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Abstract

Dysregulated iron transport and a compromised blood-brain-barrier are implicated in HIV-

associated neurocognitive disorders (HAND). We quantified the levels of proteins involved in iron 

transport and/or angiogenesis - ceruloplasmin, haptoglobin, and vascular endothelial growth factor 

(VEGF) – as well as biomarkers of neuroinflammation, in cerebrospinal fluid (CSF) from 405 

individuals with HIV infection and comprehensive neuropsychiatric assessments. Associations 

with HAND [defined by a Global Deficit Score (GDS) ≥0.5, GDS as a continuous measure 

(cGDS), or by Frascati criteria] were evaluated for the highest vs. lowest tertile of each biomarker, 

adjusting for potential confounders. Higher CSF VEGF was associated with GDS-defined 

impairment [odds ratio (OR) 2.17, p=0.006] and cGDS in unadjusted analyses and remained 

associated with GDS impairment after adjustment (p=0.018). GDS impairment was also associated 

with higher CSF ceruloplasmin (p=0.047) and with higher ceruloplasmin and haptoglobin in 

persons with minimal comorbidities (ORs 2.37 and 2.13, respectively; both p=0.043). In persons 

with minimal comorbidities, higher ceruloplasmin and haptoglobin were associated with HAND 

by Frascati criteria (both p<0.05), and higher ceruloplasmin predicted worse impairment (higher 

cGDS values, p<0.01). In the subgroup with undetectable viral load and minimal comorbidity, 

CSF ceruloplasmin and haptoglobin were strongly associated with GDS impairment (ORs 5.57 

and 2.96, respectively; both p<0.01) and HAND (both p<0.01). Concurrently measured CSF IL-6 

and TNF-α were only weakly correlated to these three biomarkers. Higher CSF ceruloplasmin, 

haptoglobin, and VEGF are associated with a significantly greater likelihood of HAND, 

suggesting that interventions aimed at disordered iron transport and angiogenesis may be 

beneficial in this disorder.

Keywords

ceruloplasmin; haptoglobin; vascular endothelial growth factor; biomarker; HIV-associated 
neurocognitive disorder; cerebrospinal fluid (CSF)

INTRODUCTION

HIV-associated neurocognitive disorder (HAND) remains a common complication of HIV 

infection, despite the effectiveness of combination antiretroviral therapy (ART) in 

suppressing viral replication and reducing the frequency of HIV-associated dementia.1 

Milder forms of neurocognitive (NC) impairment are nevertheless responsible for a majority 

of HAND diagnoses that occur in up to half of unselected persons with HIV (HIV+ 

individuals).2 These forms of HAND are also clinically significant3, if not always 
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progressive, contributing to loss of employment, medication nonadherence, and reduced 

quality of life.4; 5 Although inflammation, mediated by activated monocyte-macrophages, is 

recognized to be central to HIV neuropathogenesis, clinical interventions for HAND remain 

elusive, and other mechanisms that promote NC decline in HIV+ persons continue to merit 

exploration.

Recent studies by our group and others increasingly implicate dysregulated iron transport 

and mitochondrial dysfunction in HAND.6; 7 Iron is required for mitochondrial function, and 

iron transport influences immune activation and angiogenesis,8; 9 both of which have in turn 

been linked to HAND and/or other neurodegenerative processes.10-12 Glial and immune-cell 

activation and altered angiogenesis may compromise the integrity of the blood-brain-barrier 

(BBB) in HIV+ persons, thereby facilitating the transmigration of activated immune cells 

into the brain and promoting infection of resident microglia, perivascular macrophages, and 

possibly other non-neuronal cells.13 These secondarily infected cells establish an HIV 

reservoir early in the disease course that is not appreciably impacted by ART.1

Ceruloplasmin is a multifunctional copper ferroxidase involved in copper and iron transport 

with diverse roles in the brain.14-16 Similarly, haptoglobin is a small but ubiquitous 

hemoglobin-binding protein in the circulation, which thereby serves as co-ligand for the 

macrophage-monocyte scavenger receptor CD163, a molecule recognized to be induced in 

neurocognitively impaired HIV+ individuals.17-19 To our knowledge, neither ceruloplasmin 

nor haptoglobin has been quantified in the CSF of HIV+ persons. Vascular endothelial 

growth factor (VEGF) is an angiogenesis factor, whose effects in the CNS may be either 

neuroprotective or deleterious, depending on the setting.20 Ceruloplasmin, haptoglobin, and 

VEGF are induced to varying degrees by acute inflammation.16 In this study, conducted in a 

large observational cohort of HIV+ individuals with neuropsychiatric and neuromedical 

characterization, we investigated whether higher CSF levels of these multifunctional proteins 

are associated with an increased prevalence of HAND.

