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Latent Normalized Infinitely Divisible Topic Models
through Spectral Methods
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Abstract

In this paper we propose guaranteed spectral methods fmingea broad range
of topic models, which generalize the popular Latent Digtillocation (LDA).
We overcome the limitation of LDA to incorporate arbitraopic correlations, by
assuming that the hidden topic proportions are drawn fromxébille class of Nor-
malized Infinitely Divisible (NID) distributions. NID disibutions are generated
through the process of normalizing a family of independefinitely Divisible
(ID) random variables. The Dirichlet distribution is a sj¢case obtained by
normalizing a set of Gamma random variables. We prove thaflgxible topic
model class can be learnt via spectral methods using onlyentaup to the third
order, with (low order) polynomial sample and computatlar@nplexity. The
proof is based on a key new technique derived here that allevts diagonalize
the moments of the NID distribution through an efficient pdere that requires
evaluating only univariate integrals, despite the fact Wi are handling high di-
mensional multivariate moments.

Keywords: Latent variable models, spectral methods, tensor decatmpgsmoment matching,
infinitely divisible, Lévy processes.

1 Introduction

Topic models are a popular class of exchangeable laterihtannodels for document categorization.
The goal is to uncover hidden topics based on the distribudfavord occurrences in a document
corpus. Topic models asdmixturemodels, which go beyond the usual mixture model which allows
for only one hidden topic to be present in each document. iirast, topic models incorporate
multiple topics in each document. It is assumed that eaclirdent has a latent proportions of
different topics, and the observed words are drawn in a tiomdily independent manner, given the
set of topics.

Latent Dirichlet Allocation (LDA) is the most popular topicodel [6], where the topic proportions
are drawn from the Dirichlet distribution. While LDA has wveisbread applications, it is limited
by the choice of the Dirichlet distribution. Notably, Dinhilet distribution can only model negative
correlationsl|[4], and thus, is unable to incorporate aabjtcorrelations among the topics that may
be present in different document corpora. Another drawimattiat the elements with similar means
need to have similar variances. While there have been prgtiempt to go beyond the Dirichlet
distribution, e.qg.l[5, 15], their correlation structures atill limited (e.g. only positive correlations
can be modeled in[5]), learning these models is usuallyadiffand no guaranteed algorithms exist.

In this work, we consider a flexible class of topic models, anobose guaranteed and efficient
algorithms for learning them. We employ the class of Normei Infinitely Divisible (NID) dis-
tributions to model the topic proportions [8,/13]. These a@ass of distributions on the simplex,
formed by normalizing a set of independent draws from a faofipositive Infinitely Divisible (ID)
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distributions. The draws from an ID distribution can be es@nted as a sum of an arbitrary number
of i.i.d. random variables. The concept of infinite divigitlfiwas introduced in 1929 by Bruno de
Finetti, and the most fundamental results were developéatoimogorov, Lévy and Khintchine in
the 1930s.

The Gamma distribution is an example of an ID distributiord the Dirichlet distribution is obtained
by normalizing a set of independent draws from Gamma diginhs. We show that the class of
NID topic models significantly generalize the LDA model: yhman incorporate both positive and
negative correlations among the topics, they involve &bl parameters to vary the variance and
higher order moments, while fixing the mean, and so on.

There are mainly three categories of algorithms for leayopic models, viz., variational infer-
encel[5, 6], Gibbs samplingl[i7, 9,/14], and spectral meth2d€]. Among them, spectral methods
have gained increasing prominence over the last few yeaestaltheir efficiency and guaranteed
learnability. In this paper, we develop novel spectral mdthfor learning latent NID topic models.

Spectral methods have previously been proposed for legatdd [2], and in addition, other latent
variable models such as Independent Component Analysfg (Kidden Markov Models (HMM),
mixtures of ranking distributions, and so on [3]. The idefikearn the parameters based on spectral
decomposition of low order moment tensors (third or fountthen). Efficient algorithms for tensor
decomposition have been proposed befdre [3], and impliesis@nt learning with (low order) poly-
nomial computational and sample complexity.

The main difficulty in extending spectral methods to the ngereral class of NID topic models is
the presence of arbitrary correlations among the hiddeiegaphich need to be “untangled”. For
instance, take the case of a single topic model (i.e. eachndent has only one topic); here, the
third order moment, which is the co-occurrence tensor ofivtiaplets, has a CP decomposition, and
computing the decomposition yields an estimate of the tomicd matrix. In contrast, for the LDA
model, such a tensor decomposition is obtained by a conibmat moments up to the third order.
In other words, the moments of the LDA model need to be appatgly “centered” in order to have
the tensor decomposition form.

