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Abstract

Tropical Implicitization

by

Maria Angelica Cueto

Doctor of Philosophy in Mathematics

University of California, BERKELEY

Professor Bernd Sturmfels, Chair

In recent years, tropical geometry has developed as a theory on its own. Its two main aims
are to answer open questions in algebraic geometry and to give new proofs of celebrated
classical results. The main subject of this thesis is concerned with the former: the solution
of implicitization problems via tropical geometry. We develop new and explicit techniques
that completely solve these challenges in four concrete examples.

We start by studying a family of challenging examples inspired by algebraic statistics
and machine learning: the restricted Boltzmann machines F(n, k). These machines are
highly structured projective varieties in tensor spaces. They correspond to a statistical
model encoded by the complete bipartite graph Kk,n, by marginalizing k of the n+ k binary
random variables. In Chapter 2, we investigate this problem in the most general setting. We
conjecture a formula for the expected dimension of the model, verifying it in all relevant cases.
We also study inference functions and their interplay with tropicalization of polynomial maps.

In Chapter 3, we focus on the particular case F(4, 2), answering a question by Drton,
Sturmfels and Sullivant regarding the degree (and Newton polytope) of the homogeneous
equation in 16 variables defining this model. We show that its degree is 110 and compute
its Newton polytope. Along the way, we derive theoretical results in tropical geometry that
are crucial for other examples in this thesis, as well as novel computational methods.

In Chapter 4, we study the first secant varieties of monomial projective curves from a
tropical perspective. Our main tool is the theory of geometrical tropicalization developed
by Hacking, Keel and Tevelev. Their theory hinges on computing the tropicalization of
subvarieties of tori by analyzing the combinatorics of their boundary in a suitable (tropical)
compactification. We enhance this theory by providing a formula for computing multiplicities
on tropical varieties. We believe that this construction will give insight to understand higher
secants of monomial projective curves, which are key objects in toric and birational geometry.

In Chapter 5, we answer the general question of implicitization of parametric surfaces in
3-space via geometric tropicalization. The generic case, together with its higher-dimensional
analog, was studied by Sturmfels, Tevelev and Yu. We address this problem for non-generic
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surfaces. This involves understanding the combinatorics of the intersection of irreducible
algebraic curves in the two-dimensional torus and explicitly resolving singularities of points
in curves by blow-ups. We conclude with a brief discussion on open problems, including
connections to Berkovich spaces, extension of the theory to non-archimedean valued fields
and applications of tropical implicitization to classifying tropical surfaces in three-space.
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Chapter 1

Introduction

In this chapter we describe the basics of tropical geometry, geometric tropicalization
and tropical implicitization that we use throughout this dissertation. Along the way, we
give an overview of the main results of our work. Most basic definitions in commutative
algebra, algebraic geometry and toric geometry are taken for granted, and we refer the
reader to [31, 47, 15, 39] for further details.

1.1 Tropical geometry

The term “tropical geometry” was coined in March 2002 when B. Sturmfels visited G.
Mikhalkin in Salt Lake City ([90, 68, 83, 69]). It began as a framework to link amoe-
bas, logarithmic limit sets, and (real) algebraic geometry. It synthesized and boosted the
pioneering work of Bergman [2], Bieri-Groves [5] and Viro’s “patchworking” techniques to
construct real algebraic varieties by “cutting and pasting” [97, 52]. The past few years have
brought on truly explosive development, establishing deep connections with enumerative
algebraic geometry, symplectic and analytic geometry, number theory, dynamical systems,
mathematical biology, statistical physics, random matrix theory, and mathematical physics.
This dissertation concerns applications of tropical geometry to solving implicitization prob-
lems in algebraic geometry with three concrete examples: the restricted Boltzmann machine
F(n, k) (Chapters 2 and 3), which are highly structured projective varieties in tensor space,
secant varieties of monomial curves with arbitrary exponents (Chapter 4), and surfaces in
three-space (Chapter 5).

Tropical geometry can be viewed as a polyhedral version of algebraic geometry: alge-
braic varieties are replaced by weighted balanced polyhedral complexes, in order to answer
open questions or to derive simpler proofs of classical results. These objects preserve just
enough data about the original varieties to remain meaningful, while discarding much of
their complexity.

There are many entering points to tropical geometry. In this work, we focus on two
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of these perspectives: the Gröbner approach as degenerations on toric varieties [6, 56, 83,
87, 88, 90, 94] and the valuative perspective [5, 30, 45]. Chapters 2 and 3 follow the first
perspective in the constant coefficient case, whereas Chapters 4 and 5 approach tropical
varieties as images of algebraic varieties under a non-archimedean valuation.

1.1.1 Constant coefficient case

We start by defining the tropicalization of an algebraic variety over C. We could replace C by
any algebraically closed field with trivial valuation. The precise definition of tropicalization
depends on the ambient space containing our variety. In most cases we discuss here, we
work with subvarieties of affine space Cn, the n-dimensional algebraic torus Tn = (C∗)n or
projective space Pn. In Chapter 5 we work with subvarieties of a projective toric variety
P(N ) given by a complete rational polyhedral fan N ⊂ Rn. We adopt the min convention
for tropical geometry inherited from the tropical semiring (R ∪ {∞},min,+) [79]. This
choice arises naturally from the valuative perspective discussed in the last two chapters of
the dissertation. All results also hold in the max convention, after changing signs accordingly.

Definition 1.1.1. Let X ⊂ Cn be an algebraic variety not contained in a coordinate hyper-
plane, and let I = I(X) ⊂ C[x1, . . . , xn] be its defining ideal. The tropicalization of X or I
is defined as:

T X = T (I) = {w ∈ Rn | inw(I) contains no monomial},

where inw(I) = 〈inw(f) : f ∈ I〉, and inw(f) is the sum of all nonzero terms of f =
∑

α cαx
α

such that the inner product α · w is minimum.

Example 1.1.2. Consider an irreducible polynomial f ∈ C[x1, . . . , xn] and its associated
Newton polytope in Rn, i.e. the convex hull of the exponents of all monomials in f . Assume
that f is not a monomial. Then, the tropicalization of T (f) is the set of all objective vectors
in Rn that pick at least two vertices of NP(f). Thus, T (f) is the union of all codimension
one cones in the inner normal fan of NP(f). �

Definition 1.1.3. If X ⊂ Tn, with defining ideal I ⊂ C[x±1
1 , . . . , x±1

n ] in the Laurent poly-
nomial ring, we define its tropicalization as

T X = T (I) = {w ∈ Rn | 1 /∈ inw(I)}.

The initial ideal inw(I) with respect to a weight vector w ∈ Rn agrees with that from
Definition 1.1.1, replacing the ordinary polynomial ring with the Laurent polynomial ring.

Although it may not be clear from Definition 1.1.1, the process of tropicalization is
invariant under intersections with dense open subsets of affine space. More precisely, let Y be
a closed subvariety of Tn, also known as a very affine variety. Suppose IY ⊆ C[x±1

1 , . . . , x±nn ]
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is its defining ideal. Consider the Zariski closure Y of Y in Cn. It is easy to see that T Y equals
T Y . Indeed, this follows from the fact that IY is the saturation ideal

(
IY C[x±1

1 , . . . , x±nn ] :
(x1 · · ·xn)∞

)
and IY = IY ∩ C[x1, . . . , xn]. Therefore, if we start with an irreducible variety

X ⊂ Cn not contained in a coordinate hyperplane, then the very affine variety Y = X ∩ Tn

has the same dimension as X and T Y = T X. In short, tropicalizations are “toric in nature.”
We will go back and forth between these two definitions of tropicalization and mainly consider
subvarieties of Tn to avoid writing the required hypothesis for affine varieties every time.

We use the previous definitions to tropicalize projective subvarieties of Pn:

Definition 1.1.4. Let X ⊂ Pn and let I be its homogeneous defining ideal in C[x0, . . . , xn].
Then, the tropicalization of X equals T (I) from Definition 1.1.1.

In all three cases, the tropical variety T X is a rational polyhedral fan in Rn. If X
is projective, then T X is naturally a subfan of (the negative of) the Gröbner fan of the
homogeneous ideal I. In the other two cases, we can equip T X with an inherited polyhedral
fan structure by considering the Gröbner fan of its homogenized ideal [53].

Example 1.1.5. The tropical hypersurface T (f) from Example 1.1.2 has the inherited fan
structure of the normal (Gröbner) fan of its Newton polytope. Maximal cones in T (f) are
dual to edges in the polytope and, in general, k-dimensional cones in T (f) are dual to codi-
mension k faces in the polytope. This interpretation will be key for Chapter 3. �

In most cases, the inherited Gröbner fan structure will be the coarsest fan structure we
can give to T X. However, not all varieties admit a coarsest fan structure [91, Example
5.2]: hübsch varieties will have this good property [91, Remark 3.11]. The possible fan
structures on T X form a partially ordered set under refinement, called the tropical poset,
whose properties were studied in [91, Section 2].

If X is an irreducible subvariety of Tn, then the tropical variety T X is a pure polyhedral
fan: all maximal cones in T X have the same dimension. In addition, T X is connected in
codimension one, an essential tool for effective computations [54]. The fan T X preserves
an important invariant of X: both objects have the same dimension [5, 90]. This essential
result is known in the literature as the Bieri-Groves theorem. In particular, this implies
that tropical geometry can be used to compute or certify Krull dimensions of subvarieties of
tori. More precisely, if we can compute the tropicalization of an irreducible variety without
knowing its defining ideal we can certify its dimension by simple linear algebra. Its dimension
will be the dimension of any maximal cone in a tropical fan. Using this technique, we prove:

Theorem 2.1.2. The restricted Boltzmann machines F(n, k) have the expected dimension
for all relevant values of n and k. In particular, the variety F(4, 2), is a hypersurface in P15.

If X is projective, the dimension of T X ⊆ Rn will exceed the projective (Krull) by one.
We can reduce this gap applying the following definition:
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Definition 1.1.6. Let I ⊂ C[x1, . . . , xn] be an ideal. The set {w ∈ T (I) : inw(I) = I} is
a linear space in Rn and it is called the lineality space of the fan T (I) or the homogeneity
space of I.

By definition, the lineality space of the tropical variety T X can be spanned by integer
vectors, which form a primitive lattice Λ ⊂ Zn. This lattice encodes the action of a maximal
torus on X, given by a diagonal action. That is, if dimZ Λ = r, we have an r-dimensional
torus action on X by

(t1, . . . , tr) · (x1, . . . , xn) := (
r∏
i=1

tai1i x1, . . . ,

r∏
i=1

taini xn), t ∈ Tr, x ∈ X, (1.1)

where a = (aij)i,j ⊂ Zr×n is a matrix whose rows Z-span Λ. All homogeneous varieties with
a non-trivial torus action will have a non-trivial lineality space in their tropicalization.

Example 1.1.7. The lineality space of a tropical hypersurface T (g) equals the orthogonal
complement of the affine span of the Newton polytope of g, after appropriate translation to
the origin. The extreme case is that of a toric variety globally parameterized by a monomial
map αA : Td → Tn with associated matrix A ∈ Zn×d. Its tropicalization will be a classical
linear space, namely, the column span of A. We will come back to this construction soon. �

Example 1.1.8. Let w be a point in the relative interior of a maximal cone σ of T X. The
variety inw(X) ⊂ Tn defined by the initial ideal inw(I(X)) is a flat deformation of X and, as
such, its dimension equals the dimension of X [56]. In addition, inw(X) is a homogeneous
variety, with torus action defined by the lattice Lw ∩ Zn, where Lw is the linear span of the
maximal cone of T X containing w. The tropicalization of T inw(X) yields Lw. �

All cones in any fan structure of T X contain the lineality space. For this reason, we
can view T X as a pointed fan in the (n − r)-dimensional vector space Rn/(R ⊗Z Λ), with
inherited fan structure (Lemma 3.3.1). Furthermore, we can intersect this fan with the unit
sphere of appropriate dimension to obtain a polyhedral (spherical) complex representing T X.
For example, if X is a surface in n-space with no non-trivial torus action, the associated
tropical polyhedral complex T X ∩ Sn−1 is a graph, which we call the tropical surface graph.
This identification will be extremely useful in the constructions of Chapters 4 and 5.

If X is a subvariety of Pn, we know that the all-one’s vector 1 lies in the lineality space
of T X, so we can view T X inside the tropical projective torus TPn = Rn+1/R · 1. In this
new setting, the dimension of the fan T X ⊂ TPn equals the projective dimension of X.
Notice that T X ⊂ TPn need not be a pointed cone. This will be the case of the projective
hypersurface studied in Chapter 3 and the three-fold secant variety from Chapter 4.

In addition to their polyhedral structure, tropical varieties are equipped with integer
positive weights on all of their maximal cones, called multiplicities. We now explain how
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these numbers can be constructed. Let X ⊂ Tn. A point w ∈ T X is called regular if T X
is a linear space locally near w. Alternatively, if we fix a fan structure on T X, its regular
points are the points in the relative interior of maximal cones. The multiplicity mw of a
regular point w is the sum of the algebraic multiplicities of all minimal associated primes of
the initial ideal inw(I(X)) [6, 24]. More precisely, if P is one such minimal prime ideal, we
define the multiplicity of P in inw(I(X)) as

m(P, inw(I(X))) = dim SP
PSP

SP/inw(I(X))SP = lengthSP (SP/inw(I(X))SP ), (1.2)

where S = C[x±1
1 , . . . , x±1

n ] and SP is the localization of S at the prime ideal P . The right-
most term in (1.2) is the length of the quotient SP/inw(I(X))SP as an SP -module. This
definition of multiplicity follows the approach of [31, Section 3.6] and [24] and will be used
throughout Section 3.3.

The multiplicity of a maximal cone σ ⊂ T X is defined as mw for any w ∈ σ in its
relative interior. It can be shown that this assignment does not depend on the choice of w:
multiplicities are locally constant functions on regular points [91, Corollary 3.8]. With these
multiplicities, the tropical variety satisfies the balancing condition [91, Corollary 3.4]. For
example, if X is an irreducible hypersurface, the multiplicity of a maximal cone equals the
lattice length of the corresponding edge in its Newton polytope [24]. The balancing condition
says that the sum of all edges (clockwise-oriented) in a two-face of this polytope equals zero.
Tropical multiplicities of globally parameterized toric varieties have constant value 1.

In addition, tropical multiplicities allow two alternative interpretations. They can be
thought of as intersection numbers [87, Chapter 2], [56, Section 9], [74, Section 2], or as
Minkowski weights, i.e. operational Chow cohomology classes on an appropriate toric vari-
ety [91, Remark 3.5]. This alternative perspective will be used in Chapters 4 and 5, but we
give s short introduction in Section 1.1.2.

Just as we tropicalize varieties, we can also tropicalize polynomial maps. To do so, we just
need to define the tropicalization of a single polynomial. We replace the usual arithmetic
operations of sum and product in R by the tropical operations ⊕ and � in the tropical
semiring (R∪{∞},⊕,�), where a⊕ b = min{a, b} and a� b = a+ b. In addition, we endow
C with the trivial valuation, i.e. val(C∗) = 0 and val(0) = ∞ [88]. The resulting tropical
polynomial is a continuous piecewise linear map:

Definition 1.1.9. Let f =
∑

α aαx
α ∈ C[x1, . . . , xn]. Then, the tropicalization of f is the

piecewise linear map trop(f) : Rn → R that is defined by

trop(f)(w) =
⊕
α

(val(aα)� α · w) = min
α
{α · w}. (1.3)

The tropicalization trop(f) of a polynomial map f : Cn → Cd is defined as the map obtained
by tropicalizing each coordinate.
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As expected, these definitions extend naturally to algebraically closed fields with a non-
archimedean valuation, the subject of Section 1.1.2. In particular, if X ⊂ Tn is a very affine
variety parameterized by a Laurent polynomial map f : Td → Tn, then it follows that the
image of the tropical map trop(f) is contained in T X. Varieties coming from statistical mod-
els often admit such a polynomial parameterization and it is worth studying the associated
tropical maps to understand their properties, including their inference functions [75]. Recent
applications of this “min-plus” algebra include solutions of continuous-time, continuous-state
optimal control problems [67].

Chapter 2 discusses this methodology for the restricted Boltzmann machines F(n, k).
These “machines” are highly-structured algebraic varieties in tensor space. They correspond
to graphical statistical models given by a complete bipartite graph Kk,n with k binary hidden
nodes and n observed binary nodes. From the statistical point of view, their inference
functions are in one-to-one correspondence with the regions of lineality of −trop(f), where
f is the parameterization of the variety F(n, k). Such regions will correspond to certain
slicings on the n-cube (Proposition 2.5.1). This novel approach yields a new interpretation
for the space of explanations as a subfan of the secondary fan of the n-cube, which connects
nicely with combinatorial and geometric work of Develin and Draisma on tropical secants
of toric varieties [22, 25]. The tropical point of view allows us to organize the geometric
information of the space of inference functions into the image of −trop(f), which can then
be analyzed with the tools of tropical and polyhedral geometry. This approach is explained
in Section 2.5.

One of the weaknesses of tropical geometry is the lack of functoriality. Even if we had
a polynomial map between two varieties f : X → Y , and we could tropicalize both varieties
and polynomial maps, we cannot a priori guarantee that the image of the piecewise linear
map trop(f) : T X → Rd lies in T Y . However, if we restrict the class of varieties and maps
to subvarieties of tori and homomorphisms of tori (i.e. monomial maps), then functoriality
does hold. We now give a precise statement. Let A be a d × n integer matrix defining a
monomial map α : Tn → Td and a linear map A : Rn → Rd defined by left multiplication.

Theorem 1.1.10. [91, Theorem 3.12] Let X ⊂ Tn be a subvariety. Then

T (α(X)) = A(T X).

Moreover, if α induces a generically finite morphism of degree δ on X, then the multiplicity
of T (α(X)) at a regular point w is

mw =
1

δ

∑
v

mv index (Lw ∩ Zd, A(Lv ∩ Zn)), (1.4)

where we sum over all points v ∈ T X with Av = w. We also assume that the number of
such v is finite, all of them are regular in T X, and Lv,Lw are linear spans of neighborhoods
of v ∈ T X and w ∈ A(T X) respectively.
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We refer to (1.4) as the push-forward formula for multiplicities.
If the fibers of the map α restricted to X are infinite, then the sum in (1.4) is infinite

and, a priori, there is no formula connecting multiplicities on the source and the target of
the linear map A. However, in numerous examples, subvarieties of tori admit torus actions
that allow us to think of α as if it were finite. More precisely, after taking the quotient of
the domain by a maximal torus action, we build a canonical generically finite monomial map
α in the quotient space. Thus, we can freely use the push-forward formula (1.4) to compute
tropical multiplicities on the target. Using this small remark, we can extend Theorem 1.1.10
to maps with finite generic fibers modulo a torus action. Our main technical tool is the
following lemma, that also justifies the heuristics for tropicalizing homogeneous varieties:

Lemma 3.3.1. Let X ⊂ Tn and let L be a subspace of the lineality space of the tropical
variety T X generated by integer vectors. Consider the action of TdimL on X induced by
the lattice L ∩ Zn and the induced quotient X ′. Endow the quotient T /L with induced fan
structure and multiplicity. Then, T X/L is the tropicalization of X ′.

Theorem 3.3.2. Let α : Tn → Td be a monomial map with associated integer matrix A and
let X ⊂ Tn be a closed subvariety. Then,

T (α(X)) = A(T X).

Suppose X has a torus action given by a rank l lattice Λ ⊂ Zn. Let X ′ be the quotient by
this torus action and π be its quotient map. Let α : X ′ → Td be the induced monomial map,
with associated integer matrix A′.
Suppose Λ′ = A(Λ) is a primitive sublattice of Zd and that α induces a generically finite
morphism of degree δ on X ′. Let π2 be the projection from Rn to the quotient vector
spaceRn/Λ′ ⊗Z R. Then, the multiplicity of a regular point w in T (α(X)) can be computed
as:

mw =
1

δ
·
∑
π(v)
A·v=w

mv · index (Lw ∩ Zd, A(Lv ∩ Zn))

where the sum is over any set of representatives of points {v′ = π(v) ∈ T X ′ | π2(A′v′) =
π2(w′)}. We also assume that the number of such v′ is finite, all of them are regular in T X ′
and Lv,Lw are linear spans of neighborhoods of v ∈ T X and w ∈ A(T X) respectively.

In Remark 3.3.3, we extend the previous result to the case where Λ′ is not a primitive
lattice. The corresponding formula involves an extra factor, namely the index of the lattice
Λ′ with respect to its saturation Λ′ sat ⊂ Zd. These results are extensively discussed in
Chapter 3, particularly in Section 3.3.
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1.1.2 Arbitrary coefficients case

In Section 1.1.1, we discussed the tropicalization of varieties over C, a field with trivial
valuation. As expected, the geometry becomes richer if we allow algebraically closed fields
with non-archimedean, non-trivial valuation.This is the topic we cover in this section.

First, we recall the definition of such valued fields:

Definition 1.1.11. A non-archimedean valued field is a pair (K, val) where K = K is a field
and val : K∗ // // Q satisfies:

(i) val(x+ y) ≥ min{val(x), val(y)},

(ii) val(xy) = val(x) + val(y),

(iii) val(0) =∞, val(1) = 0.

For simplicity, we will assume that val is a surjective map, i.e. there exists an element t ∈ K
with valuation 1. The field K contains a discrete valuation ring R = val−1(R≥0 ∪ {∞}),
with maximal ideal M = val−1(R>0 ∪ {∞}) and residue field K = R/M.

Our archetypical example of such valued fields is the field of Puiseux series C{{t}} =⋃
n∈N C((t1/n)), where the valuation is the order in t. In this case, R =

⋃
n∈N C[[t1/n]] and

M is the ideal of all formal power series in R with zero constant term. In addition, K = C
and embeds naturally in K.

Just as we tropicalized subvarieties of the algebraic torus Tn over C, we can tropicalize
subvarieties of the n-dimensional algebraic torus Tn

K over the valued field K. As a result we
obtain weighted balanced rational polyhedral complexes. If X ⊂ Tn

K is irreducible, then T X
is a pure complex of dimension dimX and connected in codimension one [87, 56, 91]. In
what follows, we explain this construction in analogy to the constant coefficient case.

Definition 1.1.12. Let X ⊂ Tn
K be a subvariety with defining ideal I ⊂ K[x±1

1 , . . . , x±1
n ].

We define the tropicalization of X as

T X = T I = {w ∈ Qn | 1 /∈ inw(I)} ⊆ Rn,

where inw(I) ⊂ K[x±1
1 , . . . , x±1

n ] is the ideal generated by all inw(f) with f ∈ I r {0}, where
inw(f) is defined as the class of t−trop(f)(w)f(tw1x1, . . . , t

wnxn) ∈ R[x±1
1 , . . . , x±1

n ] moduloM,
and trop(f) is the tropicalization of f as in (1.3).

The set T X is a rational polyhedral complex. It consists of the closure of all weights
w ∈ Qn such that the variety inw(X) ⊂ Kn determined by inw(I) intersects the big open
torus Tn

K ⊂ Kn. In the homogeneous case, each weight vector w ∈ Qn determines a rela-
tively open polyhedron in Rn in which the initial ideal inw(I(X)) is constant. Thus, T X
inherits a polyhedral complex structure from (the negative of) this Gröbner complex. In the
non-homogeneous case, as we saw in Section 1.1.1, the structure is obtained by choosing a
homogeneization of the defining ideal of the variety and cutting the resulting complex in
Rn+1 at height one.
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Example 1.1.13 (Examples 1.1.2 and 1.1.18 revisited). Let f =
∑

α aαx
α ∈ K[x±1

1 , . . . , x±1
n ].

We define the extended Newton polytope of f as ÑP(f) := Conv{(α, b) : b ≤ −val(aα) ∀ aα 6=
0} ⊆ Rn+1. The upper hull of this convex set is a polyhedron parameterized by the Legendre
transform of f , which defines a regular polyhedral subdivision of the Newton polytope of f
by projection. The tropical hypersurface T (f) is the union of all codimension one cells in the
dual complex of this subdivision. Maximal cells in T (f) are dual to edges in the subdivision
of NP(f) and their weight agrees with the lattice length of the associated edges.

If K = C, the polytope ÑP(f) equals NP(f) × {0} and induces the trivial subdivision
with a single cell, namely, the polytope NP(f). The dual subdivision is the inner normal fan
of NP(f) and we recover the characterization from Examples 1.1.2 and 1.1.18. �

Tropical varieties over arbitrary coefficients have an explicit characterization in terms of
the valuation map: these polyhedral complexes will only remember the valuation of each
point in the corresponding algebraic varieties. In the Puiseux series case this means that
we only remember the order of a power series. It is in this spirit that tropical varieties are
combinatorial shadows of algebraic varieties [65].

Theorem 1.1.14 (Fundamental theorem of tropical geometry). Let X ⊂ Tn
K be a

closed subvariety. Then, the tropicalization of X is the closure of the image of X under the
valuation map with the usual Euclidean topology, that is:

T X = {(val(x1), . . . , val(xn)) | x ∈ X} ⊆ Rn.

The previous result allows us to compute tropicalizations of varieties over C (the constant
coefficient case) by base-changing to the field of Puiseux series.

Even though the fundamental theorem has a long history that began with Kapranov et
al. [30], with its latest installment by Payne [78], the valuative approach lacks an interpre-
tation of multiplicities on tropical varieties. As we will see in Section 1.4 these numbers
are essential for recovering information about algebraic varieties from their tropical coun-
terparts. For this reason, we will use Theorem 1.1.14 only for set-theoretic descriptions of
tropical varieties.

As in the constant coefficient case, we can tropicalize polynomial maps between algebraic
varieties using (1.3). Functoriality will hold for subvarieties of tori and monomial maps:

Theorem 1.1.15. Let X ⊂ Tn
K be a closed subvariety and α : Tn

K → Td
K a monomial map

associated to an integer matrix A ∈ Zd×n. Then:

T (α(X)) = A(T X).

Notice that the previous statement does not provide a push-forward formula for mul-
tiplicities. An analogous formula to (1.4) is expected to hold since the local geometry of
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tropical varieties can be reduced to the constant coefficient case [87, Prop 2.2.3]. Recent
results by Osserman and Payne suggest that this is indeed the case [74].

We conclude this section with a brief discussion on tropicalization of subvarieties of toric
varieties and tropical multiplicities from the degenerations perspective. This approach will
be key for deriving the main result of Chapter 5: a combinatorial formula for computing
tropical multiplicities of rational varieties.

Our starting point is an irreducible subvariety X of Tn
K of dimension d. As in the constant

coefficient case, given a tropical complex structure of T X, we define the regular points of
T X as the set of all points in the relative interior of maximal cells of T X. Any regular
point w ∈ T X defines a proper ideal inw(I(X)) and, hence, a subvariety inw(X) ⊂ Tn

K. This
subvariety is a flat deformation of X ⊂ Tn

K of the same dimension as X.
Let σ be the maximal cell of T X containing the point w, and assume dimX = d. Then,

the tropical variety of inw(X) is the d-dimensional subspace spanned by the primitive lattice
Λw := (R ⊗ (σ − w)) ∩ Zn. In particular, inw(X) ∩ Tn

K is a d-dimensional variety with a d-
dimensional torus action defined by the lattice Λw [56]. Therefore, inw(X)∩Tn

K is supported
on finitely many d-dimensional torus orbits. Thus,

inw(X) ∩ Tn
K =

r⊔
i=1

(Td
K · pi), (1.5)

for some points pi ∈ Tn
K and some r ∈ Z>0. This phenomenon extends Example 1.1.8 and is

key to the interpretation of tropical multiplicities.
If w is a point in the relative interior of a cone τ̃ in T X, we can compute mw from the

variety X or its initial degeneration inx(X). More precisely,

mw = deg([X] · [V (τ̃)]) = deg([inw(X)] · [V (τ̃)]). (1.6)

The right-most equality holds because intersection product commutes with specialization.

Definition 1.1.16. [56, Definition 6.10] Let σ be a maximal cell in T X of dimension d, and
let w be a point in its relative interior. Following (1.5), we decompose the underlying cycle
of inw(X) ∩ Tn

K as

[inw(X) ∩ Tn
K] =

r∑
i=1

mi [Td
K · pi],

for some mi ∈ Z>0. The multiplicity mσ is defined as mσ =
∑r

i=1 mi.

We extend the operation of tropicalization to subvarieties of a complete toric variety
Y (Σ) defined over K. We will use this construction in Chapter 5.

Definition 1.1.17. Let X ⊆ Y (Σ) be a d-dimensional subvariety, and w ∈ Qn. Consider
the subvariety t−w ·X ⊂ Y (Σ). Then the initial degeneration of X with respect to w is
defined as the variety

inw(X) := t−w ·X ×SpecR SpecK ⊆ Y (Σ)×SpecR SpecK.
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This definition gives a locally constant map on Qn, which we extend to Rn by continuity.
As before, we define T X as the set of all points w with inw(X) ∩ Tn

K 6= ∅.

Example 1.1.18. If X is a hypersurface defined by a polynomial f ∈ K[x±1
1 , . . . , x±1

n ], then
t−w ·X is defined by the polynomial f(tw1x1, . . . , t

wnxn). The order in t of this polynomial
is trop(f)(w) so inw(X) ⊂ Tn

K coincides with Definition 1.1.12. �

We conclude by extending the definition of tropical multiplicities to subvarieties of toric
varieties defined over C that properly intersect torus orbits. This proper intersection condi-
tion ensures that the tropicalization of the subvariety X ⊆ Y (Σ) is supported on all cones
of Σ whose dimension equals the dimension of X [94, Lemma 2.2]. Notice that if the fan is
strictly simplicial then the intersections are automatically proper [56, Lemma 8.10].

Definition 1.1.19. [56, Definition 9.3] Let Y (Σ) be a complete toric variety defined over

K, and let Ỹ = Y (Σ̃) be a smooth toric resolution of Y defined by a strictly simplicial

refinement Σ̃ of the fan Σ. Let d be the dimension of X and τ̃ a d-dimensional cone in Σ̃.
Then the multiplicity of τ̃ in T X equals deg([X] · [V (τ̃)]), where V (τ̃) is the closure of the

torus orbit of τ̃ in Ỹ .

1.2 Hadamard products and their tropicalization

A central construction in Chapters 2 through 4 is the Hadamard product of algebraic vari-
eties. These products arise naturally in many problems posed in algebraic statistics, including
restricted Boltzmann machines. They also play an important role in the construction of se-
cant varieties of homogeneous spaces, such as monomial projective curves (Proposition 4.4.1).
Hadamard products have an important feature: they behave well with respect to tropical-
ization. In this section, we study these algebraic varieties and explain their connection to
tropical geometry.

We start with the definition of Hadamard products for subvarieties of tori:

Definition 1.2.1. Let X, Y ⊂ Tn
K be two closed subvarieties of tori. The Hadamard product

of X and Y is

X � Y = {x � y = (x1y1, . . . , xnyn) |x ∈ X, y ∈ Y } ⊂ Tn
K.

Note that each coordinate of x � y is bihomogeneous of degree (1, 1). Therefore, the defi-
nition of Hadamard products carries over to projective varieties as well: the extra condition
required is that x � y 6= 0. With this definition, X � Y is a projective subvariety of Pn.
Note that if X and Y are not contained in a coordinate hyperplane, the same will hold
for their Hadamard product. This small remark will be important when tropicalizing this
construction in the projective setting.
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A special instance of Hadamard products, treated in Chapters 2 through 3, corresponds
to the case when X = Y . The Hadamard product X � X and, in general, of r copies of a
variety X are called Hadamard powers and denoted by X [r]. The Hadamard square X [2]

corresponds to the diagonal part of the Segre embedding X ⊂ PnK ↪→ Pn2+2n
K and its defining

ideal can be obtained from this description.
The next result shows how to tropicalize Hadamard products:

Corollary 3.3.6. Given X, Y ⊂ Tn
K two irreducible subvarieties of tori, we can consider the

associated irreducible variety X � Y ⊂ Tn
K. Then as sets:

T (X � Y ) = T X + T Y,

where the sum on the right-hand side denotes the Minkowski sum in Rn.

This set-theoretic result is motivated by, and is a direct consequence of, Theorem 1.1.14 and
the fact that valuations turn products into sums. It extends naturally to projective varieties,
provided they do not lie in coordinate hyperplanes.

As we explained before, T (X � Y ) has a canonical polyhedral complex structure (a fan,
in the constant coefficient case). However, the previous theorem gives no information about
this structure. Moreover, we are not claiming that T (X � Y ) inherits a fan structure from
T X and T Y . In general, it might happen that maximal cells (cones) in the Minkowski sum
get subdivided to give maximal cells (cones) in T (X �Y ) or, furthermore, the union of several
cells (cones) in the Minkowski sum gives a maximal cell (cone) in T (X � Y ). We should not
expect a natural description of the structure of T (X � Y ). We illustrate this undesirable
property with an example.

Example 1.2.2. It may seem surprising at first that the combinatorial structure (e.g. f -
vector) of the Newton polytope does not follow easily from the description of the tropical
hypersurface as a Minkowski sum of two fans. Moreover, the number of edges of the polytope
(and even the number of vertices) may exceed the number of maximal cones of the tropical
hypersurface given as a set. To see this in a small example, consider the tropical curve in
R3 whose six rays are columns of the following matrix 1 1 1 1 1 −5

0 0 1 1 2 −4
0 1 0 2 1 −4

 ,

and consider the Minkowski sum of the fan with itself. This tropical hypersurface is described
as a union of 15 cones (or as a non-planar graph in S2 with 6 nodes and 15 edges), but the
dual Newton polytope has 16 vertices, 25 edges, and 11 facets. If we intersect the tropical
hypersurface with a sphere around the origin, we would see the planar graph in Figure 1.1.

The planar regions correspond to the 16 vertices. The black dots correspond to the
columns in the above matrix and the arcs between them correspond to cones generated by
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Figure 1.1: A tropical surface in R3 described as a collection of two-dimensional cones in R3 or as
a non-planar graph in S2.

them. The nodes in the graph correspond to the facets in the Newton polytope. Six of these
facets correspond to the black dots in Figure 1.1 and they are the six nodes in the non-planar
graph description of the tropical hypersurface. The remaining five facets correspond to the
five missing intersection points between the edges of the non-planar graph in the picture.
Adding these five nodes to the graph will give us a planar graph with 11 nodes and 25 edges
that encodes the fan structure of the tropical variety and the combinatorics of the Newton
polytope.

If we had started instead with a tropical curve whose six rays are ±ei for i = 1, 2, 3, then
the dual polytope would be a cube with f -vector (8, 12, 6). �

As we saw in the previous example, knowledge of a fan structure for T (X × Y ) is useful
when studying combinatorial properties of X × Y . In the hypersurface case, it allows us
to obtain the f -vector of the corresponding Newton polytope. In Chapter 4 we show an
instance where the intrinsic Gröbner tropical fan structure can be derived (Theorem 4.5.3).
The corresponding Hadamard product is the first secant variety of a monomial curve (1 :
ti1 : ti2 : ti3 : ti4) in P4, with arbitrary set of exponents.

From Definition 1.2.1 we see that Hadamard products are images of monomial maps
α : T2n

K → Tn
K associated to matrices of the form A = (In | In), restricted to the product

subvariety X × Y . Applying Theorem 1.1.15 and knowing that T (X × Y ) = T X × T Y
(Theorem 3.3.4), we recover the set-theoretic tropicalization of X � Y . As we mentioned in
Section 1.1.2, up to now there is no push-forward formula for multiplicities in the arbitrary
coefficient setting described in the literature. Such a formula would be extremely useful for
computing weights on tropicalizations of Hadamard products over valued fields.

In the constant coefficient case (i.e. K = C), we can derive formulas for tropical mul-
tiplicities on Hadamard products thanks to the push-forward formula (1.4) and an explicit
description of a canonical fan structure and weights in T (X×Y ). Theorem 3.3.4 and Corol-
lary 3.3.7 provide such formulas under suitable finiteness conditions of our “Hadamard”
monomial map α : X × Y ⊂ T2n → X � Y ⊂ Tn. The examples studied in Chapters 3 and 4
posses this finiteness property.
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1.3 Geometric tropicalization and tropical implicitiza-

tion

In this section we present the basics of geometric tropicalization and its consequences for
tropical implicitization. The crux of geometric tropicalization is to read off the tropicaliza-
tion of an algebraic variety directly from the combinatorics of its boundary in a suitable
compactification: a tropical compactification in the sense of Tevelev [94]. As one may sus-
pect, computing the tropicalization of an algebraic variety without any information about its
defining ideal is not an easy task. This point of view was pioneered by the work of Kapra-
nov and his collaborators [30], and further developed by Hacking, Keel and Tevelev [45].
The starting point of this construction is a parametric representation of the variety and the
characterization of its tropicalization in terms of divisorial valuations, following the spirit
of [5]. This can be quite difficult if the variety is non-generic, which explains the small
sample of computational examples available in the literature. Chapters 4 and 5 contribute
to the theory by constructing weighted graphs encoding tropical surfaces using geometric
tropicalization techniques.

We now discuss the main result in the theory of geometric tropicalization. Starting from a
variety X ⊂ Tn and a suitable compatification, we construct an abstract simplicial complex:
the intersection complex of its boundary. This complex encodes the combinatorics of the
tropical fan T X. This fan is the cone over a realization of this complex in Rn, obtained by
assigning an integer vector to every vertex of intersection complex. This vector encodes the
divisorial valuation of the divisor associated to this vertex. We choose the word “realization”
rather than embedding because this map need not be injective, as we show in Chapter 4.
The support of this fan will be independent of the chosen tropical compactification.

Theorem 1.3.1 (Geometric Tropicalization [45, §2]). Let χ1, . . . , χn be the basis of
characters of the n-dimensional torus Tn, and let X be a closed subvariety of Tn of dimension
d. Suppose X is smooth and X ⊃ X is any compactification whose boundary D = X \X is a
smooth divisor with simple normal crossings. Let D1, . . . , Dm be the irreducible components of
D, and write ∆X,D for the intersection complex of the boundary divisor D, i.e. the simplicial
complex on {1, . . . ,m} defined by

{k1, . . . , kd} ∈ ∆X,D ⇐⇒ Dk1 ∩ . . . ∩Dkd 6= ∅.

Define the integer vectors [Dk] := (valDk(χ1), . . . , valDk(χn)) ∈ Zn (k = 1, . . . ,m) where
valDk(χj) is the order of zero/pole of χj along Dk. For any σ ∈ ∆X,D, let [σ] be the semigroup
spanned by {[Dk] : k ∈ σ} ⊂ Zn and let R≥0[σ] be the cone in Rn spanned by the same integer
vectors. Then,

T X =
⋃

σ∈∆X,D

R≥0[σ]. (1.7)
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Remark 1.3.2. The proof of this result in [45] shows that T X is contained in the right-
hand side of (1.7) if we assume X to be normal [91, Remark 2.7]. Notice that if more than
dimX divisors pass through a point, then the right hand size of (1.7) could (and in general
will) contain cones of dimension greater than dimX, violating the Bieri-Groves theorem.
Thus, an expected necessary condition to achieve equality is to have a compactification X
whose boundary has combinatorial normal crossings (CNC), i.e. where any of its k compo-
nents intersect in codimension k. In particular, the complex ∆X,D will be simplicial of pure
dimension dimX − 1.

We now explain how to obtain the divisorial valuations valDk . Consider the m irreducible
components of the boundary of X, the basis of characters {χ1, . . . , χn} of Tn and pullback
the basis of characters along the inclusion i : X ↪→ Tn. By construction, the pullback i∗(χj)
is a unit of OX and a rational function on X. Therefore, for every j, the pullback i∗(χj)
has zeros and poles only along the boundary of X. In particular, we can write i∗(χj) as an
integer linear combination of the prime divisors Dk for all k = 1, . . . ,m. In symbols,

i∗(χj) =
m∑
k=1

ajkDj.

The divisorial valuation valDk satisfies valDk(χj) = ajk. Thus, the integer vectors [Dk] in
the theorem correspond to the columns of the matrix of coefficients (ajk)j,k.

To compute T X using Theorem 1.3.1, we need a method to construct a compactification
X ⊃ X whose boundary has simple normal crossings (SNC). In words, we require all the
components of the divisorD to be smooth and to intersect “as transversally as possible:” they
must behave locally as an intersection of coordinate hyperplanes. The best compactification
X we can pick will be the tropical one, obtained by taking the closure X(Σ) of X in a
suitable projective toric variety P(Σ) associated to a fan Σ ⊂ Rn:

X� _

��

� � // Tn
� _

��
X(Σ) � � // P(Σ)

(1.8)

The fan Σ will be supported on the tropical fan T X [94].
One method for producing such a compactification is to take the closure X of X in Pn

and resolve the singularities of the boundary X \X to fulfill the SNC condition, for example,
by blow-ups. The latter step can be difficult.

If X is a surface, we can relax the resolution process to give a boundary with CNC, i.e.
such that no three of its irreducible components intersect at a point [91]. Roughly speaking,
a full resolution will give us several extra (exceptional) divisors that yield bivalent nodes in
the intersection complex ∆X,D. If we contract these curves with negative self-intersection,
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we obtain a singular surface whose boundary divisor has CNC. This weaker condition will
suffice to construct tropical surfaces using the algorithm described in Theorem 1.3.1.

Despite the richness of this new “valuative” approach, characterizing tropical varieties by
divisorial valuations, this geometric perspective has a major obstacle to its full development:
it does not provide information about the tropical variety as a weighted set. Multiplicities
of maximal cells are missing in the construction of [45] and they are essential for tropical
implicitization methods. We overcome this difficulty by providing an explicit combinatorial
formula to compute these numbers:

Theorem 5.2.4. In the notation of Theorem 1.3.1, the multiplicity of a regular point w in
the tropical variety T X equals

mw =
∑

σ∈∆X,D

w∈R≥0[σ]

(Dk1 · . . . ·Dkd) index
(
R[σ] ∩ Zn,Z[σ]

)
, (1.9)

where Dk1 · . . . ·Dkd denotes the intersection number of these d divisors and we sum over all
(d−1)-dimensional cells σ in ∆X,D whose associated rational cone R≥0[σ] contains the point
w.

It is worth pointing out that similar formulas were presented in the work of Sturmfels
and Tevelev for generic complete intersections [91, Section 4]. In their paper, the intersection
number of d divisors is replaced by a mixed volume of d polytopes associated to the objective
vector w ∈ Rn and the equations defining the divisors Dkj .

Tropical implicitization was pioneered by the work of Sturmfels, Tevelev and Yu [91, 92].
Their methods are well suited for generic varieties, and are built on the theory of geometric
tropicalization. However, real life is seldom generic, so it is crucial to attack the non-generic
versions of these problems.

In Chapter 5, we study this question for rational surfaces. Our main contribution is the
development of new, explicit techniques for tropical implicitization of non-generic surfaces.
In what follows, we explain the interaction between tropical implicitization and geometric
tropicalization. Our main references are [91, 92].

We begin by discussing the classical implicitization problem. Let f1, . . . , fn be Laurent
polynomials in C[t±1 , . . . , t

±
r ] and consider the rational map f : Tr 99K Tn, f = (f1, . . . , fn).

