
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Fuzzing and Symbolic Execution to Identify and Patch Bugs

Permalink
https://escholarship.org/uc/item/7d87227q

Author
Salls, Christopher

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7d87227q
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Fuzzing and Symbolic Execution to Identify and Patch Bugs

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy
in

Computer Science

by

Christopher Allen Salls

Committee in charge:

Professor Giovanni Vigna, Co-Chair
Professor Christopher Kruegel, Co-Chair
Professor Yan Shoshitaishvili

December 2020



The Dissertation of Christopher Allen Salls is approved.

Professor Yan Shoshitaishvili

Professor Christopher Kruegel, Committee Co-Chair

Professor Giovanni Vigna, Committee Co-Chair

December 2020



Fuzzing and Symbolic Execution to Identify and Patch Bugs

Copyright © 2020

by

Christopher Allen Salls

iii



This dissertation is dedicated to my parents, who have been my
inspiration throughout my entire life. I will always be amazed

that my mom managed to finish her PhD while raising three kids.

iv



Acknowledgements

A PhD is quite a long journey, and this one is no different. There have been so many ups and

downs, moments where each day brought new excitement and success, and moments where

disappointment took over. It is because of the people in my life, who were there to support me,

teach me, and encourage me, that this thesis got finished.

First of all, I need to acknowledge the two people that made the biggest impact in shaping

me, my parents. Throughout my school years, my mother (Jenny) and my father (Mitch)

constantly encouraged me to learn as much as possible. They would never let me or my brothers

settle for the bare minimum. Although at the time, I might have complained about the extra

work, I know it was instrumental in getting me to where I am. My mother even gave me my

first introduction into programming when she showed me that I could write programs for my

new TI-84 calculator. I also have to mention my brothers, Kevin and Brian, both have been

great supporters throughout my life, as well as a catalyst for my competitive personality which

would later drive me through grad school.

In my undergrad at University of Nevada, I was able to experience academic research for

the first time when one professor, Dr. Bebis, saw potential in me and offered to let me work for

him on Computer Vision research. That experience got me excited to do research, and it was

also when I first started considering a doctoral degree. Two other professors I especially want

to recognize are Dr. Ramazan and Dr. Deaconu. They taught a weekly problem solving/math

study, wherein I was able to hone my ability to approach difficult problems. This would later

make a huge difference in my career as a PhD student.

Throughout my PhD at the Security Lab of UC Santa Barbara, I was surrounded by amazing

people who would help guide me, challenge me, and continually push my limits. This was

made possible by my professors Giovanni Vigna and Christopher Kruegel. I am so grateful

that they took me on as a student when I had no experience in computer security. It is because

v



of their guidance, support, and the lab they created that I was able to excel during these last 6

years.

I’m thankful for all of the PhD students, interns, and teammates I worked with at the SecLab

and on the Shellphish CTF team that made an impact on me in the last six years. Although,

there are too many people to thank them all individually here, there are a few that I will list.

Yan, a senior grad student who became my mentor early on in binary analysis research; I cannot

express enough gratitude for his help guiding my research. Amat and Nick, two friends and

teammates who propelled me into CTFs and binary exploitation. Without their help, I would

not have been able to have nearly the level of success as I achieved during my graduate studies.

Jake, a fellow student and a great friend, who would join me in vulnerability research in the

lab and would go on to start a company with me; together we have truly achieved some great

things.

Finally, I want to recognize Chani, one of the most determined and hard-working people I

know. She worked hard to join the lab as a masters student, and soon after she would become

my girlfriend. While in the lab, we had the opportunity to work together on two projects, one

which was her thesis, and then one which would become my last paper. Later, her support

would push me through the many sleepless nights to finish this thesis.

vi



Curriculum Vitæ
Christopher Allen Salls

Education

2020 Ph.D. in Computer Science, University of California, Santa Barbara.
2013 B.S. in Computer Science, B.S. in Mathematics, University of Nevada,

Reno.

Publications

1. Christopher Salls, Aravind Machiry, Yan Shoshitaishvili, Christopher Kruegel, Giovanni
Vigna Exploring Abstraction Functions in Fuzzing. CNS 2020.

2. Chani Jindal, Christopher Salls, Hojjat Aghakhani, Keith Long, Christopher Kruegel,
Giovanni Vigna Neurlux: dynamic malware analysis without feature engineering. AC-
SAC 2019.

3. Yan Shoshitaishvili, Antonio Bianchi, Kevin Borgolte, Amat Cama, Jacopo Corbetta,
Francesco Disperati, Audrey Dutcher, John Grosen, Paul Grosen, Aravind Machiry, Christo-
pher Salls, Nick Stephens, Ruoyu Wang, Giovanni Vigna Mechanical phish: Resilient
autonomous hacking. S&P 2018.

4. Christopher Salls, Aravind Machiry, Yan Shoshitaishvili, Christopher Kruegel, Giovanni
Vigna Piston: Uncooperative remote runtime patching. ACSAC 2017.

5. Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang Hao, Christo-
pher Kruegel, Giovanni Vigna Difuze: Interface aware fuzzing for kernel drivers. CCS
2017.

6. Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher Salls, Ruoyu Wang,
Christopher Kruegel, Giovanni Vigna Rise of the hacrs: Augmenting autonomous cyber
reasoning systems with human assistance. CCS 2017.

7. Aravind Machiry, Eric Gustafson, Chad Spensky, Christopher Salls, Nick Stephens, Ruoyu
Wang, Antonio Bianchi, Yung Ryn Choe, Christopher Kruegel, Giovanni Vigna BOOMERANG:
Exploiting the Semantic Gap in Trusted Execution Environments. NDSS 2017.

8. Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, An-
drew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, Giovanni
Vigna SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis. S&P
2016.

9. Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo
Corbetta, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna Driller: Augmenting
Fuzzing Through Selective Symbolic Execution. NDSS 2016.

vii



Abstract

Fuzzing and Symbolic Execution to Identify and Patch Bugs

by

Christopher Allen Salls

Our computers, phones, and other smart devices are running a vast and ever increasing

amount of software. This provides us with many capabilities that we make use of throughout

our everyday lives. However, it also brings with it a large attack surface, wherein vulnera-

bilities could lie. A single vulnerability in any component could be maliciously exploited to

gain access to private information or cause damage. This weakness is compounded by the im-

balance between attackers and those who secure software; defenders must eliminate all of the

vulnerabilities to have secure software, whereas an attacker may only need one vulnerability to

be able to craft an exploit. Of course, all of this software cannot be audited, checked for bugs,

and made secure manually; effective automated techniques are needed.

One of the most common causes of insecure software is memory corruption vulnerabilities.

Memory corruption is frequently found in unsafe languages, such as C and C++, and can take

many forms. Currently, the main methods of finding memory corruption are fuzzing and static

analysis. However, both of these have major weaknesses that prevent finding many of the

bugs present in modern software. The goal of my research is to improve upon the available

techniques to make them more capable of finding bugs in real-world programs. To this end, the

first work of my PhD identifies a key weakness in fuzzers—that they are impeded by difficult

checks, such as string comparisons or magic numbers. With this in mind, we designed a new

tool that combines fuzzing with symbolic execution, such that it can now solve for difficult

checks and be able to continue fuzzing beyond them.

Of course, finding bugs is only one part of the problem. In my next work, I worked on a

viii



novel application of symbolic execution to hot-patch vulnerable devices. Many IoT devices are

not created with any built-in mechanism to update, and could be an easy target for attackers

should a vulnerability be discovered. My research allows such devices to be automatically

patched in event that a code execution vulnerability is found, without any support needed from

the device itself.

In the final two projects of my PhD, I identify fundamental properties of fuzzers and use

these to create new paradigms of fuzzing, which can find more vulnerabilities. One work

formalizes how fuzzers find new inputs to mutate. Then, using this formalization, I design

new strategies for fuzzing, which show improved capabilities for finding bugs. The last work

I present here is a new technique for fuzzing JavaScript engines, called Token-Level Fuzzing.

Instead of mutating individual bytes, Token-Level Fuzzing mutates entire tokens, replacing

them with another valid token. Using this technique, we are able to find bugs which no other

published fuzzer has found. I hope the techniques presented here can bring automated bug

finding a step forward and be further built upon, as we try to eliminate memory corruption

vulnerabilities.

In this thesis, I show that we can leverage the structure of binary programs and the essential

properties of the data which they process to improve the effectiveness of vulnerability discovery

based on fuzzing.

ix



Contents

Curriculum Vitae vii

Abstract viii

1 Introduction 1
1.1 Permissions and Attributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background on Vulnerability Discovery Techniques 6
2.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Augmenting Fuzzing Through Selective Symbolic Execution 10
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Driller Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Selective Concolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Uncooperative Remote Runtime Patching 54
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Patch Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Repair Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Remote Patching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

x



5 Exploring Abstraction Functions in Fuzzing 86
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Formalizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Abstraction Functions Explored . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Token-Level Fuzzing 112
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Related Work 140
7.1 Driller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2 Piston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3 Abstraction Functions in Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.4 Token-Level Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Looking Forward 152

Bibliography 154

xi



Chapter 1

Introduction

As technology has progressed, it has become more ingrained in our lives. We now have de-

vices in our houses which listen to commands, turn lights on and off for us, and control the

temperature. Many of us use technology to make purchases online, communicate with other

people, access our banking information, transfer money, and more. Outside of personal use,

software is used in many critical infrastructure applications such as power plants, satellites,

and medical devices. Computing technology has truly become essential in our society, and, as

such, software vulnerabilities are more serious now than ever before. If an attacker is able to

break into someone’s computer or smartphone, they can gain access to everything that it has

access to. Even more seriously, if an attacker can target software that is part of the nation’s

critical infrastructure they could cause physical damage or disrupt society. As technology has

become more ingrained in our society, it has become more paramount that it is secure.

A major source of insecurity is from languages, such as C and C++, that have no guarantee

of memory safety. In these languages, a programming error can corrupt memory, resulting

in undefined behavior. This corruption can in turn be used by a skilled attacker to control

the program, allowing the attacker to run whatever code they wish. Although programming

language enthusiasts might have hoped that safer languages would have taken over by now,

1



Introduction Chapter 1

much of the most commonly used software is still written in C and C++. For example, every

major browser uses large amounts of C/C++ code [1–4], as well as every major operating

system [5–7]. This situation is not going to change anytime soon, so it is imperative that we find

ways to secure code. One direction is, of course, advancements in mitigations. However, this

is not a complete solution for many reasons. Many systems will not receive those mitigations

anytime soon, and furthermore mitigations are frequently bypassed [8, 9]. One example is

the iPhone’s recently added Pointer Authentication Codes, which has been bypassed in many

ways [10]. Although, this is a good direction, it is not enough.

I believe the most impactful direction is currently to improve automated bug finding, and,

as such, this has been the primary focus of my research. Of course, automated bug finding is a

very challenging problem; finding all the bugs in a program is as difficult as solving the halting

problem [11]. The typical methods either use static techniques to identify buggy patterns, or

to use dynamic techniques to try various inputs and see if they can trigger a crash. Dynamic

techniques have more potential for purely automated analysis, because they produce a crashing

input, and can continually run, getting deeper coverage in the target program.

In the Cyber Grand Challenge, the world’s first automated hacking competition, the teams

had to design a system which would automatically find and exploit bugs. When we attempted

to apply popular fuzzers to the Cyber Grand Challenge, we got first-hand experience with a

major limitation of fuzzing; this approach is hindered by difficult constraints, such as check-

sums, string comparisons, and magic values. This would become the inspiration for the first

work contained in this thesis, Driller. Driller uses the insight that fuzzing, on its own, is quite

dumb—it can only solve simple constraints. However, it is very fast at exploring code, trigger-

ing different cases, and maximizing coverage. Therefore, we can pair it up with a technique

which can solve the difficult constraints, such as symbolic execution. We apply symbolic ex-

ecution in a targeted manner while fuzzing, just to solve the constraints that fuzzing was not

able to solve on its own. With this combination, Driller was able to find many more bugs than

2



Introduction Chapter 1

fuzzing alone.

Of course, finding bugs is just one part of the problem; they have to be patched too. In most

cases, patching a bug requires updating software, stopping the software, and restarting it [12].

However, this does not work for all software. There are critical systems that cannot be offline,

even to update. For these situations, a technique called hotpatching [13] can be used to update

the software while it is running. The major limitation of hotpatching is that it requires support;

the device and its software have to be built with the capability to be hotpatched. Of course,

especially for legacy code, this is not the case. There are many systems that have to wait for

updates, and that would leave them unprotected, risking severe damage [14].

Furthermore, with the internet of things, there are many devices that cannot be updated at

all [15]. There are vendors that are out of business and will not update old devices, as well as

vendors that did not include the ability to update. What happens if a vulnerability is discovered

on one of these systems? If the devices are used in people’s homes, an attacker could use it

to spy on them, or the attacker could simply use the compromised device as part of a large

botnet [16]. Thus, we need a way to secure devices in this scenario.

Given the state of things, we realized that we needed a system that could hotpatch devices,

without their cooperation. Fortunately, if there is a severe-enough vulnerability this can be

done. Our idea was that by using the vulnerability we could hijack control of the insecure

device and force a patch to be applied. This resulted in my next work, Piston. Given an

exploit, Piston could automatically analyze the exploit and the patch, then apply it to a running

device safely, protecting it from further exploitation.

In the years following the publication of Driller, there was a surge of research into fuzzing,

exploring ways to fuzz faster [17], [18], advanced methods of mutating inputs [19], and dif-

ferent ways of choosing which inputs will get mutated [20, 21]. However, we noticed that

there was a lot of ad hoc exploration, without any sort of grounding. In order to provide that

grounding, we created a formalization of input selection in fuzzing, using methods from ab-

3



Introduction Chapter 1

stract interpretation. We realized that input selection is similar to finding new elements in an

abstract state space, and showed how existing fuzzing techniques all fit into the formalization.

Our formalization also led us to realize that most works only focus on a single abstraction

for choosing which inputs will be fuzzed/mutated. We designed a very simple multi-abstraction

fuzzer and found that it did better than a fuzzer based on any single abstraction. Our results

show that fuzzing research has been missing an easy way to improve the performance of most

evolutionary fuzzers, and we hope our formalization will provide a basis for further grounded

research.

Up until this point, all the vulnerability research was applicable to any sort of target, from

operating systems ot small test binaries, but now we wanted to tackle one of the hardest prob-

lems in fuzzing, interpreters. There are many high-value applications that use interpreters, one

famous example being JavaScript engines. Vulnerabilities in JavaScript engines could poten-

tially affect millions of users, and they are popular in targeted attacks [22]. Fuzzing interpreters

is quite different from fuzzing other types of programs. One of the biggest differences is that

interpreters take highly structured input in the form of a language. Most fuzzing techniques

generate inputs which are too garbled to even parse and run. In order to fuzz interpreters effec-

tively, I designed a completely new class of fuzzing, called Token-Level Fuzzing. Applying it

to JavaScript engines, I show it finds more bugs than state-of-the-art JavaScript fuzzers.

One goal of my research is that I always try to approach a fundamental aspect of a problem

in a unique way. I hope to continue this in my future work as well. I believe there are still major

discoveries that will make a difference in how we look at software security, and that these will

come from the people that can think outside of the box when approaching a problem. I hope

that as I continue my research I can make an impact in helping the world have safer software

and to further protect people from cyber threats.

4



Introduction Chapter 1

1.1 Permissions and Attributions

1. The content of chapter 3 is the result of a collaboration with Nick Stephens, John Grosen,

Audrey Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel,

and Giovanni Vigna, and has previously appeared in the 2016 edition of the Network and

Distributed System Security Symposium.

2. The content of chapter 4 is the result of a collaboration with Yan Shoshitaishvili, Nick

Stephens, Christopher Kruegel, and Giovanni Vigna, and has previously appeared in the

2017 edition of the Annual Computer Security Applications Conference.

3. The content of chapter 5 is the result of a collaboration with Aravind Machiry, Adam

Doupe, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna, and has previ-

ously appeared in the 2020 edition of the IEEE Conference on Communications and

Network Security.

4. The content of chapter 6 is the result of a collaboration with Chani Jindal, Jake Corina,

Christopher Kruegel, and Giovanni Vigna, and is currently in submission to the 2021

edition of the USENIX Security Symposium.

5



Chapter 2

Background on Vulnerability Discovery

Techniques

In this chapter I will give an overview of the classes of modern vulnerability discovery tech-

niques, and their advantages and disadvantages, There are many considerations that can go into

such a discussion and it is important to remember the best is often to use a combination of the

different analysis techniques. Because finding bugs is an NP-hard problem we have to make

trade-offs, and each of the analysis techniques in this section will have different advantages

and disadvantages. Some of the main considerations are:

• Human effort. Analysis techniques will require varying efforts from a human analysis.

The effort could be as small as patching a clearly identified bug, to writing code to check

for a specific bug. Techniques that can run with less human input are more suitable for

continual bug discovery.

• Replayable inputs. If an analysis can output an input which will trigger a bug, it is

known for certain that a bug exists. This can be quite helpful in enabling a developer to

track down a particular bug. This also proves a bug is not a false positive.

6



Background on Vulnerability Discovery Techniques Chapter 2

• Scalability. Some analyses output their results and those cannot be improved with fur-

ther compute time. On the other hand, some techniques can always run with more com-

pute hours and increase their odds of finding bugs.

• Root Causes. The root cause of a vulnerability can be quite different from the crash that

appears [23]. In these cases, understanding a crashing input may require a significant

amount of effort to identify the real cause of the bug.

One consideration often missed in academic works is that more bugs is not always the

goal of an analysis. The goal might be to find different vulnerabilities than other techniques.

Vulnerability discovery should be a multi-pronged effort, wherein different techniques are used

to try to find and eliminate as many bugs as possible, rather than using the one best technique.

In fact, targeted automated bug discovery techniques have shown quite promising results.

2.1 Static Analysis

Static analyses attempt to find vulnerabilities in software without actually executing the

target. This can be done on source code [24], on an intermediate language [25], or on the

binary itself [26]. Some static techniques attempt to find patterns which are known to be

buggy [27]. The simplest form of this may just look for functions that are known to be unsafe,

whereas more complicated techniques might analyze how the data flows between functions to

ensure that they are called in a safe manner.

Another common static analysis approach is to interpret a program over an abstract do-

main. That is an over-approximation is constructed for variables, memory locations etc, and

the program is interpreted until a fixed point is reached. One such analysis is Value-Set Anal-

ysis, which attempts to identify a tight over-approximation of the values used in instructions

as well as what regions of memory might be used in memory accesses [28]. VSA does this by

7



Background on Vulnerability Discovery Techniques Chapter 2

computing a Value-set which is a set that contains all the possible values of each register and

memory value at all the program points. Then this analysis can be used to detect bugs, such as

buffer overlaps, which could indicate a bug from a buffer overflow.

A major advantage of static analyses is that it analyze the entire code base; even in hard-

to-reach areas of code, it can identify bugs. However, in order to analyze hard-to-reach code, it

has to make assumptions or over-approximate the code, which may also lead to a large number

of false positives. False-positives reduce confidence in the analysis and can cost the security

engineers time. Another weakness is the lack of a testcase which can be used to reproduce the

crash. Static analyses can only determine if there may be a bug at a particular point, not how

to trigger it.

2.2 Dynamic Analysis

On the other hand, dynamic approaches actually run the target, either concretely or in

an emulator. When used to find vulnerabilities, they typically execute the program from the

entry point, allowing the analysis to produce a concrete input which triggers any vulnerabilities

found. Executing from the entry point also comes with the benefit of having a more complete

view of the program, often concrete values for what registers and memory regions may hold.

However, executing from the beginning of a program also brings the challenge of needing to

match the format that the target program expects to some degree of accuracy, otherwise only

error paths will be triggered.

Lots of work in dynamic analysis vulnerability is finding techniques which can execute

deeper parts of the code and cover more of the program. Fuzzing is the basic technique used

most in industry. In fuzzing, random-sh inputs are generated and given to the program as

inputs. in order to make fuzzing able to explore the state-space of a program effectively, most

fuzzers rely on a technique called evolutionary fuzzing. By tracking how much coverage inputs

8



Background on Vulnerability Discovery Techniques Chapter 2

trigger in a program, the fuzzer can choose to keep around those that hit new basic blocks.

These inputs will then be further mutated to try to iteratively explore deeper in an evolutionary

manner. Two of the state-of-the-art evolutionary fuzzers which are used as the base of much

of modern fuzzing research are AFL and Libfuzzer [29, 30]. One aspect of fuzzing that makes

it very popular is its use of randomness, which allows it to continually be able to produce new

results, and make effective use of a large number of CPU hours.

Another technique which has been popular both in research [31] and in industry [32] is

symbolic execution. Symbolic execution involves using a special emulation environment to

run the target program, where input is not concrete, rather it is given a symbolic value. As

the target is executed, constraints are added onto the symbolic variables. Later, a constrain

solver can be queried to determine possible values for all variables in the current program state.

Symbolic execution is quite powerful in that it can determine correct values as it executes and

easily handle many constraints on the input, but the downside is that it is very slow [33] and

suffers from path explosion as too many paths become possible [31].

In my work, I chose to focus more on dynamic execution techniques, in particular fuzzing,

with a bit of symbolic execution. I believe these techniques can make more effective use of the

large amount of compute hours that companies have available. Fuzzing can run continuously,

and can frequently find bugs that look nothing like any previous bug [34]. Furthermore, it can

find bugs as they are introduced, and with a crashing input it is easy to pin down what commit

is the one that introduced a vulnerability. Fuzzing has a lot of promise, and it still has a lot of

room to grow as more advancements are made. I hope this work will make an impact in the

efficacy of fuzzing and its ability to eliminate more security vulnerabilities in the software we

use.

9



Chapter 3

Augmenting Fuzzing Through Selective

Symbolic Execution

3.1 Introduction

Despite efforts to increase the resilience of software against security flaws, vulnerabilities

in software are still commonplace. In fact, in recent years, the occurrence of security vulnera-

bilities has increased to an all-time high [35]. Furthermore, despite the introduction of memory

corruption and execution redirection mitigation techniques, such software flaws account for

over a third of all vulnerabilities discovered in the last year [36].

Whereas such vulnerabilities used to be exploited by independent hackers who wanted to

push the limits of security and expose ineffective protections, the modern world has moved

to nation states and cybercriminals using such vulnerabilities for strategic advantage or profit.

Furthermore, with the rise of the Internet of Things, the number of devices that run potentially

vulnerable software has skyrocketed, and vulnerabilities are increasingly being discovered in

the software running these devices [37].

While many vulnerabilities are discovered by hand, manual analysis is not a scalable

10



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

method for vulnerability assessment. To keep up with the amount of software that must be

vetted for vulnerabilities, an automated approach is required. In fact, DARPA has recently lent

its support to this goal by sponsoring two efforts: VET, a program on developing techniques for

the analysis of binary firmware, and the Cyber Grand Challenge (CGC), in which participants

design and deploy automated vulnerability scanning engines that will compete against each

other by exploiting binary software. DARPA has funded both VET and the Cyber Grand Chal-

lenge with millions of dollars in research funding and prize money, demonstrating the strong

interest in developing a viable approach to automated binary analysis.

Naturally, security researchers have been actively designing automated vulnerability anal-

ysis systems. Many approaches exist, falling into three main categories: static, dynamic, and

concolic analysis systems. These approaches have different advantages and disadvantages.

Static analysis systems can provide provable guarantees – that is, a static analysis system can

show, with certainty, that a given piece of binary code is secure. However, such systems have

two fundamental drawbacks: they are imprecise, resulting in a large amount of false positives,

and they cannot provide “actionable input” (i.e., an example of a specific input that can trigger

a detected vulnerability). Dynamic analysis systems, such as “fuzzers”, monitor the native ex-

ecution of an application to identify flaws. When flaws are detected, these systems can provide

actionable inputs to trigger them. However, these systems suffer from the need for “input test

cases” to drive execution. Without an exhaustive set of test cases, which requires considerable

manual effort to generate, the usability of such systems is limited. Finally, concolic execution

engines utilize program interpretation and constraint solving techniques to generate inputs to

explore the state space of the binary, in an attempt to reach and trigger vulnerabilities. How-

ever, because such systems are able to trigger a large number of paths in the binary (i.e., for a

conditional branch, they often create an input that causes the branch to be taken and another

that does not), they succumb to “path explosion”, greatly limiting their scalability.

Because of these drawbacks, most bug-triggering input produced by modern automated

11



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

analysis systems represents “shallow” bugs in the software. In the case of fuzzers, this is

because fuzzers randomly generate new inputs to an application and they likely fail to success-

fully pass through input-processing code. Concolic execution engines, on the other hand, are

often able to recreate properly formatted input to pass through input processing code, but tend

to succumb to path explosion, limiting the “depth” of code that they can analyze. Thus, flaws

that lie in the deeper logic of an application tend to be missed by these tools, and are usually

discovered through manual analysis by human experts [38–40].

The difference between the types of bugs that can be found by fuzzing and concolic execu-

tion can also be viewed in terms of the way in which an application processes user input. We

propose two different categories of user input: general input, which has a wide range of valid

values (e.g., the name of a user) and specific input, which has a limited set of valid values (e.g.,

the hash of the aforementioned name). An application’s checks for particular values of specific

input effectively split an application into compartments, separated by such checks. Fuzzing is

proficient at exploring possible values of general input, within a compartment, but struggles to

identify the precise values needed to satisfy checks on specific input and drive execution flow

between compartments. On the other hand, selective concolic execution is proficient at deter-

mining the values that such specific checks require and, if the path explosion problem were

solved, can push execution between compartments.

For example, consider an application that processes commands from the user: the applica-

tion reads a command name from the user, compares it against a list of commands, and passes

user-supplied parameters to the appropriate command handler. In this case, the complex check

would be the comparison of the command name: a fuzzer randomly mutating input would have

a very small chance of sending the correct input. On the other hand, a concolic execution en-

gine would be well-suited for recovering the correct command name, but might suffer a path

explosion in the parameter-processing code. Once the correct command name is determined,

a fuzzer is better-suited for exploring the different command parameters that could be sent,

12



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

without encountering a path explosion.

We realized that this observation can be used to combine multiple analysis techniques,

leveraging their strengths while mitigating their weaknesses. For example, a fuzzer can be

used to explore the initial compartment of an application and, when it is unable to go further,

a concolic execution engine can be leveraged to guide it to the next compartment. Once there,

the fuzzer can take over again, exploring the possible inputs that can be provided to the new

compartment. When the fuzzer stops making progress again, the concolic execution engine can

resume and direct the analysis to the next compartment, and so on. By doing this repeatedly,

execution is driven deeper and deeper into the program, limiting the path explosion inherent to

concolic execution and ameliorating the incompleteness of dynamic analysis.

Guided by this intuition, we created a system, called Driller, that is a novel vulnerability

excavation system combining a genetic input-mutating fuzzer with a selective concolic execu-

tion engine to identify deep bugs in binaries. Combining these two techniques allows Driller

to function in a scalable way and bypass the requirement of input test cases. In this paper, we

will describe the design and implementation of Driller and evaluate its performance on 126

applications released as part of the qualifying event of the DARPA Cyber Grand Challenge.

Driller is not the first work to combine different types of analyses. However, existing

techniques either support very specific types of vulnerabilities (while Driller currently detects

any vulnerability that can lead to a program crash) [41, 42], do not take full advantage of the

capabilities offered by dynamic analysis (and, specifically, fuzzing) [43], or are affected by

the path explosion problem [44–47]. We show that Driller identifies more vulnerabilities in

these binaries than can be recovered separately by either fuzzing or concolic execution, and

demonstrate the efficacy of our approach by discovering the same number of vulnerabilities,

within the same amount of time, on the same dataset, as the winning team of the Cyber Grand

Challenge qualifying event. Furthermore, we perform additional evaluations to show that this

would not be possible without Driller’s contribution (i.e., using traditional fuzzing or symbolic

13



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

execution approaches).

In summary, this paper makes the following contributions:

• We propose a new method to improve the effectiveness of fuzzing by leveraging selective

concolic execution to reach deeper program code, while improving the scalability of

concolic execution by using fuzzing to alleviate path explosion.

• We designed and implemented a tool, Driller, to demonstrate this approach.

• We demonstrate the effectiveness of Driller by identifying the same number of vulnera-

bilities, on the same dataset, as the winning team of the Cyber Grand Challenge qualify-

ing event.

3.2 Driller Overview

A core intuition behind the design of Driller is that applications process two different

classes of user input: general input, representing a wide range of values that can be valid,

and specific input, representing input that must take on one of a select few possible values.

Conceptually, an application’s checks on the latter type of input split the application into com-

partments. Execution flow moves between compartments through checks against specific in-

put, while, within a compartment, the application processes general input. This concept is

explored in more depth in Section 3.5.7 in the context of an actual binary in our experimental

dataset.

Driller functions by combining the speed of fuzzing with the input reasoning ability of con-

colic execution. This allows Driller to quickly explore portions of binaries that do not impose

complex requirements on user input while also being able to handle, without the scalability

issues of pure concolic execution, complex checks on specific input. In this paper, we de-

14



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

fine “complex” checks as those checks that are too specific to be satisfied by input from an

input-mutating fuzzer.

Driller is composed of multiple components. Here, we will summarize these components

and provide a high-level example of Driller’s operation. In the rest of the paper, we will de-

scribe these components in depth.

Input test cases. Driller can operate without input test cases. However, the presence of such

test cases can speed up the initial fuzzing step by pre-guiding the fuzzer toward certain

compartments.

Fuzzing. When Driller is invoked, it begins by launching its fuzzing engine. The fuzzing

engine explores the first compartment of the application until it reaches the first complex

check on specific input. At this point, the fuzzing engine gets “stuck” and is unable to

identify inputs to search new paths in the program.

Concolic execution. When the fuzzing engine gets stuck, Driller invokes its selective con-

colic execution component. This component analyzes the application, pre-constraining

the user input with the unique inputs discovered by the prior fuzzing step to prevent a

path explosion. After tracing the inputs discovered by the fuzzer, the concolic execu-

tion component utilizes its constraint-solving engine to identify inputs that would force

execution down previously unexplored paths. If the fuzzing engine covered the previ-

ous compartments before getting stuck, these paths represent execution flows into new

compartments.

Repeat. Once the concolic execution component identifies new inputs, they are passed back

to the fuzzing component, which continues mutation on these inputs to fuzz the new

compartments. Driller continues to cycle between fuzzing and concolic execution until

a crashing input is discovered for the application.

15



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Figure 3.1: The
nodes initially found
by the fuzzer.

read config

check magicsyntax error

initializebad magic

defaultothersbug

exit

Figure 3.2: The
nodes found by the
first invocation of
concolic execution.

read config

check magicsyntax error

initializebad magic

defaultothersbug

exit

Figure 3.3: The
nodes found by
the fuzzer, supple-
mented with the
result of the first
Driller run.

read config

check magicsyntax error

initializebad magic

defaultothersbug

exit

Figure 3.4: The
nodes found by the
second invocation of
concolic execution.

read config

check magicsyntax error

initializebad magic

defaultothersbug

exit

3.2.1 Example

To elucidate the concept behind Driller, we provide an example in Listing 3.1. In this

example, the application parses a configuration file, containing a magic number, received over

an input stream. If the received data contains syntax errors or an incorrect magic number, the

program exits. Otherwise, control flow switches based on input between a number of new

compartments, some of which contain memory corruption flaws.

Driller begins its operation by invoking its fuzzing engine and fuzzing the first compartment

of the application. These fuzzed nodes are shown shaded in a control-flow graph of the program

in Figure 3.1. This fuzzing step explores the first compartment and gets stuck on the first

complex check – the comparison with the magic number. Then, Driller executes the concolic

execution engine to identify inputs that will drive execution past the check, into other program

compartments. The extra transitions discovered by the concolic execution component, for this

example, are shown in Figure 3.2.