Finding such a moment combination has so far been an “art’fa@ince it is based on explicit ma-
nipulation of the moments of the hidden topic distributi&e.far, there is no principled mechanism
to automatically find the moment combination with the CP aeposition form. For arbitrary topic
models, however, finding such a combination may not even bsilple. In general, one requires all
the higher order moments for learning.

In this work, we show that surprisingly, for the flexible dasf NID topic models, moments up to
third order suffice for learning, and we provide an efficidgbathm for computing the coefficients
to combine the moments. The algorithm is based on computafi@ univariate integral, that in-
volves the Levy measure of the underlying ID distributiohgTintegral can be computed efficiently
through numerical integration since it is only univariaed has no dependence on the topic or word
dimensions. Intriguingly, this can be accomplished, evhamthere exist no closed form probability
density functions (pdf) for the NID variables.

The paper is organized as follows. In Sectidn 2, we proposéelatent Normalized Infinitely
Divisible Topic Models” and present its generative proc&ds dedicate Sectidd 3 to the properties
of NID distributions and indicate how they overcome the draeks of the Dirichlet distribution
and other distributions on the simplex. In Secfibn 4 we preser efficient learning algorithm with
guaranteed convergence for the proposed topic model basggkotral decomposition. Finally, we
conclude the paper in Sectibh 5.

2 Latent Normalized Infinitely Divisible Topic Models

Topic models incorporate relationships between werds . .. € R? and a set of; hidden topics.
We represent the words using one-hot encoding, i.&; = e; if ;™ word in the vocabulary occurs,
ande; is the standard basis vector. The proportions of topics incaighent is represented by vector

h € R*. We assume thdt is drawn from an NID distribution.
The detailed generative process of a latent NID topic mantedéfich document is as follows



1. Drawk independent variablesy, 2o, . . ., zx from a family of ID distributions.
2. Sethto(%,...,%)whereZ =3, 2.
3. For each worg;,
(a) Choose atopi¢; ~ Multi(h) and represent it with one-hot encoding.
(b) Choose a word; vector as a standard basis vector with probability
E(x;|¢;) = A, 1)

conditioned on the drawn topig, andA € R4 is the topic-word matrix.

From [1), we also have
E(x;|h) = E[E(x;|h, (;)] = E(x;|¢)E(¢i[h) = Ah. )

When thez; is drawn from the Gamn{a;, 1) distribution, we obtain the Dfex) distribution for the
hidden vectoh = (hq, ..., hy), and the LDA model through the above generative process.

Our goal is to recover the topic-word matrix given the document collection. In the following
section we introduce the class of NID distribution and déscits properties.

3 Properties of NID distributions

NID distributions are a flexible class of dis-
tributions on the simplex and have been ap-

plied in a range of domains. This includes hi- @ @) @@
erarchical mixture modeling with Normalized ‘ N\ /7
Inverse-Gaussian distribution_[12], and mod-

eling overdispersion with the normalized tem-
pered stable distribution [11], both of which are
examples of NID distributions. For more appli-
cations, see [8].

Let us first define the concept of infinite divisi-
bility and present the properties of an ID distri-
bution, and then consider the NID distributions.

3.1 Infinitely Divisible Distributions Figure 1: Graphical Model Representation of
. " .. the Latent NID Topic Model.zq, zs, ..., z; are

If random variablez has an Infinitely Divis- 5 collection of independent Infinitely Divisible

ible (ID) distribution, then for anyn € N pogitive variables that are characterized by the

there exists a collection Ofd'-'-d random varig|iection of their corresponding Lévy measures

ablesyy,...,yn suchthat: = y1 + -+ + Yn. v, v, ..., And h, ho. .., hy are the re-

In other words, an Infinitely Divisible distribu-sulting NID variables representing topic propor-

tion can be expressed as the sum of an arbitrajyns in a document of lengttV with words

number of independent identically distributed, ... 25

random variables.

The Poisson distribution, compound Poisson, the negathanial distribution, Gamma distribu-
tion, and the trivially degenerate distribution are exasspf Infinitely Divisible distributions; as
are the normal distribution, Cauchy distribution, and @aliles members of the stable distribution
family. The Student’s t-distribution is also another exdergf Infinitely Divisible distributions. The
uniform distribution and the binomial distribution are mafinitely divisible, as are all distributions
with bounded (finite) support.