For simplicity, we assume that the generic fiber of f is finite. Our goal is to compute the
defining ideal of Y , the Zariski closure of the image of f . This information would provide a
better understanding of this variety and would allow us to study the image of this map and
certify membership and dimension computations.

Classical tools to solve implicitization problems rely on Gröbner bases computations and
multidimensional resultants. These methods are infeasible to implement when the dimen-
sion of Y or its ambient space becomes large. So we need a new approach to go beyond this



17

computational threshold. Instead of calculating the defining ideal of Y , tropical implicitiza-
tion will seek for the tropicalization of the variety Y ⊆ Tn, without this ideal. We wish to
compute T Y from the geometry of Y , using the map f .

Following Theorem 1.3.1, our first step is to construct a nice compactification of Y and
compute the associated divisorial valuations of its boundary. As we illustrate in Sections 4.3
and 5.4, the combinatorics involved in this compactification process is by no means trivial.
We should not expect them to be simple since they are the manifestation of the algebro-
geometric process of resolution of singularities.

In this dissertation, we approach this task from a different angle. Using the finiteness of
the map f , we study the dense open set X ⊂ Tr where f is well-defined, that is, the comple-
ment of the hypersurface

⋃n
i=1(fi = 0) ⊂ Tr. Next, we construct a tropical compactification

of X, together with its boundary intersection complex ∆X,D. This abstract complex will
be isomorphic to the corresponding boundary complex for some compactification of Y . We
recover T Y from the theorem by composing the divisorial valuations on Y with the induced
map of residue fields f# : C(Y ) → C(X). In words, we construct the realization of ∆X,D in
Rr and we use the map f to push-forward this fan in Rr to a fan in Rn. Here is the precise
statement, which combines Theorems 5.2.2 and 5.2.4 and Corollary 5.2.5.

Theorem 1.3.3. Let f : X ⊂ Tr → Tn be a generically finite map of degree δ and let
Y ⊂ Tn be the Zariski closure of its image. Consider X a tropical compactification of X
and the corresponding boundary intersection complex ∆X,D. For each boundary component
Dk of X, let D̃k := valDk(χ ◦ f) = (valDk(χ1 ◦ f), . . . , valDk(χn ◦ f)) ∈ Zn and define σ̃ as
the semigroup spanned by {[D̃k] : k ∈ σ} for each σ ∈ ∆X,D. Then, the tropical variety T Y
equals:

T Y =
⋃

σ∈∆top
X,D

R≥0[σ̃],

where the superscript top indicates that we only consider top dimensional cells. The multi-
plicity of a regular point w in T Y equals

mw =
1

δ

∑
σ∈∆X,D

w∈R≥0[σ]

(Dk1 · . . . ·Dkd) index
(
R[σ̃] ∩ Zn,Z[σ̃]

)
.

As we discussed, tropical compactifications are required to have boundaries with simple
normal crossings. In the surface case, we show that the sufficient condition is a combinatorial
normal crossing boundary, i.e. where no triple intersections among boundary components
occur, and where pairs of divisors admit branches with no common tangent directions. Such
conditions can be achieved by contracting negative curves after a full resolution.

Proposition 5.2.10. Let X be a compactification of a surface X whose boundary satisfies
the combinatorial normal crossing condition and such that no pair of boundary components
have branches with the same tangent directions. Then X computes the tropical surface T (X).
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When the coefficients of f1, . . . , fn are generic with respect to their Newton polytopes,
an explicit X was proposed in [92, 91]. The genericity condition guarantees transverse inter-
section and smoothness of the hypersurfaces (fi = 0) and gives a natural compactification of
X in a projective toric variety P(N ), whose fan N is a strictly simplicial refinement of the
common refinement of all T (fi), i = 1, . . . , n. In addition to the toric divisors associated to
the rays of the fan N we have n extra divisors Ei representing the closure of the n hyper-
surfaces (fi = 0) in Tr. For every ray ρ in N , we let nρ be its primitive integer generator
and Dρ the corresponding toric divisor. The realization of the complex ∆Y,D will correspond
to the assignment:

[Dρ] = trop(f)(nρ), [Ei] = ei,

for all rays ρ in N and indices i = 1, . . . , n, where ei is the ith element of the canonical basis
of Rn. Multiplicities are calculated in terms of mixed volumes [91]. Section 5.3 describes
this algorithm for generic surfaces.

As expected, the non-generic case is intrinsically more difficult. A first attempt to solve
this tropical implicitization question is to proceed as if the polynomials fi were generic. This
will give a compactification X ⊂ P(N ), whose boundary has bad crossings. Resolving these
singularities in the toric case will not be advantageous, since they will not be torus-invariant
in most cases. Therefore, toric blow-up methods cannot be applied.

A second approach starts by picking the naive compactification of X in Pd. This adds
one extra divisor to the boundary

⋃n
i=1(fi = 0): the divisor at infinity. Next, we analyze the

crossings among these divisors and resolve all singularities. In principle, this can be achieved
by blow-ups, and the difficulty becomes algebraic, since we need to carry all valuations along
the successive blow-ups. Section 4.3 discusses this algorithm for a binomial surface in Tn

and Section 5.4 illustrates this procedure for non-generic surfaces in C3.

Example 5.4.3. Consider the surface in T3 parameterized by the three polynomials
f1(s, t) = s2 − s3 − t2,
f2(s, t) = t2 − t3 − s2,

f3(s, t) = (s+ t)2 − (s+ t)3 − (s− t)2 = 4st− s3 − t3 − 3st2 − 3s2t.

In the first step, we compactify the setX = T2r
⋃3
i=1(fi = 0) inside P2. As a result, we obtain

the set X whose boundary divisor consists of four components: D1 = (s2u− s3 − t2u = 0),
D2 = (t2u − t3 − s2u = 0), D3 = (4stu − s3 − t3 − 3st2 − 3s2t = 0) from f , and the divisor
at infinity D∞ = (u = 0). However, the first three divisors intersect at (0 : 0 : 1), giving a
three-dimensional cone in the right hand side of (1.7).

In each step of the resolution, we add a ray in the interior of this three-dimensional cone,
corresponding to an exceptional divisor. After each blow-up, the strict transform of some
of the original divisors no longer intersect, and some of them will also intersect with an
exceptional divisor, giving a three-dimensional subcone of the original one. In the end of the
resolution, all triple intersections disappear and we are left with an abstract graph ∆X,D.
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Its realization will be the desired tropical surface graph. In the first compactification, the
divisorial valuations are obtained from the columns of the matrix of coefficients describing
f∗(χ1, χ2, χ3): 

f∗(χ1) = (fh1 (s, t, u)) = D1 −3D∞,
f∗(χ2) = (fh2 (s, t, u)) = D2 −3D∞,
f∗(χ3) = (fh3 (s, t, u)) = D3 − 3D∞,

where fhi (s, t, u) is the homogeneization of fi(s, t) with respect to the variable u, that is
fhi (s, t, u) = udeg fifi(s/u, t/u).

The above linear combination gives [D1] = e1, [D2] = e2, [D3] = e3 and [D∞] =
(−3,−3,−3). In addition, the pairwise intersection numbers equal Di ·Dj = 9, D∞ ·Di = 3,
where i, j = 1, 2, 3, i 6= j. Figure 1.2 shows both intersection complexes and their weights,
following formula (1.9). Further details, including the resolution process are given in Sec-
tion 5.4 and Example 5.4.3 therein.

Figure 1.2: From left to right: first intersection complex for X ⊂ P2 and intersection complex
T Y obtained at the end of the resolution. The nodes [Ei], i = 1, . . . , 4, correspond to exceptional
divisors.

�

Chapter 4 illustrates the richness of geometric tropicalization for a particular choice of
surfaces: binomial surfaces representing a dehomogeneization of the secant varieties of mono-
mial projective curves with arbitrary sets of exponents (e.g. the curve (1 : t30 : t45 : t55 : t78)
from Example 4.2.3). Section 4.3 describes the construction of a tropical compactification
of this binomial arrangement, which resembles the recent extensions by Moci [71] of De
Concini-Procesi’s wonderful models for hyperplane arrangements [19]. This example illus-
trates our philosophy: only partial resolutions are required for tropicalizing surfaces. The
difference between Moci’s construction and ours is simply a matter of perspective. Consider
a fixed subfamily of plane curves. In Moci’s compactification, every intersection point be-
tween members of this subfamily must be resolved independently. However, they all share
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the same local behavior, so for all intents and purposes we can treat them as the same point.
This is, precisely, our approach to the problem.

As a corollary of the previous construction, using Hadamard products we can compute
the tropicalization of the secant variety of any monomial curve in Pn and calculate its degree.
The tropical approach reinterprets classical formulas for computing the degree of such secant
varieties by Conca and Ranestad [13, 82]. More importantly, it provides a way of recovering
their Chow polytopes, as we show in the next section.

1.4 Algorithms for implicitization

In this section, we discuss the inverse problem, that is, how to obtain relevant information
about algebraic objects from their tropical counterparts. Our attention will be concentrated
on the hypersurface case. As we mentioned in Section 1.1, tropical hypersurfaces are dual to
polytopal subdivisions. These weighted polyhedral complexes are obtained as the collection
of codimension one cells in the dual complex of subdivided lattice polytopes. Each maximal
cell in the tropical variety is dual to an edge of the subdivided polytope, and its weight equals
the lattice length of this edge. Thus, a natural question to ask is the following. If we are
given a tropical hypersurface, how can we recover the corresponding polytopal subdivision?

In what follows, we assume our base field to be the complex numbers, or any algebraically
closed field with trivial valuation. In this case, our question reduces to the duality between
inner normal fans and lattice polytopes. Suppose our hypersurface is defined by the equation
f ∈ C[x1, . . . , xn]. A construction for the vertices of the Newton polytope NP(f) from its
normal fan T (f) equipped with multiplicities was developed in [24]. The algorithm takes
as input a generic objective vector w in Rn, i.e. a vector in the interior of a maximal cone
(chamber) of the normal fan of NP(f), and outputs an extreme monomial of f , namely, the
one obtained as the initial form inw(f). Once the Newton polytope is computed, the defining
equation f can be obtained using linear algebra.

The following is a special case of [24, Theorem 2.2]. Since the operation T (f) interprets
f as a Laurent polynomial, NP(f) will be determined from T (f) up to translation. The
algorithm described in Theorem 1.4.1 computes a representative of NP(f) which lies in the
positive orthant and touches all coordinate hyperplanes, i.e. f is a polynomial not divisible
by any non-constant monomial. We present a pseudocode implementation in Algorithm 3.1.

Theorem 1.4.1 (Ray-shooting algorithm , [24]). Suppose w ∈ Rn is a generic vector so
that the ray (w+R>0 ei) intersects T (f) only at regular points for all i. Let Pw be the vertex
of the polytope P = NP(f) that attains the minimmum of {w · x : x ∈ P}. Then the ith

coordinate of Pw equals ∑
v

mv · |lvi |, (1.10)

where the sum is taken over all points v ∈ T (f)∩ (w+ R>0ei), mv is the multiplicity of v in
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T (f), and lvi is the ith coordinate of the primitive integral normal vector lv to the maximal
cone in T (f) containing v.

Figure 1.3 illustrates the heart of formula (1.10). For a vertex Pw, we represent its ith

coordinate vi as the distance from the vertex Pw to the hyperplane Hi = (xi = 0). We
partition the segment joining Pw and the nearest point q in Hi into pieces. Each piece will
be the projection of an edge of the polytope P in the edge path from Pw to q obtained
from the algorithm: each point in T (f) ∩ (w + R>0ei) corresponds to an edge in this path.
Orient the edges in this path from Pw to q. The projection of each edge is associated to a
point v ∈ T (f) ∩ (w + R>0ei) and has length equal to mv|lvi |, i.e. the lattice length of the
edge in P times the absolute value of the ith coordinate of its generating vector. Figure 1.3
illustrates this algorithm for a full dimensional polytope in R2 and expresses Pw1 as the sum
of the contributions of two edges.

−e1

ml · l1

l

ml′ · l′1

l′

Pw

Figure 1.3: Ray-shooting algorithm: the picture shows how to obtain the first coordinate of vertex
Pw as the sum of the contributions of the two edges connecting this vertex to the y-axis. These
two edges are dual to the points v, v′ obtained by ray-shooting along the direction e1 from a generic
objective vector w in the chamber associated to vertex Pw.

Theorem 1.4.1 can be generalized to projective varieties of higher codimension, replacing
the ray-shooting by orthant-shooting [24, Theorem 2.2]. In this case, the role of the Newton
polytope is played by the Chow polytope [55] of the variety. Knowledge of a single vertex
of this polytope gives us the degree (or multidegree) of the corresponding projective variety.
Geometrically, its vertices encode toric degenerations of the algebraic cycle underlying the
projective variety. The connection between tropicalization and Chow polytopes began with
[24] and has been further studied in [37, 38]. Example 4.6.1 illustrates this method, where
we compute the Chow polytope associated to the secant variety of the rational normal curve
in Pn with n ≥ 5 (Example 4.6.1).
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Note that we do not need a fan structure on T (f) to use Theorem 1.4.1. A description
of T (f) as a set, together with a way to compute the multiplicities of regular points gives
us enough information to compute vertices of NP(f) in any generic direction. This small
remark is crucial for practical applications, since most characterizations of tropical varieties
in the literature only give a set theoretic description of the space and multiplicities of regular
points. In most cases, it is extremely un-natural to obtain any tropical fan structure from
this description.

By picking an objective vector in each chamber of the normal fan and running the ray-
shooting algorithm we obtain a single vertex of the polytope. A natural goal in any imple-
mentation is a method for picking objective vectors by passing exactly once through each
chamber. This problem is harder to solve if we lack a fan structure description, i.e. if we
define the chambers as the complement of a collection of codimension one cones. Moreover,
if this collection is large, it is very ineffective to use ray-shooting to obtain vertices one at a
time.

In Chapter 3 we give an answer to these questions inspired by a concrete implicitization
task for the restricted Boltzmann machine. We develop three algorithms to successfully
compute the Newton polytope of a tropical hypersurface, starting from a single generic
objective vector in Rn. We call them the walking algorithm (Algorithm 3.2), the facet
certificate algorithm (Algorithm 3.3) and the approximation algorithm (Algorithm 3.4).

The walking algorithm performs the following operation: starting from an objective
vector and the corresponding associated vertex, we use the principle of ray-shooting to
recursively pick an objective vector from a neighboring chamber together with its associated
vertex, each time we cross a codimension one cone. These crossings are recorded by the
points of T (f) ∩ (w + R>0ei), i = 1, . . . , n.

Theorem 1.4.2 (Walking algorithm). Suppose w ∈ Rn is a generic vector so that the ray
(w+ R>0 ei) intersects T (f) only at regular points of T (f), for all i. Let Pw be the vertex of
the polytope P = NP(f) that attains the minimum of {w · x : x ∈ P}. For each coordinate,
call v1, . . . , vr the intersection points of w + R>0ei and T (f), ordered increasingly by their
distance to w. Call t1, . . . , tr ∈ R>0 the corresponding parameter of each intersection point
and pick tj < sj < tj+1 for each j = 1, . . . , r − 1. Then, vertices and random vectors along
the direction ei can be computed as:

wj = w + sj · ei, Pwj = Pv +mvj · lvj , j = 1, . . . , r − 1.

Algorithm 3.2 describes a pseudocode implementation of the previous theorem. In prac-
tice, we start from a random objective vector w, and we apply the ray-shooting algorithm
to obtain both Pw and the intersection points v1, . . . , vr. Then, we use each new random
vector obtained by the walking algorithm as the input for a new iteration of ray-shooting,
and we repeat this process. Figures 3.2 and 3.3 show the interface between the ray-shooting
and walking algorithms. Once the combination of ray-shooting and walking algorithms stops
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giving new vertices, we need a certificate of completion of the polytope NP(f). This is done
by combining the facet certificate and approximation algorithms.

The facet certificate algorithm provides a way of determining if a given linear inequality
defines a facet of a polytope by looking at its tropicalization. By duality, each facet direction
is a ray in the Gröbner fan structure of the tropical variety. Since the tropical hypersurface
is given as a collection of weighted codimension one cones with no fan structure, we need
a computational certificate for rays in the tropical hypersurface. This is provided by the
following lemma, discussed in Section 3.4.

Lemma 3.4.3. Let w ∈ Rn and T (f) be a tropical hypersurface given by a collection of
cones. Let d be the dimension of its lineality space. Let H = {σ1, . . . , σk} be the list of
cones containing w. Let lσi be the normal vector to cone σi for i = 1, . . . , k. Then, w is a
ray of T (f) equipped with the Gröbner fan structure if and only if {lσ1 , . . . , lσk} generates a
(n− d− 1)-dimensional vector space if and only if w is a facet direction of NP(f).

Given a ray w in the tropical variety, the corresponding facet in the polytope P will be
determined by a constant. This number can be obtained by taking the inner product between
w and any vertex contained in the facet Pw. An objective vector in any neighboring chamber
of w will provide such vertex. The facet certificate algorithm outputs such objective vector,
by a slight modification of ray-shooting and walking algorithms. The core of the algorithm
lies in the following result:

Theorem 1.4.3 (Facet certificate). Let w ∈ Rn and i = 1, . . . , n. Let ti > 0 be such that
w + tiei is the closest point to w in the nonempty set T (f) ∩ (w + R>0ei), or set ti to be
infinity otherwise. Fix 0 < si < ti and define w̃ = w + siei. Then w̃ lies in a cone in the
normal fan of NP(f) of dimension at least min{n, 1 + codimPw}, where Pw is the face of
NP(f) defined by w.

In particular, we can obtain a generic vector on a neighboring chamber of a ray in T (f)
by starting with this ray, the index i = 1, and iterating the process by increasing the index
by one on each step and using the output vector w̃ as the input for the next iteration until
we reach a chamber. Algorithm 3.3 contains a pseudocode implementation of these ideas.

Finally, we discuss the approximation algorithm and its geometric meaning. The main
objects in this algorithm are the edges of NP(f) normal to the cones in T (f) and the tangent
cones at each vertex of the polytope NP(f). For each vertex v in a polytope P we define
the tangent cone by:

T Pv := v + R≥0〈w − v : w ∈ P〉 = v + R≥0〈e : e edge of P adjacent to v〉.

The approximation algorithm is based on the following technical lemma from Section 3.4.5:

Lemma 3.4.5. Let P be a polytope and Q ⊆ P be the convex hull of a subset of the vertices
in P. If all facets of Q are facets of P, then Q ⊇ P, so Q = P.
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Given a subset of the vertices of a polytope P we construct its convex hull. This polytope
Q will be a subpolytope of P and we aim to recover P from Q by successive approximations,
using the list of known edge directions of P . We start by computing the tangent cones of
all vertices of Q and we compare them with the corresponding tangent cones in P . This
comparison is done by constructing a cone CQ,Pv with apex v a vertex in Q and whose
generating rays are all the differences w − v where w runs along the set of all vertices of Q
and w − v is parallel to an edge in P .

Theorem 1.4.4 (Approximation algorithm). Let Q ⊆ P be a subpolytope spanned by
some vertices of P, and let v be a vertex of Q. Consider the cone CQ,Pv as above. If all facet
inequalities of this cone are facets of P then we have CQ,Pv = T Qv = T Pv . Moreover, if this
equality holds for every vertex in Q, then Q = P.

If CQ,Pv + T Qv or a facet of CQ,Pv is not a facet of P , we obtained a new vertex adjacent
to v by perturbing an objective vector giving v, adding this new vertex of P to the list of
vertices of Q and running the algorithm again until we certify the hypothesis of the theorem.
Methods to perform this perturbation in a systematic way are discussed in Section 3.4.
Algorithm 3.4 gives a pseudocode implementation of Theorem 1.4.4. Figure 3.4 shows a
pictorial description of this result in dimension two.

Even though there is no condition on the cones in the collection T (f), our practical
implementations of all four algorithms described in this section assume our cones are simpli-
cial. This strong condition is used to simplify the computation of intersection points between
rays and cones, and to test membership of vectors to T (f). If the input data contains non-
simplicial cones, we preprocess these bad cones. We subdivide them into simplicial pieces
with standard methods in geometric combinatorics and replace each one with this finite list of
simplicial cones. Each simplicial piece will inherit its weight from the original non-simplicial
cone.

In analogy with the generalized orthant-shooting algorithm [24, Theorem 2.2], the other
three algorithms can also be extended to higher codimension irreducible projective varieties
and their Chow polytopes. The four algorithms described in this section give a complete
answer to the task of recovering the Newton polytope (or Chow polytope) from its asso-
ciated tropical variety. Implementations of these algorithms are discussed extensively in
Section 3.4.3.

Chapter 3 illustrates these powerful tropical implicitization tools with a concrete example:
the restricted Boltzmann machine F(4, 2). This “machine” is an algebraic variety obtained
from the undirected graphical model of the complete bipartite graph K2,4 by marginalizing
two of the six binary random variables (Figure 3.1). It defines a degree 110 hypersurface in
P15 with a four-dimensional torus action and a natural symmetry given by B4, the symmetry
group of the 4-cube (Theorem 3.4.2). The sheer size of this computational challenge forced
us to derive, and efficiently implement, the techniques described above to go from a tropical
hypersurface T (f) to the Newton polytope of f . After months of strenuous computations,
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and using the symmetry of this object, we were able to describe all vertices and facets of
this polytope:

Theorem 3.4.1. The Newton polytope of the restricted Boltzmann machine F(4, 2) has
17 214 912 vertices in 44 938 symmetry classes and 70 646 facets in 246 symmetry classes
under the group B4.
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Chapter 2

Geometry of the restricted Boltzmann
machine

This chapter is joint work with Jason Morton and Bernd Sturmfels. It has been published
in Algebraic Methods in Statistics and Probability (M. Viana and H. Wynn, eds.), American
Mathematical Society, Contemporary Mathematics 516 (2010), 135–153, under the same
title. The present version incorporates some minor changes, largely for consistency with
other chapters.

2.1 Introduction

In recent years, a fruitful interaction between (computational) algebraic geometry and statis-
tics has emerged, under the form of algebraic statistics. A primary focus in algebraic statistics
is the study of statistical models that can be represented by polynomials in the model param-
eters. This class of algebraic statistical models includes graphical models for both Gaussian
and discrete random variables [28, 27]. In this chapter we study a family of binary graphical
models with hidden variables. The underlying graph is the complete bipartite graph Kk,n.

The k white nodes in the top row of Figure 2.1 represent hidden random variables.
The n black nodes in the bottom row represent observed random variables. The restricted
Boltzmann machine (RBM) is the undirected graphical model for binary random variables
specified by this bipartite graph. Each node represents a binary random variable and each
edge represents a dependency between two random variables. In other words, if there is no
edge between two random variables, then they are conditionally independent given the rest
of the variables. We identify the model with the set Mk

n of its joint distributions inside the
probability simplex ∆2n−1.

The graphical model for Gaussian random variables represented by Figure 2.1 is the factor
analysis model, whose algebraic properties were studied in [7, 25, 26]. Thus, the restricted
Boltzmann machine is the binary undirected analog of factor analysis. Our aim here is to
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Figure 2.1: Graphical representation of the restricted Boltzmann machine.

study this model from the perspectives of algebra and geometry. Unlike in the factor analysis
study [26], an important role will now be played by tropical geometry [75]. This will be seen
for n = 4 and k = 2 in the solution of the implicitization challenge in [27, Problem 7.7],
describe in Chapter 3.

The restricted Boltzmann machine has been the subject of a recent resurgence of interest
due to its role as the building block of the deep belief network [48, Section 17.4.4]. Deep
belief networks are designed to learn feature hierarchies to automatically find high-level rep-
resentations for high-dimensional data. A deep belief network comprises a stack of restricted
Boltzmann machines. Given a piece of data (state of the lowest visible variables), each layer’s
most likely hidden states are treated as data for the next layer. A new effective training
methodology for deep belief networks, which begins by training each layer in turn as an
RBM using contrastive divergence, was introduced by Hinton et al. [49]. This method led
to many new applications in general machine learning problems including object recognition
and dimensionality reduction [50]. While promising for practical applications, the scope and
basic properties of these statistical models have only begun to be studied. For example, Le
Roux and Bengio [61] showed that any distribution with support on r visible states may be
arbitrarily well approximated provided there are at least r+ 1 hidden nodes. Therefore, any
distribution can be approximated with 2n + 1 hidden nodes.

The natural starting question is whether the restricted Boltzmann machine model is iden-
tifiable, i.e. whether the parametrization of the model is locally one-to-one. The dimension
of the fully observed binary graphical model on Kk,n is equal to nk + n + k, the number of
nodes plus the number of edges. We conjecture that this dimension is preserved under the
projection corresponding to the algebraic elimination of the k hidden variables. Here is the
precise statement:

Conjecture 2.1.1. The restricted Boltzmann machine has the expected dimension, i.e. Mk
n

is a semialgebraic set of dimension min{nk + n+ k, 2n − 1} in ∆2n−1.

This conjecture is shown to be true in many special cases. In particular, it holds for all
k when n+ 1 is a power of 2. This is a consequence of the following:
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Theorem 2.1.2. The restricted Boltzmann machine has the expected dimension min{nk +

n+ k, 2n − 1} when k ≤ 2n−dlog2(n+1)e and when k ≥ 2n−blog2(n+1)c.

We note that Theorem 2.1.2 covers most cases of restricted Boltzmann machines as used
in practice, as those generally satisfy k ≤ 2n−dlog2(n+1)e. In particular, we conclude that the
model is identifiable in these cases. The case of large k is primarily of theoretical interest
and has been studied recently in [61].

This chapter is organized as follows. In Section 2.2 we introduce four geometric objects,
namely, the RBM model, the RBM variety, the tropical RBM model, and the tropical RBM
variety, and we formulate a strengthening of Conjecture 2.1.1. Section 2.3 is concerned
with the case k = 1. Here the RBM variety is the variety of secant lines of the Segre
variety (P1)n ⊂ P2n−1. The general case k > 1 arises from that secant variety by way of a
construction we call the Hadamard product of projective varieties, introduced in Section 1.2.
In Section 2.4 we analyze the tropical RBM model, we establish a formula for its dimension
(Theorem 2.4.2), and we draw on results from coding theory to derive Theorem 2.1.2 and
Table 2.1. In Section 2.5 we study the piecewise-linear map that parameterizes the tropical
RBM model. The inference functions of the model (in the sense of [32, 75]) are k-tuples of
linear threshold functions. We discuss the number of these functions. Figures 2.5 and 2.6
shows the combinatorial structure of the tropical RBM model for k = 1 and n=3 and 2,
respectively.

2.2 Algebraic varieties, Hadamard product and tropi-

calization

We begin with an alternative definition of the restricted Boltzmann machine. This “machine”
is a statistical model for binary random variables where n of the variables are visible and
k of the variables are hidden. The states of the hidden and visible variables are written as
binary vectors h ∈ {0, 1}k and v ∈ {0, 1}n respectively. We introduce nk + n + k model
parameters, namely, the entries of a real k × n matrix W and the entries of two vectors
b ∈ Rn and c ∈ Rk, and we set

ψ(v, h) = exp(h>Wv + b>v + c>h). (2.1)

The probability distribution on the visible random variables in our model equals

p(v) =
1

Z
·
∑

h∈{0,1}k
ψ(v, h), (2.2)

where Z =
∑

v,h ψ(v, h) is the partition function. We denote by Mk
n the subset of the open

probability simplex ∆2n−1 consisting of all such distributions (p(v) : v ∈ {0, 1}n) as the
parameters W, b and c run over Rk×n, Rn and Rk respectively.
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In what follows we refer to Mk
n as the RBM model with n visible nodes and k hidden

nodes. It coincides with the binary graphical model associated with the complete bipartite
graph Kk,n as described in the introduction. This is indicated in Figure 2.1 by the labeling
with the states v, h and the model parameters c,W, b.

The parameterization in (2.1) is not polynomial because it involves the exponential func-
tion. However, it is equivalent to the polynomial map obtained by replacing each model
parameter by its value under the exponential function:

γi = exp(ci) , ωij = exp(Wij) , βj = exp(bj)
1/k.

This coordinate change translates (2.1) into the squarefree monomial

ψ(v, h) =
k∏
i=1

γhii ·
k∏
i=1

n∏
j=1

ω
hivj
ij ·

n∏
j=1

β
vj ·k
j ,

and we see that the probabilities in (2.2) can be factored as follows:

p(v) =
1

Z

k∏
i=1

(
βv11 β

v2
2 · · · βvnn ·

(
1 + γi ω

v1
i1ω

v2
i2 · · ·ω

vn
in

))
for v ∈ {0, 1}n. (2.3)

The RBM model Mk
n is the image of the polynomial map Rnk+k+n

>0 → ∆2n−1 whose vth co-
ordinate equals (2.3). The Tarski-Seidenberg Theorem from real algebraic geometry implies
that Mk

n is a semialgebraic subset of ∆2n−1.

When faced with a high-dimensional semialgebraic set in statistics, it is often useful to
simplify the situation by disregarding all inequalities and by replacing the real numbers R
by the complex numbers C. This leads us to considering the Zariski closure V k

n of the RBM
model Mk

n . This is the algebraic variety in the complex projective space P2n−1 parameterized
by (2.3). We call V k

n the RBM variety.

For any projective variety X, we may consider its Hadamard square X [2] = X � X and
its higher Hadamard powers X [k] = X � X [k−1], as in Definition 1.2.1. If M is a subset of
the open simplex ∆m−1 then its Hadamard powers M [k] are also defined by componentwise
multiplication followed by rescaling so that the coordinates sum to one. This construction

is compatible with taking Zariski closures, i.e. we have M [k] = M
[k]

.
In the next section we shall take a closer look at the case k = 1, and we shall recognize

V 1
n as a secant variety and M1

n as a phylogenetic model. Here, we prove that the case of
k > 1 hidden nodes reduces to k = 1 using Hadamard powers.

Proposition 2.2.1. The RBM variety and model factor as Hadamard powers:

V k
n = (V 1

n )[k] and Mk
n = (M1

n)[k].
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Proof. A strictly positive vector p with coordinates p(v) as in (2.3) admits a componentwise
factorization into similar vectors for k = 1, and, conversely, the componentwise product of k
probability distributions in M1

n becomes a distribution in Mk
n after division by the partition

function. Hence Mk
n = (M1

n)[k] in ∆2n−1. The equation V k
n = (V 1

n )[k] follows by passing to
the Zariski closure in P2n−1.

The emerging field of tropical mathematics is predicated on the idea that log(exp(x) +
exp(y)) is approximately equal to max(x, y) when x and y are quantities of different scale.
The process of passing from ordinary arithmetic to the max-plus algebra is known as trop-
icalization. The same approximation motivates the definition of the softmax function in
the neural networks literature. A statistical perspective is offered in work by Pachter and
Sturmfels [76, 75].

If q(v) approximates −log(p(v)) in the sense of tropical mathematics, and if we disregard
the global additive constant logZ and change signs of our parameters W, b, c, then (2.2)
translates into the formula

q(v) = min
{
h>Wv + b>v + c>h : h ∈ {0, 1}k

}
. (2.4)

This expression is a piecewise-linear concave function Rnk+n+k → R on the space of model
parameters (W, b, c). As v ranges over {0, 1}n, there are 2n such concave functions, and these
form the coordinates of a piecewise-linear map

Φ : Rnk+n+k → TP2n−1. (2.5)

The image of the map Φ is denoted TMk
n and is called the tropical RBM model. The map

Φ is the tropicalization of the given parameterization of the RBM model. It is our objective
to investigate its geometric properties.

This situation fits precisely into the general scheme of parametric maximum a posterior
(MAP) inference introduced in [75] and studied in more detail by Elizalde and Woods [32].
In Section 2.5 below, we discuss the statistical relevance of the map Φ and we examine its
geometric properties. Of particular interest are the domains of linearity of Φ, and how these
are mapped onto the cones of the model TMk

n .
Finally, we define the tropical RBM variety T V k

n to be the tropicalization of the RBM
variety V k

n . As explained Section 1.1.1, the tropical variety T V k
n is the intersection in TP2n−1

of all the tropical hypersurfaces T (f) where f runs over all polynomials that vanish on V k
n

(or on Mk
n). By definition, T (f) is the union of all codimension one cones in the inner normal

fan of the Newton polytope of f . If the homogeneous prime ideal of the variety V k
n were

known then the tropical variety T V k
n could in theory be computed using the algorithms in [6]

which are implemented in the software Gfan ([54]). However, this prime ideal is not known in
general. In fact, even for small instances, its computation is very hard and relies primarily on
tropical geometry techniques such as the ones developed in Chapter 3. For instance, the main
result in that chapter states that the RBM variety V 2

4 is a hypersurface of degree 110 in P15,



31

and it remains a challenge to determine a formula for the defining irreducible polynomial of
this hypersurface. To appreciate this challenge, note that the number of extreme monomials
in this polynomial equals 17 214 912 (Theorem 3.4.1), whereas the number of monomials in
the relevant multidegree equals 5 529 528 561 944.

Here is a brief summary of the four geometric objects we have introduced:

• The semialgebraic set Mk
n ⊂ ∆2n−1 of probability distributions represented by the

restricted Boltzmann machine. We call Mk
n the RBM model.

• The Zariski closure V k
n of the RBM model Mk

n . This is an algebraic variety in the
complex projective space P2n−1. We call V k

n the RBM variety.

• The image TMk
n of the tropicalized parameterization Φ. This is the subset of TP2n−1

consisting of all optimal score value vectors in the MAP inference problem for the
RBM. We call TMk

n the tropical RBM model.

• The tropicalization T V k
n of the variety V k

n . This is a tropical variety in the tropical
projective torus TP2n−1. We call T V k

n the tropical RBM variety.

We have inclusions Mk
n ⊂ V k

n and TMk
n ⊂ T V k

n . The latter inclusion is the content of
the second statement in [75, Theorem 2]. We shall see that both inclusions are strict even
for k = 1. For example, M1

3 is a proper subset of V 1
3 ∩ ∆7 = ∆7 since points in this set

must satisfy the inequality σ12σ13σ23 ≥ 0 as indicated in Theorem 2.3.4 below. Likewise,
TM1

3 is a proper subfan of TP7 = T V 1
3 . This subfan will be determined in our discussion of

the secondary fan structure in Example 2.5.2.
The dimensions of our four geometric objects satisfy the following chain of equations and

inequalities:

dim(TMk
n) ≤ dim(T V k

n ) = dim(V k
n ) = dim(Mk

n) ≤ min{nk + n+ k, 2n − 1}. (2.6)

Here, the tropical objects TMk
n and T V k

n are polyhedral fans, and by their dimension we
mean the dimension of any cone of maximal dimension in the fan. When speaking of the
dimension of V k

n we mean the Krull dimension of the projective variety, and for the model
Mk

n we mean its dimension as a semialgebraic set.
The leftmost inequality in (2.6) holds because TMk

n ⊂ T V k
n . The left equality holds

by the Bieri-Groves Theorem (cf. [25, Theorem 4.5]) which ensures that every irreducible
variety has the same dimension as its tropicalization (see also Section 1.1.1).

Every polynomial function that vanishes on the image of the map p in (2.3) also vanishes
on V k

n . This means that the model Mk
n is Zariski dense in the variety V k

n . From this we
conclude the validity of the second equality in (2.6). Finally, the rightmost inequality in
(2.6) is seen by counting parameters in the definition (2.1)–(2.2) of the RBM model Mk

n , and
by bounding its dimension by the dimension of the ambient space ∆2n−1.

We conjecture that both of the inequalities in (2.6) are actually equalities:
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Conjecture 2.2.2. The tropical RBM model has the expected dimension, i.e. TMk
n is a

polyhedral fan of dimension min{nk + n+ k, 2n − 1} in TP2n−1.

In light of the inequalities (2.6), Conjecture 2.2.2 implies Conjecture 2.1.1. In Section 2.4
we shall prove some special cases of these conjectures, including Theorem 2.1.2.

2.3 The first secant variety of the n-cube

We saw in Proposition 2.2.1 that the RBM for k ≥ 2 can be expressed as the Hadamard
power of the RBM for k = 1. Therefore, it is crucial to understand the model with one
hidden node. In this section we fix k = 1 and we present an analysis of that case. In
particular, we shall give a combinatorial description of the fan TM1

n which shows that it has
dimension 2n+ 1, as stated in Conjecture 2.2.2.

We begin with a reparameterization of our model that describes it as a secant variety.
Let λ, δ1, . . . , δn, ε1, . . . , εn be real parameters which range over the open interval (0, 1), and
consider the polynomial map p : (0, 1)2n+1 → ∆2n−1 whose coordinates are given by

p(v) = λ
n∏
i=1

δ1−vi
i (1− δi)vi + (1− λ)

n∏
i=1

ε1−vii (1− εi)vi for v ∈ {0, 1}n. (2.7)

Proposition 2.3.1. The image of p coincides with the RBM model M1
n.

Proof. Recall the parameterization (2.3) of the RBM model M1
n from Section 2.2:

p(v) =
1

Z
βv11 β

v2
2 · · · βvnn

(
1 + γ ωv11 ω

v2
2 · · ·ωvnn

)
for v ∈ {0, 1}n. (2.8)

We define a bijection between the parameter spaces R2n+1
>0 and (0, 1)2n+1 as follows:

βi =
1− δi
δi

and ωi =
δi

1− δi
1− εi
εi

for i = 1, 2, . . . , n,

γ = Z(1− λ)ε1ε2 · · · εn where Z = (λδ1δ2 · · · δn)−1.

This substitution is invertible and it transforms (2.8) into (2.7).

Proposition 2.3.1 shows that M1
n is the first mixture of the independence model for n

binary random variables. In phylogenetics, it coincides with the general Markov model on
the star tree with n leaves. A semi-algebraic characterization of that model follows as a
special case from recent results of Zwiernik and Smith [100]. We shall present and discuss
their characterization in Theorem 2.3.4 below.

First, however, we remark that the Zariski closure of a mixture of an independence model
is a secant variety of the corresponding Segre variety. This fact is well-known (see e.g. [27,
§4.1]) and is here easily seen from (2.7). We conclude:
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Corollary 2.3.2. The first RBM variety V 1
n coincides with the first secant variety of the

Segre embedding of the product of projective lines (P1)n into P2n−1, and the first tropical
RBM variety T V 1

n is the tropicalization of that secant variety.

We next describe the equations defining the first secant variety V 1
n . The coordinate

functions p(v) are the entries of an n-dimensional table of format 2×2× · · ·×2. For each set
partition {1, 2, . . . , n} = AtB we can write this table as an ordinary two-dimensional matrix
of format 2|A|×2|B|, with rows indexed by {0, 1}A and columns indexed by {0, 1}B. These
matrices are the flattenings of the 2×2× · · ·×2-table. Pachter and Sturmfels [75, Conjecture
13] conjectured that the homogeneous prime ideal of the projective variety V 1

n ⊂ P2n−1 is
generated by the 3×3-minors of all the flattenings of the table (p(v))v∈{0,1}n . This conjecture
has been verified computationally for n ≤ 5, and recently proven by Raicu [81]. A more
general form of this conjecture was stated in [41, Section 7]. The set-theoretic version of
that general conjecture was proved by Landsberg and Manivel in [58, Theorem 5.1]. Their
results imply:

Theorem 2.3.3 (Landsberg-Manivel, [59, 58]). The projective variety V 1
n ⊂ P2n−1 is the

common zero set of the 3× 3-minors of all the flattenings of the table (p(v))v∈{0,1}n.

We now come to the inequalities that determine M1
n among the real points of V 1

n . For
any pair of indices i, j ∈ {1, 2, . . . , n} we write σij for the covariance of the two random
variables Xi and Xj obtained by marginalizing the distribution, and we write Σ = (σij) for
the n×n-covariance matrix. We regard Σ as a polynomial map from the simplex ∆2n−1 to the

space R(n+1
2 ) of symmetric n×n-matrices. The off-diagonal entries of the covariance matrix

Σ are the 2×2-minors obtained by marginalization from the table (p(v)). For example, for
n = 4 the covariances are

σ12 = det

(
p0000+p0001+p0010+p0011 p0100+p0101+p0110+p0111

p1000+p1001+p1010+p1011 p1100+p1101+p1110+p1111

)
,

σ13 = det

(
p0000+p0001+p0100+p0101 p0010+p0011+p0110+p0111

p1000+p1001+p1100+p1101 p1010+p1011+p1110+p1111

)
, etc.

Zwiernik and Smith [100] gave a semi-algebraic characterization of the general Markov
model on a trivalent phylogenetic tree in terms of covariances and moments. The statement of
their characterization is somewhat complicated, so we only state a weaker necessary condition
rather than the full characterization. Specifically, applying [100, Theorem 4.2] to the star
tree on n leaves implies the following result.

Corollary 2.3.4. If a probability distribution p ∈ ∆2n−1 lies in the first RBM model M1
n

then all its matrix flattenings (as in Theorem 2.3.3) have rank ≤ 2 and

σijσikσjk ≥ 0 for all distinct triples i, j, k ∈ {1, 2, . . . , n}.
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These inequalities follow easily from the parameterization (2.8), which yields

σij = λ(1− λ)(δi − εi)(δj − εj)
δiδj∏n
s=1 δs

εiεj∏n
s=1 εs

.

This factorization also shows that the binomial relations σijσkl = σilσjk hold on M1
n. These

same binomial relations are valid for the covariances in factor analysis [26, Theorem 16], thus
further underlining the analogies between the Gaussian case and the binary case. Theorem
20 in [100] extends the covariance equations σijσkl = σilσjk to a collection of quadratic
binomial equations in all tree-cumulants, which in turn can be expressed in terms of higher
order correlations. For the star tree, these equations are equivalent on ∆2n−1 to the rank ≤ 2
constraints. However, for general tree models, the binomial equations in the tree-cumulants
are necessary conditions for distributions to lie in these models.

We now turn to the tropical versions of the RBM model for k = 1. The variety V 1
n is

cut out by the 3×3-minors of all flattenings of the table
(
p(v)

)
v∈{0,1}n . It is known that the

3×3-minors of one fixed two-dimensional matrix form a tropical basis. Recall (e.g. from [6,
Section 2]) that a tropical basis of a polynomial ideal is a generating set with the property
that the intersection of the corresponding tropical hypersurfaces equals the tropical variety
of the ideal. The tropical basis property of the 3×3-minors is equivalent to [23, Theorem
6.5].

It is natural to ask whether this property continues to hold for the set of all 3×3-
determinants in Theorem 2.3.3. Since each flattening of our table corresponds to a non-
trivial edge split of a tree on n taxa (i.e. a partition of the set of taxa into two sets each of
cardinality ≥ 2), our question can be reformulated as follows:

Question 2.3.5. Is the tropical RBM variety T V 1
n equal to the intersection of the tropical

rank 2 varieties associated to non-trivial edge splits on a collection of trees on n taxa?

The tropical rank two varieties associated to each of the edge splits have been studied by
Markwig and Yu [66]. They endow this determinantal variety with a simplicial fan structure
that has the virtue of being shellable. The cones of this simplicial fan correspond to weighted
bicolored trees on 2n−1 taxa with no monochromatic cherries. The interior points in a cone
can be viewed as a matrix encoding the distances between leaves with different colors in the
associated weighted bicolored tree.