After this, Driller enters its fuzzing stage again, fuzzing the second compartment (the ini-

tialization code and the check against keys in the configuration file). The coverage of the second

16



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

fuzzing stage is shown in Figure 3.3. As shown, the fuzzer cannot find any arms of the key

switch besides the default. When this second fuzzing invocation gets stuck, Driller leverages

its concolic execution engine to discover the “crashstring” and “set option” inputs,

shown in Figure 3.4. The former leads directly to the bug in the binary.

It is important to note that while neither symbolic execution nor fuzzing by themselves

could find this bug, Driller can. There are several areas in this example where Driller’s hybrid

approach is needed. The parsing routines and initialization code have a great amount of com-

plicated control flow reasoning about highly stateful data, which would lead to path explosion,

slowing down symbolic execution to the point of uselessness. Additionally, and as noted be-

fore, the magic number check foils traditional fuzzing approaches by requiring highly specific

input, too small to be reasonably found within its search space. Other common programming

techniques that hinder fuzzing approaches include the use of hash functions to validate input.

For this reason, a composition of concolic execution and fuzzing has the potential of achieving

better results.

17



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Listing 3.1: An example requiring fuzzing and concolic execution to work together.

1 i n t main ( vo id ) {

2 c o n f i g t * c o n f i g = r e a d c o n f i g ( ) ;

3 i f ( c o n f i g == NULL) {

4 p u t s ( ” C o n f i g u r a t i o n s y n t a x e r r o r ” ) ;

5 r e t u r n 1 ;

6 }

7 i f ( c o n f i g−>magic != MAGIC NUMBER) {

8 p u t s ( ” Bad magic number ” ) ;

9 r e t u r n 2 ;

10 }

11 i n i t i a l i z e ( c o n f i g ) ;

12

13 c h a r * d i r e c t i v e = c o n f i g−>d i r e c t i v e s [ 0 ] ;

14 i f ( ! s t r cm p ( d i r e c t i v e , ” c r a s h s t r i n g ” ) ) {

15 program bug ( ) ;

16 }

17 e l s e i f ( ! s t r cm p ( d i r e c t i v e , ” s e t o p t i o n ” ) ) {

18 s e t o p t i o n ( c o n f i g−>d i r e c t i v e s [ 1 ] ) ;

19 }

20 e l s e {

21 d e f a u l t ( ) ;

22 }

23

24 r e t u r n 0 ;

25 }

3.3 Fuzzing

Fuzzing is a technique that executes an application with a wide set of inputs, checking if

these inputs cause the application to crash. To retain speed of execution, fuzzers are minimally

invasive – they perform minimal instrumentation on the underlying application and mostly

monitor it from the outside.

Recent years have seen many improvements to fuzzing engines. In this section, we will

18



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

detail improvements that are relevant to Driller’s performance.

To implement Driller, we leveraged a popular off-the-shelf fuzzer, American Fuzzy Lop

(AFL) [29]. Our improvements mostly deal with integrating the fuzzer with our concolic ex-

ecution engine. No changes to the logic of AFL were made. AFL relies on instrumentation

to make informed decisions on which paths are interesting. This instrumentation can be either

introduced at compile-time or via a modified QEMU [48], we opted for a QEMU-backend to

remove reliance on source code availability. While we discuss important features of Driller’s

fuzzer-component, AFL, in this section, we do not claim credit for their invention or imple-

mentation.

3.3.1 Fuzzer Features

A modern fuzzer implements many features to better identify crashing inputs. In this sec-

tion, we will list and describe the most important AFL features, mentioning how they are used

by Driller.

Genetic fuzzing. AFL carries out input generation through a genetic algorithm, mutating in-

puts according to genetics-inspired rules (transcription, insertion, etc.) and ranking them

by a fitness function. For AFL, the fitness function is based on unique code coverage

– that is, triggering an execution path that is different than the paths triggered by other

inputs.

State transition tracking. AFL tracks the union of control flow transitions that it has seen

from its inputs, as tuples of the source and destination basic blocks. Inputs are prioritized

for “breeding” in the genetic algorithm based on their discovery of new control flow

transitions, meaning that inputs that cause the application to execute in a different way

get priority in the generation of future inputs.

19



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Loop “bucketization”. Handling loops is a complicated problem for fuzzing engines and con-

colic execution engines alike. To help reduce the size of the path space for loops, the

following heuristic is performed. When AFL detects that a path contains iterations of

a loop, a secondary calculation is triggered to determine whether that path should be

eligible for breeding. AFL determines the number of loop iterations that were executed

and compares it against previous inputs that caused a path to go through the same loop.

These paths are all placed into “buckets” by the logarithm of their loop iteration count

(i.e., 1, 2, 4, 8, and so on). One path from each bucket is considered for breeding in

the genetic algorithm. This way, only log(N) paths must be considered for each loop as

opposed to the naive approach of N paths.

Derandomization. Program randomization interferes with a genetic fuzzer’s evaluation of in-

puts – an input that produces interesting paths under a given random seed might not do

so under another. We pre-set AFL’s QEMU backend to a specific random seed to ensure

consistent execution. Later, when a crashing input is discovered, we use our concolic ex-

ecution engine to recover any “challenge-response” behavior or vulnerabilities that rely

on leaking randomness. For example, a “challenge-response” process in a binary echoes

random data to the user and expects the same data echoed back to it. Without remov-

ing randomization, the fuzzing component would likely fail this check every time and

explore very few paths. If the randomness is instead constant, the program accepts the

same input each time, leaving the fuzzer (or the concolic execution component) free to

find this one value and subsequently explore further. After a crash is found, the random-

ness can instead be modeled symbolically, as described in section 3.4.4, and the crashing

input can be patched accordingly.

These features allow AFL to rapidly discover unique paths through an application, per-

forming the brunt of the path discovery work within a given compartment of the application.

20



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

However, the limitations of fuzzing are well-known.

3.3.2 Fuzzer Limitations

Because fuzzers randomly mutate input, and genetic fuzzers, in turn, mutate input that has,

in the past, generated unique paths through a binary, they are able to quickly discover different

paths that process “general” input (i.e., input that has many different values that can trigger

meaningful program behavior). However, the generation of “specific” input to pass complex

checks in the application (i.e., checks that require inputs with one of very few specific values)

is very challenging for fuzzers.

Consider the example in Listing 3.2.

Listing 3.2: A difficult program to fuzz.

1 i n t main ( vo id )

2 {

3 i n t x ;

4 r e a d ( 0 , &x , s i z e o f ( x ) ) ;

5

6 i f ( x == 0x0123ABCD )

7 v u l n e r a b l e ( ) ;

8 }

This application reads a value from the user and compares it against a specific value. If the

correct value is provided, the application will crash. However, due to the nature of fuzzing, it is

extremely unlikely that a fuzzer will ever satisfy the predicate. For a non-instrumented fuzzer

(i.e., one that chooses random values for the input), the likelihood that the fuzzer will discover

the bug is the infinitesimal 1 out of 232. For an instrumented fuzzer, the control flow layout of

this binary will result in a single path being discovered. Without the ability to prioritize new

paths (as there are none), an instrumented fuzzer will be reduced to applying random mutations

on the existing paths which is, in essence, the same as the non-instrumented case, with the same

infinitesimally small chance of success.

21



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

3.3.3 Transition to Concolic Execution

Driller aims to complement the fundamental weakness of fuzzing, determining specific user

input required to pass complex checks, by leveraging the strength of concolic execution. When

the fuzzing component has gone through a predetermined amount (proportional to the input

length) of mutations without identifying new state transitions, we consider it “stuck”. Driller

then retrieves the inputs that the fuzzer has deemed “interesting” in the current compartment

and invokes the concolic execution engine on them.

The fuzzer identifies inputs as interesting if one of two conditions holds:

1. The path that the input causes the application to take was the first to trigger some state

transition.

2. The path that the input causes the application to take was the first to be placed into a

unique “loop bucket”.

These conditions keep the number of inputs that are handed to the concolic execution com-

ponent down to a reasonable number, while retaining a high chance of passing along inputs

that the concolic execution can mutate to reach the next compartment in the application.

3.4 Selective Concolic Execution

When Driller determines that the fuzzer is unable to find additional state transitions, the

concolic execution engine is invoked. The insight behind Driller’s use of concolic execution is

as follows: one of the main causes of fuzzers failing to find new state transitions in a program

is the inability of fuzzers to generate specific input to satisfy complex checks in the code. The

concolic execution engine is used to leverage a symbolic solver to mutate existing inputs that

reach but fail to satisfy complex checks into new inputs that reach and satisfy such checks.

22



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

When Driller invokes the concolic execution engine, it passes all of the “interesting” inputs

(as defined in Section 3.3.3) that were identified by the fuzzing engine. Each input is traced,

symbolically, to identify state transitions that the fuzzing engine was unable to satisfy. When

such a transition is identified, the concolic execution engine produces input that would drive

execution through this state transition.

After the concolic execution engine finishes processing the provided inputs, its results are

fed back into the fuzzing engine’s queue and control is passed back to the fuzzing engine, so

that it can quickly explore the newly found compartments of the application.

The remainder of this section will describe Driller’s implementation of concolic execution

and the specific adaptations that we made for Driller’s problem domain.

3.4.1 Concolic Execution

We leveraged angr [37], a recently open-sourced symbolic execution engine, for Driller’s

concolic execution engine. The engine is based on the model popularized and refined by May-

hem and S2E [46, 47]. First the engine translates binary code into Valgrind’s VEX [49] in-

termediate representation, which is interpreted to determine the effects of program code on a

symbolic state. This symbolic state uses symbolic variables to represent input that can come

from the user or other data that is not constant, such as data from the environment. A symbolic

variable is a variable (such as X) that can yield a number of possible concrete solutions (such

as the number 5). Other values, such as constants hardcoded in the program, are modeled as

concrete values. As the execution progresses, symbolic constraints are added to these vari-

ables. A constraint is a limiting statement on the potential solutions of the symbolic value (for

example, X < 100). A concrete solution is any value of X that will satisfy these constraints.

The analysis engine tracks all concrete and symbolic values in memory and registers (the

aforementioned symbolic state) throughout execution. At any point in the program that the

23



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

engine reaches, a constraint resolution can be performed to determine a possible input that

satisfies the constraints on all symbolic variables in the state. Such an input, when passed to a

normal execution of the application, would drive the application to that point. The advantage

of concolic execution is that it can explore and find inputs for any path that the constraint solver

can satisfy. This makes it useful for identifying solutions to complex comparisons (up to and

including certain hash functions) that a fuzzer would be unlikely to ever brute force.

Driller’s symbolic memory model can store both concrete and symbolic values. It uses an

index-based memory model in which read addresses may be symbolic, but write address are

always concretized. This approach, popularized by Mayhem, is an important optimization to

keep the analysis feasible: if both read and write addresses were symbolic, a repeated read

and write using the same symbolic index would result in a quadratic increase in symbolic

constraints or, depending on the implementation details of the symbolic execution engine, the

complexity of the stored symbolic expressions. Thus, symbolic write addresses are always

concretized to a single valid solution. Under certain conditions, as proposed by literature in the

field, symbolic values are concretized to a single potential solution [47].

The symbolic memory optimizations increase the scalability of the concolic execution en-

gine, but can result in an incomplete state space, where fewer solutions are possible. Unfortu-

nately, this is a trade-off that must be made to make analysis of real-world binaries realistic.

3.4.2 Example

Concolic execution is good at solving different problems than fuzzing. Recall the exam-

ple demonstrating the drawback of fuzzing, from Section 3.3.2, reproduced in Listing 3.3..

Because of the exactness of the input required to pass the check guarding the call to the

vulnerable function, fuzzing is unable to explore that piece of code in a reasonable time

frame.

24



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Listing 3.3: A program that yields to concolic execution.

1 i n t main ( vo id )

2 {

3 i n t x ;

4 r e a d ( 0 , &x , s i z e o f ( x ) ) ;

5

6 i f ( x == 0x0123ABCD )

7 v u l n e r a b l e ( ) ;

8 }

However, a concolic execution engine will be able to easily satisfy this check and trigger

the vulnerable function. For this example, concolic execution only needs to explore a small

number of paths to find one which reaches the bug in this example, but for bigger binaries and

real-world examples, there will be far too many paths to explore in the same manner.

3.4.3 Limitations

The traditional approach to concolic execution involves beginning concolic execution from

the beginning of a program and exploring the path state with the symbolic execution engine to

find as many bugs as possible. However, this approach suffers from two major limitations.

First, concolic execution is slow. This is caused by the need to interpret application code (as

opposed to natively executing it, as with a fuzzer) and by the overhead involved in the constraint

solving step. Specifically, the latter operation involves the solution of an NP-complete problem,

making the generation of potential inputs (and the determination of which conditional jumps

are feasible) time-consuming.

Worse, symbolic execution suffers from the state explosion problem. The number of paths

grows exponentially as the concolic execution engine explores the program, and it quickly be-

comes infeasible to explore more than a tiny fraction of the paths. Consider the example in

Listing 3.4. In this program, the vulnerable() is triggered when the user enters exactly

25



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

25 B characters, but this is a condition difficult to express in a symbolic execution framework.

Symbolic execution of this program will cause a huge state explosion as the simulated CPU

steps down the recursive calls into the check() function. Each execution of the ternary con-

ditional comparing a character to the literal B splits every simulated state into two, eventually

resulting in 2100 possible states, which is an infeasible amount to process.

A genetic fuzzer that selects inputs based on state transitions, on the other hand, does not

reason about the whole state-space of a program, but only on the state transitions triggered by

inputs. That is, it will focus chiefly on the number of times, for example, the check on line 5

succeeds. That is, regardless of where the B characters are in the input, states will be judged

based on the number of them in the input, avoiding the path explosion problem.

While progress has been made toward reducing this problem with intelligent state merg-

ing [50], the general problem remains.

Listing 3.4: A program that causes a path explosion under concolic execution.

1 i n t check ( c h a r *x , i n t d e p t h ) {

2 i f ( d e p t h >= 100) {

3 r e t u r n 0 ;

4 } e l s e {

5 i n t c o u n t = (* x == ’B ’ ) ? 1 : 0 ;

6 c o u n t += check ( x +1 , d e p t h + 1 ) ;

7 r e t u r n c o u n t ;

8 }

9 }

10

11 i n t main ( vo id ) {

12 c h a r x [ 1 0 0 ] ;

13 r e a d ( 0 , x , 1 0 0 ) ;

14

15 i f ( check ( x , 0 ) == 25)

16 v u l n e r a b l e ( ) ;

17 }

26



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

3.4.4 Concolic Execution in Driller

In most cases, fuzzing can adequately explore a large portion of paths on its own, simply by

finding them with random bit flips and other mutation strategies. By utilizing native execution,

it will outperform concolic execution in most cases where it can randomly trigger the paths.

Thus, most of the work is offloaded from the concolic execution engine to the fuzzer, which will

find many paths quickly, letting the concolic engine just work on solving the harder constraints.

When fuzzing is unable to discover inputs that result in new execution paths, the concolic

execution engine is invoked. It traces the paths discovered by the fuzzing, identifies inputs that

diverge into new program components, and performs limited symbolic exploration. Addition-

ally, when a crashing input is found by the fuzzing component, the concolic execution engine

“re-randomizes” it to recover the parts of a crashing input that are dependent on randomness

and other environmental factors.

Pre-constrained Tracing

Driller uses concolic execution to trace the interesting paths from the fuzzer and generate

new inputs. A key factor in the effectiveness of this approach is that it allows Driller to avoid

the path explosion inherent in concolic exploration, because only the path representing the

application’s processing of that input is analyzed.

When traces are passed from the fuzzer to the symbolic execution, the goal is to discover

new transitions that fuzzing had not previously found. Driller’s concolic execution engine

traces the input, following the same path that was taken by the fuzzer. When Driller comes

upon a conditional control flow transfer, it checks if inverting that condition would result in

the discovery of a new state transition. If it will, Driller produces an example input that will

drive execution through the new state transition instead of the original control flow. By doing

this Driller’s concolic execution engine guides the fuzzing engine to new compartments of the

27



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

application. After producing the input, Driller continues following the matching path to find

additional new state transitions.

Input Preconstraining

Driller uses preconstraining to ensure that the results of the concolic execution engine are

identical to those in the native execution while maintaining the ability to discover new state

transitions. In preconstrained execution, each byte of input is constrained to match each actual

byte that was output by the fuzzer, e.g., /dev/stdin[0] == ’A’. When new possible

basic block transitions are discovered, the preconstraining is briefly removed, allowing Driller

to solve for an input that would deviate into that state transition. Preconstraining is necessary

to generate identical traces in the symbolic execution engine and make the limited concolic

exploration feasible.

To demonstrate how input preconstraining works in Driller, we use the example in List-

ing 3.5, which is similar to the example from Section 3.4.3 with the addition that, to reach the

vulnerable function, we must provide a magic number (0x42d614f8) at line 18. After fuzzing

the input, Driller eventually recognizes that it is not discovering any new state transitions, since

the fuzzer alone cannot guess the correct value. When concolic execution is invoked to trace

an input, Driller first constrains all of the bytes in the symbolic input to match those of the

traced input. As the program is symbolically executed, there is only one possibility for each

branch, so exactly one path is followed. This prevents the path explosion that was described

in Section 3.4.3. When execution reaches line 18, however, Driller recognizes that there is an

alternate state transition that has never been taken during fuzzing. Driller then removes the

preconstraints that were added at the beginning of the execution not including the predicates

placed by symbolically executing the program with the traced input. The bytes in the character

array x are partially constrained by the path, and the value of magic is constrained by the

equality check if (magic == 0x42d614f8). The concolic execution engine thus cre-

28



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

ates an input that contains 25 instances of B and a magic value of 0x42d614f8. This passes

the check in line 18 and reaches the vulnerable function.

Listing 3.5: An application showcasing the need for pre-constraining of symbolic

input.

1 i n t check ( c h a r *x , i n t d e p t h ) {

2 i f ( d e p t h >= 100) {

3 r e t u r n 0 ;

4 } e l s e {

5 i n t c o u n t = (* x == ’B ’ ) ? 1 : 0 ;

6 c o u n t += check ( x +1 , d e p t h + 1 ) ;

7 r e t u r n c o u n t ;

8 }

9 }

10

11 i n t main ( vo id ) {

12 c h a r x [ 1 0 0 ] ;

13 i n t magic ;

14 r e a d ( 0 , x , 1 0 0 ) ;

15 r e a d ( 0 , &magic , 4 ) ;

16

17 i f ( check ( x , 0 ) == 25)

18 i f ( magic == 0 x42d614f8 )

19 v u l n e r a b l e ( ) ;

20 }

Limited Symbolic Exploration

In an attempt to reduce the number of expensive concolic engine invocations we also intro-

duce a symbolic exploration stub to discover more state transitions lying directly after a newly

discovered state transition. This symbolic exploration stub explores the surrounding area of the

state transition until a configurable number of basic blocks has been traversed by the explorer.

Once this number of blocks has been discovered, Driller concretizes inputs for all paths discov-

ered by the explorer. We reason that doing this prevents the fuzzer from getting “stuck” quickly

29



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

after being provided with a Driller-generated input. In a number of cases, Driller generates a

new input that gets only partway through a multi-part complex check and must immediately

be retraced to allow the fuzzer to proceed deeper into the binary. The symbolic exploration

stub is a small optimization which allows Driller to find further state transitions, before they

are requested, without having to retrace its steps.

Re-randomization

Random values introduced during a program run can disrupt fuzzing attempts as described

earlier. Listing 3.6 displays a small program which challenges the user to reflect back a ran-

dom input. This makes fuzzing unstable because we can never know the concrete value of

challenge without monitoring the program output.

Listing 3.6: A program which requires re-introducing randomness.

1 i n t main ( vo id ) {

2 i n t c h a l l e n g e ;

3 i n t r e s p o n s e ;

4

5 c h a l l e n g e = random ( ) ;

6

7 w r i t e ( 1 , &c h a l l e n g e , s i z e o f ( c h a l l e n g e ) ) ;

8 r e a d ( 0 , &r e s p o n s e , s i z e o f ( r e s p o n s e ) ) ;

9 i f ( c h a l l e n g e == r e s p o n s e )

10 a b o r t ( ) ;

11

12 }

Once a vulnerability is discovered, we use symbolic execution to trace crashing inputs and

recover input bytes that need to satisfy dynamic checks posed by the target binary (such as the

challenge-response in the example of Listing 3.6). By inspecting the symbolic state at crash

time and finding the relationships between the application’s output and the crashing input,

Driller can determine the application’s challenge-response protocol. In this example, we can

30



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

see that the symbolic bytes introduced by the call to read are constrained to being equal to the

bytes written out by the call to write. After determining these relationships, we can generate

an exploit specification that handles randomness as it occurs in a real environment.

3.5 Evaluation

To determine the effectiveness of our approach, we performed an evaluation on a large

dataset of binaries. The goal of our evaluation is to show two things: first, Driller considerably

expands the code coverage achieved by an unaided fuzzer, and, second, this increased coverage

leads to an increased number of discovered vulnerabilities.

3.5.1 Dataset

We evaluated Driller on applications from the qualifying event of the DARPA Cyber Grand

Challenge (CGC) [51], a competition designed to “test the abilities of a new generation of

fully automated cyber defense systems” [51]. During the event, competitors had 24 hours to

autonomously find memory corruption vulnerabilities and demonstrate proof by providing an

input specification that, when processed by the application in question, causes a crash. There

are 131 services in the CGC Qualifying Event dataset, but 5 of these involve communication

between multiple binaries. As such functionality is out of scope for this paper, we only consider

the 126 single-binary applications, leaving multi-binary applications to future work.

These 126 applications contain a wide range of obstacles that make binary analysis diffi-

cult, such as complex protocols and large input spaces. They are specifically created to stress

the capabilities of program analysis techniques, and are not simply toy applications for hacking

entertainment (unlike what is generally seen at Capture The Flag hacking competitions [52]).

The variety and depth of these binaries allow for extensive testing of advanced vulnerability

excavation systems, such as Driller. Furthermore, the results of the top competitors are avail-
31



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

able online, providing a litmus test for checking the performance of analysis systems against

verified results.

3.5.2 Experiment Setup

We ran our experiments on a computer cluster of modern AMD64 processors. Each binary

had four dedicated fuzzer nodes and, when the fuzzer requires concolic execution assistance, it

sent jobs to a pool of 64 concolic execution nodes, shared among all binaries. Due to constraints

on the available memory, we limited each concolic execution job to 4 gigabytes of RAM. In all

of our tests, we analyze a single binary for at most 24 hours, which is the same amount of time

that was given to the teams for the CGC qualifying event. We analyzed each binary until either

a crash was found or the 24 hours had passed.

All crashes were collected and replayed using the challenge binary testing tools to verify

that the reported crashes were repeatable in the actual CGC environment. Thus, these results

are real, verified, and comparable to the actual results from the competition.

3.5.3 Experiments

We ran a total of three experiments in our evaluation. First, to evaluate Driller against the

baseline performance of existing techniques, we attempted vulnerability excavation with a pure

symbolic execution engine and a pure fuzzer. Then, we evaluated Driller on the same dataset.

The experiments were set up as follows:

Basic fuzzing. In this test, each binary was assigned 4 cores for fuzzing by AFL, but the

concolic execution nodes were deactivated. The fuzzer had no assistance when it was

unable to discover new paths. Note that changes were made to AFL’s QEMU backend

to improve performance on CGC binaries, however, as mentioned previously no core

changes to AFL’s logic were made.
32



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Symbolic execution. We used an existing symbolic execution engine, based heavily on the

ideas proposed by Mayhem [47], for the concolic execution test. To ensure a fair test

against the state of the art, advanced state merging techniques were used to help limit the

effects of state explosion, as proposed in Veritesting [50].

We analyze each binary by symbolically exploring the state space, starting from the

entry point, checking for memory corruption. When a state explosion did occur, we used

heuristics to prioritize paths that explored deeper into the application to maximize code

coverage.

Driller. When testing Driller, each binary was assigned 4 cores for the fuzzing engine, with

a total of 64 cores for the concolic execution component. The concolic execution pool

processed symbolic execution jobs in a first-in-first-out queue as traces were requested

by the fuzzing nodes when Driller determined that the fuzzers were “stuck”. Symbolic

execution traces were restricted to a one-hour period and a 4 gigabyte memory limit to

avoid resource exhaustion from analyzing large traces.

We will discuss several different facets of our evaluation of Driller. We will start by dis-

cussing the results of the three experiments in terms of Driller’s contribution to the number of

vulnerabilities that we were able to find in the dataset. Next, we will discuss Driller’s contribu-

tion in terms of code coverage over existing techniques. Finally, we will focus on an example

application from the CGC dataset for an in-depth case study to discuss how Driller increased

code coverage and identified the vulnerability in that application.

3.5.4 Vulnerabilities

In this subsection, we will discuss the number of vulnerabilities that were discovered by

the three experiments, and frame Driller’s contribution in this regard.

33



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

The symbolic execution baseline experiment faired poorly on this dataset. Out of the 126

applications, symbolic execution discovered vulnerabilities in only 16.

Out of the 126 Cyber Grand Challenge applications in our experimental dataset, fuzzing

proved to be sufficient to discover crashes in 68. Of the remaining 58 binaries, 41 became

“stuck” (i.e., AFL was unable to identify any new “interesting” paths, as discussed in Sec-

tion 3.3, and had to resort to random input mutation) and 17, despite continuing to find new

interesting inputs, never identified a crash.

In Driller’s run, the fuzzer invoked the concolic execution component on the 41 binaries that

became “stuck”. Figure 3.7 shows the number of times that concolic execution was invoked

for these binaries. Of these, Driller’s concolic execution was able to generate a total of 101

new inputs for 13 of these applications. Utilizing these extra inputs, AFL was able to recover

an additional 9 crashes, bringing the total identified crashes during the Driller experiment to

77, meaning that Driller achieves a 12% improvement over baseline fuzzing in relation to

discovered vulnerabilities.

Of course, most of the applications for which crashes were discovered in the Driller experi-

ment were found with the baseline fuzzer. In terms of unique crashes identified by the different

approaches, the fuzzer baseline discovered 55 crashes symbolic execution failed to discover. 13

of its vulnerabilities were shared with the symbolic execution baseline. A further 3 symbolic

execution baseline vulnerabilities overlap with vulnerabilities recovered by Driller, leaving ap-

plication for which the symbolic execution baseline alone found a vulnerability, and leaving

6 applications for which Driller’s approach was the only one to find the vulnerability. Essen-

tially, Driller effectively merges and expands on the capabilities offered by baseline fuzzing and

baseline concolic execution, achieving more results than both do individually. These results are

presented in Figure 3.5.

In total, Driller was able to identify crashes in 77 unique applications, an improvement of 6

crashes (8.4%) over the union of the baseline experiments. This is the same number of crashes

34



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

as identified by the top-scoring team in the competition (and significantly higher than any of

the other competitors), in the same amount of time. Without Driller (i.e., with the two baseline

approaches), we would not have achieved these results. Note that we are well-aware that the

comparison to a participating team is only indicative and it is not meant to be qualitative. The

participating team was operating under strict time constraints, with little or no space for errors.

Our experiments benefit from additional time to prepare and our techniques could be refined

throughout the course of Driller’s development.

These results demonstrate that enhancing a fuzzer with selective concolic execution im-

proves its performance in finding crashes. By advancing the state of the art in vulnerability

excavation, Driller is able to crash more applications than the union of those found by fuzzing

and by symbolic execution separately. While a contribution of 6 unique vulnerabilities might

seem low compared to the total number of applications in the CGC qualifying event, these

crashes represent vulnerabilities deep in their respective binaries, many of which require mul-

tiple concolic execution invocations to penetrate through several compartments.

3.5.5 State Transition Coverage

Selective symbolic execution is able to overcome a fundamental weakness of fuzzers when

dealing with “magic” constants and other complex input checks. That means that, after the

fuzzer is unable to identify new interesting inputs (for example, due to a failure to guess a hash

or a magic number), the concolic execution engine can generate an input allowing the fuzzer

to continue exploring paths beyond where it had become stuck. This aspect of Driller can be

observed in Table 3.1, which shows the breakdown of how state transitions were found during

execution. In applications in which the symbolic execution was able to find a new path, fuzzing

alone had only found an average of 28.5% of the block transitions.

As expected, the symbolic traces account for only a small amount of new state transitions

35



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Binaries

D

S

F

Method Crashes Found
Fuzzing 68

Fuzzing ∩ Driller 68
Fuzzing ∩ Symbolic 13

Symbolic 16
Symbolic ∩ Driller 16

Driller 77

Figure 3.5: The makeup of the experimentation results. The Venn Diagram shows the relative
coverage of Basic Fuzzing (AFL), Symbolic Execution, and Driller in terms of finding crashes
in the CGC dataset. The circle labeled F represents crashes found by fuzzing, S represents
crashes found by symbolic execution, and D represents crashes found by driller. The table
presents these results in terms of the relative effectiveness of the different methods and their
improvement relative to each other. The attentive reader can see that Driller identifies a super-
set of the crashes found by Fuzzing and Symbolic Execution.

36



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

in these binaries (about 15.1% on average), as the symbolic exploration is limited in scope and

reserved mostly for identifying and passing interesting checks. However, the inputs produced

by the concolic execution engine help the fuzzing engine in successfully penetrating these

state transitions. The fuzzing engine’s subsequent modifications of these inputs allow it to

find, on average, an additional 56.5% of state transitions. In total, for the applications in

which the fuzzer eventually gets stuck and symbolic execution found a new path, 71.6% of the

state transitions resulted from the inputs based on those that were generated during symbolic

traces. The fact that the small numbers of concolically-contributed inputs result in a much

larger set of state transitions that the fuzzer can explore demonstrates that the inputs generated

by Driller’s concolic execution engine stimulated a much deeper exploration of the application.

It is important to keep in mind that this number only applies to 13 of the 41 applications which

became ”stuck” and were able to have a new path identified by symbolic execution. These

percentages are normalized over the total amount of basic blocks that we saw over the course of

the experiment, as generating a complete Control Flow Graph statically requires heavyweight

static analysis that is outside of the scope of this paper.

As discussed in Section 5.2, we consider a state transition to be an ordered pair of basic

blocks (A,B) where block B is executed immediately following block A. In other words, a state

transition is an edge in a Control Flow Graph where each node represents a basic block in the

program. It is clear that if we find every state transition that we have complete code coverage.

Similarly, if we find few state transitions, than we likely have very low coverage. Thus, it is

reasonable to use the number of unique state transitions as a measure of code coverage. In

Figure 3.6, we show how Driller improved the basic block coverage over time, by showing

how many additional basic blocks were discovered as a result of Driller, that the fuzzer was

unable to find on its own.

37



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Percentage of discovered Percentage of discovered blocks
Type of State Transition blocks across all binaries across binaries where concolic

execution found at least one input
Initial Fuzzing Run 84.2 28.4

Identified by Concolic Execution 3.3 15.1
Post-Concolic Fuzzing Runs 12.5 56.5

Total 100 100

Table 3.1: Breakdown of what percentage of discovered state transitions were found by what
method, among binaries which invoked concolic execution and binaries for which concolic
execution identified at least one input.

3.5.6 Application Component Coverage

A goal of the symbolic traces in Driller is to enable the fuzzer to explore the various com-

partments in a binary, where the compartments may be separated by complex checks on user

input. We expect to see inputs generated by invocations of the concolic tracer correspond to

finding new compartments in the application. That is, the inputs generated by the concolic

execution engine should enable the fuzzer to reach and explore new areas of code.

As shown in Figure 3.5, 68 of the 126 applications in the data set did not have any dif-

ficult checks that needed Driller’s symbolic execution. These correspond to applications for

which the fuzzing component independently found crashing inputs or for which it never be-

came “stuck”. These applications tend to be the ones with simple protocols and fewer complex

checks. On the other hand, Driller was able to satisfy at least one difficult check in 13 of the

binaries and multiple difficult checks in 4 of the binaries. These compartments are difficult

for basic fuzzers to enter because of the specific checks separating them, but solvable by the

hybrid approach employed by Driller.