The special decomposition form of ID distributions makesnthnatural choices for certain models
or applications. E.g. a compound Poisson distribution igigg®n sum of [ID random variables.
The discrete compound Poisson distribution, also knowhastuttering Poisson distribution, can
model batch arrivals (such as in a bulk queue [1]) and carrpozate Poisson mixtures.

In the sequel, we limit the discussion to ID distributiongohin order to ensure that the Normalized
ID variables are on the simplex. Let us now present how Iriblistions can be characterized.



Lévy measure: A o-finite Borel measurer on RT is called a Lévy measure if
f0°° min(1, z)v(dx) < oo. According to the Lévy-Khintchine representation givetolethe Lévy
measure uniquely characterizes an ID distribution alorty wiconstant scale. This implies that
every Infinitely Divisible distribution corresponds to avyéprocess, which is a stochastic process
with independent increments.

Lévy-Khintchine representation [Theorem 16.14[10]] Let\; (A) and M, (A) indicate the sub-
set of probability measures and the seteffnite measures on a non-empty getrespectively. Let

p € My([0,00)) and let¥ (u) = —log [ e~ “*d(u) be the log-Laplace transform pf Theny is
0

Infinitely Divisible, if and only if there exists a > 0 and ao-finite measure € M, ((0, 00)) with

/min(l, 2)v(dz) < oo, )
0
such that -
U(u) =Tu + /(1 —e “y(dz) for >0, (4)

0
In this case the paifr, v) is uniquey is called the Lévy measure pfandr is called the determin-
istic part. It can be shown that= sup{z > 0 : u([0, 2)) = 0}.

o0
In particular, let®., (u) = E[e“*] = [ e"“* f(z;)dz, indicate the characteristic function of an

0
Infinitely Divisible random variable; with pdf f(z;) and corresponding pafr;, ;), wherer is the
imaginary unit. Based on the Lévy-Khintchine represeatsti holds thatb., (1u) = E[e™%*i] =

e viW whereW, (u) = riu + [(1 — e "*)y;(d2) is typically referred to as the Laplace exponent

0
of z;. This implies that the Laplace exponent of an ID variabldss @ompletely characterized by
pair (7;, ;). It holds for ID variables that if; is a well-defined Lévy measure, sodsv; for any
a; > 0, which indicates that; ¥';(u) is also a well-defined Laplace exponent of an ID variable.

3.2 Normalized Infinitely Divisible Distributions

As defined in|[8], a Normalized Infinitely Divisible (NID) ralom variable is a random variable
that is formed by normalizing independent draws of strigibsitive (not necessarily coinciding)
Infinitely Divisible distributions. More specifically, let;, . .., z; be a set of independent strictly
positive Infinitely Divisible random variables ad = z; + --- + 2. An NID distribution is
defined as the distribution of the random vedtot= (A1, ..., hy) := (3,..., %) onthe(k — 1)-
dimensional simplex, denoted @¢°~'. The strict positivity assumption implies thhatis on the
simplex [8/13].

Let [k] denote Natural numbets. .., k. As stated by the Lévy-Khintchine theorem, a collection of
ID positive variableg; for i € [k] is completely characterized by the collection of the cqroesling
Lévy measures, .. ., . It was shown in/[13] that this also holds for the normalizedablesh;
fori € [k].

In this paper, we assume that the ID variables...,z; are drawn independently from
ID distributions that are characterized with the corresfiog collection of Lévy measures
a;v, .. ., agl, respectively. Which in turn translates respectively taakdes with Laplace expo-
nentsa; ¥ (u),...,ar¥(u). Variablesa; will allow the distribution to vary in the interior of the
simplex, providing the asymmetry needed to model latentetfsodThe homogeneity assumption
on the Lévy measure or the Laplace exponent provides thetsteuneeded for guaranteed learning
(Theoreni ). The overall graphical model representatish@vn in Figuréil

If the original ID variablesz; have probability densitieg; for all i« € [k], then the distribution

of vectorh, wherehy, = 1 — 37, .,y hiis, f(h) = [ ]] fi(h;Z)Z*=1dZ. There are only
0 i€lk]

three members of the NID class that have closed form dessgiiienely, the Gamma distribu-

tion, Gamméa;, A), the Inverse Gaussian distributiof(7(«;, A), and thel/2-stable distribution
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Figure 2: Heat map of the pdf of three examples of the NID dlaashave closed form with respect
to their parameters. All the figures hame= (2,2,4). For the Inverse Gaussian the distribution
moves from the center to the vertices of the simpleX gses fromD to co with fixed a and for the
~-stable we have the same behavior wherhanges fron to 0 with fixed cx.
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(@) Gamma NID. (b) Inverse Gaussian NID. (c) v-stable NID.