PATIENTS AND METHODS

Study population

The CNS HIV Antiretroviral Therapy Effects Research (CHARTER) study is a prospective, 

observational study based in the U.S., which enrolled over 1500 ambulatory, HIV-

seropositive adults between 2003 and 2007 at six medical centers. All participants 

underwent baseline assessments that included standardized, structured interviews and 

laboratory studies, to obtain basic demographic information, as well as other data, including 

complete blood counts, current and nadir CD4+ T-cell counts, HIV RNA levels in plasma 

and CSF, hepatitis C virus (HCV) serology, history of ART, exposure to nucleoside reverse-

transcriptase inhibitors, major depressive disorders, substance use/dependency, and 

comorbid conditions that might influence NC function. Further details of CHARTER study 

eligibility and assessment protocols have been previously published.21 CSF samples were 

obtained by lumbar puncture in all consenting participants at baseline and at follow-up 

visits. Genetic ancestry for all individuals was determined previously, using the Affymetrix 

Genome-Wide Human SNP Array 6.0™ (Affymetrix, Inc., Santa Clara, CA, USA) and 

categorized using principal component (PC) analysis, as described elsewhere.22

AR et al. Page 3

Mol Neurobiol. Author manuscript; available in PMC 2020 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Assessment of NC function and comorbid conditions

Comprehensive neuropsychiatric and NC testing was performed in all participants at 

baseline and follow-up visits and included 15 measures in 7 cognitive ability domains 

known to be affected by HIV infection.23; 24 The effects of age, sex, educational level, race/

ethnicity and practice or learning effects in those repeatedly tested were accounted for in this 

test battery, which incorporates the best available normative standards. Composite test scores 

(e.g., the Global Deficit Score [GDS]) were derived from demographically corrected 

standardized scores (T scores) on individual tests. The GDS may be evaluated as a 

continuous measure (cGDS) that reflects the overall number and severity of impairments on 

the test battery, or dichotomized to define neurocognitive impairment (impaired, GDS≥0.5 

and neurocognitively normal, GDS<0.5).24 While the binary GDS variable is the more 

clinically relevant measure of NC function, the cGDS improves power for evaluating 

impacts on NC function. NC impairment criteria incorporating functional assessments were 

also classified according to the well-accepted Frascati criteria.25 Individuals with 

neuropsychiatric and severe comorbid conditions that were deemed likely by expert 

neurologists to confound the diagnosis of HAND (e.g., ongoing substance use, prior stroke 

or cardiovascular complications without return to normal cognitive function after the event, 

severe depression with suboptimal effort in cognitive testing, decompensated liver disease, 

or history of traumatic brain injury with loss of consciousness of 30 minutes or more) were 

excluded from analysis.21; 24

Quantification of CSF biomarkers

Ceruloplasmin and haptoglobin were quantified in CSF from the baseline visit in 405 

participants, using commercially available multiplex bead-based suspension array 

immunoassays validated for CSF (EMD Millipore™, Billerica, MA) on a FlexMAP3D 

platform (Luminex Corporation, Madison, WI); VEGF was quantified using the Quantikine 

ELISA kit (R&D Systems, Inc., Mpls, MN). All assay results were reviewed for quality 

assurance, and 10% of all assays were repeated to assess operator and batch consistency. 

Biomarker precision was ensured by assaying specimens in duplicate and repeating 

measurements with coefficients of variation greater than 20% or outliers that were more than 

3 standard deviations (SDs) from the mean. In addition, interleukin (IL)-6, CXCL-10, and 

tumor necrosis factor-alpha (TNF-α) were measured by high-sensitivity assays using the 

Millipore™ Luminex FlexMap3D platform.

Statistical Analysis

The total of 405 participants included 176 with HAND. Baseline characteristics were 

compared between neurocognitively impaired and unimpaired participants using t-tests (age 

and education), Wilcoxon signed-rank tests (WRAT, nadir CD4+ T-cell count, cGDS, and all 

CSF biomarkers), or Fisher’s exact tests (sex, race/ethnicity cluster, HCV status, detectable 

CSF virus, detectable plasma virus, ART status [on vs. off treatment at the time of 

sampling], comorbidity, HAND [Frascati definitions]25, and GDS-defined NC impairment 

status). To test associations of CSF biomarkers with the GDS, univariate logistic regression 

was performed with the binary GDS outcome and univariate linear regression was performed 

with the cGDS outcome. Multivariable logistic or linear regression analyses were then 
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performed for analyses of GDS-defined impairment and cGDS, respectively, with 

adjustment for nadir CD4, ART status, the first two PCs of genetically determined ancestry 

