

placebo-treated calves. 

In Chapter 4, whole-genome comparative analysis was conducted to investigate the host-microbe 

interface of MDR E. coli from dairy calves. The pangenome of E. coli was open, with all-by-all genome 

similarity comparisons clustering primarily by sequence type (ST) rather than host factors of diarrheal 

disease, zinc supplementation, and antimicrobial exposure. E. coli lacked the typical virulence factors of 

diarrheagenic strains, however virulence factors overlapping with those in major pathotypes were 

identified, with the most prevalent genes corresponding to iron acquisition. Dietary zinc exposure was not 

associated with the selection of individual ARGs, however significant associations between the 

occurrence of certain ARGs and metal resistance genes were identified. 

Collectively, this dissertation provides greater insight into the epidemiology of AMR in enteric 

bacteria of public health significance. This improved understanding of the distribution and drivers of 

AMR in food products and food-producing animals will inform future AMR monitoring and control 

strategies by supporting more targeted approaches to mitigate AMR from farm-to-fork. 
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Introduction 

The Antimicrobial Resistance Crisis 

Antimicrobial resistance (AMR) is one of the most serious public health threats faced in this 

century, with the occurrence of drug-resistant organisms augmented by the ever-growing range of 

infections, limited progress towards discovery of additional antimicrobial agents, and the imminent 

development of resistance to currently available drugs (Michael et al., 2014). In 2019, the global burden 

of bacterial AMR was estimated to directly account for 1.27 million deaths and contribute to 4.95 million 

deaths (Murray et al., 2022). Recent estimates suggest that mortalities caused by antimicrobial resistance 

(AMR) will rise to 10 million people by 2050 (Kraker et al., 2016). The emergence and spread of AMR 

are attributed to use of antimicrobials in human and veterinary medicine, environmental contamination, 

and the impacts of anthropogenic activities that drive the proliferation of these microbial hazards across 

the One Health interface (McEwen and Collignon, 2018; Larsson and Flach, 2022). There is growing 

recognition that selective pressures imparting microbial adaptations in one sector inextricably impacts 

other One Health sectors, highlighting the need to better understand where AMR is emerging, what is 

driving its development, and how to best mitigate its dissemination. 

Consequences of AMR 

         The occurrence of AMR has multifaceted consequences, in which one of the immediate impacts 

is poor health outcomes from difficult or untreatable infections with existing antimicrobial agents. 

Reduced efficacy of antimicrobial drugs contribute to increased risk of disease dissemination, illness 

severity, and death (Michael et al., 2014; National Academies of Sciences et al., 2021). In tandem, greater 

disease burden from longer patient recovery time and additional treatment and diagnostics for patient care 

exacerbate economic costs of AMR in health systems (Dadgostar, 2019). On a global scale, AMR has 

impacts on poverty and employment, with the World Bank research indicating that AMR imposes greater 

comparable impact on low-income countries. Drug-resistant infections also extend to animal populations 
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and plants, with the occurrence of AMR in food and food-producing animals compromising animal health 

through sickness and mortality, reducing productivity and profits, and threatening food security (National 

Academies of Sciences et al., 2021). While antimicrobial drugs are considered the cornerstone of modern 

medicine, the progression towards a “post-antibiotic” era of untreatable, deadly infections marks the arms 

race against microbes to combat AMR (Kwon and Powderly, 2021), particularly for priority pathogens –  

e.g. ESKAPE pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. –  that are in urgent need of 

new antibiotic treatment options (De Oliveira et al., 2020; Murugaiyan et al., 2022).  

Defining and Measuring AMR 

         AMR is a naturally occurring process from genetic changes in microbes, however its emergence 

and dissemination can be accelerated by the use and overuse of antimicrobials (Bennani et al., 2020). 

Bacterial AMR frequently occurs through acquired resistance through chromosomal gene mutations and 

acquisition of exogenous resistance genetic determinants from mobile genetic elements and horizontal 

gene transfer (Partridge et al., 2018; Salam et al., 2023). Bacteria can also exhibit AMR through intrinsic 

resistance, which refers to naturally occurring resistance from mechanisms that do not involve mutations 

or acquisition of genetic elements; frequently, these involve efflux pumps and reduced permeability (Cox 

and Wright, 2013; Salam et al., 2023). AMR can be defined in various contexts, in which clinical 

resistance is presented in patients with an infection that does not respond to an antibiotic expected to 

resolve the infection. In laboratory settings, microbiological resistance is determined for bacterial strains 

that are unaffected by and able to grow in the presence of defined thresholds of antibiotics. Lastly, 

molecular resistance is defined as the presence of genetic elements (e.g. genes or mutations) that have 

been shown to confer or be associated with resistance (Chandler, 2019). AMR can be additionally 

characterized through phenotypic and genotypic resistance. Phenotypic resistance is evaluated through 

antimicrobial susceptibility testing and by determining the minimum inhibitory concentration (MIC), or 

the lowest concentration of an antimicrobial drug that inhibits visible growth of a bacterial strain after 
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incubation (Andrews, 2001). Using the MIC, bacterial isolates are then typically classified based on 

interpretive criteria or breakpoints as resistant, intermediate resistance, or susceptible (Kowalska-

Krochmal and Dudek-Wicher, 2021). Multidrug resistance (MDR) is defined based on these 

categorization of MICs, with a common definition being resistance to at least one drug in three or more 

antimicrobial classes (Magiorakos et al., 2012; Glossary of Terms Related to Antibiotic Resistance | 

NARMS | CDC, 2019). Genotypic resistance is determined through detection of mutations and/or genes 

that cause drug resistance, with commonly used methods including polymerase chain reaction (PCR) or 

more comprehensive approaches such as whole genome sequencing (WGS) (Feldgarden et al., 2019). 

An Integrated Approach to Advancing Knowledge on AMR 

The World Health Organization describes a One Health approach as “an integrated, unifying 

approach that aims to sustainably balance and optimize the health of people, animals and ecosystems” 

(One health, n.d.). Although there are exceptions and restrictions for certain species, drugs from the 

majority of antimicrobial classes are used across both human and veterinary medicine such that resulting 

emergence of AMR in one population can lead to AMR or compromised health outcomes from resistant 

bacteria in another population. Addressing AMR necessitates an integrated approach with consideration 

of the interconnected transmission pathways and shared reservoirs across these human, animal, and 

environmental interfaces (Salam et al., 2023). In the United States, the National Antimicrobial Resistance 

Monitoring System (NARMS) monitors AMR in enteric and foodborne bacteria from various sources, 

with the Food and Drug Administration (FDA) assessing retail meats, the Center for Disease Control and 

Prevention (CDC) assessing ill persons, and the United States Department of Agriculture (USDA) 

assessing ceca and regulatory samples (Karp et al., 2017; Medicine, 2024). Based on principles of a One 

Health approach, strategic goals of the program which extend to general efforts to address AMR include 

but are not limited to monitoring trends across populations to understand the distribution of AMR, timely 

dissemination of data to support cross-collaborative interventions for AMR mitigation and outbreak 

investigations, and advancement in epidemiologic and microbiologic AMR research (Karp et al., 2017). A 
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core component to tackling AMR based on the One Health framework across these three domains 

(humans, animals, and environment) is the expansion and refinement of sample collection (e.g. 

geographical location, sample types, and bacterial species), development and use of novel and robust 

methods for the evaluation of AMR, and the timely, accessible deployment of improved methodologies to 

involved agencies and partners. Critically, these efforts need to encompass capacity building for sample 

collection, testing of bacterial isolates, implementing advanced technologies such as next-generation 

sequencing approaches, and harmonized protocols for data collection, analysis, and sharing. 

Dissertation Objectives and Summary 

This dissertation focuses on AMR on the farm-to-fork interface, with overall goals to advance 

knowledge on AMR and the genomic epidemiology of enteric bacteria. Chapter one and two investigate 

the distribution and risk of foodborne AMR in pathogenic and indicator commensal bacteria from retail 

meat products, using the first data from expanded NARMS monitoring in California. Chapter three 

evaluates the impact of non-antimicrobial modulators of AMR using novel analytic approaches. Lastly, 

Chapter four evaluates the host-microbe interface of MDR bacteria through comprehensive and 

comparative analysis of genome diversity and composition. Collectively, this dissertation provides greater 

insight into the epidemiology of AMR in enteric bacteria of public health significance. This improved 

understanding of the distribution and drivers of AMR in food products and food-producing animals will 

inform future AMR monitoring and control strategies by supporting more targeted approaches to mitigate 

AMR 
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Supplementary Materials 

Supplementary Table 1. Primer sequences used for PCR confirmation of E. coli and Enterococcus spp. 

Organism Primer sequence 

E. coli Forward 5’-CCG ATA CGC TGC CAA TCA GT-3’ 

E. coli Reverse 5’-ACG CAG ACC GTA GGC CAG AT-3’ 

Enterococcus spp. Forward 5’-AGA AAT TCC AAA CGA ACT TG-3’ 

Enterococcus spp. Reverse 5’-CAG TGC TCT ACC TCC ATC ATT-3’ 

 

Supplementary Table 2. Drug panel and dilutions used for antimicrobial susceptibility testing of E. coli 

isolates 

Drug Class Abbreviation Antimicrobial drug Range (µg/mL) 

beta-lactam FOX Cefoxitin 0.5 - 32 

macrolide AZI Azithromycin 0.12 - 16 

chloramphenicol CHL Chloramphenicol 2 - 32 

tetracycline TET Tetracycline 4 - 32 

beta-lactam AXO Ceftriaxone 0.25 - 64 

beta-lactam AUG2 Amoxicillin/clavulanic acid 1/0.5 - 32/16 

quinolone CIP Ciprofloxacin 0.015 - 4 

aminoglycoside GEN Gentamicin 0.25 - 16 

quinolone NAL Nalidixic acid 0.5 - 32 

beta-lactam XNL Ceftiofur 0.12 - 8 

sulfonamide FIS Sulfisoxazole 16 - 256 

sulfonamide SXT Trimethoprim-sulfamethoxazole 0.12/2.38 - 4/76 

beta-lactam AMP Ampicillin 1-32 

aminoglycoside STR Streptomycin 2.64 

 

Supplementary Table 3. Drug panel and dilutions used for antimicrobial susceptibility testing of 

Enterococcus spp. isolates 

Drug Class Abbreviation Antimicrobial drug Range (µg/mL) 

glycylcycline TCG Tigecycline 0.015 - 0.5 

tetracycline TET Tetracycline 1-32 

chloramphenicol CHL Chloramphenicol 2-32 

lipopeptide DAP Daptomycin 0.25 - 16 

aminoglycoside STR Streptomycin 512 - 2048 

macrolide TYLT Tylosin tartrate 0.25 - 32 

streptogramin SYN Quinupristin / dalfopristin 0.5 - 32 

oxazolidinone LZD Linezolid 0.5 - 8 

nitrofurans NIT Nitrofurantoin 2-64 

beta-lactam PEN Penicillin 0.25 - 16 

aminoglycoside KAN Kanamycin 128 - 1024 

macrolide ERY Erythromycin 0.25 - 8 

quinolone CIP Ciprofloxacin 0.12 - 4 

glycopeptide VAN Vancomycin 0.25 - 32 

lincosamide LIN Lincomycin 1-8 

aminoglycoside GEN Gentamicin 128 - 1024 
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Supplementary Figure 1. Distribution of minimum inhibitory concentration from antimicrobial susceptibility testing for all E. coli isolates 

(n=44). Shaded areas indicate the range of tested antimicrobials. Numbers listed outside of the shaded range correspond to right/left censored 

counts. 

 

 

 

 

 

 

 

 

Antimicrobial drug (Abbreviation) 

  Distribution of MIC (µg/mL) - Number of E. coli isolates (n=44) 

 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256  

Cefoxitin (FOX)       0 0 0 2 0 1 12 29    

Azithromycin (AZI)     0 0 0 0 2 23 13 2 4     

Chloramphenicol (CHL)         0 0 9 2 0 33    

Tetracycline (TET)          0 0 0 0 44    

Ceftriaxone (AXO)     2 0 0 0 0 0 12 17 8 2 3   

Amoxicillin/clavulanic acid 

(AUG2) 

 

      0 0 0 3 0 37 4   

 

Ciprofloxacin (CIP) 16 0 21 1 0 0 2 0 0 0 4       

Gentamicin (GEN)      0 2 3 1 0 0 0 38     

Nalidixic acid (NAL)       0 0 30 9 0 1 0 4    

Ceftiofur (XNL)     0 0 2 0 0 1 17 24      

Sulfisoxazole (FIS)            0 0 0 0  44 

Trimethoprim-sulfamethoxazole 

(SXT) 

 

   0 0 0 0 0 0 44      

 

Ampicillin (AMP)        0 0 0 0 0 0 44    

Streptomycin (STR)         0 0 0 1 0 0 43   
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Supplementary Figure 2. Distribution of minimum inhibitory concentration from antimicrobial susceptibility testing for E. coli isolates from 

placebo calves (n=26). Shaded areas indicate the range of tested antimicrobials. Numbers listed outside of the shaded range correspond to right/left 

censored counts. 

