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ABSTRACT OF THE DISSERTATION

Investigation of asymmetric vortex pair interactions

by

Patrick John Ryan Folz

Doctor of Philosophy in Engineering Sciences (Aerospace Engineering)

University of California San Diego, 2023

Professor Keiko Nomura, Chair

Two-dimensional vortex interactions and merging in fluid flows have long been a subject

of significant research interest, with particular focus on clarifying their role in the inverse energy

cascade of two-dimensional turbulence. Previous research has generally taken one of two forms:

detailed study of the interaction of two vortices in isolation, or macroscopic study of a field of

many vortices. Bridging the gap between these has been difficult, due to the complexity of the

two-vortex, i.e., vortex pair, interaction and its varied outcomes when the vortices are unequal.

In order to rectify this, this research considers in detail the interaction of two unequal co-rotating

vortices in viscous fluid, and develops a method to quantitatively assess their outcomes. This

enables a simple characterization of interaction outcomes in terms of certain key parameters.

Using this, the case of a vortex pair interacting in linear shear which serves as a simple model

xiv



of the background flow generated by a field of many vortices, is then studied. Collectively, this

work establishes a method for studying the influence of background flow on interacting vortices.

For the present research, numerical simulations are performed of vortex pairs having a

range of vortex strength ratios in background flow having a linear shear velocity profile having

a range of strengths, for finite Reynolds number. A method is introduced to monitor the flow

development continuously, enabling the quantitative assessment of interaction outcomes in terms

of an enhancement factor, ε , and a merging efficiency. η , which compare the circulations at

the start and end of the convective interaction. The variation of these outcomes is found to be

well-characterized by a mutuality parameter, a quantity directly related to the vortices’ enstrophy

ratio. The presence of shear is then found to produce two distinct flow regimes: separation,

in which the vortices move apart continuously, and hendition, in which they interact to form a

single vortex similar to, and similarly characterized as in, the isolated-pair case. However, the

presence of shear is observed to alter the timing of key physical interaction processes, which

may in some cases significantly alter the ultimate outcome. Taken together, these findings imply

a general framework for two-dimensional co-rotating vortex interactions that can be incorporated

into turbulence models.
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Chapter 1

Introduction

It is a truth universally acknowledged in fluid dynamics, that the interactions of same-

signed vortices must play a role in the inverse energy cascade of two-dimensional turbulence

(Austen orig 1813, paraphrased). Yet the precise nature of this role remains unclear. Some of

these interactions produce a larger vortex, which concentrates energy in larger-scale motion

(e.g., Nielsen et al., 1996; Huang, 2005), while others do not (e.g., Huang, 2006). Likewise,

the manner and degree to which vortices and their interactions contribute to the energetics

of turbulent flows via “vortex thinning” remains very unclear, appearing to contribute to the

inverse cascade in some cases and the direct cascade (i.e., the transfer of energy to smaller

scales) in others (vortex thinning is a mechanism by which larger-scale motion affects energy

transfers at smaller scales, specifically, inter-scale energy flux resulting from the work done by

large-scale strain rates on smaller-scale vorticity, which has been seen to be significant in forced

two-dimensional turbulence; Xiao et al. 2009). Models and scaling laws considering the field of

vortices in aggregate reflect the significance of vortex interactions in the time development of the

turbulence (e.g., Carnevale et al., 1991; Riccardi et al., 1995), in particular interactions between

vortices of different strength (e.g., Burgess & Scott, 2017), but these do not give much insight

into the physical mechanisms by which this occurs. In order to understand the physics of these

phenomena, the interaction between two vortices, and the influence on it due to the surrounding

vortices, must be studied directly and in detail.
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To date, a general understanding of the interaction of two like-signed two-dimensional

vortices has not been developed. Most studies of vortex pairs have focused on the seemingly-

simplest case of identical vortices, i.e., symmetric pairs, which are well-known to merge into

a single stronger vortex from the combined fluid of the original two when a critical merging

criterion is achieved (e.g., Melander et al., 1988; Cerretelli & Williamson, 2003; Meunier et al.,

2005; Brandt & Nomura, 2007). Yet, in general, the vortices in two-dimensional turbulence may

vary in size and intensity. Those studies that have considered unequal co-rotating vortices, i.e.,

asymmetric pairs, have shown that their interactions lead to varied outcomes (e.g., Melander

et al., 1987b), including mergers that produce stronger vortices as well as strainings out that

do not (e.g., Dritschel & Waugh, 1992; Yasuda & Flierl, 1997; Trieling et al., 2005; Brandt &

Nomura, 2010) depending on their relative parameters; an interaction between two like-signed

vortices that produces a single vortex is not necessarily a “merger” despite frequently being

termed as such in the literature (e.g., Tabeling, 2002; Jing et al., 2012). In inviscid flow, these

varied outcomes are categorized in terms of the strength of the resulting vortex or vortices relative

to the starting pair, with these results typically presented on complicated “regime maps” that

offer neither practical utility nor deep physical explanation for the observed variation. These

problems are compounded in viscous flow because of the difficulty of defining “starting” and

“resulting” vortices in the continuously-developing flow, with outcomes being assessed only

qualitatively by the researchers (prior to the publication of that portion of the present study).

As to the issue of the influence of the surrounding vorties, the few studies that have

directly considered this at all have only considered the symmetric pair (e.g., Carton et al. 2002;

Perrot & Carton 2010; Marques Rosas Fernandes et al. 2016), typically modeling the external

influence as simple linear background shear. These have found that strong adverse shear (i.e.,

shear whose rotational sense opposes that of the pair) causes the vortices to separate, precluding

merger, while less strongly adverse or favorable shear (i.e., shear whose rotational sense matches

that of the pair) causes the distance between the vortices to vary, potentially engendering merger

when the distance is sufficiently reduced; it must be noted, though, that, due to the inviscid nature
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of the flow, these observed mergers only occur because the shear is so strong as to be inextricable

from the merging process. This makes its influence difficult to discern from the vortices’ in these

cases. No dedicated study of an asymmetric pair in shear had been published prior to that portion

of the present study, to the author’s knowledge. The lack of studies of the asymmetric case in

shear is directly attributable to the relative paucity of asymmetric-pair studies for the more-basic

no-shear case.

Nevertheless, these studies collectively suggest that a more generalized understanding of

vortex interactions based on underlying physics may be attainable. The occurrence of merger, in

or out of background flow, has been seen to derive from the relative distance between the pair

in the symmetric case (i.e., the pair’s aspect ratio, often phrased as the equivalent “normalized

separation distance”), while the regime maps in the asymmetric case suggest dependence on

both distance and the vortices’ relative strength (in terms of their relative circulation generally,

but with particular dependence on sub-variations thereof). A more detailed summary of the

relevant body of research is given in each chapter included in the body of this dissertation. Taken

together, it is here observed that both relative distance and relative strength ultimately govern the

degree of influence each vortex exerts on the other, both in absolute terms and relative to each

other. This is the key principle that enables from which a generalized understanding of vortex

interactions may be developed.

As a significant step towards developing this general model of vortex interaction, this

study investigates the interaction of two unequal co-rotating vortices in viscous flow under the

influence of background shear, and from that develops a more general characterization of vortex

interactions that is applicable in general, complex two-dimensional flow such as two-dimensional

turbulence. This encompasses three principal accomplishments:

• examination of the flow development of a symmetric pair in shear when viscosity is present,

which demonstrates the effectiveness in this context of key results previously found for

inviscid, isolated symmetric pairs;
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• development of a method for the quantitative assessment of two-dimensional asymmetric

vortex interactions in viscous flow without background shear that is based upon key

underlying physical mechanisms, namely core detrainment and entrainment, enabling a

consistent and objective characterization of all interaction outcomes; and

• analysis of the effect of shear on the interaction of two unequal co-rotating vortices,

including identification of the interaction regimes and quantitative assessment of the

outcomes of henditions (i.e., interactions from which a single vortex results), which

establishes that vortex-dominated interaction outcomes are well-characterized by a single

parameter (the pair’s core enstrophy ratio, discussed later) regardless of the relative strength

of the shear or asymmetry of the pair, and that the influence of the shear typically makes

merger somewhat more likely and effective.