(PC1, PC2), and comorbidity. These specific covariates were selected due to their known 

associations with HAND23, to prevent potential confounding of biomarker effects. In 

addition, self-reported race/ethnicity was associated with CSF biomarkers of iron transport 

in our prior studies6, and genetic ancestry is widely accepted as more representative of racial 

ancestry than racial/ethnic self-classification. Only the first two PCs of ancestry were 

included in order to optimize power, and because these PCs contributed most of the 

ancestry-related variability and were statistically significant in univariate analyses, as 

published previously.26 Because comorbidity was found to be a factor significantly 

associated with NC status in all analyses, multivariable analyses were repeated, stratifying 

by comorbidity severity, which was categorized as minimal (non-contributory to NC 

impairment), or mild-moderate severity (likely to contribute to NC impairment), as 

described elsewhere.21 Participant age was not included in regression models, in order to 

optimize power for detection of biomarker effects, since the GDS measure in CHARTER 

already incorporates adjustment for age, and additional inclusion of age did not alter the 

observed associations.21 In the subset of individuals on ART with undetectable virus in 

plasma, associations of each CSF biomarker with NC impairment were assessed using 

multivariable logistic regression modeling of GDS-defined impairment (vs. GDS-

unimpaired), and HAND (binary variable, using the Frascati definitions of asymptomatic NC 

impairment, mild NC disorder, or HIV-associated dementia, vs. neuropsychiatrically 

unimpaired). These analyses were further stratified by comorbidity and adjusted for nadir 

CD4, PC1, and PC2. The potential impact of outlier biomarker values in a few individuals 

was also assessed in this analysis by excluding individuals with 2 or more biomarker values 

greater than 2 SDs from the mean, but overall results were unchanged; hence, only results 

for all individuals are presented. For all analyses, CSF biomarkers were divided into tertiles 

to optimize power for detection of small effects due to the non-normality of their 

distributions. Odds ratios and their 95% confidence intervals (95% CI) were then estimated 

for tertile (T3) compared to tertile 1 (T1) of each biomarker. Since this analysis was 

exploratory in nature, corrections for multiple testing were not employed. Finally, a 

supplementary analysis to determine the correlations between all of the CSF biomarkers was 

performed using pairwise Spearman’s correlation coefficients. Two-sided p-values<0.05 

were considered statistically significant for all analyses, which were conducted using SAS™ 

statistical software version 9.4.

RESULTS

Study population characteristics

Cerebrospinal fluid biomarker measurements from a total of 405 CHARTER study 

participants were included in this analysis. Baseline demographic and HIV disease 

characteristics of this population are summarized in Table 1. The mean age of the sample 

was 43 years, and 79 (19%) were women; 43% were of European ancestry, 43% were of 

African ancestry, and 14% were of admixed Hispanic ancestry. Ninety-five individuals 

(24%) were co-infected with hepatitis C virus. The median CD4 nadir was 177 (interquartile 

range [IQR] 56-308), 73% were on ART at the time of NC assessment and CSF sampling, 
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and 54% had detectable plasma HIV. One-third of participants had mild-moderate 

(contributory) comorbid neuromedical conditions. The median GDS was 0.32 (IQR, 

0.11-0.58), and 57% of individuals were NC normal, 34% had asymptomatic impairment, 

and 10% had symptomatic (either mild or severe) impairment on combined NC testing and 

functional assessment. Neurocognitively impaired individuals were slightly older, had 

slightly lower WRAT scores (an estimate of education and reading ability), and were 

nonsignificantly less likely to have detectable virus in plasma than unimpaired individuals. 

Significant comorbid conditions were also more prevalent in the impaired group.

Biomarkers of iron metabolism and inflammation

Levels of CSF ceruloplasmin ranged from 592 to 8028 pg/mL (median 1622, IQR 

1279-2150) and were significantly higher among neurocognitively impaired persons in 

unadjusted analysis (Table 1; p=0.03) Haptoglobin ranged from 2.68 to 12,500 pg/mL 

(median 2510, IQR, 928-4551), and median VEGF levels in CSF were 7.10 pg/mL (IQR, 

4.16, 9.47; range 0.037 to 31.2). Interleukin (IL)-6 levels, CXCL10, and TNF-α levels were 

3.4 pg/mL (IQR 2.5, 4.7), 1557 (IQR, 1058, 2745), and 0.44 (0.33, 0.63), respectively. No 

statistically significant differences by NC impairment status were observed for levels of CSF 

biomarkers other than ceruloplasmin.

Measures of association of CSF biomarkers with NC outcomes

Unadjusted logistic regression analyses of GDS-defined NC impairment (binary GDS 

variable) and linear regression analyses of cGDS were performed for each CSF biomarker 

separately, with results as shown in Table 2. Ceruloplasmin and haptoglobin levels were not 

significantly associated with either GDS variable, nor were associations with any of the 

inflammation biomarkers (IL-6, CXCL-10, and TNF-α) observed. Higher CSF VEGF, 

however, showed a borderline association with GDS-defined impairment [crude OR for T3 

vs. T1, 2.17 (95% CI 1.25-3.74)], as well as with higher values of the cGDS (p=0.04).