Figure 3: Proportion of positively correlated elementspgcal cases of an NID distribution with
10 elements with respect to the parameter of the Laplacenexpdor a fixed randomly drawn vector
a =[0.77,0.70,0.97,0.46,0.02, 0.44,0.90, 0.33,0.97, 0.45].

St(v, B, a;, p) withy = 1/2. n = 1 andj = 1 to ensure positive support for the Stable distribution.
As noted earlier, Gamnfa;, 1) reduces to the Dirichlet distribution. An interested raasleeferred
to [8,[13] for the closed form of each distribution.

Figure[2 depicts the heatmap of the density of these disimitsl on the probability simplex for
different value of their parameters. Note that all the distiions have the same parameter and
hence, the same mean values. However, their concentratipeies are widely varying, showing
that the NID class can incorporate variations in higher ongements through additional parameters.

Gamma ID distribution: When the ID distribution is Gamma with parametéts, 1), we have the
Dirichlet distribution as the resulting NID distributiohe Laplace exponent for this distribution
will, therefore, bel; (u) = a;In(1 + w).

~-stable ID distribution: The variables are drawn from the positive stable distrdyuti
St(v, 8, i, ) With 4 = 0, 8 = 1 and~y < 1 which ensures that the distribution is &t. The

Laplace exponent of this distribution ¥;(u) = air(\/%—;;’)u‘f. Note that they-stable distribution

can be represented in closed form fo %



Inverse Gaussian ID distribution: The random variables are drawn from the Inverse-Gauss&n (|
distribution/G(a, A). The Laplace exponent of this distributionlis(u) = a; (v2u + A% — A).

Note: The Dirichlet distribution, thd /2-Stable distribution and the Inverse Gaussian distriloutio
are all special cases of the generalized Inverse Gausstibdiion [8].

As mentioned earlier, the class of NID distributions is dadpaf modeling positive and negative
correlations among the topics. This property is depicteeignure 3. These figures show the propor-
tion of positively correlated topics for the three presdrdestributions. As we can see the Inverse
Gaussian NID distribution can capture both positive andatieg correlations. It should be noted
that the Logistic-Normal distribution that has been praabbefore|[5] caronly capture positive
correlations. But with NID topic models we can handle botkitieely and negatively correlated
topics simultaneously.

4 Learning NID Topic Models through Spectral Methods

In this section we will show how the form of the moments of NIBtdbutions enable efficient
learning of this flexible class.

In order to be able to guarantee efficient learning usingdriginder moments, the moments need
to have a very specific structure. Namely, the moment of tlerying distribution ofh needs to
form a diagonal tensor. If the componentgoivhere indeed independent, this is obtained through
the cumulant tensor. On the other hand, for LDA, it has beewatby Anandkumar et. al. [[2] that

a linear combination of moments of up to third ordethoforms a diagonal tensor for the Dirichlet
distribution. Below, we extend the result to the more gelndass of NID distributions.

4.1 Consistency of Learning through Moment Matching

Assumption 1 ID random variablesz; for i € [k] are said to bepartially homogeneoui they
share the same Lévy measure. This implies that the corrdspphaplace exponent of variablg
is givena; ¥ (u) for somen; € RT, and¥(u) is the Laplace exponent of the common Lévy measure.

Under the above assumption, we prove guaranteed learniNgDomodels through spectral meth-
ods. This is based on the following moment forms for NID made&vhich admit a CP tensor
decomposition. The components of the decomposition witheecolumns of the topic-word matrix:
A :=[aj|ag|...|ag].

Define

o0

d" d L u
Q(m,n,p) = /umW\I/(u)(@\I/(u)) e 0¥y, (5)
0

whereW¥ (u) is the Laplace exponent of the NID distribution amgd= 3, ;; c:.
Theorem 1 (Moment Formsfor NID models) Let M, andM3 be respectively the following matrix
and tensor constructed from the following moments of tha,dat

M2 :E[Xl (24 XQ] +v- E[Xl] X E[XQ], (6)
M3 :E[Xl ® X9 ® Xg] —|— vy - E[Xl] ® E[XQ] ® E[Xg]
+ o1 - [Efxi ® x2] ® Elxs] + E[x1] © E[x2 ® x3] + E[x1 ® E[x2] @ x3]]  (7)

(8)
where,
po QLLY 922D ©
(9(07 1’0))2 20(1, 2, 0)52(0, 1, 0)
py o Z050(2.1.2) ¢ 31119(1,31, DO.1,0) (10)
(Q(o, 1,0))
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Figure 4: Weightv; for two different examples of the NID distribution. Weightsandwv, in the
theorem have similar behavior w.r.p the parameters.