Each invocation of concolic execution has the potential to guide execution to a new com-

partment in the application. This can be measured by analyzing the basic block coverage of

Driller before a fuzzing round gets “stuck” and invokes concolic execution versus the coverage

achieved by the subsequent round of fuzzing, after the concolic execution component pushed

38



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Figure 3.6: The number of additional basic blocks found by Driller over time, that the fuzzer
was unable to find on its own. Execution time is shown normalized to the execution time of the
binary, which varies depending on if/when it crashed. This graph includes the 13 binaries that
invoked, and benefited from, concolic execution.

execution through to the next compartment. We present this in Figure 3.8, by showing the

fraction of basic blocks, normalized to the total number of basic blocks discovered throughout

the experiment, for each binary on which concolic execution was invoked, at each stage of the

analysis. The graph demonstrates that Driller does drive execution into new compartments in

applications, allowing the fuzzer to quickly explore a greater amount of code. We present an

in-depth example in this for our case study in Section 3.5.7.

3.5.7 Case Study

This section will focus on a single application to explain, in-depth, Driller’s operation. We

will focus on the CGC qualifying event application whose identifier is 2b03cf01. The inter-

ested reader can find the source code for this application on DARPA’s github repository [53]

under the public name NRFIN 00017. Additionally, we present the call graph of this binary,

which we will refer to throughout this case study, in Figure 3.10. This graph demonstrates the

39



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Figure 3.7: Graph showing how many times concolic execution was invoked in binaries where
fuzzing could not crash the binary on its own.

performance of successive invocations of Driller’s fuzzing and concolic execution components

– the nodes discovered by successive fuzzing invocations are drawn in progressively darker

colors and the transitions recovered by the concolic execution component are illustrated with

differently-drawn edges. The different colors of nodes represent different compartments in this

binary – within the compartment, fuzzing successfully produces inputs to trigger new interest-

ing paths while concolic execution is needed to satisfy the complex checks and guide execution

flow between compartments.

This application represents a power testing module, in which the client provides the server

an electrical design and the server builds a model of the electrical connectivity. This is not a

simple binary: it provides a variety of complex functionality to the user and requires properly

formatted input, against which there are a number of complex checks.

When Driller fuzzes this binary, the first of these complex checks causes the fuzzer to get

stuck almost immediately after finding only 58 basic blocks across a fairly small compartment

of the application, consisting of a handful of functions containing initialization code. The

fuzzing engine gets stuck on a check on user input. For convenience, the snippet in question,

corresponding to node “A” in Figure 3.10, is reproduced in Listing 3.7, although, of course,

40



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Figure 3.8: Graph showing how each invocation of concolic execution lead to more basic block
transitions found. Only shown for binaries in which symbolic execution identified additional
inputs.

Driller operates directly on binary code.

Looking at the source code, we see that the two primary commands called from the main

loop require the user to give a specific 32-bit number to select a “mode of operation”. To

call the function do build(), the user must provide the number 13980, and to call the function

do examine(), the user must provide the number 809110. Although, these checks appear simple

to a human, a fuzzer must essentially brute force them. Thus, the chance that the fuzzer will

guess these magic numbers is minuscule, and, as a result, the fuzzing component gets stuck.

After the fuzzer is unable to identify new interesting paths, Driller invokes the concolic ex-

ecution component to trace the inputs that the fuzzer has collected thus far, and find new state

transitions. Driller finds inputs which will drive execution to both of the aforementioned func-

tions, and returns them to the fuzzer for exploration. Again, the fuzzer gets stuck fairly quickly,

this time at node “B” in Figure 3.10 at another complex check. Driller’s concolic execution

engine is invoked a second time, generating enough new inputs to pass these checks. From this

point, the fuzzer is able to find 271 additional basic blocks within a large compartment of the

application that processes generic input which, for this application, consists of parsing code

41



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Figure 3.9: For the binary 2b03cf01, which Driller crashed in about 2.25 hours, this graph
shows the number of basic blocks found over time. Each line represents a different number
of invocations of symbolic execution from zero to three invocations. After each invocation of
symbolic execution, the fuzzer is able to find more basic blocks.

relating to analysis of the user-provided electrical design. Eventually, the fuzzer finds all of

the interesting paths that it can in that compartment and decides that it is not making further

progress, leading to another invocation of Driller’s concolic execution engine.
This time, Driller finds 74 new basic blocks and generates inputs that reach them by suc-

cessfully passing checks on the input that the fuzzer had not previously satisfied. These addi-

tional basic blocks (represented by the black nodes in Figure 3.10) comprise the functionality

of adding specific circuit components. For the interested reader, Listing 3.9 presents one of

the functions that contains specific checks against user input with which fuzzers have trouble.

Input representing these components must adhere to an exact specification of a circuit compo-

nent, and the checks of these specifications is what the third invocation of Driller’s concolic

42



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

D4 D3

C

D5

D1

A

B

D2

D6

Fuzzed transitions
Concolic #1 transitions
Concolic #2 transitions
Concolic #3 transitions

Compartment 1 (found initially)
Compartment 2 (after concolic invocation #1)
Compartment 3 (after concolic invocation #2)
Compartment 4 (after concolic invocation #3)

Figure 3.10: Graph visualizing the progress made by Driller in discovering new compartments.
Each node is a function; each edge is a function call, but return edges are excluded to maintain
legibility. Node “A” is the entry point. Node “B” contains a magic number check that requires
the symbolic execution component to resolve. Node “C” contains another magic number check.

B

D6C

D5 D5

Compartment 1 Compartment 2 Compartment 3 Compartment 4

Figure 3.11: The sequence of compartments through which execution flows for a trace of
the crashing input for CGC application 2b03cf01. Driller’s ability to “break into” the fourth
compartment (represented by the black nodes) was critical for generating the crashing input.

43



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Listing 3.7: The first complex check in the 2b03cf01 application.
1 enum {
2 MODE BUILD = 13980 ,
3 MODE EXAMINE = 809110 ,
4 } ;
5
6 . . .
7
8 RECV( mode , s i z e o f ( u i n t 3 2 t ) ) ;
9

10 s w i t c h ( mode [ 0 ] ) {
11 c a s e MODE BUILD :
12 r e t = d o b u i l d ( ) ;
13 b r e a k ;
14 c a s e MODE EXAMINE:
15 r e t = do examine ( ) ;
16 b r e a k ;
17 d e f a u l t :
18 r e t = ERR INVALID MODE ;
19 }

execution engine finds. These constants that are used in this function’s checks are defined in

the code reproduced in Listing 3.8. A fuzzer cannot guess these constants without exhausting a

huge search space, as they are specific values of 32-bit integers. Driller’s symbolic execution,

however, can find these constants easily, since the comparisons in the code produce easy-to-

solve-for conditions on paths taking these branches.

Listing 3.8: An enum definition with explicit constants. In order to guess these con-

stants, these specific values must be guessed from a search space of 232 numbers.

1 t y p e d e f enum {

2 FIFTEEN AMP = 0 x0000000f ,

3 TWENTY AMP = 0 x00000014 ,

4 } CIRCUIT MODELS T ;

44



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Listing 3.9: A function with a switch statement testing user input against a number

of specific values

1 i n t 8 t g e t n e w b r e a k e r b y m o d e l i d (CIRCUIT MODEL model id , b r e a k e r t * b r e a k e r s p a c e ,

2 u i n t 8 t b r e a k e r s p a c e i d x ) {

3 i n t 8 t r e s = SUCCESS ;

4 s w i t c h ( m o d e l i d ) {

5 c a s e FIFTEEN AMP :

6 c r e a t e b r e a k e r ( 1 5 , b r e a k e r s p a c e , b r e a k e r s p a c e i d x ) ;

7 b r e a k ;

8 c a s e TWENTY AMP:

9 c r e a t e b r e a k e r ( 2 0 , b r e a k e r s p a c e , b r e a k e r s p a c e i d x ) ;

10 b r e a k ;

11 d e f a u l t :

12 / / i n v a l i d m o d e l i d

13 r e s = −1;

14 }

15 r e t u r n r e s ;

16 }

Driller’s new input is then passed back to the fuzzer in order to quickly assess the new

coverage generated by the change. Listing 3.10 shows some of the code that executes for the

first time as a result of the new input. The user input that this new component processes is no

longer specific, but general, making it suitable for the fuzzer. From this point on, the fuzzer

continues to mutate these inputs until it triggers a vulnerability caused by a missing sanitization

check in the application.

Listing 3.10: Code executed as a result of passing the specific check

1 s t a t i c vo id c r e a t e b r e a k e r ( u i n t 8 t a m p r a t i n g , b r e a k e r t * b r e a k e r s p a c e ,

2 u i n t 8 t b r e a k e r s p a c e i d x ) {

3 b r e a k e r s p a c e−>i d = b r e a k e r s p a c e i d x ;

4 b r e a k e r s p a c e−>a m p r a t i n g = a m p r a t i n g ;

5 b r e a k e r s p a c e−>o u t l e t s = l i s t c r e a t e d u p ( ) ;

6 i f ( b r e a k e r s p a c e−>o u t l e t s == NULL) { t e r m i n a t e (ERRNO ALLOC) ; }

7 }

In a semantic sense, the vulnerability involves initializing a new breaker object in the cir-

45



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

cuit the user creates. Later on, the circuit will be tested for connectivity, among other things,

and component-specific logic will be invoked depending on the materials of which the circuit

is composed. Satisfying the check to add a breaker will expand the bug-searching coverage

to include breaker-specific code. Triggering this vulnerability requires the inclusion, in the

provided circuit diagram, of specifically crafted breaker components. The inputs required to

trigger the creation of these components are what Driller recovers in the third concolic execu-

tion invocation, and the final fuzzing invocation mutates them enough to trigger the vulnerable

edge case.

The final path taken by the crashing input is shown in Figure 3.11. Starting at the entry

point, this path goes through progressively harder-to-reach compartments (represented by the

different colors of the nodes) until the condition to trigger the edge is created. This binary

was not crashed in either baseline experiment – the unaided fuzzer was never able to reach

compartments of the code “protected” by the complex checks, and the symbolic exploration

engine experienced an almost immediate path explosion in the input-processing code. By

combining the merits of fuzzing and concolic execution, Driller was able to crash this binary

in approximately two and a quarter hours.

We present the amplification in basic block coverage that each concolic execution invoca-

tion produces in this binary, plotted over time, in Figure 3.9.

3.6 Discussion

Driller carries out a unified analysis by leveraging both symbolic execution and fuzzing.

This allows Driller to address some of the drawbacks of each analysis with its complement.

In this section, we will discuss the limitations of Driller and future directions of research to

further augment automated vulnerability extraction.

46



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

3.6.1 Limitations

Both a benefit and pitfall of Driller is its borrowing of state-space interpretation from AFL.

AFL represents state simply by tracking state-transition tuples to rough “hit counts” (how many

times the state-transition was encountered). This moderately light representation of state is

what allows AFL to be so efficient as each path’s state is only defined by the collection of

state-transition tuples it encountered combined with how many times they were encountered.

Driller uses this same data structure to determine which state transitions are worth solving for.

We provide an example of how this can limit Driller in Listing 3.11

47



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Listing 3.11: An example of minimal state representation limiting discovery of new

state transitions.

1 i n t s t a t i c s t r c m p ( c h a r *a , c h a r *b ){

2 f o r ( ; * a ; a ++ , b ++) {

3 i f (* a != *b )

4 b r e a k ;

5 }

6

7 r e t u r n * a − *b ;

8 }

9

10 i n t main ( vo id ) {

11 r e a d ( 0 , user command , 1 0 ) ;

12

13 i f ( s t a t i c s t r c m p ( ” f i r s t c m d ” , user command ) == 0) {

14 cmd1 ( ) ;

15 }

16 e l s e i f ( s t a t i c s t r c m p ( ” second cmd ” , user command ) == 0) {

17 cmd2 ( ) ;

18 }

19 e l s e i f ( s t a t i c s t r c m p ( ” c ra sh cmd ” , user command ) == 0) {

20 a b o r t ( ) ;

21 }

22

23 r e t u r n 0 ;

24 }

This listing demonstrates a state-transition which occurs in multiple command handlers.

Since each branch relies on static strcmp, AFL itself will not be able to distinguish be-

tween state-transitions inside different invocations of static strcmp. Driller uses the same

metric to determine which state-transitions need to be solved. As such, Driller will not try to

solve for the if statement on line 3 more than once, even though it is used for different com-

parisons. Additionally, inputs which have one or two additional matching characters would

not be considered interesting by AFL. Of course if the entire string was discovered by Driller,

48



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

AFL would find it interesting and adopt it. Driller attempts to mitigate the effects of this prob-

lem with the symbolic explorer stub (described in 3.4.4) invoked at each new state transition.

However, we believe this is an imperfect solution and ultimately a better representation of state

might be required.

Another limitation of Driller is the case when user input is treated as generic input in one

component and specific input in another. Consider the program presented in Listing 3.12.

This application reads a command and a hash from the user and verifies the hash. This

compartment, spanning lines 1 through 11, treats the command as generic input and the hash as

specific input. After this, however, the application checks, in multiple stages, that the provided

command was “CRASH!!”. Fundamentally, this reclassifies the user command as specific

input, as it must be matched exactly. This triggers a case that reduces Driller to a symbolic

execution engine, as explained below.

49



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Listing 3.12: An example of input being used as generic input in one place and spe-

cific input in another. A crashing input for this binary is ”CRASH!!” followed by its

hash.

1 i n t main ( vo id ) {

2 c h a r user command [ 1 0 ] ;

3 i n t u s e r h a s h ;

4

5 r e a d ( 0 , user command , 1 0 ) ;

6 r e a d ( 0 , u s e r h a s h , s i z e o f ( i n t ) ) ;

7

8 i f ( u s e r h a s h != hash ( user command ) ) {

9 p u t s ( ” Hash mismatch ! ” ) ;

10 r e t u r n 1 ;

11 }

12

13 i f ( s t rncmp ( ”CRASH” , user command , 5 ) == 0) {

14 p u t s ( ” Welcome t o compar tment 3 ! ” ) ;

15 i f ( user command [ 5 ] == ’ ! ’ ) {

16 p a t h e x p l o s i o n f u n c t i o n ( ) ;

17 i f ( user command [ 6 ] == ’ ! ’ ) {

18 p u t s ( ”CRASHING ” ) ;

19 a b o r t ( ) ;

20 }

21 }

22 }

23

24 r e t u r n 0 ;

25 }

Passing through the first stage, into compartment 3, is straightforward – Driller’s concolic

execution engine will identify an input that starts with “CRASH” and its corresponding hash

(as this is a forward-calculation of a hash, there is no concern with having to “crack” the hash;

Driller merely needs to calculate it). However, after this, the fuzzer will no longer function

for exploring this compartment. This is because any random mutations to either the hash

or the input will likely cause execution to fail to proceed from compartment 1. Thus, the

50



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

fuzzer will quickly get stuck, and Driller will invoke the concolic execution engine again.

This invocation will guide Driller to compartment 4, on line 16, and hand execution back to

the fuzzer. However, the fuzzer will again fail to proceed, decide that it is stuck, and trigger

concolic execution.

This cycle will continue, making the fuzzing component useless and essentially reducing

Driller to symbolic exploration. Worse, in this application, compartment 4 calls a function

(path explosion function) that causes a path explosion. Without the mitigating effects

of its fuzzing engine, Driller is unable to reach compartment 5 (lines 18 and 19) and trigger the

bug.

This represents a limitation in Driller: in certain cases, the fuzzing component can become

effectively disabled, robbing Driller of its advantage. A potential future step in mitigating this

issue is the ability to generate “semi-symbolic” fuzzing input. For example, the concolic engine

might pass a set of constraints to the fuzzer to ensure that the inputs it generated conform to

some specification. This would take advantage of the concept of generational fuzzing [54] to

create “input generators” to aid the fuzzer in reaching and exploring application compartments.

The limitation exemplified by Listing 3.12 shows how a specific input can prevent the

fuzzer from effectively mutating the generic input. However, for other types of specific input,

even with multiple components, AFL can still fuzz the deeper components. Even in the most

difficult cases, such as hash checks, Driller will still be able to mutate any input that is unrelated

to the hash, such as input after the hash is checked. We do expect some decrease in performance

after Driller has found multiple components. This is because AFL has no knowledge of the

constraints from the symbolic execution engine, so there will be a fraction of the fuzzing cycles

wasted trying to mutate specific inputs.

51



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

3.7 Conclusion

In this paper, we presented Driller, a tool that combines the best of dynamic fuzzing and

concolic execution to efficiently find bugs buried in a binary. We introduce the concept of a

compartment of a binary, which largely separate functionality and code. Within Driller, fuzzing

provides a fast and cheap overview of a compartment, effectively exploring loops and simple

checks, but often fails to transition between compartments. Selective concolic execution gets

into state explosions when considering loops and inner checks, but is highly effective at finding

paths between compartments of a binary. By combining these two techniques, where each

individually fails, Driller is able to explore a greater space of functionality within the binary.

We evaluated Driller on 126 binaries from the DARPA Cyber Grand Challenge Qualifying

Event. Driller found 77 crashes, a substantial improvement over basic fuzzing’s 68 crashes.

We believe the technique shows promise for general-purpose bug-finding in all categories of

binaries.

Acknowledgments

We would like to thank all contributors to the DARPA Cyber Grand Challenge organiza-

tion (for providing an excellent testing ground for our tool), Michal Zalewski (his public tool,

AFL, and documentation proved immensely useful), Secure Business Austria, the contributors

of angr, and of course, all our fellow Shellphish CGC team members, donfos in particular. This

material is based on research sponsored by DARPA under agreement number N66001-13-2-

4039. The U.S. Government is authorized to reproduce and distribute reprints for Govern-

mental purposes notwithstanding any copyright notation thereon. The views and conclusions

contained herein are those of the authors and should not be interpreted as necessarily represent-

ing the official policies or endorsements, either expressed or implied, of DARPA or the U.S.

52



Augmenting Fuzzing Through Selective Symbolic Execution Chapter 3

Government.

53



Chapter 4

Uncooperative Remote Runtime Patching

4.1 Introduction

The modern world is run by interconnected software. Software handles our communica-

tions, manages our finances, and stores our personal information. In addition, with the rise

of the Internet of Things (IoT), the number of embedded devices running complex software

has skyrocketed [55]. In fact, the number of bugs found in software has been increasing over

time [35]. Leveraging these bugs lets an attacker perform actions ranging from the theft of

money or data to, in the case of the Internet of Things, influence the physical world.

The common approach to remedying buggy software is patching. However, patches suffer

from very slow adoption by users, in part because many patches require system restarts to be

applied or to take effect [56, 57]. In the IoT world, the situation is even more problematic,

as device vendors often fail to incorporate effective and easy-to-use means to update their

products. As a result, even when a vulnerability is found and publicly disclosed, it is difficult

(or even impossible) for users to install these patches. Finally, the IoT market is a volatile

space, with vendors entering and leaving the ecosystem. This means that a vendor might not

be around anymore while its vulnerable devices are still connected to the network.

54



Uncooperative Remote Runtime Patching Chapter 4

In the best case, when a vulnerability is discovered, the responsible software vendor will

simply develop a patch and push it to its users to secure their devices. Unfortunately, this

scenario does not always play out. As mentioned above, a device might lack update func-

tionality, users might not understand how to apply patches (for example, when firmware must

be flashed), or the software vendor is no longer present. In all these cases, we would like a

mechanism that is able to “force” a patch onto the vulnerable system and fix the vulnerability.

In this paper, we present a technique, called Piston, that leverages the presence of bugs to

automatically patch a system as the result of exploiting these vulnerabilities. By leveraging

an exploit to patch software, Piston has the unique ability to patch applications without direct

privileged access or, in fact, without any access to the host at all. Of course, exploiting a

vulnerability in a target process and using this access to patch the underlying vulnerability

raises a number of questions and poses significant challenges:

First, not all bugs can be used for patching – it must be possible to take control of the victim

process. “Fortunately,” a significant portion of bugs manifest as memory corruption leading to

control-flow hijacking [36]. Our intuition is that, aside from taking control of a process for

nefarious purposes, a control-flow hijack can be leveraged to achieve remote hot-patching of

buggy software.

Second, leveraging an exploit to forcefully take control over a process can have adverse ef-

fects on the execution of this process, such as causing a crash. In some cases, this would not be

a problem. That is, Piston could take control over the process, update the vulnerable applica-

tion on the system (on persistent storage), and restart it. Unfortunately, this approach does not

always work. One problem is that the running process might not have the privileges to write to

the permanent storage, and hence, cannot make the patch persistent. Another problem is that

the software might control a critical process, and interrupting its execution has unintended and

unwanted consequences. Hence, it is critical that we perform the patch in a way that allows the

process to continue its execution without interruption (longer than it takes to patch the running

55



Uncooperative Remote Runtime Patching Chapter 4

code) or even a crash.

Previous work has introduced the idea of hot-patching; a system able to apply patches to

software while the software is running. Such systems have been developed for vehicles [58],

kernels [59], user-space software [60], and, in general uninterruptible systems, or systems

where correctness depends on their continuous execution. However, these approaches typi-

cally have two requirements: fore-planning on the part of the author, and privileged access

to the computer running the software. For example, kernel hot-patching systems, such as

KSplice [59], require a custom kernel module to be loaded, which requires administrative priv-

ileges. Unfortunately, a large amount of software does not meet these requirements. User-space

software rarely supports updates without a restart, and many embedded devices do not give the

user necessary permissions. To remedy such situations, a new approach to patching is required.

Specifically, Piston uses novel applications of binary analysis to identify and automatically re-

pair data that is corrupted as part of the exploit. That is, our system exploits a vulnerability

to take control of the running process, repairs the damage that this exploit has caused, then

patches the bug in the code, and finally lets the (now secure) process continue to execute.

Here we will talk about four distinct applications of Piston.

Patching uncooperative systems. Certain systems, such as embedded devices, require

that updates be created and distributed by the device manufacturer. This poses a problem to

end users: these patches are often only provided for a limited period of time, are produced

very slowly, or are never produced at all (in fact, many smaller embedded devices lack any sort

of update mechanism). Even when patches are distributed, it might be inconvenient to apply

them. Some devices need to be physically connected to a computer to apply the update, and

reboots are standard in almost all cases. Piston allows these devices to be updated remotely, as

long as the original firmware has a vulnerability that can lead to code execution. The systems

do not have to be designed to be hot-patched with Piston, unlike with prior approaches for

56



Uncooperative Remote Runtime Patching Chapter 4

hot-patching embedded systems.

Patching continuity-critical systems. In some applications, downtime can be prohibitively

costly, or even mean the difference between life and death. A couple examples of these applica-

tions are critical infrastructure components and medical devices. If a vulnerability is discovered

in such systems, it may take significant time before an update can be applied in a safe, sched-

uled maintenance window. As such, systems that have not been developed with hot-patching

in mind, may remain vulnerable to exploits for quite some time as the maintainer prepares for

the downtime to apply the patch.

Piston can instead use this vulnerability (if it leads to code execution) to provide the up-

date while the system is running. This can reduce the potentially dangerous delay, as well as

preventing the need to schedule emergency maintenance downtime in such cases.

Emergency patching. As more of our personal and business dealing moves online, se-

curity becomes paramount. Whereas compromises may have been simply embarrassing to an

organization a decade ago, today they can cause serious damage to companies. Thus, organi-

zations must patch software flaws as soon as possible. However, many organizations struggle

to roll out security updates. If properly used, Piston could make them easier. Piston could be

used as a first-stage emergency patching system. In our example detailing a patch of NGINX

in Section 4.6, a company running internet-facing NGINX services could scan their entire net-

work and use Piston to apply ephemeral (in-memory) emergency patches to every vulnerable

host to tide them over until a permanent patch can be deployed.

Helpful worms. Users and businesses are slow to update devices, often leaving machines

vulnerable long after patches are available. For example, the Wannacry ransomware exploited

a flaw for which a patch was available three months earlier [61]. Previous work has explored

using “helpful” worms to apply patches on a large scale, without users or admins needing

to apply the patch [62]. One example is the Welchia worm, known for removing the harmful

Blaster worm and patching the device. Piston could enable the creation of these helpful worms,

57



Uncooperative Remote Runtime Patching Chapter 4

even when the vulnerable process does not have enough privileges to apply the official patch,

by applying the patch in-memory.

In this paper, we describe Piston’s approach and detail its implementation atop an existing

open-source binary analysis framework [37]. We discuss situations in which Piston can operate

automatically and semi-automatically, and evaluate its efficacy on a handful of binaries from

DARPA’s Cyber Grand Challenge with documented vulnerabilities. We target stack overflows

in these binaries and show Piston’s effectiveness at automatically remotely patching through a

memory corruption exploit. Additionally, we demonstrate Piston’s applicability by remotely

patching NGINX 1.4.0 against CVE-2013-2028 [63], using that same vulnerability to achieve

remote code execution. We do this to show that Piston can be used on complex, real-world

binaries with very little analyst intervention.

In summary, this paper makes the following contributions.

Remote hot-patching. We detail our design for an automatic, remote hot-patching system,

called Piston, which generates patches from compiled binaries.

Recovery from an exploit. We introduce novel techniques to automatically recover a pro-

gram’s state and continue execution after an exploit.

Evaluation. We use a set of binaries from the DARPA Cyber Grand Challenge to evaluate

Piston’s effectiveness at achieving automated remote patching through the exploitation in

addition to evaluating Piston’s application to real-world, commonly deployed software, such

as NGINX.

4.2 Overview

Piston is not the first approach to patching computer software at runtime, a process known

as hot-patching. In this section, we will give a general overview of Piston, and its novelties,
58



Uncooperative Remote Runtime Patching Chapter 4

before moving on to describe the individual steps in detail in the next section.

Unlike previous work, Piston is designed to patch uncooperative systems remotely. As

the systems it targets are not designed to be patched in this way (hence uncooperative), this

patching requires a level of remote access unintended by the authors of the software being

patched. Piston achieves this access through the use of an exploit. This adds two significant

challenges to the patching process. First, unlike existing hot-patching systems, patching must

be performed during the exploitation of the vulnerable process, rather than selecting easy patch

points. Second, the exploitation of the target process frequently damages that process’ memory

space. To allow the program to continue executing, Piston must repair the memory space of

the program after the patch is applied, all while the software is running.

Unlike some prior work, Piston functions directly on binaries, with no access to source

code. This allows Piston to work on proprietary software without source code from the vendor,

but also makes its work more complicated, as a substantial amount of relevant information is

lost when a binary is compiled.

Piston has four pre-requisites for its operation:

Original binary. This is the binary program that is currently running as the remote process or

system.

Replacement binary. This is the “patched” binary. The remote process will be functionally

updated to this version of the binary after Piston’s operation.

Exploit specification. Piston expects a description of how to trigger a vulnerability in the

remote process. This specification must be able to achieve code execution in the remote

process, which Piston will use to apply the patch. The exploit is expected to bypass common

mitigations such as ASLR and NX if they are used on the target system.

Remote configuration. To properly model the environment of the remote process, Piston

59



Uncooperative Remote Runtime Patching Chapter 4

needs to have a specification of its configuration. For example, if the remote process is

an nginx web server, its configuration file must be provided.

Given these inputs, the approach has three major steps:

1. Patch generation. Given its inputs, Piston performs in-depth static analysis of the binary

to identify the “patch” that needs to be applied in the memory of the remote process. This is

done by leveraging binary diffing techniques, which is discussed in detail, in Section 4.3.

2. Repair planning. Unlike traditional hot-patching systems, Piston exploits a process in

order to patch it. Thus, Piston faces a unique challenge: in the course of exploiting the remote

process, the memory state of the remote process might be damaged.

Piston has the capability to automatically generate a routine which repairs the corrupted

state of a process if it was exploited with a stack-based buffer overflow. For cases which Piston

cannot repair automatically, including other types of exploits, Piston will require the analyst

to provide a repair routine that should repair the parts of the process’ memory that Piston is

unable to restore. Piston, can report the parts of the state that were corrupted to the analyst to

aid in the creation of the repair routine. In our evaluation (see section 4.6) we show that this

repair routine can be automatically generated in the majority of stack-based buffer overflows

which we tested.

Piston may also require a rollback routine that undoes the partial effects of functions that

were interrupted by the exploit. In the case where a patch involves making a change to a

structure definition, Piston requires an analyst to supply a state transition routine. This routine

should be responsible for updating all instances of the structure in the target’s memory to abide

by the newly patched-in definition.

We talk in-depth about cases where Piston can fully automatically repair the state and cases

where analyst intervention is necessary in Section 4.4.

3. Remote patching. Piston uses the exploit specification to craft an exploit to inject the

60



Uncooperative Remote Runtime Patching Chapter 4

patcher core. The patcher core, running in the remote process, retrieves the patch information,

a state transition routine, a rollback routine, and a repair routine. Piston may deem any one

of these routines to be unnecessary to the hot-patching process, with the exception of the state

transition routine where an analyst is responsible for judging its necessity.

Piston uses the patcher core to then apply these received routines in turn. After this is

completed, the execution returns to the now-patched remote process and Piston’s operation is

complete. In-depth details of the patching step are in Section 4.5. When it terminates, the

remote process will be running a codebase that is functionally equivalent to the patched binary.

4.3 Patch Generation

Piston receives, as input, the original binary representing the target process and the re-

placement binary to which the target process should be updated. Given these binaries, it must

identify specific patches that must be applied in order to accomplish this update.

Similar to other systems, such as Ksplice, Piston applies patches on a function level rather

than replacing the entire binary in the remote process. If a function is updated in the replace-

ment binary, its counterpart in the remote process (running the original binary) will be replaced

at runtime. If a function is found to be unique to the replacement binary, it will be added to the

remote process.

Additionally, in the updated binary, addresses of code and data will usually change. There-

fore any references to code and globals must be updated in the replacement functions. Piston

will fix the references to point to those in the currently running process.

Piston’s preprocessing works in several stages:

1. Piston matches updated functions between the original and replacement binaries. The matches

are filtered to eliminate superficial differences.

61



Uncooperative Remote Runtime Patching Chapter 4

push ebp
mov ebp , esp
sub esp , 0 x18
mov eax , 0x804a02c
:
0x804a02c ” H e l l o %s ”

push ebp
mov ebp , esp
sub esp , 0 x18
mov eax , 0x805a084

:
0x805a084 ” H e l l o %s ”

Figure 4.1: Superficial difference example

2. Piston chooses a location in the memory space of the remote process, in which, to place

remaining updated functions. These functions are “fixed up” to allow them to function in the

memory space of the remote process and run in the context of the original binary.

The output is a patch set (represented as a diff of memory) that Piston will apply to the

remote process in the remote patching step.

4.3.1 Function Matching

First, Piston must identify the functions that need to be updated or added to the remote

process. This requires Piston to understand which functions in the original binary correspond to

which functions in the replacement binary. We leverage existing binary diffing techniques [64]

for this step, allowing us to support the correlation of functions even when there are no symbols

in the binaries. These techniques work on the control flow graph, so they are robust to small

compiler artifacts.

At the end of this stage, Piston generates a set of pairs of matching functions and a set of

introduced functions. Additionally, a candidate set of original function to replacement pairs is

constructed by checking for differences in the content of matched functions.

Piston’s initial candidate set of updated functions contains some false positives. This is

because any change in the length of code will cause addresses to be different in the replacement

binary; in turn, the differing addresses will show up as changes in the operand of instructions.

We consider all references to the same code or data between a pair of matched functions to be

superficial. An example of a superficial difference is shown in Figure 4.1.