Question 2.3.5 is void for n ≤ 3, so the first relevant case concerns n = 4 taxa. We were
surprised to learn that the answer is negative already in this case:

Example 2.3.6. The prime ideal of the variety V 1
4 is generated by the sixteen 3× 3-minors

of the three flattenings of the 2×2×2×2-table p. As a statistical model, each one of the
three flattenings corresponds to the graphical model associated to each one of the quartet
trees (12|34), (13|24) and (14|23), as depicted in Figure 2.2.

Algebraically, each flattening corresponds to the variety cut out by the sixteen 3×3-minors
of a 4×4-matrix of unknowns. These minors form a tropical basis. The tropical variety they
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Figure 2.2: From left to right: quartet trees associated to the flattenings (12|34), (13|24) and
(14|23) for n = 4.

define is a pure fan of dimension 11 in TP15 with a 6-dimensional lineality space. The simpli-
cial fan structure on this variety given by [66] has the f -vector

(
98, 1152, 4248, 6072, 2952

)
.

Combinatorially, this object is a shellable 4-dimensional simplicial complex which is the
bouquet of 73 spheres. However, this determinantal variety admits a different fan struc-
ture, induced from the Gröbner fan as in Section 1.1.1, or from the fact that the sixteen
3× 3-minors form a tropical basis. Its f -vector is

(
50, 360, 1128, 1680, 936

)
.

The tropical variety T V 1
4 is a pure fan of dimension 9 in TP15. Its lineality space has

dimension 4, and the cones of various dimensions are tallied in its f -vector

f(T V 1
4 ) =

(
382, 3436, 11236, 15640, 7680

)
.

Question 2.3.5 asks whether the 9-dimensional tropical variety T V 1
4 is the intersection of the

three 11-dimensional tropical determinantal varieties associated with the three trees in Figure
2.2. The answer is “no”. Using the software Gfan [54], we computed the tropical prevariety
cut out by the union of all forty-eight 3×3-minors. The output is a non-pure polyhedral
fan of dimension 10 with a 4-dimensional lineality space (the same one as of T V 1

4 ), having
f -vector (298, 2732, 9440, 13992, 7304, 96). The tropical variety T V 1

4 is a triangulation of a
proper subfan, and each of the 96 10-dimensional maximal cones lies in the prevariety but
not in the variety. An example of a such a vector in the relative interior of a maximal cone
is

q = (59, 1, 80, 86, 102, 108, 107, 113, 109, 115, 100, 106, 78, 84, 21, 43),

where coordinates are indexed in lexicographic order p0000, p0001, . . . , p1111. Given the weights
q, the initial form of each 3×3-minor of each flattening is a binomial, however, the initial
form of the following polynomial in the ideal of V 1

4 is the underlined monomial:

p0000p0110p1010p1101 − p0010p0100p1000p1111 + p0010p0100p1001p1110

−p0000p0110p1001p1110 − p0001p0110p1010p1100 + p0000p0010p1100p1111

−p0000p0010p1101p1110 + p0001p0110p1000p1110.

Anders Jensen performed another computation, using Gfan and SoPlex [99], which verified
that we get a tropical basis by augmenting the 3×3-minors with the above quartic and its
images under the symmetry group of the 4-cube. This is a non-trivial computation because
the corresponding fan structure on T V 1

4 has the f -vector

(37442, 321596, 843312, 880488, 321552).
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Using the language of [23], we may conclude from our computational results that the notions
of tropical rank and Kapranov rank disagree for 2×2×2×2-tensors. �

Last but not least, we examine the tropical model TM1
n. This is a proper subfan of the

tropical variety T V 1
n , namely, TM1

n is the image of the tropical morphism Φ : R2n+1 →
TP2n−1 which is the specialization of (2.5) for k = 1. Equivalently, Φ is the tropicalization
of the map (2.8), and its coordinates are written explicitly as

q(v) = b>v + min
{

0 , ωv + c
}
. (2.9)

This convex function is the minimum of two linear functions. The 2n + 1 parameters are
given by a column vector b ∈ Rn, a row vector ω ∈ Rn, and a scalar c ∈ R. A different
tropical map which has the same image as Φ can be derived from (2.7). As v ranges over
{0, 1}n, there are 2n such convex functions, and these form the coordinates of the tropical
morphism Φ. We note that Φ made its first explicit appearance in [75, Equation (10)],
where it was discussed in the context of ancestral reconstruction in statistical phylogenetics.
Subsequently, Develin [22] and Draisma [25, Section 7.2] introduced a tropical approach to
secant varieties of toric varieties, and our model fits well into the context developed by these
two authors.

Remark 2.3.7. The first tropical RBM model TM1
n is the image of the tropical secant map

for the Segre variety (P1)n in the sense of Develin [22] and Draisma [25]. The linear space
for their constructions has basis {

∑
α∈{0,1}n,αi=1 eα : i = 1, . . . , n}, and the underlying point

configuration consists of the vertices of the n-cube.

In light of Example 2.3.6, it makes sense to say that the 2× · · ·×2-tensors in the tropical
variety T V 1

n are precisely those that have Kapranov (tensor) rank ≤ 2. This would be
consistent with the results and nomenclature in [22, 23]. A proper subset of the tensors of
Kapranov rank ≤ 2 are those that have Barvinok (tensor) rank ≤ 2. These are precisely the
points in the first tropical RBM model TM1

n.
We close this section by showing that TM1

n has the expected dimension:

Proposition 2.3.8. The dimension of the tropical RBM model TM1
n is 2n+ 1.

Proof. Each region of linearity of the map Φ is defined by a partition C of {0, 1}n into two
disjoint subsets C− and C+, according to the condition ωv+ c < 0 or ωv+ c > 0. Thus, the
corresponding region is an open convex polyhedral cone, possibly empty, in the parameter
space R2n+1. It consists of all triples (b, ω, c) such that ωv+c < 0 for v ∈ C− and ωv+c > 0
for v ∈ C+. Assuming n ≥ 3, we can choose a partition C of {0, 1}n such that this cone is
non-empty and both C− and C+ affinely span Rn. The image of the cone under the map
Φ spans a space isomorphic to the direct sum of the images of b 7→ (b>v : v ∈ C) and
(ω, c) 7→ (ωv + c : v ∈ C−). Hence this image has dimension 2n+ 1, as expected.
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An illustration of the proof of Proposition 2.3.8 is given in Figure 2.3. The technique
of partitioning the vertices of the cube will be essential in our dimension computations for
general k in the next section. In Section 2.5 we return to the small models TM1

n and take a
closer look at their geometric and statistical properties.
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Figure 2.3: Partitions of {0, 1}3 that define non-empty cones on which Φ is linear. Here C+ and C−

are indicated by black (•) and white (◦) vertices of the 3-cube. The slicing on the right represents
a cone in the parameter space whose image under Φ is full-dimensional, while the one on the left
does not.

2.4 The tropical model and its dimension

This section is concerned with Conjecture 2.2.2, which states that the tropical RBM model
has the expected dimension. Namely, our aim is to show that

dim(TMk
n) = kn+ k + n for k ≤ 2n − 1− n

n+ 1
.

For k = 1 this is Proposition 2.3.8, and we now consider the general case k ≥ 2. Our main
tool towards this goal is the dimension formula in Theorem 2.4.2 below. As in the previous
section, we study the regions of linearity of the tropical morphism Φ.

Let A denote the matrix of format 2n×n whose rows are the vectors in {0, 1}n. A subset
C of the vertices of the n-cube is a slicing if there exists a hyperplane that has the vertices
in C on the negative side and the remaining vertices of the n-cube on the other side. In the
notation in the proof of Proposition 2.3.8, the subset C was denoted by C−. Two examples
of slicings for n = 3 are shown in Figure 2.3.

For any slicing C of the n-cube, let AC be the 2n × (n+1)-matrix whose rows v indexed
by the vertices in C are (1, v) ∈ {0, 1}n+1, and whose other rows are all identically zero. The
following result extends the argument used for Proposition 2.3.8.
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Lemma 2.4.1. On each region of linearity, the tropical morphism Φ in (2.5) coincides with
the linear map represented by a 2n × (nk + n+ k)-matrix of the form

A =
(
A | AC1 | AC2 | · · · | ACk

)
,

for some slicings C1, C2, . . . , Ck of the n-cube.

Proof. The tropical map Φ : Rnk+n+k → TP2n−1 can be written as follows:

Φ(W, b, c) =
(

min
h∈{0,1}k

{h>(Wv + c), 0} + b>v
)
v∈{0,1}n .

Consider a parameter vector θ with coordinates

θ := (b1, b2, . . . , bn, c1, ω11, . . . , ω1n, c2, ω21, . . . , ω2n, . . . , ck, ωk1, . . . , ωkn).

We associate to this vector the k hyperplanes Hi(θ) = {v ∈ Rn : ωi1v1 + . . .+ωinvn+ci = 0}
for i = 1, 2, . . . , k. Let us assume that θ is chosen generically. Then, for each index i,
we have {0, 1}n ∩ Hi(θ) = ∅, and we obtain a slicing of the n-cube with Ci(θ) :=

{
v ∈

{0, 1}n :
∑n

j=1 ωijvj + ci < 0
}

. The generic parameter vector θ lies in a unique open region
of linearity of the tropical morphism Φ. More precisely, this region corresponds to the cone
of all θ′ in Rnk+n+k such that Ci(θ) = Ci(θ

′) for i = 1, 2, . . . , k. By construction, the map
Φ : Rnk+n+k → R2n is linear on this cone. Following the definition of Φ we see that this
linear map is left multiplication of the vector θ by a matrix whose rows are indexed by the
observed states v and columns indexed by the coordinates of θ. This matrix is precisely the
matrix A above, where Ci = Ci(θ) for i = 1, 2, . . . , k. The result follows by continuity of the
map Φ.

As an immediate consequence of Lemma 2.4.1 we obtain the following result:

Theorem 2.4.2. The dimension of the tropical RBM model TMk
n equals the maximum rank

of any matrix of size 2n ×
(
nk + n+ k

)
of the form

A =
(
A | AC1 | AC2 | · · · | ACk

)
,

where {C1, C2, . . . , Ck} is any set of k slicings of the n-cube.

Theorem 2.4.2 furnishes a tool to attack Conjecture 2.2.2. What remains is the combi-
natorial problem of finding a suitable collection of slicings of the n-cube. In what follows we
shall apply existing results from coding theory to this problem.

There are two quantities from the coding theory literature [4, 12, 14, 51] that are of
interest to us. The first one is A2(n, 3), the size (number of codewords) of the largest binary
code on n bits with each pair of codewords at least Hamming distance (number of bit flips)
3 apart. The second one is K2(n, 1), the size of the smallest covering code on n bits. In other
words, K2(n, 1) is the least number of codewords such that every string of n bits lies within
Hamming distance one of some codeword. We obtain:
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Corollary 2.4.3. The dimension of the tropical RBM model satisfies

• dim TMk
n = nk + n+ k for k < A2(n, 3),

• dim TMk
n = min{nk + n+ k, 2n − 1} for k = A2(n, 3),

• dim TMk
n = 2n − 1 for k ≥ K2(n, 1).

Proof. For the first statement, let k ≤ A2(n, 3)− 1 and fix a code in n bits of size k+ 1 with
minimum distance ≥ 3. For each codeword let Cj denote its Hamming neighborhood, that
is, the codeword together with all strings that are at Hamming distance 1. These k + 1 sets
Cj are pairwise disjoint, and each of them corresponds to a slicing of the cube as in Theorem
2.4.2. The disjointness of the k+1 neighborhoods means that nk+n+k ≤ 2n−1. Elementary
row and column operations can now be used to see that the corresponding 2n× (nk+n+ k)
matrix A = (A|AC1| · · · |ACk) has rank nk + n + k. This is because, after such operations,
A consists of a block of format n × n and k blocks of format (n + 1) × (n + 1) along the
diagonal. The first block has rank n and the remaining k blocks have rank n+ 1 each. The
same reasoning is valid for k = A2(n, 3) except that it may now happen that nk+k+n ≥ 2n.
In this case, the k blocks have total rank k(n + 1) and together with the first n × n block
they give a matrix of maximal rank min{nk + n+ k, 2n − 1}.

For the third statement, we suppose C1, . . . , Ck are slicings with subslicings C ′i ⊆ Ci such
that the C ′i are disjoint and no n+ 1 of the vertices in a given Ci lie in a hyperplane. Then
rank(A) ≥ n +

∑k
i=1 |C ′i| by similar arguments. This is because we may construct the C ′i

by pruning neighbors from codewords, and we are left with a lower-dimensional Hamming
neighborhood which is a slicing.

The computation of A2(n, 3) and K2(n, 1), both in general and for specific values of n,
has been an active area of research since the 1950s. In Table 2.1 we summarize some of the
known results for specific values of n. This table is based on [12, 62]. For general values of
n, the following bounds can be obtained.

Proposition 2.4.4. For binary codes with n ≥ 3, the Varshamov bound

A2(n, 3) ≥ 2n−dlog2(n+1)e

holds, whereas for covering codes,

K2(n, 1) ≤ 2n−blog2(n+1)c.

For n = 2` − 1 with ` ≥ 3, we have the equality A2(n, 3) = K2(n, 1) = 22`−`−1.
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Proof. A proof of the Varshamov bound on A2(n, 3) may be found in [51]. The last statement
holds because A2(n, 3) = K2(n, 1) for perfect Hamming codes: for every ` ≥ 3 there is a
perfect (2`−1, 2`−`−1, 3) Hamming code (i.e. a perfect Hamming code on 2`−1 bits, of size
2` − `− 1, and with Hamming distance 3). For a proof of this result, see [14]. Additionally,
we have K2(2m − 1, 1) = 22m−m−1 for m ≥ 3; see [12].

The simple upper bound on K2(n, 1) can be obtained by using overlapping copies of the
next smallest Hamming code. Suppose n 6= 2`

′ − 1 for any `′, i.e. n is strictly between two
integers of the form 2` − 1 (Hamming integer numbers). Let n be the largest Hamming
integer smaller than n, with ` = blog2(n + 1)c, so n = 2` − 1. The number of hidden nodes
needed to cover the n-cube is exactly K2(n, 1) = 22`−`−1. We may use the n codes to cover
each of the 2n−n faces of the n-cube with 2n vertices, although we will have overlaps. That
is,

K2(n, 1) ≤ K2(n, 1) · 2n−n. (2.10)

Taking log2 in the inequality (2.10), we obtain

log2K2(n, 1) ≤ log2(K2(n, 1)2n−n) = n− blog2(n+ 1)c.

This implies K2(n, 1) ≤ 2n−blog2(n+1)c.

Our method results in the following upper and lower bounds for arbitrary values of n.
Note that the bound is tight if n+1 is a power of 2. Otherwise there might be a multiplicative
gap of up to 2 between the lower and upper bound. In addition to these general bounds, we
have the specific results recorded in Table 2.1.

Corollary 2.4.5. The coding theory argument leads to the following bounds:

• If k < 2n−dlog2(n+1)e, then dim TMk
n = nk + n+ k.

• If k = 2n−dlog2(n+1)e, then dim TMk
n = min{nk + n+ k, 2n − 1}.

• If k ≥ 2n−blog2(n+1)c, then dim TMk
n = 2n − 1.

Proof of Theorem 2.1.2. This is now easily completed by combining Corollary 2.4.5 with the
inequalities in (2.6).

We close this section with the remark that the use of Hamming codes is a standard tool in
the study of dimensions of secant varieties. We learned this technique from Tony Geramita
and his collaborators [10]. For a review of the relevant literature see Draisma’s paper [25].
It is important to note that, in spite of the combinatorial similarities, the varieties we study
here are different from and more complicated than higher secant varieties of Segre varieties.
This may be because the varieties here involve both the secant construction and Hadamard
products.
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2.5 Polyhedral geometry of parametric inference

The tropical model TMk
n is not just a convenient tool for estimating the dimension of the

statistical model Mk
n . It is also of interest as the geometric object that organizes the space of

inference functions which the model can compute. This statistical interpretation of tropical
spaces was introduced in [75] and further developed in [32, 76]. We shall now discuss this
perspective for the RBM model.

Given an RBM model with fixed parameters learned by some estimation procedure and
an observed state v, we want to infer which value ĥ of the hidden data maximizes Prob(h | v).
The inferred string ĥ might be used in classification or as the input data for another RBM in
a deep architecture. Such a vector of hidden states is called an explanation of the observation
v. Each choice of parameters θ = (b,W, c) defines an inference function Iθ sending v 7→ ĥ.
The value Iθ(v) equals the hidden string h ∈ {0, 1}k that attains the minimum in the negative
of the tropical polynomial

max
h∈{0,1}k

{h>Wv + c>h+ b>v} = −
(

(−b)>v + min
h∈{0,1}k

{h>(−W )v + (−c)>h}
)
. (2.11)

In order for the inference function Iθ to be well-defined, it is necessary (and sufficient)
that −θ = −(b,W, c) lies in an open cone of linearity of the tropical morphism Φ. In that
case, the maximum in equation (2.11) is attained for a unique value of h. That h can be
recovered from the expression of Φ as we vary the parameters in the fixed cone of linearity.
Thus, up to sign, the inference functions are in one-to-one correspondence with the regions
of linearity of the tropical morphism Φ.

The RBM model grew out of work on artificial neurons modeled as linear threshold
functions [70, 84]. We pause our geometric discussion to offer remarks about these functions
and the types of inference functions that our model can represent.

A linear threshold function is a function {0, 1}n → {0, 1} defined by choosing a weight
vector ω ∈ Rn and a target weight π ∈ R. For any point v ∈ {0, 1}n we compute the value
ωv, we test if this quantity is at most π or not, and we assign value 0 or 1 to V depending
on π ≥ ωv or π < ωv. The weights ω, π define a hyperplane in Rn such that the vertices
of the n-cube lie on the “true” or “false” side of the hyperplane. Using the linear threshold
functions, we construct a k-valued function {0, 1}n → {0, 1}k where we replace the weight
vector ω by a k × n matrix W and the target weight π by a vector π ∈ Rk. More precisely,
the function assigns a vertex of the k-cube where the ith coordinate equals 0 if (Wv)i ≤ πi
and 1 if not. Our discussion of slicings of the n-cube in Section 2.4 implies the following
observation:

Proposition 2.5.1. The inference functions for the restricted Boltzmann machine model Mk
n

are precisely those Boolean functions {0, 1}n → {0, 1}k for which each of the k coordinate
functions {0, 1}n → {0, 1} is a linear threshold function.

Most Boolean functions are not linear threshold functions, that is, are not inference
functions for the model M1

n. For example, the parity function cannot be so represented. To
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be precise, while the number of all Boolean functions is 22n , it is known [73] that for n ≥ 8
the number λ(n) of linear threshold functions satisfies

2(n2)+16 < λ(n) ≤ 2n
2

.

The exact number λ(n) of linear threshold functions has been computed for up to n = 8.
The On-Line Encyclopedia of Integer Sequences [86, A000609] reveals

λ(1 . . . 8) = 4, 14, 104, 1882, 94572, 15028134, 8378070864, 17561539552946. (2.12)

Combining k such functions for k ≥ 2 yields λ(n)k = 2Θ(kn2) possible inference functions for
the RBM model Mk

n . This number grows exponentially in the number of model parameters.
This is consistent with the result of Elizalde and Woods in [32] which states that the number
of inference functions of a graphical model grows polynomially in the size of the graph when
the number of parameters is fixed.

In typical implementations of RBMs using IEEE 754 doubles, the size in bits of the
representation is 64(nk+n+k). Thus the number 2Θ(kn2) of inference functions representable
by a theoretical RBM Mk

n will eventually outstrip the number 264(nk+n+k) representable in
a fixed-precision implementation; for example with k = 100 hidden nodes, this happens at
n ≥ 132. As a result, the size of the regions of linearity will shrink to single points in
floating point representation. This is one possible contributor to the difficulties that have
been encountered in scaling RBMs.

The tropical point of view allows us to organize the geometric information of the space
of inference functions into the tropical model TMk

n , which can then be analyzed with the
tools of tropical and polyhedral geometry. We now describe this geometry in the case k = 1.
Geometrically, we can think of the linear threshold functions as corresponding to the vertices
of the (n + 1)-dimensional zonotope corresponding to the n-cube. This zonotope is the
Minkowski sum in Rn+1 of the 2n line segments [(1, 0, . . . , 0), (1, v)] where v ranges over the
set {0, 1}n.

The quantity λ(n) is the number of vertices of these zonotopes, and their facet numbers
were computed by Aichholzer and Aurenhammer [1, Table 2]. They are

4, 12, 40, 280, 6508, 504868, 142686416, 172493511216, . . . (2.13)

For example, the second entry in (2.12) and (2.13) refers to a 3-dimensional zonotope known
as the rhombic dodecahedron, which has 12 facets and λ(2) = 14 vertices. Likewise, the third
entry in (2.12) and (2.13) refers to a 4-dimensional zonotope with 40 facets and λ(3) = 104
vertices. The normal fan of that zonotope is an arrangement of eight hyperplanes, indexed
by {0, 1}3, which partitions R4 into 104 open convex polyhedral cones. That partition lifts
to a partition of the parameter space R7 for M1

3 whose cones are precisely the regions on
which the tropical morphism Φ is linear. The image of that morphism is the first non-trivial
tropical RBM model TM1

3 . This model has the expected dimension 7 and it happens to be
a pure fan.
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Figure 2.4: Subdivisions of the 3-cube that represent vertices and facets of TM1
3 . The first two

from the left correspond to the special subdivisions D1357 and V6.

Example 2.5.2. The tropical RBM model TM1
3 is a 7-dimensional fan whose lineality space

is 3-dimensional. It is a subfan of the secondary fan of the 3-cube [22, Corollary 2.2]. The
secondary fan of the 3-cube can be represented as a 3-dimensional polyhedral sphere with
f -vector (22, 100, 152, 74). The 74 facets of that 3-sphere correspond to triangulations of
the 3-cube. The tropical model TM1

3 consists of all regular subdivisions of the 3-cube with
two regions covering all eight vertices. It sits inside the polyhedral 3-sphere as a simplicial
subcomplex with f -vector (14, 40, 36, 12). Its 12 facets (tetrahedra) correspond to a single
triangulation type of the 3-cube as depicted in the right of Figure 2.4. The 14 vertices of
TM1

3 come in two families: six vertices Dj corresponding to diagonal cuts, as in the left side
of Figure 2.4, and eight vertices Vi representing corner cuts, as in the center of Figure 2.4.
The edges come in three families: four edges ViVj corresponding to pairs of corner cuts at
antipodal vertices of the cube, twenty-four edges ViDj, and twelve edges DiDj. Finally, of
the four possible triangles, only two types are present: the ones with two vertices of different
type. Thus, they are 12 triangles ViVjDk and 24 triangles ViDjDk.

Figure 2.5 depicts the simplicial complex TM1
3 which is pure of dimension 3. The six

vertices Di and the twelve edges DjDk form the edge graph of an octahedron. The four
nodes interior to the shaded triangles represent pairs of antipodal vertices Vi that are joined
by an edge. Each of the shaded triangles represents three tetrahedra that are glued together
along a common edge ViVj. Thus the twelve tetrahedra in TM1

3 come as four triangulated
bipyramids. The four bipyramids are then glued into four of the triangles in the octrahedron
graph. Our analysis shows that the simplicial complex TM1

3 has reduced homology concen-
trated in degree 1 and it has rank 3. �

The previous example is based on the fact that the image of the tropical map Φ : R2n+1 →
R2n is a subfan of the secondary fan of the n-cube. However, it is important to note that Φ
is not a morphism of fans with respect to the natural fan structure on the parameter space
R2n+1 given by the slicings of the n-cube.
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Figure 2.5: The tropical model TM1
3 is glued from four triangulated bipyramids. In this octahedron

graph, each of the bipyramids is represented by a shaded triangle.
.

Example 2.5.3. Consider the case n = 2. Here M1
2 equals R4 with its secondary fan

structure coming from the two triangulations of the square. Modulo lineality, this fan is
simply the standard fan structure {R≤0, {0},R≥0} on the real line. The fan structure on the
parameter space R7 has 14 maximal cones. Modulo lineality, this is the normal fan of the
rhombic dodecahedron, i.e. a partition of R3 into 14 open convex cones by an arrangement of
four planes through the origin. Ten of these 14 open cones are mapped onto cones, namely,
four are mapped onto R≤0, two are mapped onto {0}, and four onto R≥0. The remaining
four cones are mapped onto R1, so Φ does not respect the fan structures relative to these
four cones, as Figure 2.6 reveals.

The situation is analogous for n = 3 but more complicated. The tropical map Φ is
injective on precisely eight of the 104 maximal cones in the parameter space. These eight
cones are the slicings shown on the right side of Figure 2.4. The map Φ is injective on such
a cone, but the cone is divided into three subcones by the secondary fan structure on M1

3 .
The resulting 24 = 3 · 8 maximal cells in the parameter space are mapped in a 2-to-1 fashion
onto the 12 tetrahedra in Figure 2.5. It would be worthwhile to study the combinatorics of
the graph of Φ for n ≥ 3. �
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n k ≤ k ≥
5 22 7
6 23 12
7 24 24

8 22 · 5 25

9 23 · 5 62
10 23 · 9 120
11 24 · 9 192
12 28 380
13 29 736
14 210 1408
15 211 211

16 25 · 85 212

17 26 · 83 213

18 28 · 41 214

19 212 · 5 31744
20 212 · 9 63488
21 213 · 9 122880
22 214 · 9 245760
23 215 · 9 393216
24 219 786432
25 220 1556480
26 221 3112960
27 222 6029312
28 223 12058624
29 224 23068672
30 225 46137344
31 226 226

32 220 · 85 227

33 221 · 85 228

n k ≤

35 223 · 83
37 226 · 41
39 231 · 5
47 238 · 9
63 257

70 243 · 1657009
71 263 · 3
75 263 · 41
79 270 · 5
95 285 · 9
127 2120

141 2113 · 1657009
143 2134 · 3
151 2138 · 41
159 2149 · 5
163 2151 · 19
191 2180 · 9
255 2247

270 2202 · 1021273028302258913
283 2254 · 1657009
287 2277 · 3
300 2220 · 3348824985082075276195
303 2289 · 41
319 2308 · 5
327 2314 · 19
383 2371 · 9
511 2502

512 2443 · 1021273028302258913

Table 2.1: Special cases where Conjecture 2.2.2 holds, based on [12, 62] and Corollary 2.4.3. Bold
entries show improvements made by various researchers on the bounds provided by Corollary 2.4.5.
For example, for n = 19, TMk

n has the expected dimension if k ≤ 212 · 5 = 20480 and dimension
2n − 1 if k ≥ 31744, while Corollary 2.4.5 bounds are 214 = 16384 and 215 = 32768, respectively.
The “k ≤” columns list lower bounds on A2(n, 3) while the “k ≥” column lists upper bounds on
K2(n, 1).
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Figure 2.6: The tropical map Φ parameterizing TM1
2 does not respect the fan structure of the

secondary fan of the square.
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Chapter 3

An implicitization challenge for the
restricted Boltzmann machine

This chapter is joint work with Enrique Tobis and Josephine Yu. It is to appear in
the Journal of Symbolic Computation - Special Issue MEGA’09 under the title “An implic-
itization challenge for binary factor analysis”, as doi:10.1016/j.jsc.2010.06.011. The
present version incorporates some minor changes, largely for consistency with other chapters.

3.1 Introduction

In this chapter, we focus our attention on a special discrete graphical model, introduced in
Chapter 2: the restricted Boltzmann machine F(4, 2) with two hidden nodes H1, H2 and four
observed nodes X1, X2, X3, X4 (cf. Figure 3.1). This machine was introduced and studied
in Chapter 2. As we discussed there, the main invariant of interest in these models is the
expected dimension, and, furthermore, lower bounds on k (the number of hidden nodes) such
that the probability distributions are a dense subset of the probability simplex ∆2n−1. By
direct computation, it is easy to show that F(2, 2) and F(3, 2) are dense subsets of ∆3 and
∆7 respectively, so F(4, 2) is the first interesting example worth studying.

Figure 3.1: The model F(4, 2). Each node represents a binary random variable.

The set of all possible joint probability distributions (X1, X2, X3, X4) that arise in this way

doi:10.1016/j.jsc.2010.06.011
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forms a semialgebraic set V 2
4 in the probability simplex ∆15. To simplify our construction,

we consider the Zariski closure V 2
4 of the joint probability distributions in P15, following

the notation of Chapter 2. As stated in Theorem 2.1.2, this variety is expected to have
codimension one and be defined by a homogeneous polynomial in 16 variables.

Problem 3.1.1. (An Implicitization Challenge, [27, Chapter VI, Problem 7.7]) Find the
degree and the defining polynomial of the model V 2

4 .

Our main results state that the variety V 2
4 is a hypersurface of degree 110 in P15 (Theorem

3.4.2) and explicitly enumerate all vertices and facets of the polytope (Theorem 3.4.1). Our
methods are based on tropical geometry. Since the polynomial is multihomogeneous, we get
its multidegree from just one vertex. Interpolation techniques will allow us to compute the
corresponding irreducible homogeneous polynomial in 16 variables, using the lattice points
in the Newton polytope. However, this polytope will turn out to be too big for interpolation
to be practically feasible.

The chapter is organized as follows. In Section 3.2 we describe the parametric form
of our model and we express our variety as the Hadamard square of the first secant of
the Segre embedding P1 × P1 × P1 × P1 ↪→ P15. In Section 3.3 we present the tropical
interpretation of our variety. By means of the nice interplay between the Hadamard squares
and their tropicalization (Corollary 3.3.6), we compute this tropical variety as a collection
of cones with multiplicities. We should remark that we do not obtain a fan structure, but,
nonetheless, our characterization is sufficient to solve Problem 3.1.1. The key ingredient is
the computation of multiplicities by the so called push-forward formula (Theorem 1.1.10)
of Sturmfels and Tevelev [91], which we generalize to match our setting (Theorem 3.3.2).
We finish Section 3.3 by describing the effective computation of the tropical variety and
discussing some of the underlying combinatorics.

In Section 3.4 we compute the multidegree of our model with respect to a natural 5-
dimensional grading, which comes from the tropical picture in Section 3.3. Once this ques-
tion is answered, we shift gears and move to the study of the Newton polytope of our variety.
We present two algorithms that compute vertices of this polytope by “shooting rays” (Al-
gorithm 3.1) and “walking” from vertex to vertex in the Newton polytope (Algorithm 3.2).
Using these methods, introduced in Section 1.4, and also taking advantage of the B4 sym-
metry of the polynomial and the Newton polytope, we compute all 17 214 912 vertices our
polytope (in 44 938 orbits under B4), which shows the intrinsic difficulties of this “challeng-
ing” problem. Along the way, we also compute the tangent cones at each symmetry class
of vertices and certify the facet normal directions by looking at the local behavior of the
tropical variety around these vectors (after certifying they belong to the tropical variety). In
particular, by computing dimensions of a certain linear space (Algorithm 3.3) we can check
if the vector is a ray of the tropical variety. In this way, we certify all 246 facets of the
polytope modulo symmetry. We believe these methods will pave the way to attack combi-
natorial questions about high dimensional polytopes with symmetry as the one analyzed in
this chapter.
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3.2 Geometry of the model

We start this section by describing the parametric representation of the model we wish to
study. Recall that all our six random variables are binary, with four observed nodes and
two hidden ones. Since the model comes from an undirected graph (see [27, 76]), we can
parameterize it by a map p : R32 → R16, where

pijkl =
1∑
s=0

1∑
r=0

asibsjcskdslerifrjgrkhrl for all (i, j, k, l) ∈ {0, 1}4.

Notice that our coordinates are homogeneous of degree 1 in the subset of variables corre-
sponding to each edge of the graph. Therefore, there is a natural interpretation of this model
in projective space. On the other hand, by the distributive law we can write down each co-
ordinate as a product of two points in the model corresponding to the 4-claw tree, which is
the first secant variety of the Segre embedding P1×P1×P1×P1 ↪→ P15 (see Corollary 2.3.2).
Namely,

p : (P1 × P1)8 → P15 pijkl = (
1∑
s=0

asibsjcskdsl) (
1∑
r=0

erifrjgrkhrl) ∀ (i, j, k, l) ∈ {0, 1}4.

The next proposition follows from the construction and Proposition 2.2.1:

Proposition 3.2.1. The algebraic variety of the model F(4, 2) is V 2
4 = (V 1

4 )[2], where V 1
4 is

the first secant variety V 4
1 of the Segre embedding P1 × P1 × P1 × P1 ↪→ P15.

Notice that the binary nature of our random variables enables us to define a natural
S2-action by permuting the values 0 and 1 on each index in our 4-tuples. Combining this
with the S4-action on the 4-tuples of indices, we see that our model comes equipped with a
natural S4 n (S2)4-action. In other words, the 16 coordinates pijkl of P15, for i, j, k, l ∈ {0, 1},
are in natural bijection with the vertices of a 4-dimensional cube. Since V 2

4 is a hypersurface
(as we known from Theorem 2.1.1 and will reprove in Section 3.3), its defining polynomial is
invariant under the group B4 of symmetries of the 4-cube, which has order 384. This group
action will be extremely helpful for our computations in the next two sections.

We now describe the ideal associated to the secant variety V 1
4 = Sec(P1× P1× P1× P1),

discussed in Section 2.3. The Segre embedding P1 × P1 × P1 × P1 ↪→ P15 has a monomial
parameterization pijkl = ui ·vj ·wk ·xl for i, j, k, l ∈ {0, 1}. Its defining prime ideal is generated
by the 2 × 2-minors of all three 4 × 4-flattenings, together with some 2 × 2-minors of the
2× 8-flattenings [34, Section 3]:

F(12|34) :=


p0000 p0001 p0010 p0011

p0100 p0101 p0110 p0111

p1000 p1001 p1010 p0111

p1100 p1101 p1110 p1111

 , F(13|24) :=


p0000 p0001 p0100 p0101

p0010 p0011 p0110 p0111

p1000 p1001 p1100 p1101

p1010 p1011 p1110 p1111

 ,
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F(14|23) :=


p0000 p0010 p0100 p0110

p0001 p0011 p0101 p0111

p1000 p1010 p1100 p1110

p1001 p1011 p1101 p1111

 .

From Theorem 2.3.3 we know that the secant variety V 1
4 = Sec(P1×P1×P1×P1) ⊂ P15 is the

nine-dimensional irreducible subvariety consisting of all 2×2×2×2-tensors of tensor rank at
most 2. In turn, its defining ideal can be computed from the previous three 4× 4-flattening
matrices: it is generated by all the 3 × 3-minors of the three flattenings (Theorem 2.3.3).
This information will be crucial when turning to the tropical geometry framework.

3.3 Tropicalizing the model

In this section we compute the tropicalization of the model V 2
4 by means of the nice inter-

play between Hadamard squares and tropicalization (Corollary 3.3.6). We refer the read to
Section 1.1 and references therein for more details about tropical varieties. Since part of our
computations are done with Gfan, which follows the max convention for tropical geometry,
we will need to change the sign of the output of any computation we perform with this
software to match our min convention.

As we discussed in the previous section (Proposition 3.2.1) our variety V 2
4 is expressed as

the Hadamard square of the well-known variety V 1
4 . This Hadamard square has a dense set

which can be parameterized in terms of the Hadamard monomial map (the coordinatewise
product of two points). The integer matrix of exponents corresponding to this map is
(I16 | I16) ⊂ Z16×32. Therefore, we can compute the tropicalization of V 2

4 as a set from
Theorem 1.1.10.

We now treat the computation of multiplicities on T V 2
4 . At first sight, the hypothesis

of the second part of that theorem is not satisfied by our variety because the restrict of the
map α to the cartesian product V 1

4 × V 1
4 is not generically finite. However it is very close to

having the required finiteness behavior. Namely, after taking the quotient (V 1
4 )′ of V 1

4 by a
maximal torus action, and a choice of a suitable monomial map α, this new monomial map
becomes generically finite on (V 1

4 )′× (V 1
4 )′ and we can apply Theorem 1.1.10 to compute the

tropical hypersurface T V 2
4 . We now explain this reduction process.

Let X ⊂ Tn a subvariety, α : Tn → Td a monomial map, and let Y = α(X). Consider
the lineality space R ⊗Z Λ ⊂ T X, and let Λ′ = A(Λ). We identify R ⊗Z Λ with a Z-basis
of the primitive lattice Λ. Notice that Λ′ need not be a primitive lattice in Zd in general.
Call (Λ′)sat its saturation in Zd, that is (Λ′)sat = (R ⊗Z Λ′) ∩ Zd. We know by construction
and Theorem 1.1.10 that R ⊗Z Λ′ is contained in the lineality space of T Y . Therefore, we
can consider the linear map between these tropical varieties after moding out by R⊗Z Λ and
R⊗Z Λ′ respectively. As we mentioned in Section 1.1 and in (1.1), the lineality space of each
tropical variety determines the maximal torus action. For example, if l = rk Λ, then Ts acts
on X by t · (x1, . . . , xn) := (ta1x1, . . . , t

anxn) where a lies in Λ.
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The linear map A sends Λ onto Λ′, which is contained in the lineality space of T (α(X)).
In addition, the monomial map α is compatible with the torus actions on X and α(X). In
particular, the equality α(Λ ⊗Z C∗) = Λ′ ⊗Z C∗ induces an action on Y by a subtorus (the
one corresponding to the primitive lattice (Λ′)sat). Thus, we can take the quotient of X and
Y by the corresponding actions of tori H and H ′. We obtain the commutative diagram:

X

π
����

α // // Y

π
����

X ′ = X/H α // // Y/H ′ = Y ′.

(3.1)

Here, H = Λ⊗Z C∗ ∼= Tdim Λ and H ′ = Λ′ ⊗Z C∗ ∼= Tdim Λ′ . Since Λ is a primitive sublattice
of Zn, it admits a primitive complement in Zn. Fix one of them and call it Λ⊥. Note that
this complement need not be the usual orthogonal complement in Zn.

Assume for simplicity that Λ′ is a primitive sublattice of Zd. Therefore, we can identify
α with the monomial map corresponding to the linear map:

A′ : (R⊗ Λ)⊥ → (R⊗ Λ′)⊥, (3.2)

which follows by the identifications (R ⊗ Zn)/(R ⊗ Λ) ' R ⊗ Λ⊥ = (R ⊗ Λ)⊥ and (R ⊗
Zd)/(R⊗ Λ′) ' R⊗ Λ′⊥ = (R⊗ Λ′)⊥.

Since Λ is primitive, (R⊗ Λ)⊥ ∩ Zn = Λ⊥, and likewise for Λ′⊥.
To simplify notation, call L := R⊗Λ and L′ := R⊗Λ′. From the construction it is easy

to see that T X ′ = T X/L and T Y ′ = T Y/L′ as sets. But in fact, they agree as weighted
balanced polyhedral fans. More precisely,

Lemma 3.3.1. Let X ⊂ Tr and let L be a subspace of the lineality space of the tropical
variety T X generated by integer vectors. Then T X/L is a balanced weighted polyhedral fan,
where the multiplicities of regular points w′ are defined as mw′ = mw for any w in the fiber of
w′ under the projection map. With these weights, T X/L coincides with the tropical variety
T X ′, where X ′ is the quotient of X by the torus (L∩Zr)⊗Z C∗ ∼= TdimL, which is a subtorus
of the maximal torus acting on X.

Proof. By definition, we know that inw+L(I) = inw(I) for any w ∈ Rr. Let l := dimL. Call
Λ := L ∩ Zn the underlying lattice of L. Since Λ is a primitive lattice, we can extend any
Z-basis of Λ to a Z-basis of Zn. Thus, after a linear change of coordinates (i.e. a monomial
change of coordinates given by this new Z-basis of Zn) we can assume Λ = Z〈e1, . . . , el〉. And
in this case, we can pick the direct summand Λ⊥ of Λ to be Z〈el+1, . . . , er〉. In particular,
the projection map π : X → X ′ = X/H corresponds to the monomial map α : Tn → Tn−l

determined by the integer matrix A = (0 | In−l) ∈ Z(n−l)×n, whose rows are a Z-basis of Λ⊥.
By construction, I = I(X) ⊂ C[x±1

1 , . . . , x±1
n ] is homogeneous with respect to the grading

deg(xi) = ei for i ≤ l and deg(xj) = 0 for j > l. Since any homogeneous Laurent polynomial
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is of the form f = xαg(xl+1, . . . , xn), we see that I is generated by Laurent polynomials
in the variables {xl+1, . . . xn}. Call g1, . . . , gs these generators. Therefore I ′ = I(X ′) =
〈g1(xl+1, . . . , xn), . . . gs(xl+1, . . . , xn)〉 ⊂ C[x±1

l+1, . . . , x
±1
n ] and I = I ′C[x±1

1 , . . . , x±1
n ].

From Theorem 1.1.10 we know that T X ′ = A(T X) = T X/L as sets. Moreover, since the
subspace L lies in all cones of T X, then the set T X ′ has a natural fan structure inherited
from the one of T X. By definition, if w′ is a regular point in T X ′ then any lifting point
in w + L would be a regular point in T X. Moreover, inw(I) = inw′(I

′)C[x±1
1 , . . . , x±1

n ]. In
particular, a primary decomposition inw′(I

′) determines a primary decomposition of inw(I) by
extending each ideal to the whole Laurent polynomial ring in n variables. Therefore, to show
mw′ = mw it suffices to show that the multiplicity of any minimal prime P ⊂ C[x±1

l+1, . . . , x
±1
n ]

of inw′(I
′) equals the multiplicity of P ⊂ C[x±1

1 , . . . , x±1
n ] in inw(I). This claim follows from

the definition of multiplicity. More precisely:

m(P, inw′(I
′)) = dim SP

PSP

SP
SP inw′(I′)

= dim
(
SP
PSP

)[x±1
1 ,...,x

±1
l ]

SP [x±1
1 , . . . , x

±1
l ]

SP [x±1
1 , . . . , x

±1
l ]inw′(I ′)

= dim S[x±1
1 ,...,x

±1
l

]P

PS[x±1
1 ,...,x

±1
l

]P

S[x±1
1 , . . . , x

±1
l ]P

S[x±1
1 , . . . , x

±1
l ]P inw(I)

= m(P, inw(I)),

where S = C[x±1
l+1, . . . , x

±1
n ].

Using the previous construction, we extend Theorem 1.1.10 to the case of monomial
maps that are generically finite after taking quotients by appropriate tori. This extension
fits perfectly into our setting.

Theorem 3.3.2. Let α : Tn → Td be a monomial map with associated integer matrix A and
let X ⊂ Tn be a closed subvariety. Then,

T (α(X)) = A(T X).