Antimicrobial drug (Abbreviation) 

  Distribution of MIC (µg/mL) - Number of E. coli isolates (n=26) 

 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256  

Cefoxitin (FOX)       0 0 0 1 0 0 6 19    

Azithromycin (AZI)     0 0 0 0 2 13 8 0 3     

Chloramphenicol (CHL)         0 0 3 2 0 21    

Tetracycline (TET)          0 0 0 0 26    

Ceftriaxone (AXO)     1 0 0 0 0 0 7 10 5 2 1   

Amoxicillin/clavulanic acid (AUG2)        0 0 0 1 0 22 3    

Ciprofloxacin (CIP) 10 0 10 1 0 0 1 0 0 0 4       

Gentamicin (GEN)      0 1 3 1 0 0 0 21     

Nalidixic acid (NAL)       0 0 17 4 0 1 0 4    

Ceftiofur (XNL)     0 0 1 0 0 1 9 15      

Sulfisoxazole (FIS)            0 0 0 0 0 26 

Trimethoprim-sulfamethoxazole 

(SXT) 

 

   0 0 0 0 0 0 26      

 

Ampicillin (AMP)        0 0 0 0 0 0 26    

Streptomycin (STR)         0 0 0 1 0 0 25   
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Supplementary Figure 3. Distribution of minimum inhibitory concentration from antimicrobial susceptibility testing for E. coli isolates from zinc 

treatment calves (n=18). Shaded areas indicate the range of tested antimicrobials. Numbers listed outside of the shaded range correspond to 

right/left censored counts. 

Antimicrobial drug (Abbreviation) 

  Distribution of MIC (µg/mL) - Number of E. coli isolates (n=18) 

 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256  

Cefoxitin (FOX)       0 0 0 1 0 1 6 10    

Azithromycin (AZI)     0 0 0 0 0 10 5 2 1     

Chloramphenicol (CHL)         0 0 6 0 0 12    

Tetracycline (TET)          0 0 0 0 18    

Ceftriaxone (AXO)     1 0 0 0 0 0 5 7 3 0 2   

Amoxicillin/clavulanic acid (AUG2)        0 0 0 2 0 15 1    

Ciprofloxacin (CIP) 6 0 11 0 0 0 1 0 0 0        

Gentamicin (GEN)      0 1 0 0 0 0 0 17     

Nalidixic acid (NAL)       0 0 13 5 0 0 0     

Ceftiofur (XNL)     0 0 1 0 0 0 8 9      

Sulfisoxazole (FIS)            0 0 0 0 0 18 

Trimethoprim-sulfamethoxazole 

(SXT) 

 

   0 0 0 0 0 0 18      

 

Ampicillin (AMP)        0 0 0 0 0 0 18    

Streptomycin (STR)         0 0 0 0 0 0 18   

 

 

 

 

 

5
8

 

 

katiel4
Pencil



59 

 

 

 

 

 

Supplementary Table 4. Descriptive statistics for minimum inhibitory concentrations from antimicrobial susceptibility testing for E. coli isolates. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antimicrobial drug All isolates Placebo isolates Zinc isolates 

MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 

Cefoxitin (FOX) >32 >32 >32 >32 >32 >32 

Azithromycin (AZI) 4 16 4 >16 4 16 

Chloramphenicol (CHL) >32 >32 >32 >32 >32 >32 

Tetracycline (TET) >32 >32 >32 >32 >32 >32 

Ceftriaxone (AXO) 16 64 16 64 16 >64 

Amoxicillin/clavulanic acid (AUG2) 32 32 32 >32 32 32 

Ciprofloxacin (CIP) 0.03 0.5 0.03 >4 0.03 0.03 

Gentamicin (GEN) >16 >16 >16 >16 >16 >16 

Nalidixic acid (NAL) 2 16 2 >32 2 4 

Ceftiofur (XNL) >8 >8 >8  >8 8 >8 

Sulfisoxazole (FIS) >128 >128 >128 >128 >128 >128 

Trimethoprim-sulfamethoxazole (SXT) >4 >4 >4 >4 >4 >4 

Ampicillin (AMP) >32 >32 >32 >32 >32 >32 

Streptomycin (STR) >64 >64 >64 >64 >64 >64 
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Supplementary Figure 4. Distribution of minimum inhibitory concentration from antimicrobial susceptibility testing for all Enterococcus spp. 

isolates (n=167). Shaded areas indicate the range of tested antimicrobials. Numbers listed outside of the shaded range correspond to right/left 

censored counts. 

 

 

 

 

 

 

 

Antimicrobial 

drug 

Distribution of MIC (µg/mL) - Number of Enterococcus spp. isolates (n=167)  

0.012 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 

Tigecycline   0 0 7 39 75 46              

Tetracycline        0 0 0 0 0 1 166       

Chloramphenicol         0 0 53 91 3 20       

Daptomycin      0 12 45 22 80 7 1         

Streptomycin                23 0 8 4 132 

Tylosin tartrate      0 1 9 17 12 0 1 0 127       

Quinupristin / 

dalfopristin      4 0 18 36 85 5 17 1 1      

 

Linezolid       0 0 75 89 3          

Nitrofurantoin         0 0 29 37 3 28 70      

Penicillin      0 0 10 63 17 44 13 20        

Kanamycin              2 0 0 0 0 165  

Erythromycin     4 0 25 0 5 4 1 128         

Ciprofloxacin     0 0 0 7 60 48 52          

Vancomycin      0 57 58 50 1 0 0 1        

Lincomycin       4 0 0 0 2 161         

Gentamicin              80 0 1 0 0 86  
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Supplementary Figure 5. Distribution of minimum inhibitory concentration from antimicrobial susceptibility testing for Enterococcus spp. 

isolates from placebo calves (n=100). Shaded areas indicate the range of tested antimicrobials. Numbers listed outside of the shaded range 

correspond to right/left censored counts. 

 

 

 

 

 

 

Antimicrobial 

drug 

Distribution of MIC (µg/mL) - Number of Enterococcus spp. isolates (n=100)  

0.012 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 

Tigecycline   0 0 2 24 50 24              

Tetracycline        0 0 0 0 0 1 99       

Chloramphenicol         0 0 35 53 1 11       

Daptomycin      0 6 29 13 49 3 0         

Streptomycin                14 0 4 2 80 

Tylosin tartrate      0 1 7 10 7 0 1 0 74       

Quinupristin / 

dalfopristin      3 0 12 22 50 3 9 0 1      

 

Linezolid       0 0 50 49 1          

Nitrofurantoin         0 0 20 20 3 16 41      

Penicillin      0 0 7 38 8 27 7 13        

Kanamycin              2 0 0 0 0 98  

Erythromycin     2 0 17 0 3 3 0 75         

Ciprofloxacin     0 0 0 4 38 28 30          

Vancomycin      0 33 34 33 0 0 0 0        

Lincomycin       4 0 0 0 1 95         

Gentamicin              52 0 1 0 0 47  
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Supplementary Figure 6. Distribution of minimum inhibitory concentration from antimicrobial susceptibility testing for Enterococcus spp. 

isolates from zinc treatment calves (n=67). Shaded areas indicate the range of tested antimicrobials. Numbers listed outside of the shaded range 

correspond to right/left censored counts. 

 

 

 

 

Antimicrobial 

drug 

Distribution of MIC (µg/mL) - Number of Enterococcus spp. isolates (n=67)  

0.012 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 

Tigecycline   0 0 5 15 25 22              

Tetracycline        0 0 0 0 0 0 67       

Chloramphenicol         0 0 18 38 2 9       

Daptomycin      0 6 16 9 31 4 1         

Streptomycin                9 0 4 2 52 

Tylosin tartrate      0 0 2 7 5 0 0 0 53       

Quinupristin / 

dalfopristin      1 0 6 14 35 2 8 1       

 

Linezolid       0 0 25 40 2          

Nitrofurantoin         0 0 9 17 0 12 29      

Penicillin      0 0 3 25 9 17 6 7        

Kanamycin               0 0 0 0 67  

Erythromycin     2 0 8 0 2 1 1 53         

Ciprofloxacin     0 0 0 3 22 20 22          

Vancomycin      0 24 24 17 1 0 0 1        

Lincomycin        0 0 0 1 67         

Gentamicin              28 0 0 0 0 39  
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Supplementary Table 5. Descriptive statistics for minimum inhibitory concentrations from antimicrobial susceptibility testing for Enterococcus 

isolates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antimicrobial drug All isolates Placebo isolates Zinc isolates 

MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 

Tigecycline (TGC) 0.25 0.5 0.25 0.5 0.25 0.5 

Tetracycline (TET) >32 >32 >32 >32 >32 >32 

Chloramphenicol (CHL) 16 >32 16 >32 16 >32 

Daptomycin (DAP) 4 4 4 4 4 4 

Streptomycin (STR) >2048 >2048 >2048 >2048 >2048 >2048 

Tylosin tartrate (TYLT) >32 >32 >32 >32 >32 >32 

Quinupristin/dalfopristin (SYN) 4 16 4 8 4 16 

Linezolid (LZD) 4 4 2 4 4 4 

Nitrofurantoin (NIT) 64 >64 64 >64 64 >64 

Penicillin (PEN) 4 >16 4 >16 4 >16 

Kanamycin (KAN) >1024 >1024 >1024 >1024 >1024 >1024 

Erythromycin (ERY) >8 >8 >8 >8 >8 >8 

Ciprofloxacin (CIP) 4 >4 4 >4 4 >4 

Vancomycin (VAN) 1 2 1 2 1 2 

Lincomycin (LIN) >8 >8 >8 >8 >8 >8 

Gentamicin (GEN) >1024 >1024 <=128 >1024 >1024 >1024 
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Supplementary Table 6. Final accelerated failure time (AFT) model for azithromycin minimum inhibitory concentrations for E. coli isolates (BIC 

144.0987, Weibull distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc  -0.23 (0.21) 0.80 (0.16) 0.273 0.53, 1.19 

  Placebo Referent - - - 

Days from last 

spectinomycin 

treatment 

3-5 days 0.92 (0.35) 2.51 (0.89) 0.009 1.26, 5.02 

6-8 days 0.025 (0.27) 1.03 (0.28) 0.926 0.60, 1.74 

9-10 days 1.00 (0.29) 2.70 (0.79) 0.001 1.53, 4.78 

0 days Referent - - - 

Intercept - 1.43 (0.24) 4.18 (1.02) 0 2.59, 6.73 

 

Supplementary Table 7. Final accelerated failure time (AFT) model for ciprofloxacin minimum inhibitory concentrations for E. coli isolates 

(BIC 189.5612, Weibull distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc -1.80 (0.90) 0.17 (0.15) 0.046 0.028, 0.97 

  Placebo Referent - - - 

Number of 

spectinomycin doses 

received 

1 4.12 (1.67) 61.64 (102.96) 0.014 2.33, 1627.81 

2 2.01 (1.20) 7.45 (8.92) 0.094 0.71, 77.96 

0 Referent - - - 

Intercept - -4.22 (1.24) 0.015 (0.018) 0.001 0.0013, 0.17 

 

Supplementary Table 8. Final accelerated failure time (AFT) model for nalidixic acid minimum inhibitory concentrations for E. coli isolates 

(BIC 181.116, Exponential distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc -1.28 (0.33) 0.28 (0.09) 0 0.15, 0.53 

  Placebo Referent - - - 

Number of spectinomycin 

doses received 

1 2.02 (0.60) 7.57 (4.55) 0.001 2.33, 24.57 

2 0.98 (0.44) 2.67 (1.16) 0.024 1.14, 6.27 

0 Referent - - - 

Intercept - 0.90 (0.43) 2.47 (1.06) 0.036 1.06, 5.73 
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Supplementary Table 9. Final accelerated failure time (AFT) model for ceftriaxone minimum inhibitory concentrations for E. coli isolates (BIC 

172.8303, Exponential distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc -0.056 (0.34) 0.95 (0.32) 0.867 0.49, 1.83 

  Placebo Referent - - - 

Days on/from diarrhea   0.095 (0.049) 1.10 (0.054) 0.052 1.00, 1.21 

Received spectinomycin 

treatment  
Yes 0.62 (0.43) 1.85 (0.80) 0.152 0.80, 4.31 

No Referent - - - 

Intercept -  2.56 (0.42) 12.97 (5.43) 0 5.71, 29.47 

 

Supplementary Table 10. Final accelerated failure time (AFT) model for tigecycline minimum inhibitory concentrations for enterococci isolates 

(BIC 422.7243, Weibull distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc  0.055 (0.076) 1.06 (0.081) 0.468 0.91, 1.23 

  Placebo Referent - - - 

Age of calf (days) - -0.031 (0.0065) 0.97 (0.0063) 0 0.96, 0.98 

Days from spectinomycin 

treatment  - 0.026 (0.0078) 1.03 (0.0080) 0.001 1.01, 1.04 

Intercept -  -1.21 (0.10) 0.30 (0.030) 0 0.24, 0.36 

 

Supplementary Table 11. Final accelerated failure time (AFT) model for chloramphenicol minimum inhibitory concentrations for enterococci 

isolates (BIC 403.4433, Ggamma distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc 0.072 (0.065) 1.07 (0.07) 0.270 0.95, 1.22 

  Placebo Referent - - - 

Age of calf (days) - -0.015 (0.0096) 0.98 (0.0094) 0.111 0.97, 1.00 

Days from last antibiotic 

treatment  - -0.0031 (0.011) 1.00 (0.011) 0.775 0.98, 1.02 

Intercept - 2.07 (0.11) 7.93 (0.91) 0 6.33, 9.92 
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Supplementary Table 12. Final accelerated failure time (AFT) model for daptomycin minimum inhibitory concentrations for enterococci isolates 