62



Uncooperative Remote Runtime Patching Chapter 4

Thus, Piston filters this set of updated functions to remove superficial changes. If an up-

dated function contains only superficial changes, we discard it and its match from the candidate

set. The remaining members of the candidate set, along with the introduced functions, are the

ones that Piston will patch into the new binary.

4.3.2 Replacement Function Placement

Because Piston replaces individual functions rather than the entire binary, it runs into the

challenge of function placement. As previously discussed, replacement functions may be larger

than their original counterparts. Because of this, Piston chooses a new address in the executable

memory space of the remote process to place replacement functions. This requires an addition

function fix-up step: any relative references in the function will need to be updated to compen-

sate for the new location.

New functions or data that were not in the original binary can be resolved by adding the

code or data to the new process. Newly added code and data might also have references to

other code and data, so it needs to be handled similarly until all references are resolved.

After determining a place for the replacement function in this new area of memory, Piston

places a trampoline (direct jump instruction) at the beginning of the old function. Piston checks

that the trampoline will fit entirely inside of the first basic block of a function to ensure that

execution will never jump to the middle of an instruction. This is useful for several reasons.

First, it lets us replace the function while keeping all references to it, such as function pointers

and direct calls from other places in the code. Second, if there are any return addresses to

code inside the original function on the stack, they remain valid, although the patched code

will not be executed until the function returns. Note that this means that Piston can only patch

functions that will eventually return, and infinite looping functions, such as a main loop, cannot

be patched. This minor limitation is also common among other hot-patching systems.

63



Uncooperative Remote Runtime Patching Chapter 4

4.4 Repair Planning

Piston achieves the hot-patching of a remote process by leveraging an exploit to achieve

code execution in the context of the process, and then using this capability to inject patched

code before resuming process execution. Unfortunately, exploits typically cause the corruption

of the memory space of the remote process, and resuming a process after such corruption can

be non-trivial.

For example, during the exploitation of a stack-based buffer overflow, process data on the

stack is overwritten with either shellcode or a ROP chain, ultimately leading to the hijacking

of control flow by the exploiter. If this memory corruption is not corrected before execution is

resumed, the process will simply crash. To remedy this, a repair step is required before Piston

can resume the patched process.

Piston can fully automatically generate a repair routine in cases of stack-based buffer over-

flows. This automatic approach uses redundant data in memory and registers to restore the

state of the process. In principle, this approach applies to any corruption, not just that on

the stack. However, empirically, we have not found an adequate level of data redundancy in

other classes of exploits, and therefore, require the analyst to provide the repair routine if the

exploit is not a stack-based buffer overflow. We discuss the redundancies inherent in stack

data in Section 4.4.3 and the limitations in repairing other corruption in Section 4.7. We focus

on buffer overflows in Piston’s current implementation, as they still represent the third most

common type of vulnerability in all software [36]. Furthermore, a recent analysis of trends in

CVE’s found that buffer overflows rank the highest for severity, and that buffer overflows are

the second most common vulnerability that applies to binary software, behind denial of service

vulnerabilities [65].

Piston carries out an offline analysis of the original binary and the exploit specification

to assess the damage that an exploit causes and creates such a repair plan. This analysis is

64



Uncooperative Remote Runtime Patching Chapter 4

done off-line, before the patching process itself, and the repair plan is applied to the remote

process after it is patched. The on-line patch application step is discussed in Section 4.5.

Piston assumes that the exploit it will use to patch the remote process will hijack execution

either partway through a function or at the return point of a function. We term this the hijacked

function, and reason about exploitation after-effects as they relate to this function. We name

the function that calls the hijacked function the caller function.

Piston can restart the remote process after patching if the following conditions are met:

1. The hijacked function either completes successfully (i.e., the exploit does not influence its

operation and simply hijacks the control flow when it returns), or its effects (such as memory

writes) can be analyzed and undone and the function can be restarted. In the former case,

Piston can simply return to the caller function after the remote process is patched. However,

in the latter case, the effects of the hijacked function, such as the modification of memory and

registers, must be undone. After undoing this modification, Piston can return to the call-site

of the hijacked function, and trigger its re-execution after the patching is complete.

2. Any state of the caller function that was corrupted (such as local variables within in the stack

frame) can either be recovered or is not needed after the patched process resumes. If the

caller function has corrupted state that cannot be recovered, Piston can try to treat the caller

function as hijacked and, instead, undo its effects and try to restart it. In this case, Piston’s

recovery process is repeated with the prior caller function being the new hijacked function

and the caller of the original caller function to be the new caller function.

To meet these requirements, Piston creates a repair plan that includes two routines that

will be executed inside the remote process after it is exploited. These routines are the rollback

routine, which will undo the actions of the hijacked function (if necessary), and the repair

routine, which will restore the local state of the caller function to be non-corrupted.

65



Uncooperative Remote Runtime Patching Chapter 4

Automatically generating these routines represents a significant challenge, and there are

two cases when manual analyst intervention might be required. First, depending on the com-

plexity of the hijacked function, Piston might be unable to automatically undo its effects. In

this case, the analyst must manually provide the rollback routine that will be run in the remote

process before the hijacked function is restarted.

Second, the exploit might cause irreparable damage to the caller function’s state. In this

case, Piston provides two options to the analyst: the analyst can manually provide a repair

routine, or Piston can attempt to undo and restart the caller function as well. To do so, it moves

further up the callstack, classifying the caller function as the new hijacked function and that

function’s caller as the new caller function and repeating its analysis.

Piston creates the repair plan in three steps:

Exploit effect reconstruction. To reason about the state of the remote process after exploita-

tion, Piston carries out the exploit against the original binary in an instrumented environment.

The trace that is created during this step is used in further analyses.

Hijacked function analysis. Piston analyzes the exploit trace to determine whether the hi-

jacked function had successfully completed its work. If the hijacked function was interrupted,

Piston must annul the function’s effects and restart it after the patch completes. To understand

how to properly undo the effects of the function, Piston performs an in-depth analysis of the

function using symbolic execution techniques.

Caller state recovery. Next, Piston determines the extent of state clobbering outside of the

hijacked function’s stack frame by analyzing the exploit trace. It attempts to create a state

repair plan for this damage, leveraging symbolic execution of the caller function to identify

uncorrupted parts of the state that can be used to restore corrupted values.

Different types of exploits cause different damage to the remote process. For example, a

simple pointer overwrite might not require much memory repairing, whereas a stack overflow
66



Uncooperative Remote Runtime Patching Chapter 4

can corrupt much of the stack. In its current state, Piston can automatically create a repair plan

for memory corruption resulting from most stack-based buffer overflows. Piston automatically

detects corruption resulting from stack-based overflows as well as heap-based overflows, but

automatically supporting corruption detection for additional exploits simply requires a routine

to recognize the corruption they cause (i.e., expanding the processes described in Sections 4.4.1

and 4.4.1).

4.4.1 Exploit Effect Reconstruction

Piston generates an exploitation trace to reason about the damage that the exploit will

cause to the remote process. The exploitation trace is created by executing the original binary

(configured with the remote configuration), using the exploit specification as input. During the

trace, control flow transitions and writes to and reads from registers and memory are recorded

for future analysis.

Detecting the Exploitation Point

To understand what repairs are needed after exploitation, Piston must classify memory

writes based on whether or not they are a result of the exploit or of the intended operation of

the binary. Piston does this by identifying the exploitation point. Intuitively, the exploitation

point is a point in the trace after which the process can no longer be considered to be operating

properly.

For stack-based buffer overflows, Piston uses a simple heuristic to identify this point: Piston

tracks all saved return addresses and callee-saved registers throughout execution. When one of

these is overwritten, Piston assumes that it has identified the exploitation point. The function

where this exploitation point takes place, is the hijacked function.

For heap-based overflows, Piston tracks calls to heap allocation and deallocation functions

67



Uncooperative Remote Runtime Patching Chapter 4

such as malloc(), realloc() and free(). 1 During the exploitation trace, Piston keeps

a list of the heap buffers and updates it at every call to these functions. At every write to the

heap, Piston checks whether or not the address resides in one of these buffers. If the address

does not reside in any such buffer, it is assumed that the exploitation point has been identified.

One caveat of these heuristics is that Piston cannot identify the exact exploitation point for

exploits which perform the overflow entirely within a stack frame, or within a struct on the

heap. Although advanced type analysis can automatically infer the data types and structure of

objects and stack frames [66] [67], such analysis is out of the scope of this paper. Piston can

be extended with additional routines in order to support automatic detection of corruption of

other exploits such as these.

Identifying Corruption

Once the exploitation point has been identified, Piston can determine the parts of the pro-

gram state that were corrupted. Again, a heuristic specific to buffer overflows is leveraged:

Piston marks as “corrupted” all data that was written to the buffer that was overflowed. This

step is done retroactively by analyzing all of the writes to memory that occurred.

Piston uses a simple heuristic to identify buffers: it assumes that all writes that are initiated

by the same instruction (not the same invocation of that instruction, but all invocations) are

writes to the same buffer. This approach is inspired by the buffer detection proposed by Movi-

eStealer [68], which groups buffers by loops instead of instructions. Piston marks all writes

by the same instruction during the invocation of the hijacked function as writes to the same

corrupted buffer. We term this instruction the overflow instruction.

1In statically linked binaries, such as firmware, an extra step is necessary identify these functions as they may
not contain symbols. We use test cases, comprising of input states and expected outputs to identify these functions
as described in [37].

68



Uncooperative Remote Runtime Patching Chapter 4

Exploitation Trace Soundness

It is possible that the analysis results might not perfectly match the state of the remote

process during exploitation. For this reason, Piston augments the trace with more general

analyses in other steps and only assumes that two pieces of information from the trace are

accurate:

1. The exploit will overflow the buffer by the same number of bytes in the exploitation trace as

it will when run against the remote process.

2. The hijacked function and its caller function will be the same on the remote process as in the

exploitation trace.

We have not seen a case that violates either of these assumptions, but it is a theoretical

possibility.

4.4.2 Hijacked Function Analysis

Having identified the hijacked function and the range of the corrupted data, Piston must

next determine whether the hijacked function terminated successfully or whether it needs to be

restarted.

Conceptually, the determination of whether the hijacked function terminated successfully

is simple: Piston considers the function as having successfully completed if it can show that no

action was taken based on corrupted data. This happens fairly frequently: modern compilers

tend to avoid placing local variables after buffers in memory, since doing so would allow the

local variables (instead of just the return address) to be overwritten by a buffer overflow, po-

tentially allowing the attacker to influence program behavior even before the function returns.

However, in cases where this is not the case (either because the compiler did not choose such

a placement or because there is more than one buffer on the stack), we consider the hijacked
69



Uncooperative Remote Runtime Patching Chapter 4

function’s operation to have been interrupted, and Piston must undo the corrupted effects and

restart the function after patching.

Checking for Successful Completion

Functions have memory that can be written to without influencing the operation of the

remainder of the program; we call this memory scratch space. Scratch space is considered to

be the local stack frame as well as any memory regions which are freed before the return site

of the function. Data in these ranges will not be used outside the function in a well-formed

program. Other data, such as globals, heap data which is not freed inside of the function, and

return values may influence the remainder of the program and are not considered scratch space.

Piston determines the successful completion of the hijacked function during the dynamic

analysis of the offline exploitation trace. At the exploitation point, the corrupted data range

is marked as tainted, and the taint is tracked through the remainder of the function. If any

branch is influenced by tainted data or if tainted data is written outside of the scratch space,

then the function is considered to have not completed successfully. We filter out the restoration

of callee-saved registers at the end of the function, as these are considered part of the state of

the caller and will be restored later.

Checking for Repeatability

When Piston is unable to prove that the hijacked function completed successfully, it will

check if its execution can simply be repeated after the remote process is patched. The hijacked

function can be safely restarted if all of the inputs (i.e., values the function reads from memory

or registers) to the interrupted invocation can be recovered. If these inputs can be recovered,

the hijacked function can be re-executed in the same context as its interrupted invocation and

will carry out the same actions.

Piston groups the inputs that a function receives into three categories: local state data,
70



Uncooperative Remote Runtime Patching Chapter 4

which is passed to the hijacked function on the stack or in registers, global state data, which

is retrieved by the hijacked function from the heap or global memory, and environment inputs,

which are retrieved through system calls. The hijacked function is considered repeatable if

these conditions hold:

Local state data is recoverable. Arguments on the stack, which might be clobbered during

the overwrite itself or by actions taken by the hijacked function after exploitation, must be

recoverable, as must arguments passed to the function through registers. This recovery is

explained in Section 4.4.3.

Global state data is recoverable. All data in registers and memory that the hijacked function

reads must be recoverable. This means that the hijacked function cannot irrecoverably over-

write its inputs.

System calls are repeatable. The system calls invoked out by the hijacked function must be

repeatable. System calls that cannot simply be re-executed, such as unlink (since, after the

first call, the file will no longer exist), violate this condition.

The first condition will be checked during the caller state recovery step. To check the latter

two conditions, Piston collects a list of all memory accesses and system calls in the exploitation

trace, which can then be checked for any violations to the repeatability conditions.

To detect changes to the global state, the list is analyzed to build a set of any potentially

corrupted global state by the original run of the hijacked function. After this, the list is analyzed

again to see if any of the corrupted global state can be used as an input to the repeated invocation

of the hijacked function. Conceptually, this happens when the hijacked function reads in some

global value before writing to it (for example, incrementing a global counter). The second

invocation will use the value corrupted by the first, resulting in an inconsistency in execution

between the interrupted invocation and repeated invocation of the hijacked function.

71



Uncooperative Remote Runtime Patching Chapter 4

Piston will attempt to undo simple global changes where no dereference of data takes place.

We use under-constrained symbolic execution (UCSE), an extension of dynamic symbolic ex-

ecution that enables the analysis of functions without the requirement of context [69]. UCSE

works by identifying memory dereferences of pointers that are unknown due to missing context

(for example, a pointer that would have been passed as an argument) and performs on-demand

memory initialization to allow the analysis to continue.

Piston explores the hijacked function with UCSE, ignoring the context from the exploita-

tion trace to avoid under-approximating the remote state. If UCSE can determine how a global

value will change during execution of the hijacked function, then Piston can recover the value

automatically. Note that, like other techniques based on symbolic execution, UCSE can suc-

cumb to path explosion. When this occurs, Piston will be unable to automatically recover

changes to global state. If any changes to global state are detected that Piston is unable to

recover, analyst will be required to provide a rollback routine to undo the effects of the inter-

rupted execution.

After checking for changes to the global state, Piston carries out an analysis of system

calls. Specifically, it checks for system calls that might not be repeatable. For example, if the

interrupted and repeated invocation of the hijacked function both try to unlink the same file,

an inconsistency between their executions will arise. Because Piston does not have a complete

model of all system calls, it presents these lists to the analyst for review. If any system calls

are deemed not repeatable, then the analyst must provide a rollback routine to undo the effects

of the system calls.

4.4.3 Caller State Recovery

Regardless of whether the hijacked function has successfully run or needs to be restarted,

the state of the caller function must be recovered. Although the general problem of restoring

72



Uncooperative Remote Runtime Patching Chapter 4

registers and memory to the state of the execution before the overflow is undecidable, we have

found that there is often enough data remaining to recover the original state. Our key insight is

that, due to the way programmers write source code and compilers compile it, the stack frame

and registers of a function often contain redundant data, which can be used to restore the

corrupted data. In our case, this means that the value of a corrupted stack variable or register

can often be determined as some equation of other stack or register values.

Listing 4.1: An example showing where stack variables have redundant information.

1 mov eax , [ ebp+ v a r 1 4 ]

2 mov edx , [ ebp+ v a r 8 ]

3 sub eax , edx

4 mov [ ebp+ var 3C ] , eax

5 c a l l h i j a c k e d f u n c ( )

Before delving into Piston’s approach to state recovery, we provide and briefly discuss

an example of such redundancy in Listing 4.1. Assume the programs instruction pointer is

currently at line 5. The stack variable var 3C is redundant since it can be computed from

the other stack variables, specifically, var 3C = var 14 - var 8. Thus, if the overflow

clobbers var 3C, it can be recovered from var 14 and var 8.

Data Filtering

Before recovering corrupted state, Piston must identify what state needs to be recovered. If

the hijacked function completed successfully, we must restore any stack variables or registers

that were corrupted by the exploit and will be used later in the caller function. Additionally, if

the hijacked function was interrupted, we must also restore all of the arguments (on the stack

and in registers) that are passed to the hijacked function.

As described in Section 4.4.1, Piston identifies the range of registers and stack variables

that were clobbered by the exploit. In fact, not all of these values must be recovered. For

example, if a callee-saved register is written to immediately after the hijacked function returns,

73



Uncooperative Remote Runtime Patching Chapter 4

its value after exploitation, whether or not it was corrupted, is irrelevant, and there is no need

to restore it. Piston identifies these cases by computing the control flow graph of the hijacked

function and identifying accesses to stack variables and registers. Then a dependency analysis

is run on the control flow graph to check if any path exists where a corrupted register or stack

variable is read before it is overwritten. If no such path exists, Piston marks the register or

stack variables as unused and filters it from further state recovery steps.

One caveat must be mentioned for stack values. In some cases, the caller function might

pass a pointer to the stack as an argument to the hijacked function. Normally, this happens

when a buffer or structure resides on the stack and must be used by the hijacked functions.

If the hijacked function performs complex operations on this pointer (such as passing it into

other functions or system calls), Piston’s static analysis is unable to safely recover these effects.

Piston makes the assumption that the passed-in pointer points to the beginning of the structure

and assumes that the hijacked function may have corrupted anything on the stack after this

pointer.

At the end of this step, Piston has a recovery set of the registers and stack values that must

be recovered before the caller function can resume execution.

Data Recovery

Piston recovers state data by analyzing two locations in the caller function: the function

prologue and the hijacked function call site.

Generally, functions will initialize several registers in the prologue and use them for the

remainder of the function. This is especially true for registers such as the base pointer (i.e.,

ebp on x86), which are typically set at the beginning of a function. The values of registers that

are set in this way can often be determined by analyzing the prologue of a function. Likewise,

the caller function prepares the call-site of the hijacked function by copying its arguments into

argument stack variables and registers. Most of the time, these arguments are passed by value

74



Uncooperative Remote Runtime Patching Chapter 4

and are drawn from other parts of the state, creating data redundancy that can be leveraged to

restore their values when they are corrupted by the exploit.

To avoid under-approximations, Piston does not reuse the exploitation trace in the data re-

covery step. The control-flow path from the trace may differ from the one that will be executed

on the remote server. For example, the remote server may have internal state such as a linked

list, which will result in a different control flow than the one in the concrete trace.

To recover data, Piston will analyze two locations with symbolic execution. The first is the

start of the caller function up until the first branch. The second location is the callsite of the

hijacked function, starting at the earliest basic block from which there is only one path that

reaches the call.

Piston analyzes these locations with under-constrained symbolic execution and extracts the

relationships between data that must be recovered and the uncorrupted data currently existing

in the state. We represent these relationships as equations that produce the recovered values

of corrupted data when provided the values of the uncorrupted data. These equations are then

examined to verify that all values in the recovery set can be recovered from existing data in the

stack.

For example, in Listing 4.1, when Piston symbolically analyzes the callsite of the hijacked

function it will generate a constraint that var 3C = var 14 - var 8. If Piston determines

that var 3C will be overwritten, but not var 14 or var 8 then it will determine that var 3C

is recoverable.

If all values in the recovery set can be recovered from existing data on the stack, Piston

saves this set of equations as the repair routine. Otherwise, Piston requires the analyst to

provide a partial repair routine that recovers corrupted values that are still missing. The re-

pair routine will be executed after the remote process is patched and before it is restarted, as

explained in Section 4.5.

75



Uncooperative Remote Runtime Patching Chapter 4

4.5 Remote Patching

Until this point, Piston’s analysis has been offline: no connection to the remote process

has been made. This section describes how Piston uses the provided exploit specification to

achieve code execution in the remote process, and applies the results of the offline analyses to

repair, patch, and resume the remote process.

The astute reader will recall that, in the previous analyses, Piston recovered the following

information for use during the remote patching:

Patch set. In Section 4.3, we described how Piston identified the set of patches to apply to the

remote process to turn it into a functional copy of the replacement binary.

Rollback routine. We introduced in Section 4.4.2 Piston’s strategy for undoing the effects of

the hijacked function, if it is determined to have been interrupted by the exploit.

Repair routine. Piston’s approach to creating a routine to repair the remote process state after

exploitation is detailed in Section 4.4.3.

While generating this information is complex, the rest of the process is straightforward.

Piston executes the following steps, in order:

1. First, Piston launches the exploit against the remote process. The exploit hijacks the con-

trol flow of the remote process and loads a first-stage payload, provided by Piston, which

facilitates the execution of the rest of the repair and patching tasks. We call this payload the

patching stub.

2. Next, Piston transfers the repair routine to the patching stub. The patching stub executes the

repair routine to repair the damage done by the exploit to the remote process state.

3. If, during the prior offline analysis, Piston determined that the exploit caused an interruption

of the hijacked function (i.e., it did not terminate successfully), Piston transfers the rollback
76



Uncooperative Remote Runtime Patching Chapter 4

routine to its patching stub and executes it to undo the effects of the hijacked function. As dis-

cussed in Section 4.4.2, in this case, the hijacked function will be restarted after the patching

process is complete.

4. Piston transfers the patch set to the patching stub. The patching stub applies this patch set

to the remote process, transforming it into a program that is functionally equivalent to the

replacement binary.

5. Finally, the patching stub returns control to the remote process. If the hijacked function

completed successfully, it simply returns to the instruction, inside the caller function, after

the call to the hijacked function. Otherwise, control flow returns to the beginning of the

hijacked function.

After these steps are completed the remote process has been hot-patched. The remote host

is now effectively running the replacement binary, and this has been done without restarting

the entire process or performing any permanent changes.

The rest of this section will discuss other minor points relating to Piston’s remote patching

step.

4.5.1 Exploit Requirements

Piston has very simple requirements for the provided exploit specification. In short, the

specification must describe an exploit that achieves code execution and loads Piston’s patching

stub. As discussed throughout the paper, if this exploit uses a stack-based buffer overflow to

achieve code execution, Piston can often carry out the rest of its work automatically. Otherwise,

the user must also provide the rollback and repair routines.

77



Uncooperative Remote Runtime Patching Chapter 4

4.5.2 Optional Patch Testing

Piston supports an optional patch testing step between the offline analyses and the actual

remote patching described earlier in this section. If the analyst provides a test case to verify that

the process has been properly patched, Piston carries out a test run against a locally-executed

copy of the original binary. After patching this local process, Piston verifies that the test case

passes when run against it. While this is a very straightforward concept, we found that it greatly

eased cases when rollback and repair functions had to be provided manually by the user.

4.5.3 Persistence

Piston is meant to patch the running process ephemerally (i.e., without making any actual

changes to the filesystem or firmware). While Piston can, during the patching process, execute

a user-provided persistence routine to persist its changes (for example, by overwriting the

original binary on disk), this is not Piston’s standard use-case. In fact, we expect that, generally,

the process that Piston patches will not have the proper access to write to its original binary

on-disk. For example, server processes on Linux almost never have write permissions to their

own binaries, and Piston would be running with the same permissions as the server process

while patching it.

To patch forking services, Piston would need to apply the patch to the parent process. There

are no theoretical limitations which prevent Piston from attaching to, and patching, a parent of

the exploited process, granted that our exploited process has permissions to attach to a parent

and in addition, that the underlying operating system supports process tracing.

Ephemeral patching itself is a very powerful technique, even without the ability to commit

the changes to disk. In Section 4.6, we showcase how to quickly patch a security flaw in a web

server to which the analyst may not have access. That application of Piston does not need to

be persistent to be useful. Furthermore, other hot-patching systems such as PatchDroid choose

78



Uncooperative Remote Runtime Patching Chapter 4

to only patch ephemerally [70].

4.6 Evaluation

We evaluate Piston in two ways. First, we test its ability to recover the program state

after a stack buffer overflow on all of the applicable binaries from the Cyber Grand Challenge

Qualifying Event (CQE). For all CQE binaries with stack buffer overflows, we test if Piston

can recover enough state in the caller function, such that the state can be completely restored

after an exploit achieves arbitrary code execution. Then, we test Piston’s patching functionality

on five of those binaries as well as a real-world binary, NGINX 1.4.0 (which is vulnerable to

CVE-2013-2028) by creating exploits and using Piston to apply the patch, recover state, and

resume execution.

4.6.1 Dataset

We chose targets for Piston that would allow us evaluate Piston’s state recovery methodol-

ogy. We use binaries from the Cyber Grand Challenge because these represent a large number

of binaries containing a wide variety of functionality. Additionally, CGC binaries are guaran-

teed to have at least one vulnerability as well as a Proof Of Vulnerability (POV) which causes

it to crash. As such, these targets are used to test Piston’s recovery capabilities in a wide range

of binaries. We took the 126 single-binary applications from the CQE and discarded any which

did not crash with the provided POV in our testing environment leaving us with 102 binaries.

Of those 102, we found that 24 crashed due to an inter-frame stack overflow. We use all 24 for

testing Piston’s recovery capabilities.

To test the end-to-end patching and recovery from an exploit, we chose five binaries from

the above set. For each of these binaries we had to write an exploit which would give us

arbitrary code execution. This was required because the provided POVs only lead to crashes,
79



Uncooperative Remote Runtime Patching Chapter 4

many of which do not crash with control of the instruction pointer.

Along with the CGC binaries, we chose NGINX 1.4.0, which is vulnerable to CVE-2013-

2028, to test Piston on a real-world application. NGINX is proves to be an interesting candidate

due to its unique architecture among webservers: it initializes a fixed number of worker pro-

cesses that persist throughout the entirety of the server’s uptime. This allows us to patch the

individual workers of the NGINX server by repeatedly connecting to the server.

4.6.2 Recovery Results

To test Piston’s recovery capabilities we used the 24 CQE binaries containing an inter-

frame stack overflow. We constructed two patching stubs, one that relies on the absence of NX

(shellcode stub), and one that bypasses NX using return oriented programming (ROP stub).

The shellcode stub is 23 bytes in length whereas the ROP stub is 40 bytes. We trace each of

those binaries with their accompanying POVs and use Piston’s built-in functionality to identify

the exploitation point and the hijacked function in which the overflow occurs. Then we set the

overflow amount to that which is needed for each of the patching stubs and check if piston can

recover the state.

Piston was able to correctly identify the corruption point in all cases, and was thus able to

identify the corrupted data. For the shellcode stub, Piston was able to completely recover the

corrupted data for 22 out of 24 binaries. For the ROP stub, which clobbers more bytes of the

stack, Piston was able to completely recover the corrupted data for 20 out of 24.

4.6.3 End-To-End Results

Piston was able to patch all five binaries from our CGC end-to-end dataset as well as patch

NGINX, with only two of these six binaries requiring input from the analyst. Only one of these

binaries, CROMU 00038, required the analyst to write code. In the other one that required

80



Uncooperative Remote Runtime Patching Chapter 4

Binary Name Function
Interrupted?

Fully Auto-
mated
Rollback?

Fully Auto-
mated
Repair?

Caller Stack
Bytes Recover-
ableCROMU 00017 Yes Yes Yes 144

CROMU 00020 Yes Yes Yes 52
CROMU 00037 No N/A Yes 4
CROMU 00038 Yes Yes No 4
CROMU 00039 Yes Yes Yes 303
NGINX Yes No Yes 28

Table 4.1: Breakdown of patches from Piston

input, NGINX, Piston was unable to generate a rollback function, but the analyst was able to

quickly determine that no rollback function was actually necessary.

In the one CGC binary that required the analyst to write code, Piston’s patch testing step

reported a possible problem. Upon inspection, we discovered that the patched binary sanitizes

the input before control reaches the hijacked function, but the runtime patch was restarting the

hijacked function with the unsanitized input. By providing a repair function that sanitized the

input in memory, the patching was able to proceed as expected.

As part of our experiments we evaluated how much stack space in the caller function could

be overwritten before Piston would need to undo and restart the caller function as well. We

iteratively increased the amount of overflow until Piston reported that the caller function’s

frame could not be recovered. These results are shown in Table 4.1. We found that there was

a large variation in the number of bytes in the caller’s frame that were recoverable; the results

ranged from only four bytes to over three hundred.

4.6.4 NGINX Patching

In July of 2013, both NGINX version 1.3.9 and 1.4.0 were found to be vulnerable to a

stack-based buffer overflow which results from improper handling of HTTP chunked transfer-

encoding (this vulnerability was given the label CVE-2013-2028). NGINX is not a simple bi-

nary; the source code alone for this version approaches 180,000 lines of code. By successfully

81



Uncooperative Remote Runtime Patching Chapter 4

patching NGINX through this CVE, we demonstrate Piston’s effectiveness and applicability.

We began our evaluation by compiling two versions of NGINX; one version represents

the original binary, and the other is the replacement binary. We obtained the original binary

by downloading the NGINX 1.4.0 source code and compiling it. For the replacement binary

we took the same source code and applied the CVE-2013-2028 patch file provided by ng-

inx.com [71]. Next we developed an exploit specification targeting the vulnerability. Our ex-

ploit specification is simply an exploit script which gets to shellcode execution on an NGINX

worker process; many exploits for this particular CVE can be found online [72, 73].

While Piston was analyzing the hijacked function, it determined that the function was in-

terrupted and would need to be repeated. Upon determining that the hijacked function must

be repeated, Piston identified small changes which would be made to the global state of the

process on a repeated call of the function. Piston was unable to generate a rollback routine for

these particular changes, so deferred the creation of a rollback routine to the analyst, highlight-

ing the changes made during the repeat. In a matter of seconds, we, as analysts, can see that

the effects of a repeat call are inconsequential, and inform Piston to carry on without rollback.

Next, Piston was able to successfully determine that four bytes of the caller’s state were

destroyed, as a result Piston then generated a repair routine which recovered these four bytes.

However, for the sake of evaluation, we show that 28 bytes of the caller’s state could have been

corrupted without hindering Piston’s ability to generate a repair routine automatically.

After these steps, the brunt of the analysis is complete. Piston now executes the patcher us-

ing the exploit specification provided to first get shellcode execution. With shellcode execution

Piston then reads in and executes the repair routine generated earlier. Then, Piston’s shellcode

performs the patching process and soon reports that the patching is complete.

We verify that the NGINX web server is still running by manually making a request with a

browser. Next, we verify that the server has successfully been patched by attempting again to

exploit the server, but this time attempting to redirect control flow to an invalid address. After

82



Uncooperative Remote Runtime Patching Chapter 4

this exploit attempt, we again make a request to the web server with a browser and verify that

NGINX has withstood crashing (we configured NGINX to use a single worker, so a crash in a

single worker would have resulted in the entire server being inoperable).

4.7 Limitations

One primary limitation of Piston is that the fully automated recovery steps only succeed on

stack-based buffer overflows. For other types of corruption, an analyst typically needs to ex-

amine the data which was identified as corrupted, and then decide how it can be recovered. The

reason for this limitation is that although the Data Filtering and Data Recovery in Section 4.4.3

can be thought of in generalized steps, they do not produce adequate results when applied to

data outside of the stack.

Data Filtering. On the stack frame, we have the advantage of detecting which instructions

access stack variables, whereas for data in the heap, due to limitations in the current state of

static analysis, it is rare to know which instructions will read or write from a specific object.

Some thorough type analyses [66,67] may be able to identify accesses to objects of the same

type, but cannot identify if those accesses are to the same object which was corrupted. Data

filtering of heap corruption might require a semantic understanding of the program. Such

understanding is outside the reach of current techniques.

Data Recovery. Data recovery requires data redundancy. That is, we must be able to automat-

ically deduce the value of data from other values in memory or registers. In the case of stack

data, we showed how other values can provide this redundancy in Section 4.4.3. However, if

we consider corruption to heap or globals, one problem is that the data is typically created at

an earlier point in program execution, often in a stack frame which has since been discarded.