Suppose X has a torus action given by a rank l lattice Λ ⊂ Zn. Let X ′ be the quotient by this
torus action. Let α : X ′ → Td/α(Λ ⊗Z C∗) be the induced monomial map, with associated
integer matrix A′ as in (3.2).
Suppose Λ′ = A(Λ) is a primitive sublattice of Zd and that α induces a generically finite
morphism of degree δ on X ′. Then, the multiplicity of a regular point w in T (α(X)) can be
computed as:

mw =
1

δ
·
∑
π(v)
A·v=w

mv · index (Lw ∩ Zd, A(Lv ∩ Zn)), (3.3)

where the sum is over any set of representatives of points {v′ = π(v) ∈ T X ′ | A′v′ = w′}
given w′ = π(w) ∈ Rd/(R ⊗Z Λ′) = R ⊗Z Λ′⊥. We also assume that the number of such
v′ is finite, all of them are regular in T X ′ and Lv,Lw are linear spans of neighborhoods of
v ∈ T X and w ∈ A(T X) respectively.
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Remark 3.3.3. In case Λ′ is not a primitive lattice, the formula for mw will involve an extra
factor, namely, the index of Λ′ with respect to its saturation Λ′ sat in Zd. In this case, Λ′⊥

will correspond to any complement of the primitive lattice Λ′ sat inside Zd.

Proof of Theorem 3.3.2. The equality as sets follows from Theorem 1.1.10. To prove the
formula for multiplicities, we first note that the sum in (3.3) is finite. This follows because
α induces a generically finite morphism if and only if kerA′ ∩ T X ′ = {0}, and this holds if
and only if A(Λ⊥) ∩ Λ′ = {0}.

From the diagram (3.1) and the surjectivity of α and α, we know that the multiplicity
formula (1.4) holds for T Y ′ and the morphism α. Pick w′ a regular point of T X ′ and pick
any point w in the fiber π−1(w′) = w + (R ⊗ Λ′). By definition, w is a regular point of
T X and we have mw = mw′ by Lemma 3.3.1. We assume all v′ in the fiber of A′ at w′

are regular in T X ′ and Lπ(v),Lπ(w) are linear spans of neighborhoods of π(v) ∈ T X ′ and
π(w) ∈ A′(T X ′) respectively.

By construction, the index set in the formula (1.4) for mw′ agrees with the index set in
formula (3.3) for mw. Therefore, our goal would be to show that each summand indexed by
π(v) in the formula for mw′ equals its corresponding summand in formula for mw. We know
that mv = mπ(v) by Lemma 3.3.1. Hence, we only need to prove that the lattice indices on
each summand are the same, i.e.

index (Lw ∩ Zd, A(Lv ∩ Zn)) = index (Lπ(w) ∩ (Λ′⊥), A′(Lπ(v) ∩ Λ⊥)). (3.4)

Note that by construction, Λ′ ⊂ Lw ∩ Zd, Λ ⊂ Lv, and likewise A(Λ) = Λ′ ⊂ A(Lv ∩Zn).
Hence, we can consider the quotient of Lw ∩ Zd and A(Lv ∩ Zn) by Λ′. We obtain

Lw ∩ Zd

A(Lv ∩ Zn)
∼=

(Lw ∩ Zd)/Λ′

A(Lv ∩ Zn)/Λ′
.

The equality in (3.4) follows from this isomorphism and the identifications (Lw ∩ Zd)/Λ′ =
Lπ(w) ∩ (Λ′⊥) and A(Lv ∩ Zn)/Λ′ = A′(Lπ(v) ∩ Λ⊥), via projecting to the complemented Λ′⊥

of the primitive lattice Λ′.

Theorem 3.3.4. Given X, Y ⊂ Tn two irreducible varieties, consider the associated variety
X × Y ⊂ T2n. Then

T (X × Y ) = T X × T Y

as weighted polyhedral complexes, with mσ×τ = mσmτ for maximal cones σ ⊂ T X, τ ⊂ T Y,
and σ × τ ⊂ T (X × Y ).

Proof. The equality of the sets T (X × Y ) and T X × T Y as polyhedral fans is a direct
consequence of the equality in(u,v)(I + J) = inu(I) + inv(J), which follows by Buchberger’s
criterion [31, Theorem 15.8] and the fact that the generators of I and J involve disjoint sets
of variables.



54

Let u ∈ T X, v ∈ T Y be regular points. From the equality as polyhedral fans it is easy
to check that (u, v) is a regular point in T (X × Y ). Our goal is to prove the multiplicity
formula.

Given two primary decompositions inu(I) =
⋂
iMi ⊂ C[x], inv(J) =

⋂
j Nj ⊂ C[y],

we claim that in(u,v)(I + J) =
⋂
i,j(Mi + Nj) ⊂ C[x, y] is also a primary decomposition.

The equality as sets follows immediately, so we only need to show that Mi + Nj ⊂ C[x, y]
is a primary ideal. Let Pi ⊂ C[x] and Qj ⊂ C[y] be associated prime ideals to Mi and Nj

respectively. Since C is algebraically closed, and Mi and Nj involved disjoint sets of variables,
it is immediate to check that Pi + Qj ⊂ C[x, y] is a prime ideal. Namely, the quotient ring
C[x, y]/(Pi +Qj) equals (C[x]/Pi)[y]⊗C (C[y]/Qj)[x], a tensor product of two domains over
C, hence also a domain [60, Chapter XVI, Section 6].

Moreover, since both Mi and Nj involve disjoint sets of variables, we have

Ann(Mi +Nj) = AnnMi ⊗C C[y] + C[x]⊗C AnnNj.

From this and the fact that P si
i ⊂ AnnMi ⊂ Pi and Q

tj
j ⊂ AnnNj ⊂ Qj for suitable numbers

si, tj ∈ N, we conclude (Pi +Qj)
si+tj ⊂ Ann(Mi +Nj) ⊂ Pi +Qj thus proving by definition

that Mi +Nj is a (Pi +Qj)-primary ideal.
With similar arguments we conclude that all minimal primes of in(u,v)(I + J) are sums

of minimal primes of inu(I) and inv(J). This follows because, given P, P ′ ⊂ C[x] and
Q,Q′ ⊂ C[y] prime ideals, it is straightforward to check that P +Q ⊂ P ′ +Q′ if and only if
P ⊂ P ′ and Q ⊂ Q′.

Let σ, τ be maximal cones on T X and T Y , and let u, v be regular points in σ and τ ,
respectively. By definition of multiplicity of a maximal cone, we have

mσ =
∑

P∈Ass(inu(I))
P minimal

m(P,C[x]/inu(I)) =
∑

P∈Ass(inu(I))
P minimal

dim(C[x]/P )P (C[x]/inu(I))P ;

mτ =
∑

Q∈Ass(inv(J))
Q minimal

dim(C[y]/Q)Q(C[y]/inv(J))Q ; mσ×τ =
∑

P∈Ass(inu(I))
Q∈Ass(inv(J))
P,Q minimal

dim
(

C[x,y]

P+Q
)P+Q

( C[x, y]

inu(I) + inv(J)

)
P+Q

.

The statement mσ×τ = mσmτ follows from the distributive law and Lemma 3.3.5.

Lemma 3.3.5. Let I ⊂ C[x], J ⊂ C[y] be ideals and let P ⊂ C[x], Q ⊂ C[y] be minimal
primes containing I and J , respectively. Then

dim(C[x,y]/P+Q)P+Q

(C[x, y]

I + J

)
P+Q

= dim(C[x]/P )P (C[x]/I)P · dim(C[y]/Q)Q(C[y]/J)Q.

Proof. Consider the residue fields F = (C[x]/P )P , G = (C[y]/Q)Q, and L = (C[x, y]/(P +
Q))P+Q. Note that F ⊗C G ↪→ L via the natural inclusion given by the multiplication
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map, since C is algebraically closed. Likewise, one can easily show that C[x]/I ⊗C C[y]/J ∼=
C[x, y]/(I+J), via the multiplication map. We wish to find a similar result for the localization
of these quotients at the corresponding minimal primes.

For simplicity, call M = (C[x]/I)P ∼= F s and N = (C[y]/J)Q ∼= Gr the corresponding
finite dimensional vector spaces. Our goal is to prove that M ⊗C N is a free L-vector space
of rank sr. From the canonical isomorphisms C[x]P ⊗C[x] C[x]/I ∼= (C[x]/I)P , C[y]Q ⊗C[y]

C[y]/J ∼= (C[x]/J)Q, we see that M ⊗CN = (C[x]/I)P ⊗C (C[y]/J)Q ∼= C[x, y]/(I + J)[S−1],
where S is the multiplicatively closed set consisting of products of polynomials, each of which
is pure in each set of variables, and which do not lie inside the prime ideals P or Q. More
precisely:

S := (C[x] r P )(C[y] rQ).

Similarly, F ⊗C G ∼= C[x, y]/(P +Q)[S−1].
On the other hand, notice that M ⊗C N comes with a natural F ⊗C G-module structure

via “coordinatewise action.” Hence,

(C[x, y]/(I + J))(P+Q)
∼= L⊗(F⊗CG) (M ⊗C N).

From the last isomorphism we see that to prove our lemma it suffices to show that M ⊗C N
is a free F ⊗C G-module of rank sr. The original statement will follow after tensoring with
L.

Let {fi}i, {gj}j be bases of M and N , respectively. We claim that {fi⊗gj}i,j is a basis of
M ⊗C N as an F ⊗C G-module. It suffices to check the linear independence of the proposed
basis. We proceed in an elementary way, by successively using the linear independence of
the bases of the free modules M,N,F and G. Suppose

∑
i,j aijfi ⊗ gj = 0 ∈ M ⊗C N , with

aij ∈ F ⊗C G. Write aij =
∑

k,l aijkluk ⊗ vl where aijkl ∈ C and {uk}k, {vl}l are bases of the
field extensions F |C and G|C, respectively. Thus,

0 =
∑
i,j

aijfi ⊗ gj =
∑
j,l

(∑
i,k

aijklukfi
)
⊗C (vlgj). (3.5)

To prove aij = 0 it suffices to show aijkl = 0 for all i, j, k, l. By a well-know result on tensor
algebras (cf. [31, Lemma 6.4]), expression (3.5) implies the existence of elements ajlt ∈ C,
ht ∈ M such that

∑
t ajltht =

∑
i,k aijklukfi for all j, l and

∑
j,l ajltvlgj = 0 for all t. Hence,

rearranging the sum we conclude that
∑

j(
∑

l ajltvl)gj = 0 in N for all t, which implies∑
l ajltvl = 0 ∈ G for all j, t. This in turn implies ajlt = 0 for all j, l, t.
Using the condition

∑
i(
∑

k aijkluk)fi =
∑

t ajltht = 0 for all j, l, we have
∑

k aijkluk = 0
for all i, j, l. Therefore, aijkl = 0 for all i, j, k, l, as we wanted to show.

Corollary 3.3.6. Given X, Y ⊂ Tn two irreducible subvarieties of tori, we can consider the
associated irreducible subvariety variety X � Y ⊂ Tn. Then as sets:

T (X � Y ) = T X + T Y,
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where the sum on the right-hand side denotes the Minkowski sum in Rn.
The same result holds for the projectivization of X and Y in Pn−1.

We complement this result with a formula for computing multiplicities in T (X �Y ), which
follows from Lemma 3.3.1 and Theorems 3.3.2 and 3.3.4.

Corollary 3.3.7. Let X, Y be as in Corollary 3.3.6.

(i) If dimX + dimY = dim(X � Y ), then the multiplicity at a regular point w of T (X � Y )
equals:

mw =
1

δ

∑
u∈TX,
v∈T Y,
w=u+v

mumv index ((Lu + Lv) ∩ Zn, (Lu ∩ Zn) + (Lv ∩ Zn)),

where δ is the degree of the generically finite monomial map X × Y → X � Y . We
assume that the number of such u, v is finite, all of them are regular in T X and T Y ,
and Lu,Lv are linear spans of neighborhoods of u ∈ T X and v ∈ T Y respectively.

(ii) Let X ′ and Y ′ denote the quotient of X and Y by a maximal torus given by primitive
sublattices Λ and Λ′ of Zn. If dimX ′+dimY ′ = dim(X ′ �Y ′), multiplicities at a regular
point w of T (X � Y ) can be computed as:

mw =
1

δ

∑
π(u)
π(v)

mumv index ((Lu+Lv)∩Zn,(Lu∩Zn)+(Lv∩Zn)) index ((Λ+Λ′)sat,Λ+Λ′),

where we sum over all classes π(u) ∈ T X/(R⊗Λ), π(v) ∈ T Y/(R⊗Λ′) with u+ v ≡ w
(mod R ⊗ (Λ + Λ′)). Here, δ is the degree of the generically finite monomial map
X ′ × Y ′ → X ′ � Y ′, and (Λ + Λ′)sat is the primitive lattice (Λ + Λ′)⊗Z R ∩ Zn.

We assume that the number of classes of such points u, v is finite, all of them are
regular in T X and T Y , and Lu,Lv are linear spans of neighborhoods of u ∈ T X and
v ∈ T Y respectively.

As we mentioned in Section 1.4, the set-theoretic description in Corollary 3.3.6 is moti-
vated by and is a direct consequence of Theorem 1.1.14 and the fact that valuations turn
products into sums. The novelty of our approach is that under suitable finiteness conditions
of the monomial map defining Hadamard products, we can effectively compute multiplicities
of regular points in T (X �Y ) from multiplicities of T X and T Y , as stated in Corollary 3.3.7.
It is important to mention that this finiteness condition holds for the example we are study-
ing in this chapter, after taking the quotient by a 5-dimensional torus action. Moreover, we
are not claiming that T (X � Y ) inherits a fan structure from T X and T Y . In general, it
might happen that maximal cones in the Minkowski sum get subdivided to give maximal
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cones in T (X � Y ) or, moreover, the union of several cones in the Minkowski sum gives a
maximal cone in T (X � Y ). Example 1.2.2 illustrates this undesirable behavior.

Due to the lack of a fan structure in our description of the projective variety X � Y ,
Corollary 3.3.6 gives no estimate for the number of maximal cones in the tropical variety
X �Y , where the fan structure is inherited from the Gröbner fan structure of the homogeneous
defining ideal of X � Y (Section 1.1.1). Moreover, this fan structure is infeasible to obtain
in general. Hence, in the hypersurface case we have no estimate on the number of edges
of the dual polytope to the tropical variety T (X � Y ) and, as a consequence, no estimate
on the number of vertices of the polytope. As Example 1.2.2 illustrates, the description of
T (X �Y ) as a collection of weighted cones of maximal dimension contains less combinatorial
information than the fan structure does and hence, the computation of the dual polytope
becomes more challenging, as we show in Section 3.4.

We now describe the computation of the tropical variety T V 2
4 associated to our model

V 2
4 . By our discussions in Section 3.2, we know that the defining ideal of V 1

4 = Sec(P1 ×
P1×P1×P1) ⊂ P15 is generated by the 3× 3 minors of the three flattenings of 2× 2× 2× 2
matrix of variables (pijkl), for a total of 48 generators. Since V 1

4 is irreducible, we can use
Gfan [54] to compute the tropical variety T V 1

4 .
The ideal I(V 1

4 ) of C[p0000, . . . , p1111] is invariant under the action of B4, and Gfan can
exploit the symmetry of a variety determined by an action of a subgroup of the symmetric
group S16. For this, we need to provide a set of generators as part of the input data. The
output groups cones together according to their orbits.

The tropical variety T V 1
4 ∈ R16 has a lineality space spanned by the rows of the following

integer matrix:

Λ =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 , (3.6)

where the columns correspond to variables pijkl, for i, j, k, l ∈ {0, 1}, ordered lexicograph-
ically. As we explained already in this section, we can identify this linear space with the
maximal torus acting on the variety V 1

4 and hence on V 2
4 . A set of generators of the corre-

sponding lattice giving this action can be read-off from the parameterization. More precisely,
consider the morphism of tori β : T5 → T16 sending (t0, . . . , t4) 7→ (tm1 , . . . , tm16), where each
mi is of the form (1, vi), where vi runs over all sixteen vertices of the 4-cube. Then, one can
check that the closure of the image of β in C16 is the affine cone over the Segre embedding
P1 × P1 × P1 × P1 ↪→ P15. More precisely, given a generic point in the image of β, we have
t0t

i
1t
j
2t
k
3t
l
4 = λxiyjzkwl, where (x0 : x1) = (1 : t1), (y0 : y1) = (1 : t2), (z0 : z1) = (1 : t3), (w0 :

w1) = (1 : t4) ∈ P1 and λ = t0 ∈ R.
The Gfan computation confirms that the tropical variety T V 1

4 inside R16 has dimension
10 and a 5-dimensional lineality space. After moding out by this linear subspace, the f -vector
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of the resulting pointed fan is:

(382, 3436, 11236, 15640, 7680).

Regarding the orbit structure, there are 13 rays and 49 maximal cones in T V 1
4 up to sym-

metry and all maximal cones have multiplicity 1.
According to Corollary 3.3.6, the tropical variety of the model is (as a set)

T V 2
4 = T V 1

4 + T V 1
4 .

Since we know that this will result in a pure polyhedral fan, we only need to compute all
Minkowski sums between pairs of cones of maximal dimension. For this step we use the
B4 group action. There is a natural (coordinatewise) action of B4 × B4 on T V 1

4 × T V 1
4

that translates to a B4-action on T V 1
4 + T V 1

4 . Therefore, to compute the Minkowski sum
of maximal cones, we first consider 49 · 7 680= 376 320 pairs (σ1, σ2), where σ1 is taken from
a set of representatives of the 49 orbits of maximal cones, and σ2 is taken from the set
of all maximal cones. We discard the pairs (σ1, σ2) for which σ1 + σ2 is not of maximal
dimension 15. After this reduction, the total number of maximal cones computed is 92 469.
By construction, this list of 92 469 cones contains all representatives of the orbits of maximal
cones in T V 2

4 . But they do not form distinct orbits. Some cones appear twice in the list as
σ + τ and τ + σ, and this the only possibility except for 4 512 cones which arise from two
different pairs, plus their flips. That is, σ1 + τ1 = σ2 + τ2 where both pairs differ only by an
interchange of a single pair of extremal rays (r1, r2) ∈ (σ1, τ1): i.e. σ2 = (σ1 r {r1}) ∪ {r2}
and τ2 = (τ1 r {r2}) ∪ {r1}. Some cones σ have non-trivial stabilizers in B4, so there are
cones σ + τ1 and σ + τ2 in the same orbit. The dimension of the maximal cones in T V 2

4

confirms that V 2
4 is a hypersurface, as predicted by Theorem 2.1.2.

The total number of orbits of maximal cones is 18 972, and each orbit has size 96, 192, or
384. We then let the group B4 act on each orbit and obtain 6 865 824 cones of dimension 15,
the union of which is the tropical variety T V 2

4 , as predicted by Corollary 3.3.6. We do not
have a fan structure of T V 2

4 . Nonetheless, we can compute the multiplicity of any regular
point in T V 2

4 using Corollary 3.3.7. After taking quotients by the respective maximal torus
acting on each space, the map (V 1

4 )′ × (V 1
4 )′ → ((V 1

4 )′)[2], is generically finite of degree two.
In practice, the lattice indices in (2) are computed via greatest common divisors (gcd) of
maximal minors of integer matrices whose rows span the corresponding maximal cones in
T V 1

4 and T (V 1
4 × V 1

4 ). More precisely,

Lemma 3.3.8. Given a lattice D ⊂ Zn, and an integer matrix A ⊂ Zd×n with rkA(D) =
rkD, the index (R ⊗Z A(D) ∩ Zd, A(D)) can be computed as follows. Pick {w1, . . . ws} a
Z-basis of D, and let B := (w1 | . . . | ws) ∈ Zn×s. Then, the index of the lattice A(D)
in its saturation equals the quotient of the gcd of the maximal s × s-minors of the matrix
A ·B ∈ Zd×s by the gcd of the maximal s× s-minors of the matrix B.
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Proof. Since R⊗Z A(D) = R⊗Z A(R⊗Z D ∩Zn), the index(R⊗Z A(D) ∩Zd, A(D)) equals
the product

index(R⊗Z A(D) ∩ Zd, A(R⊗Z D ∩ Zn)) · index(A(R⊗Z D ∩ Zn), A(D)).

By construction index(R⊗ZA(D) ∩Zd, A(D)) is the gcd of the maximal minors of the matrix
A ·B. To prove the lemma, it suffices to show that index(A(R⊗Z D∩Zn), A(D)) equals the
gcd of the maximal minors of the matrix B in the statement.

Since rkA(D) = rkD, this implies that kerA∩D = kerA∩ (R⊗Z D∩Zn) = {0}. Then,
A(R⊗Z D ∩ Zn)/A(D) ∼= (R⊗Z D ∩ Zn)/D, which equals the gcd of the maximal minors of
the matrix B, as we wanted to show.

In our case, B is spanned by twenty integer vectors: five from each cone σ × 0,0 ×
τ ∈ T V 1

4 × T V 1
4 plus the lattices Λ × 0,0 × Λ coming from the lineality space. Call Cσ

and Cτ each list of five vectors of σ and τ . Then, the matrix B in the previous lemma
equals the block diagonal matrix B =diag(Bσ, Bτ ), where Bσ = (Cσ|Λ), Bτ = (Cτ |Λ) and
A·B = (Cσ|Λ|Cτ |Λ). Thus, the index equals the quotient of gcd

(
15×15-minors of (Cσ|Cτ |Λ)

)
by the product gcd

(
10 × 10-minors of (Cσ|Λ)

)
· gcd

(
10 × 10-minors of (Cτ |Λ)

)
. Each gcd

calculation is done via the Hermite (alt. Smith) normal form of these matrices [72]. After
computing all multiplicities using Macaulay 2 we obtain only values one or two.

3.4 Newton polytope of the defining equation

In this section, we focus our attention on the inverse problem. That is, given the tropical
fan of our irreducible hypersurface, we wish to compute the Newton polytope of the defining
equation f =

∑
a cax

a of the hypersurface V 2
4 , i.e. the convex hull of all vectors a ∈ Z16

such that xa appears with a nonzero coefficient in f . Since we chose to work with the min

convention, the duality between polytopes and tropical hypersurfaces will come from the
inner normal fan of the polytope. This can bee seen, for example, in Figure 3.4.

3.4.1 Vertices and facets

We will first present the results of our computation before discussing algorithms and imple-
mentation in the following subsections. Here is the ultimate result:

Theorem 3.4.1. The Newton polytope of the defining equation of V 2
4 has 17 214 912 vertices

in 44 938 orbits and 70 646 facets in 246 orbits under the symmetry group B4.

Among the 44 938 orbits of vertices, 215 have size 192 and 44 723 has size 384. The
maximum coordinate of a vertex ranges between 14 and 20, and the minimum coordinate
is either 0 or 1. All but 46 orbits have a zero-coordinate. A vertex can have up to seven
zero-coordinates. Each vertex is contained in 11 to 62 facets. There are 11 800 symmetry
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classes of simple vertices, that is, those contained in exactly 11 facets. The following is the
unique symmetry class of vertices contained in 62 facets each:

(0, 0, 1, 17, 13, 6, 17, 1, 17, 1, 6, 13, 1, 17, 0, 0).

This vertex has orbit size 192.
We index the coordinates of P15 by {0, 1}4 and order them lexicographically, following

the convention in Chapter 2. Since our polynomial is (multi)-homogeneous, knowing even a
single point in the Newton polytope gives the multidegree. We now describe the multidegree
of the hypersurface V 2

4 :

Theorem 3.4.2. The hypersurface V 2
4 has multidegree (110, 55, 55, 55, 55) with respect to the

grading defined by the matrix in (3.6).

The following table lists the orbit sizes of all 246 facet orbits:

orbit size 2 8 12 16 24 32 48 64 96 192 384
number of facet orbits 1 2 1 3 1 1 7 3 15 67 145

Table 3.1: Classification of facet orbits of the Newton polytope of V 2
4 under B4-symmetry by sizes.

The coordinates xijkl are naturally indexed by bit strings ijkl ∈ {0, 1}4. The two facet
inequalities in the size-2 orbit say that the sum of xijkl such that i+ j+k+ l is even (or odd)
is at least 32. Each facet contains between 210 and 3 907 356 vertices. The unique symmetry
class of facets containing the most vertices consist of coordinate hyperplanes.

Using Algorithm 3.3, we certified that out of the 13 orbits of rays of the 9-dimensional
tropical variety T V 1

4 of the first secant variety of the Segre embedding P1×P1×P1×P1 ↪→ P15,
only the following eight are facet directions of T V 2

4 :

-(1, 0, 0, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 0, 1)
-(1, 3, 3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 3, 1, 1, 3)
-(2, 1, 1, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 0, 0, 0)
-(2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2)
-(3, 2, 2, 1, 2, 1, 1, 0, 2, 1, 1, 0, 1, 0, 0, 0)
-(3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 1, 3, 1, 1, 3)
-(-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
-(-1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1).

A complete list of vertices and facets, together with the scripts used for all computations,
are available at

http://math.berkeley.edu/~macueto/implicitizationChallenge.html

http://math.berkeley.edu/~macueto/implicitizationChallenge.html


61

3.4.2 Computing vertices

We now discuss how we obtained the Newton polytope of V 2
4 . In Section 1.4 we presented the

duality between Newton polytopes and tropical hypersurfaces, together with an algorithm,
known as ray-shooting, to go from the tropical hypersurface to the corresponding polytope.
Since the operation of tropicalization interprets a polynomial as a Laurent polynomial, the
polytope will be defined up to translation. The algorithm described in Theorem 1.4.1 com-
putes a representative of NP(f) which lies in the positive orthant and touches all coordinate
hyperplanes, i.e. f is a polynomial not divisible by any non-constant monomial. We describe
the pseudocode in Algorithm 3.1.

From the statement of Theorem 1.4.1 we see that we do not need a fan structure on
T (f) to apply the ray-shooting algorithm. A description of the tropical hypersurface as
a set, together with a way to compute the multiplicities of regular points, gives us enough
information to compute vertices of the corresponding polytope in any generic direction. This
observation fits into the description of the tropical hypersurface T V 2

4 given in Section 3.3.
The multiplicity of a regular point will be the sum of the multiplicities of all maximal cones
containing this point.

In Section 3.3 we computed T (f) as a union of 6 865 824 cones. For each of those cones, we
calculated the lattice index in Theorem 3.3.2 and the primitive vector which is the direction
of the edge of NP(f) normal to the cone. There are 15 788 distinct edge directions in NP(f).
We then pick a random vector w ∈ R16 and go through the list of 6 865 824 cones, recording
the cones that meet any of the rays w + R>0 ei. For each i, we sum the numbers mv · |lvi |
over all the intersection points v and obtain the ith coordinate of the vertex.

To obtain the multidegree, we only need one vertex. We computed the first vertex using
Macaulay 2 [44] in a few days. Our ultimate goal was to compute the Newton polytope
NP(f), a much more difficult computational problem that took us many more months to
complete. As a first attempt, we bounded the number of lattice points in the polytope by the
number of nonnegative lattice points of the given multidegree. Using the software LattE [20],
we found that the number of monomials in 16 variables with multidegree (110, 55, 55, 55, 55)
is 5 529 528 561 944.

By construction, it is clear that the bottleneck of Algorithm 3.1 is in going through the list
F of 6 865 824 cones. We can modify the algorithm to produce more than one vertex for each
pass through the list. We do this in two ways. One is to process multiple objective vectors
at once and save time by reducing the number of file readings and reusing the linear algebra
computations for checking whether a cone meets a ray or not. Another way to produce more
vertices is to keep track of the cones that we meet while ray-shooting, and use them to walk
from chamber to chamber in the normal fan of NP(f). This is described in Algorithm 3.2.
On the polytope P , this means walking from vertex Pw+tei to Pw+t′ei for scalars t′ > t > 0
corresponding to points between three consecutive intersection points, along an edge whose
ith coordinate is positive. If the vector w is generic, then we can assume that two maximal
cones are parallel whenever they share an intersection point obtained by shooting from w in
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Input: The list F of maximal cones, with multiplicities, whose union is the
codimension one cones in the outer normal fan of a polytope P ⊂ Rn. An
objective vector w ∈ Rn.

Assumption: The objective vector w does not lie in any cone in F , i.e. the face Pw

is a vertex. For each i = 1, 2, . . . , n the ray w + R>0ei does not meet the boundary of
any cone in F .
Output: The vertex Pw that maximizes the scalar product with the objective vector

w.

Pw ← 0
for each cone σ in F do

for i = 1, 2, . . . , n do
if σ ∩ (w + R>0ei) 6= ∅ then
Pwi ← Pwi +mσ · `σ,i, where mσ is the multiplicity of σ and `σ is the
primitive integral normal vector to σ such that `σi > 0.

return Pw.
Algorithm 3.1: Ray-shooting: computing a vertex of a polytope from its normal fan.

a fixed coordinate direction. So we can use any of the cones in a parallel class to compute
the edge direction of the wall we walk across. By adding up the multiplicities of the cones
in each class, we get the lattice length of the corresponding edge of P . This allows us to
compute the coordinates of the vertices dual to the chambers we walk into. For each of
these vertices found by walking from a known vertex, we also get an objective vector in the
process. For example, in the notation of Algorithm 3.2, any vector of the form w+ tei, where
tikj < t < tikj+1, is an objective vector for the jth vertex found in the walk in direction ei. We

take tim+1 as ∞. For numerical stability, we use exact arithmetic over the rational numbers.
In particular, we always choose the new objective vectors to be integral.

Using a new vertex, with its associated objective vector, we can repeat the ray-shooting
(Algorithm 3.1) and walking (Algorithm 3.2) again. The picture one should have in mind is
that walking from chamber to chamber in the tropical side corresponds to walks from vertex
to vertex in NP(f) along edges normal to the codimension one cones traversed in the tropical
hypersurface.

The combination of Algorithms 1 and 2 is illustrated in Figures 3.2 and 3.3. Starting from
chamber C0 and an objective vector w0, we shoot rays in the coordinate axes directions. The
intersection points are indicated by their defining parameters tij (note that superscripts are
omitted in the notation of Algorithm 3.2). As we explain below, to speed up the computation
of Algorithm 3.1 we first precompute the inverses of all suitable matrices of the form Mσ :=
(−ei|r1| . . . |r15) where {r1, . . . , r10} are generators of the cone σ and {r11, . . . , r15} are the
rows of the matrix A from (3.6) spanning the lineality space of T V 1

4 . Using this, the condition
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Input: A generic objective vector w ∈ Rn, the vertex Pw, and the set
S := {(σ, i, t) ∈ F × {1, 2, . . . , n} × R>0 : σ ∩ (w + R>0ei) = {w + tei}}.
(This input is typically obtained from Algorithm 3.1.)

Output: The set of all vertices of P with objective vectors of the form w + tei for
some t ∈ R>0 and i ∈ {1, 2, . . . , n}.

for i = 1, 2, . . . , n do
Let σ1, . . . , σm be the cones that intersect the ray w + R>0ei transversely.
Let t1, . . . , tm ∈ R>0 be such that (σk, i, tk) ∈ S for k = 1, 2, . . . ,m.
Order σ1, . . . , σm so that

t1 = · · · = tk1 < tk1+1 = · · · = tk2 < · · · < tkl+1 = · · · = tm := tkl+1
.

v ← Pw

for j = 1, 2, . . . , l + 1 do

`σkj ← primitive integral normal vector to σkj with `
σkj
i > 0;

v ← v +

 ∑
kj−1<k≤kj

mσk

 · `σkj , where k0 = 1, kl+1 = m, and mσ denotes the

multiplicity of σ.
Output v, and an objective vector in the line segment between w + tkjei and
w + tkj+1

ei, where tkl+2
:=∞.

Algorithm 3.2: Walking: starting from an objective vector and corresponding vertex,
compute the vertices obtained by changing the objective vector in negative coordinate
directions.
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Figure 3.2: Ray-shooting and walking algorithms combined. Starting from chamber C0 we shoot
and walk from chamber to chamber.

(w0 +λei)∩σ 6= ∅ translates to the first eleven coordinates of the solution X of X t = (Mσ)−1 ·
w0 being positive. Note that we can easily use the same systems to test (w0 − λei) ∩ σ 6= ∅,
just changing the sign condition for the first coordinate λ of X. This small modification
allows us to walk in sixteen new directions (the negative coordinate axes), and find new
adjacent vertices to vertex v0 starting form objective vector w0. The step updating v in

Algorithm 3.2 should be v ← v−
(∑

kj−1<k≤kj mσk

)
· `σkj instead of v ← v + (. . .) .

In Figure 3.2, the parameters λ associated to the intersection points in the positive
directions are denoted by tij, whereas we use t̃ij for the points obtained by shooting rays in
the negative directions. The dashed arrows indicate all 32 shooting directions. The points
in the codimension-one cones correspond to intersection points, whereas the points inside
chambers are the objective vectors obtained for each vertex as described in Algorithm 3.2.

The dual walk in the Newton polytope is depicted in Figure 3.3. We start walking from
vertex v0 and via shooting we obtain the adjacent vertices v3, v5 and v8. If we walk in the
negative directions, we obtain the adjacent vertices v5, v7, v8 and v10. Notice that by this
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Figure 3.3: Walking from vertex to vertex in NP(f) ⊂ R3. In dash lines, we plot the tropical
variety. The picture represents the local structure around v0.

procedure we miss vertices v4, v6 and v9, which are the remaining adjacent vertices to v0.
However, we do get them if we start shooting from known adjacent chambers to C0. For
example, v6 can be computed if we shoot rays and walk from chamber C8, followed by a
shoot from chamber C6. Observe that this depends heavily on the choice of the objective
vector w0.

3.4.3 Implementation

A few notes about the implementation of our algorithms are in order. As we started working
on the problem, we used Macaulay 2 [44] to do the ray-shooting (Algorithm 3.1). This script
was fine for our first experiments, but it took three days to generate a single vertex of the
polytope. It soon became evident that something faster was needed if we wanted to compute
the entire polytope.

Our first step was to translate the Macaulay 2 script for Algorithm 3.1 into Python [63].
We chose that language because of its fast speed of development and availability of arbitrary
precision integers, which were needed by our program. We always scaled our objects (matri-
ces and vectors) by positive integers so that our objects have integer coefficients. This step
was crucial for numerical stability.

This new implementation brought the running time to about 10 hours. This was a
remarkable improvement, but as the number of vertices of the polytope grew, we realized
that something even faster was required. Therefore, we decided to resort to caching: instead
of computing every inverse for each vector, we precomputed all the inverses and stored them
using a binary format suitable for fast reading in Python (Pickles). This resulted in a file
of a few tens of gigabytes, but dropped the time required for an individual ray-shooting
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procedure down to under three hours.
Once the Python prototype was working at a reasonable speed, we translated it into

C++ [89], which brought the time required to do ray-shooting for a single vertex to 47 min-
utes on modest hardware. Moreover, ray-shooting for multiple objective vectors could be
performed at the same time, thus amortizing the disk reads. Since we still needed large
integers, we decided to use GMP [40] and its C++ interface.

The procedure for walking is a more or less straightforward translation of the pseudocode
presented in Algorithm 3.2. It is still implemented in Python, because it takes a short amount
of time to walk from a few hundred vertices at a time, and the simplicity of the script far
outweighs the time gains a C++ translation would provide.

3.4.4 Certifying facets

We now discuss how to certify certain inequalities as facets of a polytope P given by the
dual tropical hypersurface T (f). By the duality between tropical hypersurfaces and Newton
polytopes, each facet direction must be a ray in the tropical variety, equipped with the fan
structure dual to P . Lemma 3.4.3 provides a characterization for a vector in Rn to be a ray
of T (f) with the inherited Gröbner fan structure.

Lemma 3.4.3. Let w ∈ Rn and T (f) be a tropical hypersurface given by a collection of
cones, but with no prescribed fan structure. Let d be the dimension of its lineality space.
Let H = {σ1, . . . , σl} be the list of cones containing w. Let lσi be the normal vector to
cone σi for i = 1, . . . , k. Then, w is a ray of T (f) if and only if {lσ1 , . . . , lσk} generates a
(n− d− 1)-dimensional vector space if and only if w is a facet direction of NP(f).

Proof. The vectors {lσ1 , . . . , lσk} are precisely the directions of edges in the face Pw of P :=
NP(f). Since the lineality space of T (f) has dimension d, the polytope P has dimension
n− d. The face Pw is a facet of P if and only if lσ1 , . . . , lσk span a (n− d− 1)-dimensional
vector space.

For any objective vector w ∈ Rn, we can compute a vertex in the face Pw by applying
ray-shooting (Algorithm 3.1) to a generic objective vector w′ in a chamber of the normal fan
of P containing w. If we know that w is in fact a facet direction of P , then any vertex in Pw
gives us the constant term a in the facet inequality w · x ≥ a. This is used in Algorithm 3.3
for checking if a given inequality is a facet inequality of P . This step will be essential to
certify that our partial list of vertices is indeed the complete list of vertices of the polytope
P . We discuss this approach in Section 3.4.5.

We now explain how to obtain a vector in the interior of a chamber containing a facet
direction w. We start by applying a modified version of Algorithm 3.1 with input vector
w and when we choose to shoot rays only in direction e1. Since w is a ray of the tropical
variety given by the collection F , it belongs to some cones {τ1, . . . , τs} in F . Let σ1, . . . , σm
be the cones we intersect along the e1 direction (we allow intersections at boundary points
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Input: An inequality w · x ≥ a and a tropical hypersurface in Rn (dual to polytope
P) given as a collection F of weighted maximal cones, with d = dimension of
the lineality space of the tropical hypersurface.

Output: True if the inequality is a valid facet inequality of P ; False otherwise.

N ← {}
for σ ∈ F do

if w ∈ σ then
N ← N ∪ {normal vector to σ};

if dim〈N〉 < n− d− 1 then
Output False

else
w′ ← a vector in the interior of a chamber whose closure contains w
Compute the vertex Pw′ using ray-shooting (Algorithm 3.1).
if w · Pw′ = a then

Output True

else
Output False

Algorithm 3.3: Facet certificate: Check if a given inequality defines a facet of a
polytope given by its normal fan.
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of each cone). Note that we only pick those cones σ ∈ F whose corresponding edge direction
satisfies lσ1 6= 0.

Now, we use Algorithm 3.2 with input vector w, the set S corresponding to the cones
σ1, . . . , σm and coordinate 1. We assume (σk, 1, tk) are ordered in an increasing order, with
all tk ≥ 0. We have two possible scenarios: either S is a subset of {0} (that is, either the
empty set or the set {0}) or it contains a positive real number. In the first case, we pick an
objective vector w1 = w + te1 for a positive number t (for numerical stability, we choose t
to be a big integer number). In the second case, pick a number t between zero and the first
positive number from S and let w1 = w + te1.

Third, we check if any cone in F contains w1 or not. If not, then we let w′ = w1. If
yes, by the balancing condition for tropical varieties, this means that there exists a maximal
cone in the tropical variety containing both w1 and w. Note that this cone may be obtained
by gluing and/or subdividing some cones in F . In this case, we proceed as above, replacing
the original input vector w by w1 and shooting rays using coordinate 2 instead of coordinate
1. We repeat this process with all coordinates if necessary. Unless we have wi not contained
in any cone of F , at step i we are guaranteed to have a cone containing w,w1, . . . , wi−1, wi
by construction. By the dimensionality argument, at most in sixteen steps, we obtain a
vector wi not contained in any cone of F . This vector will be the objective vector w′ from
Algorithm 3.3.

3.4.5 Completing the polytope

Once the ratio of new vertices computed with ray-shooting and walking decreases, the next
natural question that arises is how to guarantee that we have found all vertices of our
polytope. To answer this question, we construct the tangent cones at each vertex and try to
certify their facets as facets of P .

Definition 3.4.4. Let P be a polytope in Rn and v a vertex of P . We define the tangent
cone of P at v to be the set:

T Pv := v + R≥0〈w − v : w ∈ P〉 = v + R≥0〈e : e edge of P adjacent to v〉.

By construction, T Pv is a polyhedron with only one vertex and P=
⋂
v vertex of P T Pv . In

particular, an inequality defines a facet of P if and only if it defines a facet of one of the
tangent cones.

Let Q be the convex hull of the vertices of P obtained via Algorithms 3.1 and 3.2. Our
goal is to certify that Q = P . We proceed as follows. For each vertex v of Q we wish to
compare the tangent cones T Qv and T Pv . Since Q has over seventeen million vertices and T Qv
has no symmetry, straightforward convex hull computations are infeasible. If T Qv = T Pv then
the extreme rays of T Qv would be edge directions of P , which we have already computed
as the normal directions to the list of maximal cones of the tropical hypersurface, and
which are 15 788 in total. For a fixed vertex v ∈ Q we compute all differences w − v for
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all vertices w of Q and test which of these vectors are parallel to the edges of P . The
number of such edge directions in T Qv is expected to be very small (usually under 30 in
practice). Let CQ,Pv be the convex hull of all rays along the edge directions of P in T Qv ,
translated by v. So we have CQ,Pv ⊆ T Qv and we can test if CQ,Pv ⊇ T Qv by computing
facets of CQ,Pv with Polymake [43]. If CQ,Pv ⊇ T Qv , we use Algorithm 3.3 to check whether
each facet of CQ,Pv is also a facet of P . In this way, we can certify that T Pv ⊆ CQ,Pv , hence
CQ,Pv = T Qv = T Pv . Certifying this for a vertex v of Q in each symmetry class will give us
Q =

⋂
v vertex of Q T Qv ⊇

⋂
v vertex of P T Pv = P , hence Q = P . We conclude:

Lemma 3.4.5. Let P be a polytope and Q ⊂ P be the convex hull of a subset of the vertices
in P. If all facets of Q are facets of P, then Q ⊃ P, so Q = P.

If we find that a facet w ·x ≥ a of CQ,Pv is not a facet of P from Algorithm 3.3, then we are
missing vertices adjacent to v in P in this “false facet direction” w, so we can perturb w with
the techniques of Section 3.4.3 and Theorem1.4.3, so that it lies in a chamber of the normal
fan of P and use ray-shooting (Algorithm 3.1) to find a new vertex in that direction. Using
this method, we obtained the entire polytope in a finite number of steps. We describe the
process of approximating P by a subpolytope Q in Algorithm 3.4. A schematic of complete
tangent cones and incomplete tangent cones is depicted in Figure 3.4.

Figure 3.4: Approximation algorithm. We build a polytope Q ⊂ P, we compute the tangent cones
at vertices of Q and compare them with the corresponding tangent cones of P. We certify if facets
of Q are also facets of P by Algorithm 3.3. In the picture, we certify all facet directions in T Qv
containing vertex v but we cannot certify the facet direction w of the tangent cone T Qv′ . In addition,
although we can certify the facet direction w′ of Q as a true facet direction of P, we will not be
able to certify the constant corresponding to this facet direction of P since we are missing all its
supporting vertices. The true constant will be obtained using Algorithm 3.3.



70

Input: A partial list V of vertices of P , a collection of weighted cones F whose union
is the tropical hypersurface, d = dimension of the lineality space of the tropical
hypersurface, and the group of symmetries of the tropical hypersurface.