(BIC 522.3062, Weibull distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc  0.15 (0.12) 1.16 (0.14) 0.216 0.92, 1.46 

  Placebo Referent - - - 

Age of calf (days)   -0.015 (0.0078) 0.98 (0.0077) 0.052 0.97, 1.00 

Received spectinomycin 

treatment  
Yes -0.18 (0.12) 0.84 (0.10) 0.149 0.66, 1.07 

No Referent - - - 

Intercept - 1.10 (0.14) 2.99 (0.41) 0 2.30, 3.91 

 

Supplementary Table 13. Final accelerated failure time (AFT) model for streptomycin minimum inhibitory concentrations for enterococci 

isolates (BIC 260.1047, Ggamma distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc 0.20 (0.85) 1.22 (1.03) 0.816 0.23, 6.42 

  Placebo Referent - - - 

Age of calf (days) -  -0.20 (0.14) 0.82 (0.11) 0.143 0.62, 1.07 

Received spectinomycin 

treatment  

Yes 0.67 (1.09) 1.96 (2.14) 0.537 0.23, 16.68 

No Referent - - - 

Intercept - 6.61 (1.70) 740.40 (1258.26) 0 26.48, 20702.87 

 

Supplementary Table 14. Final accelerated failure time (AFT) model for tylosin tartrate minimum inhibitory concentrations for enterococci 

isolates (BIC 390.3383, Weibull distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc  1.08 (1.01) 2.94 (3.00) 0.288 0.40, 21.50 

  Placebo Referent - - - 

Age of calf (days) - -0.0082 (0.12) 0.99 (0.12) 0.946 0.78, 1.26 

Days from spectinomycin 

treatment - -0.30 (0.13) 0.74 (0.097) 0.023 0.57, 0.96 

Intercept - 7.93 (1.56) 2779.05 0 130.75, 59066.56 
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Supplementary Table 15. Final accelerated failure time (AFT) model for quinupristin/dalfopristin minimum inhibitory concentrations for 

enterococci isolates (BIC 551.3418, Ggamma distribution). 

 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc  0.13 (0.13) 1.14 (0.15) 0.340 0.88, 1.47 

  Placebo Referent - - - 

Age of calf (days) - -0.018 (0.011) 0.98 (0.011) 0.099 0.96, 1.00 

Received spectinomycin 

treatment  

Yes 0.20 (0.14) 1.23 (0.17) 0.138 0.94, 1.61 

No Referent - - - 

Intercept - 0.80 (0.16) 2.24 (0.35) 0 1.64, 3.05 

 

 

Supplementary Table 16. Final accelerated failure time (AFT) model for linezolid minimum inhibitory concentrations for enterococci isolates 

(BIC 303.3108, Weibull distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc  0.13 (0.076) 1.14 (0.087) 0.079 0.98, 1.33 

  Placebo Referent - - - 

Age of calf (days)   0.0048 (0.0070) 1.00 (0.0070) 0.491 0.99, 1.02 

Days from last spectinomycin 

treatment 
1-3 days 0.24 (0.098) 1.27 (0.12) 0.016 1.04, 1.53 

4-7 days 0.017 (0.089) 1.02 (0.090) 0.844 0.86, 1.21 

8-23 days 0.044 (0.099) 1.04 (0.10) 0.660 0.86, 1.27 

0 days Referent - - - 

Intercept - 0.69 (0.11) 2.00 (0.22) 0 1.61, 2.49 

 

Supplementary Table 17. Final accelerated failure time (AFT) model for nitrofurantoin minimum inhibitory concentrations for enterococci 

isolates (BIC 567.2407, Exponential distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc  0.23 (0.25) 1.26 (0.32) 0.354 0.77, 2.06 

  Placebo Referent - - - 

Age of calf (days) - -0.055 (0.021) 0.95 (0.020) 0.009 0.91, 0.99 

Received spectinomycin 

treatment  
Yes -0.73 (0.28) 0.48 (0.13) 0.008 0.28, 0.83 

No Referent - - - 

Intercept - 5.42 (0.42) 226.92 (94.47) 0 100.34, 513.15 
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Supplementary Table 18. Final accelerated failure time (AFT) model for penicillin minimum inhibitory concentrations for enterococci isolates 

(BIC 644.4164, Exponential distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc  0.0061 (0.21) 1.01 (0.21) 0.977 0.67, 1.52 

  Placebo Referent - - - 

Age of calf (days) - -0.051 (0.013) 0.95 (0.013) 0 0.93, 0.98 

Received spectinomycin 

treatment  

Yes -0.012 (0.21) 0.89 (0.18) 0.569 0.59, 1.33 

No Referent - - - 

Intercept - 2.57 (0.30) 13.06 (3.92) 0 7.25, 23.52 

 

Supplementary Table 19. Final accelerated failure time (AFT) model for erythromycin minimum inhibitory concentrations for enterococci 

isolates (BIC 365.5822, Weibull distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value  95% CI 

Treatment group Zinc  0.90 (1.02) 2.46 (2.52) 0.379  0.33, 18.29 

  Placebo Referent - -  - 

Age of calf (days) - 0.0065 (0.12) 1.01 (0.12) 0.955  0.80, 1.26 

Days from spectinomycin 

treatment - -0.29 (0.14) 0.75 (0.10) 0.037 

 

0.57, 0.98 

Intercept - 6.40 (1.45) 602.55 (875.78) 0  34.90, 10403.28 

 

 

Supplementary Table 20. Final accelerated failure time (AFT) model for ciprofloxacin minimum inhibitory concentrations for enterococci 

isolates (BIC 435.9695, Ggamma distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc  0.024 (0.10) 1.02 (0.10) 0.809 0.84, 1.25 

  Placebo Referent - - - 

Age of calf (days) - -0.019 (0.0082) 0.98 (0.0080) 0.019 0.97, 1.00 

Days from spectinomycin 

treatment - 0.017 (0.019) 1.02 (0.020) 0.370 0.98, 1.06 

Intercept - 0.74 (0.22) 2.09 (0.47) 0.001 1.35, 3.24 
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Supplementary Table 21. Final accelerated failure time (AFT) model for vancomycin minimum inhibitory concentrations for enterococci isolates 

(BIC 451.1961, Ggamma distribution). 

Factor Level Coefficient (SE) MIC Ratio (SE)  P-value 95% CI 

Treatment group Zinc  -0.039 (0.099) 0.96 (0.095)  0.694 0.79, 1.17 

  Placebo Referent -  - - 

Age of calf (days) - -0.0049 (0.0074) 1.00 (0.0073)  0.508 0.98. 1.01 

Received spectinomycin 

treatment  

Yes 0.089 (0.10) 1.09 (0.11)  0.384 0.89, 1.34 

No Referent -  - - 

Intercept - -0.56 (0.21) 0.57 (0.12)  0.007 0.38, 0.86 

 

Supplementary Table 22. Final accelerated failure time (AFT) model for gentamicin minimum inhibitory concentrations for enterococci isolates 

(BIC 524.5724, Exponential distribution).| 

Factor Level Coefficient (SE) MIC Ratio (SE) P-value 95% CI 

Treatment group Zinc  0.37 (0.35) 1.44 (0.51) 0.295 0.73, 2.88 

  Placebo Referent - - - 

Age of calf  8-14 days  -1.80 (0.71) 0.17 (0.12) 0.012 0.041, 0.67 

 15-21 days  -1.31 (0.82) 0.27 (0.22) 0.111 0.054, 1.35 

 23-28 days  -2.63 (0.92) 0.072 (0.066) 0.004 0.012, 0.44 

 29-35 days  -0.44 (1.26) 0.64 (0.81) 0.725 0.054, 7.60 

  5-7 days Referent - - - 

Days from spectinomycin 

treatment - -0.097 (0.045) 0.91 (0.041) 0.030 0.83, 0.99 

Intercept - 8.75 (0.70) 6331.95 (4440.216) 0 1601.92, 25028.44 

 

Supplementary Table 23. Prediction estimates from final accelerated failure time (AFT) model for azithromycin minimum inhibitory 

concentrations (MIC, μg/mL) for E. coli isolates. 

 

    Predicted MIC (Zinc) Predicted MIC (Placebo) Predicted MIC (Difference, Zinc-Placebo) 

   MIC  SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Days from last 

spectinomycin 

treatment 

0 days 3.33 0.86 0  1.65, 5.02 4.18 1.02 0  2.18, 6.17 -0.84 0.78 0.28 -2.37, 0.69 

3-5 days 8.38 2.11 0 4.24, 12.52 10.50 3.28 0.001 4.07, 16.92 -2.12 2.18 0.33 -6.39, 2.16 

6-8 days 3.42 0.69 0 2.06, 4.78 4.28 0.66 0 2.98, 5.58 -0.86 0.77 0.26 -2.36, 0.64 

9-10 days 9.02 2.01 0 5.09, 12.95 11.3 2.21 0 6.96, 15.63 -2.28 2.07 0.27 -6.33, 1.77 
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Supplementary Table 24. Prediction estimates from final accelerated failure time (AFT) model for ciprofloxacin minimum inhibitory 

concentrations (MIC, μg/mL) for E. coli isolates. 

 

 

Supplementary Table 25. Prediction estimates from final accelerated failure time (AFT) model for nalidixic acid minimum inhibitory 

concentrations (MIC, μg/mL) for E. coli isolates. 

 

 

 

 

 

 

 

Supplementary Table 26. Prediction estimates from final accelerated failure time (AFT) model for ceftriaxone minimum inhibitory 

concentrations (MIC, μg/mL) for E. coli isolates. 
    Predicted MIC - Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Received 

spectinomycin 

treatment  

No 12.26 5.34 0.022 1.79, 22.73 12.97 5.43 0.017 2.32, 23.61 -0.71 4.23 0.87 -9.00, 7.58 

Yes 22.71 6.26 0 10.45, 34.98 24.03 6.54 0 11.21, 36.85 -1.31 7.85 0.87 -16.70, 14.07 
 

Supplementary Table 27. Prediction estimates from final accelerated failure time (AFT) model for tigecycline minimum inhibitory 

concentrations (MIC) for enterococci isolates. 

    Predicted MIC - Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Days from last 

spectinomycin 

treatment 

0 days 0.31 0.03 0.00 0.25, 0.38 0.30 0.03 0.00 0.24, 0.36 0.02 0.02 0.47 -0.03, 0.06 

1 days 0.32 0.03 0.00 0.25, 0.39 0.31 0.03 0.00 0.24, 0.37 0.02 0.02 0.47 -0.03, 0.06 

5 days 0.36 0.04 0.00 0.28, 0.44 0.34 0.04 0.00 0.26, 0.42 0.02 0.03 0.47 -0.03, 0.07 

10 days 0.41 0.06 0.00 0.30, 0.52 0.39 0.05 0.00 0.28, 0.49 0.02 0.03 0.47 -0.04, 0.08 

    Predicted MIC - Zinc Predicted MIC - Placebo Predicted MIC (Difference, Zinc-Placebo) 

    MIC  SE P-value 95% CI MIC  SE P-value 95% CI MIC  SE P-value 95% CI 

Number of 

spectinomycin 

doses 

received 

0 doses 0.0024 0.0027 0.37 -0.0029, 0.0077 0.015 0.018 0.42 -0.021, 0.050 -0.012 0.016 0.45  -0.044, 0.020 

1 dose 0.15 0.21 0.48 -0.26, 0.56 0.90 1.12 0.42 -1.29, 3.09 -0.75 0.97 0.44 -2.65, 1.14 

2 dose 0.018 0.013 0.18 -0.0081, 0.044 0.11 0.073 0.14 -0.035, 0.25 -0.091 0.072 0.21  -0.23, 0.05 

    Predicted MIC - Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC  SE P-value 95% CI MIC  SE P-value 95% CI MIC  SE P-value 95% CI 

Number of 

spectinomycin 

doses 

received 

0 doses 0.69 0.28 0.016 0.13, 1.24 2.47 1.06 0.02 0.39, 4.55 -1.78 0.89 0.044 -3.52, -0.047 

1 dose 5.19 2.63 0.048 0.037, 10.35 18.69 8.55 0.029 1.92, 35.46 -13.50 6.72 0.045 -26.68, -0.32 

2 dose 1.83 0.49 0 0.88, 2.78 6.60 1.58 0 3.50, 9.69 -4.76 1.58 0.002 -7.85, -1.68 7
0
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Supplementary Table 28. Prediction estimates from final accelerated failure time (AFT) model for chloramphenicol minimum inhibitory 

concentrations (MIC) for enterococci isolates. 
    Predicted MIC - Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Days from last 

spectinomycin 

treatment 

0 days 8.52 0.95 0 6.65, 10.38 7.93 0.91 0 6.14, 9.71 0.59 0.54 0.271 -0.46, 1.65 

1 days 8.49 0.99 0 6.56, 10.43 7.90 0.94 0 6.06, 9.75 0.59 0.54 0.271 -0.46, 1.64 

5 days 8.39 1.19 0 6.06, 10.71 7.80  1.12 0 5.61, 10.00 0.58 0.53 0.273 -0.46, 1.63 

10 days 8.26 1.51 0 5.31, 11.21 7.69 1.41 0 4.91, 10.46 0.57 0.53 0.277 -0.46, 1.61 

 

Supplementary Table 29. Prediction estimates from final accelerated failure time (AFT) model for daptomycin minimum inhibitory 

concentrations (MIC) for enterococci isolates. 
    Predicted MIC - Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Received 

spectinomycin 

treatment  

No 3.47 0.63 0.00 2.25, 4.70 2.99 0.41 0.00 2.20, 3.79 0.48 0.42 0.26 -.34, 1.30 

Yes 2.90 0.39 0.00 2.13, 3.67 2.50 0.36 0.00 1.79, 3.22 0.40 0.32 0.22 -.23, 1.03 

 

Supplementary Table 30. Prediction estimates from final accelerated failure time (AFT) model for streptomycin minimum inhibitory 

concentrations (MIC) for enterococci isolates. 