As shown in Table 3, adjustment of multivariable regression models for the nadir CD4, ART, 

the first two ancestry PCs, and severity of other medical comorbidities revealed a modestly 

increased likelihood of GDS impairment with higher levels (T3 vs. T1) of both 

ceruloplasmin and VEGF [OR 1.77, (95% CI 1.01-3.10) and 2.00 (95% CI 1.13-3.54), 

respectively, both p-values<0.05]. The point estimate for the association of comorbidity 

(significant vs. minimal) in all regression models was consistently 2.70 to 2.87 (all p-

values<0.0001). Since we felt it unlikely that any single biomarker’s association would be 

equal to or greater than that of chronic comorbidities with NC status, we also performed 

analyses stratified by comorbidity severity (i.e., comorbid conditions deemed to be either 

minimal or mild-moderate, as described in the Methods), adjusting for all of the same 

covariates mentioned above except comorbidity (Table 4). In 270 individuals with minimal 

comorbidity, significant ceruloplasmin and haptoglobin associations with binary GDS were 

detected. Adjusted ORs were 2.37 for ceruloplasmin (95% CI 1.17-4.78) and 2.13 for 

haptoglobin (95% CI 1.02-4.42), for T3 compared with T1. CSF ceruloplasmin was also 

associated with higher cGDS (beta estimate 0.178, p=0.001). Significant associations with 

VEGF were not observed in this subset. When we tested the sensitivity of these findings to 

exclusion of extreme outlier values, we found the results to be robust: exclusion of 18 
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individuals in whom 2 or more biomarkers had values >2 SD from the mean strengthened 

these associations (data not shown). In the subset of 135 individuals with mild-moderate 

(neuro-influential) comorbidities, interestingly, significant associations for both biomarkers 

were observed in the opposite direction for ceruloplasmin with cGDS (beta estimate= 

−0.257, p=0.027) and for haptoglobin with GDS impairment (adjusted OR 0.41, 95% CI 

0.17-0.99). Interleukin-6 levels were also associated with reduced likelihood of GDS 

impairment and lower (better) values of cGDS in the presence of mild-moderate 

comorbidities (adjusted OR for GDS impairment 0.40, 95% CI 0.16-0.98). No association 

with VEGF was observed for either GDS outcome.

Analyses stratified by comorbidity were also conducted in 185 study participants with 

undetectable viral load on ART (Table 5). Among 69 individuals with mild-moderate 

comorbidities, only CXCL-10 levels in CSF were significantly associated with GDS 

impairment (OR 6.5 for T3 vs. T1, 95% CI 1.29-33.28, adjusted for nadir CD4, PC1 and 

PC2). Individuals with neurologically insignificant comorbidities (N=116) and CSF 

ceruloplasmin levels in the highest vs. lowest tertile were significantly more likely to have 

GDS impairment (adjusted OR 5.57, 95% CI 1.64-18.94) and higher cGDS values (beta-

estimate 0.288, p-value=0.005). Higher CSF haptoglobin levels in this subset were likewise 

associated with an increased risk of GDS impairment (adjusted OR 2.96, 95% CI 1.07-8.23).

Since the GDS-based NC outcomes we evaluated did not include a functional assessment, 

we also included the Frascati definition of HAND as a clinical outcome (Table 5). No 

associations were detected in the subset with mild-moderate neuromedical comorbidities, 

but among participants with minimal comorbidities and undetectable viral load on ART, 

those with ceruloplasmin and haptoglobin levels in T3 vs. T1 were considerably more likely 

to have a diagnosis of HAND (adjusted ORs 4.61, 95% CI 1.62-13.12 for ceruloplasmin and 

2.51, 95% CI 1.01-6.22 for haptoglobin). While point estimates for associations of VEGF 

levels with HAND were in the same direction, they were not statistically significant.

Correlations with neuro-inflammation

All three of the biomarkers evaluated in this study are multifunctional proteins and are also 

induced during periods of acute inflammation (acute-phase reactants). We therefore 

simultaneously measured biomarkers of inflammation in the same CSF samples to determine 

their correlation with iron-related biomarkers. A correlation matrix for the CSF biomarkers 

(Supplementary Table 1) showed that while ceruloplasmin and haptoglobin were moderately 

correlated with one another (rho=0.45, p<0.01), they are only very weakly correlated with 

IL-6, CXCL-10, and TNF-α. VEGF was only weakly correlated with ceruloplasmin in CSF 

and not at all correlated with haptoglobin or with biomarkers of inflammation.

DISCUSSION

This study, conducted in over 400 clinically well-characterized individuals with HIV, is the 

first published CSF study to identify associations of two proteins involved in iron 

metabolism and angiogenesis, ceruloplasmin and haptoglobin, with HAND, and also to 

suggest a possible link between HAND and higher CSF levels of another pro-angiogenic 

factor, VEGF. We previously showed that CSF levels of iron, transferrin, and H-ferritin (also 
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an important plasma ferroxidase) are associated with other established risk factors for 

HAND, including demographic factors and viral load in either CSF or plasma, even after 

correction for variations in BBB integrity.6 By simultaneously measuring biomarkers which 

directly reflect CSF inflammation (IL-6, TNF-α) or immune activation (CXCL-10), we were 

able to evaluate the extent to which the biomarkers of interest reflected neuroinflammation, 

rather than iron metabolism or angiogenesis.