Output: A complete list of vertices and facets of P .
S ← {};
for representatives v of orbits of V do

CQ,Pv ← convex hull of v and all rays in directions w− v where w ∈ V and w− v is
normal to a cone in F .
A← facets of CQ,Pv (using Polymake).
for z ∈ A do

if z is a not facet of P by Algorithm 3.3 then
w′ ← a vector in the interior of a chamber whose closure contains z.
Compute the vertex Pw′ using ray-shooting (Algorithm 3.1).
V ← V ∪ orbit of Pw′

Break and restart the outermost for-loop with the new V .

else
S ← S ∪ {z}

Output vertices V and facets S.

Algorithm 3.4: Approximation of P by a subpolytope Q: Given a partial list of
vertices of a polytope P with unknown complete list of vertices, we construct the
subpolytope Q generated by this list. We certify when Q equals P .
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In the final stages of the computation, if we find that CQ,Pv is a strict subcone of the
tangent cone T Qv , we enumerated the rays w − v (with w ∈ V ) that lie in the difference
T Qv \CQ,Pv . If the number of such rays is small (no more than a few hundred), we replace
CQ,Pv with the convex hull of CQ,Pv and those rays (computed using Polymake) and proceed
as in Algorithm 3.4. By executing Algorithm 3.4 in this way, we were able to compute and
certify all vertices and facets of the polytope, solving Problem 3.1.1.
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Chapter 4

Tropical secant graphs of monomial
curves

This chapter is joint work with Shaowei Lin. It is on the arXiv with identifier 1005.

3364v1, under the same title. The present version incorporates some minor changes, largely
for consistency with other chapters. An extended abstract including part of this material
appeared in the Proceedings of FPSAC 2010, edited by Discrete Mathematics and Theoretical
Computer Science.1

4.1 Introduction

In this chapter, we define and study four graphs that hide rich geometry: an abstract graph
(the abstract tropical secant surface graph), a weighted graph in Rn+1 (the tropical secant
surface graph or master graph), a weighted graph in the (n− 2)-sphere (the tropical secant
graph) and, finally, a weighted graph representing a simplicial complex embedded in the
same sphere (the Gröbner tropical secant graph), obtained by an appropriate refinement of
the third graph. All four graphs are parameterized by a sequence of n coprime distinct
positive integers i1, . . . , in, where n ≥ 4. As their names suggest, these graphs are stepping
stones to construct either a tropical surface or the tropicalization of a secant variety.

The abstract tropical secant surface graph is constructed by gluing two caterpillar trees
and several star trees, according to the combinatorics of the given integer sequence. We pick
a realization of this abstract graph in Rn+1 by assigning integer coordinates to each node,
with no injectivity assumption. Our map has a key feature: we can endow this graph with
weights on all edges in such a way that it becomes balanced (Theorem 4.2.5). We call this
weighted graph the tropical secant surface graph or master graph for short (Definition 4.2.1).
This balanced graph is closely related to a tropical surface and will be the main player in
this story. More precisely, it is the building block for constructing the tropicalization of a

1http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAN0147/3170

arXiv
1005.3364v1
1005.3364v1
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAN0147/3170
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classical threefold: the first secant variety of a monomial projective curve (1 : ti1 : . . . : tin).
By definition, the secant variety of the curve is the closure of the union of all lines that
meet the curve in two distinct points. These varieties have been studied extensively in the
literature; see [16, 82] and references therein for more details. One of the main contributions
of this chapter is a complete characterization of their tropical counterparts, which is carried
out in full detail in Section 4.4.

As we explained in Section 1.3, computing the tropicalization of an algebraic variety
without any information about its defining ideal is not an easy task. We will do so using
techniques from geometric tropicalization (Theorem 1.3.1). Although this divisorial charac-
terization is very explicit, computations can be quite difficult if the variety is non-generic, as
it is the case of the binomial surface associated to the master graph. We can see this from
the extensive number of pages we devote to computing this tropical surface (Section 4.3),
and also from the small number of concrete examples available in the literature. As we
said before, we should not expect them to be simple since they are the manifestation of the
algebro-geometric process of resolution of singularities. In this secants example, our methods
allow us to read off the tropical multiplicities directly from the master graph, which encodes
the resolution diagrams of the surface at each singular point and the intersection numbers
among boundary divisors (see Figure 4.1). This is carried out in Sections 4.2 and 4.3, in
particular in Theorem 4.2.6. It is worth mentioning that this construction provides a com-
pactification of the toric arrangement given by the n + 1 binomial curves (wij − λ = 0)
in T2, for 0 ≤ j ≤ n. Such compactifications have been studied recently by L. Moci [71].
His construction, closely related to ours in spirit, realizes the wonderful compactification of
binomial arrangements, following earlier work by De Concini and Procesi [19].

Equipped with the tropical interpretation of the master graph, we describe the trop-
icalization of the first secant variety of any monomial curve in three ways. First, as a
collection of four-dimensional cones in Rn+1 with multiplicities (Theorem 4.4.6). Second, as
a collection of three-dimensional weighted cones in the tropical projective torus TPn, with a
one-dimensional lineality space, and third, as a weighted graph in the (n − 2)-sphere. This
graph is constructed by gluing together specific nodes in the master graph, and identifying
edges accordingly. Weights for these edges are computed from the original ones by combi-
natorial methods. We call this graph the tropical secant graph (Definition 4.4.4). Strictly
contained as a subgraph of this graph is the first tropical secant complex of our monomial
curve (Propositions 4.6.2 and 4.6.4). This complex has recently been investigated by Develin
and Draisma in [22, 25] in an attempt to study tropicalizations of secant varieties of affine
toric varieties and it was briefly mentioned in Chapter 2 in connection with the tropical
model of the restricted Boltzmann machine.

These tropical secant graphs are then exploited to recover geometric information about
the original secant variety in Pn. Using tropical implicitization techniques, we recover the
multidegree of the classical secant threefold with respect to the rank-two lattice generated
by the all-one’s vector and the exponent vector of the curve. The degree of this variety was
previously worked out in [82] and, unsurprisingly, our methods give similar combinatorial
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formulas for this degree in terms of the used exponents. The main advantage of our approach
is that, with the same effort, we can provide much more information about the secant variety,
including its Chow polytope.

Our construction is particularly enlightening in the case when n = 4, where the secant
variety becomes a hypersurface. In this special situation, we recover the Newton polytope of
its defining equation. Although the lack of a fan structure in our description of this tropical
variety is not an issue in our methods, as we discussed in Section 1.4, it would be desirable
to have one to predict extra combinatorial information about the Newton polytope, such
as the number of facets. For this reason, we devote the last part of Section 4.5 to refining
the presentation of the tropical secant graph to turn it into a weighted simplicial complex.
This structure is inherited from the Gröbner fan structure of the defining homogeneous
ideal. The name Gröbner tropical secant graph highlights this property. We illustrate all our
constructions and results with the curve (1 : t30 : t45 : t55 : t78), inspired by [82, Example
3.3], and with the rational normal curve in Pn (Example 4.6.1).

Although secant varieties have been extensively studied in the past, we hope our work
illustrates the power of tropical implicitization and how it can be used to go beyond implic-
itization methods even when looking at classical examples.

4.2 The master graph

In this section, we describe the main object of this chapter: the master graph. We start
by defining an abstract graph parameterized by n coprime positive integers i1, . . . , in, where
n ≥ 4. To simplify notation, we call i0 = 0 and we assume i1 < i2 < . . . < in. This graph
will be built from two types of graphs: two caterpillar graphs GE,D, Gh,D and a family of
star graphs {GFa,D}a parameterized by suitable subsets a of the index set {0, i1, . . . , in}. We
construct the abstract graph by gluing all our graphs GE,D, Gh,D and the family {GFa,D}a
along the common labeled nodes Dij . We call this abstract graph the abstract tropical secant
surface graph.

Our first building block is the caterpillar graph GE,D, as illustrated on the top-left side
of Figure 4.1. It consists of 2n− 1 nodes and 2n− 2 edges. Nodes are grouped in two levels,
with labels Ei1 , . . . , Ein−1 and Di1 , . . . , Din . Similarly, our second graph, denoted by Gh,D

and depicted on the bottom-left side of Figure 4.1, consists of 2n nodes grouped in two levels
with labels hi1 , . . . , hin−1 and D0, Di1 , . . . , Din respectively, and 2n− 1 edges.

The third family of graphs consists of star trees and is denoted by {GFa,D}. These graphs
are parameterized by subsets of size at least two, obtained by intersecting an arithmetic
progression of integer numbers with the index set. They are illustrated in the rightmost
picture in Figure 4.1. We allow the common difference of these progressions to be 1, so the
set of all exponents {0, i1, . . . , in} is a valid subset. The size of each subset a ⊆ {0, i1, . . . , in}
associated to an arithmetic progression will coincide with the degree of the corresponding
node Fa in the abstract graph. Note that several arithmetic progressions can give the same
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subset of {0, i1, . . . , in}, and hence the same node Fa in the graph GFa,D. If a = {ij1 , . . . , ijk},
then the graph has k + 1 nodes and k edges: k nodes labeled Dij1

, . . . , Dijk
and a central

node Fa, connected to the other k nodes in the graph. As Example 4.2.3 reveals, only nodes
of degree at least three will be relevant for our constructions, so in principle we should only
consider subsets of size at least three. However, to simplify the statements in the chapter,
we will allow subsets of size two as well.

a = {ij1 , . . . , ijk}

Figure 4.1: The graphs GE,D, Gh,D and {GFa,D}a glue together to form the abstract tropical secant
surface graph.

We now realize the abstract tropical secant surface graph in Rn+1 by mapping each node
to an integer vector. Our chosen mapping has additional data, a weight for each edge in the
graph. Note that the assignment need not be injective, which explains the choice of the word
“realization” instead of “embedding.” We call this weighted graph the tropical secant surface
graph or master graph. We explain this construction in full detail below. For a numerical
example, see Figure 4.2.

Definition 4.2.1. The master graph is a weighted graph in Rn+1 parameterized by n distinct
coprime numbers {i1, . . . , in} with nodes:

(i) Dij = ej := (0, . . . , 0, 1, 0, . . . , 0) (0 ≤ j ≤ n),

(ii) Eij = (0, i1, . . . , ij−1, ij, . . . , ij) , hij = (−ij, . . . ,−ij,−ij+1, . . . ,−in) (1 ≤ j ≤ n−1),

(iii) Fa =
∑

ij∈a ej where a ⊆ {0, i1, . . . , in} has size at least two and is obtained by

intersecting an arithmetic progression of integers with the index set {0, i1, . . . , in}.

Its edges agree with the edges of the abstract tropical secant surface graph, and have weights:

(i) mDi0 ,hi1
= 1 , mDin ,Ein−1

= gcd(i1, . . . , in−1) , mDin ,hin−1
= in,
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(ii) mDij ,Eij
= gcd(i1, . . . , ij) , mDij ,hij

= gcd(ij, . . . , in) (1 ≤ j ≤ n− 1),

(iii) mEij ,Eij+1
=gcd(i1, . . . , ij) , mhij ,hij+1

=gcd(ij+1, . . . , in) (1 ≤ j ≤ n− 2),

(iv) mFa,Dij
=
∑

r ϕ(r), where we sum over the common differences r of all arithmetic
progressions containing ij and giving the same subset a. Here, ϕ denotes Euler’s phi
function.

Remark 4.2.2. As we mentioned earlier, if the subset a coming from an arithmetic progres-
sion has two elements say ij and ik, then Fa is a bivalent node and we may eliminate it from
the graph if desired, replacing its two adjacent edges by a single edge. Both edges Fij ,ikDij

and Fij ,ikDik will have the same multiplicity, so we assign this number as the multiplicity of
the new edge DijDik .

From Definition 4.2.1, it is immediate to check that the node Ei1 is always bivalent.
However, we will always keep it in our graph, since it will greatly simplify our constructions
in Section 4.4.

We illustrate the definition of the master graph with a numerical example. We should
warn the reader that, unlike the case of this example, master graphs in general may have
nodes Fa with 0 /∈ a. This will be completely determined by the combinatorics of the set
{i1, . . . , in}.

Example 4.2.3. We compute the master graph associated to the set {30, 45, 55, 78}. For
simplicity, we eliminate all nine bivalent nodes Fij ,ik from the graph, but we keep the bivalent
grey node Ei1 . The resulting weighted graph has 16 vertices and 36 edges and it is depicted in
Figure 4.2. There are five nodes of type Fa, namely F0,30,45,55,78 = (1, 1, 1, 1, 1), F0,30,45,78 =
(1, 1, 1, 0, 1), F0,30,45,55 = (1, 1, 1, 1, 0), F0,30,45 = (1, 1, 1, 0, 0) and F0,30,78 = (1, 1, 0, 0, 1).
They correspond to the five red unlabeled nodes in the picture. �

Before stating the main result of this section, we recall the definition of a balanced graph.

Definition 4.2.4. Let (G,m) ⊂ RN be a weighted graph where each node has integer
coordinates. Let w be a node in G and let {w1, . . . , wr} be the set of nodes adjacent to w.
Consider the primitive lattices Λw = R〈w〉∩ZN and Λw,wi = R〈w,wi〉∩ZN . Then Λw,wi/Λw

is a rank one lattice, and it admits a unique generator which lifts to an element in the cone
R≥0〈w,wi〉 ⊂ RN . Let uwi|w be one such lifting. We say that the node w is balanced if∑r

i=1mwi,wuwi|w ∈ R〈w〉. If all nodes of G are balanced, then the weighted graph (G,m)
satisfies the balancing condition.

Theorem 4.2.5. The master graph satisfies the balancing condition.
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Figure 4.2: The master graph associated to the curve (1 : t30 : t45 : t55 : t78).

Proof. We proceed by analyzing the balance at each node, following Definition 4.2.4. The
main difficulty will be to find the corresponding vector uwi|w for each edge wiw in the graph.
We define gij := gcd(i1, . . . , ij) and gij := gcd(ij, . . . , in). Note that these are the weights
mDij ,Eij

and mDij ,hij
of the master graph. To simplify notation, we set Ei0 = Ein = hi0 =

hin = 0, add edges Ei0Ei1 , Ein−1Ein , hi0hi1 and hin−1hin to our graph and assign weight zero
to these edges.

We start by checking the balance at all nodes Eij , for 1 ≤ j ≤ n−1. In this case, we know
that ΛEij

= Z〈Eij/gij〉 = Z〈(0, i1/gij , . . . , ij/gij , . . . , ij/gij)〉 and ΛEij ,Dij
= Z〈Eij/gij , ej〉.

So uDij |Eij = ej. Similarly, we have uDin |Ein−1
= en. On the other hand, ΛEij ,Eij+1

=

R〈Eij+1
/gij+1

, Eij/gij〉∩Zn+1. By definition, we need to extend the primitive vector Eij/gij to
a basis of ΛEij ,Eij+1

by adding a single vector with appropriate sign. In this case, uEij+1
|Eij =∑n

k=j+1 ek.
Next, we compute uEij−1

|Eij . Here Λ = Z〈Eij−1
/gij−1

, Eij/gij〉 is not a primitive lattice,

and we need to extend Eij/gij to a basis of its saturation ΛEij−1
,Eij

. Our first candidate vector

is (Eij − Eij−1
)/(ij − ij−1) = −

∑n
k=j−1 ek. However, since gij−1

need not equal gij , we need
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to slightly modify our choice. We propose v = (0, a i1/gij−1
, . . . , a ij−1/gij−1

,−b, . . . ,−b), for
a, b ∈ Z such that a ij + b gij−1

= gij . We can check that all nonzero 2 × 2-minors of the
matrix with rows Eij/gij and v are of the form: −b ik/gij − (ijik)/(gijgij−1

) = −ik/gj−1, for
j − 1 ≤ k ≤ n, so their gcd equals one. Therefore, Eij/gij and ±v generate a primitive
lattice, which contains Eij−1

by construction. To determine the correct choice of sign for ±v,
we write Eij−1

as a linear combination of Eij/gij and v, and we require the coefficient of v
to be positive. In this case,

Eij−1
= gij(1− a (ij − ij−1)/gij) · Eij/gij + gij−1

(ij − ij−1)/gij · v.

Thus, we conclude that uEij−1
|Eij = v for j − 1 ≤ k ≤ n. With these weights, it is straight-

forward to check that the graph is balanced at Eij .
Working with gij instead of gij , a similar procedure to the one we just described proves

that the graph is balanced at the nodes hij for all 1 ≤ j ≤ n − 1. Balance at the nodes Fa
follows by construction, so it remains to check the balance at the nodes Dij . In this case,
uEij |Dij = Eij/gij , uhij |Dij = hij/g

ij , uFa|Dij = Fa (ij ∈ a), and uEin−1
|Din = Ein−1 . The

balancing equation at Dij gives

∑
a3ij

(
∑
r

ϕ(r))Fa + Eij + hij =
n∑
k=0

( ∑
r | |ik−ij |

ϕ(r) − |ik − ij|
)
ek.

Since
∑

l|k,l>0 ϕ(l) = k, we conclude that the graph is also balanced at Dij .

Knowing that the master graph is balanced, we can ask ourselves if this graph is related
to the tropicalization of a surface in Cn+1. In what follow we show that, indeed, this is the
case. This explains the suggestive name of “tropical secant surface graph.”

Theorem 4.2.6. Fix a primitive strictly increasing sequence of n coprime positive integers
{i1, . . . , in}. Let Z be the surface in Cn+1 parameterized by (λ, ω) 7→ (1−λ, ωi1−λ, . . . , ωin−
λ). Then, the tropical surface T Z ⊂ Rn+1 coincides with the cone over the master graph
as weighted polyhedral fans, with the convention that we assign the weight i1 + mFe,Di1

to
the cone over the edge Di1Ei1 if the ending sequence e = {i1, . . . , in} gives a node Fe in the
master graph.

The proof of this statement involves techniques from geometric tropicalization and reso-
lution of singularities of plane curves. Beautiful combinatorics are involved in its proof, as
we show in Section 4.3.

Corollary 4.2.7. With the notation of Theorem 4.2.6, the weighted graph obtained by iden-
tifying the nodes Ei1 and Fe in the master graph, and by assigning weight i1 +mFe,Di1

to the
edge Di1Ei1, agrees with the one-dimensional simplicial complex T Z ∩ Sn.
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4.3 Combinatorics of monomial curves

In this section, we compute the tropical variety of the surface Z described in Theorem 4.2.6.
Let fij := ωij − λ (0 ≤ j ≤ n) and consider the parameterization f : C2 → Z given by these
n+1 polynomials. Since geometric tropicalization involves subvarieties of tori, we restrict the
domain of the function f to the open set X = C2 r

⋃n
j=0(fij = 0), which is the complement

of a binomial arrangement. We give a compactification of X which, in turn, gives the desired
compactification of Z ∩ Tn+1 with combinatorial normal crossing (CNC) boundary via the
map f . Recall that this CNC condition for surfaces means “no three irreducible (curve)
components of the boundary intersect at a point.” This compactification will be precisely
the tropical compactification of Z ∩ Tn+1 introduced in [94].

As we discussed in Section 1.3, most compactifications that one can construct for subvari-
eties of tori, such as the closure in suitable projective spaces, do not have the CNC boundary
property. One method for producing such a compactification is to take the closure Z ∩ Tn+1

of Z ∩Tn+1 in Pn and resolving the singularities of the boundary Z \ (Z ∩Tn+1) by blowing
up points on curves to fulfill the CNC condition. We will follow this approach to construct
the desired compactification. Along the way we will record intersection numbers among the
boundary divisors. These numbers will allow us to compute tropical multiplicities, as stated
in Theorems 5.2.4 and 1.3.3.

In the first part of this section, we explain in full detail the resolutions giving a com-
pactification of X. Even though, in principle, we need a full resolution of our surface, in
practice, this construction will give us several extra (exceptional) divisors that yield biva-
lent nodes in the intersection complex of the boundary of our surface. If we contract these
curves with negative self-intersection, we obtain a singular surface whose boundary divisor
has CNC. This weaker condition will suffice to construct our tropical surface. In the second
part, we justify this contraction procedure from the tropical perspective, by means of The-
orem 1.3.1. We end by computing the multiplicities of regular points in the tropical surface
using Theorem 1.3.3. This will conclude the proof of Theorem 4.2.6.

We start by constructing a tropical compactification of X. First, we naively compactify
X inside P2. The components of the boundary divisor of X are Dij = (fhij(ω, λ, u) = 0)

and D∞ = (u = 0), where fhij is the homogenization of fij with respect to the new variable
u. Figures 4.3 and 4.4 illustrate this process in the case of the binomial arrangement X
associated to the index set {0, 30, 45, 55, 78}, whose tropicalization was computed in Exam-
ple 4.2.3. In these pictures, the black dots indicate the intersection of three or more of the
corresponding binomial curves Dij or D∞, whereas grey dots indicates intersection of only
two boundary components.

The boundary of X in P2 encounters three types of singularities: the origin (0 : 0 : 1), the
point (0 : 1 : 0) at infinity, and isolated singularities in T2. We resolve them all by blow-ups.
After contracting appropriate exceptional curves, the resolutions diagrams from Figures 4.5
and 4.6 are precisely the graphs on the left side of Figure 4.1. The nodes Eij (1 ≤ j ≤ n−1)
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D∞ := (u = 0)

D∞

D∞ := (u = 0)

D∞

D0 := (u− λ = 0)

D0

D∞ := (u = 0)

D∞

D0 := (u− λ = 0)

D0

D30 := (ω30 − λ · u29 = 0)

D30

D∞ := (u = 0)

D∞

D0 := (u− λ = 0)

D0

D30 := (ω30 − λ · u29 = 0)

D30

D45 := (ω45 − λ · u44 = 0)

D45

D∞ := (u = 0)

D∞

D0 := (u− λ = 0)

D0

D30 := (ω30 − λ · u29 = 0)

D30

D45 := (ω45 − λ · u44 = 0)

D45

D55 := (ω55 − λ · u54 = 0)

D55

D78 := (ω78 − λ · u77 = 0)

D78

Figure 4.3: Compactification of Z in Pn, with exponents {0, 30, 45, 55, 78}.

and hij (2 ≤ j ≤ n − 1) correspond to exceptional divisors, whereas hi1 refers to the strict
transform of the divisor D∞. All intersection multiplicities involving divisors Eij or hij equal
one.

We now describe the resolution process at the origin, whose affine chart is illustrated
in the left of Figure 4.4. At this singular point, all n curves Di1 , . . . , Din intersect and
they are tangential to each other. For any j, after a single blow-up, and by the change
of coordinates λ = wλ′, we see that the strict transform of Dij is isomorphic to Dij−1 for
all 1 ≤ j ≤ n. This implies that we can resolve the singularity at the origin after in−1

blow-ups. Moreover, we may use the previous isomorphism to compute the pull-back of each
divisor Dij , one step at a time. For example, after the first blow-up, the proper transform
of Dij will equal π∗1(Dij) = D′ij + E1, where E1 = (w = 0) is the exceptional divisor and
D′ij is the strict transform of Dij . After a second blow-up, we get π∗2(E1) = E ′1 + E2, and
π∗2(D′ij) − E2 = D′′ij ' Dij−2, so (π1 ◦ π2)∗(Dij) = D′′ij + E ′1 + 2E2 with D′′ij ' Dij−2 and
E ′1 ·D′′ij = 0.

To simplify notation, we label all exceptional divisors by El and we denote by D′ij the
strict transform of Dij under the composition π of all blow-ups. Figure 4.5 illustrates the
resolution diagram. All exceptional divisors satisfy:

El · Ek =

{
1 if |l − k| = 1,

0 otherwise,

D′ij · El =

{
1 if l = ij,

0 otherwise.

Proceeding by induction, we conclude:

π∗(Dij) = D′ij +

ij∑
l=1

l · El +

in−1∑
l=ij+1

ij · El 1 ≤ j ≤ n. (4.1)
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D0 := (1− λ = 0)

D0

D0 := (1− λ = 0)

D0

D30 := (ω30 − λ = 0)

D30

D0 := (1− λ = 0)

D0

D30 := (ω30 − λ = 0)

D30

D45 := (ω45 − λ = 0)

D45

D0 := (1− λ = 0)

D0

D30 := (ω30 − λ = 0)

D30

D45 := (ω45 − λ = 0)

D45
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D∞ := (u = 0)

D∞

D30 := (ω30 − u29 = 0)

D30

D45 := (ω45 − u44 = 0)

D45

D55 := (ω55 − u54 = 0)
D55

D78 := (ω78 − u77 = 0)

D78 (0 : 1 : 0)

D∞ := (u = 0)

D∞

D30 := (ω30 − u29 = 0)

D30

D45 := (ω45 − u44 = 0)

D45

D55 := (ω55 − u54 = 0)
D55

D78 := (ω78 − u77 = 0)

D78 (0 : 1 : 0)

Figure 4.4: From top to bottom: (u = 1) and (λ = 1) affine charts describing the singularities of
the embedding of the surface Z from Theorem 4.2.6 in Pn, with exponents {0, 30, 45, 55, 78}.

By convention, the sum over an empty set equals 0.
If we eliminate the bivalent nodes El from Figure 4.5 by contracting the corresponding

curves with negative self-intersection, we obtain the graph GD,E depicted in the left side of
Figure 4.1, where, by abuse of notation, the strict transform of Dij is also denoted by Dij .
From (4.1), we see that the divisorial valuation for each exceptional divisor gives the integer
vector Eij described in Theorem 4.2.5.

At infinity, the resolution process is more delicate. Here, the singular point p = (0 : 1 : 0)
corresponds to the intersection of D∞ and all divisors Dij with ij ≥ 2. In this case, all
divisors Dij are singular at p, as the rightmost picture in Figure 4.4 illustrates. Hence, we
first need to perform a blow-up to smooth out these divisors. If π0 denotes this blow-up, we
obtain

π∗0(Dij) = D′ij + (ij − 1)H , π∗0(D∞) = D′∞ +H,

where H = (t = 0) is the exceptional divisor and D′ij = (ω − tij−1) ' Dij−1, D′∞ = (w = 0)
are the strict transforms of the corresponding prime divisors.
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Figure 4.5: Resolution by blow-ups at the origin, where Eij are exceptional divisors and D′ij are
strict transforms of the boundary prime divisors Dij .

Figure 4.6: Resolution by blow-ups at infinity. Here, s is the minimum index with is ≥ 2.

As the reader may have discovered already, the setting after applying π0 is very similar
to the one we described for the singularity at the origin, although there are some minor local
differences between them that are worth pointing out. Firstly, there is a singularity coming
from the the intersection of the divisors Dis−1, . . . , Din−1, where s is the minimum index
satisfying is ≥ 2. This singular point plays the role of the origin in the chart (u = 1). In
addition, there are two extra divisors D′∞ and H, passing through this point. These curves
had no counterpart at the origin in the chart (u = 1). Along the resolution, D′∞ will be
separated from the other divisors after a single blow-up, whereas the strict transform of H
will continue to be tangential to the strict transform of all divisors D′ij that it intersects.

The resolution diagram at infinity is shown in Figure 4.6. In that picture, all exceptional
divisors are denoted by hl (2 ≤ l ≤ in) and we label the strict transforms of D∞, Dij and H
by D′′∞, D′′ij and H ′ respectively. In this case, the pull-backs under the composition π of the
last in − 1 blow-ups give:

π∗(D′∞)= D′′∞ +
in∑
l=2

hl, π∗(H)= H ′ +
in∑
l=2

(l − 1) · hl,

π∗(D′ij)= D′′ij +

ij∑
l=2

(l − 1) · hl +
in∑

l=ij+1

(ij − 1) · hl (ij ≥ 2).
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Composing π with the initial blow-up π0 at the point (0 : 1 : 0), we get:
(π ◦ π0)∗(Dij) = D′′ij + (ij − 1)H ′ +

ij∑
l=2

ij(l − 1) · hl +
in∑

l=ij+1

(ij − 1)l · hl (ij ≥ 2),

(π ◦ π0)∗(D∞) = H ′ +D′′∞ +
in∑
l=2

l · hl.

All intersection numbers hl · hl+1, hij ·D′′ij , D
′′
∞ · h2 and hin ·H ′ equal one, whereas all other

pairs have intersection number zero. In addition, we know that D∞ intersects D0 at a point,
thus D′′∞ · D0 = 1. Finally, the divisor D∞ will also intersect Di1 at a point different from
(0 : 1 : 0), only if i1 = 1. Thus, D′′∞ ·D1 = 1 if i1 = 1. In all other cases, D′′∞ ·Di1 = 0.

We now explain the transition from the resolution diagram at infinity to the graph Gh,D,
depicted at the bottom-left of Figure 4.1. As we did when blowing up the origin, we only keep
the n − 1 exceptional divisors hij giving non-bivalent nodes in the resolution diagram. We
also contract the strict transform H ′ of the divisor H, since it has negative self-intersection
number.

The degree of the node D′′∞ in the intersection complex is determined by the value of
the index s. If i1 ≥ 2, then s = 1 and D′′∞ is a bivalent node adjacent to D0 and hi1 , so we
remove it from the resolution diagram. On the contrary, if i1 = 1, then s = 2 and D′′∞ has
degree 3: it is adjacent to the nodes D0, D1 and hi2 . The node hi1 in Gh,D corresponds to
the divisor D′′∞. In both cases, and after removing all bivalent nodes and the node associated
to the divisor H ′, we obtain the graph Gh,D.

We now study multiple intersections of divisors inside T2. If (ω, λ) satisfies fij = ωij−λ =
0 and fik = ωik − λ = 0, then ωij = λ = ωik , so ω is a primitive rth root of unity for some
r | (ik − ij). Equivalently, ij ≡ ik ≡ s (mod r), ω = e2πip/r and λ = ωs for p coprime to r.
All other curves (fil = 0) with il ≡ s (mod r) will also meet at (ω, λ). We represent this
crossing point by xp,r,s and the indices of curves meeting at xp,r,s by ar,s, or a for short. That
is,

xp,r,s = (e2πip/r, e2πips/r), a = ar,s := {ij | ij ≡ s (mod r)}.

Furthermore, the gradients of the curves meeting at the point xp,r,s are pairwise independent,
so the curves intersect transversally at xp,r,s.

If three or more curves meet at a point xp,r,s in T2, we blow up this point to separate the
curves. After a single blow-up, we obtain a new exceptional divisor Fa,xp,r,s which intersects
the strict transform of all Dij (ij ∈ a) with multiplicity one. The resolution diagram is
the graph GFa,D on the right-hand side of Figure 4.1, where we identify the node Fa with
the corresponding divisor Fa,xp,r,s . From these intersection numbers, we conclude that the
divisorial valuation of the exceptional divisor Fa,xp,r,s gives [Fa,xp,r,s ] =

∑
ij∈a ej for all inter-

section points xp,r,s coming from the same subset a. Thus, we get a single integer vector
Fa =

∑
ij∈a ej in the realization of the intersection complex, as desired. This explains the

notation chosen for the graph GFa,D in Figure 4.1, where we accounted only for the indices
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of divisors intersecting at a point, rather than recording the point itself. To simplify the
computation of multiplicities in the tropical variety T Z, we also blow up crossings with
|a| = 2. Such blow-ups will give bivalent nodes Fij ,ik that we can easily discard in the end.

Equipped with the smooth set obtained by resolving the multiple intersection points in
the boundary of X ⊂ P2, we can focus on the tropical side of the construction. From this
perspective, we explain why we can contract all divisors giving bivalent nodes and the strict
transform of the divisor H, leading to a (possibly singular) surface, whose boundary divisor
satisfies the CNC condition. This, in turn, will allow us to compute multiplicities at all
regular points of T Z.

First, we use the extended map f : P2 99K Tn+1 ⊂ Pn, together with the resolution
π : X̃ → X ⊂ P2, to push-forward the intersection complex of the boundary of X̃ to the
intersection complex of Zr (Z ∩Tn+1) for a suitable compactification Z. The extended map
f is defined as

f : X ⊂ P2 → Z ∩ Tn+1 f(ω, λ, u) =
(u− λ

u
,
ωi1 − λui1−1

ui1
, . . . ,

ωin − λuin−1

uin

)
,

that is, f(ω, λ, u) = (fhij(ω, λ, u)/udeg(fij ))ni=0. We compose f with the resolution π to get the
commutative diagram

X̃

π

��

f̃

$$JJJJJJJJJJ

X
f // Z ∩ Tn+1.

Next, we pull-back a basis of characters {χj : 0 ≤ j ≤ n} of Tn+1 under f̃ . We know that
the pullbacks of the characters under f are units on X and rational functions on the closure
of X in P2. More precisely, they will have zeros and poles only along the boundary ∂X. By
the universal property of the blow-up, the same holds for X̃ and the pullback under f̃ of the
characters of Tn+1. Therefore,

f̃∗(χ0) = π∗(f∗(χ0)) = π∗(Di0 −D∞) and f̃∗(χj) = π∗(Dij − ijD∞) for j ≥ 1.

For simplicity and to agree with the notation of the graphs in Figure 4.1, we denote strict
transforms of all divisors with the label of the corresponding original divisors. With this
convention, f̃∗(χj) equals

Dij +
ij∑
l=1

l·El +
in−1∑
l=ij+1

ij · El − D∞ −H −
ij∑
l=2

l·hl −
in∑

l=ij+1

l·hl +
∑
a3ij
xp,r,s

Fa,xp,r,s if ij < 2,

Dij +
ij∑
l=1

l· El +
in−1∑
l=ij+1

ij ·El − ij ·D∞ −H −
ij∑
l=2

ij ·hl −
in∑

l=ij+1

l·hl +
∑
a3ij
xp,r,s

Fa,xp,r,s else .
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The corresponding divisorial valuations will be read off from the columns of matrix of co-
efficients of (f̃ ∗(χj))

n
j=1 with respect to the divisors Dij , Eij , hij , H and Fa,xp,r,s . Using

Theorem 1.3.1, we get the following rays in the tropical variety T Z:

[Dij ] = ej , [H] = −1 , [Fa,xp,r,s ] =
∑
ij∈a

ej , [D∞] = −
∑
ij<2

ej −
∑
ij≥2

ij · ej ,

[El] =
∑
l≤ij

l · ej +
∑
l>ij

ij · ej (1 ≤ l ≤ in−1) ,

[hl] = −
∑
ij<l

l · ej −
∑
l≤ij

ij · ej (2 ≤ l ≤ in) .

(4.2)

We see that [hin ] = in[H], so the cone over the edge hinH in the realized intersection complex
is one dimensional. This explains why we do not see the divisor H in the graph Gh,D from
Figure 4.1. Likewise i1 · [Fi1,...,in ] = [Ei1 ] if gcd(in − i1, . . . , i2 − i1) 6= 1, so the cones over
the edges Fi1,...,inDin and Ei1Di1 agree. In this case, we can replace these two cones by a
single cone, adding the two weights. However, these are not the only identifications we can
perform to simplify our construction. The next result implies that we can eliminate the
bivalent nodes El, hl (l 6= ij) as well as the nodes hin and D′′∞ from this complex. Roughly
speaking, it says that bivalent nodes Eil or hil are contained in the two dimensional cone
spanned by the corresponding nodes Eij , Eij+1

or hijhij+1
with ij < l < ij+1, and similarly

for D′′∞. It also asserts that there are no overlaps between cones over the edges other than
the one we already mentioned. These two facts allow us to reduce our resolution graphs to
GE,D, Gh,D, and GFa,D, thus proving the set theoretic equality in Theorem 4.2.6.

Lemma 4.3.1. With the notation of (4.2) we have equalities

(i) R≥0〈[El], [El+1]〉
⋂

R≥0〈[El+1], [El+2]〉 = R≥0〈[El+1]〉 (ij ≤ l ≤ ij+1− 2, 0 < j < n− 1);

(ii) R≥0〈[Eij ], . . . , [Eij+1
]〉 = R≥0〈[Eij ], [Eij+1

]〉 (1 ≤ j ≤ n− 2);

(iii) R≥0〈[hl], [hl+1]〉
⋂

R≥0〈[hl+1], [hl+2]〉 = R≥0〈[hl+1]〉 (2 ≤ ij ≤ l ≤ ij+1 − 2, 0 < j < n);

(iv) R≥0〈[hij ], . . . , [hij+1
]〉 = R≥0〈[hij ], [hij+1

]〉 (1 ≤ j ≤ n− 1);

(v) [hin ] ∈ R≥0〈[hin−1 ], [Din ]〉.

(vi) R≥0〈[h2], . . . , [his ]〉 = R≥0〈[h2], [his ]〉 and R≥0〈[E1], . . . , [Ei1 ]〉 = R≥0〈[Ei1 ]〉.

(vii) If s = 1, then [D∞] = [hi1 ]. If s = 2, then R≥0〈[D∞], [hi1 ], . . . , [hi2 ]〉 = R≥0〈[hi1 ], [hi2 ]〉.

Moreover, among maximal cones over the master graph, there are no two-dimensional inter-
sections except when Fe is a node in the master graph where e = {i1, . . . , in}. In this case,
i1[Fe] = [Ei1 ] and R≥0〈[Fe], [Di1 ]〉 = R≥0〈[Ei1 ], [Di1 ]〉.
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Proof. We prove the identities involving the rays [El] (1 ≤ l ≤ in−1) in (i) and (ii). The
claims for [hl] in (ii) and (iii) can be proven analogously. Assume ij ≤ l ≤ ij+1 − 2. Then
[El+1] = [El] +

∑
k≥j+1 ek and [El+2] = [El] + 2

∑
k≥j+1 ek and the first identity follows by

simple linear algebra arguments.
To prove the second claim, it suffices to show that [El] ∈ R≥0〈[Eij ], [Eij+1

]〉 if ij < l < ij+1.

In fact, by linear algebra calculations, we obtain [El] =
ij+1−l
ij+1−ij · [Eij ] +

l−ij
ij+1−ij · [Eij+1

]. The

identities in (vi) are a direct consequence of the equalities [hl] = is−l
is−2

[h2] + l−2
is−2

[his ] for all

2 ≤ l ≤ is, and [El] = l
∑

j≥1 ej = l
i1

[Ei1 ].
To prove (vii) we consider all pairs of maximal cones and compute their intersection. We

get either the origin or the cone over a node in the master graph.

Next, we compute the weights of all edges in the T Z using Theorem 1.3.3. From the
resolution X̃, we know that the intersection number of any two boundary curves is zero or
one. Using Lemma 4.3.1, we see that they are no 2-dimensional overlaps, except for the
cones over the edges Di1Ei1 and Fi1,...,inDi1 . The degree of the map f equals one.

With the exception of the edge Di1Ei1 , the formula for computing weights on the edges
containing Dij , hij , Eij involves a single summand, namely the corresponding lattice index.
This number is the gcd of the 2×2-minors of a matrix whose rows are the two nodes of each
edge, and it agrees with weights assigned to the master graph.

To end, we obtain the multiplicity of the cones over the edges FaDij in T Z, with a 6=
{i1, . . . , in}. In this case, all summands in the formula equal one and so the multiplicity
equals the number of summands. Given a of size at least two and ij ∈ a, we need to
compute all possible common differences r of arithmetic sequences giving the set a. Their
number is

∑
r ϕ(r). Finally, if e = {i1, . . . , in} gives a node Fe in the master graph, the

divisors Ei1 and Fe map to proportional rays [Ei1 ] and [Fe]. The multiplicities of cones over
edges FeDij with j ≥ 2 equal

∑
r ϕ(r) for all common differences r generating the set e. The

formula to compute the weight of the edge FeDi1 has an extra summand: the one involving
the term Ei1Di1 . Hence, FeDi1 has weight mDi1 ,Ei1

+mFi1,...,in ,Di1
= i1 +

∑
r ϕ(r), as stated

in Theorem 4.2.6. This concludes our proof.

4.4 The master graph under Hadamard products

In this section, we use the master graph to construct a new weighted graph: the tropical secant
graph. This graph encodes with the tropicalization of the first secant variety of a monomial
projective curve C parameterized by (1 : ti1 : . . . : tin), where 0 = i0 ≤ i1 ≤ . . . ≤ in are
integers. We define the first secant variety of the curve C as

Sec1(C) = {a · p+ b · q : a, b ∈ C, p, q ∈ C} ⊂ Pn.

As discussed in Section 1.1.1, tropicalizations are toric in nature. Thus, for the rest of
this section, instead of looking at the projective varieties C and Sec1(C), we will study the
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corresponding very affine varieties obtained by intersecting their affine cones in Cn+1 with
the torus Tn+1. To simplify notation, we will also denote them by C and Sec1(C). The
tropicalizations of the projective varieties and their corresponding very affine varieties are
the same, but we will think of the projective one as living in TPn rather than in Rn+1,
reducing its dimension by one.

We parameterize this secant variety by the secant map

φ : T4 99K Tn+1, φ(a, b, s, t) = (asik + btik)0≤k≤n. (4.3)

After a monomial change of coordinates b = −λa and t = ωs, we rewrite φ as

φ(a, s, ω, λ) =
(
asik (ωik − λ)

)
0≤k≤n. (4.4)

Therefore, the secant variety is the Hadamard product of the affine cone over the corre-
sponding monomial curve C and the surface Z described in Theorem 4.2.6.

Proposition 4.4.1. Let C be the monomial curve (1 : ti1 : . . . : tin) and let Z be the
surface parameterized by (λ, ω) 7→ (1−λ, ωi1 −λ, . . . , ωin −λ). Then, the first secant variety
Sec1(C) ⊂ Tn+1 is the Hadamard product C � Z.

We tropicalize the previous proposition using Corollaries 3.3.6 and 3.3.7 to obtain:

Proposition 4.4.2. Given C,Z as in Proposition 4.4.1, then as sets

T Sec1(C) = T C + T Z,

where the sum on the right-hand side denotes the Minkowski sum in Rn+1. Moreover, since
dimSec1(C) = dimC + dimZ, we can effectively compute the multiplicities of regular points
in T Sec1(C) using formula (1).

Since the C is parameterized by monomials, its tropicalization T C equals the vector space
R⊗Z Λ with constant weight one, where Λ is the lattice Z〈(1, . . . , 1), (0, i1, . . . , in)〉 ⊂ Zn+1.
In addition, T Z is a pointed polyhedral fan, and the lineality space of T Sec1(C) is T C and
the associated spherical complex (T Sec1(C)/T C)∩ Sn−2 is a graph. As we will show in this
section this graph can be obtained by identifying nodes and edges in the master graph by
their residue class modulo T C. In the sequel, we explain this reduction process.

Before diving into the computation of T Sec1(C) for any monomial curve C, we show
that it suffices to treat the case where exponent vectors are primitive and have pairwise
distinct coordinates. Recall that these were our assumptions for Sections 4.2 and 4.3. This
will simplify the combinatorics and the computation of multiplicities. Here is the precise
statement:

Lemma 4.4.3. Via reparameterizations, we can assume that the exponent vector parame-
terizing the curve C is a primitive lattice vector (0, i1, . . . , in) with 0 = i0 < i1 < . . . < in.
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The first claim follows by reparameterizing the curve C as t 7→ (1 : t
i1
g : . . . : t

in
g ), where

g = gcd(i1, . . . , in). The second assertion is a direct consequence of Theorem 1.1.10:

Proof of Lemma 4.4.3. Let {0, i1, . . . , ir} be the distinct values in the exponent vector
defining the curve C in increasing order. We partition the set of indices {0, . . . , n} into
S0 t . . . t Sr, where each Sj consists of all indices with the same value ij. The monomial
map

α : Tr → Tn+1 (t1, . . . , tr) 7→ (1, . . . , 1︸ ︷︷ ︸
|S0| times

, t1, . . . , t1︸ ︷︷ ︸
|S1| times

, . . . , tr, . . . , tr︸ ︷︷ ︸
|Sr| times

)

is 1-1 and the linear map A induced by α is injective. Therefore,

T Sec1(α(C)) = T (α(Sec1(C))) = A(T Sec1(C)) , T (α(Z)) = A(T Z) , T (α(C)) = A(T C),

and any fan structure in T Sec1(C) and T Z translates immediately to a fan structure in
T Sec1(α(C)) and T α(Z) by the injectivity of A. Finally, using formula (1.4), we see that
multiplicities match up, i.e. mv = mα(v) for any regular points v, α(v). This concludes our
proof.