    Predicted MIC - Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Received 

spectinomycin 

treatment  

No 901.75 1718.45 0.60 -2466.34, 4269.85 740.40 1258.26 0.56 -1725.75, 3206.55 161.35 814.67 0.84 -1435.37, 1758.07 

Yes 1769.14 3045.05 0.56 -4199.05, 7737.33 1452.58 2355.66 0.54 -3164.43, 6069.59 316.56 1516.10 0.84 -2654.93, 3288.05 

 

Supplementary Table 31. Prediction estimates from final accelerated failure time (AFT) model for tylosin tartrate minimum inhibitory 

concentrations (MIC) for enterococci isolates. 

 

    Predicted MIC –  Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Days from last 

spectinomycin 

treatment 

0 days 

8176.1

2 10455.33 0.43 

-12315.95, 

28668.19 2779.05 

4333.9

1 0.52 

-5715.27, 

11273.36 5394.07 7686 0.48 

-9667.21, 

20461.36 

1 days 

6081.6

4 8088.78 0.45 

-9772.08, 

21935.36 2067.14 

3382.4

3 0.54 

-4562.31, 

8696.58 4014.5 5823.56 0.49 

-7399.47, 

15428.47 

5 days 
1861.7
2 3027.34 0.54 

-4071.76, 
7795.19 632.79 

1265.4
8 0.62 

-1847.49, 
3133.08 1228.92 2037.77 0.55 

-2765.04, 
5222.89 

10 days 423.92 899.63 0.64 

-1339.33, 

2187.16 144.09 365.00 0.69 

-571.31, 

859.48 279.83 581.72 0.63 

-860.32, 

1419.97 
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Supplementary Table 32. Prediction estimates from final accelerated failure time (AFT) model for quinupristin/dalfopristin minimum inhibitory 

concentrations (MIC) for enterococci isolates. 
    Predicted MIC –  Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Received spectinomycin 

treatment  

No 2.54 0.52 0.00 1.52, 3.56 2.24 0.35 0.00 1.54, 2.93 0.30 0.34 0.37 -0.36, 0.97 

Yes 3.11 0.62 0.00 1.90, 4.33 2.74 0.51 0.00 1.75, 3.74 0.37 0.40 0.36 -0.42, 1.16 

 

Supplementary Table 33. Prediction estimates from final accelerated failure time (AFT) model for linezolid minimum inhibitory concentrations 

(MIC) for enterococci isolates. 

 

Supplementary Table 34. Prediction estimates from final accelerated failure time (AFT) model for nitrofurantoin minimum inhibitory 

concentrations (MIC) for enterococci isolates. 

 

 

Supplementary Table 35. Prediction estimates from final accelerated failure time (AFT) model for penicillin minimum inhibitory concentrations 

(MIC) for enterococci isolates. 

 

 

    Predicted MIC –  Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Days from last 

spectinomycin 

treatment 

0 days 2.29 0.24 0.00 1.82, 2.75 2.00 0.22 0.00 1.57, 2.44 0.29 0.16 0.08 -0.03, 0.61 

1-3 days 2.90 0.30 0.00 2.31, 3.48 2.53 0.32 0.00 1.90, 3.17 0.36 0.20 0.07 -0.02, 0.75 

4-7 days 2.33 0.30 0.00 1.75, 2.91 2.04 0.28 0.00 1.48, 2.59 0.29 0.16 0.08 -0.03, 0.62 

8-23 days 2.39 0.33 0.00 1.75, 3.04 2.09 0.36 0.00 1.38, 2.80 0.30 0.16 0.05 -0.0042, 0.60 

    Predicted MIC –  Zinc Predicted MIC –  Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Received 

spectinomycin 

treatment  

No 286.38 136.52 0.04 18.80, 553.95 226.92 94.47 0.02 41.76, 412.08 59.46 74.99 0.43 -87.52, 206.44 

Yes 138.08 52.36 0.01 35.45, 240.70 109.41 36.06 0.002 38.74, 180.08 28.67 34.35 0.40 -38.66, 96.00 

    Predicted MIC - Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Received 

spectinomycin 

treatment  

No 13.14 4.22 0.002 4.87, 21.41 13.06 3.92 0.001 5.38, 20.74 0.08 2.74 0.98 -5.29, 5.45 

Yes 11.69 2.98 0.00 5.85, 17.53 11.62 3.06 0.00 5.62, 17.61 0.07 2.44 0.98 -4.70, 4.85 
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Supplementary Table 36. Prediction estimates from final accelerated failure time (AFT) model for erythromycin minimum inhibitory 

concentrations (MIC) for enterococci isolates. 
    Predicted MIC - Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE 
P-
value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Days from last 

spectinomycin 
treatment 

0 days 1481.63 1765.71 0.40 

-1979.09, 

4942.36 602.55 875.78 0.49 -1113.94, 2319.05 879.08 1290.93 0.50 -1651.09, 3409.24 

1 days 1111.13 1352.30 0.41 

-1539.32, 

3761.58 451.88 683.07 0.51 -886.92, 1790.67 659.25 964.63 0.49 -1231.38, 2549.89 

5 days 351.45 509.79 0.49 -647.73, 1350.63 142.93 261.76 0.59 -370.12, 655.98 208.52 326.92 0.52 -432.23, 849.28 

10 days 83.37 161.12 0.61 -232.43, 399.16 33.90 79.82 0.67 -122.55, 190.35 49.46 95.23 0.60 -137.19, 236.12 

 
 

 

Supplementary Table 37. Prediction estimates from final accelerated failure time (AFT) model for ciprofloxacin minimum inhibitory 

concentrations (MIC) for enterococci isolates. 

 

 
 

Supplementary Table 38. Prediction estimates from final accelerated failure time (AFT) model for vancomycin minimum inhibitory 

concentrations (MIC) for enterococci isolates. 

    Predicted MIC - Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Received 

spectinomycin 

treatment  

No 0.55 0.12 0.00 0.32, 0.78 0.57 0.12 0.00 0.34, 0.81 -0.02 0.06 0.69 -0.13, 0.09 

Yes 0.60 0.12 0.00 0.37, 0.83 0.63 0.12 0.00 0.40, 0.85 -0.02 0.06 0.69 -0.14, 0.09 
 

 

 

 

 

 

 

 

 

 
 

    Predicted MIC - Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Days from last 

spectinomycin 

treatment 

0 days 2.15 0.51 0.00 1.15, 3.15 2.09 0.47 0.00 1.18, 3.01 0.05 0.21 0.81 -0.37, 0.47 

1 days 2.18 0.54 0.00 1.12, 3.24 2.13 0.50 0.00 1.15, 3.11 0.05 0.22 0.81 -0.37, 0.48 

5 days 2.34 0.69 0.001 0.98, 3.70 2.28 0.66 0.00 1.00, 3.57 0.06 0.23 0.81 -0.40, 0.51 

10 days 2.55 0.95 0.007 0.70, 4.40 2.49 0.91 0.006 0.70, 4.28 0.06 0.25 0.81 -0.44, 0.56 
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Supplementary Table 39. Prediction estimates from final accelerated failure time (AFT) model for gentamicin minimum inhibitory 

concentrations (MIC) for enterococci isolates. 

 

 

 

    Predicted MIC - Zinc Predicted MIC - Placebo Predicted MIC – (Difference, Zinc-Placebo) 

    MIC SE P-value 95% CI MIC SE P-value 95% CI MIC SE P-value 95% CI 

Days from 

last 

spectinomycin 
treatment 

0 days 9147.40 6884.36 0.18 -4345.70, 22640.50 6331.95 4440.22 0.15 -2370.71, 15034.62 2815.45 3602.90 0.44 -4246.11, 9877.00 

1 days 8300.11 6209.46 0.18 -3870.20, 20470.42 5745.45 4037.86 0.16 -2168.61, 13659.50 2554.66 3242.34 0.43 -3800.21, 8909.53 

5 days 5626.37 4258.12 0.19 -2719.40, 13972.14 3894.65 2869.00 0.18 -1728.48, 9517.78 1731.72 2151.63 0.42 -2485.39, 5948.83 

10 days 3460.66 2851.98 0.23 -2129.12, 9050.45 2395.52 1995.06 0.23 -1514.74, 6305.77 1065.15 1326.07 0.42 -1533.896, 3664.187 
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Abstract 

Food-producing animals such as dairy cattle are potential reservoirs of antimicrobial resistance 

(AMR), with multidrug-resistant (MDR) organisms such as Escherichia coli observed in higher frequency 

in young calves compared to older cattle. In this study, we characterized the genomes of enteric MDR E. 

coli from pre-weaned dairy calves with and without diarrhea and evaluated the influence of host-level 

factors on genomic composition. Whole genome sequence comparative analysis of E. coli (n=43) 

revealed substantial genomic diversity that primarily clustered by sequence type and was minimally 

driven by calf diarrheal disease status (healthy, diarrheic, or recovered), antimicrobial exposure, and 

dietary zinc supplementation. Diverse AMR genes (ARGs) – including extended-spectrum beta-lactamase 

genes and quinolone resistance determinants – were identified (n=40), with unique sets of ARGs co-

occurring in gene clusters with large AMR plasmids IncA/C2 and IncFIB(AP001918). Zinc 

supplementation was not significantly associated with the selection of individual ARGs in E. coli, 

however analysis of ARG and metal resistance gene pairs identified positive associations between certain 

aminoglycoside, beta-lactam, sulfonamide, and trimethoprim ARGs with acid, tellurium and mercury 

resistance genes. Although E. coli in this study lacked the typical virulence factors of diarrheagenic 
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strains, virulence genes overlapping with those in major pathotypes were identified. Among the 103 

virulence genes detected, the highest abundance and diversity of genes corresponded to iron acquisition 

(siderophores and heme uptake). Our findings indicate that the host-level factors evaluated in this study 

were not key drivers of genomic variability, but that certain accessory genes in enteric MDR E. coli may 

be enriched. Collectively, this work provides insight into the genomic diversity and host-microbe 

interface of MDR E. coli from pre-weaned dairy calves.  

Introduction 

Escherichia coli is a diverse and ubiquitous organism present in the healthy enteric microbiome 

of humans and animals and as a pathogen responsible for various diarrheagenic and extraintestinal 

diseases (Jackson et al., 2011; Braz et al., 2020). The occurrence of antimicrobial resistant (AMR) E. coli 

in food-producing animals, such as dairy cattle, has been identified across various cattle groups in farm 

environmental matrices, feces, food products (e.g. milk and cheese), and clinical samples (e.g. diarrhea 

and clinical mastitis) (Ombarak et al., 2018; Formenti et al., 2021; Jeamsripong et al., 2021; Majumder et 

al., 2021; Imre et al., 2022). The prevalence and persistence of drug-resistant E. coli is both a veterinary 

and human medicine concern, with pathogenic strains compromising animal health and safety of food 

products, and commensals serving as important reservoirs for the dissemination of AMR. 

Multidrug-resistant (MDR) E. coli have been observed in higher frequency in younger cattle, 

particularly in calves around two weeks in age (Berge et al., 2005, 2010). This age-dependent and 

transient increase in AMR of dairy calves is thought to be driven by the early developing gut microbiome, 

in which initial exposure to the environment, antibiotic therapy, dietary changes, and other factors 

collectively contribute to the rapid establishment of the bovine resistome (Khachatryan et al., 2004; 

Noyes et al., 2016; Liu et al., 2019; Springer et al., 2019; Oh et al., 2020). Previous studies have 

demonstrated the dynamic nature of AMR selection and enrichment in calves, with the acquisition of 

AMR occurring beyond influences of antibiotic exposure (Liu et al., 2019; Haley and Van Kessel, 2022) 

and calves harboring greater diversity in AMR than the potential sources (e.g. dam) seeding their 
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resistome (Haley et al., 2020; Massé et al., 2021). Additionally, studies have suggested that biocides used 

as disinfectants and heavy metal additives in feed may contribute to the co-selection of AMR with biocide 

and metal resistance (Wales and Davies, 2015; Cheng et al., 2019).  

In pre-weaned dairy calves, diarrhea is the leading cause of morbidity and mortality, which 

frequently results in antimicrobial treatment (Berchtold and Constable, 2009; Habing et al., 2017). To 

reduce AMR without compromising animal health, antimicrobial alternatives such as dietary zinc 

supplementation have been explored and shown to be effective in preventing diarrhea and expediting 

diarrheal recovery (Glover et al., 2013; Feldmann et al., 2019; Chang et al., 2020; Ma et al., 2020; Wo et 

al., 2022). In this work, we evaluated fecal MDR E. coli isolates from pre-weaned dairy calves in a zinc 

supplementation clinical trial using whole genome sequencing (WGS) comparative analysis. The 

objective of this study was to characterize AMR and virulence genes and to evaluate calf diarrheal disease 

status, dietary zinc supplementation, and antimicrobial treatment as potential drivers of genomic 

variability in MDR E. coli. We hypothesize that these host-level factors will contribute to differences in 

genomic AMR, virulence, and metal resistance profiles, and that the presence of certain genes will 

provide insight into the persistence of enteric MDR E. coli in calves.  