Unless we still have the stack frame in which a heap object was initialized, we are unlikely

83



Uncooperative Remote Runtime Patching Chapter 4

to have data which provides the necessary redundancy to recover the object.

However, there are cases when Piston can be applied to vulnerabilities other than stack

overflows.

Here, we describe one such case, in which Piston was able to automatically patch a binary

using a heap overflow vulnerability. The CGC binary NRFIN 00004, which was not included

in our testing dataset because it does not have a stack-based buffer overflow, contains an intra-

object heap overflow. The heap object contains a string followed by several function pointers.

When the string overflows, the function pointers are overwritten, and another command handler

will call an overwritten pointer.

We began by designing a custom heuristic to Piston to detect the corruption point. The

heuristic was that for heap objects, any pointer to a function cannot be changed to point at an

address that is not the beginning of a function. With this heuristic, Piston correctly identifies

that the two function pointers in the heap object were corrupted. From there, Piston follows its

normal mode of operation: it injects the patching stub into the binary, executes it, replaces all

functions in the patch set, then restarts the execution of the hijacked function, which previously

contained the heap overflow. Piston’s underconstrained symbolic execution can detect that the

corrupted pointers will be overwritten by the restarted (and patched) hijacked function, so no

data needs to be recovered, avoiding the problem of the lack of data redundancy.

This is not a general application of Piston to heap overflows, so we include it here as

opposed to the core approach discussion. However, it demonstrates that, with minor manual

work, Piston can be adapted to a wider range of vulnerabilities. In this case, it only required a

different corruption point detection heuristic.

84



Uncooperative Remote Runtime Patching Chapter 4

4.8 Conclusion

In this paper, we presented Piston, the first proposed approach for remote hot-patching of

uncooperative processes. Piston patches processes through exploitation, allowing us to patch

software which was originally considered unpatchable. Piston makes the novel contribution

of exploitation clean up, recovering from many of the unpredictable state changes introduced

during a memory corruption exploit. We evaluated Piston on a large, real-world binary and a

synthetic dataset provided by DARPA. Piston was able to apply patches to each binary and, in

most cases, carried out the patch completely automatically.

85



Chapter 5

Exploring Abstraction Functions in

Fuzzing

5.1 Introduction

As our society becomes increasingly dependent on software, the security of this soft-

ware becomes paramount. Whereas, at one time, security could be approached reactively—

responding to vulnerabilities only after their exploitation by attackers—this is no longer ac-

ceptable. Modern security is proactive, with researchers attempting to identify and fix software

flaws before they can be found by attackers.

One method, fuzz testing, has emerged as the preeminent automated security analysis tech-

nique in the real world. This technique has impressive results thus far. A modern example

is American Fuzzy Lop (AFL) [29], a powerful fuzzer based on genetic techniques, which is

responsible for the detection of hundreds of real-world flaws, including high-impact vulner-

abilities such as the Stage-fright vulnerability [74]. AFL’s success has spawned a veritable

“cottage industry” of researchers looking to improve various stages of the fuzzing process.

However, without a formal, scientific model on which to base these improvements, the field of

86



Exploring Abstraction Functions in Fuzzing Chapter 5

fuzzing was explored in an extremely ad hoc way, and it is difficult to understand the relative

merit of different approaches.

In this paper, we present the first formalization of input evaluation and selection in fuzzing,

borrowing concepts from the field of static analysis. Formally, a fuzzer generates input test-

cases and dispatches them to a program, dynamically triggering a subset of the potential states

that the program can reach. However, the full set of states is potentially infinite. For tractability,

the formal fuzzing process uses an approach-specific abstraction function to reduce this set

to an abstract state space, allowing the fuzzer to identify “promising” test-cases for further

mutation by selecting test-cases that correlate to different abstract states in the state space.

We explore the implications of our formalization-derived observation on the effectiveness

of evolutionary fuzzing techniques in the second half of the paper, and we show that the ap-

plication of different abstraction functions, and the use of multiple abstraction functions in

tandem, shows promise for improving state-of-the-art fuzzing techniques. To maximize the

benefit of this work to the community, we will open-source the resulting tool upon publication.

In summary, this paper makes the following contributions:

• To form a scientific base for research into future approaches in fuzzing, we provide

a formalization of the input evaluation and selection process in fuzzing and redefine

current work in the context of this formalism.

• Stemming directly from an observation made during the formalization process, we pro-

pose a diversification of fuzzer abstraction functions and design a number of such func-

tions that can be used both alone and in composition with each other.

• We implement an extensible framework for the development and evaluation of fuzzer

abstraction functions, evaluate its impact on the effectiveness of a modern fuzzer, and

open-source our work for reproducibility and for the community to build upon.

87



Exploring Abstraction Functions in Fuzzing Chapter 5

5.2 Formalizing

Fundamentally, the goal of a fuzzer is to find in a given program software bugs that violate

the security properties of the program. As fuzzing is a dynamic technique, the fuzzer finds bugs

by providing input to the program in an attempt to trigger a program state that violates a security

specification (for example, accessing invalid memory). Fuzzing can be viewed as an iterative

process, targeted to explore the state space of a given program completely. Unfortunately,

exploring the entire state space of a program is equivalent to solving the halting problem,

which is undecidable.

Similar to program testing, fuzzing is an automated testing technique. It tries to generate

interesting inputs as fast as possible within a given resource budget.

5.2.1 Concepts

First, we define some notions that will be used throughout our fuzzing formalism:

Input: Programs consume input data to drive their operation. An input, ι is our representation

of this input data. Note that this notion of input covers all types of input to a program

(command line, network, files etc).

Input Space: The alphabet of possible inputs is Σ and the set of all possible inputs is Σ∗. If

the length of the input is not bounded, the set Σ∗ is infinite.

Concrete State: The snapshot of all the processor registers, the program’s memory, file sys-

tem operations, or anything else that effects the operation of the program represents the

concrete state, r, of a program. The symbol C indicates the set of all the possible con-

crete states of a program.

Concrete State Space: Each input ι triggers a series of concrete states as it is processed. The

88



Exploring Abstraction Functions in Fuzzing Chapter 5

trace of all of the concrete states reached by the input ι, denoted as csι, is the Concrete

State Trace of the input.

Because there is a potentially infinite amount of inputs that could be read by the program,

the set of all Concrete State Traces can be infinite. CS denotes the set of all concrete

state traces for a program.

Abstract State Space, AS: As the set of Concrete State Traces CS can be infinite (or com-

putationally infeasible to enumerate), fuzzing techniques must abstract the concrete state

space so that different states (and therefore, different inputs) can be considered equiva-

lent. Here we derive inspiration from Abstract Interpretation [75], and similar to abstract

domains in Abstract Interpretation we define the Abstract State Space (AS) as a domain

to which a concrete state space will be mapped to. The elements of this domain are called

abstract states.

These concepts will be used as the basis of a formal definition of fuzzing.

5.2.2 Mapping to Abstract States

Fuzzing techniques reason over the abstract state space of an input instead of the concrete

state space. This allows them to group inputs having different cs enabling efficient generation

of interesting inputs.

The mapping between AS and CS is handled by two functions:

Abstraction function (α): This function maps a concrete state trace to an abstract state.

Formally, α : CS → AS and A is a set of abstraction functions.

Concretization function (γ): This function maps an abstract state to a list of concrete states.

Formally, γ : AS → CS.

89



Exploring Abstraction Functions in Fuzzing Chapter 5

For a given input ι and a corresponding csι, we can compute the corresponding abstract state

by applying α as α(csι). We call this the Input Abstract State (IAS).

Formally, IAS(ι, α) = α(csι).

The tuple of an input (ι) and corresponding IAS form the Fuzzing Result (FR) of the input ι.

Formally, FR(ι, α) = (ι, IAS(ι, α)).

For a set of inputs I and an abstraction function α, the set of corresponding fuzzing results are

called Fuzzing Results Set (FRS).

Formally, FRS(I, α) = {FR(ι, α), .. | ∀ι ∈ I}.

For a set of inputs I and a set of abstraction functions A, we can define Complete Fuzzing

Results (CFR) formally as:

CFR(I, A) = {FR(ι, α), .. | ∀α ∈ A, ι ∈ I}.

For a given set of abstraction functions A, two inputs ι1 and ι2 are considered the same iff

CFR({ι1}, A) = CFR({ι2}, A).

To shorten the notation we will use α (ι) as the abstraction of the Concrete State Trace

triggered by ι, i.e. α(ι) := α(csι).

5.2.3 Fuzzing Techniques and Procedures

With these notions defined, we can formally define a fuzzing technique (F̂ ) as a function

that takes the following inputs:

• The set of abstraction functions to be used for the current iteration (Acurr).

• The program pcurr to be tested, with additional instrumentation as needed by the abstrac-

tion functions Acurr.

• The set of complete fuzzing results of all previously tested inputs and abstraction func-

tions (CFRprev).

90



Exploring Abstraction Functions in Fuzzing Chapter 5

• A set of inputs to be used for current iteration (Icurr).

• The time and resource consumed thus far (t rcurr).

and produces the following outputs:

• A set of inputs to be used for the next iteration (Inext).

• A set of abstraction functions to be used for the next iteration (Anext).

• A version of the program pnext, with additional instrumentation needed by the abstraction

functions Anext.

• The new complete fuzzing result set, which includes the complete fuzzing result of Icurr.

i.e., {CFRprev ∪ CFR(Icurr, Acurr)}.

• The new time and resource consumption (t rnext).

Formally, a fuzzing technique can be defined as:

F̂ : (pall, Iall, P (A), P (CFRall), tall, rall)

X (pall, Iall, P (A), P (CFRall), tall, rall)

where pall is the set of all possible functionally identical copies of the program p, P (A) is the

power set of all possible abstraction functions, P (CFRall) is the power set of complete fuzzing

results across all possible inputs Iall and all possible sets of abstraction functions A (formally,

CFRall = CFR(Iall, A)), tall is the set of all possible time consumptions, and rall is the set

of all possible resource consumptions.

In every iteration, a fuzzing procedure usually stores all the interesting inputs used during

the iteration. An input is interesting if it explored an abstract state that is not reached by any of

the previous inputs. Formally, let the set of all interesting inputs stored by a fuzzing technique
91



Exploring Abstraction Functions in Fuzzing Chapter 5

be Ĩ , an input ι in the iteration, i.e., ι ∈ Icurr, can be considered interesting if the following

relation holds:

∃α ∈ Acurr | α(ι) 6 ⊆α
⋃
i∈Ĩ

α(i)

where Acurr is the set of abstraction functions used in the iteration.

The above relation ensures that there is an abstraction function, according to which the

input ι explored an abstract state that is not reached by any of the previously used inputs.

The fuzzing process F̄ applies the fuzzing technique F̂ iteratively until the resource budgets

are consumed.

A fuzzing process F̄ is given the program p, an initial set of inputs Iinit (known colloquially

as “seeds”), a set of initial abstraction functions Ainit, a fuzzing technique F̂ , a time budget

t, and a resource budget r. A fuzzing process will return the set inputs that trigger invalid

program states Iinvalid.

F̄ : (pall, Iall, F̂ all, tall, rall) X Iall (5.1)

The fuzzing process F̄ applies F̂ iteratively until the provided resource budgets are ex-

hausted.

... F̂ ◦ F̂ ◦ F̂ ◦ F̂ (p, Iinit, Ainit, ∅, 0, 0) (5.2)

5.2.4 Fuzzing parameters

Given this formal definition of fuzzing, any fuzzing technique can be described by defining

the following parameters:

Input Generation (Inext): This describes how the new input is generated, i.e., the technique

used to generate Inext for an iteration of the fuzzing technique. An intelligent input gen-

eration is an innate feature of any fuzzing technique. There are different ways to generate

inputs, whether by using random data, by using the fuzzing result of the previous inputs,

92



Exploring Abstraction Functions in Fuzzing Chapter 5

or a combination of both.

Abstraction Functions (A): This is the total set of abstraction functions that could be used by

the fuzzing process.

Abstraction Function Selection (Anext): Similar to input generation, this parameter describes

the mechanism used to select the abstraction functions to be used for the next iteration.

Most of the fuzzing techniques have a single abstraction function (i.e., |A| = 1) and

use the same abstraction functions in every iteration (i.e., Anext = Aprev). We call these

techniques Single Abstraction Fuzzing (SAF).

To demonstrate the generality of our model, let us define some of the existing fuzzing

technique using these parameters.

AFL [29]: For input generation, AFL uses various mutation of interesting inputs such as: bit-

flipping, byte-flipping, splicing, etc. It is a SAF technique with the following abstraction

function:

αafl(ι) = {(bb1i , bb1j , log2(n1)), (bb
2
i , bb

2
j , log2(n2)), ..}

where (bb∗i , bb
∗
j , log2(n∗)) are pairs of basic blocks (bb) such that bb∗j is visited right af-

ter bb∗i for n∗ number of times when the program processed the input ι and log2 is the

logarithm with base 2.

Dowser [76]: For input generation, Dowser uses constraint solving to generate interesting in-

puts.

It is also an SAF technique with a slightly different abstraction function than SAGE:

instead of collecting all the constraints, it only collects the constraints at predetermined

93



Exploring Abstraction Functions in Fuzzing Chapter 5

program points PDowser.

αDowser(ι) = 〈(c1, b), (c2, b), (c3, b), ...〉 (5.3)

where c∗ ∈ PDowser is a conditional statement of the program p reached by the input ι

and b is the Boolean value (i.e., b ∈ {1, 0}), that indicates the result of the conditional

statement.

Driller [33]: It uses both AFL method and constraint solving (similar to SAGE) for input

generation. It is a SAF technique with the AFL’s abstraction function i.e., αafl.

VUzzer [19]: It generates inputs based on mutation and combinations of interesting inputs.

It is also a SAF technique with the following abstraction function, which is based on a

scoring function (score) that is based on the basic blocks reached by the input.

αV Uzzer(ι) = {(len(ι), score(bb1w, bb
2
w, ...))}

where len(ι) is the length of the input in bytes and bb∗w is a pre-calculated weight of the

basic block bb∗ reached by the input ι.

Steelix [20]: This is a technique customized to fuzz magic byte based programs. For input

generation, Steelix uses conditional mutation of the input bytes where a comparison

failed. Steelix is actually a multi-abstraction fuzzer that combines AFL and the results

of interesting comparison operations. Formally,

αsteel(ι) = {(bb1i , bb1j , lg2(n1)), (bb
2
i , bb

2
j , lg2(n2)), ...,

(c1, n1), (c
2, n2), (c

3, n3), ...}

94



Exploring Abstraction Functions in Fuzzing Chapter 5

Here, the first part is similar to AFL, where (bb∗i , bb
∗
j , log2(n∗)) are pairs of basic blocks

(bb) such that bb∗j is visited right after bb∗i for n∗ number of times.

The second part captures the results of interesting comparisons: where c∗ is a conditional

statement reached by the input and n∗ is the number of bytes in the conditional statement

that matched.

Angora [21]: Angora uses a single abstraction function similar to AFL’s, with the addition of

context sensitivity given by taking a hash of the callstack. Angora also generates new

inputs using byte level taint tracking and a gradient decent algorithm for trying to satisfy

conditional statements.

αangora(ι) = {(bb1i , bb1j , h(stack1), log2(n1)),

(bb2i , bb
2
j , h(stack2), log2(n2)), ..}

As shown, the provided formal model of fuzzing helps in understanding various fuzzing tech-

niques in a systematic manner. Any fuzzing technique can be easily defined using our Fuzzing

Parameters (Section 5.2.4).

By describing existing fuzzing techniques using our formal model, one can see the follow-

ing observations emerge:

Observation 1: Most current fuzzing techniques either develop new input generation tech-

niques (e.g., Driller [33], DIFUZE [77]) or change, in tandem, both the abstraction function

and the input generation technique (e.g., VUzzer [19], Angora [21], and Dowser [76]). In

actuality, these two concepts are orthogonal.

95



Exploring Abstraction Functions in Fuzzing Chapter 5

Observation 2: Most existing fuzzing techniques are Single-Abstraction Fuzzers (SAF).

That is, they use the same single abstraction function in every fuzzing iteration. However,

there is no obvious reason why this must hold for all techniques.

This leads us to a natural research direction:

• With a fixed input generation technique, how does the chosen abstraction functions affect

the effectiveness of fuzzing?

• Can a fuzzing strategy use multiple abstraction functions? Will it be more effective

(given the same budget) than the corresponding SAF variation?

In the next section, we will describe a number of alternate abstraction functions that we will

use to explore this direction of research.

5.3 Abstraction Functions Explored

There are potentially infinite ways to abstract the concrete state space covered by an in-

put on a program. Some aspects that abstraction functions could be based on are: (1) Code

coverage, the set of basic blocks accessed [78], (2) Data access, the set of all global variables

accessed, or (3) Function invocations, is the set of all library function called during program

execution.

As mentioned in Section 5.2.4, there could be several possible abstraction functions, where

each could be effective in exploring a particular concrete state space of the program. Based

on the requirements of effective exploration and performance overhead, we implemented six

different abstraction functions, three of which are similar and have fine-grained granularity and

the remaining three attempt to abstract different concrete state spaces of the program.

96



Exploring Abstraction Functions in Fuzzing Chapter 5

Basic Blocks Abstraction (αbb)

This is the most basic abstraction function which simply tracks the number of times each

basic block was executed by the program. Instead of maintaining the raw counts, we use

logarithmic counting set (as used in AFL [29]). Formally:

αbb(ι) = {(bbi, log2(ci)), (bbj, log2(cj), ...}

Where, bb∗ is the basic-block executed and c∗ is the number of times corresponding basic block

is executed when the program processed the input ι.

The intuition behind this abstraction is to capture the basic-block coverage achieved by an

input on the program, under the assumption that more coverage yields more bugs.

Edges Abstraction (αedge)

This abstraction function increases the granularity of Basic Blocks abstraction by tracking

the number of times (using logarithmic counting) an edge between basic blocks is executed.

This is the same abstraction (Section 5.2.4) used by the AFL fuzzer [29].

Block Triples abstraction (αtriple)

The Block Triples abstraction function is similar to the Edges abstraction function, how-

ever instead of tracking edges (which is a pair of basic blocks), here we track all of the three

consecutive basic blocks visited during the execution of the program.

The intuition here is that because the edges abstraction is successful (as shown by AFL),

then perhaps increasing the granularity of the abstraction could increase its effectiveness.

97



Exploring Abstraction Functions in Fuzzing Chapter 5

int check_header(char *data, char *header) {
if (data[0] == header[0] && data[1] == header[1]

&& data[2] == header[2])
return 1;

else;
return 0;

}
}
int handle_data(char *data) {

if (check_header(data, "TXT")) {
// safe code

}
else if (check_header(data, "PDF")) {

// BUG
}

}

Listing 1: In this example, a utility function, check header is used for multiple checks.
An abstraction function that only tries to cover all edges will likely fail to pass both checks,
because it will have already seen the edges within the utility function.

Edge + Return Loc Abstraction (αedgeret)

This abstraction, in addition to the Edges abstraction, also considers the calling function.

In static-analysis terms, this is a 1-context sensitive version of the Edges abstraction. Formally,

αedgeret(ι) = {(bb1i , bb1j , ret1, log2(n1)),

(bb2i , bb
2
j , ret2, log2(n2)), ..}

Where ret∗ is the calling context under which the corresponding edge (bb∗i , bb
∗
j) was visited.

The rest of the terms are the same as the Edges abstraction.

The intuition behind this abstraction is that if there is some function that performs a com-

parison, such as a strcmp, it is useful to satisfy that comparison when it is called in different

contexts and not in a single context. For example, in Listing 1 a single function is used to check

a three-byte header. A Basic Blocks or Edges abstraction can satisfy the check once because,

as each successive byte is matched, the new input will be considered interesting. However, it

will only match one header, because for a second header those blocks/edges will have already

been seen in the utility function, and it would not be able to successively match the new bytes.

On the other hand, the Edge + Return Loc abstraction will match the header multiple times,

because it includes the calling context.

98



Exploring Abstraction Functions in Fuzzing Chapter 5

Function Context Abstraction (αcontext)

In this abstraction function, we attempt to capture the context of the executed functions.

As the context could be potentially unlimited, we limit the length of the context to four. We

capture the context as the sequence of the last four return address on the call-stack at the entry

of each executed function. In the case where the call-stack has less than four return addresses

we use null instead. This is done by xoring the callstack entries.

The motivation for this abstraction is that, in many real-world vulnerabilities, the context

of certain function invocations is critical. For example, in a JavaScript engine, the JavaScript

code can add or remove elements in an array. However, these operations might not be safe if

the code is called from inside a sort function which does not handle a changing array size (as

in CVE-2013-0997 [79]).

Method Calls Abstraction(αomcp)

This abstraction function is specialized for object-oriented programs, and we capture the

pairs of methods executed on the same object instantiation. Consider an example, where we

have an object foo with methods A(), B(), and C(). If the execution of a program given

input ι results in the following method invocation sequence: foo.A(), foo.B(), foo.C(),

then we will add the pairs A-B, A-C, B-C, to the counts. If there is a second object bar that

is the same class as foo and the program execution is: foo.A(), bar.B(), foo.C(),

bar.B() we will add the pairs A-C, B-B to the counts because the method calls are tracked

on a per-object basis.

Steelix (αsteelix)

Although this is actually a multi-abstraction as explained in Section 5.2.4, it is included

here as it is one of the strategies we explore in our evaluation. The details are previously

99



Exploring Abstraction Functions in Fuzzing Chapter 5

explained, but briefly, Steelix uses two abstraction functions, edges, and one which looks at

comparisons with important values.

5.3.1 Multi-Abstraction

As demonstrated in Section 5.2.4, most existing fuzzing techniques are Single Abstraction

Fuzzing (SAF). In this paper, we explore combining multiple abstraction functions so that they

can provide new inputs to each other and combine the strengths that each abstraction function

provides. For example, let us consider how the Edges and Method Calls abstractions described

previously might pair well together. The Method Calls abstraction instruments method calls on

objects and will consider different arrangements of method calls interesting, however it might

not be able to trigger a particular method call in the first place. The Edges abstraction might

easily find that new method call, however it may not find the different arrangements of the

method calls interesting.

To combine abstractions, we chose to run them as parallel fuzzers and share inputs between

them, similar to the ensemble fuzzing strategy presented by Chen et. al [80] and Wang et.

al [81]. In other words, each fuzzer will use its own abstraction function but consider all

interesting inputs that all fuzzers discover. Of course there are other ways of using multiple

abstraction functions, such as switching between them, although exploring such other ways of

combining them is out of scope of this paper.

5.4 Implementation

We implemented each of the abstraction functions including the Mult-Strategy abstraction

using American Fuzzy Lop, as it is one of the most popular and effective open source fuzzers.

To implement the Multi-Strategy abstractions we run each input selection strategy in parallel

with separate (distinct) fuzzers, however the found interesting inputs are shared between each
100



Exploring Abstraction Functions in Fuzzing Chapter 5

fuzzing instance.

5.5 Evaluation

Lacking the formalism contributed by this paper, existing approaches in fuzzing do not

maintain a separation between the abstraction function utilized and other details of the respec-

tive approaches. Additionally, it seems that current fuzzing techniques do not tend to leverage

multiple abstraction functions. In this section, we explore both of these oversights, evaluat-

ing the effectiveness of alternate abstraction functions as well as the combination of multiple

abstraction functions. We attempt to answer the following research questions.

RQ1: Does the choice of abstraction function affect the bug finding capabilities?

RQ2: How effective is it to combine different abstraction functions?

When evaluating these research questions, it is important to keep in mind we are not only

looking to see if the choice of abstraction functions or combination thereof results in more

crashes, but also to see if the bugs that are found differ. That is, if one abstraction function

finds less bugs, but finds bugs not found by another than it is still interesting and would be

worth applying.

Also, it is important to reiterate, as stated in Observation 2 in Section 5.2, that the choice

of abstraction function (or functions) is orthogonal to other aspects of the fuzzing process.

That is, though symbolically-assisted approaches (such as Driller [33]) would have a scaling

effect on the numbers reported in this section, they would not effect the relations between these

numbers. As such, we evaluate our system using a modification of the American Fuzzy Lop

fuzzer.

101



Exploring Abstraction Functions in Fuzzing Chapter 5

Table 5.1: Multistrategy Fuzzer Configurations.
Selection Strategy Abstraction Functions

Multi-Strategy1
Basic Blocks, Edges, Block Triples,
Edge + Return Loc, Function Context,
Method Calls

Multi-Strategy2
Steelix, Basic Blocks,
Edge + Return Loc, Function Context

Table 5.2: This table shows the percentage of binaries that are crashed by the configuration in the corresponding row that are also crashed when using

the configuration in the corresponding column. The value of each cell at row m and column n is:
CAFm

∩ CAFn
CAFm

∗ 100, where Ck is the total binaries

crashed when using the abstraction function k, AFm, and AFn are the abstraction functions of row m and column n respectively. The cells in the table are
shaded based on the value veryhigh 100-95, high 95–90, medium 90–80, and low < 80.

Basic
Blocks Edges Block

Triples
Edge +
Return Loc

Function
Context

Method
Calls

Multi-
Strategy1 Steelix Multi-

Strategy2
Basic Blocks —- 94.51 94.51 96.70 80.22 61.54 96.70 94.51 95.60
Edges 94.51 —- 94.51 96.70 81.32 63.74 96.70 97.80 96.70
Block Triples 93.48 93.48 —- 97.83 80.43 63.04 98.91 97.83 97.83
Edge+Ret Loc 87.13 87.13 89.11 —- 74.26 58.42 99.01 94.06 98.02
Function Context 93.59 94.87 94.87 96.15 —- 73.08 96.15 100.00 100.00
Method Calls 91.80 95.08 95.08 96.72 93.44 —- 98.36 98.36 98.36
Multi-Strategy1 83.02 83.02 85.85 94.34 70.75 56.60 —- 90.57 94.34
Steelix 67.72 70.08 70.87 74.80 61.42 47.24 75.59 —- 97.64
Multi-Strategy2 65.91 66.67 68.18 75.00 59.09 45.45 75.76 93.94 —-

5.5.1 Dataset

To explore our research questions, we chose a varied dataset that is amenable to large-scale

experiments. Specifically, we use the dataset of vulnerable programs produced for the DARPA

Cyber Grand Challenge (CGC) [82] for our experimentation. These binaries contain a very

diverse set of functionalities and variable complexity, and guarantee the presence of known

bugs [83, 84], providing a perfect testing ground for our system. After filtering out challenges

that involved multiple binaries (which AFL cannot currently fuzz) and challenges which failed

to build for Linux (using a port of the CGC dataset to that platform [85]), there were 217

different binaries that we used.

To evaluate the impact of abstraction functions on real-world software, we evaluated them

on Objdump and ImageMagick in Section 5.5.5.

102



Exploring Abstraction Functions in Fuzzing Chapter 5

Table 5.3: Results of each of fuzzing using the different abstraction functions on the CGC
dataset.

Selection Strategy Type
Number
Crashes

Mean
Block
Coverage

Mean
Execs
per sec

Basic Blocks SAF 91 38.1% 625
Edges SAF 91 38.5% 620
Block Triples SAF 92 39.0% 412
Edge + Return Loc SAF 101 39.5% 555
Function Context SAF 78 35.5% 569
Method Calls SAF 61 28.6% 469
Multi-Strategy1 MAF 106 39.5% 551
Steelix MAF 127 47.2% 581
Multi-Strategy2 MAF 132 48.1% 530

5.5.2 Experimental Setup

We evaluated each binary in the CGC dataset using each of the seven selection strategies

detailed in Section 5.3). Each of these single-strategy fuzzing configurations was run for 8

hours on 12 cores, giving each configuration 96 CPU hours of experimentation time. This is

well over the minimum time suggested by [86].

We also evaluated two multi-abstraction fuzzing (MAF) configurations that combines mul-

tiple select abstraction functions. In each of these, the abstractions were run in parallel (with

cross-fuzzer synchronization of Ĩ) for 8 hours, with 12 cores total divided equally between

the fuzzers. Note that this is the same amount of resources provided for testing the single-

abstraction fuzzers. The abstractions used in the MAF configurations are shown in Table 5.1.

We chose one configuration (Multi-Strategy1) which included every abstraction function except

Steelix, and one MAF configuration with Steelix (Multi-Strategy2). The abstraction functions

chosen for Multi-Strategy2 aimed to pick the a smaller, but varied set of selection strategies.

103



Exploring Abstraction Functions in Fuzzing Chapter 5

5.5.3 Crash Numbers

Table 5.3 shows the total number of binaries crashed by each SAF configuration, along

with the MAF configurations. Confirming our intuition, both multi-strategy fuzzers performed

better than any of the single-strategy fuzzers that were part of them. The three best fuzzers

(Multi-Strategy2, Steelix, Multi-Strategy1) were all MAF’s, indicating that MAF fuzzers per-

form better than their SAF counterparts. The Steelix strategy performed very well, crashing

a total of 127 binaries. This result was expected because it is designed to recover strings and

magic numbers, of which there are many in the CGC. The Multi-Strategy2 strategy performed

the best, crashing 132 of the 217 binaries. The one SAF that performed the best was Edge +

Return Loc, crashing 102 binaries, 10 more than any other SAF. This result shows that adding

some callstack context to the abstraction seems to improve it’s bug-finding capabilities.

The Method Calls configuration was the least effective with only 55 crashes. As explained

in Section 5.3, this abstraction function is specialized for object-oriented programs, while most

of the CGC binaries are not object-oriented.

These results allows us to infer an answer to Research Question 1 (RQ1).

Answer for RQ1: The choice of an abstraction function is important in fuzzing, and an

inappropriate abstraction function (e.g., Method Calls on non-object-oriented code) can

seriously impair fuzzing effectiveness.

The relatively poor performance of the Method Calls and Function Context SAF configu-

rations does not mean that these abstractions are useless. In fact, we found in our evaluation,

when combined with other abstraction functions in Multi-Strategy1, it enabled the detection of

a crash in Modern Family Tree which no other configuration found.

Table 5.2 shows a fine-grained comparison of different configurations. It contains the per-

centage of binaries that are crashed by the configuration in the corresponding row that are also

crashed when using the configuration in the corresponding column. Specifically, the value of
104



Exploring Abstraction Functions in Fuzzing Chapter 5

each cell at row m and column n is computed as: CAFm ∩ CAFn

CAFm
∗ 100, where Ck is the to-

tal binaries crashed when using the abstraction function k, AFm, and AFn are the abstraction

functions of row m and column n respectively. This table allows the comparison of the dif-

ferent abstraction functions against each other. For a given pair of abstraction functions αm

and αn), we can make following observations based on the value of a cell (m,n), which is the

value at row m and column n:

• A higher value at the cell (αm, αn) indicates that αn encompasses the effectiveness of

αm.

• A higher value at the cell (αn, αm) indicates that αm encompasses the effectiveness of

αn.

• A higher value at both the cells (αm, αn) and (αn, αm) indicates that the abstraction

functions αm and αn have similar bug finding abilities.

• A lower value at both the cells (αm, αn) and (αn, αm) indicate that the abstraction func-

tions find different bug types and these are the good candidates to be combined.

The Multi-Strategy1 configuration was able to leverage the capabilities of the six abstraction

functions that it utilized, and this can be seen from the high percentages in the cells of the

Multi-Strategy1 column and relatively low percentages in the cells of the Multi-Strategy1 row.

This is true despite the fact that the individual abstraction functions in Multi-Strategy1 receive

only a fraction of the time they had individually.

If we look at the Steelix column we see that the only SAF’s that were not very highly

encompassed by it were Edge + Return Loc and Basic Blocks. Basic Blocks being a more

coarse-grained abstraction might’ve done better in cases where Steelix produced too many

paths to process. This result also implies that combining Steelix, Basic Blocks, Edge + Return

Loc, Function Context in the Multi-Strategy2 configuration is a good choice.
105



Exploring Abstraction Functions in Fuzzing Chapter 5

Looking specifically at the column for Multi-Strategy2, we see that it encompassed all the

other strategies fairly well; Multi-Strategy1 was the only strategy that it didn’t find at least

95% of the same crashes. This implies that although we were able to capture most of the bug

finding capabilities of the other strategies with this combination, we still missed some bugs that

a different combination of strategies got.