Our next goal is to explain the relationship between T Sec1(C) and the master graph
presented in Section 4.2. First, Proposition 4.4.2 expresses the tropical secant variety set-
theoretically as the Minkowski sum of T C and T Z. As we discussed in Section 1.2, we
cannot hope to obtain a canonical fan structure from this description. Nonetheless, we can
still use this characterization to describe T Sec1(C) not just as a set, but as a collection of
four-dimensional weighted cones {T C + σ} where σ varies over maximal cones of T Z whose
sum with T C has dimension four. This presentation allows us to compute the multiplicity of
any regular point ω in T Sec1(C) as the sum of weights of cones containing ω, in agreement
with the spirit of Theorem 5.2.4.

Intersections between cones in the collection T Sec1(C) come in several flavors. If the
intersection between two cones is four-dimensional, we call it an overlap. If these cones
coincide, we say the overlap is complete; otherwise, it is partial. If their intersection is three-
dimensional, we call it a crossing. If they intersect at a common face of each, we say that
the crossing is nodal ; otherwise, it is internal. We wish to summarize all complete overlaps
and nodal crossings in our collection of weighted edges. This data is recorded in the tropical
secant graph from Definition 4.4.4. For a numerical example, see Figure 4.7. Meanwhile,
partial overlaps and internal crossings will be considered in Theorems 4.4.12, 4.4.13 and 4.5.3
when discussing fan structures. As we hinted in Theorem 4.2.6, a special role is played by
the subsets e = {i1, . . . , in} and b = {0, i1, . . . , in−1}, the “beginning” and “ending” subsets.
We discuss this in Remark 4.4.5.

Definition 4.4.4. The tropical secant graph is a weighted subgraph of the master graph in
Rn+1, with nodes:
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(i) Dij = ej := (0, . . . , 0, 1, 0, . . . , 0) (0 ≤ j ≤ n),

(ii) Eij =
∑

k<j ik · ek + ij · (
∑

k≥j ek) = (0, i1, . . . , ij−1, ij, . . . , ij) (1 ≤ j ≤ n− 1),

(iii) Fa =
∑

ij∈a ej where a ( {0, i1, . . . , in} varies among all proper subsets containing at
least two elements that are obtained from an arithmetic progression.

The edges and their weights are:

(i) mEij ,Eij+1
= gcd(i1, . . . , ij) gcd

j<t<n
(in − it) (1 ≤ j ≤ n− 2),

(ii) mDij ,Eij
= gcd

(
gcd(i1, . . . , ij−1) gcd

j<l≤n
(il−ij) ; gcd

0≤k<j
(ij−ik) gcd(ij+1, . . . , in)

)
(1≤j≤n−1),

(iii) mFa,Dij
= 1

2

∑
r

ϕ(r) ·gcd
(

gcd
il,ik /∈a

(| il−ik |) ; gcd
il,ik∈ ar{ij}

(| il−ik |)
)

where a = {il | il ≡ ij

(mod r)}, r ∈ Z induces the subset a and 2 ≤ |a| ≤ n.

(By convention, a gcd over an empty set of indices is taken to be 0.)

Remark 4.4.5. We explain in words the transition from the master graph to the tropical
secant graph in reducing by T C. First, the edges DinEin−1 , Dinhin−1 and Di0hi1 are deleted.
Second, the node F0,i1,...,in and all its adjacent edges disappear. Third, the nodes hij collapse
to the corresponding nodes Eij for 1 ≤ j ≤ n − 1. Lastly, if Fe (resp. Fb) is a node in the
master graph, we identify it with Ei1 (resp. Ein−1) due to the equalities

i1 · Fe = Ei1 , (in − in−1) · Fb = Ein−1 + (in − in−1) · 1 + (−1) · (0, i1, . . . , in).

In this identification, the edges adjacent to the first node are added to those of the second.
We also merge the corresponding edges Ei1Di1 and FeDi1 (resp. Ein−1Din−1 and FbDin−1) in
the tropical secant graph, assigning the sum of their weights to the new edge.

As in the case of the master graph, if we have a subset a = {ij, ik} coming from an
arithmetic progression, then the corresponding node Fa is bivalent and can be removed from
the tropical secant graph. We then replace the two edges FaDij and FaDik of equal weight
with a single edge DijDik of the same weight. After the above deletion of edges and collapse
of nodes, some of the other nodes may also become bivalent, and we are allowed to remove
them as well. However, we will keep them in the statements and examples to simplify
notation.

The tropical secant graph characterizes the tropicalization of the first secant of any
monomial curve:

Theorem 4.4.6. Given a monomial curve C in Pn parameterized by n coprime integers, the
tropicalization of its first secant variety is the cone from T C over the tropical secant graph
of the curve.
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As a corollary we obtain a set theoretic description of T Sec1(C):

Corollary 4.4.7. The underlying graph of T Sec1(C) is obtained by gluing the graphs

a 6= {0, . . . , in}

along all nodes Dij , and gluing together the nodes Ei1 ≡ Fi1,...,in, Ein−1 ≡ F0,...,in−1.

The remainder of this section is devoted to proving Theorem 4.4.6, and in particular, to
explaining the mysterious formulas for the weights of the tropical secant graph. We obtain
these numbers using formula (1). The next propositions and lemmas characterize each one
of the quantities involved in (1).

Proposition 4.4.8. Let α : T2n+2 → Tn+1 be the Hadamard monomial map associated to
the matrix (In+1 | In+1) ∈ Z(n+1)×2(n+1) and C,Z as in Proposition 4.4.1. Then, the generic
fiber of α|C×Z has size 2, giving δ = 2 in formula (1).

Proof. Generically, by equation (4.4), the elements of the fiber of α at a point p are in
one-to-one correspondence with pairs of points in the curve C that are collinear with p. By
switching the role of these two points in the secant map, we know that the generic fiber
of α|C×Z has size at least two. Using Lemma 4.4.9 we conclude that it has exactly two
points.

Lemma 4.4.9. For almost all points p in the secant variety, p lies on a single one secant
line which, in addition, intersects the curve C at exactly two points.

Proof. We restrict the secant map φ to the open torus T3 mapping (a, s, t) 7→ (asik + (1 −
a)tik)0≤k≤n. We claim that it suffices to prove the lemma for points in the image of φ, when
n = 4 and the exponents are coprime.

Assume the statement is true for n = 4 and coprime exponents, and consider all maps φj
obtained by composing the map φ with the projections πj onto the five coordinates 0, 1, 2, 3, j
(4 ≤ j ≤ n). Let dj = gcd(i1, i2, i3, ij) and reparameterize φj using the identities x := sdj

and y := tdj , that is, define φ̃j : T3 → Cn+1 as

φ̃j(a, x, y) := (1, ax
i1
dj + (1− a)y

i1
dj , ax

i2
dj + (1− a)y

i2
dj , ax

i3
dj + (1− a)y

i3
dj , ax

ij
dj + (1− a)y

ij
dj ).

Since the exponents of φ̃j are coprime and the lemma holds for n = 4 by assumption, we
know that the fiber of a point φ̃j(a, x, y) contains only two points, namely the points (a, x, y)
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and (1 − a, y, x). Therefore, any two points (a, s, t) and (a′, s′, t′) in the fiber of φ (up
to symmetry) will satisfy a = a′, (s′)dj = sdj and (t′)dj = tdj for all 4 ≤ j ≤ n. Since
gcd(d4, . . . , dn) = 1 we conclude s = s′ and t = t′.

We now treat the case where n = 4 and the exponents are coprime. To prove our result,
it suffices to show that the Zariski closure of the set of points in Sec1(C) r C which are
intersections of two distinct secant lines of C has dimension at most two. We parameterize
these points by tuples (s, t, u, v) of distinct complex numbers, corresponding to four coplanar,
non-collinear points in C. It suffices to show that the set W of such tuples has dimension at
most two.

The variety W is cut out by all 3×3-minors of the 3×4-matrix with rows (tij−sij)1≤j≤4,
(uij − sij)1≤j≤4 and (vij − sij)1≤j≤4. Note that for all minors to vanish, it is enough to show
that two of them do. We pick the ones corresponding to columns {1, 2, 3} and {1, 2, 4}.
These minors are precisely the determinants of the 4× 4 generalized Vandermonde matrices

Mi1,i2,i3 :=


1 si1 si2 si3

1 ti1 ti2 ti3

1 ui1 ui2 ui3

1 vi1 vi2 vi3

 , Mi1,i2,i4 :=


1 si1 si2 si4

1 ti1 ti2 ti4

1 ui1 ui2 ui4

1 vi1 vi2 vi4

 .

Because s, t, u and v are all distinct, we can divide the determinant of these two matrices by
the product of pairwise differences among our four variables, that is, by the Vandermonde
determinant V (s, t, u, v). The resulting polynomials are the Schur polynomials Si1,i2,i3 and
Si1,i2,i4 ∈ Z[s, t, u, v].

Let g = gcd(i1, i2, i3) and h = gcd(i1, i2, i4). Note that gcd(g, h) = 1. By [29, Theorem
3.1] we can factorize the previous Schur polynomials over Z[s, t, u, v] as

Si1,i2,i3 = V (sg, tg, ug, vg)/V (s, t, u, v) · Ti1,i2,i3(s, t, u, v),

Si1,i2,i4 = V (sh, th, uh, vh)/V (s, t, u, v) · Ti1,i2,i4(s, t, u, v),

where Ti1,i2,i3 and Ti1,i2,i4 are either constants or irreducible over C[s, t, u, v]. These two
polynomials are homogeneous of total degree g(i3/g + i2/g + i1/g − 3) and h(i4/h+ i2/h+
i1/h − 3), and of degree i3 − 2g and i4 − 2h in each variable s, t, u and v. By comparing
their multidegrees, we conclude that the polynomials Ti1,i2,i3 and Ti1,i2,i4 are coprime. Next,
we claim that the polynomials V (sg, tg, ug, vg)/V (s, t, u, v) and V (sh, th, uh, vh)/V (s, t, u, v)
are coprime. This follows from the well-known identity (xg − yg) =

∏
ζg=1(x− ζy).

From the previous two observations, we see that if Si1,i2,i3 and Si1,i2,i4 have a common
factor, then either Ti1,i2,i3 and V (sh, th, uh, vh)/V (s, t, u, v) or the polynomials Ti1,i2,i4 and
V (sg, tg, ug, vg)/V (s, t, u, v) would have a common factor over C[s, t, u, v]. Without loss of
generality, assume the first pair of polynomials is not coprime. By irreducibility of Ti1,i2,i3 and
the factorization of V (sh, th, uh, vh) into linear factors involving only two of the variables, this
forces Ti1,i2,i3 to be linear and to involve only two variables, contradicting the degree formulas
provided above. Hence, we conclude that Si1,i2,i3 and Si1,i2,i4 are coprime. In particular, this
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says that the hypersurfaces in C4 defined by Si1,i2,i3 and Si1,i2,i4 in have distinct reduced
irreducible components of dimension 3. Therefore, dimW ≤ 2 and this ends our proof.

Next, we compute all cones of the form T C + R≥0⊗σ of dimension at most three, where
σ runs over edges of the master graph T Z. We discard these cones from the T Sec1(C).
In addition, we consider all possible pairs σ, σ′ of such maximal cones in T Z to find all
intersections (T C + R≥0 ⊗ σ) ∩ (T C + R≥0 ⊗ σ′) which are complete overlaps or nodal
crossings. By an elementary exhaustive case by case analysis, we conclude:

Lemma 4.4.10. After reducing the master graph by the linear space T C, the only non-
maximal cones, complete overlaps and nodal crossings are as follows.

(i) The cones T C+R≥0〈D0, hi1〉, T C+R≥0〈Din , Ein−1〉, T C+R≥0〈Din , hin−1〉 and T C+
R≥0〈F0,i1,...,in , Dij〉 (0 ≤ j ≤ n) are not maximal, so we disregard them.

(ii) The node F{0,i1,...,in} = 1 ∈ T C, so we eliminate it from the graph, together with all its
n+ 1 adjacent edges.

(iii) For all 1 ≤ j ≤ n−2, we have equalities T C+R≥0〈Eij , Dij〉 = T C+R≥0〈hij , Dij〉 and
T C+ R≥0〈Eij , Eij+1

〉 = T C+ R≥0〈hij , hij+1
〉 because Eij ≡ hij modulo T C. Hence, we

disregard all nodes hij and their adjacent edges.

(iv) i1 · Fe = Ei1 and (in − in−1) · Fb ≡ Ein−1 modulo T C, where e = {i1, . . . , in} and b =
{0, i1, . . . , in−1}. Thus, the maximal cones T C + R≥0〈Fe, Di1〉 and T C + R≥0〈Ei1 , Di1〉
coincide, as well as T C + R≥0〈Fb, Din−1〉 and T C + R≥0〈Ein−1 , Din−1〉.

Proof of Theorem 4.4.6. Proposition 4.4.2 and Lemma 4.4.10 prove that the cone from
T C over the tropical secant graph coincides with the tropical variety T Sec1(C) as a collec-
tion of four-dimensional weighted cones. In particular, this shows that the tropical secant
graph combines all nodes and edges coming from nodal crossings and complete overlaps. By
formula (1.4), the multiplicity at a regular point ω of T Sec1(C) is the sum of all weights of
four-dimensional cones T C + σ containing ω, where σ is a maximal two-dimensional cone of
T Z. Furthermore, if mσ is the weight of σ in T Z, the formula assigns to T C +σ the weight

1

2
·mσ · index((Lσ + T C) ∩ Zn+1, (Lσ ∩ Zn) + (T C ∩ Zn+1)), (4.5)

by Proposition 4.4.8.
We now prove that this number yields the weight of the corresponding edge in the tropical

secant graph, after combining weights in complete overlaps following Remark 4.4.5. Suppose
the cone σ is generated by integer vectors x,y ∈ Zn+1. Let l1 = 1 and l2 = (0, i1, . . . , in)
be the generators of the primitive lattice Λ in T C ∩ Zn+1. The lattice index in the above
formula is the gcd of all 4× 4-minors of the matrix (x | y | l1 | l2) divided by the gcd of all
2× 2-minors of the matrix (x | y). These gcd’s are computed as the product of the nonzero
diagonal elements of the Smith normal form of each matrix.
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As an example, we show how to obtain the multiplicity mDij ,Eij
(2 ≤ j ≤ n − 2). The

remaining multiplicities can be computed analogously. The edge DijEij is associated to
precisely two edges in the master graph giving two four-dimensional cones in T Sec1(C) that
overlap completely. These two edges are σ = DijEij and σ′ = Dijhij . From Definition 2.1,
the multiplicity mσ equals gcd(i1, . . . , ij), which is also the gcd of the 2 × 2-minors of the
matrix (Dij |Eij). Likewise, mσ′ = gcd(ij, . . . , in) is the gcd of the 2× 2-minors of (Dij |hij).
These numbers are precisely the denominators in the formulas for computing the indices
associated to σ and σ′ in (4.5). since Eij ≡ hij mod Λ, we conclude

mDij ,Eij
=

1

2

(
gcd(4× 4-minors of (Dij |Eij |l1|l2)) + gcd(4× 4-minors of (Dij |hij |l1|l2))

)
= gcd(4× 4-minors of (Dij |Eij |l1|l2)).

We now compute the gcd of all 4× 4-minors of the matrix (Dij |Eij |l1|l2). For simplicity,
we work with the transpose of this matrix. By elementary operations between rows that do
not change the minors, we alter the second, third and fourth rows, and expand the minors
along the first row, reducing our problem to computing the 3× 3-minors of the matrix 0 i1 . . . ij−1 ij . . . ij

1 1 . . . 1 1 . . . 1
0 0 . . . 0 ij+1 − ij . . . in − ij

 ∈ Z3×n,

where i0 = 0. All non-vanishing 3 × 3-minors must involve columns from the two con-
stituent blocks. The gcd of the minors involving two columns of the left-hand side is
gcd(i1, . . . , ij−1) gcdj<l≤n(il− ij), whereas the gcd of the minors involving two columns of the
rightmost block equals the product gcd(i1, . . . , ij) gcdj<l<n(in− il). This justifies the formula
for mDij ,Eij

appearing in Definition 4.4.4.

We now study partial overlaps and internal crossings among cones from T C over edges of
the tropical secant graph. An exhaustive case by case analysis shows that if n ≥ 5, there are
no partial overlaps, and that if n ≥ 6, there are no internal crossings either. When n = 4,
Lemma 4.5.2 and Theorem 4.5.3 in the next section indicate that both partial overlaps and
internal crossings are possible.

Partial overlaps and internal crossings prevent us from inferring a fan structure for
T Sec1(C) from the tropical secant graph. However, we may introduce new nodes at cross-
ings, subdivide edges while preserving their weights or merge overlapping edges and their
weights to create a new graph. If this surgery is performed appropriately, the new graph
encodes the fan structure of our tropical variety as a subfan of the Gröbner fan of the
homogeneous ideal defining the secant variety. This motivates the following definition:

Definition 4.4.11. A Gröbner tropical secant graph for a projective monomial curve C
parameterized by n coprime distinct integers is a weighted graph in Rn+1 whose cone from
T C gives the Gröbner weighted fan structure on T Sec1(C).
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Unsurprisingly, the complexity of the surgery required to transform the tropical secant
graph into a Gröbner tropical secant graph depends on the value of n. We present the results
for n > 4 and leave the case n = 4 for the next section.

Theorem 4.4.12. The tropical secant graph of a monomial curve in Pn is a Gröbner tropical
secant graph for n ≥ 6.

Proof. The proof of this result is elementary and it boils down to analyzing intersections
between cones from T C over pairs of edges in the tropical secant graph. If n ≥ 6, we do not
get any partial overlaps or internal crossings.

Theorem 4.4.13. For a monomial curve in P5, a Gröbner tropical secant graph may be
constructed from the tropical secant graph by adding finitely many nodes and subdividing
edges accordingly. More precisely, we need to add nodes Pa,j,a′,k ∈ (T C + 〈Fa, Dij〉)

⋂
(T C +

〈Fa′ , Dik〉) where Fa, Fa′ are nodes in the master graph, and a, j, a′, k together with the index
set {i1, . . . , i5} satisfy one of the following three conditions:

(i) j = 5, k = 0, i4+i1 = i2+i3 and the subsets a, a′ are either a = {i3, i4, i5}, a′ = {0, i1, i3}
or a = {i2, i4, i5}, a′ = {0, i1, i2}.

(ii) a = {ij, ir, ik, iu}, a′ = {iu, ik, it}, il /∈ a ∪ a′, ir + it = il + iu and either j > r > l >
t, r > u > t and u > k, or j < r < l < t, r < u < t and u < k.

(iii) a = {ij, iu, ik, ir}, a′ = {ij, iu, ik, it}, il /∈ a ∪ a′ and ir + it = il + iu, while j > u >
k, r > l > t and r > u > t.

For each new node Pa,j,a′,k, we subdivide the edges FaDij and Fa′Dik of the tropical secant
graph to get edges FaPa,j,a′,k, Pa,j,a′,kDij , and Fa′Pa,j,a′,k, Pa,j,a′,kDik , preserving the original
weights.

Proof. The proof is tedious, yet elementary. As before, we consider all intersections between
cones from T C over edges of the tropical secant graph. While there are no partial overlaps,
we have three types of internal crossings. We write down the intersection point for each case:

(i) Suppose |a| = |a′| = 3, say a = {ij, ir, iu}, a′ = {iu, ik, it}. Let il /∈ a ∪ a′. Assume the
cones over the edges FaDij and Fa′Dik intersect and j > k. Then, j = 5, r = 4, t =
1, k = 0, u = 2 or 3, i4 + i1 = i2 + i3 and

(ir − il) · Fa + (ij − ir) ·Dij = (ir − iu) · Fa′ + (it − ik) ·Dik + (−il)u · 1 + (0, i1, . . . , i5).

(ii) Suppose |a| = 4, |a′| = 3, say a = {ij, ir, ik, iu}, a′ = {ik, iu, it}. Let il /∈ a ∪ a′ and
assume the cones over FaDij and Fa′Dik intersect. Then, ir + it = il + iu and

(ir − il) · Fa + (ij − ir) ·Dij = (il − it) · Fa′ + (iu − ik) ·Dik + (−il) · 1 + (0, i1, . . . , i5).
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In this case, all coefficients (except for −il and 1) have the same sign, which can be
negative. If the latter occurs, we multiply the previous identity by −1, obtaining the
internal crossing of the two cones. This expression gives us up to ten extra points,
determined by the inequalities j > r > l > t, r > u > t and u > k, or j < r < l <
t, r < u < t and u < k.

(iii) Suppose |a| = |a′| = 4, say a = {ij, iu, ik, ir}, a′ = {ij, iu, ik, it}, and assume j > k. Let
il /∈ a ∪ a′. If the cones over FaDij and Fa′Dik intersect, then ir + it = il + iu and

(ir − il) · Fa + (ij − iu) ·Dij = (il − it) · Fa′ + (iu − ik) ·Dik + (−il) · 1 + (0, i1, . . . , i5).

By requiring all mandatory coefficients to be positive, we obtain j > u > k, r > l > t
and r > u > t. This gives twelve possibilities for such internal crossings.

4.5 The Newton polytope of the secant hypersurface

in P4

In this section, we focus our attention on monomial curves in P4. In this situation, the first
secant variety becomes a hypersurface and we wish to obtain its definition homogeneous
equation from the tropical secant graph. As we saw in Sections 1.4 and 3.4, a first step
towards a complete solution would be to compute the Newton polytope of the defining equa-
tion f . In the same section, we described methods for performing such a task, based on
two algorithms: ray-shooting (Algorithm 3.1) and walking (Algorithm 3.2). We illustrate
these tropical implicitization techniques with an example appearing in the literature [82].
In addition, we construct the Gröbner tropical secant graph as promised in Section 4.4.
As we already discussed, although a fan structure for the tropical secant graph is unnec-
essary for constructing the Newton polytope, knowing this structure would give important
combinatorial data such as its f -vector.

Example 4.5.1. The first secant variety of the monomial curve t 7→ (1 : t30 : t45 : t55 : t78)
in P4 is known to be a hypersurface of degree 1820 [82, Example 3.3]. We use geometric
tropicalization to compute the tropicalization of this variety. Using this data as input for the
ray-shooting and walking algorithms, we calculate the Newton polytope of this hypersurface.

By Theorem 4.4.6, we encode the tropical hypersurface T Sec1(C) ⊂ R5 by the 3-
dimensional graph depicted in the left of Figure 4.7. The eleven nodes in the graph have
coordinates D0 = e0, D30 = e1, D45 = e2, D55 = e3, D78 = e4, E30 = (0, 30, 30, 30, 30),
E45 = (0, 30, 45, 45, 45), F0,30,45,55 ≡ E55 = (0, 30, 45, 55, 55), F0,30,45 = (1, 1, 1, 0, 0), F0,30,78 =
(1, 1, 0, 0, 1), and F0,30,45,78 = (1, 1, 1, 0, 1). The unlabeled red nodes in the picture indicate
nodes of type Fa, where the subset a consists of the indices of nodes Dij adjacent to it.
Note that, in this example, the nodes E55 and F0,30,45,55 are identified modulo the lineality
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Figure 4.7: The tropical secant graph and the Gröbner tropical secant graph of the monomial curve
(1 : t30 : t45 : t55 : t78) in P4.

space, as predicted by Definition 4.4.4. In particular, the edges E55D55 and F0,30,45,55D55

of the master graph coincide in the tropical secant graph and the old weights add up to
375 = 345 + 30, as Figure 4.7 shows. After removing the bivalent gray node E30, we have a
graph with 10 nodes and 23 edges.

Finally, we apply the ray-shooting and walking algorithms to recover the Newton polytope
of its defining equation. From our computation, we see that its multidegree with respect to
the lattice Λ = Z〈1, (0, 30, 45, 55, 78)〉 is (1 820, 76 950), recovering the degree value from [82].
The polytope has 24 vertices and f -vector (24, 38, 16). The difference between the number
of facets of the polytope and the number of nodes in the tropical secant graph shows that
this graph does not reflect the Gröbner fan structure of the tropical variety. In particular,
we are missing six vertices which correspond to internal crossings of the graph. In the right
of Figure 4.7, we indicate these six missing vertices with green nodes. After adding them to
the picture we obtain the Gröbner tropical secant graph of the curve C, which is a planar
graph in S2 with 16 nodes and 38 edges. Each edge emanating from a new green node cor-
responding to an internal crossing will inherit the weight of the original edge in the tropical
secant graph. The complement of this graph has 24 connected components, which matches
the number of vertices of our polytope. Using LaTTe, we see that the polytope contains
7 566 849 lattice points, which gives an upper bound for the number of monomials in its
defining equation. �
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We conclude the section by building the Gröbner tropical secant graph of any monomial
curve in P4. From our previous example, we already know that the tropical secant graph
can be non-planar. We provide a theorem that indicates which internal crossings need to
be added to make it planar. However, these are not the only possible intersections: we can
have partial overlaps between edges. Luckily, there are only three types of partial overlaps.
We describe them in the next lemma, which follows notation from Definition 4.4.4:

Lemma 4.5.2. The only partial overlaps among cones in the tropical secant graph of a
monomial curve in P4 are:

(i) Fi1,i2,i3Di2 and Di2Ei2, where (i4 − i2)i1 = (i4 − i3)i2. In this case, Ei2 lies in the
interior of the edge Fi1,i2,i3Di2, and so we replace the edge Fi1,i2,i3Di2 in the tropical
secant graph by the two edges Fi1,i2,i3Ei2 (with weight mFi1,i2,i3Di2

), and Di2Ei2 (with
new weight mDi2Ei2

+mFi1,i2,i3Di2
).

(ii) FaDi0 and Fa′Di0, where a = {0, il, it} and a′ = {0, iu, it}, l > t > u. Furthermore,
if m denotes the remaining index, then im + it = il + iu and l > m > u. Hence,
Fa ∈ Fa′Di0, and we replace the edge Fa′Di0 by the edges Fa′Fa (with weight mFa′Di0

),

and FaDi0 (endowed with the new weight mFaDi0
+mFa′Di0

).

(iii) FaDij and Fa′Dij , where a = {0, ij, it} and a′ = {ij, it, iu}. Furthermore, if m is
denotes the remaining index, then iu = it + im. Assume t < j. Then, Fa ∈ Fa′Dij . We
replace the edge Fa′Dij by the edges Fa′Fa (with weight mFa′Dij

), and FaDij (changing

its weight to mFaDij
+ mFa′Dij

). On the contrary, if j < t, then Fa′ ∈ FaDij , and we

replace the edge FaDij by the edges Fa′Fa (with weight mFaDij
) and Fa′Dij (with the

new weight mFaDij
+mFa′Dij

).

Proof. Let l2 = (0, i1, i2, i3, i4). For any µ ≥ 0, each intersection point can be written as:

(i)
i2(i4 − i3)

i4
· Fa + (

i2(i3 − i2)

i4
+ µ) ·Di2 = Ei2 + µ ·Di2 +

−i2
i4
· l2,

(ii) (il − im) · Fa + µ ·Di0 = (im − iu) · Fa′ + (it + µ) ·Di0 + (−im) · 1 + l2,

(iii) im · Fa + (it + µ) ·Dij = it · Fa′ + (ij + µ) ·Dij + im · 1− l2.

From the previous lemma, we get a modification of the tropical secant graph possibly with
internal crossings but without partial overlaps. Finally, using this new graph, we construct
the Gröbner tropical secant graph as indicated by the following theorem, which we illustrate
in Example 4.5.4:
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Theorem 4.5.3. The Gröbner tropical secant graph for the monomial curve (1 : ti1 : ti2 :
ti3 : ti4) in P4 may be obtained by adding finitely many internal crossings to the tropical
secant graph (after modifications using Lemma 4.5.2). These internal crossing come in two
types. The first one consists of points Pa,j,a′,k ∈ (T C+ R≥0〈Fa, Dij〉)

⋂
(T C+ R≥0〈Fa′,Dik〉),

where:

(i) a = {ij, it}, a′ = {ij, it, il, ik}, where either j > t > s > k and u > s or j < t < l < k
and u < l;

(ii) a = {ij, it}, a′ = {ij, il, ik}, where either t > u > l > k, j > l and ij + iu ≥ il + it or
t < u < l < k, j < s and ij + iu ≤ il + it;

(iii) a = {ij, it}, a′ = {it, il, ik}, where either u > l > k, j > t > l and ij + il ≥ iu + it or
u < l < k, j < t < l and ij + il ≤ iu + it;

(iv) a = {it, ij, iu, ik}, a′ = {ij, iu, ik}, where either j > u > k, t > u > k and t > l or
j < u < k, t < u < k and t < l;

(v) a = {ij, iu, ik}, a′ = {iu, it, ik}, where either j > s > t, j > u > k, u > t and ij + it ≥
iu + il or j < l < t, j < u < k, u < t and ij + it ≤ iu + il;

(vi) a = {iu, ij, ik}, a′ = {ij, ik, it}, where u > l > t, j > t, u > k, j > k, il + ij ≥ iu + it ≥
il + ik;

(vii) a = {ij, iu, ik}, a′ = {ik, it}, where either j > u > l > t, u > k and iu + it ≥ il + ik or
j < u < l < t, u < k and iu + it ≤ il + ik;

(viii) a = {ij, il, iu, ik}, a′ = {iu, it, ik}, where either j > l > u > k and u > t or j < l < u <
k and u < t;

(ix) a = {il, ij, iu, ik}, a′ = {ij, iu, it, ik}, where s > u > t and j > u > k;

(x) a = {i4, i3, i2}, a′ = {i2, i1, 0}, j = 4 and k = 0;

(xi) a = {i4, i3}, a′ = {i1, i0}, j = 4 and k = 0.

The second class satisfies Pj,a,k ∈ (T C + R≥0〈Eij , Eij+1〉)
⋂

(T C + R≥0〈Fa, Dik〉), where:

(i) a = {i1, i2, i3}, j = k = 2 and i1(i4 − i2) ≥ i2(i4 − i3);

(ii) a = {i1, i2, i4}, j = k = 2 and i3(i2 − i1) ≥ i2(i4 − i1);

(iii) a = {i1, i2, i3}, j = 1, k = 2 and i4(i2 − i1) ≥ i2(i3 − i1);

(iv) a = {i0, i2, i3}, j = 1, k = 2 and i3(i2 − i1) ≥ i2(i4 − i1).
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Proof. The proof is very similar to the one we outlined for Theorem 4.4.13, so we only give
the linear combination expressing each intersection point described in the statement. As
usual, we let l2 = (0, i1, i2, i3, i4) ∈ Λ ⊂ Z5. The internal crossings of the first type are listed
below:

(i) For simplicity, assume j > t > l > k and u > l (if not, we multiply the expression by
−1 to obtain the intersection point):

(it − il) · Fij ,it + (ij − it) ·Dij = (iu − il) · Fij ,it,il,ik + (il − ik) ·Dik − iu · 1 + l2.

(ii) Assume ij + iu ≥ il + it. The intersection point is:

(it − iu) · Fit,ij + (ij + iu − il − it) ·Dij = (iu − il) · Fij ,il,ik + (il − ik) ·Dik − iu · 1 + l2.

Note that if ij + iu = il + it, the intersection point is Fij ,it .

(iii) Assume ij + il ≥ iu + it. The intersection point is:

(it − il) · Fit,ij + (ij + il − iu − it) ·Dij = (iu − il) · Fit,il,ik + (il − ik) ·Dik − iu · 1 + l2.

Again, if ij + iu = il + it, the intersection point is Fij ,it .

(iv) Assume u > k. The intersection point is:

(it − il) · Fit,ij ,iu,ik + (ij − iu) ·Dij = (it − iu) · Fij ,iu,ik + (iu − ik) ·Dik − il · 1 + l2.

(v) Assume ij + it ≥ iu + il. The intersection point is:

(iu− it) ·Fij ,iu,ik + (ij + it− iu− il) ·Dij = (il− it) ·Fiu,it,ik + (iu− ik) ·Dik − il · 1 + l2.

If ij + it = iu + il, the intersection point is Fij ,iu,ik .

(vi) By symmetry, we can assume j > k. The intersection point is:

(ir−il) ·Fir,ij ,ik +(il+ij−ir−it) ·Dij = (il−it) ·Fij ,ik,it +(ir+it−il−ik) ·Dik−il ·1+l2.

At most one of the equalities il + ij = ii + it, ir + it = il + ik holds, and in this case,
Fa or Fa′ is the intersection point.

(vii) Assume ir + it ≥ il + ik. The intersection point is:

(ir − il) · Fir,ij ,ik + (ij − ir) ·Dij = (il − it) · Fik,it + (ir + it − il − ik) ·Dik − il · 1 + l2.

If ir + it = il + ik, the intersection point is Fik,it .
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(viii) Assume u > t. The intersection point is:

(iu− it) ·Fij ,il,iu,ik +(ij− il) ·Dij = (il− iu) ·Fiu,it,ik +(iu− ik) ·Dik +(iu− it− il) ·1+ l2.

(ix) The intersection point is:

(iu−it) ·Fij ,il,iu,ik +(ij−iu) ·Dij = (il−iu) ·Fij ,iu,it,ik +(iu−ik) ·Dik +(iu−it−il) ·1+ l2.

(x) The intersection point is:

(i2 − i1) · Fi4,i3,i2 + (i4 − i3) ·Di4 = (i3 − i2) · Fi2,i1,0 + i1 ·D0 + (i2 − i3 − i1) · 1 + l2.

(xi) The intersection point is:

(i3 − i2) · Fi4,i3 + (i4 − i3) ·Di4 = (i2 − i1) · Fi1,i0 + i1 ·Di0 − i2 · 1 + l2.

We list the internal crossings of the second type:

(i) The intersection point is:

i3 − i1
i3 − i2

· Ei2 +
i1(i4 − i2)− i2(i4 − i3)

(i4 − i3)(i3 − i2)
· Ei3 = i1 · Fi1,i2,i3 + (i2 − i1) ·Di2 +

i1
i4 − i3

· l2.

The positivity of the coefficient of Ei3 gives the inequality constraint in the statement.
Note that if i1(i4 − i2) = i2(i4 − i3) then the crossing point is Ei2 , which is already a
node in the graph, but in this case it lies in the interior of the edge Fi1,i2,i3Di2 .

(ii) The internal crossing is:

i3
i3 − i2

· Ei2 +
i3(i2 − i1)− i2(i4 − i1)

(i4 − i3)(i3 − i2)
· Ei3 = i1 · Fi1,i2,i4 + i2 ·Di2 −

i1
i4 − i3

· l2,

with the positivity constraint for the coefficient of Ei3 . If i3(i2 − i1) = i2(i4 − i1) the
crossing point is Ei2 and it lies in the interior of the edge Fi1,i2,i4Di2 .

(iii) The intersection point is:

i4(i2 − i1)− i2(i3 − i1)

i1(i2 − i1)
· Ei1 +

i3 − i1
i2 − i1

· Ei2 = (i4 − i3) · Fi1,i2,i3 + (i3 − i2) ·Di2 + l2,

with the positivity constraint for the coefficient of Ei1 . If i4(i2 − i1) = i2(i3 − i1) the
crossing point is Ei2 and it lies in the interior of the edge Fi1,i2,i3Di2 .
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(iv) The intersection point is:

i3(i2 − i1)− i2(i4 − i1)

i1(i2 − i1)
·Ei1+

i4 − i1
i2 − i1

·Ei2 = (i4−i3)·Fi0,i2,i3+(i3−i2)·Di2−(i4−i3)·1+l2,

with positivity constraint for the coefficient of Ei1 . If i3(i2−i1) = i2(i4−i1) the crossing
point is Ei2 and it lies in the interior of the edge Fi0,i2,i3Di2 .

Example 4.5.4 (Example 4.5.1, revisited). As we saw, there are no new overlaps of
edges in the tropical secant graph of the curve (1 : t30 : t45 : t55 : t78), so Lemma 4.5.2
does not apply to this example. Using Theorem 4.5.3, we can explain the six new green
nodes we added to build the Gröbner tropical secant graph (Figure 4.7). They come from
the six internal crossings of the first type between the edges FaDij and Fa′Dik , where: a =
{55, 78}, j = 78, a′ = {0, 30, 78}, k = 0 (case (ii)); a = {55, 78}, j = 78, a′ = {0, 30}, k = 0
(case (xi)); a = {45, 78}, j = 78, a′ = {0, 30, 45, 78}, k = 0 (case (i)); a = {0, 30, 45, 78}, j =
45, a′ = {0, 30, 45}, k = 0 (case (iv)); a = {45, 78}, j = 78, a′ = {0, 30, 45}, k = 0 (case (iii));
and a = {45, 55}, j = 55, a′ = {0, 30, 45, 55}, k = 0 (case (i)). �

4.6 Chow polytopes, tropical secants of lines, toric ar-

rangements and beyond

The implicitization methods discussed in the previous section can be generalized to mono-
mial curves in higher dimensional projective spaces, where the first secant no longer has
codimension one. In this case, one can recover the Chow polytope of the secant variety by a
generalization of the ray-shooting algorithm, known as the orthant-shooting algorithm [24,
Theorem 2.2]. Instead of shooting rays, we shoot orthants (i.e. cones spanned by subsets of
the canonical basis of Rn+1) of dimension equal to n − 3 (the codimension of our variety).
A similar formula to the one described in Theorem 1.4.1 gives us the vertex of the Chow
polytope associated to any input objective vector. However, it is not as easy to given an
analog to the walking algorithm. The difficulty comes from the fact that, a priori, there is no
canonical way of walking along the complement of the tropical variety. Recently, Alex Fink
has developed a method to reduce the computation of the Chow polytope to the codimension
one setting, based on the orthant shooting algorithm [38, 37]. His approach allows us to use
the techniques discussed for the secant hypersurface case [38]. Thanks to his results, existing
software from [18] presented in Chapter 3 can be used in higher codimensions, for example,
for rational normal curves in Pn.

Before giving a numerical example, we explain the method presented in [38] for computing
Chow polytopes. We define a map, called the Chow map ch, taking a tropical variety T X
of dimension d in TPn to its tropical Chow hypersurface, ch(T X) = T X � Ln−d−1

refl [38,



102

Definition 5.2]. The set ch(T X) will be precisely the tropicalization of a hypersurface in Pn
whose Newton polytope equals the desired Chow polytope of X [38, Theorem 5.1]. Thus,
we can use the machinery of Sections 1.4 and 3.4 to find this polytope.

We now describe the tropical hypersurface ch(T X) as the union of weighted (n − 1)-
dimensional cones in TPn. First, we pick all weighted maximal d-dimensional cones (σ,mσ)
in T X ⊂ TPn, and all n − d − 1 cones CJ generated by subsets of n − d − 1 vectors
among {−e0,−e1, . . . ,−en}, i.e. the negative of the elements in the canonical basis of Rn+1.
The subscript J indicates the indices of the vectors chosen from this basis. For simplicity,
assume that each cone σ is simplicial and it is spanned by integer vectors {vσ1 , . . . , vσd} in
TPn. Secondly, we take Minkowski sum of σ and CJ for every possible pair, and we check if
the cone σ + CJ in TPn has codimension 1. If so, this means that the matrix

A :=
(
vσ1 . . . vσd −ej1 . . . −ejn−d−1

)
,

is full dimensional, for J = {j1, . . . , jn−d−1}. We assign to the new cone σ + CJ the weight

mσ+CJ := mσ · gcd(maximal (n− d− 1)× (n− d− 1)–minors of A). (4.6)

If the matrix A is not of full rank, we discard the cone σ + CJ from the list of valid com-
binations and we move on to the next pair. The set ch(T X) will be the union of the valid
combinations, with weights given by formula (4.6).

Example 4.6.1. The canonical example of a monomial curve in Pn is the rational normal
curve t 7→ (1 : t : t2 : . . . : tn). These curves and their secants have been extensively
studied in the past. They are known to be determinantal varieties ([46, Proposition 9.7],[9,
Proposition 2.2]) defined by the 3× 3-minors of the j × (n− j + 2) Hankel matrix:

xj :=


x1 x2 x3 . . . xn−j+2

x2 x3 . . . . . . . . .
x3 . . . . . . . . . . . .
...

...
...

...
...

xj xj+1 . . . xn xn+1

 .

The ideal generated by the 3 × 3-minors of this matrix is independent of the index j [13,
Corollary 2.2] and it is a set-theoretic complete intersection [96] of degree

(
n−1

2

)
[13].

Using Theorem 4.4.6, we compute the tropical secant graph of the rational normal curve
in Pn. It has n + 1 nodes Dj = ej (0 ≤ j ≤ n), n − 3 nodes Ej = (0, 1, 2, . . . , j, . . . , j)
(2 ≤ j ≤ n− 2) and (bn/2c+ 1)(bn/2c− 2)/2 nodes Fa, where a is the subset {s+ k · r : k ∈
N} ∩ {0, . . . , n}, with 0 ≤ s < r and 1 < r < bn/2c. In addition, it has one or two nodes Fa
where r = bn/2c and s = 0 (for n even), or s = 0, 1 (for n odd).

The graph has 2n − 5 edges labeled EjEj+1, (2 ≤ j ≤ n − 3), EjDj (2 ≤ j ≤ n − 2),
D1E2, En−2Dn−1, with weight one. It also has edges Far,sDj (j ∈ ar,s), with weight ϕ(r)/2
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Figure 4.8: The Gröbner tropical secant graphs of the rational normal curves in P4 and P6.

if r > 2, or weight 1 if r = 2. In addition, it has dn/2e(n + 3 + bn/2c)/2 edges DjDj+r

with 0 ≤ j < n − r and r > bn/2c with weight ϕ(r)/2, and bn/2c − 2 edges DjDj+bn/2c
(2 ≤ j ≤ bn/2c) with weight ϕ(bn/2c)/2. Finally, if n is even, the edge D1D1+n/2 has weight
ϕ(n/2)/2 if n > 2 and weight 1 if n = 2.

We illustrate the previous construction in the case n = 4. After removing the bivalent
node D2 = e2, we are left with a graph with six nodes D0 = e0, D1 = e1, D3 = e3, D4 = e4,
E2 = (0, 1, 2, 2, 2) and F0,2,4 = (1, 0, 1, 0, 1) and nine edges, all with trivial weight 1. This
graph is the 1-skeleton of a bipyramid (Figure 4.8).