Materials and Methods 

Isolate source 

 Fecal E. coli isolates in this study were obtained from pre-weaned dairy calves enrolled in a 

double-blind, block-randomized, placebo-controlled zinc supplementation clinical trial assessing dietary 

zinc supplementation on diarrhea prevention and calf health. Details on the original trial procedures were 

previously described (Feldmann et al., 2019). Briefly, all calves were under the same management 

practices (e.g. housing and diet) and standard on-farm treatment protocols. The repository of 43 E. coli 

isolates correspond to pre-weaned dairy calves 2 weeks in age (range: 14-16 days). One representative 

fecal E. coli isolate per calf was used for analysis, with each isolate corresponding to a calf after 14 

consecutive days of dietary zinc sulfate or placebo treatment. Treatments were administered during 

morning milk feeding with calves in the zinc group receiving 0.22g zinc sulfate monohydrate (80 mg of 
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elemental zinc) (Sigma-Aldrich Company, St. Louis, MO, USA) with 0.44g milk replacer powder, and 

calves in the placebo group receiving only 0.44g milk replacer powder (Feldmann et al., 2019). At the 

time of isolate collection, calves were in various stages of diarrheal disease (pre-diarrheic/healthy, 

diarrheic, or recovered) and exposure to antimicrobial treatment for diarrhea (0, 1, or 2 doses of 31.5 mL 

(1575 mg) spectinomycin administered once daily, SpectoGard, Bimeda, Inc., Le Sueur, MN, USA). 

Other antimicrobial exposures included tetracycline and neomycin administered through daily milk, 

which were consistent in dosage and duration over time for all calves throughout the study. Calf-level 

data corresponding to isolates were collected from daily assessment records for individual calves. All 

isolates were confirmed as E. coli using conventional PCR and underwent antimicrobial susceptibility 

testing (AST) using broth microdilution and the NARMS Gram Negative panel (YCMV3AGNF) as 

previously described (Lee et al., 2024).  

DNA extraction and whole genome sequencing (WGS) 

Genomic DNA was extracted from pure overnight E. coli cultures per manufacturer’s protocol 

using the Qiagen’s DNeasy Blood and Tissue kit (Qiagen, Valencia, CA, USA). WGS was conducted 

using methods from the 100K Pathogen Genome Project as previously described (Weis et al., 2017; 

Bandoy and Weimer, 2020; Aguilar-Zamora et al., 2022; Hurtado et al., 2022; Woerde et al., 2023; 

Hernández-Juárez et al., n.d.). Briefly, genomic DNA purity and integrity were assessed using the 

Nanodrop and the Agilent 2200 TapeStation with the Genomic DNA ScreenTape Assay (Agilent 

Technologies, Inc., Santa Clara, CA, USA), respectively. Sequencing libraries were constructed using the 

KAPA HyperPlus library preparation kit (Roche Sequencing Solutions, Pleasanton, CA, USA). Double-

stranded genomic DNA was fragmented and indexed using Weimer 384 TS-LT DNA barcodes 

(Integrated DNA Technologies, Coralville, IA, USA), followed by dual-SPRI size selection and PCR 

amplification. Final library sizes were confirmed on the LabChip GX using the HT DNA 1K kit 

(PerkinElmer, Waltham, MA, USA). Library quantification was conducted using the KAPA Library 

Quantification Kit (Roche Sequencing Solutions, Pleasanton, CA, USA) to ensure normalized 
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concentrations for sequencing pooling. Final libraries were sequenced using the Illumina HiSeq X Ten 

with PE150.  

Whole genome assembly and comparison 

Genomic sequence data was processed as previously described (Bandoy and Weimer, 2020; 

Higdon et al., 2020; Flores-Valdez et al., 2021; Miller et al., 2021; Depenbrock et al., 2024). Briefly, 

Trimmomatic was used to remove low-quality sequence and adapters, and FastQC was used to review 

sequence quality. Paired-end reads from WGS were assembled using Shovill with the SPAdes assembler 

and a Kmer size of 31. Quality of assemblies was then evaluated using CheckM. Genome similarity was 

measured using Sourmash with Minhash signatures with a Kmer length of 31 and scaled sketch size of 

100,000 per megabase (Brown and Irber, 2016). The matrix output from Sourmash was visualized in R 

using the pheatmap package (pheatmap function - RDocumentation, n.d.).  

Multilocus sequence typing (MLST) and pangenome analysis 

 The sequence type (ST) for each genome was determined based on the Achtman seven-locus 

scheme (adk, fumC, gyrB, icd, mdh, purA, and recA) using the PubMLST database (Kaas et al., 2012; 

PubMLST - Public databases for molecular typing and microbial genome diversity, n.d.). Pangenome 

analysis was conducted using Roary as described previously (Page et al., 2015; Bandoy and Weimer, 

2020; Miller et al., 2021). Pangenome composition and gene diversity estimation were then visualized 

using open source python script ‘roary_plots.py’ and native Rscript (create_pan_genome_plots.R), 

respectively (Higdon et al., 2020).  

Identification of antimicrobial resistance genes (ARGs), virulence genes, metal resistance genes, and 

plasmid replicons 

Genetic determinants for antimicrobial resistance (ARGs), virulence, metal resistance, and 

plasmid replicons were determined using Abricate and the ResFinder, VFDB, BacMet, and PlasmidFinder 

databases, respectively (Zankari et al., 2012; Carattoli et al., 2014; Pal et al., 2014; Chen et al., 2016; 

Seemann, 2024). Additionally, SNP based resistance for quinolones was identified using RGI with the 

CARD database (Alcock et al., 2020a, 2020b). Hits were determined if meeting the criteria of ≥90% 
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coverage and ≥95% identity. For metal resistance genes, only experimentally confirmed genes were 

included in the analysis.    

Data analyses 

Descriptive statistics on the distribution of ARGs, virulence factors, metal resistance genes, and 

plasmid replicons were conducted in SAS OnDemand for Academics. Differences in the mean number of 

ARGs and virulence genes by factors of treatment group, diarrhea status, and number of therapeutic 

antibiotic doses were evaluated using a t-test/ANOVA or Mann-Whitney U test.  

Proportions of E. coli genomes with presence of ARGs and virulence factors were plotted as 

heatmaps in R using the pheatmap package. Rows of the heatmaps were clustered using the Euclidean 

distance metric and complete linkage method. Bar plots and violin plots of the distribution of ARGs and 

virulence factors, respectively, were visualized in R using ggplot2 (Wickham et al., 2023).  

 To investigate the differences in antimicrobial resistance, virulence, metal resistance, and 

pangenome composition amongst isolates, clustering based on the presence and absence matrices for each 

were assessed by grouping factors of treatment group, diarrhea status, sequence type, and antibiotic 

exposure as previously described (Lee et al., 2023). A PERMDISP2 procedure was conducted to evaluate 

if dispersions of groups for each grouping factor were homogenous (Anderson, 2006; Anderson et al., 

2006). Permutational analysis of variance (PERMANOVA) and ANOSIM (analysis of similarity) were 

then performed to evaluate equivalence of centroids of groups and average of ranks of within-group to 

between-group distances, respectively (Anderson and Walsh, 2013). Additionally, non-metric 

multidimensional scaling was performed by grouping factor of sequence type for AMR and virulence 

genes. All tests were performed using 10,000 permutations and a Jaccard distance metric in R using the 

vegan package (Oksanen et al., 2022). 

 Logistic regression models were constructed to assess the association between the presence of 

ARGs with calf-level factors. Models were constructed with outcomes specified as the presence or 

absence of individual ARGs, quinolone resistance determinants (presence of any point mutations or 

plasmid-mediated quinolone resistance determinants), and extended spectrum beta-lactamase (ESBL) 
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resistance genes. Calf-level factors included in model building included treatment group (isolate from 

zinc- or placebo- treated calf), therapeutic spectinomycin exposure at the time of isolate collection, and 

diarrhea status of the calf at the time of isolate collection. Antibiotic exposure and calf diarrhea status 

were evaluated based on individual calf-level data collected through daily assessments. Specifically, 

spectinomycin treatment was coded as a binary variable (received treatment or not), number of doses 

received (0, 1, or 2 doses), or days from the last spectinomycin dose received, and diarrhea status was 

coded as days on or from diarrhea or a categorical variable (healthy/pre-diarrheic, diarrheic, or 

recovered). Final models were selected based on the lowest AIC after inclusion of confounders 

(antimicrobial exposure for all ARG models) and any other significant predictors. Given their public 

health significance, the association between the presence of extended spectrum beta-lactamase (ESBL) 

genes and other ARGs were also evaluated using Fisher’s exact test. 

Antimicrobial susceptibility testing data previously collected on study isolates (broth 

microdilution using the NARMS Gram Negative panel, YCMV3AGNF) were used to assess the 

concordance between genotypic and phenotypic resistance (Lee et al., 2022) for the following drugs: 

gentamicin, streptomycin, amoxicillin-clavulanic acid, cefoxitin, ceftiofur, ceftriaxone, trimethoprim-

sulfamethoxazole, azithromycin, ampicillin, chloramphenicol, nalidixic acid, ciprofloxacin, and 

tetracycline. Classification of isolates into susceptible, intermediate, and resistant categories were 

conducted using CLSI breakpoints, with the exception of streptomycin and azithromycin where NARMS 

breakpoints were used due to lack of CLSI breakpoints (Supplementary File). Multidrug-resistance 

(MDR) was defined as resistance to ≥1 drug in ≥3 antimicrobial classes (Magiorakos et al., 2012). 

Concordance included phenotypically resistant isolates with the corresponding ARG(s) (TP, true positive) 

and phenotypically susceptible isolates with absence of corresponding ARG(s) (TN, true negative). 

Discordance included phenotypically resistant isolates not having the corresponding ARG(s) (FN, false 

negative), and phenotypically susceptible isolates having the corresponding ARG(s) (FP, false positive). 

Sensitivity and specificity were evaluated as TP/(TP+FN) and TN/(TN+FP), respectively. For analysis, 

intermediate isolates were grouped with susceptible isolates.  
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To evaluate the co-occurrence of plasmid replicons and ARGs, a pairwise co-occurrence matrix 

was constructed and visualized as networks using Gephi (Bastian et al., 2009) as previously described 

(Lee et al., 2023). To assess the linkage patterns of ARGs and metal resistance genes, pairwise 

probabilistic co-occurrence analysis was conducted using default settings in the R package cooccur 

(Griffith et al., 2016).  

Data availability 

WGS data for isolates are available at the 100k Pathogen Genome Project BioProject 

(PRJNA186441) (Supplementary File). 

Results 

WGS of MDR E. coli isolates 

 E. coli genomes in this study had an average of 193 contigs, coverage of 112X, and quality score 

of 38. Additional quality metrics, AST data, and metadata of genomes in this study are available in the 

Supplementary File.  

Concordance of AMR phenotypes with genotypes 

E. coli isolates in this study were previously determined to be MDR through AST. To assess 

AMR concordance, predictions of AMR phenotype from genotype was evaluated for 13 drugs using 

previously collected AST data. Across all tested drugs, genotypic AMR predicted phenotypic AMR with 

an overall sensitivity of 100% and specificity of 98.58% (Table 1). Discordances in specificity included a 

streptomycin susceptible isolate with a streptomycin resistance gene (aadA2), and a ceftiofur intermediate 

isolate with carriage of an AmpC beta-lactamase gene (blaCMY2).  

E. coli genome population structure 

Whole genome analysis of the isolates revealed a large genomic diversity of E. coli genomes. All-

by-all comparison identified three main clusters that exhibited minimal to no relationship to calf disease 

status (healthy, diarrheic, or recovered calves), treatment group (placebo or zinc), or therapeutic 

antimicrobial treatment (0, 1, or 2 doses of spectinomycin). A total of 20 unique sequence types (STs) 

based on the 7-gene allelic profile were identified among 42 isolates, with one isolate unable to be 
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assigned to a ST. The most frequently occurring ST included ST362 (7/43, 16.28%), followed by ST10 

(4/43, 9.30%), ST101 (4/43, 9.30%), and ST641 (4/43, 9.30%). STs correlated with group and individual 

clusters from whole genome comparisons, with distinctive variability in genome content observed within 

each ST (Figure 1), indicating that the genes used to define ST were stable, but the remainder of the 

genome contained large variations. Specifically, the most prevalent STs exhibited substantial 

heterogeneity in genome composition, particularly ST10, ST101, and ST641 which had variable 

accessory genes including those for AMR and virulence (Figure 1, Figure 2B, and Figure 4B). This 

observation indicated that WGS provided higher resolution characterization of strain variation than 

MLST, and prompted examining the pangenome for better understanding of the gene variation among 

isolates in this study. 

Pangenome analysis of E. coli isolates 

The pangenome of E. coli isolates in this study was open and comprised of 14,011 genes that 

included a core genome with 3,117 genes and a soft-core, shell, and cloud genomes of 219, 3,076, and 

7,599 genes, respectively. Analysis of the cumulative gene curve representing the number of total 

homologous genes and conserved homologs indicated an open pangenome that was covered with 

approximately 10 genomes within this population (Supplementary Figure 1). While the core was 

represented within a smaller portion of the isolates, genes from the variable portion of the pangenome 

represented 77.75% variation in the isolate population. 
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Table 1. Genotypic prediction of phenotypic resistance in dairy calf E. coli isolates (n=43). 