Ceruloplasmin is one of the most important proteins involved in maintenance of iron and 

copper homeostasis systemically and in the brain.27 Once released into the brain 

interstitium, iron must be loaded onto transferrin for transport to neurons and other types of 

brain cells, a process for which readily available ferroxidase activity is essential.28 

Ceruloplasmin is produced by astrocytes in soluble and membrane-bound, 

glycophosphatidylinol (GPI)-anchored forms, as well as by pericytes and brain vascular 

endothelial cells, and provides ferroxidase activity for oxidation of ferrous iron in brain 

interstitial fluid to the ferric form which binds transferrin.14; 16 Astrocyte-derived soluble 

ceruloplasmin (or possibly another extracytoplasmic ferroxidase such as H-ferritin or 

haptoglobin) is probably also required for ferroportin-mediated iron efflux from brain 

vascular endothelial cells into the brain.29 Indeed, astrocytes are believed to play a crucial 

role in regulating the efflux of iron from endothelial cells into the brain. Ceruloplasmin also 

serves other functions, including copper transport, coagulation, angiogenesis, and defense 

against oxidant stress; it is expressed on cells of the macrophage-monocyte lineage, which 

have a central role in HAND pathogenesis.30; 31 A deficiency of ceruloplasmin has been 

associated with neurobehavioral phenotypes involving brain iron deficits, although low 
levels of ceruloplasmin have also been linked to elevated levels of brain iron and lipid 

peroxidation in neurodegenerative disorders like Alzheimer’s disease (AD).28; 32 Rozek, et 
al, observed higher serum ceruloplasmin levels in individuals with HAD and speculated that 

this protein might simply reflect chronic inflammation.28 In our study, however, the absence 

of strong correlations with biomarkers of inflammation in the CSF, or associations of IL-6 or 

TNF-α with HAND, argues against this possibility and suggests that higher levels of 

ceruloplasmin in individuals with HAND are unlikely to be due mainly to inflammation. 

Elevated levels of ceruloplasmin may either be a physiologic response to other changes that 

promote HAND, or part of the pathophysiology of HAND; these mechanisms can only be 

differentiated in prospective human studies or, potentially, in animal models of HAND. The 

former scenario might occur due to functional iron deficiency in the brain in HIV+ persons, 

a concept supported by the finding in ART-era “-omics” studies of HAND33 that the 

clathrin-mediated endocytosis pathway (required for entry of iron-bound transferrin into 

cells) is downregulated, and by evidence from our prior unpublished studies that transferrin-

receptor expression, an indicator of increased cellular iron demand, is upregulated.34; 35 

Increased need for ceruloplasmin in HIV infection would also be consistent with the loss of 

brain white matter in this disease, as the copper chelator and neurotoxin cuprizone induces 

demyelination in mice.36 A relative deficiency of ceruloplasmin in the brain could occur as a 

response to increased brain iron in HIV+ individuals, as some studies indicate that 

ceruloplasmin prevents iron-mediated oxidant injury to neurons in the setting of brain iron 

loading.37 However, evidence of increased brain iron in HIV+ individuals is scant in the 

ART era.38 The latter scenario, in which ceruloplasmin has direct pathogenic effects in 
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HAND, could also explain our observation that higher levels of this biomarker are associated 

with HAND. One older study suggested that ceruloplasmin may activate microglia, playing 

a pro-inflammatory role.39 Finally, this protein has been linked to glutamatergic 

neurotoxicity, which has been reported in HAND.35; 40; 41

Haptoglobin is an immunomodulatory circulating glycoprotein with strong antioxidant 

properties, whose primary function is to bind free hemoglobin released from lysed or 

phagocytosed red blood cells. The resulting hemoglobin-haptoglobin complex is internalized 

via scavenger receptor CD163-mediated endocytosis on the macrophage-monocyte 

membrane, leading to metabolism of the heme by cytosolic heme oxygenase 1 (HO-1). Iron-

binding proteins like haptoglobin are integral to the innate immune response, reducing iron 

availability to microbial pathogens; haptoglobin is also a powerful suppressor of lymphocyte 

function, promoting T helper-1 responses and reducing pro-inflammatory cytokine secretion.
42 Specific haptoglobin phenotypes with differing affinities for hemoglobin have been linked 

to higher mortality in HIV infection, and the Hp2-2 form has been associated with higher 

serum ceruloplasmin ferroxidase activity.42; 43 CD163, haptoglobin, and HO-1 are all 

positive acute-phase proteins and might be expected to play an antioxidant, anti-

inflammatory role in the brain as well.44 Recently, HIV viral load was found to be positively 

correlated to macrophage-monocyte expression of haptoglobin-hemoglobin scavenger 

receptor CD163, and the productivity of HIV infection in macrophages has been associated 

with higher levels of CD163 expression.45; 46 Soluble CD163 is shed by activated 

monocytes and macrophages and may remain elevated in chronic HIV infection despite 