Answer for RQ2: The results show that both Multi-Strategy1 and Multi-Strategy2 config-

urations were more effective at finding crashes than their individual abstraction functions.

Therefore, combining abstraction functions, is an effective technique to enhance fuzzing.

Abstraction functions based on basic blocks (Basic Blocks, Edges, Block Triples, and Edge

+ Return Loc) all show similar bug finding abilities, and this is evident from the high percent-

age in the cells of the corresponding abstractions. Finally, it is interesting to see that having

more fine-grained abstractions (e.g. block triples, vs edges) does not necessarily improve the

effectiveness.

5.5.4 Different Strategies Repeatedly Crash Different Binaries

In the evaluation, we saw plenty of cases in which a binary is crashed by one configuration

and not another. This is seen in Table 5.2, anywhere where the overlap is not 100%. We want

to evaluate whether these results are random or if binaries exist where one configuration is for

sure better at finding that crash.

First we explore Multi-Strategy2 vs Steelix, to know if the binaries crashed by the first

and not the second are random or repeatable. To test this, we picked five binaries that were

found by Multi-Strategy2 and not Steelix and explored what happened if we repeated the test

12 additional times. These results are shown in Figure 5.1. Note that the original fuzzing run is

not included to make sure the results aren’t biased. We see that of the five binaries that in only

one case did Steelix do better in our repeated evaluation. This result shows that Multi-Strategy2

106



Exploring Abstraction Functions in Fuzzing Chapter 5

Figure 5.1: This graph shows the results of re-running the Steelix and Multi-Strategy2 fuzzer
configurations 12 times on five select binaries that were only found by Multi-Strategy2. These
results do not include the original large-scale test.

107



Exploring Abstraction Functions in Fuzzing Chapter 5

outperforming it on these binaries is repeatable.

Even when comparing individual abstraction functions we were frequently able to find

examples where one abstraction function repeatedly did better than others. Due to cost and

time constraints we weren’t able to re-run all tests twelve times like above, but here’s some

examples we tested.

• Dive Logger was crashed at least 10/12 times by Edge + Return Loc and each of the

MAF’s that include Edge + Return Loc, but rarely by other strategies.

• Modern Family Tree was crashed 11/12 times by Multi-Strategy1, but no more than 3/12

times by any other strategy (including Multi-Strategy2).

• Neural House was rarely crashed by Edges and Basic Blocks, but frequently by Block

Triples, Edge + Return Loc and Steelix.

These results that sometimes a fuzzer which in general doesn’t find the most crashes might

be better at a specific binary. It also indicates that the incomplete overlap we saw in Table 5.2

is a product of the different performance of the fuzzing configurations.

5.5.5 Real World Programs

We evaluated the effectiveness of the individual abstraction functions, as well as the ef-

fectiveness of the multi-abstraction fuzzers on two real-world programs: Objdump-2.26.1,

and ImageMagick-7.0.4-2. These are programs that have been used in other fuzzing evalu-

ations [86].

We ran each fuzzer configuration described previously six times on each of these programs.

Each run was using 12 cores for 8 hours for a total of 96 core-hours. Then we analyze the

results in terms of unique number of crashes, where unique is defined in terms of the crashing

108



Exploring Abstraction Functions in Fuzzing Chapter 5

Table 5.4: Results of fuzzing using different abstraction functions on ImageMagick and Obj-
dump. Note that there were no crashes on ImageMagick without seeds so those columns are
omitted. Results shown are the median of six runs.

ImageMagick
7.0.4-2
(seeds)

Objdump
2.26.1
(seeds)

Objdump
2.26.1

(no seeds)

Selection Strategy
Median
crashes

Median
crashes

Median
crashes

Basic Blocks 0.5 7.0 3.0
Edges 0.0 7.0 4.0
Block Triples 1.0 5.5 4.5
Edge + Return Loc 1.5 6.5 4.0
Function Context 1.0 4.0 1.5
Method Calls 0.0 3.0 1.0
Multi-Strategy1 1.0 5.0 2.5
Steelix 1.0 6.0 3.5
Multi-Strategy2 2.0 6.0 4.5

callstack. Note that these do not represent unique bugs, as attributing crashes to bugs is out of

scope of this paper. These programs were fuzzed both with and without seeds.

The results are shown in Table 5.4. As we can see from the table, the strategy that does

the best depends both on the binary being fuzzed and whether or not seeds are provided. Basic

Blocks and Edges do better than any other configuration on Objdump with seeds, however, they

both are significantly less effective without seeds and perform very poorly on ImageMagick.

Looking into the results, it seems that for Objdump, especially with seeds, these two strategies

had generated significantly less inputs compared to say Steelix, and executed inputs about 20%

faster. Since the extra capabilities of Steelix and Edge + Return Loc weren’t necessary to

trigger additional coverage (especially when given seeds!) the faster basic sensitivities were

the best.

One consistent trend across all of them is that Multi-Strategy2 does very well, even if it is

not always the best. This confirms our earlier results that it is widely applicable on a range of

binaries. Multi-Strategy2 has the abilities of Basic Blocks to explore lots of inputs quickly and

109



Exploring Abstraction Functions in Fuzzing Chapter 5

that of Steelix and Edge + Return Loc to deeply explore. Another interesting point is that Edge

+ Return Loc did well on all four tests. This implies that some callstack context is important

for fuzzers to be able to explore lots of the state-space.

5.6 Discussion

We saw in our evaluation of fuzzing strategies that combining different abstraction func-

tions allows them to complement each other by sharing inputs between them. This resulted in

the multi-abstraction fuzzers crashing more binaries than any single strategy from their compo-

nents. Even though the Multi-Strategy2 configuration found the most crashes in our tests, there

were programs in which another configuration was more likely to crash. Future work could be

to try and automatically determine the best fuzzer configuration to use. Also, as mentioned in

the framing of the evaluation, other input generation techniques, such as Driller, could also be

used on top of this to improve results for all abstractions in our evaluation.

Despite finding that Multi-Strategy2 found the most crashes in our tests, we also saw pro-

grams in which a different configuration was more likely to find a crash, as was discussed in

Section 5.5.4. One takeaway of this is that although a particular fuzzer might find less crashes

than another it still might be useful if it finds different crashes. Consider Edge + Return Loc,

alone it finds less crashes in number than Steelix but it also found crashes in different programs.

5.7 Conclusion

In this paper, we have presented the first formalization of input evaluation in fuzzing, bor-

rowing concepts from the field of static analysis. This formalization can immediately be used

as an effective base for future research: by reasoning about which concepts of the formalization

have been explored by current work (and the more salient question of which have not been), we

110



Exploring Abstraction Functions in Fuzzing Chapter 5

identified that the impact of different abstraction functions on fuzzing outcomes is unexplored

in current work.

Thus, we performed an investigation into alternate abstraction functions for fuzzers. We

identified seven input abstraction functions with various levels of granularity and evaluated

them on a large dataset from the DARPA Cyber Grand Challenge and on two real-world pro-

grams. The results show that the choice of an abstraction function is important and can affect

the effectiveness of fuzzing. Furthermore, we show that combining different abstraction func-

tions is superior to using just one.

Keeping with the scientific spirit, we open-source the resulting abstraction-modular fuzzer.

111



Chapter 6

Token-Level Fuzzing

6.1 Introduction

As the amount of software in the world grows, so does the need for effective automated bug-

finding techniques. It’s incredibly common for companies to employ far more developers than

security engineers. BSIMM, a study of software security initiatives started by Synopsys, found

that there was an average ratio of a single security engineer for every 60 software developers

[87]. Consequently, security engineers are often responsible for very large amounts of code; far

more than is feasible to check manually. As a result, it is imperative that effective automated

techniques are used to uncover many of these bugs.

In the past few years, fuzz testing has become widely popular. Fuzzers such as American

Fuzzy Lop [29], Syzkaller [88], and Libfuzzer [89] are responsible for the detection of hun-

dreds of high severity security issues. The success of these fuzzers as well as others, has caused

fuzzing to become the preeminent automated analysis for detecting memory corruption vulner-

abilities. It is employed by companies for both finding old bugs and as continuous integration

checking for newly introduced bugs [90].

Similarly, fuzzing research has steadily taken off as people have built a myriad of fuzzers

112



Token-Level Fuzzing Chapter 6

for a variety of targets. One target of interest in particular is interpreters. Interpreters are

in widespread use; they are found in many components of browsers, pdf readers, document

viewers, programming languages and more. As such, these are often a high value target for

attackers, and a high impact target for security researchers.

Modern-day interpreters can be hugely complex, for example, V8, Google’s JavaScript

engine, is over 700K lines of code! The huge amount of code involved and the complexity

of the engines themselves, make them difficult to manually audit, and consequently, a very

attractive target for fuzzing. However, interpreters present some unique challenges when it

comes to fuzzing.

Interpreters can be different from other types of programs in that they expect highly struc-

tured inputs made up of individual tokens. If the input does not match the syntax that the

interpreter is expecting, then the input may throw an error and the interpreter will not run the

code any further. As such, many of the most common fuzzers fail to perform well when applied

to interpreters, such as JavaScript engines. Their mutations typically result in simple syntax

errors and they fail to make much progress in mutating the input seeds. Even generating an

input that parses successfully is rare.

Because of the aforementioned issue, most fuzzers are specifically targeted to the task,

and the most common approach for this is to use grammar-based fuzzers [91–94]. Grammar-

based fuzzers require information on the grammar that the interpreter expects, and then by

following the grammar, in generation and mutation of inputs, they can create test cases which

exercise deeper code paths in the interpreter. These approaches are effective but suffer from

some limitations. For one, they need to be given or be able to learn a grammar, which makes it

difficult to re-target for a different language.

Another limitation with grammar-based fuzzers is that they frequently conform too tightly

to the supplied grammar and fail to generate unusual situations for the parser. To expand on

that, grammar-based fuzzers either are given or learn a grammar. That grammar is used to

113



Token-Level Fuzzing Chapter 6

generate inputs. However, if a bug is caused by an input that does not conform to the grammar

it may be difficult or impossible for the grammar-based fuzzer to trigger it.

In this paper, we introduce a novel technique, called Token-Level Fuzzing. Token-Level

Fuzzing can be thought of as a level in between the byte-level approaches, and the grammar-

based approaches typically employed for fuzzers. The basic idea behind it is to have the muta-

tions work with whole tokens, either replacing or inserting entire words. For example instead

of replacing a couple random bytes, which has little chance of producing an interesting input,

we could replace a couple tokens in the input with different tokens. This idea allows the fuzzer

to have a much higher chance of producing useful mutations, which are more likely to trig-

ger new interesting testcases, while avoiding the strictness and complexity of grammar-based

approaches.

We created a modified version of AFL, called Token-Level AFL, which implements this

new technique. Token-Level AFL is specifically implemented for fuzzing JavaScript engines,

although the technique itself is general. We test it against the most up-to-date versions of the

four major JavaScript engines: V8, SpiderMonkey, JavaScriptCore, and ChakraCore. In doing

so, we find 27 bugs across the engines, many of which are severe and can lead to remote code

execution.

In summary, this paper makes the following contributions:

• Introduces a new technique, called Token-Level Fuzzing, for fuzzing language-based

programs, such as interpreters.

• Implement this technique to fuzz JavaScript engines. The implementation is done on top

of AFL to take advantage of its efficient coverage guided fuzzing.

• Evaluate Token-Level AFL on the latest versions of the four major JavaScript engines,

finding 27 previously unknown bugs.

114



Token-Level Fuzzing Chapter 6

• Compare the fuzzing results against other state of the art JavaScript fuzzers.

6.2 Motivation

6.2.1 Ineffectiveness of Byte-Level Fuzzing

As discussed in the previous section, fuzzing research has come quite a long way from just

generating purely random input. AFL in particular is a venerable fuzzer with many bugs found

in over one hundred highly used targets. However, when AFL is applied to interpreters, such

as JavaScript engines, some significant downsides begin to emerge. As most of the mutations

that AFL performs are at a byte or bit level, we see it repeatedly generating inputs that simply

fail to parse, often simply because the input now contains incoherent tokens.

If we consider a simple bitflip mutation on a small piece of JavaScript, the results will

frequently look like the following mutations, which will immediately fail to parse:

1 w h i l e ( b a r . x ) −→ whkle ( b a r . x )

2 −→ wh i l ep ( b a r . x )

3 −→ w h i l e xba r . x )

4 −→ w h i l e ( b a r . | )

It should be straightforward to see that mutations such as this are not particularly helpful;

they will only trigger simple error handling. As such, this mutation would very likely not lead

to more code coverage, and would simply be wasted execution time. This is not an uncommon

issue, we can expect most mutations performed by AFL to result in simple syntax errors, and

only a tiny fraction of the mutations will actually trigger new code coverage. Thus, AFL will

waste the majority of its execution time on mutations such as these.

115



Token-Level Fuzzing Chapter 6

6.2.2 Grammar-Based Fuzzing

Given the highly-structured input required for JavaScript engines (and interpreters in gen-

eral), most work uses a grammar-based approach. Grammar-based fuzzers are incredibly pow-

erful in their ability to very quickly generate syntactically correct pieces of input for a given

program. Given a grammar definition, these fuzzers use that definition to generate inputs which

will be executed by the target program. An obvious downside with this approach however, is

the work required to first define a grammar, or otherwise rely on an existing grammar definition

before fuzzing can be performed [92, 95–98].

function main() {
const v1 = [13.37,13.37,13.37];
const v6 = [1337,1337,v1];
function v9(v10,...v1) {

const v13 = [1337,1337,1337];
return v13;

}
const v18 = v9(v6);

}
main();

Figure 6.1: listing
Example of code generated by fuzzilli. Fuzzilli follows a static single assignment format for

the generated code. As such, variables will always be assigned to exactly once and some
syntactic/semantic patterns cannot be emitted.

An additional downside to grammar-based fuzzing is the adherence to the grammar that

was giving to the fuzzer. This not only limits the fuzzer to creating code that matches the

grammar, but it also limits the fuzzer to finding bugs that can be written as such. This will pre-

vent most grammar based fuzzers from finding bugs that require syntactically or semantically

incorrect input to trigger. Even bugs with unusual semantics can be unreachable by grammar-

based fuzzers. This is because a grammar-based fuzzer, though powerful in its generational

capabilities and language awareness, will generate inputs that adhere to the grammar that has

been supplied.

116



Token-Level Fuzzing Chapter 6

To explain that further we will show an example from Fuzzilli and talk about how its gram-

mar limits the bugs it can find. Listing 6.1, shows an example input generated by Fuzzilli,

which was taken when fuzzing a JavaScript engine. Note how each line assigns at most a

single new variable and variables are never overwritten. This is because Fuzzilli uses a static

single assignment intermediate representation [99], and the inputs it generates will conform

tightly to it. This feature both enables the real-world results that Fuzzilli has published, but it

also limits the sorts of bugs that it is able to find. Any bug that requires a different or more

complicated structure such as redefining variables, will not be generated. Furthermore, Fuzzilli

will never create nested expressions and cannot output many of the syntax errors that can be

found in JavaScript.

6.2.3 Bugs Requiring Incorrect Semantics

Unsurprisingly, there are bugs which do require incorrect semantics or even incorrect syn-

tax, as well as bugs that require unusual constructs. We will briefly look at an example of

such a bug which was found in V8. Chromium issue 800032 [100] describes a high impact

bug found in v8, which could lead to remote code execution. Note that although the bug has

high impact with potential for RCE, no CVE was assigned as it was discovered internally by

Google Project Zero member Jung Hoon Lee. The bug report includes the proof of concept in

Listing 6.2, which triggers the issue.

The proof of concept creates a subclass of a Regular Expression object, and in the con-

structor of the subclass there is an error. The line, const a = 1, will attempt to redefine a

as constant, which is not correct semantics. Because of this syntax error, the size of an object

gets incorrectly computed which can then lead to out of bounds reads and writes on the object.

Sticking to a strict grammar will prevent us from finding issues such as this.

Another example of a bug that could be difficult to find with a grammar-based fuzzer which

117



Token-Level Fuzzing Chapter 6

class Sub extends RegExp {
constructor(a) {
// expected_nof_properties() skipped
// due to error
const a = 1; // semantic error

}
}

let o = Reflect.construct(RegExp,[],Sub);
// OOB write
o.lastIndex = 0x1234;

Figure 6.2: listing
Proof of concept code for Chromium Issue 800032. This code triggers a semantic error, which

causes a miscalculation in the number of properties leading to an exploitable out-of-bounds
write.

adheres too tightly to a grammar is shown in Listing 6.3. This example is CVE-2017-8729 of

Edge [101], where the parser would incorrectly parse the code, and in doing so, lead to a type

confusion when assigning to the object member later. As this bug requires incorrect syntax to

trigger, this example showcases another case in which grammar-based fuzzers may suffer due

to their adherence to the grammar.

6.2.4 A Middle Ground

We have just shown how grammar-based fuzzers may be unable to find certain bugs in

interpreters, and previously, in Section 6.2.1, we showed how Byte-Level fuzzers, such as AFL,

struggle to make any progress in fuzzing language-based inputs. It is apparent there is a need

for something in the middle, that can make progress and explore interpreters effectively, but

without the limitations of a grammar. In order to find a way to utilize the powerful evolutionary

capabilities of tools like AFL on language-based inputs, we introduce a new technique, Token-

Level Fuzzing. Token-Level Fuzzing works on a higher level than bytes, but not at a full

grammar level, allowing it to find bugs neither technique would find.

118



Token-Level Fuzzing Chapter 6

function f() {
({

a: {
b = 0x1111, // invalid assignment
c = 0x2222,

}.c = 0x3333
} = {});

}

f();

Figure 6.3: listing
Proof of concept code for CVE-2017-8729, which was caused by a parser error in Edge. Line

4 (b = 0x1111) contains a syntax error by trying to assign to a member with = while
creating an object.

6.3 Overview

6.3.1 Token Level Fuzzing

The idea behind Token-Level Fuzzing is fairly simple: Valid tokens should be replaced with

valid tokens. So when fuzzing the example given in Section 6.2 instead of mutating individual

characters in the word while, we would want to replace the entire word with a different word.

For example if we replaced it with if or Number, it would be a much better mutation. Here’s

an example of possible better mutations if we use Token-Level Fuzzing:

1 w h i l e ( b a r . x ) −→ i f ( b a r . x )

2 −→ Number ( b a r . x )

3 −→ w h i l e ( b a r +x )

4 −→ w h i l e ( w h i l e . x )

Notice that Token-Level Fuzzing can still produce invalid syntax such as the last one above

which has while (while .x). Even mutations like that can be beneficial if they trig-

ger a new error handler or if they can iteratively be mutated until a different valid JavaScript

statement is reached.

119



Token-Level Fuzzing Chapter 6

Comparison to dictionaries

A natural question is to ask how does this technique compare to the ”dictionary” that tools

such as AFL [102] and LibFuzzer [30] allow users to provide. The first major difference is that

AFL will still do the Byte-Level mutations as well as the dictionary based mutations. Secondly,

the dictionary mutations are not aligned to tokens, so it might insert the word while in the

middle function instead of replacing the whole token. Finally, it may take multiple token

additions/replacements to reach a new interesting input, some fuzzers such as AFL, will only

insert one dictionary word in a mutation, limiting its exploration.

Comparison to grammar-based fuzzing

Grammar-based fuzzing mutates inputs or generates inputs according to a grammar, whereas

Token-Level Fuzzing does not follow any grammar. Token-Level Fuzzing can generate many

patterns that can be difficult or impossible for a particular grammar-based fuzzer, in particular

those with complex or incorrect syntax. On the other hand, grammar-based fuzzers focus on

exercising the interpreter with correct syntax, possibly allowing faster exploration of that part.

As a result, we expect that our technique will find different bugs.

6.3.2 Method

To create a fuzzer which works on a Token-Level, we start by constructing a map, which

assigns each possible token in the language a unique numerical value. Then we can encode

input files into a list of numbers, which are the encoded version of the seeds. Fuzzing is then

performed on this list of numbers, and changing any number to a different number is equivalent

to replacing it with a different token. Whenever we want to run against the target (JavaScript

engine) we need to transform the mutated list of numbers back into the original language. This

is done with a decode function which replaces each number with the corresponding token and

120



Token-Level Fuzzing Chapter 6

Figure 6.4: The architecture of Token-Level AFL. It is made up of two primary components:
The preparser and the fuzzing engine. The preparser is responsible for transforming input seeds
into a list of 16 bit numbers. Then the fuzzing engine works on these lists, only decoding them
back to JavaScript to execute.

121



Token-Level Fuzzing Chapter 6

Figure 6.5: An example of what happens to a single seed in Token-Level Fuzzing. The seed
first goes through the renaming and encoding stages which produce a list of numbers. Then
when running in the fuzzing loop, it is mutated and decoded prior to execution, where coverage
feedback will determine if the input is added to the queue or mutated further. We highlighted
how changing a couple numbers in the encoded form results in completely different tokens in
the decoded result.

Input Seeds

var arr = [1,2,35];
var obj = {a:1}
arr[1] = 0;
print(arrr);

0,153,253,229,129,215,130,21
5,131,230,221,0,152,253,224,2
23,133,129,215,159,275,130,2
25,153,229,122,129,230,253,2
21,46,214,154,216,221

EncodeRename/Renumber

var var1 = [1,2,32];
var var2 = {var3:1}
var1[1] = 0;
print(var1);

0,153,253,229,129,215,130,21
5,131,230,221,0,152,253,224,2
23,32,129,215,159,275,130,22
5,153,229,142,129,230,253,22
1,46,214,154,216,221

Mutate Decode

var var1 = [1,2,32];
var var2 = {var3+1}
Object[1] = 0;
print(var1); JS ENGINE

FUZZING LOOP

122



Token-Level Fuzzing Chapter 6

concatenates them with spaces as needed. Thus, fuzzing can be done on the list of numbers

without any knowledge of what they mean.

Of course we need to consider one last thing, that is the list of valid tokens is infinite for

many languages as it includes: all possible numbers and all possible variable names that are

legal in the language. If the token-map contained too many numbers than it would unneces-

sarily slow down the fuzzer, because most tokens would be numbers and only very few would

be other functionality. To remedy this, we pick a small set of valid numbers consisting of all

powers of two, as well as numbers plus/minus one of a power of two. Similar values have

been chosen for other fuzzers, such as Difuze and AFL, to reduce the number of possible in-

puts [29,77]. Similarly, we found by looking through regression cases that only a small number

of variables were needed to trigger most bugs, so we limited the number of variable names to

fifteen possible names.

6.3.3 Implementation

Our implementation of Token-Level Fuzzing is done on top of AFL, to take advantage of

the coverage guided nature of AFL. The resulting tool is called Token-Level AFL. Token-Level

AFL is the combination of two components: a preprocessor written in python which analyzes

the tokens of the input files and encodes them for fuzzing, and a modified version of AFL

which performs fuzzing on the encoded inputs. Figure 6.4 shows the overall architecture of

this as well as its main components.

The preprocessing step is written in python and runs the following steps:

Rename For each input seed, variable names are randomly replaced with one of the fifteen

pre-defined variable names: var1, var2, ..., var15. Variable names are not repeated unless

all fifteen variable names have been used already.

Renumber As described earlier, we limited the set of valid numbers to a pre-defined set. All
123



Token-Level Fuzzing Chapter 6

numbers are replaced with the closest number from that set.

Token Analysis Use a JavaScript Lexer to find all the tokens used in all the seeds. Assign

each token a numerical value, which will be its encoded value.

Encoding Transform each input into a list of numbers by replacing each token with its encoded

value. This list is then flattened by encoding each value as a 16 bit integer.

After the preprocessing step to generate the token mapping and the encoded seeds, fuzzing

occurs on the encoded inputs. All of the mutations occur on the encoded inputs, which allows

us to keep most of the fuzzer code unchanged for the Token-Level modifications. This step is

done with minor modifications to AFL:

Mutations Mutations are slightly modified to work on an array of 16 bit numbers rather than

an array of bytes. 16 bit numbers were necessary because there were more than 256

tokens. Note that this change is very small; it is effectively just changing the type of the

array to short* rather than byte*.

Decoding The input is decoded immediately before executing the input in the target JavaScript

engine. This small shim simply concatenates the tokens together, adding spaces as

needed1.

Figure 6.5, shows an example of the various steps of Token-Level AFL when applied on

an input file. The preprocessing steps are used to change the inputs into their encoded forms.

From there the mutations happen entirely on the encoded inputs. The encoded inputs are only

decoded when run in the target program.

1No spaces are added for certain tokens such as quotation marks

124



Token-Level Fuzzing Chapter 6

6.3.4 Further Mutation Modifications

Some of the mutations that AFL performs are not very useful or applicable to fuzzing on

the intermediate list in Token-Level Fuzzing. Some examples of these are are the arithmetics

and interesting number strategies. In these strategies AFL will try inserting interesting numbers

such as ”1024”, ”2147483647”, ”-100663046”, etc into the stream of bytes. Because these will

get translated to a series of tokens, this just will add a constant random list of tokens into the

fuzzed input. As such, we remove these strategies which do not apply well to our scenario.

Of course, then the obvious question is are there strategies we should add that do apply

better to Token-Level Fuzzing. One simple strategy that we identified is to randomly insert and

overwrite multiple tokens in a row. The intuition behind this is that changing one token at a time

may not be enough, it may be necessary to change more than one to create a new interesting

input. Because this was not happening sufficiently with AFL’s current set of fuzzing strategies,

we added the following mutation strategies to the fuzzer:

Random Insert Randomly inserts up to three new tokens somewhere into the file being mu-

tated.

Random Overwrite Randomly overwrite up to three tokens in a row in the file with the same

number of new tokens.

Random Replace Randomly replace up to three tokens in the file with up to three new tokens.

Note that this strategy can insert more tokens than were removed.

6.4 Evaluation

To evaluate our implementation of Token-Level Fuzzing, we run the fuzzer on JavaScript

engines from the four major browsers, V8, SpiderMonkey, JavaScriptCore, and ChakraCore2.
2ChakraCore is no longer used in Edge as of January 2020 [103]

125



Token-Level Fuzzing Chapter 6

Our goal is to understand its bug-finding capabilities as well as how our implementation com-

pares to other state-of-the-art JavaScript engine fuzzers. In order to reason about these goals,

we formulate the following research questions which we will answer:

RQ1: Does Token-Level Fuzzing generate more syntactically correct inputs than Byte-Level

Fuzzing?

RQ2: How does Token-Level Fuzzing compare to other state-of-the-art Fuzzers?

RQ3: Is Token-Level Fuzzing able to find real-world vulnerabilities in the latest JavaScript

Engines.

RQ4: Do bugs found by Token-Level Fuzzing involve incorrect syntax/semantics?

6.4.1 Experiment Setup

We downloaded the latest available versions of the four major JavaScript engines as of

October 1, 2019. These were the development versions cloned from the official git repositories.

We compiled all engines with debug checks. Debug checks are additional checks that the

programmers include to try to catch unexpected conditions [104], so we enabled them for

fuzzing to catch more potential security bugs. We did not enable Address Sanitizer or other

santizers as these tended to be too slow in our tests.

Seed Collection Having good seeds is essential for our fuzzer for multiple reasons. Firstly,

the list of potential tokens which will be used by our fuzzer are gleaned from the input files.

Thus, it is essential that the seeds cover as many of the tokens used by the language as possi-

ble. Secondly, our implementation of Token-Level Fuzzing is based on AFL and evolutionary

fuzzing, so having a quality set of diverse seeds helps the fuzzer greatly, because it will explore

starting from these initial seeds. To collect seeds, we manually selected regression tests from

126



Token-Level Fuzzing Chapter 6

the repositories of the various JavaScript engines. We picked seeds covering a wide range of

functionality, but limited the number of seeds to 100 total seeds.

Comparison with other tools. We compared Token-Level AFL against the following

state-of-the-art tools: AFl [29], Fuzzilli [99], and CodeAlchemist [95]. For each tool, we ran

it for three days on 30 cores, on each of the four major JavaScript engines, resulting in a total

of 2160 core-hours for each fuzzing run. Each Fuzzer-JavaScript engine combination was run

three times to limit randomness in our experiments. Note that Fuzzilli does not provide a

mechanism for using seeds, so it was run without seeds. On the other hand, CodeAlchemist

used far more seeds in their paper [95], so we did a much larger automated seed collection,

grabbing all javascript files from regression tests, resulting in 32682 seeds.

6.4.2 Syntactically valid inputs

The most basic assumption of Token-Level Fuzzing is that it generates more inputs which

are syntactically correct than Byte-Level Fuzzing and that these inputs will, in turn, trigger

deeper functionality. To understand the validity of this assumption we first compare the results

of AFL and Token-Level AFL. Both fuzzers were given the same seeds and AFL was given

all of the tokens in the input files as a dictionary. With a dictionary, AFL will try inserting the

keywords in the mutation steps. This allows AFL to make some progress on languages such

as JavaScript, and showcases the best configuration for AFL [102]. In our experiments, even

with a full dictionary and the same input seeds, AFL was only able to find 2 bugs across all the

JavaScript engines, whereas Token-Level AFL found 14!

We added tracking to determine how many of the generated inputs of each fuzzer parse

successfully or hit a parser error. These numbers are shown in Table 6.1. 10.68% of all runs

of AFL resulted in parser errors! This shows that as we suspected in Section 6.2, most in-

puts generated by AFL fail to parse and trigger any reasonable functionality in the JavaScript

127



Token-Level Fuzzing Chapter 6

Table 6.1: This table shows what fraction of inputs generated by AFL and by Token-Level
AFL are able to be parsed successfully when fuzzing V8. The higher parse rate of Token-Level
AFL shows that by mutating tokens instead of bytes, our technique is able to generate more
correct inputs.
Fuzzer Successful Parses Rate
AFL 10.68%
Token-Level AFL 30.26%

Table 6.2: Average number of bugs found by each of the tested fuzzers on the four major
JavaScript engines. (Fuzzilli does not have code for running on ChakraCore, so that table entry
is omitted).

V8 JSC
Spider-
Monkey

Chakra-
Core

Token-Level AFL 4.67 0.66 0.66 2
AFL 0 0 1 0.33
CodeAlchemist 0.66 0 0 3.33
Fuzzilli 0 1.33 0 N/A

Engines. The difference provided by Token-Level Fuzzing is immediately evident; 30.26%

of all inputs generated by Token-Level AFL were successfully parsed. The higher fraction

of successfully parsed inputs by using Token-Level Fuzzing shows that it allows the fuzzer

to generate far many more inputs that trigger useful functionality. This in turn should let the

fuzzer find deeper bugs and explore more of the javascript interpreter.

Answer for RQ1: The results show that Token-Level Fuzzing generates syntactically cor-

rect inputs about three times more often than Byte-Level Fuzzing, enabling much more

efficient fuzzing of interpreters.

6.4.3 Comparison with other State-of-the-Art Fuzzers

In this section we will explore how Token-Level AFL performs when compared against

other state-of-the-art JavaScript Engine fuzzers. For this comparison, we selected AFL, Fuzzilli

[99], which is maintained by Google’s Project Zero, and CodeAlchemist [95], a recent paper on

128



Token-Level Fuzzing Chapter 6

Figure 6.6: This graph shows the total number of unique bugs found by each of the tested
fuzzers when run on the four major JavaScript engines for a time period of 72 hours. This is an
aggregate number of bugs across the three runs, and only unique bugs are counted.

129



Token-Level Fuzzing Chapter 6

JS engine fuzzing. We evaluated all of these fuzzers on the latest available JavaScript engines

which were retrieved from the official repositories on Oct 1, 2019. Each test was run on 30

cores for 3 days.