CLSI class 
Antimicrobial 

agent 

Phenotype: susceptible Phenotype: resistant 

Sensitivityb 

(%) 

Specificityc 

(%) 

(No. of isolates) (No. of isolates) 

Genotype: 

resistant  

Genotype: 

susceptible 

Genotype: 

resistant 

Genotype: 

susceptible 

(FP)a (TN)a (TP)a (FN)a 

Aminoglycosides GEN 0 5 38 0 100% 100% 
 STR 1 0 42 0 100% 0% 

B-lactam 

combination agents 
AUG2 0 2 41 0 100% 100% 

Cephems FOX 0 2 41 0 100% 100% 
 XNL 1 1 41 0 100% 50% 
 AXO 0 1 42 0 100% 100% 

Folate pathway 

antagonists 
SXT N/A N/A 43 0 100% 0% 

Macrolides AZI 0 40 N/A N/A N/A 100% 

Penicillins AMP N/A N/A 43 0 100% N/A 

Phenicols CHL 0 10 33 0 100% 100% 

Quinolones NAL 0 39 4 0 100% 100% 
 CIP 0 39 4 0 100% 100% 

Tetracyclines TET N/A N/A 43 0 100% N/A 

Overall  - 2 139 415 0 100% 98.58% 
aFP false positive; TN true negative, TP true positive, FN false negative 
bSensitivity TP/(TP+FN) 
cSpecificity TN/(TN+FP) 
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Figure 1. All-by-all comparison of genome similarity of E. coli isolates (n=43) from pre-weaned dairy calves, generated using MinHash sketches 

from draft whole-genome assemblies of k-mers with a length of 31 and sketch size of 100,000. The heatmap color gradient corresponds to the 

Jaccard Similarity Index (JSI) for each pairwise comparison, with values close to 0 and 1 corresponding to high genome dissimilarity and 

similarity, respectively.
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AMR, virulence, metal resistance, and pangenome profiles & diversity 

The collective ARGs, virulence genes, metal resistance genes, and pangenome elements of E. coli 

were evaluated using multivariate analysis to assess if variability in these genomic profiles were driven by 

host-level factors. Tests for differences in E. coli genomic content for AMR, virulence, metal resistance, 

and pangenome elements indicated that dispersion differences were not significantly different among 

isolates by treatment group, diarrhea status, and therapeutic antibiotic exposure (PERMDISP2 p > 0.05, 

Table 2). Additionally, grouping factors evaluated in this study accounted for a low proportion of 

variance in AMR, virulence, metal resistance, and pangenome composition in E. coli genomes 

(PERMANOVA R2=9.39E-3-0.04), with equal or greater dissimilarities in average of ranks within group 

than those of between-groups across all factors (ANOSIM R = ~0 or R < 0) (Table 2).  These analyses 

indicated that the host-level factors evaluated in this study – diarrheal disease status, dietary zinc 

supplementation, and antibiotic treatment – had minimal influence on the genomic composition of E. coli. 

These findings provided impetus to evaluate the distribution of genes individually with respect to host-

level factors. 

Antimicrobial resistance genetic determinants (ARGs) 

 Across the 43 E. coli genomes, a total of 40 ARGs among diverse antimicrobial classes were 

detected. The average and median number of ARGs per genome – including SNPs for quinolone 

resistance – was 13 ARGs with a range of 9 to 19. ARGs conferring resistance to antimicrobials of public 

health significance included seven SNPs in chromosomal genes – pS83L, pD87N, and pD87Y in gyrA, 

pS80I and pE84G in parC, and pI355T and pS458T in parE – and 2 plasmid-mediated quinolone 

resistance genes – qnrB19 and qnrS1 – associated with quinolone resistance, and those for AmpC (blaCMY-

2) and extended-spectrum (blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55) beta-lactamases (ESBL). The presence 

of ESBL gene(s) in E. coli was significantly associated with the presence of one or more quinolone 

resistance determinants (p<0.05, Fisher’s exact test).  
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Table 2. Results of PERMDISP2, PERMANOVA, and ANOSIM tests 

Group PERMDISP2 P-value (F) PERMANOVA P-value (R2) ANOSIM P-value (R) 

AMR (ResFinder) genes (n=40) 

     Treatment group  0.75 (0.10) 0.15 (0.04) 0.38 (4.23E-3) 

     Diarrhea status 0.74 (0.29) 0.87 (0.02) 0.49 (-5.89E-3) 

     Antibiotic doses 0.62 (0.48) 0.83 (9.39E-3) 0.85 (-0.09) 

Virulence (VFDB) genes (n=103) 

     Treatment group 0.86 (0.03) 0.73 (0.01) 0.75 (-0.035) 

     Diarrhea status 0.98 (0.02) 0.76 (0.03) 0.57 (-0.020) 

     Antibiotic doses 0.69 (0.38) 0.70 (0.02) 0.67 (-0.048) 

BacMet genes (n=153)    

     Treatment group 0.71 (0.15) 0.22 (0.03) 0.37 (7.93E-3) 

     Diarrhea status 0.96 (0.04) 0.93 (0.02) 0.49 (-4.04E-3) 

     Antibiotic doses 0.97 (0.03) 0.76 (0.01) 0.52 (-0.01) 

Pangenome (Roary) elements (n=14011) 

     Treatment group 0.92 (0.01) 0.34 (0.025) 0.42 (2.0E-3) 

     Diarrhea status 0.59 (0.54) 0.93 (0.03) 0.80 (-0.066) 

     Antibiotic doses 0.71 (0.35) 0.57 (0.02) 0.47 (2.63E-3) 
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Figure 2. Antimicrobial resistance genetic determinants in fecal E. coli isolates from pre-weaned dairy 

calves (n=43). A) Heat map of ARG prevalence among isolates B) Non-metric multidimensional scaling 

of ARG composition of isolates by grouping factor of sequence type. Distribution of number of ARGs in 

E. coli isolates by C) treatment group D) diarrhea status and E) therapeutic antibiotic exposure. 

 

ARGs present in more than half of the isolates included mdf(A) (43/43, 100%), aph(6)-Id (39/43, 

90.7%), rmtE (38/43, 88.4%), aph(3'')-Ib (36/43, 83.7%), and aadA5 (27/43, 62.8%) for aminoglycoside 

resistance, blaCMY-2 (41/43, 95.3%) for beta-lactam resistance, dfrA17 (28/43, 65.1%) for trimethoprim 

resistance, floR (33/43, 76.7%) for phenicol resistance, sul2 (40/43, 93.0%) for sulfonamide resistance, 

and tet(A) (43/43, 100%) and tet(M) (40/43, 93.0%) for tetracycline resistance (Figure 2A). The average 
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number of ARGs across all genomes was 13 (SD = 1.73) and alongside collective AMR profiles, did not 

differ significantly by dietary zinc supplementation treatment group (zinc or placebo), diarrhea status 

(healthy, diarrheic, and recovered), and therapeutic antibiotic exposure (0, 1, or 2 doses) (Table 2, Figure 

2C-E).  

Mobile genetic elements associated with ARGs 

As E. coli isolates in this study were MDR, it was of interest to investigate the mobile genetic 

elements associated with ARGs that may contribute to AMR co-transfer. Eighteen putative plasmids 

based on the presence of plasmid replicons were identified across all genomes, with a pairwise co-

occurrence matrix indicating high frequency co-occurrence of AMR gene clusters with certain putative 

plasmids (Figure 5). The most frequently co-occurring gene network of aph(6)-Id, blaCMY-2, floR, mdf(A), 

sul2, and tet(A) was associated with the IncA/C2 plasmid replicon in 30 (69.8%) genomes. A second 

smaller network including mdf(A), rmtE, and tet(A) co-occurred with the IncFIB (AP001918) plasmid 

replicon at a frequency of 20 (46.5%) genomes. At a minimum threshold co-occurrence of ≥10 genomes 

(about 25% of the genomes), a larger network of genes including aac(3)-VIa, aadA2, dfrA12, mdf(A), 

rmtE, sul1, tet(A), and tet(M) were detected with IncHI2/2A plasmid replicons. Screening for plasmid 

replicons among genomes in this study identified unique sets of ARGs in co-occurrence with primarily 

large AMR plasmids.  

Association between dietary zinc supplementation and genotypic AMR 

 The relationship between genotypic AMR and calf zinc treatment group of isolates was examined 

to determine the association between dietary zinc supplementation in pre-weaned dairy calves and the 

selection of specific ARGs. From descriptive analysis, SNPs in genes for quinolone resistance were 

exclusively detected in isolates from placebo calves. Antibiotic exposure-adjusted logistic regression 

models identified higher odds of certain ARGs in E. coli isolates from zinc-treated compared to placebo 

calves (dfrA12, aadA2, sul2, aac(3)-VIa, aph(3'')-Ib, blaTEM-1B, sul1, and alleles of blaCTX-M), though none 

of these associations were significant (OR=1.60-2.92, p>0.05). Conversely, there were non-significant 

lower odds for other ARGs and point mutations associated with quinolone resistance for isolates from 
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zinc-treated to placebo calves (aadA5, dfrA17, floR, aph(3')-Ia, blaCMY-2, aph(6)-Id (OR=0.23-0.82, 

p>0.05) (Figure 3, Supplementary Tables 1-15).  

 
Figure 3. Antibiotic exposure-adjusted logistic regression models evaluating the association between 

presence of antimicrobial resistance genetic determinants (ARGs) and calf treatment group of E. coli 

isolates. Point estimates for each model are color-coded by antimicrobial class. Binary outcomes for 

quinolone and blaCTX-M models were specified as the presence/absence of any quinolone resistance 

mechanism (plasmid-mediated genes or point mutations) and the presence/absence of any blaCTX-M alleles, 

respectively. 
 
Virulence genes 

 A total of 103 virulence genes corresponding to adherence/biofilm formation (n=36), 

iron/nutrient acquisition (n=40), secretion (n=21), toxin (n=4), and other functions (n=2) were detected 

across E. coli genomes. The average and median number of virulence genes were 40.58 and 38, 

respectively (range of 18 to 68). Four virulence genes related to enterobactin (entB, entC, fepA, fepD and 

fes) were detected across all isolates (Figure 4a). The number of virulence genes and collective virulence 

profiles across genomes did not differ significantly by dietary zinc supplementation treatment group, 

diarrhea status, and therapeutic antibiotic exposure (Table 2, Figure 4c-e). 
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Figure 4. Virulence genes in fecal E. coli isolates from pre-weaned dairy calves (n=43). A) Heat map of 

virulence gene prevalence among isolates B) Non-metric multidimensional scaling of virulence gene 

composition in isolates by grouping factor of sequence type. Distribution of number of virulence genes in 

E. coli isolates by C) treatment group D) diarrhea status and E) therapeutic antibiotic exposure. 
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Virulence genes from the afa-7 and afa-8 clusters (afaA-E) encoding afimbrial adhesins were 

detected primarily in isolates from placebo calves (85.71%, 6/7), with the full gene set present in six 

isolates. Other virulence genes detected related to colonization included those encoding F17 fimbriae 

(f17d-A, f17d-C, f17d-D, and f17d-G) in six isolates, and P fimbriae in 12 isolates (pap genes) (Bertin et 

al., 2000; Bihannic et al., 2014; Ryu et al., 2020). Additionally, genes in the fim cluster (fimA-I) encoding 

type 1 fimbriae were present in the majority of isolates, though only one isolate harbored the fimA 

structural gene and three isolates the fimH adhesin gene. Major virulence genes related to secretion 

included those corresponding to Type II (gsp) and Type III (esp) secretion systems. Virulence genes for 

toxins, astA (enteroaggregative heat-stable enterotoxin) and/or cdtABC (cytolethal distending toxin), were 

identified in isolate(s) from pre- and post-diarrheic calves. Overall, virulence genes were interspersed in 

the population across calf zinc treatment group and diarrhea status. The largest number and diversity of 

virulence genes identified corresponded to iron/nutrient acquisition, including genes chuSTUVWXY (heme 

uptake), entA-F (enterobactin), fepA-D (enterobactin), fyuA (yersiniabactin receptor), iucABCD-iutA 

(aerobactin), and those in the ybt operon (yersiniabactin) (Figure 4a).  

Association between AMR and metal resistance genes 

A total of 153 metal resistance genes (MRGs) were identified across all E. coli genomes 

examined, with the average and median number of MRGs per genome being 128.42 and 127, 

respectively, with a range of 123 to 135. Co-occurrence analysis of ARGs and metal resistance genes 

included 16585 gene pairs and identified 96 positive and 77 negative co-occurrences. Positive 

associations including both ARGs and metal resistance were observed between aminoglycoside (aac(3)-

VIa, aadA2), beta lactam (blaTEM-1B), sulfonamide (sul1), and trimethoprim (dfrA12) resistance and 

acid (gadA and gadB), tellurium (terZ and terW) and mercury (merT) resistance genes (Figure 6).  
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Figure 5. Co-occurrence network of plasmid replicons and antimicrobial resistance genetic determinants 

(ARGs) in E. coli isolates. Nodes representing ARGs are color coded by antimicrobial class and edges 

representing low to high frequency of co-occurrence are depicted in a light to dark color gradient. 