Then given Assumptianh 1,

M, = Z nj(aj & aj), M; = Z )\j(aj ®Ka; ® aj). (12)
JElk] J€lk]

for a set ofx;’s and A;’s which are a function of the parameters of the distribution

Remark 1: efficient computation of v, v; and v,: What makes Theorefd 1 specially intriguing
is the fact that weights, v; andvy can be computed through univariate integration, which @n b
computed efficiently, regardless of the dimensionalityhef problem.

Remark 2: investigation of special casedVhen the ID distribution is Gamma with parameters
(a4, 1), we have the Dirichlet distribution as the resulting NIDtdution. Weightsv, and v
reduce to the results of Anandkumar et. al. [2] for the Gatama ) distribution, which are); =

202 . . C
— a?iz andv, = W&)H) When the variables are drawn from the positive stable istion

St(1/2, B, a;, 1) weightsv; andvs in Theorenidl can be represented in closed form;as —i

andvy, = —2.

It is hard to find closed form representation of the weightsdiher stable distributions and the
Inverse Gaussian distribution. Therefore, we give the fofithe weights with respect to the param-
eters of each distribution in Figuré 4. As it can be seen infgg 2k and 2b, ag increases, the
distribution gets more centralized on the simplex. Thaefas depicted in Figute ¥a the weight
becomes more negative to compensate for it. The same hafigune[4h.

The above result immediately implies guaranteed learrangén-degenerate topic-word matx

Assumption 2 Topic-word matrixA € R?** has linearly independent columns and the parameters
a; > 0.

Corollary 1 (Guaranteed Learning of NID Topic Models using $ectral Methods) Given em-
pirical versions of momentdI, and M3 in (@) and (7), using tensor decomposition algorithm
from [3], under the above assumption, we can consistentiynate topic-word matrixA and
parametersx with polynomial computational and sample complexity.

The overall procedure is given in AlgoritHm 1.

Remark 3: third order moments suffice For the flexible class of latent NID topic models, only
moments up to the third order suffice for efficient learning.

Remark 4: hyperparameter tuning In practice, we can tune for hyperparameters to compute the
best fittingv, v; andwvy. This is based on their expressions[ih (9). If we do not warltnhit



Algorithm 1 Parameter Learning

Require: Chosen NID distribution and hidden dimensibn
Ensure: Parameters of NID distributioax and topic-word matrixA
1: Estimate empirical momenE(x; ® x2 ® x3) ,E(x; ® x2) andE(x;).
2: Compute weights, v; andwvy in (@) and [ID) for the given NID distribution by numerical
integration.
3: Estimate tensord; andM; in (@) and [T) .
4: Decompose tensdvl; into its rankd components using the algorithm In [3] that requilds.
5: Return columns oAl as the components of the decomposition anals the set of weights.

ourselves to a single parametric NID family, we can employoa-parametric estimation of the
Lévy-Khintchine representation. Since this is one-dinmamed, a small number of parameters will
suffice for good performance.

Overview of the proof of Theorem[1 We begin the proof by forming the following second order
and third order tensors using the moments of the NID didtidbugiven in Lemmall.

M® = E(h® h) + vE(h) @ E(h), (12)

MP — E(h ® h ® h) + v,E(h) ® E(h) @ E(h)
+vE(h®@h) ® E(h) + v;E(h @ E(h) @ h) + v;E(h) @ E(h @ h) (13)
Weightswv, v; andv, are as in EquationE](9) arld {10). They are computed by settngff-diagonal

entries of matrixMéh) in Equation 1P and\/Igh) in Equation 1B tc). Due to the homogeneity

assumption, all the off-diagonal entries can be simultasgomade to vanish with these choices of
coefficients forv, v; anduv,. We obtainM{® = Y ier” andM{ = Yici Mier” where
e;’s are the standard basis vectors, and this implies theyiagodal tensors. Due to this fact and
the exchangeability of the words given topics accordin@oEquationg 111 follow.

The exact forms of, v; andv, are obtained by the following moment forms for NID distrilouts.