Using ray-shooting and walking algorithms, we see that the equation has multidegree
(3, 6) with respect to the lattice Λ = Z〈1, (0, 1, 2, 3, 4)〉 and its Newton polytope has vertices
(0, 0, 3, 0, 0), (0, 1, 1, 1, 0), (1, 0, 0, 2, 0), (0, 2, 0, 0, 1), (1, 0, 1, 0, 1), and f -vector (5, 9, 6). This
graph is precisely the tropical discriminant of the Veronese surface, regarded as the projec-
tivization of the variety of all symmetric 3 × 3 matrices of rank at most one [24, Example
4.4]. Its defining equation is a dehomogeneization of the Hankel 3× 3-determinant.

The case n = 6 was computed in [6, Example 20]. Its defining ideal is generated by the
3 × 3-minors of the 4 × 4-Hankel matrix. After changing the signs of the rays obtained by
Gfan (to agree with our min convention) and reducing modulo the lattice Λ, we see that
our construction (Figure 4.8) matches theirs for all rays except for the ones corresponding
to three bivalent node E1, E5 and one that is absent in our graph (nodes 2, 3 and 15 in the
notation of [6]). We follow our convention from Example 4.5.1 and keep the red nodes Fa
unlabeled. All weights in our graph equal 1, except for two edges with weight 2 (indicated
in Figure 4.8). From this computation, we confirm that the Gröbner tropical secant graph
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coincides with the tropical secant graph.
We now use the method developed in [38] for computing the Chow polytope of the secant

variety of the rational normal curve in P6. In this case, the polytope has 289 vertices and
f -vector (289, 897, 981, 442, 71). All vertices have multi homogeneity (30, 90), which matches
the formula deg ch(X) = codimX · degX from [38, Lemma 3.4], since 30 = 3 ·

(
5
2

)
.

Changing the grading to reflect the torus action by the exponent vector (0, 1, 2, . . . , n)
rather than the action by the all-ones vector, will give us the weighted projective space
Pn(0,1,2,...,n) as the ambient space, rather that the usual Pn. This new setting will result in the

formula deg′ ch(Sec1(C)) = (n− 3) · deg′ Sec1(C) connecting the degree deg′ of ch(Sec1(C))
with respect to this exponent vector to the codimension and the degree of the secant variety
of C inside this new toric variety. We believe the exact same formula holds in this new
setting. �

We now switch gears to study the set of all tropical lines between points in the tropical-
ization of a monomial projective curve. We aim to highlight the differences between this set
and the tropicalization of the first secant variety of the same curve. By definition, a tropical
line segment between two points in the tropical curve T C is the loci of all points obtained as
the coordinatewise minima (i.e. tropical addition) of two fixed points in the classical plane
spanned by the lattice Λ = 〈1, (0, i1, . . . , in)〉. We interpret this as the line spanned by the
vector (0, i1, . . . , in) in TPn. The set of all tropical lines between points in T C is often de-
noted by S1(T C) and it is called the first tropical secant variety of the line T C ⊂ TPn. Since
S1(T C) is the image of the tropicalization of the secant map φ from (4.3), we know it is
contained in the tropicalization of the image of φ, hence S1(T C) is contained in T Sec1(C).
These two tropical sets have been compared and their rich combinatorial structures studied
by many, including Develin and Draisma [22, 25]. In particular, by [22, Corollary 2.2], we
know that S1(T C) is a cone from T C over a polytopal complex, called the first tropical
secant complex of T C.

Each point in S1(T C) ⊂ Rn+1 may be though of as a height vector for a configuration of
points {0, i1, . . . , in} on R which induces a regular subdivision of the convex hull defined by
these n + 1 points. The faces of this polytopal complex correspond to regular subdivisions
such that two facets cover all n + 1 points. These faces are ordered by refinements of
the subdivisions. Since by assumption, our exponent vector has distinct coordinates, the
classical line T C is generic in the sense of Develin, and [22, Theorem 3.1] gives a very nice
characterization of this complex. It is precisely the set of lower faces of the cyclic polytope
C(2, n−1), defined as the convex hull of n−1 generic points in the parabola {y = x2} ⊂ R2.
It is immediate to check that this complex is a chain graph with n − 1 vertices. Figure 4.9
illustrates this construction for a generic classical line in TP4.

Proposition 4.6.2. The first tropical secant complex of the tropicalization of the monomial
curve (1 : ti1 : . . . : tin) Pn with 0 < i1 < . . . < in is a chain graph in Rn−1 with n−1 vertices



105

Figure 4.9: The first tropical secant complex of the line R〈(0, i1, i2, i3, i4)〉 in TP4.

v(1), . . . , v(n−1):

v(k) =
∑
j≤k

ij ej +
∑
k<j<n

ik
in − ik

(in − ij) ej k = 1, . . . , n− 1.

Moreover, v(k) corresponds to the regular subdivision of the configuration {0, i1, . . . , in}
with exactly two facets {0, i1, . . . , ik} and {ik, . . . , in}. It is embedded as a height vector,
where the points 0 and in have height zero, the point ik has height ik and the remaining
points lie in the interior of the two facets.

Example 4.6.3. We describe the first secant complex of the curve (1 : t30 : t45 : t55 : t78), as
shown in Figure 4.9. It consists of three nodes v(1) = (0, 30, 165

8
, 115

8
, 0), v(2) = (0, 30, 45, 345

11
, 0)

and v(3) = (0, 30, 45, 55, 0) and two edges v(1)v(2) and v(2)v(3). By taking the cone from
the linear space T C over this complex, we get the first tropical secant variety of the line
R〈(0, 30, 45, 55, 78)〉. �

We now describe S1(T C) as a subgraph of the tropical secant graph, and we show the
containment of S1(T C) in T Sec1(C) for a monomial curve C is strict in the generic case.

Proposition 4.6.4. In the notation of Definition 4.4.4, the first tropical secant complex of
the tropicalization of the monomial curve (1 : ti1 : . . . : tin) is the chain subgraph of the
tropical secant graph with nodes Ei1 , . . . , Ein−1.

Proof. In the notation of Proposition 4.6.2, v(k) and Eik generate the same ray in R ⊗ Λ
because

v(k) =
−ik
in − ik

· (0, i1, . . . , in) +
in

in − ik
· Eik for k = 1, . . . , n− 1.

The result follows immediately.
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We finish this section by discussing briefly the relationship between our tropical secant
surface graph and compactifications of toric arrangements. As we saw in Section 4.3, the
process of geometric tropicalization of surfaces gives a recipe for finding a suitable com-
pactification (a tropical compactification) of a parametric surface inside the torus Tn+1, or,
equivalently, of the complement of n+1 divisors in the torus T2. In our setting, these divisors
were the n+1 binomial curves {wij −λ = 0} (0 ≤ j ≤ n). It is well-known that this toric ar-
rangement can be compactified by a wonderful model in the sense of De Concini-Procesi [19].
Recently, L. Moci [71] has given an explicit compactification for binomial arrangements and,
at first glance, his techniques are very similar to the ones we discussed in Section 4.3. We
hope to make this connection more explicit in the near future.
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Chapter 5

Implicitization of surfaces via
geometric tropicalization

In this chapter we describe tropical methods for implicitization of surfaces in three-space.
We construct the corresponding tropical surfaces via the theory of geometric tropicalization,
which we enrich with a formula for computing tropical multiplicities of regular points. This
formula was used in Chapter 4 for obtaining a tropical surface in Tn parameterized by
binomials.

5.1 Introduction

In this chapter we further develop on the techniques described in Chapter 4 for calculat-
ing tropical surfaces given a polynomial parameterization of rational surfaces in Tn. Such
methods are known as tropical elimination and tropical implicitization and have been used
recently for computations going beyond the power of classical elimination tools, including
multidimensional resultants and Gröbner bases. Successful applications of tropical elimina-
tion techniques were presented in Chapters 3 and 4.

The foundations of tropical elimination theory were laid in the work of Sturmfels, Tevelev
and Yu [91, 92], including the software implementation TrIm for tropical implicitization [93].
However, their techniques apply only for generic varieties, that is surfaces parameterized by
Laurent polynomials which are generic relative to their support. The main goal of this
chapter is to make this genericity condition precise and to introduce tropical implicitiza-
tion methods for non-generic varieties. Even though these techniques were outlined in [91,
Section 5], they rely on resolution of singularities, known to be hard to use in practice. More-
over, the question of computing tropical multiplicities in the non-generic case was not treated
in [91]. These numbers are essential for recovering information about algebraic varieties from
their tropical counterparts. Our main contribution to the theory is an explicit combinatorial
formula for computing tropical multiplicities from the geometry of algebraic varieties (The-
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orem 5.2.4 and Corollary 5.2.5), complementing the set-theoretic results of Hacking, Keel
and Tevelev [45, §10]. The surface case is further discussed in Proposition 5.2.10.

In Section 5.2 we describe the basics on tropical elimination and tropical implicitization
theory and show how to derive tropical implicitization methods from geometric tropicaliza-
tion. Particular attention is devoted to the foundational paper on due to Hacking, Keel and
Tevelev [45] and on ways of weakening the required hypothesis to apply their techniques in
practical calculations.

As mentioned in Section 1.3, the crux of geometric tropicalization is to read off the
tropicalization of an algebraic variety directly from the combinatorics of its boundary in
a tropical compactification. To do so, this boundary is required to have “simple normal
crossings,” that is, to behave locally like an arrangement of coordinate hyperplanes. These
ideal conditions rarely hold in concrete examples. Thus, we need to overcome this difficulty
by resolving these “bad crossings” and singularities with other tools, such as blow-ups. This
is not an easy task. Nonetheless, as examples suggest and [91, Proposition 5.3] confirms, the
full power of resolution of singularities is not required to obtain a set-theoretic description
of tropicalized surfaces. More precisely, by looking at things from the tropical side, the
right condition is a boundary with “combinatorial normal crossings:” k irreducible divisors
intersect in codimension k (Conjecture 5.2.8). Proposition 5.2.10 addresses this question,
which was previously stated in [91, Proposition 5.3] and [94, Theorem 1.2].

In Section 5.3 we focur our attention on tropical implicitization of generic surfaces param-
eterized by polynomial maps. First, we use the given map to embed our rational surface in a
smooth projective toric variety. The genericity condition is chosen to certify the correctness
of the method as well as to simplify the construction of the smooth ambient toric variety
and compute tropical multiplicities via mixed volumes. Our approach allows to weaken this
genericity condition and still be able to compute tropical multiplicities from the input map.
As a byproduct, in Theorem 5.3.1 we show that the smoothness condition on the ambient
space is unnecessary to obtain the tropical surface as a weighted graph. We call this graph
the tropical surface graph of the rational surface. We illustrate our approach with several
numerical examples of surfaces in C3. These examples will be revisited in Section 5.4 to
highlight the differences between generic and non-generic surfaces.

In Section 5.4 we discuss on tropical implicitization of non-generic surfaces. We start
by clarifying what we mean by special surfaces. Then, we describe a general procedure to
obtain the tropical surface graphs of special surfaces. Singularities coming from excessive
intersections are the main obstruction to apply the methods of Section 5.3 in the special
case. To fix this bad behavior, there are several ways to proceed. The first approach is to
embed our algebraic object in a smooth ambient projective variety, as in the generic case,
and then modify the latter by blow-ups of points on curves. Unfortunately, these singular
points need not be torus invariant, so toric blow-ups cannot be used to resolve them. For
this reason, we will not follow this approach in practice.

Inspired by Chapter 4, we translate our task to the one of finding a tropical compact-
ification of an arrangement of n plane curves in T2. This arrangement coincides with the
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preimage of the torus Tn under the given polynomial parameterization. We compactify this
open subset of T2 inside P2 and then resolve the singular points in its boundary, by ordinary
blow-ups. By applying geometric tropicalization methods to this compact set we obtain an
abstract weighted graph which reflects the combinatorics of the tropical surfaces we wish
to compute. Our given parameterization allows us to realize this abstract graph in Rn by
assigning coordinates to all of its nodes. The resulting graph is precisely the tropical surface
graph of our rational surface.

We end this chapter with some remarks and open questions, discussed in Section 5.5.
As our our running examples illustrate, rational surfaces in T3 serve as a nice test case to
explore tropical implicitization techniques. In this setting, these methods require to analyze
the combinatorics of the intersection points of three curves in T2, and the local behavior of
each curve at these points. Using this data we discuss methods to classify tropical surface
graphs in three-space, and to extend the theory to fields with non-trivial valuation. This
leads us to Berkovich spaces. Even though the theory of tropical implicitization is at an
early stage and it is still evolving, we expect Theorem 5.2.4 to become a valuable tool for
future applications.

5.2 Tropical elimination and tropical implicitization

In this section we discuss tropical elimination and implicitization theory from the perspec-
tive of geometric tropicalization. Particular attention is devoted to the surface case, which
is treated in more detail in subsequent sections. The exposition is based on [45], [91, Section
5] and [92]. Our main result in this section is a formula for computing tropical multiplicities,
complementing the set-theoretic description of tropical varieties using geometric tropicaliza-
tion (Theorem 5.2.4). This formula was announced without proof in [17]. It was used in
Chapter 4 to compute the tropical secant surface graph of a monomial projective curve with
arbitrary set of exponents.

Notation 5.2.1. Given a variety X ⊂ Tr and a projective toric variety P(Σ) with torus Tr

associated to a fan Σ, we denote by X(Σ) the closure of X in P(Σ) as in (1.8).

Classical elimination is the art of computing the defining ideal of the projection α of
a variety in Tr to a coordinate subspace Tn. Here, we assume that α is a monomial map
associated to a matrix A ∈ Zn×r as in Section 1.1.1:

X

%%KKKKKKKKKK� _

��
Tr α // α(X) ⊂ Tn.

(5.1)

By definition, the ideal I(α(X)) is the inverse image of the ideal I(X) under the monomial
map α∗ : C[y±1

1 , . . . , y±1
n ]→ C[x±1

1 , . . . , x±1
r ] where yi 7→

∏r
j=1 x

aij
j for all i = 1, . . . , n.
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As we discussed in Section 1.1.1, we can tropicalize the diagram (5.1) and use the func-
toriality of tropicalization on monomial maps and subvarieties of tori to obtain a diagram
for tropical elimination:

T X

))SSSSSSSSSSSSSSS� _

��
Rr A // T (α(X)) = A(T X) ⊂ Rn.

For simplicity, assume that α|X has finite generic fibers of size δ. Under this condition,
Theorem 1.1.10 gives a way of computing multiplicities on T (α(X)) from the multiplicities
on T X, the degree δ and the fibers of A, known as the push-forward formula for multiplicities.

Classical implicitization is the art of transforming a polynomial parametric representation
of a rational algebraic variety into its implicit representation as the zero set of finitely many
polynomials. It is a special instance of elimination, where our variety is the graph of a
parameterization given by n Laurent polynomials f = (f1, . . . , fn) : X ⊂ Td → Tn, i.e.

X ′ := Graph(f) := {(x, f(x)) : x ∈ X} ⊂ Td+n, (5.2)

and the monomial map α is the projection to the last n coordinates of Td+n (the image
coordinates):

Td ⊇ X
f //

� _

(id,f)

��

f(X)� _

id

��

⊂ Tn

Td+n ⊇ X ′
α // Tn.

(5.3)

Tropical implicitization will aim to compute the tropical variety T f(X) from the geometry
of X and the map f . Our main tool is the theory of geometric tropicalization due to Hacking,
Keel and Tevelev, which we introduced in Section 1.3. In what follows, we explain how to
compute T f(X) from T X and the projection α. For simplicity, we assume that X is a dense
open set in Td and that f is a generically finite polynomial map on X of degree δ. Similar
results will hold for finite rational maps.

From now on, we fix Y = f(X) ⊂ Tn. The variety X ′ ⊂ Td+n from (5.2) is a complete
intersection defined by the ideal

I = (y1 − f1(x), . . . , yn − fn(x)) ⊂ C[x±1
1 , . . . , x±1

d , y±1
1 , . . . , y±1

n ]

and it is isomorphic to X ⊂ Td. Following Theorem 1.1.10, the tropical variety T Y equals
the image of T X ′ under the linear projection (0 | Id) ⊂ Zd×(d+n) and its multiplicities
can be obtained using the push-forward formula (1.4) of Sturmfels and Tevelev. Thus,
tropical implicitization reduces to the task of computing T X ′, which we do by geometric
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tropicalization. Since X ⊂ Td and X ′ ⊂ Tn+d are isomorphic and the construction of their
tropicalization is independent of the auxiliary tropical compactification, we can choose to
compactify X or X ′ to build the abstract simplicial complex that encodes the tropical variety.
The realization of the boundary intersection complex of the compactification in either Rd or
Rn+d will reflect our choice. The next result justifies our strategy:

Theorem 5.2.2 ([91, Corollary 2.9]). Let X ⊂ Td be a dense open subset and f : X → Tn

a generically finite Laurent polynomial map. Let Y be the Zariski closure of the image of
f . Let X ⊂ X be a smooth tropical compactification whose boundary D = D1 ∪ . . . ∪ Dk

has simple normal crossings. Let ∆X,D be the intersection complex of the boundary D and
consider the commutative diagram (5.3). For each component Dk of D, define

[D̃k] := valDk(χ ◦ f) = (valDk(χ1 ◦ f), . . . , valDk(χn ◦ f)) ∈ Zn.

For each cell σ ∈ ∆X,D define its realization in Rn as the semigroup [σ̃] spanned by {[D̃k] :
k ∈ σ}. Then, the tropical variety T Y equals the set

T Y =
⋃

σ∈∆top

X,D

R≥0[σ̃],

where the superscript top indicates that we only consider top-dimensional cells.

Remark 5.2.3. It is in this sense that the simplicial boundary intersection complex of X
is “push-forward” via the map f : X → Y to give a simplicial complex associated to Y
(Section 1.3). The key fact in the proof of this result is that f induces a map on function
fields f# : C(Y ) ↪→ C(X). Since the field C(X) is a finite extension of C(Y ) of degree δ, we
can always extend any discrete valuation on C(Y ) to a discrete valuation on C(X) via the
map f#. Likewise, valuations on C(X) can be restricted to C(Y ). The realization of each
node Dk by the lattice point [D̃k] corresponds to the image of the realization of Dk in Rn+d

under the linear map associated to the monomial map α from (5.3). This highlights the deep
connections between tropical implicitization and homomorphisms of tori.

Before continuing our discussion on tropical implicitization, we provide a combinatorial
formula for computing multiplicities from the geometric perspective, complementing the
set-theoretic result of geometric tropicalization due to Hacking, Keel and Tevelev. In the
complete intersection case, our theorem is equivalent to [91, Theorem 4.6]. The lattice index
factor in our formula accounts for the change in the lattice structure from Zd to R[σ] ∩ Zd.

Theorem 5.2.4. Let X be a compactification of an s-dimensional variety X ⊂ Td whose
boundary has simple normal crossings. In the notation of Theorem 1.3.1, the multiplicity of
a regular point w in the tropical variety T X equals

mw =
∑

σ∈∆top

X,D

w∈R≥0[σ]

(Dk1 · . . . ·Dks) index
(
R[σ] ∩ Zd,Z[σ]

)
, (5.4)
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where Dk1 · . . . ·Dks denotes the intersection number of these s divisors and we sum over all
(s− 1)-dimensional cells σ in ∆X,D whose associated rational cone R≥0[σ] contains w.

Proof. Since our question is local, it suffices to show the result holds for the choice of a
compactification whose underlying boundary intersection complex gives a rational polyhedral
fan in Rd rather than just a collection of cones that support a fan. In this setting, each regular
point of T X will come from a single top-dimensional cell σ from ∆X,D. By the additivity
of tropical multiplicities, the result for general choices of tropical compactifications will be
obtained by adding the multiplicity associated to the realization of each cell in the complex.

We fix a tropical fan F of Rd and the corresponding tropical compactification X. Follow-
ing the notation of Sections 1.1.1 and 1.1.2, we let Z ⊂ P(F) be the torus orbit of a maximal
cone Σ := R≥0[σ] ⊂ F , for σ ∈ ∆top

X,D
. Then, X(F)∩Z is a zero-dimensional scheme, whose

length equals the tropical multiplicity of the cone Σ. Moreover, by [91, Lemma 3.2], we know
that this multiplicity equals mΣ = deg([Z] · [X(F)]), where the intersection product of cycles
is taken in P(F). Since Gröbner degenerations are flat, we have

[X(F)] · [Z] = [inw(X(F))] · [Z]

for any vector w in the relative interior of Σ. By [94, Lemma 2.2] we know that regular
points of T X lie in the orbit closure of X in P(F). If we restrict X to the orbit of the cone Σ
in P(F) and the underlying torus TΣ, the same is true for X ∩TΣ and the toric variety P(Σ).
The boundary components of the closure of X ∩ TΣ correspond to the s divisors Dk with
k ∈ σ. Thus, X ∩ TΣ is a zero-dimensional scheme inside the s-dimensional torus TΣ hence
a complete intersection. By [91, Theorem 4.6] we get X ∩TΣ = ∩k∈σDk, i.e. the intersection
number of these divisors inside TΣ.

From the previous discussion we know that the multiplicity of the point w in T (X ∩TΣ)
equals Dk1 · . . . ·Dks . We wish to view this point in T X.

The inclusion Σ ⊂ F gives a monomial inclusion TΣ ↪→ Tn ⊂ P(F) to the open torus of
the smooth toric variety P(F). Using the push-forward formula (1.4) of tropical multiplicities,
the multiplicity of w in T X equals the intersection number Dk1 · . . . ·Dks times the index of
the lattice Z[σ] in its saturation, for σ = {k1, . . . , ks}. This concludes our proof.

Combining this result with Theorems 5.2.2 and 1.1.10 we obtain a formula for multiplic-
ities of T Y .

Corollary 5.2.5. With the notation of Theorem 5.2.2, the multiplicity of a regular point w
in the tropical variety T Y equals

mw =
1

δ

∑
σ∈∆top

X,D

w∈R≥0[σ]

(Dk1 · . . . ·Dkd) index
(
R[σ̃] ∩ Zn,Z[σ̃]

)
, (5.5)

where δ is the degree of the map f .
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Proof. By construction, δ equals the degree of the monomial map α restricted to the variety
X ′. The push-forward formula of multiplicities implies the transition from (5.4) to (5.5) and
in particular, the addition of the factor 1/δ and the replacement of the lattice index factor
in Zd by the corresponding lattice index factor in Zn.

Equipped with these tools, we now discuss tropical implicitization in the generic case,
that is, when the polynomials fi defining our map f : X → Y have fixed support and we let
the coefficients take non-zero values outside a codimension one set. Our approach follows [91,
Section 5]. The key fact in this construction is the complete intersection nature of X ′. We
will come back to this in Section 5.3 when presenting the surface case.

Let P1, . . . ,Pn be the Newton polytopes of the polynomials fi ∈ C[x±1
1 , . . . , x±1

d ] and let
P be their Minkowski sum. Fix C any cone in the inner normal fan of P , and J any subset
of {1, . . . , n} of size at most d. We consider the lattice spanned by trop(f)(C ∩ Zd) + ZJ ,
where ZJ =

∑
j∈J Zej. If the rank of this lattice is d, denote by index(C, J) its index in its

saturation (trop(f)(C) + RJ) ∩ Zn. In all other cases, we take index(C, J) = 0. For every
cone C, pick a vector wC in its relative interior. Given j ∈ J , we define facewC (Pj) to be the
face of the polytope Pj defined by the objective vector wC . From [91, (5.22)] we know that
the |J |-dimensional normalized mixed volume

MV(facewC (Pj) : j ∈ J) (5.6)

is positive if and only if dim(
∑

i∈K facewC (Pi)) ≥ |K| for all subsets K ⊆ J .

Theorem 5.2.6 ([91, Theorem 5.1]). Under generic conditions on f , the tropical variety T Y
is the union of the cones trop(f)(C) + RJ over all pairs (C, J) such that (5.6) is positive.
The multiplicity mw at any regular point w ∈ T Y is the sum of the quantities

1

δ
index(C, J) MV(facewC (Pj) : j ∈ J),

where (C, J) runs over all pairs such that w ∈ trop(f)(C) + RJ and δ is the degree of the
map f .

Remark 5.2.7. The previous result follows from Theorem 5.2.2 and Corollary 5.2.5, after
showing that X can be compactified as a projective toric variety P(Σ), whose fan is a strictly
simplicial refinement of the inner normal fan of P . The genericity condition ensures that this
compact variety has simple normal crossing boundary. The cells of the boundary complex
have two types of vertices, and are encoded by the pairs (C, J). The realization of these
cells give the semigroups trop(f)(C ∩ Zn) + ZJ . The index of the associated lattice in its
saturation equals index(C, J).

By Bernstein’s theorem, the mixed volume MV(facewC (Pj) : j ∈ J) equals the number
of non-zero solutions of initial forms associated to the |J | polynomials {inwC (fj) : j ∈ J} in
the generic case. This quantity is precisely the intersection number of the boundary divisors
of P(F) index by the pair (C, J). We refer to [91, Section 4] for further details on this
connection.
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In our previous discussion, the genericity condition of f ensures a good choice for a tropical
compactification of X by a projective toric variety. As we mentioned in Remark 1.3.2, the
Bieri-Groves theorem imposes a necessary condition on the boundary of a compactification to
apply geometric tropicalization: it must satisfy the combinatorial normal crossing condition.
Following [91], we conjecture that this condition is also sufficient for computing tropical
varieties set-theoretically from this compactification.

Conjecture 5.2.8. Geometric tropicalization holds for any compactification X that is nor-
mal and whose boundary has combinatorial normal crossings.

From the previous conjecture it is natural to ask the following question:

Question 5.2.9. Does the combinatorial normal crossing condition suffice to compute trop-
ical multiplicities with formula (5.5)?

At first glance, this combinatorial condition suffices in the surface case if we add an extra
tangency condition on the branching of the curves. By definition, we have thatD1·D2 ≥ k1k2,
and equality holds if and only if the branches of D1 and D2 share no tangent directions.
Without this extra hypothesis, after a single blow-up, the right-hand side of (5.5) will be
strictly greater than the multiplicity of the corresponding regular point in T X. The reason
for this gap is that the combinatorial normal crossing condition fails to hold after this blow-
up. It would be interesting to compare these two numbers and predict their difference from
the geometry of X and its compactification. From simple experiments, it seems that, in the
end of the resolution, the formula gives the correct number, suggesting that the tangency
hypothesis is not necessary to apply (5.5).

The next proposition proves Conjecture 5.2.8 for surfaces and show that the multiplicity
folmula holds (5.5) where the intersection points among pairs of divisors come from curves
whose branches have no common tangents. The set-theoretic statement is the content of [91,
Proposition 5.4]: what is new here is the formula for multiplicities.

Proposition 5.2.10. Let X be a compactification of a smooth surface X whose boundary
satisfies the combinatorial normal crossing condition and such that no pair of boundary
components have branches with the same tangent directions. Then, geometric tropicalization
holds for X.

Proof. The set-theoretic statement is essentially contained in [91, Proposition 5.3]. Without
loss of generality, we can assume the tropical fan Σ is strictly simplicial. If this is not the
case, we can replace X by the fiber product X ×X π−1(X), where π : P(Σ′) → P(Σ) is the
toric resolution associated to the refinement of the fan Σ. The surface X can be resolved by
blow-ups of points and the final result is independent of the ordering of these points. The
key observation is that new exceptional divisors added by a resolution will not change the
tropicalization. To view this, we study two possible scenarios: either the point p we blow up
belongs to a unique component of X or to exactly two components.
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Denote by π this blow-up. In the first situation, we replace the component Di by two
divisors, namely, its strict transform D′i and a new exceptional divisor E. Notice that the
divisor E intersects the boundary of π−1(X) only at the divisor D′i. The boundary intersec-
tion complex of this blow-up is obtained by adding one extra node to ∆X,D corresponding
to E, identifying the old node Di with the new node D′i and adding one edge connecting
the node Di to E. The formula π∗(Di) = D′i + mE, where m = multp(Di), tells us that
the divisorial valuations satisfy the relation valD′i = valDi and valE = mvalDi . All other
divisorial valuations stay the same because the point p does not belong to other boundary
components. Therefore, the two complexes have the same realization. Likewise, multiplici-
ties are also preserved because the edge D′iE maps to a ray in its realization. If the divisor
D′i is not smooth, we keep blowing-up the intersection points of D′i and E until we obtain a
resolution. The resolution diagram will be realized by a ray in the tropical variety T X, so
we do not need to analyze these points.

Assume now that the point p belongs to exactly two boundary components. From the
previous paragraph we know that the question is local, so we can assume the boundary of
X has only two components, say D1 and D2 and that they only intersect at p. The general
result will follow by additivity of the intersection multiplicity at each common point. If we
blow-up the point p we obtain the exceptional divisor E, the two strict transforms D′1 and
D′2, and the following known relations

π∗(D1) = D′1 + k1E, π∗(D2) = D′2 + k2E,

where ki = multp(Di) for i = 1, 2. In addition, the intersection numbers are D′i · E = ki for
i = 1, 2 and D′1 ·D′2 = D1 ·D2 − k1k2 [85, Chapter IV §3.2].

The main difficulty that arrises in this construction is that after a single blow-up we
could distroy the combinatorial normal crossing condition, since we chould have a have a
triple intersection point of the divisors D′1, D

′
2 and E. If so, we would have a triangle with

vertices D′1, D′2 and E as the boundary intersection complex of the blow-up. However, since
the divisorial valuations satisfy valD′i = valDi for i = 1, 2 and valE = k1 valD1 + k2 valD2 , the
realization of this complex will be two-dimensional, generated by the same two generators
[D1] and [D2] as the realization of ∆X,D. If we perform a full resolution with a chain of blow-
ups, we end up with a boundary intersection complex that is also realized by the original
cone R≥0〈[D1], [D2]〉. This proves the set-theoretic statement under no extra extra conditions
on the boundary intersection points other than disallowing triple intersections.

The question regarding multiplicities is a bit more subtle. The realization of the abstract
triangle with vertices D′1, D

′
2, E has the same multiplicities as the original cone spanned by

[D1] and [D2]. More precisely, the formula for any regular point w in the cone over the edge
[D′i][E] gives

mw = (D′i · E) gcd(2× 2−minors([D′i] | [E]))

= ki gcd(2× 2−minors([Di] | ki[Di] + kj[Dj]))

= k1k2 gcd(2× 2−minors([D1] | [D2])),
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for i = 1, 2. Since the divisors D1 and D2 had branches with no common tangents, the
number k1k2 is the intersection number D1 · D2. Therefore, the previous expression agrees
with the multiplicity of w in the realization of ∆X,D. Notice that the hypothesis on the
boundary ensure that D′1 ∩D′2 ∩E = ∅. In addition, E and D′i share no tangent directions,
and we can repeat the process. The standard invariants of resolution of singularities ensure
the finiteness of this procedure.

Even though the hypothesis of the previous result are hard to verify in concrete examples,
we know that they hold, for example, for contraction of exceptional divisors giving bivalent
nodes in the intersection complex of a full resolution. In practice, this complex is obtained
by constructing a resolution diagram, contracting bivalent nodes and then tracing back the
corresponding intersection numbers. We refer to Section 4.3 for a concrete application of the
previous result.

5.3 Tropical implicitization for generic surfaces

In this section, we specialize the constructions of Section 5.2 to the case of generic rational
surfaces. In agreement with the discussion ending that section, we show that the genericity
condition for surfaces is precisely the combinatorial normal crossing boundary condition plus
a tangency condition at crossing points. As stated in Proposition 5.2.10, we show that no
smoothness condition on the ambient space is required.

We start by describing our input, a polynomial parameterization f : T2 → Tn where
n ≥ 3, f = (f1, . . . , fn) and fi ∈ C[x±1

1 , x±1
2 ] for all i = 1, . . . , n. We let Y be the Zariski

closure of the image of f in Tn. We assume our map f is generically finite, so Y is a surface
in Tn. Our goal is to compute the tropical surface graph associated to Y .

Following Khovanskĭı’s philosophy [35, 57], we assume each fi is generic relative to its
support. We now state the main result in this section. The remainder of the section will
be devoted to its proof and to give several numerical examples. For simplicity, we assume
that our choices of coefficients give irreducible polynomials. The genericity condition says
that the plane curves defined by the polynomials fi satisfy the combinatorial normal crossing
condition in Tn. Algorithm 5.1 gives the pseudo-code implementation of this result.

Theorem 5.3.1. Let f = (f1, . . . , fn) : T2 → Tn be a generically finite map. Assume that
the polynomials fi are irreducible and generic relative to their Newton polytopes Pi, i.e. no
three plane curves in T2 defined by these n polynomials intersect at a point and the tangent
directions at pairwise crossing points of the branches of two curves are distinct. Then, the
tropical surface graph associated to the variety im f ⊂ Tn can be described as follows. Let N
the common refinement of the n inner normal fans of the polytopes Pi (i = 1, . . . , n), and
let ρ1, . . . , ρl be the rays of N , oriented counterclockwise, with primitive generators nρj for
all j = 1, . . . , l. With this notation, the nodes of the graph are

{ei : dimPi 6= 0, 1 ≤ i ≤ n} ∪ {[Dρ] := trop(f)(nρ) : [Dρ] 6= 0, ρ ∈ N [1]}.
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The list of edges and their weights is:

(i) m([Dρj ],[Dρk ]) = δ−1gcd
(
2× 2−minors ([Dρj ] | [Dρk ])

)
/gcd

(
2× 2−minors (nρk | nρj)

)
,

if |j − k| = 1 mod l or 0 if not.

(ii) m(ei,[Dρ]) = δ−1(|facenρ(Pi) ∩ Z2| − 1) gcd
(
[Dρ]j : j 6= i

)
, if nρ ∈ T (fi), or 0 if not.

(iii) m(ei,ej) = δ−1length((fi = fj = 0) ∩ T2) if dim(Pi ⊕ Pj) = 2, and 0 if not. If the
coefficients are generic enough, this number equals 1/δ times the mixed volume of the
polytopes Pi and Pj.

It is important to point out that the previous algorithm was already presented in [92]
and further studied in [91]. We contribute to the subject by elucidating the right genericity
condition to impose. The proof of [92, Theorem 2.1] requires the genericity of both the
coefficients and the Newton polytopes, to ensure that the Minkowski sum of the n polytopes
P1, . . . ,Pn is a simple smooth polytope. Our proof discards this extra assumption on the
polytopes, unraveling the key aspects in their argumentation. In addition, we correct the
missing factor of 1/δ in [92], following [91, Theorem 5.1].

Proof. As we stated in the previous section, our task is to compactify Y ⊂ Tn. Instead,
we work with X := f−1(Y ) = T2 r (fi = 0). Using the knowledge of the Newton poly-
topes P1, . . . ,Pn, we construct a projective toric variety P(Σ) and compactify X inside this
space [92, Theorem 2.1]. We now explain how to construct the fan Σ from these n input
polynomials. Consider the Minkowski sum of the n polytopes P1, . . . ,Pn. Since the poly-
nomials are generic, its inner normal fan is the common refinement of the n normal fans of
these polytopes. We let N be this fan. Notice that the fan need not be strictly simplicial,
thus P(N ) need not be a smooth toric surface. To fix this, we perform a refinement of the
fan N by a strictly simplicial fan N ′. This is done by subdividing the two-dimensional
cones that are not unimodular [15, Section 5]. On the geometric side, this operation corre-
sponds to performing toric blow-ups on the surface P(N ): we blow-up torus invariant points
associated to these two-dimensional cones. The output is a smooth projective toric surface
P(N ′) that compactifies X. We set Σ to be the fan N ′.

The boundary of P(N ′) consists of two types of divisors. The first class of divisors
are the toric divisors Dρ indexed by the rays ρ in N ′. They correspond to facets of the
Minkowski sum

⊕n
i=1Pi and, thus, to the rays of N ′. The toric boundary

⋃
ρ∈N ′[1] Dρ has

simple normal crossings because N ′ is a strictly simplicial fan. Similarly, the toric divisor⋃
ρ∈N [1] Dρ has combinatorial normal crossings because N is a simplicial fan.

The second type of components consist of n divisors E1, . . . , En, which are the closures
in P(N ) of the divisors Ei = (fi = 0) ⊂ T2 in X. The irreducibility of the polynomials
fi and the proof of [92, Theorem 2.1] show that these divisors are smooth and irreducible
and that the union of all Dρ’s and all Ej’s has simple normal crossings. Notice that if fj
consists of a single monomial, then Ej is the empty set. Such indices will not induce a node
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in the boundary intersection complex of X, so from now on we may assume dimPi > 0 for
all i = 1, . . . , n.

Thus, the boundary divisor of X and its smooth compactification P(N ′) can be decom-
posed as

∂ := P(N ′) rX = D1 ∪ . . . ∪Dl ∪Dl+1 ∪ . . . Dm ∪ E1 ∪ . . . ∪ En,

where ρ1, . . . , ρl are the rays of N , ρl, . . . , ρm are the rays in N ′[1] r N [1] and Di denotes
the toric divisor Dρi (i = 1, . . . ,m).

The simplicial complex ∆P(N ′),∂ is a graph with m+ n vertices. The edges of this graph
consist of pairs of vertices C∪J where C ⊂ {1, . . . ,m} and J ⊂ {1, . . . , n} and |C|+ |J | = 2.
Following [92], we denote by ∆P(N ′),∂[J ] the subset of edges in ∆P(N ′),∂ with fixed J . By
construction, we have three possibilities: |J | = 0, 1 or 2. For |J | = 0, the edges ∆P(N ′),∂[J ]
are of the form (Dρ, Dρ′) for ρ and ρ′ rays in the fan N ′. By standard intersection theory
on smooth toric varieties, we know that the intersection numbers among the torus-invariant
divisors Dρ are:

Dρ ·Dρ′ =

{
1 if ρ and ρ′ generate a two-dimensional cone in N ′,

0 else.
(5.7)

In particular, this says that we only have edges among consecutive rays of N ′, if counter-
clockwise oriented.

When |J | = 1, we seek to identify edges of the form (Ej, Dρ), for ρ ∈ N ′ and j = 1, . . . , n.
Again, this is done by toric methods. Since Ej represents a Cartier divisor with local
equation fj and Dρ is a torus invariant divisor, the intersection number will correspond to
the intersection number of the initial form innρ(fj) and Dρ. This quantity coincides with the
number of nonzero solutions of a univariate polynomial. The Newton polytope of innρ(fj)
agrees with facenρ(Pj). Since nρ 6= 0, this polytope has dimension zero or one. If this number
is zero, the initial form is a monomial, and the intersection number is zero. If the dimension
is one, Newton-Puiseux’s theorem implies that the intersection number is the lattice length
of the edge facenρ(Pj). Thus, we see that Ej is adjacent to a node Dρ if and only if nρ is
a ray in the normal cone of the polytope Pj, or equivalently, if it belongs to the tropical
hypersurface T (fj). In addition:

Ej ·Dρ = lattice length of facenρ(Pj) = |facenρ(Pj) ∩ Z2| − 1. (5.8)

Finally, if |J | = 2, we want to certify which edges (Ei, Ej) belong to the boundary
complex. We claim it suffices to check if the equations fi and fj have a common root in
T2. In fact, the remaining intersection points outside the big open torus will lie in the
toric boundary of P(N ′) and, thus, will yield a triple intersection among the divisors Ei, Ej
and some toric divisor Dρ. Therefore, the intersection number is the length of the zero-
dimensional scheme (fi = fj = 0) ∩ T2. If the coefficients of these polynomials are generic,
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Bernstein’s theorem show that this length equals the mixed volume of the polytopes Pi
and Pj, whereas for special choices of coefficients, this number is an upper bound for the
true intersection number [3, Theorem A]. The mixed volume is nonzero if and only if the
Minkowski sum of the corresponding polytopes is two-dimensional. Therefore, the edges of
the form (Ei, Ej) in the boundary complex must satisfy dim(Pi ⊕ Pj) = 2.

Notice that since we are interested in the realization of the boundary complex, we can
safely assume that the dimension restriction characterizes the edges (Ei, Ej). “Artificial”
edges in the abstract graph will have weight zero in its realization. For this reason, we
safely add these artificial edges to the boundary complex and still obtain the correct tropical
surface graph. Summarizing:

(Ei, Ej) is an edge of ∆P(N ′),∂ ⇐⇒ dim(Pi ⊕ Pj) = 2.

We now discuss the realization of the boundary complex. As we know, this is done by
describing the divisorial valuation of each component of the boundary ∂. By construction,
valEj(fi) = δi,j, so the node corresponding to Ej maps to ej, the jth element of the canonical

basis. We compute the divisorial valuation of all Dρ’s with the tools of toric geometry [39,
Section 5.2]. Without loss of generality, assume ρ = ρ1. We picking the primitive generator nρ
of ρ and we extend this vector to a Z-basis of R2. Thus, we can assume ρ = e1. By definition,
the divisorial valuation valDρ is obtained from the order of vanishing of all the polynomials fj
at Dρ, that is, by the maximal exponent of the variable x1 dividing fj in the polynomial ring
C[x±1

2 ][x1]. Notice that this number can be negative. The maximum exponent is precisely the
minimum value among the inner products 〈e1, ν〉, for all possible monomials with exponent
ν ∈ Z2 that appear in fj. Hence, valDρ(χ

∗(tj)) = valDρ(fj) = trop(fj)(e1). With the same
reasoning, we obtain

[Di] := (valDi(fj))
n
j=1 = (trop(f1)(nρi), . . . , trop(fn)(nρi)) = trop(f)(nρi) ∀i = 1, . . . ,m.

Using Corollary 5.2.5 and expressions (5.7) and (5.8), we compute the weights of the
edges in the realization of ∆P(N ′),∂:

(i) m([Dρ],[Dρ′ ])
= δ−1gcd

(
2× 2−minors ([Dρ] | [Dρ′ ])

)
/gcd

(
2× 2−minors (nρ | nρ′)

)
, if

nρ, nρ′ span a two-dimensional cone in N ′. In other cases, this number is is 0.

(ii) m([Ei],[Dρ]) = δ−1(|facenρ(Pi) ∩ Z2| − 1) gcd
(
trop(fj)(nρ) : j 6= i

)
, if nρ ∈ T (fi), or 0 if

not.

(iii) m([Ei],[Ej ])
= δ−1length((fi = fj = 0)∩T2) if dim(Pi⊕Pj) = 2 or zero otherwise. If the

coefficients of fi, and fj are generic enough, this number is precisely the mixed volume
of the polytopes Pi and Pj, multiplied by a factor of 1/δ.

Notice that the statement of our theorem constructs the tropical surface graph by means
of the fan N rather than our choice Σ = N ′. We now explain how can we avoid per-
forming the refinement N ′ of the fan N in the previous argument, in agreement with the
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combinatorial normal crossing genericity condition required for the polynomials f1, . . . , fn
and the spirit of Proposition 5.2.10. First we provide set-theoretic reasons and then focus
on the weights of the tropical surface graph. By induction on the number of elements in
N ′[1] r N [1], it suffices to show that subdividing a two-dimensional cone on N by adding
a single ray gives the same tropical surface graph.