 

 
Figure 6. Pairwise probabilistic co-occurrence analysis for positive, negative, or random associations of 

antimicrobial resistance genetic determinants and metal resistance genes in E. coli isolates. 
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Discussion 

The enteric microbiota serves as a symbiotic partner of the host, with crucial roles in intestinal 

health, metabolism, and host immune response (Casadevall and Pirofski, 2000; Kaiko and Stappenbeck, 

2014; Jandhyala et al., 2015). The acquisition and loss of genes – such as those for AMR – in enteric 

microbes like E. coli can occur as adaptive responses to environmental (e.g. dysbiosis) and host changes 

(e.g. diet and disease). In this study, we investigated the host-microbe interface of enteric MDR E. coli 

from pre-weaned dairy calves to evaluate potential contributing factors to MDR persistence and better 

understand the relationship between genomic composition and host-level factors of antimicrobial 

exposure, dietary zinc supplementation, and calf diarrheal disease.  

Whole genome sequence analysis revealed high genome variability and an open pangenome of 

multidrug-resistant (MDR) E. coli from dairy calves in this study. The diverse population structure of E. 

coli has been well-documented, with the frequent acquisition, loss, and modification of genes contributing 

to its large gene pool, fitness, and competitive ability to thrive in widespread geographical and host 

environments (Horesh et al., 2021). From all-by-all comparisons of the WGS, the isolates in this study 

clustered by sequence type (ST) but not host-level factors of disease status, dietary influences, or 

antimicrobial exposure. Common STs identified included ST362, a frequently occurring ST in calves that 

has been associated with extra intestinal infections (Falgenhauer et al., 2017; Vieille et al., 2019; 

Homeier-Bachmann et al., 2022). Other prevalent STs were those with zoonotic potential, such as ST641, 

were previously isolated from poultry and goat sources (Cortés et al., 2010; Zhuge et al., 2021; Treilles et 

al., 2023), ST10, a widespread lineage of pathogenic and commensal E. coli which are prominently MDR 

in animal populations (Haley et al., 2023; Silva et al., 2023; Wang et al., 2023), and ST101, another 

frequently occurring MDR clonal group frequently detected in food, water, food animal, and human 

matrices (Umpiérrez et al., 2017; Zhong et al., 2019; Sauget et al., 2023; Silva et al., 2023).  

The accessory genome of E. coli encodes various characteristics for survival and reproduction, 

including those related to AMR (Hall et al., 2021). The early developing microbiota of calves has been 

observed to harbor high prevalence and diversity of ARGs (Liu et al., 2019; Haley et al., 2023), which is 
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corroborated by the large assortment of ARGs detected in E. coli genomes. In this study, the number of 

ARGs in E. coli did not correlate with antimicrobial use; however, the presence of ARGs corresponding 

to certain antimicrobial classes were consistent with the AMR selection pressures in our study; the high 

prevalence and diversity of tetracycline and aminoglycoside ARGs detected in E. coli genomes is 

reflective of the tetracycline and neomycin administered in dietary milk and spectinomycin for the 

therapeutic treatment of diarrhea.  

A major mechanism of third-generation cephalosporin resistance in Salmonella and E. coli from 

food and food-producing animals is AmpC-type beta-lactamase blaCMY-2, which was detected in almost 

every E. coli genome in this study, despite the lack of beta-lactam use in calves. The occurrence of blaCMY-

2 in dairy cattle has been presumed to be from frequent use of ceftiofur for the intramammary treatment of 

mastitis and parenteral treatment of acute metritis and bacterial pneumonia (Durel et al., 2019). However, 

studies have found limited evidence for the direct dissemination of blaCMY-2 through ceftiofur use (Daniels 

et al., 2009; Schmidt et al., 2013) or associations between recent ceftiofur treatment and reduced-

susceptible E. coli at the individual cow level (Tragesser et al., 2006). We found a high frequency of a co-

occurrence networks with blaCMY-2, ARGs corresponding to aminoglycoside, phenicol, sulfonamide, and 

tetracycline resistance, and the IncA/C2 plasmid replicon in our study isolates. These data support 

observations from other studies, in which the occurrence of blaCMY-2 in absence of cephalosporin use has 

been postulated to be from its acquisition on large MDR plasmids, followed by clonal expansion and/or 

the presence of indirect and co-selective AMR pressures that maintain these plasmids at the herd-level 

(Alcaine et al., 2005; Subbiah et al., 2011; Martin et al., 2012; Schmidt et al., 2013; Deng et al., 2015). 

Other beta-lactam ARGs conferring resistance to cephalosporins found in this study included ESBL genes 

from the blaCTX-M family (blaCTX-M-15, blaCTX-M-27, and blaCTM-M-55) from three E. coli genomes. In addition to 

being resistant to third-generation cephalosporins, ESBL- producing E. coli have important clinical 

consequences as they are frequently MDR to other critically important antimicrobials such as quinolones 

(Zurfluh et al., 2014; Azargun et al., 2018; Furmanek-Blaszk et al., 2023), a finding that is corroborated 
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through the significant association observed between the presence of ESBL and quinolone resistance 

determinants among E. coli in this study.  

While antimicrobial use is perceived as a main driver of AMR, non-antimicrobial factors such as 

heavy metal exposure have also been recognized to influence AMR selection. Heavy metals such as zinc 

are frequently used as growth promoters or therapeutic agents in livestock species (Yazdankhah et al., 

2014); for example, dietary zinc supplementation in pre-weaned calves may be used to reduce the burden 

of diarrheal disease and promote calf growth (Glover et al., 2013; Feldmann et al., 2019; Chang et al., 

2020; Liu et al., 2023; Yu et al., n.d.). Little is known on the influence of dietary zinc on genomic AMR 

in cattle, however a previous study in swine found that high zinc in feed (2.5g/kg) significantly increased 

intestinal abundance of tetracycline and sulfonamide ARGs (Vahjen et al., 2015). As all E. coli genomes 

in our study had tet genes, we were unable to evaluate the selection of tetracycline ARGs. Adjusted 

logistic regression models found higher odds ratios for the presence of sulfonamide genes – sul1 

(OR=2.83, 95% CI 0.77-10.45) and sul2 (OR=1.89, 95% CI 0.14-25.12) – in E. coli from zinc compared 

to those from placebo calves. Although these findings were not statistically significant, the direction of 

associations support the aforementioned findings of potential sulfonamide ARG selection from dietary 

zinc (Vahjen et al., 2015). We also found unique SNPs in the genes conferring quinolone resistance in 

isolates from placebo treated calves, suggesting an antagonistic effect of zinc on certain classes of ARGs. 

However, the lower odds ratio for the presence of quinolone ARGs from logistic regression in isolates 

from zinc compared to placebo treated calves (OR=0.23 95% CI 0.02-2.29) was also not statistically 

significant. These non-significant findings may be attributed to the small sample size of isolates in our 

study that may have resulted in inadequate power to detect differences in addition to other 

uncharacterized variables. Hence, future studies employing larger sample sizes are needed to ascertain the 

relationship between zinc exposure and ARG selection, particularly for those in our study (sul2, blaCMY-2, 

aph(3'')-Ib, and blaCTX-M alleles) with large confidence intervals for point estimates.  

Beyond the selection of individual ARGs, co-selection of both ARGs and metal resistance genes 

may occur through co-resistance, a phenomenon where dissimilar mechanisms for both resistances are 
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selected due to their genetic linkage (Wales and Davies, 2015). The linkage of ARGs and metal resistance 

genes has been well documented (Baker-Austin et al., 2006; Wales and Davies, 2015; Nguyen et al., 

2019), and is supported by the several positive co-occurrences between diverse ARGs and mercury and 

tellurium resistance genes in E. coli from our study. Positive co-occurrence between ARGs for the same 

classes of antimicrobials and mercury and tellurium resistance genes were previously reported in fecal E. 

coli from dairy herds from Pennsylvania (Haley et al., 2023), suggesting that these specific genes are 

pervasive and selected for in dairy cattle and their farm environments irrespective of geographical 

location.  

In addition to evaluating potential host-level drivers of AMR in calf E. coli, this study compared 

genotypic AMR – the presence of ARGs and point mutations conferring quinolone resistance – with 

phenotypic AMR data from antimicrobial susceptibility testing. Genotypic AMR exhibited a high degree 

of concordance with phenotypic AMR for genomically heterogeneous MDR isolates in this study. Despite 

the small sample size of isolates (n=43) from one host (dairy calves) and source (single dairy farm), our 

findings are consistent with previous work evaluating genotypic and phenotypic concordance in E. coli 

and Salmonella from cattle and/or food animal sources (Tyson et al., 2015; McDermott et al., 2016; 

Carroll et al., 2021; Lee et al., 2022, 2023). Discrepancies for streptomycin and ceftiofur as observed in 

two isolates in this study have been frequently reported (Tyson et al., 2015; McDermott et al., 2016; Lee 

et al., 2023), and may be a result of lack of CLSI breakpoints for these veterinary drugs, technical 

variability in AST/WGS processes (e.g. 2-fold variations in MIC from AST at intermediate and resistant 

cut-off thresholds), and choice of classifying intermediate isolates. As an example of the latter, grouping 

of intermediate and susceptible isolates for analysis resulted in discrepancy of a ceftiofur immediate 

isolate in this study; the genotypic and phenotypic AMR for this isolate would have been congruent if 

intermediate isolates were instead treated as resistant.  

Diarrheal disease status of calves was not significantly associated with genomic variability in this 

study, including virulence profiles. E. coli can be categorized into various pathotypes depending on the 

presence of certain virulence attributes (Kaper et al., 2004), with common pathotypes associated with 
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neonatal calf diarrhea including enteropathogenic (EPEC), Shiga toxin-producing (STEC), 

enterotoxigenic (ETEC), and enteroaggregative (EAEC) E. coli (Awad et al., 2020). While MDR E. coli 

isolates in this study lacked the comprehensive virulence markers of these diarrheagenic pathotypes, they 

encoded a wide diversity of virulence genes that overlap with those in pathogenic strains. For instance, 

adhesin virulence genes observed in our study, fim and pap genes encoding Type I fimbriae and P 

fimbriae respectively, are associated with various pathotypes in both humans and animals (Bertin et al., 

2000; Sarowska et al., 2019), and f17 genes encoding F17 fimbriae and afa-7 and afa-8 gene clusters 

encoding afimbrial adhesion appear to be more host-specific and predominant in bovine E. coli associated 

with diarrhea and septicemia (Lalioui and Le Bouguénec, 2001; Bihannic et al., 2014; Shahrani et al., 

2014). Additionally, detected in a few isolates were cdtABC and astA encoding cytolethal distending toxin 

(CDT) and enteroaggregative heat-stable enterotoxin (EAST1), which are typically present in EPEC and 

ETEC, respectively (Yamamoto and Echeverria, 1996; Osek, 2003; Gomes et al., 2016; Meza-Segura et 

al., 2017). 

The most abundant virulence genes in MDR E. coli in this study were those involved in iron 

acquisition (e.g. sideophores and heme uptake). Iron plays a critical role in microbial metabolic processes 

and cell division, and its acquisition is an important host-microbe interaction that contributes to bacterial 

survival and pathogen infection (Caza and Kronstad, 2013; Nairz and Weiss, 2020). Previous studies 

identified several iron acquisition systems – some of which were also identified in our study (e.g. 

iucABCD-iutA) – to be significantly enriched in MDR bovine E. coli (Haley et al., 2023, 2024). Virulence 

factors and ARGs are essential for bacteria to overcome host immune responses and antimicrobial 

exposure, respectively. The simultaneous carriage of both in MDR E. coli may confer a fitness advantage 

in adverse conditions, promoting the co-selection and maintenance of these genes in MDR isolates as 

opposed to their susceptible counterparts (Beceiro et al., 2013). Moreover, the pre-weaned calf diet is 

primarily composed of milk, which is nutritionally negligible in iron and may contribute to a low-iron 

environment in the calf gut that has been hypothesized to favor the selection of MDR E. coli with more 

extensive repertoires of iron acquisition systems (Haley et al., 2023, 2024). During infection and disease, 
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host-driven iron sequestration occurs as an immune defense strategy to inhibit the growth of pathogens 

(Beceiro et al., 2013; Nairz and Weiss, 2020). As E. coli genomes in our study were from pre-weaned 

calves in various stages of diarrheal disease (pre-diarrheic, diarrheic, and recovered), we hypothesize that 

host-mediated iron withdrawal is another factor which may further favor the survival of MDR E. coli with 

high iron-scavenging capacity.   

 In conclusion, our analysis indicated that the genomes of MDR E. coli from pre-weaned dairy 

calves were highly diverse and minimally driven by the host-level factors evaluated in this study (dietary 

zinc supplementation, therapeutic antimicrobial treatment, and diarrhea disease status). Key limitations 

include the relatively small sample size of isolates and the absence of a susceptible and/or non-MDR 

group of E. coli genomes for comparison. Future work that evaluates longitudinal effects would provide 

greater insight on the relationship between genomic diversity and factors such as disease – which may 

occur in progressive stages – and antimicrobial exposure, which can rapidly and transiently impact the gut 

microbiome. Our findings corroborate previous reports of MDR E. coli from calves harboring diverse 

ARGs conferring resistance to clinically important drugs, enriched abundance of virulence factors for iron 

acquisition systems, and linkage of certain metal resistance genes and ARGs. These data suggest that the 

selection and persistence of MDR E. coli in calves are adaptive and attributed to the presence of these 

and/or other unidentified genes that confer a fitness advantage in the calf gut.  
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Supplementary Materials 

Supplementary Figure 1. Pangenome analysis of E. coli genomes (n=43), conducted using Roary. (a) 

Summary of E. coli pangenome (14,011 genes) (b) Gene accumulation curve of the number of conserved 

homologous genes (homologs) and the total distinct homologs of the E. coli pangenome, depicted by solid 

and dashed lines, respectively.   