This study primarily utilizes computational methods, supplemented by analysis and available

experimental data.

This dissertation is organized as follows: in Chapter 2, the numerical procedure utilized

in the computational sections is described; in Chapter 3, the effects of viscosity and shear on

symmetric pair interactions are considered; in Chapter 4, the physics of vortex merger are

reviewed and utilized to develop a quantitative assessment of asymmetric pair interactions when

viscosity is present without shear, and the trends identified are explained in terms of underlying

physics; in Chapter 5, this assessment and physical insight is utilized to examine the effect of

shear on asymmetric pair interactions, including the derivation of a result based on a point-

vortex model that is utilized to predict the occurrence of vortex separation, and a small study

of the evolution of a single vortex in shear; and in Chapter 6 the findings are summarized and

future work is discussed. Chapter 3 is a reproduction of an article published in Fluid Dynamics

Research, and Chapters 4 and Chapter 5 are reproductions of articles published in Journal of

Fluid Mechanics.
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Chapter 2

Scaling and operation of the numerical
scheme

Here the numerical methods used to perform the simulations are briefly reviewed. The

simulations were performed using DISTUF (Gerz et al., 1989).

In all cases, the flow is incompressible, with an initial condition similar to that shown in

figure 1 of Chapter 4; for symmetric cases, Λ0 = ω1,0/ω2,0 = a1,0/a2,0 is set equal to 1, and for

no-shear cases (primarily Chapter 4), ζ0 is set to 0. Each vortex i = 1,2 initially has a Gaussian

vorticity distribution of the form

ωi(x,z, t) = ωi,0 exp

(
−((xi− xi,0)

2 +(zi− zi,0)
2)

a2
i,0

)
, (2.1)

where ωi,0 is the initial vorticity, xi,0 and zi,0 = 0 are the initial coordinates of the vortex

center, and ai,0 is the initial characteristic vortex radius (giving a circulation of Γ = πa2
0ω0). The

vorticies are initially separated by a distance b0 ≡ |x2,0− x1,0|.

In all cases, the vortices are kept small relative to the domain size L, with b0/L = 1/24

found to keep the pair sufficiently isolated throughout the main interaction, in order to minimize

the effect of boundary conditions (a maximum difference of 2.1% was found between simulations

done at b0/L = 1/12 and b0/L = 1/24). In all cases, a staggered two-dimensional 20482 square

grid is utilized, which corresponds to about 27 grid points across the larger core (as defined by

initial radius a).
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2.1 DISTUF scaling and operation

The DISTUF code was initially developed by Gerz, Schumann and Elghobashi for the

simulation of three-dimensional turbulence with optional linear shear and/or stratification; see

Gerz et al. (1989) and references therein for a thorough description of the code and its capabilities.

It is here utilized for the simulation of two-dimensional vortex pairs because of its capability of

simulating shear with periodic boundary conditions (shear-periodic boundary condition in the

shear direction, when shear is present). This requires a careful consideration of the scaling of the

code relative to that of the intended vortex-pair problem. Here, the scalings necessary for the

correct initialization of the DISTUF code are first described, and then the general operation of

DISTUF is briefly reviewed.

2.1.1 Vortex flow scaling

The appropriate scalings for the vortex flow are:

x∼ b0 (2.2)

u∼W0 (2.3)

t ∼ tre f = tc, (2.4)

where b0 is the initial peak-peak distance, W0 is the vortex translation velocity, and tc is the

convection time. The translation velocity W0 is related to these quantities and the circulation Γ0

of a vortex by W0 =
Γ0

2πb0
. The convection time tc is based on the estimated period of revolution of

the pair, neglecting any viscous or deformation effects. It is the distance traveled by one vortex,
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i.e. the circumference of the circular trajectory, divided by the initial translational velocity:

tc ≡
πb0

W0
=

πb0
Γ0

2πb0

=
2π2b2

0
Γ0

. (2.5)

The flow is then characterized by the following nondimensional parameters:

• Reynolds number: Re≡ Γ0
ν
=

πa2
0ω0
ν

• Aspect ratio: a0
b0

,

where Γ0 is the initial vortex circulation, a0 is the initial vortex characteristic radius, and ω0 is

the initial vortex peak vorticity (in this study, these values are taken from the stronger initial

vortex); ν is the kinematic viscosity of the fluid. These reference values are then used to define

nondimensional variables for the vortex problem, denoted with []v:

xv ≡ x
b0

(2.6)

uv ≡ u
W0

(2.7)

wv ≡ w
W0

(2.8)

tv ≡ t
tc
=

t
πb0
W0

= t
W0

πb0
. (2.9)

These can be used to scale the initial condition in both the unsheared and sheared cases.

2.1.2 DISTUF Scaling

The DISTUF code is scaled based on the basic problem of some mean flow, Ure f , in a

box of size Lbox (not necessarily square, but in this case it is). By dimensional reasoning, these

can be used to construct a time scale Lbox
Ure f

.
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Thus, for this problem we have the reference values:

x∼ Lbox (2.10)

u∼Ure f (2.11)

t ∼ tre f =
Lbox

Ure f
. (2.12)

These can be used to define nondimensional variables for DISTUF:

x∗ ≡ x
Lbox

(2.13)

and

z∗ ≡ z
Lbox

, (2.14)

u∗ ≡ u
Ure f

(2.15)

and

w∗ ≡ w
Ure f

, (2.16)

and

t∗ ≡ t
Lbox
Ure f

= t
Ure f

Lbox
. (2.17)
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The reference length scales for the vortex flow and DISTUF are related by

Lbox =
Lbox

b0
b0 = Φb0, (2.18)

where the length scales for the vortex flow problem and the DISTUF code are related by the

ratio:

Φ =
L
b0

. (2.19)

Thus the nondimensional coordinates are related by:

x∗ ≡ x
Lbox

=
x

Φb0
=

xv

Φ
(2.20)

z∗ =
z

Φb0
. (2.21)

There is also a Reynolds number for DISTUF based on the mean flow and box size,

Rebox = Recode =
Ure f Lbox

ν
. (2.22)

2.1.3 No-shear case scaling

The vortex initial condition is specified in DISTUF in terms of velocities, not vorticity

(Garten et al., 1998). The velocity distribution is given by:

u =
−a2

0ω0(z− z1)

2((x− x1)2 +(z− z1)2)

(
1− exp

(−((x− x1)
2 +(z− z1)

2)

a2
0

))
−

a2
0ω0(z− z2)

2((x− x2)2 +(z− z2)2)

(
1− exp

(−((x− x2)
2 +(z− z2)

2)

a2
0

))
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w =
a2

0ω0(x− x1)

2((x− x1)2 +(z− z1)2)

(
1− exp

(−((x− x1)
2 +(z− z1)

2)

a2
0

))
+

a2
0ω0(x− x2)

2((x− x2)2 +(z− z2)2)

(
1− exp

(−((x− x2)
2 +(z− z2)

2)

a2
0

))
.

The nondimensionalization procedure is similar for both u and w, and for each term in

their respective functions. Therefore, the rest of the analysis will concentrate on the first term of

the u function.

First, the length coordinates in the coefficient of the exponential function can be recast in

terms of nondimensional variables x∗ and z∗:

u =
−1
2

a2
0ω0Φb0

Φ2b2
0

(z∗− z∗1)
((x∗− x∗1)

2 +(z∗− z∗1)
2)

(
1− exp

(−((x− x1)
2 +(z− z1)

2)

a2
0

))
− . . .

(2.23)

u =
−1
2

(
a0

b0

)2
ω0b0

Φ

(z∗− z∗1)
((x∗− x∗1)

2 +(z∗− z∗1)
2)

(
1− exp

(−((x− x1)
2 +(z− z1)

2)

a2
0

))
− . . .

(2.24)

In the no-shear case, since there is no mean background flow, it can be taken that

Ure f =W0. Since W0 =
Γ

2πb0
,

u =
−W0

Φ

(z∗− z∗1)
((x∗− x∗1)

2 +(z∗− z∗1)
2)

(
1− exp

(−((x− x1)
2 +(z− z1)

2)

a2
0

))
− . . . (2.25)
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The nondimensional velocity in DISTUF is therefore given by:

u
W0

= u∗ =
−1
Φ

(z∗− z∗1)
((x∗− x∗1)

2 +(z∗− z∗1)
2)

(
1− exp

(−((x− x1)
2 +(z− z1)

2)

a2
0

))
− . . . (2.26)

Note that u
W0

= u∗ = uv.