Lemma 1 ([13]) The moments of NID variablés, . . . hj, satisfy

rLpT ThY _ 1 i r—1_—ao¥(u) j
E(hi'hyt .. hik) = = B / ulem oo g} B du, (14)
0 J

wherer = Zie[k] r; andB-;'j can be written in terms of the partial Bell polynomial as

Bi = B (=i VW (w),..., —; ¥ (), (15)

in which () () is thel-th derivative ofl () with respect ta.

5 Conclusion

In this paper we introduce the new class of Latent Normalinéiditely Divisible (NID) topic mod-
els that generalizes previously proposed topic models asitiDA. We provide guaranteed efficient
learning for this class of distributions using spectralmoels through untangling the dependence of
the hidden topics. We provide evidence that our proposedtbipiz model overcomes the shortcom-
ings of the Dirichlet distribution by allowing for both pdisie and negative correlations among the
topics. We provide a guaranteed learning result, despitbaang closed form densities for NID
variables.

Future extensions Our goal is to go beyond the partial homogeneity assumptidreatend to more
general distributions. Moreover, we plan to investigateeotonstraints than the simplex. We plan
to allow for general functions that are composed of indepandariables, and to design mechanisms
to learn them efficiently.
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Appendix

Proof of Theorem[d Proof: = The moment form of Lemnid 1 can be represented as [13],

o0 k
1T r 1 r—1 7»72 Tilw) Tj d —;(u)
E(h7'hL? .. hIn) = m/u e = .g[](—l) T (16)
0 JjE€[n

We use the above general form of the moments to compute agdrdiize the following moment
tensors,

M{™ = E(h ® h) + nE(h) ® E(h), (17)

M =E(h®h o h)
+mE(h ®h) ®E(h) + n:E(h @ E(h) ® h) + 73E(h) @ E(h @ h)

+mE(h) ® E(h) ® E(h). (18)
Setting the off-diagonal entries of Equatioins|(17) {@®)and get the following set of equations
E(hih;) + qE(h)E(h;) =0 for i #j, (19)
E(h;hjhi) + mE(hih;)E(hy) + n2E(hihy)E(h;) + nsE(hjh)E(h;) + naE(h; )E(h;)E(h;) = 0
for i£7#1=0, (20)
E(hZh) + mE(hD)E(hy) + neE(hih)E(hi) + nsE(hih)E(hi) + naE(hi)E(hi)E(hy) = 0
for i #£1. (22)

Writing the moments using Equatidn{16), assumingu) = ;¥ (u), we get the following weights
by some simple algebraic manipulations,

:foue_ao‘l'(“) (d%\ll(u)fdu

n=-= 5 (22)
(({eio‘ﬂq’(“)%\ll(u)du)
%fuge_ao‘p(“)%\ll(u)%\ll(u)du
m=71n2=1n=— 0 (23)

{ue*QOQ(“)ﬁqJ(u)du{ei““w(“)%\l/(u)du

4 e oV (L w () dut (4 1s) [ e (A0 () du [ 0¥ L0 ()
0 0 0

N4 = o 3
(fe*ao'l’(“)f—u\l/(u)du)
0
(24)
Settingv = 1, v1 = 11 = 12 = n3z andv, = 1y and defining
I R I
Q(m,n,p) := /u dun\IJ(u)(du\I/(u)) e du, (25)
0
the set of weights, v; andvy have the following form,
,o QLY 6
(Q(O, 1,0))
_ Q(2,2,1)
Y17 T90(1,2,002(0,1,0)° 27)
vy = —0.50(2,1,2) 4+ 3v1Q(1, 1, 1)Q(0, 1,0)' (28)

(Q(o, 1,0))3
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(29)

Weightsv, v; andv, ensure that moment tensdwéh) andMgh) form diagonal tensors. Therefore
they can be represented as,

MY = 3 ke, (30)
1€ k]

MY = 3 Ned?. (31)
i€ k]

The exchangeability assumption on the word space gives,

E[x;] = E(E[x1|h]) = AE(h), (32)
E[x1 ® x2] = E(E[x; ® x2/h]) = AE(h®@ h)A T, (33)
Elx; ® x2 ®x3] = E(E[x; ® x2 ®x3/h]) = Eh®@h®h](A, A, A). (34)
Therefore,
M, = 4&1\/[91)4&—r = Z ki(a; ® a;), (35)
JE[K]
M; = M{V(A,ALA) = Y \j(a; @a; @a;) (36)
JE[K]
O
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