Our first goal is to show that the rays added to N give nodes and edges in the realization
of the complex that are contained in cones over edges of the form ([Dρ], [Dρ′ ]) for consecutive
edges ρ, ρ′ in N [1] with counterclockwise orientation. Each ray that we add to N corresponds
to a blow-up at a torus-invariant point p of P(N ). This point is the torus orbit associated
to the two-dimensional cone spanned by ρ and ρ′ and supports the intersection of the two
torus-invariant divisors, thought of as Q-Cartier divisors:

Dρ ∩Dρ′ = (gcd(2× 2−minors (nρ | nρ′)))−1 p.

This implies Dρ ·Dρ′ = (gcd(2× 2−minors (nρ | nρ′)))−1, where the intersection product is
considered in the (possibly singular) toric variety P(N ) [39, Section 5.1].

At each step of the toric resolution, we subdivide the cone spanned by consecutive rays ρ
and ρ′ of N by adding a ray τ in this cone. Call N ′ the corresponding refinement. Note that
this extra ray modifies the boundary intersection complex associated to P(N ) as follows.
It adds a node Dτ and replaces the edge (Dρ, Dρ′) in the boundary complex associated to
P(N ) with two edges: (Dρ, Dτ ) and (Dτ , Dρ′). The key fact is the combinatorial normal
crossing condition on the boundary of P(N ), satisfied by the genericity of the polynomials
fi. This property is preserve under refinements of the fan N . Notice that every ray that we
add to N optimizes a single vertex of all Newton polytopes Pi, so it does not intersect any
of the divisors Ei.

By construction, the valuations of the torus-invariant divisors associated to rays in N [1]

viewed as divisors in P(N ) or P(N ′) are the same. If we write nτ = a nρ + b nρ′ , for
a, b ∈ Q>0, we see that the divisorial valuation of Dτ equals a valDρ + b valDρ′ . Thus, the
cone over the realization of the edge ([Dρ], [Dρ′ ]) coincides with the union of the cones over
the edges ([Dρ], [Dτ ]) and ([Dτ ], [Dρ]), with no partial overlap between the last two cones.
If we write a = c/q and b = d/q with c, d, q ∈ Z, we see that

gcd(2× 2−minors([Dτ ] | [Dρ])) = b gcd(2× 2−minors([Dρ] | [Dρ′ ])),

gcd(2× 2−minors([Dτ ] | [Dρ′ ])) = a gcd(2× 2−minors([Dρ] | [Dρ′ ])),

gcd(2× 2−minors([nτ ] | [nρ])) = b gcd(2× 2−minors([nρ] | [nρ′ ])),
gcd(2× 2−minors([nτ ] | [nρ′ ])) = a gcd(2× 2−minors([nρ] | [nρ′ ])).

(5.9)

When analyzing the intersection numbers among pairs of boundary divisors we only need
to look at the three divisors Dρ, Dρ′ and Dτ . As we mentioned, the intersection of the two
divisors Dρ and Dρ′ in P(N ) is replaced by the chain of intersections Dρ, Dτ , and Dτ , Dρ′ in
P(N ′). Using (5.9) these two intersection numbers in P(N ′) are related to the intersection
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number Dρ ·Dρ′ in P(N ) by the expressions

Dρ ·Dτ =
1

b
Dρ ·Dρ′ , Dτ ·Dρ′ =

1

a
Dρ ·Dρ′ .

Combining these identities with Theorem 5.2.10, we see that the multiplicities of the edges
([Dρ], [Dτ ]) and ([Dτ ], [Dρ′ ]) in the realization of the boundary complex of P(N ′) equal the
multiplicity of the edge ([Dρ], [Dρ′ ]) in the realization of the boundary complex of P(N ).
This conclude our proof.

Remark 5.3.2. The last part of the previous proof shows the effect of the blow-ups on
the realization of the boundary intersection complex for a given compactification: both
weighted graphs in Rn yield the same weighted set T Y . This effect was discussed in the
proof of Proposition 5.2.10 and in the construction of the tropical secant surface graph of
Section 4.3. It also remarks the key role of the combinatorial normal crossing boundary as
the generic condition to ensure the validity of the conclusion in Theorem 5.3.1.

We illustrate the previous methods for computing tropicalizations of generic surfaces with
three examples. In the next section, we revisit the last two examples for special choices of
coefficients that violate the genericity condition. In particular, we show how the resulting
tropical surface graphs need to be modified to reflect the non-genericity of these surfaces.

Example 5.3.3. Our first example is a modification of [92, Example 3.4], where we remove
a monomial factor from each polynomial to make them irreducible over the polynomial ring
C[x, y, z]. This change will have no effect on the combinatorics of the tropical surface graph,
but will change its coordinates. Consider the general surface in Y ⊂ T3 parameterized by
three bivariate polynomials 

f1(s, t) = a1 + a2 s
2t+ a3 st

2,

f2(s, t) = b1 st+ b2 s+ b3 t,

f3(s, t) = c1 t+ c2 s
2 + c3 st

2,

where a1, a2, a3, b1, b2, b3, c1, c2, c3 ∈ C are generic nonzero coefficients. By construction, the
map f has degree δ = 1. Their Newton polytopes and corresponding inner normal fans are
depicted in Figures 5.1 and 5.2. All rays in these fans have multiplicity one, since the lattice
lengths of the corresponding edges in the polytopes equal one.

Next, we compute the Minkowski sum P := P1⊕P2⊕P3 of the three Newton polytopes,
and its associated inner normal fan. This fan corresponds to the common refinement of the
normal fans of the three constituent polytopes. Notice that the resulting fan N (P) is not
strictly simplicial, since the maximal cones corresponding to the vertices v1, v7 and v9 of P
are not unimodular. Thus, we subdivide these three cones by adding the rays r19, r89 and
r67. The resulting fan N ′ has f -vector (1, 12, 12). The polytope P and the fan N ′ are
depicted in Figure 5.3.



122

P1

v1

v2

v3

(0, 0)

(1, 2)

(2, 1)

P2

v1
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(0, 1)

(1, 0)

(1, 1)

P3

v1

v2

v3

(0, 1)

(2, 0)

(1, 2)

Figure 5.1: From left to right: Newton polytopes of the polynomials f1, f2 and f3.

N (P1)

v1
v2

v3
(−1,−1)

(2,−1)

(−1, 2) N (P2)

v1

v2

v3
(0,−1)

(−1, 0)

(1, 1)

N (P3)

v1v2

v3(−2,−1)
(1,−1)

(1, 2)

Figure 5.2: From left to right: inner normal fans of the Newton polytopes P1,P2 and P3.

Following Algorithm 5.1, we construct the nodes of the graph encoding T Y . To simplify
notation, we denote by Di the toric divisor associated to the ray ri. The corresponding
primitive vectors nri are indicated in Figure 5.3. The nodes associated to the nine toric
divisors are:

[D1] := (−2,−1,−2), [D4] := (−2,−1,−2), [D7] := (0, 1, 2),

[D2] := (−5,−3,−4), [D5] := (−1,−1,−1), [D8] := (0,−1,−2),

[D3] := (−3,−2,−3), [D6] := (0,−1,−1), [D9] := (−1,−1,−1).

(5.10)

Notice that [D1] = [D4], so the tropical surface graph in R3 has fewer nodes than expected:
there are eleven nodes in this realization. Likewise, some edges ([Dρ], ei) or ([Dρ], [Dη]) may
give one-dimensional cones in the tropical variety T Y . For this reason, in Algorithm 5.1, we
tested the dimension of the corresponding cones before adding any of these pairs to the list
of edges of our tropical surface graph. After computing these numbers, we obtain 19 edges:
the three edges (ei, ej), the eight edges ([D9], e1), ([D3], e1), ([D4], e1), ([D7], e2), ([D1], e2),
([D8], e3), ([D2], e3) and ([D5], e3), the seven edges ([Di], [Di+1]) (i = 1, . . . , 8, i 6= 6) and
([D9], [D1]).

The weights of these edges are computed using mixed volumes, and are indicated in
the left-most picture in Figure 5.4. We start with the edges corresponding to |J | = 2 and
C = {(0, 0)}, that is, to the three edges (ei, ej). These mixed volumes are obtained using the
formula MV(Pi, Pj) = Vol(Pi ⊕ Pj)−Vol(Pi)−Vol(Pj), where Vol( ) denotes the Euclidean
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P :=
3⊕
i=1
Pi
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(−3, 2)

(−2, 1)

(0, 0)
(−2,−1) (1,−1)

(1, 2)

(0,−1)

(−1, 0)

(1, 1)

(−1,−1)

(2,−1)

(−1, 2)

(0, 1)(−1, 1)

(1, 0)

v1
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v3
v4

v5
v6
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v8

v9 N ′ ≺
3∨
i=1

N (Pi)

r2 r5

r8

r4

r1

r7

r3

r6

r9

r89
r19

r67

Figure 5.3: From left to right: Minkowski sum P of P1,P2 and P3 and a strictly simplicial fan N ′

refining the normal fan of P. The different colors indicate the corresponding normal fans of each Pi
(i = 1, 2, 3). The dashed rays r19, r89 and r67 are introduced to refine the singular cones of N (P).
Ignoring these three rays gives the nine chambers in the normal fan of P, which are dual to the
nine vertices of P.

volume in R2. Figure 5.4 shows the pairwise Minkowski sums of the polytopes P1,P2,P3.
This gives m12 = 1

2
(12− 3− 1) = 4, m23 = 1

2
(10− 1− 3) = 3, m12 = 1

2
(18− 3− 3) = 6.

We now consider the case where |J | = 1 and C is a ray in the fan N . These are edges
of the form ([Dρ], ei), where ρ is a ray in the normal fan N (Pi) of the polytope Pi. Since
the edges of all these polytopes have lattice length one and the generating rays of N are
primitive, our task reduces to computing the gcd of the maximal minors of the 3×2-matrices
([Dρ] | ei), that is, the gcd of all coordinates [Dρ] except for the ith one. All such numbers
equal one, except for the edges with ρ = r1 = r4 and i = 2, whose value is two. Since the
nodes D1 and D4 are proportional, we need to add these numbers to get the true multiplicity
of the edge ([D1], e2), which equals four. This explains the transition from the left to the
right of Figure 5.5.

Finally we compute the values of the edges with |J | = 0, that is, edges of the form
([Dρ], [Dη]) associated to consecutive rays in the normal fan N from the left-most picture
in Figure 5.3. Such numbers are computed as the quotient of the gcd of maximal minors
of the matrix ([Dρ] | [Dη]) by the determinant of the 2 × 2-matrix (ρ | η). In our example,
all such numbers equal one. In particular, this shows why we need not consider the fan N ′

and, instead, work safely with the fan N .
The resulting weighted graph has four bivalent nodes (in gray) and it is depicted on

the right of Figure 5.5. After removing these gray nodes, we obtain a graph with f -vector
(7, 13). The complement of the graph has eight connected components. Notice that the
nodes e2, [D1] = [D4], [D3] and [D5] are aligned in the picture. This reflect the fact that
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P1 ⊕ P2 P2 ⊕ P3 P1 ⊕ P3

Figure 5.4: From left to right: Minkowski sum of the Newton polytopes P1 ⊕ P2, P2 ⊕ P3 and
P1 ⊕ P3.

these four vectors generate a two-dimensional cone in R3. In addition to the four bivalent
nodes, this also explains the difference between the number of edges in the tropical surface
graph and the number of edges in the abstract graph, seen on the left-side of Figure 5.5.
In particular, the predicted edge ([D4], [D5]) can be seen in the graph as the line segment
containing the points [D4], [D3] and [D5].

 

Figure 5.5: From left to right: weighted simplicial complexes representing T Y . The left one
corresponds to the abstract graph and the right one is the planar graph obtained by realizing the
abstract graph and combining weights of overlapping edges.

We certify our calculations by computing the Newton polytope of the generator of the
principal ideal (x − f1(s, t), y − f2(s, t), z − f3(s, t)) ∩ C[x, y, z] using Singular [21]. For
generic choices of coefficients a1, . . . , c3, this polynomial has degree 14. Its Newton polytope
has f -vector (8, 13, 7). Using Gfan, we compute its tropicalization:
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RAYS
-1 0 0 # 0
0 -1 0 # 1
1 1 1 # 2
0 0 -1 # 3
2 1 2 # 4
3 2 3 # 5
5 3 4 # 6

N_RAYS
7

F_VECTOR
1 7 13

MAXIMAL_CONES
{0 1} # Dimension 3
{0 2}
{0 3}
{0 4}
{0 5}
{5 6}
{2 3}
{4 5}
{1 4}
{2 5}
{1 3}
{4 6}
{3 6}

MULTIPLICITIES
4 # Dimension 3
1
6
1
1
1
1
2
4
1
4
1
1

After changing the signs of the seven rays in the left-most column to overcome the max
convention of Gfan, we recover the nodes e1, e2, [D5], e3, [D1], [D3] and [D2], as expected. �

Example 5.3.4. We consider the morphism f = (f1, f2, f3) : C2 → Y ⊂ C3 given by
f1(s, t) = a1 s

2 + a2 s
3 + a3 t

2,

f2(s, t) = b1 t
2 + b2 t

3 + b3 s
2,

f3(s, t) = (s+ t)2 − (s+ t)3 − (s− t)2 = c1 st+ c2 s
3 + c3 t

3 + c4 st
2 + c5 s

2t,

with generic coefficients a1, . . . , c5 ∈ C∗. By construction, the degree of the map f equals
one. As in the previous example, we draw the Newton polytopes of each fi (Figure 5.6),
the normal fans (Figure 5.7), the Minkowski sum of the three polytopes and its normal fan
(Figure 5.8). In this case, ray r7 is a common ray of two of the constituent fans. We indicate
this phenomenon on the right-most picture in Figure 5.8 by drawing a purple edge, which
combines the red and blue edges from the polytopes P1 and P2. Similarly, the purple ray
in the normal fan on the left-most picture in Figure 5.8 combines the red and blue rays
of N (P1) and N (P2). In addition, three rays out of the nine rays in

∨3
i=1 N (Pi) have

non-trivial weights as indicated in the pictures on Figure 5.7.

P1
v3

v1 v2

(0, 2)

(2, 0) (3, 0)

P2

v3

v1

v2

(0, 2)

(0, 3)

(2, 0)

P3

v1

v2

v3

(1, 1)

(3, 0)

(0, 3)

Figure 5.6: From left to right: Newton polytopes of the polynomials f1, f2 and f3.
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N (P1)

v1

v2

v3

(1, 1)
(0, 1)

(−2,−3)

2

N (P2)

v1

v2

v3

(1, 1)

(0, 1)

(−2,−3)

2

N (P3)

v1
v2

v3
(−1,−1)

(2, 1)

(1, 2)

3

Figure 5.7: From left to right: inner normal fans of the Newton polytopes P1,P2 and P3.

Following the notation of Figure 5.8, the nodes of the tropical surface graph have co-
ordinates: e1, e2, e3, [D1] = (0, 0, 0), [D2] = (−9,−6,−9), [D3] = (−3,−3,−3), [D4] =
(−6,−9,−9), [D5] = (0, 0, 0), [D6] = (2, 2, 3), [D6] = (2, 2, 3), [D7] = (2, 2, 2) and [D8] =
(2, 2, 3). After going through dimension testings, we obtain a list of fourteen edges: three
with |J | = 2, (ei, ej), seven with |J | = 1, ([D4], e1), ([D7], e1), ([D2], e2), ([D7], e2), ([D3], e3),
([D6], e3), ([D8], e8) and four with |J | = 0, ([D2], [D3]), ([D3], [D4]), ([D6], [D7]), ([D7], [D8]).
Finally, following the approach of the previous example, we compute tropical multiplicities
as mixed volumes. The transition from the weighted abstract graph to its realization is
indicated in Figure 5.9. �

Example 5.3.5. As our third example we consider the surface parameterized by the mor-
phism f = (f1, f2, f3) : C2 → Y ⊂ C3, where

f1(s, t) = a1 + a2 s+ a3 t,

f2(s, t) = b1 + b2 t+ b3 s
2,

f3(s, t) = c1 + c2 st.

(5.11)

The degree of this map is δ = 1. Figure 5.10 depicts the Newton polytopes of our three
polynomials and the common refinement of their inner normal fans. Using the methods
described in this section we obtain a weighted graph with seven nodes (Figure 5.11): e1, e2, e3,
[D2] = (−1,−2, 0), [D3] = (−1,−2,−2), [D4] = (−2,−2,−3) and [D5] = (−1,−1, 0). If we
remove the two bivalent nodes [D2] and [D5], we obtain a graph with five nodes and eight
edges, whose complement has five connected components. This modified graph is depicted
in Figure 5.11. The edges with no label have weight one.

On the other hand, if we use standard elimination techniques implemented in Singular
we obtain an equation of degree 3 in x, y, z whose coefficients are polynomials in the inde-
terminates a1 through c2:

b2*b3*c2^2*x^3 - a3*b3*c2^2*x^2*y + (a3^3*b3^2)* z^2 + a2^2*a3*c2^2*y^2 +
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P :=
3⊕
i=1
Pi

v1
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v4
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v6
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v8

(2, 0) (3, 0)

(1, 3)

(−2, 6)
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(−5, 7)
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v1

v2 v3

v4
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v6v7

v8

N ′ ≺
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N (Pi)

r2

r5

r4

r1
r7
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r6

r012

r112 r45
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Figure 5.8: From left to right: Minkowski sum P of P1,P2 and P3 and a strictly simplicial fan
N ′ refining the normal fan of P. In this case, we need to add three rays: two between r1 and r2

(r012, r112), and one between r4 and r5 (r45).

b3*c2^2*(a3*b1-3*a1*b2)*x^2 + c2^2*(2*a1*a3*b3-a2^2*b2)*x*y +
2*a2*a3^2*b3*c2*y*z - 3*a2*a3*b2*b3*c2*x*z - (2*a3^3*b3^2*c1+a2^3*b2^2*c2-
2*a2*a3^2*b1*b3*c2+3*a1*a2*a3*b2*b3*c2)*z + c2*(-2*a2*a3^2*b3*c1-
2*a2^2*a3*b1*c2+a1*a2^2*b2*c2-a1^2*a3*b3*c2)*y + c2*(3*a1^2*b2*b3*c2-
2*a1*a3*b1*b3*c2+3*a2*a3*b2*b3*c1+a2^2*b1*b2*c2)*x + (-a2^3*b2^2*c1*c2+
2*a2*a3^2*b1*b3*c1*c2-3*a*a2*a3*b2*b3*c1*c2+a2^2*a3*b1^2*c2^2-
a1*a2^2*b1*b2*c2^2+a1^2*a3*b1*b3*c2^2-a1^3*b2*b3*c2^2+a3^3*b3^2*c1^2).

The Newton polytope of the equation and its dual graph are illustrated in Figure 5.12.
As expected, this dual graph agrees with the constructed tropical surface graph. In Sec-
tion 5.4 we revisit this example and explain how certain specializations of the coefficients a1

through c2 give a new facet of the polytope, by setting the constant coefficient of the defining
equation to zero, and destroy the genericity conditions on the polynomial map f . �

5.4 Tropical implicitization for non-generic surfaces

In this section, we discuss methods for computing the tropicalization of a parametric surface
in the non-generic case. The obstruction to apply generic methods lies in the failure of the
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Figure 5.9: Weighted simplicial complex representing T Y .
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Figure 5.10: From left to right: Newton polytopes P1, P2 and P3, together with the common
refinement of their inner normal fans. The weight 2 (in blue) on r1 indicates the weight of this ray
in N (P2).

combinatorial normal crossing condition. We explain how to solve this issue and present
several numerical examples.

Our setting is as follows: we are given n plane curves defined by Laurent polynomials
f1, . . . , fn with fixed support and we allow special choices of coefficients that preserve these
supports. Assume that the map f = (f1, . . . , fn) : T2 99K Tn is generically finite. As in
the previous section, our goal is to tropicalize the open set X = T2 r

⋃n
i=1(fi = 0) using

geometric tropicalization, by finding a tropical compactification of X. The following lemma
implies that we can assume all fi’s are irreducible.

Lemma 5.4.1. Assume f is a finite map and that f1 factors as f1 = gh with deg g, deg h <
deg f1. Then, the map f ′ = (g, h, f2, . . . , fn) : X → Tn+1 is generically finite and f = α ◦ f ′,
where α : Tn+1 → Tn sends (t0, t1, . . . , tn) to (t0t1, t2, . . . , tn). In addition, α restricted to the
image of f ′ is generically finite.
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Figure 5.11: Tropical graph of the surface parameterized by (5.11).

1 y2

z2

x2y

x3

e1 e2

e3

(−1,−1− 2) (−2,−2− 3)

2

3

2

2

Figure 5.12: From left to right: Newton polytope and dual graph of a surface in C3 with f -vector
(5, 8, 5). The missing weights on the graph equal one.

Proof. Follows directly from the functoriality of tropicalization for subvarieties of tori and
monomial maps (Theorem 1.1.10).

As a first attempt to answer our question, we apply generic methods and compactify X
via its embedding in the projective toric variety P(N ) where, as before, the fan N is the
normal fan of the Minkowski sum of the n Newton polytopes P1, . . . ,Pn. As in the generic
case, boundary divisors of X(N ) consist of the n divisors Ei(fi = 0) where i = 1, . . . , n and
toric divisors Dρ indexed by the rays in N . In addition, the pull-back along the map f of
the basis of characters χ1, . . . , χn gives

f∗(χj) = Ej +
∑
ρ∈N [1]

trop(fj)(nρ) ·Dρ j = 1, . . . , n.

Under special choices of coefficients, the boundary of X(Σ) does not satisfy the combina-
torial normal crossing condition. Therefore, we need to resolve these excessive intersections.
Since these points need not be torus invariant (and will not be in general), toric blow-ups
cannot be used to achieve the desired condition. Instead, we can resolve toric singularities on
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the ambient space P(Σ) by toric blow-ups, refining the fan to a strictly simplicial fan Σ′ ⊂ R2,
performing classical point blow-ups on the smooth surface P(Σ′) and finally pull-back the
variety X(Σ′) along this resolution. This procedure will be tedious to do in practice, so we
will not follow this approach in concrete examples.

Our alternative strategy in the non-generic case does not take advantage of the combi-
natorial data provided by the support of our polynomial map. However, it will have the
advantage of being simpler to carry out in concrete examples. Here is our main result:

Theorem 5.4.2. Let f = (f1, . . . , fn) : T2 99K Tn by a finite map of degree δ, where
fi ∈ C[x±1

1 , x±1
2 ] are irreducible Laurent polynomials. Let X ′ be the compactification of X =

T2r
⋃n
i=1(fi = 0) inside P2. The compact space X ′ has n+1 boundary divisors: Di = (fi = 0)

and D∞ = (x3 = 0). Assume X ′ does not satisfy the combinatorial normal crossing boundary
condition. Let φ : X̃ → X ′ be any resolution of X ′ obtained by blowing up all intersection
points of three or more boundary components, so that X̃ satisfies the combinatorial normal
crossing boundary condition and the tangency directions of the branches of intersecting curves
at crossing points are different. Let E1, . . . , Es be the corresponding exceptional divisors and
D′i, D

′
∞ be the strict transforms of the divisors Di, D∞, i = 1, . . . , n. Write:

φ∗(Di) = D′i +
s∑
j=1

bij · Ej, i = 1, . . . , n, φ∗(D∞) = D′∞ +
s∑
j=1

bjEj,

for suitable bij, bj ∈ Z. Then, the tropical surface graph T im f has n+ 1 + s nodes

[D′i] = ei, i = 1, . . . , n, [D′∞] = (− deg f1, . . . ,− deg fn),

[Er] = (b1r − br deg f1, . . . , bnr − br deg fn), r = 1, . . . , s.

The edges of this graph are given by all pairs of nodes whose associated divisors intersect in
X̃. The weight of an edge (v, w) equals

m(v,w) =
1

δ
i(v, w) gcd(2× 2−minors (v | w)),

where i(v, w) is the intersection number of the corresponding boundary divisors in X̃.

Proof. We start by constructing a naive compactification of the set X, by taking its closure
inside P2, which we denote by X ′. In addition, we extend the map f from X to X ′, indicated
in the following commutative diagram:

X ′

π

��

f̃

$$JJJJJJJJJ

X
f // Y ⊂ Tn.
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The ith coordinate of f̃ is a rational function whose numerator is the homogeneization fhi of
the polynomial fi with respect to a new variable x0 and whose denominator equals xdeg fi

0 .
In particular, f̃i is a degree zero rational function in three variables, hence defined over P2.

The variety X ′ ⊂ P2 has a divisorial boundary with n + 1 irreducible components: the
n divisors Di = (fhi = 0) ⊂ P2, i = 1, . . . , n and the divisor at infinity D∞ = (x0 = 0). By
construction, the pull-back along f̃ of the basis of characters {χ1, . . . , χn} is

f̃∗(χj) = Dj + (− deg fi) ·D∞ j = 1, . . . , n.

Finally, we take a resolution φ : X̃ → X ′ by blowing up the excessive intersection points on
the boundary of X ′, where at least three boundary components meet. The set X̃ together
with the map g = f̃ ◦φ constructs the desired tropical compactification. If E1, . . . , Es denote
the exceptional divisors on X̃, we obtain

g∗(χj) = Dj + (− deg fi) ·D∞ +
s∑
r=1

ajr · Er j = 1, . . . , n.

As a result, the divisorial valuations of the n+1+r boundary divisors on X̃ give the following
nodes in the tropical surface graph T Y :

[Dj] = ej j = 1, . . . , n, [D∞] = (− deg f1, . . . ,− deg fn), [Er] = (ajr)
n
j=1 r = 1, . . . , s.

Note that some of these lattice points in Zn could coincide. Thus, the tropical surface graph
has at most n + 1 + r nodes. The identity ajr = bjr − br deg fj, j = 1, . . . , s follows by
construction.

We now explain the transition from ∆X′,D′ to ∆X̃,D̃. Assume a maximal subfamily of
k ≥ 3 boundary prime divisors of X ′ indexed by a subset I of {1, . . . , n} ∪ {∞} meets at a
point. In particular, the abstract complex ∆X′,D would contain a (k−1)-dimensional cell with
vertices indexed by I. Each blow-up produces a subdivision of this cell, ultimately leading to
a graph embedded in this k-cell. At each step of the resolution, excessive intersection points
give an exceptional divisor and the remaining bad crossing points have lower multiplicity.
The intersection complex ∆X̃,D̃ is obtained by gluing all these resolution diagrams along
common labeled nodes and also adding edges corresponding to pairwise intersections of
boundary components. The realization of this abstract graph in Rn is obtained by keeping
track of the proper transforms of the boundary components of D′ and all exceptional divisors
along the resolution.

The formula for the weights on the tropical surface graph follows from Corollary 5.2.5
and Proposition 5.2.10.

We conclude this section with two numerical examples illustrating the previous construc-
tion. Further examples were given in Section 4.3, when studying a family of surfaces in Tn

parameterized by binomials. To simplify notation, we let s, t be our domain parameters and
we call u the homogeneizing variable.
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Example 5.4.3. [Example 5.3.4 revisited] We consider a particular choice of coefficients for
the parameterized surface in Example 5.3.4. In this case, the coordinates of our map are the
following three bivariate polynomials:

f1(s, t) = s2 − s3 − t2,
f2(s, t) = t2 − t3 − s2,

f3(s, t) = (s+ t)2 − (s+ t)3 − (s− t)2 = 4st− s3 − t3 − 3st2 − 3s2t.

(5.12)

This map has degree δ = 1. As we see from the left-most picture in Figure 5.13, the curves
(fi = 0), i = 1, 2, 3, intersect at the origin. Therefore, our surface is non-generic. We remove
this triple intersection by means of resolution of singularities.

Since our polynomials f1, f2, f3 have nonnegative exponents, we consider X = C2 r⋃3
i=1(fi = 0) and its compactification in P2. From the figure we see that the divisors

Di = (fi = 0) intersect at the origin. The intersection complex of the boundary divisors of
X ′ and its resolution by four blow-ups is illustrated in the right of Figure 5.13.

D1D1

D2

D1

D2

D3

D1

D2

D3

D∞

D1

D2

D3

D∞

π←−

Figure 5.13: Boundary of the closure of X in P2 and its resolution after four blow-ups.

Let g = f ◦ π : X̃ → X ′ → Y . Then, g∗(χ1) = D1 + 2E1 + 3E2 + 3E3 + 4E4 − 3D∞,
g∗(χ2) = D2+2E1+3E2+3E3+4E4−3D∞, g∗(χ3) = D3+2E1+2E2+2E3+2E4−3D∞. Thus,
[Di] = ei, [D∞] = (−3,−3,−3), [E1] = (2, 2, 2), [E2] = [E3] = (3, 3, 2), and [E4] = (4, 4, 2).
The tropical surface graph of Y has six nodes and twelve edges and is illustrated in Fig-
ure 5.14. Notice that the abstract graph of the intersection complex has one bivalent node
and two nodes E2 and E3 that map to the same integer point. �
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Figure 5.14: Weighted simplicial complex representing T Y .

Example 5.4.4. [Example 5.3.5 revisited] We choose parameter values for the parameteri-
zation (5.11) to obtain a non-generic surface Y in T2 and its defining degree one map:

f1(s, t) = s− t,
f2(s, t) = t− s2,

f3(s, t) = −1 + st.

(5.13)

This choice of specialization of the coefficients in (5.11) forces the constant term of the
implicit equation of Y to equal one. In particular, this implies that the tropical surface
graph has one extra node: the one corresponding to the extra facet that appears in the
Newton polytope, shown in Figure 5.17).

The left-most picture in Figure 5.15 shows the plane curves defined by each coordinate of
the parameterization (5.13). As we see, these three curves intersect at the point (1, 1) and,
thus, the surface Y is non-generic.

D1 := (s− t = 0)
D1

D1 := (s− t = 0)
D1 D2 := (t− s2 = 0)

D2

D1 := (s− t = 0)
D1 D2 := (t− s2 = 0)

D2

D3 := (1− st = 0)

D3

D1 := (s− t = 0)
D1 D2 := (t− s2 = 0)

D2

D3 := (1− st = 0)

D3

D1 := (s− t = 0)
D1 D2 := (t− s2 = 0)

D2

D3 := (1− st = 0)

D3

D2 := (u− s2 = 0)

D2

D2 := (u− s2 = 0)

D2

D2 := (u− s2 = 0)

D2

D3 := (−u2 + s = 0)

D3

D2 := (u− s2 = 0)

D2

D3 := (−u2 + s = 0)

D3

D∞ := (u = 0)

D∞

D2 := (u− s2 = 0)

D2

D3 := (−u2 + s = 0)

D3

D∞ := (u = 0)

D∞

Figure 5.15: From left to right: affine charts and boundary divisors at u = 1 and t = 1.

We now compute T Y . We start by embedding X = T2 r
⋃3
i=1(fi = 0) in P2 and

considering its compactification X ′. This adds the new component D∞ = (u = 0) to the
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boundary of X ′ ⊂ P2 and an extra singularity, coming from the intersection of (fh2 =
0), (fh3 = 0) and D∞. The resolution diagrams of these two singularities are depicted
in Figure 5.16. The abstract boundary intersection complex is obtained by gluing these
two resolution diagrams and adding edges between nodes representing prime divisors that
intersect away from these two singularities. The resolution graph of the arrangement X is
depicted in the right of Figure 5.17.

Figure 5.16: From left to right: resolution diagrams at (1 : 1 : 1) and (0 : 1 : 0).

Finally, we realize this abstract graph in R3 by pulling back the basis of characters
{χ1, χ2, χ3} of the torus T3 along the composition of the resolution π : X̃ → X ′ and the map
f̃ : X ′ → T3, and computing the intersection numbers of the boundary components. If we
set Di = (fi(s, t) = 0) ⊂ P2, i = 1, 2, 3, D∞ = (u = 0) ⊂ P2 and follow the notation of
Figure 5.16, we obtain

(̃f ◦ π)∗(χ1) = D1 −D∞ − E1 − 2E2 + E3,

(̃f ◦ π)∗(χ2) = D2 − 2D∞ − E1 − 2E2 + E3,

(̃f ◦ π)∗(χ3) = D2 − 2D∞ − E1 − 3E2 + E3.

Therefore, [Di] = ei (i = 1, 2, 3), [D∞] = (−1,−2,−2), [E1] = (−1,−1,−1), [E2] =
(−2,−2,−3) and [E3] = (1, 1, 1). In addition, the nonzero intersection multiplicities are
D1 ·D2 = D1 ·D3 = E1 ·D3 = E2 ·D2 = E2 ·D∞ = E2 · E3 = E3 ·Di = 1 (i = 1, 2, 3) and
D2 ·D3 = 2. By applying Theorem 5.2.4 and Proposition 5.2.10 we conclude that all edges
have weight one, except for the edges (e2, e3) and (e1, [D∞]), whose weight equals two. The
resulting graph and the Newton polytope of the defining equation are shown in Figure 5.17.
By comparing the latter to Figure 5.12 we see the transition from a generic to a non-generic
surface obtained by specializing coordinates of a parameterization. �

5.5 Further remarks

We conclude the chapter with some remarks and open questions that deserve to be studied
in more detail, hoping to continue this line of research in the near future.
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Figure 5.17: Newton polytope and dual graph of a non-generic surface in C3 parameterized
by (5.13).

In Sections 5.3 and 5.4 we discussed the problem of computing tropical surface graphs
associated to rational surfaces in Tn. We assumed the given polynomial parameterization had
coordinates with fixed support and we explored two solutions, based on the genericity of the
complex coefficients of our map. This genericity condition was stated as a the combinatorial
normal crossing boundary and a tangency requirement, i.e. the lack of triple intersections
among boundary divisors in a compactification of an arrangement of plane curves plus the
condition that tangent directions at the crossing points of the branchings curves were distinct.

In the non-generic case, we explained a reduction to this generic setting by blowing up
points on plane curves and carrying the intersection numbers and divisorial valuations along
the resolution. The examples presented show how special these resolutions are, i.e. how hard
is to predict the combinatorics of the resolution by looking at the initial curve arrangement.
The final divisorial valuations of the exceptional divisors heavily depend on the topology of
the plane curves containing the points we blow-up.

The standard approach to obtain such valuations was introduced in work of Enriques and
Chisini [33] and further developed with the notions of Enriques and dual diagrams [98]. Such
methods are based on the topological type of the branches of the curves we resolve. The
pairwise intersection numbers are hard to compute in concrete examples. The main difficulty
lies in the construction of clusters of infinitely near points of a singularity [8]. These clusters
are precisely the point configurations emanating from successive blow-ups.

From our discussion in Section 5.4 we know that the construction of the intersection
complex ∆X̃,D̃ corresponds to the gluing of resolution diagrams (cf. Figure 5.16). If we take
a careful look at the local picture near each singularity and its resolution, we can interpret
these graphs as phylogenetic trees. The original prime divisors Dj, j ∈ {1, . . . , n} ∪ {∞},
correspond to the leaves of this tree, whereas the exceptional divisors are internal nodes
in the tree. In addition, we can place the leaves of the tree at infinity and interpret these
graphs as tropical trees. Since the tropical surface graph is obtained by gluing these graphs,
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we expect the tropicalization of a rational surface to be a gluing of phylogenetic trees.
We propose a method to construct these phylogenetic trees. Fix an intersection point p of

at least three boundary divisors of X ′ ⊂ P2 and perform a base change to the field of Puiseux
series, or any other non-archimedean valued field whose valued group is Q. Since blow-ups
of points on curves locally correspond to monomial changes of variables, we can pick a value
u for a slope and replace the bivariate equation fk defining a divisor Dk containing the point
p in an affine chart by the equation gk(t, q) = fk(t, q

ut) for a fixed parameter q. We repeat
this process for all divisors containing p. The polynomial gk is interpreted as a univariate
polynomial in q with coefficients in C[[t]] ⊂ C{{t}}. In particular, the surface parameterized
by f can be locally viewed as a curve in n-space over C{{t}}. By tropicalizing the image of
the map g : C{{t}} → C{{t}}n we obtain a tropical tree. This tropical tree will be precisely
the phylogenetic tree associated to the point p.

In the last years, a new object combining both Enriques and dual graphs was introduced
by Popescu-Pampu under the name of kite [80]. In his language, clusters of infinitely near
points are called constellations. This kite has a natural interpretation in the valuative tree
of Favre and Jonsson [36] and it seems to provide the best framework to study arrangements
of plane curves [42]. It also shows us how to glue local resolutions of intersection points.
Combining this new setting with the tools of combinatorial resolutions derived from Max
Noether’s fundamental theorem [11] we hope to obtain a classification of tropical surface
graphs in three-space.

As explained in [92, Section 5.3], even if we want to tropicalize a non-generic rational
surface in three-space we can still apply generic methods to obtain a tropical surface graph.
As expected, this graph does not correspond to our rational surface but rather to a defor-
mation of it, whose generic fiber is a generic surface parameterized by a polynomial map
with the same support. Using this tropical surface graph as input for the implicitization al-
gorithms described in Section 1.4, we obtain a polynomial multiple of the equation defining
the original surface. More precisely:

Proposition 5.5.1. [92, Proposition 5.3] Let f1, f2, f3 be Laurent bivariate polynomials
defining a surface Y in T3 by the polynomial map f = (f1, f2, f3). Let Q be the polytope
constructed from the Newton polytopes P1,P2,P3 as in Section 5.3. Then, the polytope Q
contains a translate of the Newton polytope of the equation defining Y .

Example 5.5.2. Figures 5.12 and 5.17 illustrate the previous result. Namely, the poly-
tope Q corresponds to the polytope with five vertices (0, 0, 0), (0, 0, 2), (0, 2, 0), (2, 1, 0) and
(3, 0, 0), which contains the Newton polytope P corresponding to a non-generic surface. This
polytope has seven vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 2), (0, 2, 0), (2, 1, 0) and (3, 0, 0).
In this case, no translation is required. �

As we discussed throughout this dissertation, the tropicalization of algebraic varieties
heavily depends on the field of definition. As it stands, tropical implicitization was presented
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in the constant coefficient case, i.e. of algebraic varieties over the complex numbers. Since
arbitrary tropical complexes behave as tropical fans from the degenerations perspective [87,
Prop 2.2.3], our results for complex varieties should have analogs in the non-trivial valued
case. This philosophical principle needs to be carefully verified in our constructions.

One particular instance of this extension is the case of generic rational surfaces param-
eterized by polynomial maps with fixed support. Instead of allowing complex coefficients,
we may allow coefficients on any non-archimedean valued field K with valued group Q as in
Section 1.1.2. In that setting, the tropical variety is a polyhedral complex in Qn and we need
to extend the basics on geometric tropicalization to the arbitrary coefficient case, where toric
varieties are defined over discrete valuation rings. The notion of tropical compactification of
varieties defined over K was recently explored by Luxton and Qu [64]. Note that the real-
ization of the boundary intersection complex of such compactification gives a complex in Qn

whose dimension is off by one from the dimension of the tropical complex. In the constant
coefficient case, this is fixed by taking the cone over such complex, but we are not be able
to do that in the arbitrary coefficient case. Likewise, the push-forward formula for tropical
multiplicities needs to be extended to the arbitrary coefficient case to obtain an analog of
Theorem 5.2.4 for varieties defined over K.

In recent articles, a connection between tropical geometry and Berkovich spaces was
established, endowing tropical geometry with powerful analytic tools [77]. In particular,
questions regarding tropical compactifications should have a natural interpretation in this
new setting. Thuillier has successfully applied this principle to study homotopy types of the
intersection complex of a regular compactification with simple normal crossing boundary
divisor, showing that this type depends only on the original variety [95, Section 4.2]. We
expect his analysis can provide insight to the question of tropical compactifications discussed
in this chapter and give relevant information to construct tropical surface graphs. It would
be very interesting to compare tropical implicitization techniques with similar notions on
Berkovich spaces.
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Input: The supports {Ai : i = 1, . . . , n} of n bivariate polynomials f1, . . . , fn with
generic coefficients and the degree δ of the map f = (f1, . . . , fn).

Assumption: The coefficients of the polynomials are generic enough to guarantee
that the intersection of any triple of distinct curves (fi = 0), (fj = 0) and (fk = 0)
(i, j, k = 1, . . . , n) is empty.
Output: The tropical surface graph of the image of f : T2 99K Tn.

for each i = 1, ..., n do
Pi ← convex hull of Ai ⊂ Z2.
Ni ← inner normal fan of Pi.

P ←
⊕n

i=1Pi.
N ← normal fan of P .
V ← ∅.
while dimPi > 0 do

V ← V ∪ {ei}.
for all ρ ray in N [1] do

nρ ← primitive integer generator of ρ.
[Dρ]← trop(f)(nρ) ∈ Zn.
if [Dρ] 6= 0 then

V ← V ∪ {[Dρ]}.

E ← ∅.
for each i = 1, . . . , n− 1 do

for each j = i+ 1, . . . , n do
if dim(Pi ⊕Pj) = 2 then

E ← E ∪ {(ei, ej)}.
m(ei,ej) = 1

δ
MV(Pi,Pj).

for each ρ ∈ N [1] do
while dimPi > 0 do

if ρ ∈ N [1]
i and dim R〈[Dρ], ei〉 = 2 then

E ← E ∪ {([Dρ], ei)}.
m([Dρ],ei) = 1

δ
(|facenρ(Pi) ∩ Z2| − 1) gcd

(
[Dρ]j : j 6= i

)
.

for each η ∈ N [1], η 6= ρ do
if ρ and η generate a cone in N [2] and dim R〈[Dρ], [Dη]〉 = 2 then

E ← E ∪ {([Dρ], [Dη])}.

m([Dρ],[Dη ]) = 1
δ

gcd
(

2×2−minors ([Dρ]|[Dη ])
)

gcd
(

2×2−minors (nρ|nη)
) .

return The graph (V,E).

Algorithm 5.1: Tropical Implicitization of generic surfaces: From the support of
n polynomials with generic coefficients, we compute a weighted graph encoding the
tropicalization of a rational variety in Tn parameterized by these n polynomials.
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[44] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research
in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/, 2009.

[45] Paul Hacking, Sean Keel, and Jenia Tevelev. Stable pair, tropical, and log canonical
compactifications of moduli spaces of del Pezzo surfaces. Invent. Math., 178(1):173–
227, 2009.

[46] Joe Harris. Algebraic geometry, A first course, volume 133 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1995. Corrected reprint of the 1992 original.

[47] Robin Hartshorne. Algebraic geometry, volume 52 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1977.

[48] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning. Springer Series in Statistics. Springer-Verlag, New York, 2nd edition, 2009.
Data mining, inference, and prediction.

[49] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm
for deep belief nets. Neural Comput., 18(7):1527–1554, 2006.

[50] Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, 2006.

[51] W. Cary Huffman and Vera Pless. Fundamentals of error-correcting codes. Cambridge
Univ Pr, 2003.

[52] Ilia Itenberg and Oleg Viro. Patchworking algebraic curves disproves the Ragsdale
conjecture. Math. Intelligencer, 18(4):19–28, 1996.

[53] Anders Jensen. Algorithmic Aspects of Gröbner Fans and Tropical Varieties. PhD
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