The timescales are related by:

t∗ = t
Ure f

Lbox
= t

W0

Lbox
= t

W0

Φb0
=

t
tc

π

Φ
= tv π

Φ
. (2.27)

We therefore have a set of conversion factors relating the DISTUF variables to those for

the vortex flow:

x∗ =
xv

Φ
(2.28)

u∗ = uv (2.29)

t∗ = tv π

Φ
. (2.30)

The Reynolds numbers for DISTUF and the vortex flow are also related, by:

Recode =
Ure f Lbox

ν
=

W0Φb0

ν
=

Γ

2πb0

Φb0

ν
=

Φ

2π

Γ

ν
=

Φ

2π

Γ

ν
=

Φ

2π
ReΓ. (2.31)
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2.1.4 Shear case scaling

DISTUF can also simulate the case of flow with linear background shear. The shear of

the mean flow is given by

dU
dz

∆U
Lbox

, (2.32)

where ∆U is the characteristic velocity differential of the shear.

The reference values for the sheared flow are based on the shear:

xre f = Lbox = Φb0 (2.33)

Ure f = ∆U =
∆U
Lbox

=
dU
dz

Lbox (2.34)

tre f =
Lbox

∆U
=

1
dU
dz

. (2.35)

In this case, the initial condition velocity distribution is given by

u =
−1
2

(
a0

b0

)2
ω0b0

Φ

(z∗− z∗1)
((x∗− x∗1)

2 +(z∗− z∗1)
2)

(
1− exp

(−((x− x1)
2 +(z− z1)

2)

a2
0

))
− . . .

(2.36)

u
∆U

=
1

∆U
−1
2

(
a0

b0

)2
ω0b0

Φ

(z∗− z∗1)
((x∗− x∗1)

2 +(z∗− z∗1)
2)
×

(
1− exp

(−((x− x1)
2 +(z− z1)

2)

a2
0

))
− . . . (2.37)
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u
∆U

=
−1
2

(
a0

b0

)2
ω0b0

Φ∆U
(z∗− z∗1)

((x∗− x∗1)
2 +(z∗− z∗1)

2)

(
1− exp

(−((x− x1)
2 +(z− z1)

2)

a2
0

))
− . . .

(2.38)

u
∆U

=
−1
2

(
a0

b0

)2
ω0b0

Φ(ΦdU
dz )

(z∗− z∗1)
((x∗− x∗1)

2 +(z∗− z∗1)
2)
×

(
1− exp

(−((x− x1)
2 +(z− z1)

2)

a2
0

))
− . . . (2.39)

u
∆U

=
−1
2

(
a0

b0

)2 1
Φ2

ω0
dU
dz

(z∗− z∗1)
((x∗− x∗1)

2 +(z∗− z∗1)
2)
×

(
1− exp

(−((x− x1)
2 +(z− z1)

2)

a2
0

))
− . . . (2.40)

We can define a shear parameter to characterize the relative strengths of the vortices’

vorticity and the background shear as

Sh≡ ω0
dU
dz

. (2.41)

The time is scaled by tre f :

t∗ ≡ t
tre f

=
t
1

dU
dz

= t
dU
dz

= t
ω0

Sh
(2.42)

t∗ =
Γ

πa2
0

1
Sh

t
2πb2

0

2πb2
0

(2.43)
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t∗ =
Γ

2π2b2
0

2πb2
0

a2
0

1
Sh

t =
1
tc

2π
b2

0

a2
0

1
Sh

t (2.44)

t∗ =
t
tc

2π

Sh
b2

0

a2
0
= tv 2π

Sh
b2

0

a2
0
. (2.45)

Thus, the timescales for the flow problem and the sheared DISTUF simulation are related.

DISTUF numerical scheme

DISTUF integrates the continuity equation, the Navier-Stokes equation, and the heat

balance equation in time in three dimensions, for fluid with constant diffusivities of momentum

and heat, utilizing the Boussinesq approximation. For the present study, the flow is restricted to

two-dimensions (by setting the velocity in the third direction to 0 in the initial condition and at

every timestep, i.e., enforcing u2 = 0), and the flow is isothermal and incompressible.

With these assumptions, the equations of motion (normalized in terms of Lbox, Ure f , and

tre f ) are

∂u∗j
∂x∗j

= 0 (2.46)

and

∂u∗j
∂ t∗

+
∂

∂x∗j
(u∗ju

∗
i )+Sx∗3

∂u∗i
∂x∗1

+Su∗3δi1 =
1

Re
∂ 2u∗i

∂ (x∗)2
j
− ∂ p∗

∂x∗i
, (2.47)

where S = (Lbox/∆U)(dU/dz) = 0, 1 for the no-shear and shear cases, respectively, and

Re = (Ure f Lbox)/ν is the box Reynolds number (and terms directly dependent on tempera-

ture, including the entire heat balance equation, have been omitted).

These equations are discretized using a a second-order finite-difference scheme on a

staggered uniform grid with periodic boundary conditions, except for the mean advection (i.e.,

the linear background shear) for which pseudospectral methods are used. Boundary conditions
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are periodic except in the shear case, in which the boundary condition in the shear direction

is shear-periodic, i.e., f (t∗,x∗1 +m1,x∗3 +m3) = f (t∗,x∗1− Sm3t∗,x∗3), where mn are arbitrary

integers. These equations are integrated in time using a second order Adams-Bashforth method,

with pressure handled implicitly. For further details, see Gerz et al. (1989) and references therein.
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Chapter 3

Interaction of two equal co-rotating vis-
cous vortices in the presence of
background shear
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Abstract
The interactions of two equal co-rotating vortices under the influence of both
viscosity and uniform background shear are investigated using two-dimen-
sional numerical simulations. A range of values of the shear strength para-
meter, ζ ω= −S /0 0, and initial aspect ratio, a b/0 0, are considered for two values
of circulation Reynolds number Γ ν=ΓRe /0 . The primary effect of viscosity
is to increase the core size a(t) in time while the primary effect of shear is to
vary the separation distance b(t) in time. For sufficiently separated vortices, the
motion of the vortices is well-described by a point vortex model with linear
shear. The present simulations show that for a viscous symmetric vortex pair
there are two distinct flow regimes, merger and separation, with the boundaries
separating these regimes well-predicted by the point vortex model and largely
independent of ΓRe over the range tested. Results also indicate that the onset of
merging occurs when a t b t( )/ ( ) attains the critical value a b( / )cr found for vortex
pairs without shear.

(Some figures may appear in colour only in the online journal)

1. Introduction

Vortex pair interactions are fundamental processes in many complex flows of practical and
scientific interest, such as aircraft wakes and two-dimensional turbulence. Understanding
these interactions is therefore essential to understanding the more complicated flows. For
example, it is known that two co-rotating vortices will merge to form a larger compound
vortex if the aspect ratio (core size/separation distance), a b/ , exceeds a critical value, a b( / )cr.
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Thus, vortex merging has been considered to be a key process in the inverse energy cascade
of two-dimensional turbulence (Benzi et al 1987). However, a turbulent flow consists of a
field of vortices and other structures, differing in size and strength, and the influence of these
factors on the vortex merging process and turbulence dynamics is not well understood.

A great deal of research has been devoted to the study of the simplest vortex pair
configuration: two equal co-rotating vortices, i.e., a symmetric vortex pair. Much of this
research has focused on inviscid flow (e.g., Dritschel and Waugh 1992, Overman and
Zabusky 1982, Saffman and Szeto 1980), while other studies have considered flows with
viscosity (e.g., Brandt and Nomura 2007, Cerretelli and Williamson 2003, Melander
et al 1988, Meunier et al 2002). If the vortices are sufficiently separated, their basic behavior
is similar to that of two point vortices which rotate about each other. However, for finite-area
vortices, the induced strain field will deform and tilt the vortices. The critical aspect ratio can
be related to the relative strength of the induced strain rate to the vortex strength; a key factor
for the physical mechanism of the onset of merger (Brandt and Nomura 2010). The presence
of viscosity ensures that a given pair will achieve the critical aspect ratio given sufficient time
to diffusively spread, producing merger in initially well-separated vortices. Increasing the
effect of viscosity causes this process to occur more rapidly on a convective timescale, but the
merging criterion remains relatively unchanged (Le Dizès and Verga 2002).