ART, indicating ongoing efforts by the immune system to resolve immune activation and 

inflammation.19; 47 It is therefore likely that increased CSF haptoglobin in HIV+ individuals 

represents a neuroprotective response to HIV-related neuroimmune activation, and further 

studies are needed to clarify its role in HAND.

Weakly significant associations of ceruloplasmin with cGDS, and of haptoglobin with binary 

GDS in the opposite direction (i.e., reduced impairment) in individuals with mild-moderate 

comorbidity, as compared to the minimal comorbidity group, are intriguing and may provide 

clues to the underlying pathophysiology of HAND. However, these findings did not appear 

to be as robust as the results in the larger subset of individuals with insignificant 

comorbidities, and we believe they may be spurious, due to insufficient power and/or greater 

background inflammation masking true biomarker effects in individuals with significant 

comorbid disease. Comorbidities that contribute to NC impairment (mild-to-moderate 

severity subset, in this case) are more likely to involve systemic inflammation, which we 

have found to easily overwhelm individual biomarker effects and reduce the ability to detect 

CSF biomarker associations with HAND. In support of this argument, the positive 

associations of ceruloplasmin and haptoglobin observed with HAND in the study sample 

overall were stronger in the minimal-comorbidity subset and stronger still when the analysis 

was confined to individuals in whom virus was undetectable.

Our observation of associations between higher CSF VEGF and GDS-defined NC 

impairment in adjusted as well as unadjusted analyses suggests a possible role for 

angiogenesis in HAND. Furthermore, haptoglobin and ceruloplasmin are also distinctly pro-

angiogenic proteins. While VEGF is neuroprotective via direct effects on neurons and 
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vascular perfusion, increased levels of this factor may further disrupt an already 

compromised BBB in HIV+ persons, and this may be particularly true of disorders 

characterized by demyelination.20; 48; 49 Loss of integrity of the neurovascular unit that 

makes up the BBB has been documented in several neurodegenerative disorders, including 

AD, HIV, and multiple sclerosis.50 In addition, HIV Tat has structural similarity to VEGF, 

and both Tat and its derived peptides can induce angiogenesis via activation of VEGF 

receptors expressed on endothelial cells.51 Human brain microvascular endothelial cells of 

the BBB have also been shown to upregulate VEGF receptors after exposure to interferon-γ, 

which, along with HIV Tat, is present in the CSF of HIV+ persons.52 One prior study 

reported significantly higher VEGF levels in serum in 8 HIV+ individuals with associated 

neurological diseases such as HIV encephalitis, compared to 19 HIV+ persons without CNS 

disease, but this was not true of CSF VEGF, and VEGF levels decreased during ART in 2 

individuals in whom levels were available.49 It is unclear from our study whether the 

observed VEGF association with HAND represents a pathological induction or a 

compensatory response due to HIV infection and neuroinflammation, and either scenario is 

possible.

Limitations of this study include its cross-sectional design and the inability to confirm the 

source of CSF VEGF and proteins of iron metabolism such as ceruloplasmin and 

haptoglobin, since plasma levels of these proteins were not measured. While ceruloplasmin 

has a molecular weight over twice that of albumin and does not generally cross an intact 

BBB, studies in HIV+ persons suggest significant variability in BBB integrity, as reflected 

by elevated age-adjusted CSF/serum albumin ratios.53; 54 Similarly, haptoglobin levels in 

CSF may be partly related to damage to the BBB induced by HIV, which does not appear to 

be eliminated by ART; however, glial production of this protein may also be increased, 

owing to oligodendrocyte and neuronal injury.55; 56

CONCLUSIONS

In conclusion, levels of ceruloplasmin, haptoglobin, and VEGF, measured for the first time 

in HIV+ CSF in the ART era, were found to be associated with HAND, using several 

metrics of NC outcome. Despite their biological plausibility, the associations we identified 

were not adjusted for multiple testing and require replication. These observations are novel 

and lend support to the concept that dysregulated iron metabolism and angiogenesis are 

intimately linked to NC impairment in HIV+ persons, but the underlying mechanisms 

deserve further investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

CHARTER study participant characteristics at baseline.