As is usual for fuzzing research, we will use the number of bugs found as the main per-

formance metric. We consider any debug check, release check, or memory corruption to be

a bug for our purposes. Although debug checks may not always indicate a security issue was

found, they do indicate that an assumption was violated, and they show that a fuzzer is finding

bugs which have not been previously found and fixed by the vendor. To identify unique bugs

we filter based on any asserts hit, as well as manual analysis to ensure only unique issues are

counted.

Additionally, we investigate block coverage during this evaluation. Although block cover-

age may not be as meaningful a measurement as number of bugs found, it still shows useful

information [86]. To be able to trigger a bug, a fuzzer must be able to trigger the code where

the bug lies. So coverage is a necessary but not sufficient condition for finding bugs and can

be used as a performance metric. We collected block coverage information throughout each of

the fuzzing runs with minor modifications and post-processing after the fuzzing run.

Results: As shown in Figure 6.6, Token-Level AFL found the most crashes during the

3-day fuzzing periods. Token-Level AFL found 14 total bugs across the three runs, while the

second best performer, CodeAlchemist, found 5 bugs. Additionally, only one of the 14 bugs

found by Token-Level AFL was found by another tool! Each of the other 13 bugs were unique

to it. So although CodeAlchemist also found four bugs in ChakraCore, none of those bugs

overlapped with the four found by Token-Level AFL. This indicates that our method finds

bugs which other fuzzers are not currently able to find.

When investigating coverage we found that Token-Level AFL triggered a similar number of

basic blocks as Fuzzilli did, but less than CodeAlchemist. The average number of basic blocks

found in each configuration is shown in Table 6.3 and a graph of block coverage over the three

130



Token-Level Fuzzing Chapter 6

Figure 6.7: This graph shows the block coverage over time that each of the fuzzers had when
running on V8. Token-Level AFL was able to continually find and trigger new blocks through-
out the three day experiment.

131



Token-Level Fuzzing Chapter 6

Table 6.3: Average number of basic blocks triggered by each of the tools on each of the
target engines. Token-Level AFL performed similarly to Fuzzilli in terms of number of blocks
covered. CodeAlchemist, which used many more seeds, had the best block coverage.

V8 JSC
Spider-
Monkey

Chakra-
Core

Token-Level AFL 142225 246734 173557 175427
AFL 119847 214790 157881 132134
CodeAlchemist 168340 256665 212495 214401
Fuzzilli 137008 244538 184490 N/A

days of fuzzing is shown in Figure 6.7. When investigating these numbers we discovered that

the seeds may play a large role in it. The 32682 seeds given to CodeAlchemist alone triggered

about 160000 blocks in V8, whereas the 100 seeds given to Token-Level AFL only triggered

about 94000 blocks. Additionally, even with higher coverage, CodeAlchemist triggered much

less bugs, showing that code coverage does not yield bugs on its own; assumptions must be

violated as well. However, these numbers do show that Token-Level AFL was able to find

many blocks that were not triggered by the initial seeds and show that it is competitive in terms

of block coverage.

It is worth mentioning that the lack of bugs found by other tools does not necessarily

indicate a lack of performance. Instead, it is quite likely that because these fuzzers are open-

source they are currently being run and bugs which they can find are reported frequently. These

results do show that Token-Level AFL is finding bugs that these tools are not able to find as

easily.

Answer for RQ2: Token-Level AFL is able to find bugs which other state-of-the-art

fuzzers are unable to. Furthermore, in our tests, it found more bugs in the major JavaScript

engines than any of the other fuzzers which we compared it to.

132



Token-Level Fuzzing Chapter 6

Table 6.4: This table shows the bugs which Token-Level AFL found over a 60 day period
of running it against the latest JavaScript engines. Some of these bugs resulted in memory
corruption which could lead to exploitation and remote code execution. In the ”Status” column
we note if we have confirmed that the bug still exists in the most up-to-date code, reported
it, or if it was fixed internally. We are currently in the process of responsibly disclosing all
confirmed bugs to the respective software vendors.

Id Number JS Engine Description Status Bug ID
1 V8 Memory corruption while parsing due to parser error. Reported/Fixed CR 1015567
2 V8 Debug Check due to incorrect parsing of arrow functions. Reported/Fixed V8 9758
3 V8 Null dereference Fixed Internally
4 V8 Debug Check in regular expression runtime Reported/Fixed CR 1018592
5 V8 Out of bounds indexing in an array due to incorrect parsing Reported/Fixed CR 1021457
6 V8 Parser debug check due to incorrectly allocated variable Fixed Internally
7 V8 Debug Check in garbage collection Reported CR 1044261
8 V8 Debug check when converting integer to index Fixed Internally
9 V8 Triggers unreachable code due to frozen elements Reported/Fixed CR 1045572
10 V8 Unexpected error handler triggered in JIT Fixed Internally
11 V8 Check failed due to incorrect object size Reported/Fixed CR 1076106
12 V8 JIT bug leading to memory corruption Reported CVE-2020-6468
13 V8 Triggers unreachable code due to frozen elements Reported V8 10484
14 V8 Jit bug in bytecode analysis Fixed internally
15 V8 Parser error leading to debug check Confirmed in latest
16 V8 JIT bug related to a syntax error Confirmed in latest
17 JSC JIT bug resulting in an unexpected switch case Confirmed in latest
18 JSC JIT bug in FTL resulting in an unexpected null pointer Confirmed in latest
19 JSC JIT bug in DFG failing a validation check Confirmed in latest
20 JSC JIT bug in FTL to DFG Lowering Confirmed in latest
21 SpiderMonkey length related assertion Confirmed in latest
22 SpiderMonkey Parser assertion Confirmed in latest
23 SpiderMonkey Parser bug due to unexpected expression Confirmed in latest
24 ChakraCore Type mismatch in parsing Confirmed in latest
25 ChakraCore crash in the JIT Confirmed in latest
26 ChakraCore Array length changed unexpectedly Confirmed in latest
27 ChakraCore Out of Bounds in Array Confirmed in latest

133



Token-Level Fuzzing Chapter 6

6.4.4 Real World Bugs

We have shown that Token-Level AFL is effective for finding bugs in JavaScript engines

which other fuzzers are unable to find. These bugs were in the JavaScript engines that were

available as of October 1, 2019. Now we want to further explore Token-Level AFL’s ability to

find real world bugs in the latest engines when run over a long period of time. To do this, we run

our fuzzer for 60 days on the latest JavaScript engines. The fuzzer was restarted periodically

and JavaScript engines were updated throughout this experiment.

Table 6.4 shows a summary of all the bugs which Token-Level AFL found across JavaScript

engines. The table shows which engine each bug was found in and a description of the bug.

The status column shows if the bug has been reported by us and fixed. ”Confirmed” indicates

that we have confirmed the bug but we have not had time to triage and report it yet. ”Fixed

internally” means that they identified and fixed the bug without our report; sometimes these

were short-lived bugs.

In total, we found 27 bugs across the major JavaScript engines, demonstrating that Token-

Level AFL is capable of finding real world bugs. Note that we found bugs in many areas of

the JavaScript engines. These bugs were in various components: from the parser, to regular

expressions, to the JIT compilation. We believe this shows not only that Token-Level AFL is

capable of finding unknown bugs in JavaScript engines, but also that it is widely applicable and

can find bugs in many parts.

Also these bugs include some which are serious, and could lead to remote code execution.

We were able to write an RCE exploit for Chrome using bugs which we found with this tool.

Furthermore, we have been awarded over ten thousand dollars in bounties, showing the impact

of our research.

134



Token-Level Fuzzing Chapter 6

class var6 extends Object {
constructor ( a,b,c) {

super (1.1 ) 1 ;
}

};

new var6();

Listing 2: A bug found by Token-Level AFL in V8. This bug was due to a parser error which
incorrectly calculated the index into an array. This bug could lead to exploitable memory
corruption.

Answer for RQ3: Token-Level AFL is able to find real-world bugs in all of the major

JavaScriot engines. This shows this tool has high impact and can be used for finding

previously unknown bugs as well as for catching bugs as they are introduced.

6.4.5 Case Study

In this section we investigate some of the bugs to determine if Token-Level AFL is finding

bugs that involve invalid syntax, which strict grammar based tools may be unable to find.

In Listing 2, we show (a minimized) example of the a simple bug which Token-Level AFL

found. This was a bug in V8 which would lead to memory corruption and possibly could be

exploited. This one did require a syntax error to trigger. What happened was new parser code

was added that allowed certain incorrect syntax such as the one that is shown. Our tool was

able to find this syntax, partially because of its evolutionary behavior. The bug was fixed due

to our report and a bounty was awarded.

Another bug we found is shown in Listing 3, which triggered a Debug Check in V8’s

garbage collector. The code is a minimized version of the real testcase found, after removing

redundant statements. This bug is more complex than the previous example, and requires many

valid JavaScript statements. We attribute the ability of Token-Level AFL to produce complex

valid testcases like these to its coverage guided capabilities. The coverage guided nature will

135



Token-Level Fuzzing Chapter 6

function f () {
var14=[1,2,3,4,5,6,7,8];
var15=var14;
var14.length = 0x100 ;
var14.__defineGetter__(/./, function(){

var14.unshift ( 0x20 ) ;
var14.shift();
var var3=new Uint32Array(var14);
Object.entries(var14).toString();

} ) ;
print(Object.entries(var14).toString());

}
f();

Listing 3: This minimized test case triggers a debug check found in V8. This bug is caused
by repeated shifting and unshifting of an array which can trigger a debug check in the garbage
collector.

tend to discard testcases which do not hit new functionality, allowing it to explore deep code

paths.

Bugs found by our technique included both examples where incorrect syntax or semantics is

used to trigger a bug and examples where no such error exists in the test case. Many examples

of both are shown in Table 6.4. Also many of the bugs which we found were in the parser,

as opposed to the other tools we tested which tends to miss those bugs. Our results show

that Token-Level AFL is applicable to finding bugs both in the parser and elsewhere in the

JavaScript interpreter.

Answer for RQ4: Bugs found by Token-Level AFL include examples where both entirely

valid syntax is used and examples where invalid syntax is needed.

6.5 Discussion

Token-Level Fuzzing is a promising new technique which enables deep fuzzing of JavaScript

interpreters, without some of the limitations that come with grammar-based fuzzers. By per-

136



Token-Level Fuzzing Chapter 6

forming coverage-guided mutations on tokens, rather than individual bytes, it can easily mu-

tate the highly-structured inputs involved in the language. Additionally, because Token-Level

Fuzzing is able to find bugs with unusual constructs (syntax and semantics), we believe it

will complement the current grammar-based approaches nicely for JavaScript fuzzing. In this

section, we will discuss the generalizability of our technique, as well as directions for future

work.

6.5.1 Generalizability

Although we implemented and tested Token-Level AFL only on JavaScript engines, the

technique is likely applicable to other ”language-based” programs, such as compilers, inter-

preters and parsers. It would need a different pre-processor, specific to the target, that can

separate the text into tokens and identify variables. Similarly, a new decoder would need to be

written for that target to transform the encoded input back into the original language. These

are not technical challenges, and we believe this technique should be effective on other token-

based programs, especially given the results it has shown on JavaScript engines. Furthermore,

this is likely easier than adapting a grammar-based fuzzer to a new target.

6.5.2 Seed Selection

Token-Level AFL relies heavily on the input seeds, not just in picking valid tokens, but

also the seeds are where the fuzzer begins mutating. It’s intuitive that selection can matter

greatly. If a seed is close to triggering a bug then the number of mutations needed may be

small. In fact, we noticed substantial similarities between some of the bugs that we found and

our input testcases which we provided. Additionally, having seeds that trigger a wide variety

of functionality helps the fuzzer to explore the various areas of code in the interpreter.

One result shown in Section 6.4 is that Token-Level AFL’s block coverage could likely be

137



Token-Level Fuzzing Chapter 6

improved by having better seeds and giving more seeds to the fuzzer. For our experiments, we

used a very ad hoc approach, and our seeds were very incomplete. Applying a better method

of seed collection could have a big impact for improving results. For example, Skyfire [105]

could be used to generate promising JavaScript seeds. There are also various papers suggesting

better seed selection strategies which we could employ to improve our results [106, 107].

6.5.3 Future Work

Because our technique transforms the JavaScript tokens into the familiar binary-based for-

mat, we could easily begin applying the various advancements that have been made in the field.

For example, because there are so many edges in the JavaScript interpreters, we find that there

are many collisions in the edge tracking of AFL. We could use the path sensitivity of Col-

lAFL [108] to help remedy this. Applying ensemble based fuzzing [80], by using Token-Level

AFL alongside of a grammar based approach could allow both techniques to build on top of

their results. Another direction would be to try to use better prioritization on the inputs as

suggested by [109], especially since we typically have tens of thousands of inputs in the fuzzer

queue after a few days of fuzzing.

6.6 Conclusion

In this paper, we have presented Token-Level Fuzzing, a new technique for fuzzing language-

based programs, such as interpreters. Token-Level Fuzzing allows fuzzing these complex for-

mats without the need of a grammar, allowing it to exercise both the parsing layers as well as

the actual interpretation. This relatively simple idea, that we can fuzz at an intermediate level

between grammar-based and byte-based fuzzers, provides security researchers a powerful new

technique which can be built upon for further research.

138



Token-Level Fuzzing Chapter 6

In our evaluation Token-Level AFL found 27 new bugs, among which were multiple high-

severity issues, across the most up-to-date JavaScript engines. Given the difficulty of fuzzing

such programs, we believe this showcases the potential of our technique. Token-Level Fuzzing

could show itself to be a powerful new paradigm of fuzzing as security researchers apply it to

fuzzing other security critical technologies, and build upon it in future work.

139



Chapter 7

Related Work

7.1 Driller

7.1.1 Guided Fuzzing

Fuzzing was originally introduced as one of several tools to test UNIX utilities [110]. Since

then, it has been extensively used for the black-box security testing of applications. However,

fuzzing suffers from a lack of guidance – new inputs are generated based on random mutations

of prior inputs, with no control over which paths in the application should be targeted.

The concept of guided fuzzing arose to better direct fuzzers toward specific classes of

vulnerabilities. For example, many studies have attempted to improve fuzzing by selectively

choosing optimal test cases, honing in on interesting regions of code contained in the target bi-

nary [41,42]. Specifically, Dowser [41] uses static analysis to first identify regions of code that

are likely to lead to a vulnerability involving a buffer overflow. To analyze this code, Dowser

applies taint-tracking to available test cases to determine which input bytes are processed by

these code regions and symbolically explores the region of code with only these bytes being

symbolic. Unfortunately, Dowser has two drawbacks: it requires test cases to reach the region

140



Related Work Chapter 7

of code containing the memory corruption vulnerability, and it only supports buffer overflow

vulnerabilities. Unlike Dowser, Driller supports arbitrary vulnerability specifications (though

the current implementation focuses on vulnerabilities that lead to a crash) and does not require

input test cases. Additionally, Dowser still suffers from the path explosion problem of symbolic

execution, while Driller mitigates this problem through its use of fuzzing.

Similar to Dowser, BuzzFuzz [111] applies taint-tracking to sample input test cases to

discover which input bytes are processed by ’attack-points’ defined by the auditor, most often

system call arguments and library code. Unlike BuzzFuzz, Driller does not rely on input test

cases that reach vulnerable code, nor does it rely on auditor defined ’attack-points’.

In another attempt to improve the state of fuzzing, Flayer [112] allows an auditor to skip

complex checks in the target application at-will. This allows the auditor to fuzz logic deeper

within the application without crafting inputs which conform to the format required by the

target, at the cost of time spent investigating the validity of crashing inputs found. Similarly,

Taintscope uses a checksum detection algorithm to remove checksum code from applications,

effectively “patching out” branch predicates which are difficult to satisfy with a mutational

approach [113]. This enables the fuzzer to handle specific classes of difficult constraints. Both

these approaches, however, either require a substantial amount of human guidance in Flayer’s

case, or manual effort to determine false positives during crash triaging. Driller does not mod-

ify any code of the target application, meaning crashes discovered do not require an in-depth

investigation, additionally Driller does not require human intervention, as it attempts to dis-

cover well-formed inputs using its concolic execution backend.

Another approach is Hybrid Fuzz Testing, in which limited symbolic exploration is utilized

to find “frontier nodes” [114]. Fuzzing is then employed to execute the program with random

inputs, which are preconstrained to follow the paths leading to a frontier node. This method

is useful for ensuring that the fuzzed inputs take different paths early in the execution of the

binary, but it does not handle complex checks, deeper in the program, which separate compart-

141



Related Work Chapter 7

ments. Additionally, the path explosion problem effectively prevents the symbolic exploration

from solving more than just the shallow checks in the binary.

7.1.2 Whitebox Fuzzing

Other systems attempt to blend fuzzing with symbolic execution to gain maximal code cov-

erage [43, 44, 115, 116]. These approaches tend to augment fuzzing by symbolically executing

input produced by a fuzzing engine, collecting symbolic constraints placed on that input, and

negating these constraints to generate inputs that will take other paths. However, these tools

lack Driller’s key insight, that symbolic execution is best used to recover input for driving code

execution between application compartments. Without this insight, the unique capabilities of

symbolic execution are wasted on creating divergent paths within compartments. These tools

are, in essence, symbolic execution engines acting in a serialized manner, one path at a time,

and as such, they are deeply affected by the path explosion problem.

While Driller is similar in a number of implementation details, we propose that we can

offload the majority of unique path discovery to an instrumented fuzzing engine. We limit

our costly symbolic execution invocations to satisfy conditions that will allow us to enter ad-

ditional compartments for fuzzing. Since we only use symbolic execution for generating the

basic block transitions that the fuzzer has not been able to generate itself, the symbolic exe-

cution engine handles a manageable number of inputs. Conversely, the aforementioned tools

repetitively negate constraints using concolic execution, slowly analyzing an exponentially in-

creasing number of transitions, most of which can be analyzed more efficiently by a fuzzer.

7.1.3 Concolic Execution

With the continuing increase of computing power in recent years, concolic execution (also

known as dynamic symbolic execution) has risen in popularity. Introduced with EXE [117],

142



Related Work Chapter 7

refined with KLEE [45], and applied to binary code with Mayhem [47] and S2E [46], con-

colic execution engines interpret an application, model user input using symbolic variables,

track constraints introduced by conditional jumps, and use constraint solvers to create inputs

to drive applications down specific paths. While these systems are powerful, they suffer from a

fundamental problem: if a conditional branch depends on symbolic values, it is often possible

to satisfy both the taken and non-taken condition. Thus, the state has to fork and both paths

must be explored. This quickly leads to the well-known path explosion problem, which is the

primary inhibitor of concolic execution techniques.

Various approaches have been attempted to mitigate the path explosion problem. Veritest-

ing [50] proposed an advanced path merging technique to reduce the number of paths being

executed, Firmalice [37] performs extensive static analysis and limits symbolic execution to

small slices of code, and under-constrained symbolic execution exchanges precision for scal-

ability [69, 118]. However, these techniques either fail to mitigate the path explosion problem

(Veritesting delays the explosion, but such explosion still eventually occurs) or produce inputs

that are not directly actionable (for example, the slicing done by Firmalice produces inputs that

satisfy the constraints of a particular slice, but no input is provided to reach the code in the first

place).

Driller attempts to mitigate this by offloading most of the path exploration task to its fuzzing

engine, using concolic execution only to satisfy complex checks in the application that guard

the transition between compartments.

7.2 Piston

Piston leverages many binary analysis techniques to analyze an executable, determine how

to remotely apply the patch, exploit, and repair the remote process. In this section, we will

detail work that proposed the program analysis techniques that we use in our system, and

143



Related Work Chapter 7

frame Piston in relation to other hot-patching techniques.

7.2.1 Hot-patching

Piston’s core contribution is in extending the concept of hot patching to remote systems.

This can include, like in our evaluation, remote user-space processes but, additionally, could

include internet-connected embedded devices that may otherwise not have an update function-

ality.

Before Piston, hot patching techniques, or dynamic software updating approaches have

been constrained to patching local processes, often with explicit support from the host system.

Originally designed to patch small C programs, they have scaled up to the ability to patch the

Linux kernel [119–123]. However, aside from being reliant on source code, these approaches

require administrative access to the host machine, which is often unavailable.

To reduce the difficulty of and level of access required by hot-patching systems, techniques

have been developed to include hot-patching support in the applications themselves. These

systems, which are available for both user-space software [124, 125] and embedded device

firmware [58, 126, 127], ease the administrative requirement, but still require pre-planning to

include this functionality.

One hot-patching system, ClearView [60], is worth mentioning as it works by monitoring

binary code, detecting when it is being exploited, and automatically generating and applying

defensive patches. In the latter step, ClearView attempts to repair the state of the exploited

process state by enforcing invariants. The concept of repairing the process state after exploita-

tion is similar between ClearView and Piston. However, unlike ClearView, Piston does not

require administrative access or, in fact, any presence on the device on which the process that

needs patching is running. Piston patches, repairs, and resumes remotely, leveraging an exploit

to achieve access.

144



Related Work Chapter 7

Like most hot-patching systems, Piston relies on the analyst to provide a state transition

routine when a patch that it is applying would modify data structures in the program. Recently,

some work has been done in automatically recovering such a state transition routine [128,129].

Though current work requires access to source code (which Piston does not have), a future

extension of these techniques to binary code would increase the range of patches that Piston

can automatically apply.

Exploit writers targeting operating system kernels have also found themselves repairing

state of various parts of memory to allow the kernel to continue running after their exploit

payload has been run. This is similar to the recovery and rollback routines used by Piston, but

kernel exploiters have done this in a manual, ad hoc manner [130].

7.2.2 Code Injection

Piston patches binaries by injecting new code into the running process. The concept of

injecting code at runtime with an exploit has been explored before, albeit not for patching

purposes.

Windows malware often achieves code injection by inserting a DLL into the memory of the

victim process [131]. This is done to add malicious functionality to a local process. However,

this is done locally, as opposed to Piston’s remote code injection, and cannot be done through

an exploit. To our knowledge, Piston is the first approach that can inject its code remotely, via

an exploit, and repair the damage caused by that exploit so that the application can continue.

7.2.3 Analysis Techniques

We utilize many existing binary analysis techniques to build Piston. However, we claim no

advancement in the base of binary analysis: Piston’s contribution is in the application of binary

analyses to remote hot-patching, in composing known analysis techniques in a novel way.

145



Related Work Chapter 7

First, we use binary diffing techniques to identify what needs to be updated between the

original and the replacement binary. This field has been extensively researched, and many

approaches exist for identifying differences in executables, both statically [64, 132–134] and

dynamically [135]. While we leverage diffing to determine what patches to apply to the remote

process, diffing has also been used for everything from bug searching [136] to automatic exploit

generation [137].

Once it determines the patches to apply, Piston uses program analysis techniques to create

its repair plan. This includes a type of symbolic execution called under-constrained symbolic

execution [69], which extends classical dynamic symbolic execution techniques [45–47] to

work on isolated functions in a program. Additionally, we use static analysis techniques to

recover the control flow graph of individual functions and to reason about data dependencies

between stack variables. We leverage an open-source binary analysis framework, angr1 [37]

for this, which, in turn, uses several static analyses to recover control flow [138–142], identify

variables [66], and determine data dependencies [143–145].

7.3 Abstraction Functions in Fuzzing

Fuzzing is a well-known technique for program testing by generating random data as input

to programs under test, and has drawn much research attention over a wide span of time. The

main goal of fuzzing techniques is to violate implicit expectations made by the developer on

the input and expose resulting security flaws or bugs.

Input generation: This defines how the inputs are generated by the fuzzing technique. Most

of the research in fuzzing occurs in this aspect. There are many well-known input generation

techniques:

1Available at https://github.com/angr/angr

146



Related Work Chapter 7

Mutation-based: Here, the fuzzer starts with some seed inputs and new inputs are generated

by mutating certain regions of existing inputs [29].

Evolution-based: In this case, evolutionary techniques are used to combine interesting inputs

to generate new inputs [19]. We formally define the definition of interesting in Sec-

tion 5.2.

Grammar-based: The fuzzer generates input that satisfies a specified grammar. Program that

expect input to conform to a grammar, such as interpreters, and file editors, are gener-

ally fuzzed with this input generation technique. If the input structure can be specified

as a grammar, then grammar-based techniques can be effective in triggering complex

behavior in the target program.

Note that these techniques are not exclusive—tools, such as Dowser [76], combine taint track-

ing and symbolic execution to generate interesting inputs to trigger buffer overflows. Similarly,

Driller [33] combines three strategies: mutation, evolution, and symbolic execution.

Input selection or evaluation: A fuzzing technique must know the effectiveness of its gener-

ated inputs, so that it can determine if a new input or mutation strategy was useful. Measuring

the effectiveness needs visibility into the program under test and, as such, black-box techniques

can only have a limited input evaluation by examining the output of the program. In Section 5.2

we formally redefine input selection and input evaluation as abstraction functions, however for

now we will use the informal terms. There are two well-known input evaluation techniques:

Goal-based or directed: Here the input is evaluated on the likelihood of achieving a goal or

causing program to reach a certain state. Dowser [76] and BuzzFuzz [146] generate in-

puts that are likely to cause buffer overflows. libFuzzer-gv [89] explored guiding the

fuzzer based on the stack depth and on the number of memory allocations made. How-

147



Related Work Chapter 7

ever, these input selection strategies are specialized for each goal and cannot be general-

ized.

Coverage-based: Here the input is evaluated based on what code is triggered by it on the test

program. The intuition is simple: dynamic techniques cannot find a bug if they do not

execute the code containing the bug, and thus, a higher code coverage implies a higher

chance of bugs. Most general fuzzing techniques, such as AFL [29], VUzzer [19], and

syzkaller [88] are coverage based.

Most existing research in fuzzing attempts to find new input generation techniques to efficiently

generate effective inputs. However, the importance of input selection and evaluation in fuzzing

remains an under-explored area and a promising research direction. Wang et al [81] take a

step down that road, exploring the differences in some selection strategies. Our work (done

independently and concurrently) further explores the effectiveness of various abstraction func-

tions, evaluating a different set of fuzzing strategies, in a larger experiment, with a thorough

investigation into the effectiveness of the various strategies.

7.4 Token-Level Fuzzing

Fuzzing is one of the most effective and scalable vulnerability discovery solutions. Fuzzers

generate a vast number of test cases to test target applications and monitor their runtime exe-

cution to discover unintended security bugs. Most fuzzing research can be divided into three

main categories: Input Generation. Program Access. Coverage goals.

Input Generation. There are two main classes of how a fuzzer produces inputs: mutational

fuzzing, and generational fuzzing. Mutational fuzzing [19,99,147] modifies one or many seeds

of typically well-formed inputs to generate new inputs. Whereas, generational fuzzing tends to

be more structure-aware and needs to understand the input format, then it proceeds to generate

148



Related Work Chapter 7

inputs following that structure [95, 148, 149].

Program Access. Whitebox fuzzing attempts to do advanced program analysis and collect

constraints from conditional branches while execution. Solutions obtained from solving these

constraints using constraint solver are then mapped to new inputs [33, 44]. Whereas black-

box fuzzing does not have any access to the internals of the application being tested [150,151].

Then in the middle is greybox fuzzing, which uses lightweight techniques to gather information

such as branch coverage [152].

Coverage Goals. Directed fuzzing has the objective of targeting a set of deep paths for

optimization [153]. Coverage-based fuzzing uses different types of tracking such as block

coverage, edge coverage, etc. These are used to track the interesting inputs and keep them

around for further mutations [21, 29, 88].

7.4.1 Evolutionary Fuzzing

American Fuzzy Lop (AFL) is a security-oriented grey-box fuzzer that does compile-time

instrumentation [29]. It has been significantly used to find vulnerabilities and other interesting

bugs in many applications [154]. Whenever AFL comes across an input that discovers a new

path, it keeps that input around and mutates it further to see if it can hit a new basic block.

One of the most promising features of AFL is evolutionary fuzzing which uses coverage based

fuzzing to generate new inputs by evolving the promising current inputs. Whenever an input

triggers a new edge in the program that input would be added to the queue to fuzz further. An

efficient evolutionary fuzzer should be able to reach high coverage by using the feedback from

each test case to evolve better test cases that cover the majority of the program code.

There has been much work on improving evolutionary fuzzing. For example, Vuzzer [19]

focuses on extracting two main features namely data-flow features (using taint analysis) and

control flow features to make a smart feedback loop. These features help infer important prop-

149



Related Work Chapter 7

erties of input and prioritize/ deprioritize certain paths. Vuzzer uses static analysis to help with

the process of feature extraction [19]. AFLFAST, on the other hand, uses a Markov Chain

search strategy to choose low-frequency paths enabling it to explore more paths in the same

fuzzing time [155]. Another approach is Angora [21]. Angora uses byte-level taint tracking

and gradient-based search algorithm as well as input length exploration and context-sensitive

branch count.

7.4.2 JavaScript Fuzzing

Javascript engines are one of the most complicated components of modern-day browsers

making it a very popular target for attackers. There have been continuous efforts towards

improving the fuzzers to find JavaScript engine vulnerabilities. Some of the most popular

JavaScript fuzzers have been centered around generating syntactically correct test cases based

on either a predefined context-free grammar or a trained probabilistic language model. JS-

FunFuzz is one such JS grammar-based fuzzer that relies purely on the generative approach

to create new test-cases [156]. It has been widely used and covers a wide range of JavaScript

language features. Another example of a generative approach is Domato [157], which uses

HTML, CSS, and JavaScript grammar to generate samples that target DOM specific logic.

Coverage-guided fuzzing has also been successful in finding JavaScript engine vulnera-

bilities. One of the most common targets for mutation is JS Abstract Syntax Tree [92, 94].

Fuzzilli [99] developed an intermediate language called FuzzIL and the mutations are defined

on it for better control and data flows while fuzzing. Fuzzili pivoted on the idea of generating

semantically valid programs in high numbers to avoid the need for try-catch constructs.

Interestingly, CodeAlchemist [95] presents an alternative idea to use semantics-aware as-

sembly to produce JavaScript code snippets. They break JS seeds into code fragments and

each fragment is tagged with constraints and analyzed for used variables. The code fragments

150



Related Work Chapter 7

are then combined to produce syntactically and semantically correct test-cases. LangFuzz [96]

also employed the concept of code fragments combined with generative and mutation-based

fuzzing to maintain the syntax and semantics of code samples. One key feature of LanFuzz

is that its language-independent, which means that it maintains its testing strategy solely on

grammar and existing programs and not language-specific information.

Another state-of-the-art work on JS fuzzing uses the concept of aspect preserving muta-

tion [158]. The goal of this technique is to keep beneficial properties from the original seed

and retain them across mutations. For example, control-flow structures like loops can trig-

ger JIT compilation and could find a buggy optimization logic. By preserving such aspects, the

properties to trigger vulnerabilities can remain, allowing the fuzzer to find more vulnerabilities.

151



Chapter 8

Looking Forward

Throughout my graduate studies, I have tried to examine problems in unique ways. In my work

on exploring abstraction functions, I identified a major component of fuzzing that had been

largely ignored in research, and I showed how by using different strategies we can find more

bugs. In Token-Level fuzzing, I have introduced a new paradigm of fuzzing for interpreters,

which differs from all the previous approaches, yet shows the ability to do as well as state of

the art grammar-based fuzzers.

One major area of work which I would like to explore more in my future research is how

to include feedback from humans into automated bug hunting techniques. In my work so far,

I have focused mainly on fully automated techniques. Of course, there are many situations

where humans could be in the loop, both assisted by and assisting the tools that they use. In

industry, humans are monitoring and working with bug-hunting techniques all the time in order

to eliminate bugs in security-critical software. As such, I think that we can use human effort to

guide analyses, as well as making analyses that will guide humans.