The majority of previous studies have considered a single vortex pair, with no external
influences. In order to consider vortex merging in a turbulent flow, the influence of neigh-
boring and remote vortices must be considered. A few studies have been carried out which
approximate this influence as a simple background shear in which the pair interacts (Maze
et al 2004, Perrot and Carton 2010, Trieling et al 2010). To date these studies have all
considered inviscid vortex pairs.

The work of Trieling et al (2010) is of particular relevance as they studied the case of two
equal finite-area Gaussian vortices in linear shear. Using contour dynamics simulations, they
identified four possible interaction regimes: merger, periodic motion, separation without
elongation, and separation with elongation; depending on the sign and strength of the
background shear relative to the vorticity of the vortices. The basic motion of the vortices, and
in particular, the delineation between separative and periodic regimes was found to be well-
described by the point vortex model of Kimura and Hasimoto (1985). Conditions for the
merging regime were determined by considering the shear-induced variations of the
separation distance, b, and using known a b( / )cr values for no-shear flow (see section 2).
Though some ambiguities remained, the value of a b( / )cr for the no-shear case was found to
provide a reasonably effective criterion for vortices in shear as well.

The previous research has considered separately the effects of viscosity and linear shear
on symmetric vortex interactions, but to date their combined effect has not been considered.
The current research investigates vortex pair interactions with both effects present by
investigating the possible regimes of interaction through a series of numerical simulations for
a range of initial parameters.

In section 2, the modified point vortex analysis of Kimura and Hasimoto (1985) and
Trieling et al (2010) is reviewed. In section 3, the setup and numerical method of the
simulations are described. In section 4 results of the simulations are presented. These results
are analyzed and the relevance of point vortex results to the viscous flow is demonstrated.
Finally, section 5 summarizes the findings and conclusions.
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2. Modified point vortex model

The motion of two point vortices in linear shear is described by the following equations
(Kimura and Hasimoto 1985):

Γ
π

= − − +t

t

y y

b
Sy

d

d 2
(1)1 2 1 2

2 1

Γ
π

= −y

t

x x

b

d

d 2
(2)1 2 1 2

2

Γ
π

= − − +t

t

y y

b
Sy

d

d 2
(3)2 1 2 1

2 2

Γ
π

= −y

t

x x

b

d

d 2
, (4)2 1 2 1

2

where x y( , )i i
are the coordinates of the ith vortex, Γi is the circulation of the ith vortex,

= − + −b x x y y( ) ( )2
1 2

2
1 2

2 is the squared separation distance between the vortices, and

=S U yd /d is the uniform background shear. Considering symmetric vortices (Γ Γ Γ= =1 2 )
and following the methods of Kimura and Hasimoto (1985), these equations can be integrated
to find trajectories that are either closed or open, depending on the relative sign and strength
of the shear and vortices. A nondimensional shear strength parameter, μ Γ= S b /0

2 , can be
considered (Trieling et al 2010) with a critical value determined from results of Kimura and
Hasimoto (1985) to be,

⎛
⎝⎜

⎞
⎠⎟μ

Γ π
= =S b

e

1
, (5)

cr

cr

0
2

where e is the base of the natural logarithm and = −b x x( )0 2 1 when − =y y 0
2 1

.

Trajectories for initially horizontally-aligned vortices with various μ values are shown in
figure 1. In the case of no shear (μ = 0), the trajectory is a circle corresponding to periodic
motion. When the shear is favorable (μ < 0), the motion is always periodic since μ μ< <0

cr
.

The corresponding trajectories in figure 1 indicate that the vortex separation, initially b0 when
horizontally-aligned, reduces to a minimum as they revolve to become vertically aligned.
When the shear is adverse (μ > 0), the motion may be either separative or periodic. For
weakly adverse shear ( μ μ< <0

cr
), the motion is periodic but vortex separation instead

increases to a maximum when they become vertically aligned. The case of μ μ=
cr
gives the

critical separatrix for stationary flow; the vortices revolve to be vertically aligned and then
remain in that position indefinitely. For strongly adverse shear (μ μ>

cr
), the vortices instead

follow open trajectories and their separation increases indefinitely.
The point vortex model has been found to effectively describe the motion of sufficiently

separated finite-area vortices in the inviscid limit (Benzi et al 1987). Modifications to
explicitly incorporate finite-area vortex parameters were made by Trieling et al (2010). By
substituting Γ π ω= a0

2
0 (where a0 is the vortex radius and ω0 is the peak vorticity) for

circulation in the point vortex solution, the critical value of the ratio of shear to peak vorticity
is found in terms of the initial aspect ratio a b/ :0 0
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⎛
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⎞
⎠⎟ω

πμ= =S a

b e

a

b

1
. (6)

cr

cr
0

0

0

2

0

0

2

Thus, the value of ω( )S /
cr0 depends solely on the initial aspect ratio (a b/0 0). For a given

a b/0 0, separative motion will occur if ωS / 0 exceeds the corresponding value of ωS( / )cr0 .
Results in Trieling et al (2010) from contour dynamics calculations demonstrate that (6)
effectively distinguishes the separative and periodic regimes for finite-area vortices.

In flows without background shear, finite-area vortices will merge if their separation
distance is less than the critical value, i.e., <b a b a/ ( / )cr0 . In flows with shear, and when the
motion is not separative, this may be expected to hold true. As indicated by the point vortex
model, the primary effect of shear is to vary b(t) along the trajectory in the periodic regime.
By considering b a( / )cr for the no-shear case, a simple merging criterion was formulated by
Trieling et al (2010): merger will occur if the vortex separation distance is always less than
the critical separation distance. This is a stricter condition than observed for the case of
favorable shear, in which merger was found to occur if the minimum separation distance is
less than the critical separation.

The point vortex model and finite-area results will be considered in our analysis of the
case of viscous flow. The numerical simulations of these flows are described in the
next section.

3. Setup and numerical simulations

Figure 2 shows the vortex pair initial condition: two like-signed Gaussian vortices of peak
vorticity ω0 and radius a0 with an initial separation b0 in a background shear flow of strength
S. These are used to define several parameters which characterize the flow. The initial aspect
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Figure 1. Point vortex trajectories of initially horizontally-aligned vortices ( = =y y 0
1 2

)
for various initial shear strengths, computed by integrating equations (1)–(4) after
substituting ξ = −x x2 1 and η = −y y

2 1
. The contours correspond to: (a) favorable

shear μ <( 0), (b) no shear μ =( 0), (c) weakly adverse shear μ μ< <(0 )
cr
, (d) critical

separatrix μ μ=( )
cr
, (e) strongly adverse shear μ μ>( )

cr
.
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ratio is a b/0 0, where a is defined based on the second moment of vorticity (Meunier

et al 2002). The circulation Reynolds number is Γ ν=ΓRe /0 , where Γ π ω= a0 0
2

0. Here, the

shear strength parameter, ζ0, is defined as the ratio of the vorticity of the background shear to
the characteristic vorticity of the vortices,

ζ
ω
ω ω

= = −S
. (7)S

v
0

0

Thus, shear is considered to be favorable when ζ > 00 and adverse when ζ < 00 .
Two-dimensional numerical simulations of the viscous vortex pair are performed using a

combination of finite difference and pseudospectral approximations on a uniform staggered
grid. The computational domain is periodic except in the shear direction where shear-periodic
boundary conditions are employed. Details of the boundary conditions and numerical solution
procedure are given in Gerz et al (1989).

Resolution tests found that using10242 grid points, giving about 13 points across a vortex
core (2a0), was sufficient to capture the characteristic behavior of the vortex pair in the range
of Reynolds numbers considered. In order to avoid unrealistic effects of neighboring vortices
due to the periodic boundary condition, the size of the vortex pair is kept small relative to the
domain size. An initial separation distance relative to the domain size =b L/ 1/240 was found
to be sufficient to minimize boundary effects. For further details of the numerical aspects, see
Brandt and Nomura (2007).