 

Supplementary Table 1. Final logistic regression model for the association between the presence of 

blaCTX-M alleles in E. coli genomes and treatment group of calves.  

Factor Level 
Coefficient 

(SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc 1.07 (1.29) 2.92 (0.23, 36.49) 0.41 

  Placebo Referent - - 

Days from spectinomycin 

treatment - 0.14 (0.23) 1.15 (0.72, 1.81) 0.56 

Intercept - -4.10 (1.93) - 0.034 

 
 Supplementary Table 2. Final logistic regression model for the association between the presence of 

quinolone resistance determinants (point mutations and plasmid-mediated quinolone resistance 

determinants) in E. coli genomes and treatment group of calves. 

Factor Level 
Coefficient 

(SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc -1.45 (1.16) 0.23 (0.024, 2.29) 0.21 

  Placebo Referent - - 

Days from spectinomycin 

treatment - 0.096 (0.15) 1.10 (0.81, 1.49) 0.53 

Intercept - -2.03 (1.12) - 0.070 
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Supplementary Table 3. Final logistic regression model for the association between the presence of 

aac(3)-VIa in E. coli genomes and treatment group of calves. 

Factor Level 
Coefficient (SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc 0.79 (0.69) 2.21 (0.58, 8.50) 0.25 

  Placebo Referent - - 

Days from spectinomycin 

treatment - 0.054 (0.11) 1.06 (0.85, 1.31) 0.62 

Intercept - -1.53 (0.82) - 0.063 

 

Supplementary Table 4. Final logistic regression model for the association between the presence of 

aadA2 in E. coli genomes and treatment group of calves. 

Factor Level 
Coefficient 

(SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc 0.48 (0.65) 1.61 (0.45, 5.72) 0.46 

  Placebo Referent - - 

Days from spectinomycin 

treatment - 0.04 (0.10) 1.04 (0.86, 1.26) 0.69 

Intercept - -0.87 (0.73) - 0.23 

 

Supplementary Table 5. Final logistic regression model for the association between the presence of 

aadA5 in E. coli genomes and treatment group of calves. 

Factor Level 
Coefficient (SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc -1.04 (0.67) 0.35 (0.096, 1.30) 0.12 

  Placebo Referent - - 

Days from spectinomycin 

treatment - -0.084 (0.11) 0.92 (0.75, 1.13) 0.43 

Intercept - 1.51 (0.81) - 0.061 

 

Supplementary Table 6. Final logistic regression model for the association between the presence of 

aph(3'')-Ib in E. coli genomes and treatment group of calves. 

Factor Level 
Coefficient (SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc 0.84 (0.94) 2.32 (0.37, 14.71) 0.37 

  Placebo Referent - - 

Days from spectinomycin 

treatment - -0.23 (0.18) 0.80 (0.56, 1.13) 0.20 

Intercept - 2.95 (1.38) - 0.033 
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Supplementary Table 7. Final logistic regression model for the association between the presence of 

aph(3')-Ia in E. coli genomes and treatment group of calves. 

Factor Level 
Coefficient 

(SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc -0.39 (0.66) 0.68 (0.19, 2.49) 0.56 

  Placebo Referent - - 

Spectinomycin treatment Yes -1.30 (1.14) 0.27 (0.029, 2.54) 0.25 

 No Referent - - 

Intercept - 1.91 (1.11) - 0.084 

 

 

Supplementary Table 8. Final logistic regression model for the association between the presence of 

aph(6)-Id in E. coli genomes and treatment group of calves. 

Factor Level 
Coefficient (SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc -0.20 (1.09) 0.82 (0.096, 7.00) 0.86 

  Placebo Referent - - 

Days from spectinomycin 

treatment - -0.29 0.75 (0.45, 1.25) 0.27 

Intercept - 4.52 (2.17) - 0.037 

  
 

Supplementary Table 9. Final logistic regression model for the association between the presence of 

blaCMY-2 in E. coli genomes and treatment group of calves. 

Factor Level 
Coefficient (SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc -0.23 (1.49) 0.80 (0.043, 14.65) 0.88 

  Placebo Referent - - 

Days from spectinomycin 

treatment - -0.22 (0.33) 0.80 (0.42, 1.52) 0.50 

Intercept - 4.71 (2.65) - 0.076 

 
 
Supplementary Table 10. Final logistic regression model for the association between the presence of 

blaTEM-1B in E. coli genomes and treatment group of calves. 

Factor Level 
Coefficient (SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc 0.89 (0.69) 2.44 (0.63, 9.45) 0.20 

  Placebo Referent - - 

Days from spectinomycin 

treatment - -0.036 (0.10) 0.97 (0.79, 1.18) 0.73 

Intercept - -1.00 (0.75) - 0.18 
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Supplementary Table 11. Final logistic regression model for the association between the presence of 

dfrA12 in E. coli genomes and treatment group of calves. 

Factor Level 
Coefficient 

(SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc 0.47 (0.65) 1.60 (0.45, 5.67) 0.47 

  Placebo Referent - - 

Days from spectinomycin 

treatment - 0.049 (0.10) 1.05 (0.86, 1.28) 0.62 

Intercept - -0.93 (0.73) - 0.20 

 
 

Supplementary Table 12. Final logistic regression model for the association between the presence of 

dfrA17 in E. coli genomes and treatment group of calves. 

Factor Level 
Coefficient 

(SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc -0.81 (0.67) 0.45 (0.12, 1.64) 0.22 

  Placebo Referent - - 

Days from spectinomycin 

treatment - -0.073 (0.11) 0.93 (0.76, 1.15) 0.49 

Intercept - 1.44 (0.80) - 0.071 

 

Supplementary Table 13. Final logistic regression model for the association between presence of floR in 

E. coli genomes and treatment group of calves.   

Factor Level 
Coefficient (SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc -0.44 (0.75) 0.65 (0.15, 2.78) 0.56 

  Placebo Referent - - 

Days from spectinomycin 

treatment - -0.12 (0.13) 0.88 (0.69, 1.14) 0.34 

Intercept - 2.21 (1.00) - 0.027 

 

Supplementary Table 14. Final logistic regression model for the association between presence of sul1 in 

E. coli genomes and treatment group of calves.   

Factor Level 
Coefficient (SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc 1.04 (0.67) 2.83 (0.77, 10.45) 0.12 

  Placebo Referent - - 

Days from spectinomycin 

treatment - 0.084 (0.11) 1.09 (0.88, 1.34) 0.43 

Intercept - -1.51 (0.81) - 0.061 
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Supplementary Table 15. Final logistic regression model for the association between presence of sul2 in 

E. coli genomes and treatment group of calves.   

Factor Level 
Coefficient (SE) 

Odds Ratio (95% 

CI) P-value 

Treatment group Zinc 0.64 (1.32) 1.89 (0.14, 25.12) 0.63 

  Placebo Referent - - 

Days from spectinomycin 

treatment - -0.35 (0.33) 0.70 (0.37, 1.34) 0.28 

Intercept - 4.98 (2.71) - 0.066 
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Concluding Remarks 

The dissertation addresses current gaps on the AMR of enteric bacteria of public health 

significance. The four presented chapters integrate statistical, microbiological, and genomic approaches to 

better understand the distribution and drivers of AMR in food and food-producing animals and their 

products, advancing knowledge that benefits both human and animal health.  

 In Chapter 1 and 2, data from expanded geographical sampling of the National Antimicrobial 

Resistance Monitoring System (NARMS) retail meat surveillance in California was assessed. Chapter 1 

determined the prevalence and AMR profiles of Salmonella from retail meat in both northern and 

southern California. While the overall frequency of Salmonella in retail meats in California was low, 

diverse serotypes and AMR profiles were identified, including multidrug resistant (MDR) strains that 

were primarily S. Infantis. Whole genome sequencing detected antimicrobial resistance genes of public 

health significance and the IncFIB(pN55391) replicon among S. Infantis isolates, corroborating national 

NARMS data and worldwide reports of a disseminated S. Infantis clone with pESI-like mega plasmid 

carriage. Prior to data collection in southern California for Chapter 2, E. coli was not collected or 

evaluated from retail meats in California for NARMS. In Chapter 2, the first available data on E. coli 

from retail meats in southern California was evaluated. Using E. coli as an indicator bacteria for AMR, 

our results indicate that there was higher occurrence of AMR to certain antimicrobial drugs across 

different food animals, with a significantly higher odds of resistance observed for poultry counterparts 

(chicken or ground turkey) compared to non-poultry meats (beef and pork). WGS analysis also identified 

diverse AMR genes and heterogeneous gene networks. Findings from Chapters 1 and 2 advance 

understanding of the epidemiology of pathogenic and commensal enteric bacteria from retail meats in 

California and highlight the importance of routine monitoring and comprehensive characterization of 

foodborne bacteria across geographical locations and sample types. Work from these chapters also 

demonstrate the value of collaborative efforts involving academic partnerships, local public health 

departments, and federal agencies for addressing AMR, alongside the harmonized use of next-generation 

sequencing technologies for public health surveillance.  
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Substantial data is available on the prevalence and distribution of AMR in enteric bacteria. 

Comparably, less is known on the non-antimicrobial factors that may contribute to AMR and the extent to 

which they increase or decrease resistance. The standard approach to quantifying AMR involves 

microbiological testing to categorize bacterial isolates into susceptible, intermediate resistant, or resistant 

phenotypes. There remains a need for novel data analysis approaches that minimize data loss from 

dichotomization or categorization of MIC data (e.g. binary or multinomial logistic regression) and can 

also account for changes in resistance that may not cross breakpoint thresholds. Moreover, a common 

challenge with frequently used antimicrobial susceptibility testing (AST) methods – e.g. broth 

microdilution that tests twofold dilutions of antimicrobial drugs – are outcomes of censored MIC data. In 

Chapter 3, we evaluated the impact of zinc supplementation on the phenotypic AMR of fecal commensal 

bacteria. Accelerated failure time (AFT) models adapted for censored MIC data instead of time indicated 

that dietary zinc supplementation – which has previously been shown to have health and diarrheal 

prevention/recovery benefits in pre-weaned calves – was not associated with an increase in phenotypic 

AMR in fecal Enterococcus spp. and E. coli. In E. coli, our cross-sectional data suggest that zinc 

supplementation may be associated with a protective effect on AMR for quinolone antimicrobial drugs. 

Though further research is needed to validate these findings and investigate the influence of other factors 

(e.g. different management practices), these results suggest that the use of zinc supplementation as an 

antimicrobial alternative in dairy calves has simultaneous benefits of enhancing animal health and 

preventing selection of AMR. AFT models in Chapter 3 were shown to be well-suited for censored AST 

data with adequate distribution of MIC values and a robust alternative to models such as Cox models – 

which are heavily dependent on the proportional hazards assumption – and those resulting in data loss 

(e.g. logistic regression). Strengths of utilizing AFT models also include the ability to model censored 

MIC values on a continuous scale, whilst generating adjusted effect sizes (accounting for multiple 

confounders). AFT models however, may not be well-suited for handling high levels of right- and left- 

censored data; hence, alternative approaches such as truncated interval regression models should be 

explored for these types of data in future studies.  
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 In Chapter 4, whole genome comparative analysis was conducted on a repository of MDR E. coli 

from Chapter 3. Although AMR interventions tend to be targeted towards animals and humans, it is 

important to recognize that it is the microorganisms – e.g. bacteria – rather than the hosts themselves that 

develop resistance. Such resistance can occur as adaptive processes to environmental and host-level 

influences that may be conducive to the selection of MDR populations. As opposed to the first two 

chapters of this dissertation, this chapter evaluated the entirety of bacterial genomes with the goals to 

identify potential genetic factors contributing to MDR persistence and to better understand the 

relationship between host-level factors and genomic composition. Pangenome analysis of MDR E. coli 

from pre-weaned dairy calves identified an open pangenome with high genomic diversity. The host-

factors evaluated – zinc supplementation, antimicrobial exposure, and diarrheal disease status – did not 

account for considerable genomic variability of E. coli isolates. However, the high prevalence and 

diversity of virulence genes corresponding to iron acquisition – which corroborate findings from other 

studies on E. coli in cattle – suggest that certain accessory genes in MDR E. coli from calves may be 

enriched. Although a limited number of isolates were evaluated in this study, implications from this 

chapter highlight the need for future work on the population genomics of bacterial host adaptations. 

Specifically, high-resolution and comprehensive assessment of bacterial genomes in relationship to host-

associated data will contribute to better understanding of how certain populations – such as MDR E. coli 

– establish themselves in host niches. Alongside comparative analysis of isolates from other host species, 

these directions for future research may aid the identification of novel approaches or targets to mitigate 

the emergence, persistence, and dissemination of AMR.  

 Taken together, this dissertation advances understanding of the distribution and risk factors for 

AMR, factors which may drive its development, and the underlying genomic profiles of these bacterial 

populations on the farm-to-fork interface. These findings highlight the importance of an integrated 

approach to addressing AMR and can be used to support future AMR monitoring and control strategies. 

 