Baseline Variable Entire Population
(N =405)

Impaired
(N = 176)

Not Impaired
(N = 229) p-value

a

Age (Yrs) 43 (8) 45 (8) 42 (8) <0.01

Sex (Female) 79 (19) 33 (19) 46 (20) 0.83

Ancestry Cluster
b 0.17

  European 171 (43) 84 (48) 87 (39)

  African 169 (43) 66 (38) 103 (47)

Admixed Hispanic 55 (14) 24 (14) 31 (14)

Education Level (Yrs) 12.9 (2.4) 13.1 (2.4) 12.7 (2.3) 0.12

CD4 Nadir (x103 cells/mm3) 177 (56, 308) 162 (50, 266) 193 (59, 333) 0.18

HCV Co-Infected 95 (24) 49 (28) 46 (20) 0.09

Detectable Plasma Virus 216 (54) 90 (51) 126 (56) 0.45

ART (On) 296 (73) 133 (76) 163 (71) 0.38

Comorbid Conditions
c <0.01

 Mild-Moderate 135 (33) 76 (43) 59 (26)

   Minimal 270 (67) 100 (57) 170 (74)

HAND (Frascati category) --

  NP-normal 229 (57) 0 (0) 229 (100)

   ANI 137 (34) 137 (78) 0 (0)

   MND 32 (8) 32 (18) 0 (0)

   HAD 7 (2) 7 (4) 0 (0)

Global Deficit Score (cGDS) 0.32 (0.11, 0.58) 0.63 (0.42, 1.0) 0.16 (0.05, 0.26) --

CSF Biomarker
d

 Ceruloplasmin 1622 (1279, 2150) 1744 (1322, 2253) 1584 (1250, 2087) 0.03

  Haptoglobin 2510 (928, 4551) 2530 (965, 5259) 2510 (925, 4229) 0.48

   IL-6 3.4 (2.5, 4.7) 3.3 (2.5, 4.6) 3.6 (2.5, 4.7) 0.36

  CXCL-10 1557 (1058, 2745) 1564.5 (1027, 2724) 1540 (1093, 2745) 0.66

   TNF-α 0.44 (0.33, 0.63) 0.44 (0.33, 0.59) 0.45 (0.32, 0.67) 0.45

   VEGF 7.10 (4.16, 9.47) 6.76 (4.15, 9.39) 7.50 (4.20, 9.50) 0.56

Data are presented as mean (SD) for continuous, normally distributed variables; N (%) for count data; and median (interquartile range) for 
continuous, non-normally distributed variables.

a
p-values represent comparison of impaired to unimpaired participants.

b
Ancestry clusters were determined using principal component analysis of genome-wide genetic data, as described in Methods.

c
Comorbid conditions are classified as minimal (noncontributory to neurocognitive impairment) or mild-moderate (contributing to neurocognitive 

impairment), based on previously established criteria.[Reference 21]

d
Raw biomarker values are summarized as the median (interquartile range).
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Abbreviations: SD, standard deviation; IQR, interquartile range; Yrs, years; WRAT, wide-range achievement test (an estimate of reading 
comprehension and education); HCV, hepatitis C virus; CSF, cerebrospinal fluid; ART, combination antiretroviral therapy; HAND, HIV-associated 
neurocognitive disorder; NP-normal, neuropsychiatrically normal; ANI, asymptomatic neurocognitive impairment; MND, mild neurocognitive 
disorder; HAD, HIV-associated neurocognitive disorder; IL, interleukin; CXCL-10, chemokine CXC motif ligand [also known as interferon-
inducible protein (IP)-10]; TNF-α, tumor-necrosis factor-alpha; VEGF, vascular endothelial growth factor
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Table 2.

Crude biomarker associations with the Global Deficit Score (GDS).

GDS (binary) GDS (continuous)

Biomarker OR 95% CI β-coefficient p-value

Ceruloplasmin (T3 vs. T1) 1.58 (0.94, 2.64) 0.054 0.33

Haptoglobin (T3 vs. T1) 1.07 (0.64, 1.79) −0.002 0.98

IL-6 (T3 vs. T1) 0.96 (0.57, 1.64) −0.055 0.32

CXCL-10 (T3 vs. T1) 0.93 (0.56, 1.57) −0.028 0.61

TNF-α (T3 vs. T1) 0.77 (0.45, 1.32) −0.065 0.24

VEGF (T3 vs. T1) 2.17
a (1.25, 3.74) 0.117

a 0.04

Logistic regression models were not adjusted for clinical or demographic factors.

a
Statistically significant at α=0.05 level.

Global Deficit Score [binary: GDS≥0.5 (impaired) vs. <0.5 (unimpaired); continuous: higher values generally indicate more impairment)]

Other abbreviations: OR, (unadjusted) odds ratio; 95% CI, 95% confidence interval; T (3 vs. 1), biomarker tertile 3 compared to tertile 1.
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Table 3.

Multivariable-adjusted biomarker associations with GDS in the CHARTER study.