4. Results and analysis

Figure 3 shows the time development of representative vortex pairs ( =a b/ 0.1570 0 ,
=ΓRe 5000) for a range of ζ ω= −S /0 0 values. Results are given in terms of a convective

timescale (based on period of revolution for two point vortices with no

shear), * π Γ= ( )t t b/ 2 /0
2

0 .

Early in time ( * ≲t 1) and when the vortices do not significantly interact, their motion can
be described qualitatively by the point vortex model. The vortices rotate about each other in
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Figure 2. Flow initial condition, including Gaussian vortices of peak vorticity ω0 and
radius a0 with initial separation b0 in a uniform background shear of =S U yd /d . The
case shown corresponds to ζ ω ω ω= = − >S/ / 0S v0 0 , i.e. favorable shear.
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closed trajectories for favorable and weakly adverse shear (figures 3(a)–(c)) and separate for
strong adverse shear (figures 3(d), (e)). Later in time, the vortices moving in closed trajec-
tories eventually merge into a single vortex (figures 3(a)–(c)). For stronger adverse shear
(figure 3(d), ζ = −0.00930 ), the vortices continue to move apart but are observed to retain
their coherence (at least for the duration of these simulations), i.e., there is separation without
elongation. For very strong adverse shear (figure 3(e), ζ = −0.100 ), the vortices are stretched
out into filaments by the shear, i.e., there is separation with elongation. The observed
interaction regimes are summarized in table 1.

Figure 4 shows the corresponding time development of the vortex separation, b(t).
Initially, the behavior of b(t) is consistent with the point vortex trajectories (figure 1) and
decreases/increases periodically for favorable/weakly adverse shear (ζ = ±0.00450 ). For
strong adverse shear (ζ = −0.00930 ), the vortices exhibit separative trajectories and b(t)
increases monotonically and indefinitely. Later in time, the periodic motion breaks down and

Fluid Dyn. Res. 46 (2014) 031423 P J R Folz and K K Nomura

6

Figure 3. Vorticity contour plots showing time evolution of flows ( =a b/ 0.1570 0 ,
=ΓRe 5000) for different ζ ω= −S /0 0: (a) ζ = 0.00450 , (b) ζ = 00 , (c) ζ = −0.00450 ,

(d) ζ = −0.00930 , (e) ζ = −0.100 . For (a) and (b), the color red corresponds to the peak
(negative) vorticity of the ζ = 0.00450 case and blue indicates lower-level (i.e. less
negative) vorticity. For (c), (d) and (e), the color blue corresponds to the peak (positive)
vorticity of the ζ = −0.00450 case and red indicates lower-level (positive) vorticity.
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we observe a rapid decrease in b(t) corresponding to merger. The onset of merger is seen to
occur earlier/later in favorable/weakly adverse shear with respect to the corresponding flow
with no shear.

The effect of viscosity on flow development is investigated by performing simulations at
=ΓRe 1000 ( =a b/ 0.1570 0 ). The results are included in table 1. The same interaction regimes

occur: merging for favorable and weakly adverse shear, and separative for strongly adverse

Fluid Dyn. Res. 46 (2014) 031423 P J R Folz and K K Nomura
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Figure 4. Normalized b(t) for =ΓRe 5000, =a b/ 0.1570 0 . +: ζ = 0.00450 , □: ζ = 00 ,
◯: ζ = −0.00450 , ×: ζ = −0.00930 .

Figure 5. Normalized b(t) for =ΓRe 1000, =a b/ 0.1570 0 . +: ζ = 0.00450 , □: ζ = 00 ,
◯: ζ = −0.00450 , ×: ζ = −0.00930 .

Table 1. Outcome of interaction for vortex pairs of various initial ζ ω= −S /0 0 and
=a b/ 0.1570 0 for =ΓRe 5000 and =ΓRe 1000

ζ0 Outcome, =ΓRe 5000 Outcome, =ΓRe 1000

0.0045 Merger Merger
0 Merger Merger
−0.0045 Merger Merger
−0.0092 Merger Merger
−0.0093 Separation without elongation Separation without elongation
−0.10 Separation with elongation Separation with elongation
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shear. The corresponding b(t) behavior is shown in figure 5 where it is apparent that the lower
Reynolds number accelerates establishment of the merging process.

The modified point vortex model in section 2 indicates that for finite-area inviscid
vortices with a specified a b/0 0, sufficiently strong adverse shear, i.e., ζ ζ< < 0cr0 0, , will result

in separative motion. To test this criterion for viscous vortices, additional simulations are
performed with different initial aspect ratios a b/0 0. Equation (6) was used to predict the value
of ζ cr0, for a given a b/0 0. For each a b/0 0 considered, a series of simulations varying ζ0 was

performed until a pair was found to bracket the boundary between merging and separation
regimes. An empirical estimate for ζ cr0, was then obtained using the midpoint of the two

bracketing ζ0 values. The results are presented in table 2. The findings affirm the expectation:
the value of ζ cr0, between separation and merging varies with a b/0 0, and in fact these values

correspond quite well with the predictions based on the point vortex model.
The above results indicate that in viscous flow, for the range of ΓRe considered and for

the duration of the simulations, there are two distinct flow regimes: merger and separation
(without or with elongation), and the boundary of the regimes is described well by the
modified point vortex model in (6). This may be expected if we consider that, in the case of
inviscid flow, the vortex pair evolves with constant μ μ=

0
(constant Γ) and therefore μ μ>

cr0

in (5) still distinguishes the separation regime for finite-area vortices. In the case of viscous
flow, this criterion (and therefore, ζ ζ< < 0cr0 0, ) may also remain valid for indicating

separative motion, since Γ (and therefore μ) remains nearly constant until any significant
interaction occurs (maximum computed deviation of Γ0 before the onset of merger
was 5.25%).

In inviscid flow, if μ μ<
cr
, periodic motion will prevail if the aspect ratio a b/ remains

below the critical value for merger. In viscous flow, for μ μ<
cr

(ζ ζ> cr0 0, ), then if

<a b a b/ ( / )cr the vortices follow trajectories similar to the point vortex periodic regime for
some duration of time. However, a primary effect of viscosity is that the cores will diffuse and
grow in time. If the vortices are sufficiently separated, the viscous growth of the cores may be
described by

ν= +a t a t( ) 4 . (8)2
0
2

Eventually this growth causes >a t b t a b( )/ ( ) ( / )cr, resulting in merger. Stationary or
continued periodic flow regimes are therefore not expected for finite ΓRe . However, the early
phase of development may be considered a quasi-periodic phase whose duration depends on

ΓRe (as indicated in figures 4 and 5). This is consistent with the initial quasi-steady phase of
development in the no-shear flow, during which b(t) remains nearly constant while a(t) grows
by diffusion (Brandt and Nomura 2007).
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Table 2. Critical ζ ω= −S /0 0 delineating separation and merger regimes for various
a b/0 0, from point vortex model predictions and empirical results.

Empirical ζ cr0,

a b/0 0 Predicted ζ cr0, =ΓRe 5000 =ΓRe 1000

0.105 −0.0041 −0.0040 ± 0.0001 −0.0040 ± 0.0001
0.157 −0.0091 −0.0092 ± 0.00004 −0.00926 ± 0.00009
0.235 −0.020 −0.020 ± 0.002 −0.020 ± 0.002
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The onset of merger is identified as the time at which the vortices begin to significantly
interact (transition from a diffusive-dominated to convective-dominated process), and this is

effectively indicated by the deviation of a t( )2 from its linear viscous growth (equation (8))