Another future research direction is to explore how we can guide fuzzers towards finding

bugs, rather than finding more code coverage. My work in Chapter 5, was a first stab at discov-

ering different metrics for fuzzer exploration. However, that research only touches the surface

152



of an area which might hold great potential for improving bug-finding capabilities.

There are many unsolved issues in vulnerability discovery, and many advancements will be

needed before we can reach an end goal of having no exploitable vulnerabilities remaining. I

hope this thesis can be a catalyst for future researchers and that they will approach problems in

a unique way when building upon the work done here.

153



Bibliography

[1] Google, “Chromium github.” https://github.com/chromium/chromium.

[2] Apple, “Webkit github.” https://github.com/WebKit/webkit.

[3] “Firefox github, author=Mozilla,
note=https://github.com/mozilla/gecko-dev.”

[4] Microsoft, “Edge.” https://github.com/MicrosoftEdge.

[5] Linux, “Linux github.” https://github.com/torvalds/linux.

[6] Microsoft, “Windows technet.” https://docs.microsoft.com/en-us/
previous-versions//cc767881(v=technet.10).

[7] Apple, “Osx wiki.” https://en.wikipedia.org/wiki/MacOS.

[8] I. Fratric, “Bypassing mitigations by attacking jit server.”
https://raw.githubusercontent.com/google/p0tools/master/
JITServer/JIT-Server-whitepaper.pdf.

[9] B. Sun and C. Xu, “Bypassing memory mitigations using data only.”
https://conference.hitb.org/hitbsecconf2017ams/sessions/
bypassing-memory-mitigations-using-data-only-
exploitation-techniques-part-ii/.

[10] B. Azad, “Examining pointer authentication on iphone xs.”
https://googleprojectzero.blogspot.com/2019/02/examining-
pointer-authentication-on.html.

[11] B. Kirkpatrick, Computer security is algorithmically intractable, .

[12] C. Salls, Y. Shoshitaishvili, N. Stephens, C. Kruegel, and G. Vigna, Piston:
Uncooperative remote runtime patching, in Proceedings of the 33rd Annual Computer
Security Applications Conference, pp. 141–153, 2017.

[13] A. Ramaswamy, S. Bratus, S. W. Smith, and M. E. Locasto, Katana: A hot patching
framework for elf executables, in 2010 International Conference on Availability,
Reliability and Security, pp. 507–512, IEEE, 2010.

154

https://github.com/chromium/chromium
https://github.com/WebKit/webkit
https://github.com/mozilla/gecko-dev
https://github.com/MicrosoftEdge
https://github.com/torvalds/linux
https://docs.microsoft.com/en-us/previous-versions//cc767881(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions//cc767881(v=technet.10)
https://en.wikipedia.org/wiki/MacOS
https://raw.githubusercontent.com/google/p0tools/master/JITServer/JIT-Server-whitepaper.pdf
https://raw.githubusercontent.com/google/p0tools/master/JITServer/JIT-Server-whitepaper.pdf
https://conference.hitb.org/hitbsecconf2017ams/sessions/bypassing-memory-mitigations-using-data-only-exploitation-techniques-part-ii/
https://conference.hitb.org/hitbsecconf2017ams/sessions/bypassing-memory-mitigations-using-data-only-exploitation-techniques-part-ii/
https://conference.hitb.org/hitbsecconf2017ams/sessions/bypassing-memory-mitigations-using-data-only-exploitation-techniques-part-ii/
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html


[14] R. Langner, Stuxnet: Dissecting a cyberwarfare weapon, IEEE Security & Privacy 9
(2011), no. 3 49–51.

[15] C. honzalez, “Software updates are the new hurdle in iot security.” https:
//www.machinedesign.com/automation-iiot/article/21836333/
software-updates-are-the-new-hurdle-in-iot-security.

[16] A. Green, “The mirai botnet attack.”
https://www.varonis.com/blog/the-mirai-botnet-attack-and-
revenge-of-the-internet-of-things/.

[17] M. Bhme, V. Pham, and A. Roychoudhury, Coverage-based greybox fuzzing as markov
chain, IEEE Transactions on Software Engineering 45 (2019), no. 5 489–506.

[18] W. S. ChangwooMin and T. Kim, Designing new operating primitives to improve
fuzzing performance, .

[19] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, Vuzzer:
Application-aware evolutionary fuzzing, in Proceedings of the 2017 Network and
Distributed System Security Symposium, 2017.

[20] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu, Steelix:
Program-state based binary fuzzing, in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, (New York, NY, USA),
pp. 627–637, ACM, 2017.

[21] P. Chen and H. Chen, Angora: Efficient fuzzing by principled search, in 2018 IEEE
Symposium on Security and Privacy (SP), pp. 711–725, IEEE, 2018.

[22] M. Bill and J. Scott-Railton, “The million dollar dissident.”
https://citizenlab.ca/2016/08/million-dollar-dissident-
iphone-zero-day-nso-group-uae/.

[23] J. J. Rooney and L. N. V. Heuvel, Root cause analysis for beginners, Quality progress
37 (2004), no. 7 45–56.

[24] A. I. Sotirov, Automatic vulnerability detection using static source code analysis. PhD
thesis, Citeseer, 2005.

[25] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and G. Vigna,
{DR}.{CHECKER}: A soundy analysis for linux kernel drivers, in 26th {USENIX}
Security Symposium ({USENIX} Security 17), pp. 1007–1024, 2017.

[26] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, Bap: A binary analysis
platform, in International Conference on Computer Aided Verification, pp. 463–469,
Springer, 2011.

155

https://www.machinedesign.com/automation-iiot/article/21836333/software-updates-are-the-new-hurdle-in-iot-security
https://www.machinedesign.com/automation-iiot/article/21836333/software-updates-are-the-new-hurdle-in-iot-security
https://www.machinedesign.com/automation-iiot/article/21836333/software-updates-are-the-new-hurdle-in-iot-security
https://www.varonis.com/blog/the-mirai-botnet-attack-and-revenge-of-the-internet-of-things/
https://www.varonis.com/blog/the-mirai-botnet-attack-and-revenge-of-the-internet-of-things/
https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/


[27] K. Chen and D. Wagner, Large-scale analysis of format string vulnerabilities in debian
linux, in Proceedings of the 2007 workshop on Programming languages and analysis
for security, pp. 75–84, 2007.

[28] G. Balakrishnan and T. Reps, WYSINWYX: What You See is Not What you Execute.
PhD thesis, University of Wisconsin at Madison, August, 2007.

[29] M. Zalewski., American fuzzy lop, 2017.
http://lcamtuf.coredump.cx/afl/technical details.txt.

[30] https://llvm.org/docs/LibFuzzer.html, 2019.

[31] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, et. al., Sok:(state of) the art of war: Offensive
techniques in binary analysis, in 2016 IEEE Symposium on Security and Privacy (SP),
pp. 138–157, IEEE, 2016.

[32] P. Godefroid, M. Y. Levin, D. A. Molnar, et. al., Automated whitebox fuzz testing., in
Proceedings of the Symposium on Network and Distributed System Security (NDSS),
2008.

[33] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, Driller: Augmenting Fuzzing Through Selective Symbolic
Execution, in Proceedings of the 2016 Network and Distributed System Security
Symposium, 2016.

[34] “Chrome issue 1076708.” https:
//bugs.chromium.org/p/chromium/issues/detail?id=1076708.

[35] Secunia, “Resources vulnerability review 2015.” http:
//secunia.com/resources/vulnerability-review/introduction/.

[36] “Vulnerability distribution of CVE security vulnerabilities by type.”
http://www.cvedetails.com/vulnerabilities-by-types.php.

[37] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, Firmalice -
automatic detection of authentication bypass vulnerabilities in binary firmware, .

[38] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and J. Regehr, Taming
compiler fuzzers, in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), vol. 48, ACM, 2013.

[39] J. DeMott, “Understanding how fuzzing relates to a vulnerability like Heartbleed.”
http://labs.bromium.com/2014/05/14/understanding-how-
fuzzing-relates-to-a-vulnerability-like-heartbleed/.

156

http://lcamtuf.coredump.cx/afl/technical_details.txt
https://llvm.org/docs/LibFuzzer.html
https://bugs.chromium.org/p/chromium/issues/detail?id=1076708
https://bugs.chromium.org/p/chromium/issues/detail?id=1076708
http://secunia.com/resources/vulnerability-review/introduction/
http://secunia.com/resources/vulnerability-review/introduction/
http://www.cvedetails.com/vulnerabilities-by-types.php
http://labs.bromium.com/2014/05/14/understanding-how-fuzzing-relates-to-a-vulnerability-like-heartbleed/
http://labs.bromium.com/2014/05/14/understanding-how-fuzzing-relates-to-a-vulnerability-like-heartbleed/


[40] S. Bucur, Improving Scalability of Symbolic Execution for Software with Complex
Environment Interfaces. PhD thesis, École Polytechnique Fédérale de Lausanne, 2015.

[41] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, Dowsing for overflows: A
guided fuzzer to find buffer boundary violations., in Proceedings of the USENIX
Security Symposium, 2013.

[42] M. Neugschwandtner, P. Milani Comparetti, I. Haller, and H. Bos, The BORG:
Nanoprobing binaries for buffer overreads, in Proceedings of the ACM Conference on
Data and Application Security and Privacy (CODASPY), ACM, 2015.

[43] P. Godefroid, N. Klarlund, and K. Sen, DART: Directed automated random testing, in
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), vol. 40, pp. 213–223, ACM, 2005.

[44] P. Godefroid, M. Y. Levin, and D. Molnar, SAGE: Whitebox fuzzing for security testing,
Communications of the ACM 55 (2012), no. 3 40–44.

[45] C. Cadar, D. Dunbar, D. R. Engler, et. al., Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs., in OSDI, vol. 8, pp. 209–224,
2008.

[46] V. Chipounov, V. Kuznetsov, and G. Candea, S2E: A platform for in-vivo multi-path
analysis of software systems, vol. 47. ACM, 2012.

[47] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, Unleashing mayhem on binary
code, in Security and Privacy (SP), 2012 IEEE Symposium on, pp. 380–394, IEEE,
2012.

[48] F. Bellard, QEMU, a fast and portable dynamic translator, in USENIX Annual
Technical Conference, FREENIX Track, pp. 41–46, 2005.

[49] N. Nethercote and J. Seward, Valgrind: a framework for heavyweight dynamic binary
instrumentation, in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), vol. 42, pp. 89–100, ACM, 2007.

[50] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, Enhancing symbolic execution
with veritesting, in Proceedings of the International Conference on Software
Engineering (ICSE), pp. 1083–1094, ACM, 2014.

[51] DARPA, “Cyber Grand Challenge.” http://cybergrandchallenge.com.

[52] LegitBS, “DEFCON Capture the Flag.” https://legitbs.net/.

[53] DARPA, “Cyber Grand Challenge Challenge Repository.” https://github.com/
CyberGrandChallenge/samples/tree/master/cqe-challenges.

157

http://cybergrandchallenge.com
https://legitbs.net/
https://github.com/CyberGrandChallenge/samples/tree/master/cqe-challenges
https://github.com/CyberGrandChallenge/samples/tree/master/cqe-challenges


[54] P. Garg, “Fuzzing - mutation vs. generation.”
http://resources.infosecinstitute.com/fuzzing-mutation-vs-
generation/.

[55] R. van der Meulen, “Gartner says 6.4 billion connected ”things” will be in use in 2016,
up 30 percent from 2015.”
http://www.gartner.com/newsroom/id/3165317.

[56] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras, The attack of the clones:
a study of the impact of shared code on vulnerability patching, in Security and Privacy
(SP), 2015 IEEE Symposium on, pp. 692–708, IEEE, 2015.

[57] M. A. McQueen, T. A. McQueen, W. F. Boyer, and M. R. Chaffin, Empirical estimates
and observations of 0day vulnerabilities, in System Sciences, 2009. HICSS’09. 42nd
Hawaii International Conference on, pp. 1–12, IEEE, 2009.

[58] H. Martorell, J.-C. Fabre, M. Roy, and R. Valentin, Towards dynamic updates in
autosar, in SAFECOMP 2013-Workshop CARS (2nd Workshop on Critical Automotive
applications: Robustness & Safety) of the 32nd International Conference on Computer
Safety, Reliability and Security, p. NA, 2013.

[59] Oracle, “Ksplice.” http://www.ksplice.com/.

[60] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco,
F. Sherwood, S. Sidiroglou, G. Sullivan, et. al., Automatically patching errors in
deployed software, in Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pp. 87–102, ACM, 2009.

[61] D. Goodin, Windows 7, not xp, was the reason last weeks wcry worm spread so widely,
2017.
https://arstechnica.com/security/2017/05/windows-7-not-xp-
was-the-reason-last-weeks-wcry-worm-spread-so-widely/.

[62] F. Castaneda, E. C. Sezer, and J. Xu, Worm vs. worm: preliminary study of an active
counter-attack mechanism, in Proceedings of the 2004 ACM workshop on Rapid
malcode, pp. 83–93, ACM, 2004.

[63] “Cve-2013-2028 advisory.” https:
//web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-2028.

[64] T. Dullien and R. Rolles, Graph-based comparison of executable objects (english
version), SSTIC 5 (2005) 1–3.

[65] Y.-Y. Chang, P. Zavarsky, R. Ruhl, and D. Lindskog, Trend analysis of the cve for
software vulnerability management, in Privacy, Security, Risk and Trust (PASSAT) and
2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011
IEEE Third International Conference on, pp. 1290–1293, IEEE, 2011.

158

http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
http://www.gartner.com/newsroom/id/3165317
http://www.ksplice.com/
https://arstechnica.com/security/2017/05/windows-7-not-xp-was-the-reason-last-weeks-wcry-worm-spread-so-widely/
https://arstechnica.com/security/2017/05/windows-7-not-xp-was-the-reason-last-weeks-wcry-worm-spread-so-widely/
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-2028
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-2028


[66] J. Lee, T. Avgerinos, and D. Brumley, TIE: principled reverse engineering of types in
binary programs, in Proceedings of the Network and Distributed System Security
Symposium, NDSS 2011, San Diego, California, USA, 6th February - 9th February
2011, 2011.

[67] M. Noonan, A. Loginov, and D. Cok, Polymorphic type inference for machine code, in
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 27–41, ACM, 2016.

[68] R. Wang, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, Steal this movie: Automatically
bypassing drm protection in streaming media services., in USENIX Security,
pp. 687–702, 2013.

[69] D. A. Ramos and D. Engler, Under-constrained symbolic execution: correctness
checking for real code, in 24th USENIX Security Symposium (USENIX Security 15),
pp. 49–64, 2015.

[70] C. Mulliner, J. Oberheide, W. Robertson, and E. Kirda, Patchdroid: Scalable
third-party security patches for android devices, in Proceedings of the 29th Annual
Computer Security Applications Conference, pp. 259–268, ACM, 2013.

[71] “Nginx cve 2013-2028 patch.”
http://nginx.org/download/patch.2013.chunked.txt.

[72] G. McManus, hal, and saelo, “Nginx cve 2013-2028 metasploit exploit.”
https://github.com/rapid7/metasploit-framework/blob/
master/modules/exploits/linux/http/nginx chunked size.rb.

[73] “Nginx cve 2013-2028 kingcope exploit.”
https://www.exploit-db.com/exploits/26737/.

[74] J. Drake, Stagefright: Scary code in the heart of android, BlackHat USA (2015).

[75] P. Cousot and R. Cousot, Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints, in Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pp. 238–252, ACM, 1977.

[76] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, Dowser: a guided fuzzer to
find buffer overflow vulnerabilities, in Proceedings of the 22nd USENIX Security
Symposium, pp. 49–64, 2013.

[77] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, and G. Vigna,
Difuze: Interface aware fuzzing for kernel drivers, in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 2123–2138,
ACM, 2017.

159

http://nginx.org/download/patch.2013.chunked.txt
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/linux/http/nginx_chunked_size.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/linux/http/nginx_chunked_size.rb
https://www.exploit-db.com/exploits/26737/


[78] D. Vyukov, Kcov: Kernel coverage, 2017.
https://lwn.net/Articles/671640/.

[79] CVE-2013-0997. https://packetstormsecurity.com/files/123229/
Apple-Security-Advisory-2013-09-12-2.html, 2013.

[80] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and Z. Su, Enfuzz:
Ensemble fuzzing with seed synchronization among diverse fuzzers, in 28th {USENIX}
Security Symposium ({USENIX} Security 19), pp. 1967–1983, 2019.

[81] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, Be sensitive and collaborative:
Analyzing impact of coverage metrics in greybox fuzzing, in 22nd International
Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2019), pp. 1–15,
2019.

[82] DARPA, Darpa cyber grand challenge, 2016.
http://archive.darpa.mil/cybergrandchallenge/.

[83] LungeTech, Cgc data archive for qualifiers, 2017.
http://www.lungetech.com/cgc-corpus/cwe/cqe/.

[84] LungeTech, Cgc data archive for finals, 2017.
http://www.lungetech.com/cgc-corpus/cwe/cfe/.

[85] T. of Bits, Darpa challenge binaries on linux, os x, and windows, 2017.
https://github.com/trailofbits/cb-multios.

[86] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, Evaluating fuzz testing, in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2123–2138, ACM, 2018.

[87] G. McGraw, S. Migues, and J. West, Bsimm8, 2017.
https://www.bsimm.com/content/dam/bsimm/reports/bsimm8.pdf.

[88] Google, syzkaller - linux syscall fuzzer, 2017.
https://github.com/google/syzkaller.

[89] G. Vranken, “libfuzzer-gv: new techniques for dramatically faster fuzzing.”
https://guidovranken.wordpress.com/2017/07/08/libfuzzer-gv-
new-techniques-for-dramatically-faster-fuzzing/, 2017.

[90] Google. https://google.github.io/oss-fuzz/getting-started/
continuous-integration.

[91] P. Godefroid, A. Kiezun, and M. Y. Levin, Grammar-based whitebox fuzzing, in
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 206–215, 2008.

160

https://lwn.net/Articles/671640/
https://packetstormsecurity.com/files/123229/Apple-Security-Advisory-2013-09-12-2.html
https://packetstormsecurity.com/files/123229/Apple-Security-Advisory-2013-09-12-2.html
http://archive.darpa.mil/cybergrandchallenge/
http://www.lungetech.com/cgc-corpus/cwe/cqe/
http://www.lungetech.com/cgc-corpus/cwe/cfe/
https://github.com/trailofbits/cb-multios
https://www.bsimm.com/content/dam/bsimm/reports/bsimm8.pdf
https://github.com/google/syzkaller
https://guidovranken.wordpress.com/2017/07/08/libfuzzer-gv-new-techniques-for-dramatically-faster-fuzzing/
https://guidovranken.wordpress.com/2017/07/08/libfuzzer-gv-new-techniques-for-dramatically-faster-fuzzing/
https://google.github.io/oss-fuzz/getting-started/continuous-integration
https://google.github.io/oss-fuzz/getting-started/continuous-integration


[92] J. Wang, B. Chen, L. Wei, and Y. Liu, Superion: Grammar-aware greybox fuzzing, in
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pp. 724–735, IEEE, 2019.

[93] A. LEE, Fuzzing javasscript engines for fun and pwnage, 2018.

[94] R. Guo, Mongodb’s javascript fuzzer, Queue 15 (2017), no. 1 38–56.

[95] H. Han, D. Oh, and S. K. Cha, Codealchemist: Semantics-aware code generation to
find vulnerabilities in javascript engines., in NDSS, 2019.

[96] C. Holler, K. Herzig, and A. Zeller, Fuzzing with code fragments., in Proceedings of
the USENIX Security Symposium, pp. 445–458, 2012.

[97] “Peach.” https://www.peach.tech/.

[98] J. Pereyda, “boofuzz.” https://github.com/jtpereyda/boofuzz.

[99] S. Groß, FuzzIL: Coverage Guided Fuzzing for JavaScript Engines. PhD thesis, TU
Braunschweig, 2018.

[100] Issue 800032: Security: V8: Bugs in genesis::initializeglobal, 2018. https:
//bugs.chromium.org/p/chromium/issues/detail?id=800032.

[101] Google. https:
//bugs.chromium.org/p/project-zero/issues/detail?id=1308.

[102] Michal Zalewski, afl-fuzz: making up grammar with a dictionary in hand, 2015.
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-
grammar-with.html.

[103] Engadget, Microsoft’s chromium edge browser arrives january 15th, 2019.
https://www.engadget.com/2019-11-04-chromium-edge-browser-
release-date.html.

[104] The Chromium Project.
https://chromium.googlesource.com/chromium/src/+/master/
styleguide/c++/c++.md#CHECK DCHECK and-NOTREACHED.

[105] J. Wang, B. Chen, L. Wei, and Y. Liu, Skyfire: Data-driven seed generation for fuzzing,
2017.

[106] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and D. Brumley,
Optimizing seed selection for fuzzing, in Proceedings of the 23rd USENIX Conference
on Security Symposium, SEC’14, (Berkeley, CA, USA), pp. 861–875, USENIX
Association, 2014.

161

https://www.peach.tech/
https://github.com/jtpereyda/boofuzz
https://bugs.chromium.org/p/chromium/issues/detail?id=800032
https://bugs.chromium.org/p/chromium/issues/detail?id=800032
https://bugs.chromium.org/p/project-zero/issues/detail?id=1308
https://bugs.chromium.org/p/project-zero/issues/detail?id=1308
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://www.engadget.com/2019-11-04-chromium-edge-browser-release-date.html
https://www.engadget.com/2019-11-04-chromium-edge-browser-release-date.html
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#CHECK_DCHECK_and-NOTREACHED
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#CHECK_DCHECK_and-NOTREACHED


[107] L. Cheng, Y. Zhang, Y. Zhang, C. Wu, Z. Li, Y. Fu, and H. Li, Optimizing seed inputs
in fuzzing with machine learning, in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion), pp. 244–245,
IEEE, 2019.

[108] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, Collafl: Path sensitive
fuzzing, in 2018 IEEE Symposium on Security and Privacy (SP), pp. 679–696, IEEE,
2018.

[109] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, and P. Su, Not all coverage
measurements are equal: Fuzzing by coverage accounting for input prioritization, in
Proceedings of the Symposium on Network and Distributed System Security (NDSS),
2020.

[110] B. P. Miller, L. Fredriksen, and B. So, An empirical study of the reliability of unix
utilities, Communications of the ACM 33 (1990), no. 12 32–44.

[111] V. Ganesh, T. Leek, and M. Rinard, Taint-based directed whitebox fuzzing, in
Proceedings of the International Conference on Software Engineering (ICSE), 2009.

[112] W. Drewry and T. Ormandy, Flayer: Exposing application internals, in Proceedings of
the USENIX Workshop on Offensive Technologies (WOOT), 2007.

[113] T. Wang, T. Wei, G. Gu, and W. Zou, Taintscope: A checksum-aware directed fuzzing
tool for automatic software vulnerability detection, in Proceedings of the IEEE
Symposium on Security and Privacy, pp. 497–512, IEEE, 2010.

[114] B. S. Pak, Hybrid fuzz testing: Discovering software bugs via fuzzing and symbolic
execution, Master’s thesis, School of Computer Science, Carnegie Mellon University,
May, 2012.

[115] G. Campana, Fuzzgrind: un outil de fuzzing automatique, Actes du (2009) 213–229.

[116] D. Caselden, A. Bazhanyuk, M. Payer, L. Szekeres, S. McCamant, and D. Song,
Transformation-aware exploit generation using a HI-CFG, tech. rep.,
UCB/EECS-2013-85, 2013.

[117] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, EXE:
Automatically generating inputs of death, ACM Transactions on Information and
System Security (TISSEC) 12 (2008), no. 2 10.

[118] D. Engler and D. Dunbar, Under-constrained execution: Making automatic code
destruction easy and scalable, in Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), ACM, 2007.

[119] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, Practical dynamic software updating
for C, vol. 41. ACM, 2006.

162



[120] A. Sotirov, “Hotpatching and the rise of third-party patches.” BlackHat USA, 2006.

[121] I. Neamtiu and M. Hicks, Safe and timely updates to multi-threaded programs, in ACM
Sigplan Notices, vol. 44, pp. 13–24, ACM, 2009.

[122] M. Siniavine and A. Goel, Seamless kernel updates, in Dependable Systems and
Networks (DSN), 2013 43rd Annual IEEE/IFIP International Conference on, pp. 1–12,
IEEE, 2013.

[123] J. Arnold and M. F. Kaashoek, Ksplice: Automatic rebootless kernel updates, in
Proceedings of the 4th ACM European conference on Computer systems, pp. 187–198,
ACM, 2009.

[124] C. M. Hayden, E. K. Smith, M. Hicks, and J. S. Foster, State transfer for clear and
efficient runtime updates, in Data Engineering Workshops (ICDEW), 2011 IEEE 27th
International Conference on, pp. 179–184, IEEE, 2011.

[125] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks, and J. S. Foster, Kitsune: Efficient,
general-purpose dynamic software updating for c, in ACM SIGPLAN Notices, vol. 47,
pp. 249–264, ACM, 2012.

[126] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, Safe and automatic live update for
operating systems, ACM SIGPLAN Notices 48 (2013), no. 4 279–292.

[127] H. Martorell, J.-C. Fabre, M. Roy, and R. Valentin, Improving adaptiveness of autosar
embedded applications, in Proceedings of the 29th Annual ACM Symposium on
Applied Computing, pp. 384–390, ACM, 2014.

[128] H. Chen, J. Yu, C. Hang, B. Zang, and P.-C. Yew, Dynamic software updating using a
relaxed consistency model, Software Engineering, IEEE Transactions on 37 (2011),
no. 5 679–694.

[129] C. Giuffrida, C. Iorgulescu, A. Kuijsten, and A. S. Tanenbaum, Back to the future:
Fault-tolerant live update with time-traveling state transfer., in LISA, pp. 89–104, 2013.

[130] E. Perla and M. Oldani, A guide to kernel exploitation: attacking the core. Elsevier,
2010.

[131] Wikipedia, “Dll injection.”
https://en.wikipedia.org/wiki/DLL injection.

[132] M. Bourquin, A. King, and E. Robbins, Binslayer: accurate comparison of binary
executables, in Proceedings of the 2nd ACM SIGPLAN Program Protection and
Reverse Engineering Workshop, p. 4, ACM, 2013.

[133] H. Flake, Structural comparison of executable objects, .

163

https://en.wikipedia.org/wiki/DLL_injection


[134] M. Bourquin, A. King, and E. Robbins, Accurate comparison of binary executables, .

[135] M. Egele, M. Woo, P. Chapman, and D. Brumley, Blanket execution: Dynamic
similarity testing for program binaries and components, in 23rd USENIX Security
Symposium (USENIX Security 14), pp. 303–317, 2014.

[136] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, Cross-architecture bug
search in binary executables, in Security and Privacy (SP), 2015 IEEE Symposium on,
pp. 709–724, IEEE, 2015.

[137] D. Brumley, P. Poosankam, D. Song, and J. Zheng, Automatic patch-based exploit
generation is possible: Techniques and implications, in Security and Privacy, 2008. SP
2008. IEEE Symposium on, pp. 143–157, IEEE, 2008.

[138] L. Xu, F. Sun, and Z. Su, Constructing precise control flow graphs from binaries,
University of California, Davis, Tech. Rep (2009).

[139] C. Cifuentes and M. Van Emmerik, Recovery of jump table case statements from binary
code, in Program Comprehension, 1999. Proceedings. Seventh International Workshop
on, pp. 192–199, IEEE, 1999.

[140] J. Troger and C. Cifuentes, Analysis of virtual method invocation for binary
translation, in Reverse Engineering, 2002. Proceedings. Ninth Working Conference on,
pp. 65–74, IEEE, 2002.

[141] B. Schwarz, S. Debray, and G. Andrews, Disassembly of executable code revisited, in
Reverse engineering, 2002. Proceedings. Ninth working conference on, pp. 45–54,
IEEE, 2002.

[142] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, Static disassembly of obfuscated
binaries, in USENIX security Symposium, vol. 13, pp. 18–18, 2004.

[143] G. Balakrishnan and T. Reps, WYSINWYX: What you see is not what you execute, ACM
Transactions on Programming Languages and Systems (TOPLAS) 32 (2010), no. 6 23.

[144] J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey, Signedness-agnostic
program analysis: Precise integer bounds for low-level code, in Programming
Languages and Systems, pp. 115–130. Springer, 2012.

[145] Tok, Teck Bok and Guyer, Samuel Z and Lin, Calvin, Efficient flow-sensitive
interprocedural data-flow analysis in the presence of pointers, in Compiler
Construction, pp. 17–31, Springer, 2006.

[146] V. Ganesh, T. Leek, and M. Rinard, Taint-based directed whitebox fuzzing, in
Proceedings of the 31st International Conference on Software Engineering, ICSE ’09,
(Washington, DC, USA), pp. 474–484, IEEE Computer Society, 2009.

164



[147] S. K. Cha, M. Woo, and D. Brumley, Program-adaptive mutational fuzzing, in 2015
IEEE Symposium on Security and Privacy, pp. 725–741, IEEE, 2015.

[148] H. Han and S. K. Cha, Imf: Inferred model-based fuzzer, in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pp. 2345–2358,
2017.

[149] G. Grieco, M. Ceresa, and P. Buiras, Quickfuzz: An automatic random fuzzer for
common file formats, ACM SIGPLAN Notices 51 (2016), no. 12 13–20.

[150] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, Enemy of the State: A State-Aware
Black-Box Vulnerability Scanner, in Proceedings of the USENIX Security Symposium,
Aug., 2012.

[151] D. Wang, X. Zhang, T. Chen, and J. Li, Discovering vulnerabilities in cots iot devices
through blackbox fuzzing web management interface, Security and Communication
Networks 2019 (2019).

[152] A. Zeller, R. Gopinath, M. Bhme, G. Fraser, and C. Holler, Greybox fuzzing, 2019.
https://www.fuzzingbook.org/html/GreyboxFuzzer.html.

[153] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, Directed greybox
fuzzing, in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2329–2344, 2017.

[154] M. Zalewski., American fuzzy lop, 2017. http://lcamtuf.coredump.cx/afl/.

[155] M. Böhme, V.-T. Pham, and A. Roychoudhury, Coverage-based greybox fuzzing as
markov chain, IEEE Transactions on Software Engineering 45 (2017), no. 5 489–506.

[156] J. Ruderman, Introducing jsfunfuzz, 2007. https:
//www.squarefree.com/2007/08/02/introducing-jsfunfuzz/.

[157] I. Fratric, The great dom fuzz-off of 2017, 2017.

[158] S. P. W. X. I. Yun and D. J. T. Kim, Fuzzing javascript engines with aspect-preserving
mutation, in Proceedings of the 41st IEEE Symposium on Security and Privacy, 2020.

165

https://www.fuzzingbook.org/html/GreyboxFuzzer.html
http://lcamtuf.coredump.cx/afl/
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/

	Curriculum Vitae
	Abstract
	Introduction
	Permissions and Attributions

	Background on Vulnerability Discovery Techniques
	Static Analysis
	Dynamic Analysis

	Augmenting Fuzzing Through Selective Symbolic Execution
	Introduction
	Driller Overview
	Fuzzing
	Selective Concolic Execution
	Evaluation
	Discussion
	Conclusion

	Uncooperative Remote Runtime Patching
	Introduction
	Overview
	Patch Generation
	Repair Planning
	Remote Patching
	Evaluation
	Limitations
	Conclusion

	Exploring Abstraction Functions in Fuzzing
	Introduction
	Formalizing
	Abstraction Functions Explored
	Implementation
	Evaluation
	Discussion
	Conclusion

	Token-Level Fuzzing
	Introduction
	Motivation
	Overview
	Evaluation
	Discussion
	Conclusion

	Related Work
	Driller
	Piston
	Abstraction Functions in Fuzzing
	Token-Level Fuzzing

	Looking Forward
	Bibliography