GDS (binary) GDS (continuous)

Biomarker OR 95% CI β-coefficient p-value

Ceruloplasmin (T3 vs. T1) 1.77
a (1.01, 3.10) 0.062 0.262

Haptoglobin (T3 vs. T1) 1.20 (0.69, 2.07) 0.014 0.791

IL-6 (T3 vs. T1) 1.05 (0.60, 1.83) −0.051 0.347

CXCL-10 (T3 vs. T1) 1.20 (0.67, 2.16) 0.000645 0.991

TNF-α (T3 vs. T1) 0.87 (0.48, 1.56) −0.052 0.361

VEGF (T3 vs. T1) 2.00
a (1.13, 3.54) 0.087 0.126

a
Statistically significant at α=0.05 level.

All analyses are adjusted for nadir CD4+ T-cell count, ART (on vs. off treatment), PC1, PC2, and severity of comorbidity (mild-moderate/
contributory vs. minimal/non-contributory to neurocognitive impairment).
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Table 4.

Multivariable-adjusted biomarker associations with the GDS, stratified by comorbidity

Mild-Moderate Comorbidity (N=135)

GDS (binary) GDS (continuous)

Biomarker OR 95% CI β-coefficient p-value

Ceruloplasmin (T3 vs. T1) 0.70 (0.29, 1.71) −0.2571 0.027

Haptoglobin (T3 vs. T1) 0.41
a (0.17, 0.99) −0.142 0.213

IL-6 (T3 vs. T1) 0.40
a (0.16, 0.98) −0.300

a 0.007

CXCL-10 (T3 vs. T1) 1.85 (0.73, 4.73) 0.010 0.933

TNF-α (T3 vs. T1) 1.09 (0.45, 2.62) −0.101 0.379

VEGF (T3 vs. T1) 1.62 (0.68, 3.85) 0.026 0.820

Minimal Comorbidity (N=270)

GDS (binary) GDS (continuous)

Biomarker OR 95% CI β-coefficient p-value

Ceruloplasmin (T3 vs. T1) 2.37
a (1.17, 4.78) 0.1781 0.001

Haptoglobin (T3 vs. T1) 2.13
a (1.02, 4.42) 0.089 0.113

IL-6 (T3 vs. T1) 0.89 (0.424, 1.856) −0.018 0.753

CXCL-10 (T3 vs. T1) 1.45 (0.701, 2.987) 0.092 0.110

TNF-α (T3 vs. T1) 0.53 (0.26, 1.10) −0.065 0.246

VEGF (T3 vs. T1) 1.11 (0.50, 2.47) −0.012 0.849

All estimates are adjusted for nadir CD4, ART, PC1, and PC2.

a
Considered statistically significant at α=0.05 level.
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Table 5.

Stratified multivariable regression analyses of GDS and HAND by comorbidity severity in individuals with 

undetectable plasma virus on ART.

Mild-Moderate Comorbidity (N=69)

GDS (binary) GDS (continuous) HAND

Biomarker OR 95% CI β-
Coefficient

p-
value OR 95% CI

Ceruloplasmin (T3 vs. T1) 0.47 (0.129, 1.677) −0.247 0.090 0.57 (0.162, 2.012)

Haptoglobin (T3 vs. T1) 0.36 (0.106, 1.219) −0.149 0.287 0.57 (0.169, 1.929)

IL-6 (T3 vs. T1) 0.85 (0.23, 3.08) −0.188 0.213 0.66 (0.18, 2.40)

CXCL-10 (T3 vs. T1) 6.54
a (1.29, 33.28) 0.216 0.199 1.36 (0.31, 5.93)

TNF-α (T3 vs. T1) 2.44 (0.59, 10.14) 0.014 0.930 0.96 (0.24, 3.76)

VEGF (T3 vs. T1) 0.83 (0.23, 2.96) −0.045 0.759 0.36 (0.10, 1.34)

Minimal Comorbidity (N=116)

GDS (binary) GDS (continuous) HAND

Biomarker OR 95% CI β-
Coefficient

p-
value OR 95% CI

Ceruloplasmin (T3 vs. T1) 5.57
a (1.64, 18.94) 0.288

a 0.005 4.61
a (1.62, 13.12)

 

Haptoglobin (T3 vs. T1) 2.96
a (1.07, 8.23) 0.136 0.161 2.51

a (1.01, 6.22)

IL-6 (T3 vs. T1) 1.52 (0.52, 4.44) −0.005 0.962 0.72 (0.27, 1.93)

CXCL-10 (T3 vs. T1) 0.57 (0.16, 2.00) −0.154 0.174 0.99 (0.35, 2.83)

TNF-α (T3 vs. T1) 0.095
a (0.011, 0.81) −0.218 0.068 0.53 (0.16, 1.76)

VEGF (T3 vs. T1) 2.88 (0.92, 9.00) 0.037 0.720 1.40 (0.53, 3.71)

a
Considered statistically significant at α=0.05 level.

All analyses are adjusted for nadir CD4, PC1, and PC2.
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