(see e.g. Brandt and Nomura 2007). This time is denoted here as * *=t tcr and values deter-

mined from the simulations (from computed a t( )2 ) are shown in table 3. The results indicate

that in favorable shear (ζ > 0), * *< ζ=t tcr cr, 0, and in adverse shear (ζ < 0), * *> ζ=t tcr cr, 0, indi-

cating merger onset occurring earlier and later, respectively, than the time of merger onset

observed in the no-shear case ( *
ζ=tcr, 0). At =ΓRe 1000, the vortices spread more rapidly

relative to their advection and therefore the onset of merging occurs more quickly on the
advective timescale than for =ΓRe 5000, otherwise the results are similar (table 3). We note
that for these lower Reynolds number simulations, the vortices begin to interact very quickly

on the *t scale and so determination of the value of *tcr becomes difficult.
The time development of the vortex pair aspect ratio, a t b t( )/ ( ), is shown in figure 4 for
=ΓRe 5000. For a pair of initially Gaussian vortices in viscous fluid with no shear, the onset

of merger is found to occur at = ±a b( / ) 0.235 0.006cr (Brandt and Nomura 2007), which is

indicated by the dashed line in figure 6. Evaluating a t b t( )/ ( ) for * *=t tcr from table 3 gives
a b( / )cr values of 0.230, 0.231, and 0.235 for ζ = 0.00450 , 0, and −0.0045 respectively, for

=ΓRe 5000. These results are in agreement with the reported a b( / )cr range.
Since favorable shear acts to periodically reduce b(t), this will increase a b/ values

thereby promoting merger. Even in the inviscid case, Trieling et al (2010) found that
favorable shear could induce merger even when <a b a b/ ( / )cr0 0 . In contrast, weakly adverse
shear (ζ ζ< < 0cr0, 0 ) acts to periodically increase b(t) which will tend to reduce a b/ values

and thereby impede merger. When viscosity is present, a(t) grows in time, so when both shear
and viscous effects are present a t b t( )/ ( ) increases but does not necessarily do so mono-
tonically. The oscillatory behavior of a t b t( )/ ( ) may mean that the time of attaining a b( / )cr

does not necessarily correspond to the start of merging, though no case was observed of
=a t b t a b( )/ ( ) ( / )cr being attained and then the vortices failing to merge.

Fluid Dyn. Res. 46 (2014) 031423 P J R Folz and K K Nomura
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Figure 6. Aspect ratio a t b t( )/ ( ) as a function of convective time *t for =ΓRe 5000. +:
ζ = 0.00450 , □: ζ = 00 ,◯: ζ = −0.00450 . Dashed line corresponds to =a b( / ) 0.235cr .
Note that a(t) is computed from simulation results using the azimuthal average of the
radial location of maximum azimuthal velocity, then dividing by 1.12 to obtain an
estimate for the second moment of vorticity (Brandt and Nomura 2007).
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For the =ΓRe 1000 results, evaluating a t b t( )/ ( ) at the *tcr values from table 3 gives
=a b( / )cr 0.238, 0.233, and 0.229 for ζ = 0.00450 , 0, and −0.0045 respectively. These values

are also in agreement with the merging criterion found for vortex pairs without shear.

5. Conclusion

The interactions of two equal co-rotating vortices under the influence of both viscosity and
uniform background shear have been investigated using numerical simulations. It is found
that the observed interactions can be classified into two distinct regimes, merger and
separation, depending on the relative significance of the background shear (as characterized
by ζ0) for a given vortex pair (as characterized by ζ0 and a b/0 0).

Early in the flow development when the vortices are sufficiently separated and Γ is
constant, their motion is altered by the shear, as described by the point vortex model, while
their cores grow by viscous diffusion. During this time, the primary effect of shear is to vary
b(t) in time, while the primary effect of viscosity is to increase a(t) in time. If the shear is both
adverse and sufficiently strong, i.e., ζ ζ< < 0cr0 0, , b(t) will increase indefinitely: this is the

separation regime. In this case, if the shear, and thus the corresponding strain rate, is very
strong, the vortices will also begin to elongate. If the shear is only weakly adverse or
favorable, i.e. ζ ζ> cr0 0, , the vortices will revolve along elliptical trajectories with b(t) peri-

odically increasing or decreasing, respectively, as a(t) grows in time until a t b t( )/ ( ) reaches
a b( / )cr and the vortices begin to merge into a single compound vortex: this is the merger
regime. The value of a b( / )cr determined from the simulations is found to be within the range
previously reported for the no-shear case, = ±a b( / ) 0.235 0.006cr , over the range of para-
meters tested. The boundary separating the merger and separation regimes, ζ cr0, , is accurately

predicted by the point vortex model and varies with a b/0 0. Both of these critical values were
found to be largely independent of ΓRe over the range considered. Therefore, for the purpose
of determining whether a co-rotating viscous vortex pair in the presence of background shear
will merge, ζ ζ> a b( / )cr0 0, 0 0 constitutes a sufficient criterion.

Although a study of the long time evolution of the vortex pair is beyond the scope of this
paper, some remarks can be made based on the results presented here. As the vortices diffuse
and spread, their peak vorticity will decrease. In the separation regime, since ζ ω=t S t( ) / ( )
increases in time, it is expected that vortices initially exhibiting separation without elongation
would eventually exhibit elongation if simulations were to run long enough and boundary
effects were to remain inconsequential. Likewise, in the merger regime, the compound vortex
formed by merger would ultimately diffuse until it too would become weak enough to be
deformed by the background strain and elongate.

Fluid Dyn. Res. 46 (2014) 031423 P J R Folz and K K Nomura
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Table 3. Time to start of merging process *tcr for vortex pairs in the merging ζ0 regime
for =ΓRe 5000 and =ΓRe 1000 and =a b/ 0.1570 0 .

=ΓRe 5000 =ΓRe 1000

ζ0
*tcr

*tcr

0.0045 1.26 0.336
0 1.53 0.373
−0.0045 1.73 0.417
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Thus, in contrast with the case of inviscid flow where periodic motion, merger, and
separation with and without elongation constitute distinct regimes determined by initial
conditions (Trieling et al 2010), viscous vortices may evolve in time through these flow
conditions. If sufficiently strong adverse shear is present, the vortices will separate and
thereby limit any mutual interaction. Otherwise, the vortices will develop in a manner similar
to the no-shear flow. Initially, a quasi-steady diffusive phase will occur in which the vortices
revolve in an orbit; the effect of shear is to vary b(t) along the orbit. This is followed by a
convective/merging phase; where favorable/adverse shear promotes/hinders mutual interac-
tion and merger. Finally, another diffusive phase is expected to occur in which the single
vortex may ultimately be deformed and elongated by the background shear.

It is possible that the efficacy of the inviscid/point vortex predictions when viscous
effects are present breaks down at very low Reynolds numbers, when the spreading is so rapid
as to violate the ‘sufficiently separated’ requirement very shortly after the start of the
simulation. In such cases merger may result even when their ζ0 and a b/0 0 might correspond to
the separation regime as indicated by the point vortex criterion. Furthermore, it is known that
interactions of unequal vortices in the absence of shear produce a richer variety of outcome
regimes than do symmetric pairs (e.g. Brandt and Nomura 2010), so the regimes of interaction
of such pairs when shear is present are undoubtedly more complex and nuanced than those
presented here. These topics remain to be addressed in future work.
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A quantitative assessment of viscous asymmetric
vortex pair interactions
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The interactions of two like-signed vortices in viscous fluid are investigated using
two-dimensional numerical simulations performed across a range of vortex strength
ratios, Λ = Γ1/Γ2 6 1, corresponding to vortices of circulation, Γi, with differing
initial size and/or peak vorticity. In all cases, the vortices evolve by viscous diffusion
before undergoing a primary convective interaction, which ultimately results in a
single vortex. The post-interaction vortex is quantitatively evaluated in terms of an
enhancement factor, ε = Γend/Γ2,start, which compares its circulation, Γend, to that
of the stronger starting vortex, Γ2,start. Results are effectively characterized by a
mutuality parameter, MP ≡ (S/ω)1/(S/ω)2, where the ratio of induced strain rate,
S, to peak vorticity, ω, for each vortex, (S/ω)i, is found to have a critical value,
(S/ω)cr ≈ 0.135, above which core detrainment occurs. If MP is sufficiently close to
unity, both vortices detrain and a two-way mutual entrainment process leads to ε > 1,
i.e. merger. In asymmetric interactions and mergers, generally one vortex dominates;
the weak/no/strong vortex winner regimes correspond to MP <, =, >1, respectively.
As MP deviates from unity, ε decreases until a critical value, MPcr is reached, beyond
which there is only a one-way interaction; one vortex detrains and is destroyed by the
other, which dominates and survives. There is no entrainment and ε ∼ 1, i.e. only a
straining out occurs. Although (S/ω)cr appears to be independent of Reynolds number,
MPcr shows a dependence. Comparisons are made with available experimental data
from Meunier (2001, PhD thesis, Université de Provence-Aix-Marseille I).

Key words: vortex dynamics, vortex flows, vortex interactions

1. Introduction
Vortex interactions are an important and often dominant aspect of many fundamental

and practical flows. In the case of decaying two-dimensional turbulence, the interaction
of two like-signed vortices is considered to be a driving mechanism for the inverse
energy cascade, producing larger scales through the merging of two vortices, and
breaking down smaller, weaker vortices (McWilliams 1990; Tabeling 2002). This has
led to the development of models and scaling laws for two-dimensional turbulence
that employ simplified descriptions of vortex merger, typically based on the highly
idealized case of inviscid symmetric merger (Carnevale et al. 1991; Riccardi, Piva

† Email address for correspondence: knomura@ucsd.edu
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& Benzi 1995; Sire, Chavanis & Sopik 2011). In order to improve such models,
and more generally to better understand two-dimensional vortex interactions, more
accurate characterizations of these vortex interactions and their outcomes are needed.

Most fundamental studies of interacting co-rotating vortices (see, e.g. Brandt &
Nomura (2010) for a review) consider inviscid flow and symmetric vortex pairs,
wherein the two vortices are equal in size and strength. These studies indicate that
two equal vortices will merge when they are separated within a critical distance,
i.e. if b/a 6 (b/a)cr, where b is the linear distance between vorticity peaks and a
is the vortex radius (e.g. Saffman & Szeto 1980; Overman II & Zabusky 1982).
Vortices separated beyond this critical value revolve about each other and the two
vortices persist in time: at intermediate distances, the vortices deform each other and
exchange vorticity while at large distances they do not interact significantly. These
three regimes (merger, exchange, no significant interaction) are well characterized by
the initial b/a and (b/a)cr (Waugh 1992). For the case of Rankine (uniform vorticity)
vortices, a merging efficiency,

H = Γtot,f /Γtot,0, (1.1)

which compares the total circulation of the final vortex, Γtot,f , to the combined total
circulation of the original two vortices, Γtot,0, was evaluated by Waugh (1992). Results
indicate that the resulting compound vortex may have less circulation than the total
of the original vortices due to the ejection of vorticity from the cores in the form of
filaments during the merging process.

Inviscid interactions between two unequal vortices, i.e. an asymmetric pair, are
found to produce more varied outcomes (e.g. Dritschel & Waugh 1992; Yasuda &
Flierl 1997; Trieling, Velasco Fuentes & van Heijst 2005). Dritschel & Waugh (1992)
considered a pair of Rankine vortices with equal vorticity and unequal areas. They
found that within some separation distance, which varied with the asymmetry of
the pair, one vortex ejects a filament of vorticity which then may or may not be
incorporated into the other. Interactions could then be divided into five regimes based
on the values of the enhancement factor for each vortex i= 1, 2,

εi = Γi,f /Γi,0, (1.2)

which compares the final circulation of each vortex to its circulation at the start of
interaction. Outcomes with the initially larger vortex unchanged ε1= 1 and the smaller
vortex reduced ε2<1 correspond to partial or complete straining-out regimes, the latter
with ε2 = 0 (i.e. only one vortex survives). Outcomes with the initially larger vortex
enhanced, i.e. ε1 > 1, and the smaller vortex reduced ε2 < 1 correspond to partial or
complete merger regimes, the latter having ε2 = 0 (i.e. only one vortex survives). An
elastic interaction regime is then associated with the limiting case in which ε1= 1 and
ε2= 1. Results from contour surgery simulations were presented on a regime diagram
as a function of the ratio of initial vortex radii a2/a1 and non-dimensional separation
distance b/a1 and showed complicated dependencies on these parameters. Although
this study suggests that only the initially stronger vortex can be enhanced, in general
the weaker vortex could instead be the enhanced final vortex, i.e. be the ‘winner’
of the interaction (Melander, Zabusky & McWilliams 1987b). The exact conditions
for this to occur are not yet entirely clear. Trieling et al. (2005) consider various
vorticity distributions, including a Gaussian profile, and asymmetric vortex pairs with
equal-vorticity/unequal-area and equal-area/unequal-vorticity combinations. Regime
maps comparable to those of Dritschel and Waugh (indicating the five regimes)
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Assessment of asymmetric vortex pair interactions 3

were presented and again complex dependencies on the parameters considered (radii
ratio, peak vorticity ratio and initial separation distance) were exhibited, and were
found to also depend on the vorticity distribution. Although enhancement factors
were evaluated, the flow regimes in this study were ultimately identified by visual
inspection due to ambiguities in these quantities when the two vortices exchange fluid
to negligible net effect.

In viscous flow, diffusion causes the vortices to grow in time, so b/a will thereby
inevitably be reduced below (b/a)cr. The interaction of two equal vortices thus always
results in merger (Melander, Zabusky & McWilliams 1988). Distinct flow regimes
occur in the time development of the vortex pair (Melander et al. 1988; Le Dizès &
Verga 2002; Meunier et al. 2002; Cerretelli & Williamson 2003; Brandt & Nomura
2007). In the first (diffusive) phase of development, when b/a is sufficiently large,
the flow is dominated by the viscous growth of the vortices. During this time, each
vortex responds to the strain field induced by the other, which elliptically deforms
the vortices. In the second (convective) phase of development, the induced strain
and deformation leads to the detrainment of core vorticity. The detrained fluid is
circulated (exchanged) between vortices and the weakened cores eventually undergo
mutual entrainment. These processes result in the primary motion of the vortices
towards each other (Huang 2005; Brandt & Nomura 2007). The onset of merger
((b/a)cr) is considered to correspond to the start of the convective phase (Meunier
et al. 2002). A third (second diffusive) phase consists of the eventual elimination of
the two vorticity peaks of the merged structure, which occurs on a diffusive time scale
(Meunier et al. 2002; Cerretelli & Williamson 2003), followed by axisymmetrization
of the final structure (Melander, McWilliams & Zabusky 1987a).

Viscous interactions between two unequal vortices also ultimately result in a single
vortex, although the vortex may not be enhanced, as in the inviscid flow straining-out
regimes. A detailed study of the associated physics was carried out by Brandt &
Nomura (2010) using numerical simulations. Three interactions were considered
to occur: complete merger, partial merger and straining out. Here, although the
inviscid flow regime terminology is used, the definitions of each are given in terms
of the relative timing of core detrainment and core destruction. A critical strain
rate parameter, corresponding to the establishment of core detrainment, was defined
and determined for each vortex. The onset of merger was then considered to be
the achievement of the critical strain rate parameter by both vortices. In the case of
symmetric merger, the critical strain rate parameter was shown to be related to (b/a)cr.
Although the developed merging criterion and flow classification provide physical
insight and allow for a more generalized characterization of the vortex interactions, it
is not clear how it can be used in a practical manner. In particular, the classifications
depend on the relative timing of the vortex detrainment and destruction processes,
and the strain rate parameter is defined in the co-rotating frame. It is also noted that
in this study, verification of merger and the extent of entrainment were determined
by visual inspection rather than a more objective and quantitative means. Jing, Kanso
& Newton (2012) also examined the viscous interaction of an asymmetric pair (along
with a symmetric pair) using a low-dimensional core growth model and identified
a sequence of topological bifurcations in the instantaneous streamline patterns as
the flow evolves into a single Gaussian vortex, although notably their model did not
include an entrainment process. To the authors’ knowledge, no quantitative assessment
of the interactions have been performed for either symmetric or asymmetric pairs in
viscous flows, likely due to difficulties associated with the continuous development,
both in space and time, inherent to these flows.
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4 P. J. R. Folz and K. K. Nomura

The present study seeks to extend the ε-type framework of Dritschel & Waugh
(1992) to viscous flow, and to use these metrics to quantitatively assess for the
first time co-rotating viscous vortex pair interactions. Two-dimensional numerical
simulations are performed for a wide range of initial asymmetries including both
unequal size and unequal peak vorticity, allowing for more possible outcomes and
enabling a more general characterization of these flows. A procedure is developed
which allows the vortex cores and associated properties to be monitored in time,
thereby enabling the identification of the times of start (t∗start) and end (t∗end) of the
primary (convective) interaction. Values of an appropriately defined enhancement
factor, ε, and merging efficiency, η, are then evaluated and used to objectively assess
each interaction. Since these viscous interactions all result in a single vortex, there are
two general outcomes: enhancement (merger) and no enhancement (straining out). A
new parameter, which measures the degree of mutuality of the interaction, is defined
based on the relative straining of each vortex. It is found to effectively characterize
ε and η of the post-interaction vortex for the range of parameters considered and
observed interaction regimes. Results are compared with available experimental data
of Meunier (2001).

The flow parameters and numerical simulations are described in § 2. The basic time
development of the flows and the associated physical processes are first reviewed in
§ 3. The procedure for the quantitative assessment is then developed in § 4. Results
are presented in § 5. The new parametrization is described in § 6. This is followed
by comparisons with the lower Reynolds number simulations and experimental results
in § 7. Summary and conclusions are given in § 8 along with some implications for
two-dimensional turbulence.

2. Flow set-up and parameters

The two-dimensional flow initially consists of two Gaussian vortices i = 1, 2,
separated by a distance b0 (figure 1). Each vortex has an initial circulation
Γi,0 = πa2

i,0ωi,0, where ai,0 is the initial vortex radius and ωi,0 is the initial peak
vorticity, giving an initial aspect ratio a2,0/b0 and circulation ratio Λ0 = Γ1,0/Γ2,0 6 1.
The simulations cover three subcategories of asymmetric pairs: those having unequal
vorticity peaks but equal areas (UPEA: Λ0=ω1,0/ω2,0 < 1), those having equal peaks
but unequal areas (EPUA: Λ0 = a2

1,0/a
2
2,0 < 1) and those having both unequal peaks

and unequal areas (UPUA: Λ0= a2
1,0ω1,0/a2

2,0ω2,0 < 1), as well as the limiting case of
a symmetric pair (Λ0 = a2

1,0/a
2
2,0 = ω1,0/ω2,0 = 1.0). The circulation Reynolds number,

ReΓ = Γ2,0/ν = 5000, is based on the stronger vortex. Additional UPEA simulations
are performed with ReΓ = 1000 in order to compare with the experimental data. All
simulations are performed with a2,0/b0 = 0.157. This value satisfies computational
requirements (see Brandt & Nomura 2007) and is comparable to those in the
experiments. The simulations performed are summarized in tables 1 and 2. All
times are given in terms of a convective time scale based on the period of revolution
of two point vortices T = 2π2b2

0/(0.5Γ2,0(1+Λ0)), t∗ = t/T .
The flow is incompressible and is integrated in time using finite-difference schemes

on a uniform grid with periodic boundary conditions (see Gerz, Schumann &
Elghobashi 1989; Orlandi 2000). The domain consists of 20482 points with side
lengths of Lx = Lz = 24b0, giving approximately 27 points across the larger core.
Resolution and domain size testing on both local and integrated quantities showed
these values to be sufficient; for further discussion see Brandt & Nomura (2007).
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Assessment of asymmetric vortex pair interactions 5

x

y

FIGURE 1. The initial condition consisting of two Gaussian vortices i= 1, 2 each having
initial radius ai,0, peak vorticity ωi,0, separated by peak–peak distance b0. Initial aspect
ratio a2,0/b0 = 0.157 and circulation ratio Λ0 = Γ1,0/Γ2,0 6 1.

3. Basic flow behaviour
The flow development of three illustrative cases, a symmetric and two UPEA

asymmetric pairs (Λ0 = 1.0, 0.90, 0.70), is presented in figure 2, with vorticity
contour plots given in each of the upper rows of figure 2(a–c). Although only UPEA
asymmetric pairs are shown, these cases depict the key processes involved in all
interactions, which were investigated in detail by Brandt & Nomura (2007, 2010).
Here, we review these processes and consider further details in order to facilitate the
current analysis.

The mutually induced flow of the two vortices initially causes the vortices to
revolve about each other with a nearly constant rotation rate (≈2π/T) and separation.
These features are indicated in figure 3, which shows the translational speed of
the vorticity peak of each vortex, and figure 4, which shows the trajectories of
the vorticity peaks, for each of the cases shown in figure 2. The flow begins in a
diffusive phase in which the flow evolves from the initial condition (column 1 of
figure 2) primarily by viscous spreading of each vortex, which increases core size.
The vortices also deform elliptically in response to the induced strain field of the
other vortex. In the co-rotating frame, in the vicinity of the hyperbolic points where
the vorticity magnitude is low, a tilt in the vorticity contours with respect to the
streamlines develops (Brandt & Nomura 2006). This results in filamentation at the
outer ends of the vortex pair. At the central (hyperbolic) point, the tilt results in
detrainment of core vorticity which is circulated and exchanged between the vortices.
It is the establishment of this core detrainment process that is the predominant cause
of the change from diffusion-dominated to convective-dominated behaviour, and is
considered to be the beginning of the primary convective interaction.

In the symmetric pair (figure 2a), the detrainment process is reciprocal and both
vortices are detrained at the same rate (figure 2a, columns 2–3). This weakens the
vortex cores and at some point, they become mutually entrained (figure 2a, columns
3–4) which corresponds to a rapid movement of the cores towards each other
(figure 3a). The original vortices are destroyed as they intertwine (figure 4a) and
the flow is transformed into a single compound structure (figure 2a, column 4),
which continues to axisymmetrize (figure 2a, column 5).

In the asymmetric pairs (figure 2b,c), the greater induced strain rate at the weaker
vortex results in earlier deformation and detrainment (figure 2b,c, columns 2–3).
As the disparity of the vortices increases, more significant detrainment and even

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

52
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
D

 L
ib

ra
ri

es
, o

n 
19

 S
ep

 2
01

7 
at

 0
4:

45
:1

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

34



6 P. J. R. Folz and K. K. Nomura

(a)

(b)

(c)

1 2 3 4 5

FIGURE 2. Vorticity contours at the initial condition and key times during the interaction
for (a) symmetric (Λ=Λ0 = 1.0) and UPEA (b) Λ= 0.88 (Λ0 = 0.90) and (c) Λ= 0.68
(Λ0 = 0.70) cases at ReΓ = 5000. For each case, the upper row depicts the vorticity
contours of the total flow and the lower row depicts the vorticity contours within the
region considered ‘core’ using II > IIt. Column 1: initial condition; column 2: t∗ = t∗start;
column 3: t∗= t∗det; column 4: t∗= t∗ent (omitted for Λ= 0.68 since no entrainment process
occurs); column 5: axisymmetrization. See § 4 for details and definitions of t∗start, t∗det
and t∗ent.
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Assessment of asymmetric vortex pair interactions 7

Starting (t∗start) Initial (t∗ = 0) Ending (t∗end) Weak
Λ ω1/ω2 Λ0 ω1,0/ω2,0 ε η winner

Symmetric 1.00 1.00 1.00 1.00 2.10 1.05

0.93 0.95 0.95 0.95 1.93 1.00
0.88 0.90 0.90 0.90 1.83 0.98
0.82 0.85 0.85 0.85 1.74 0.95
0.80 0.82 0.825 0.825 1.58 0.88
0.79 0.81 0.8125 0.8125 1.49 0.84

UPEA 0.78 0.80 0.80 0.80 1.33 0.75
0.77 0.78 0.785 0.785 1.08 0.61∗
0.76 0.77 0.775 0.775 1.07 0.61∗
0.72 0.75 0.75 0.75 1.04 0.60∗
0.68 0.70 0.70 0.70 1.02 0.61∗
0.63 0.65 0.65 0.65 1.02 0.63∗
0.58 0.60 0.60 0.60 1.01 0.64∗

0.90 0.95 0.90 1.00 1.82 0.96
EPUA 0.79 0.91 0.80 1.00 1.69 0.95

0.70 0.90 0.70 1.00 1.04 0.62∗
0.55 0.80 0.60 1.00 1.01 0.65∗

0.92 1.18 0.90 1.82 1.84 0.96 X
0.91 1.16 0.90 1.67 1.87 0.98 X
0.91 1.11 0.90 1.54 1.93 1.01 X
0.91 1.09 0.90 1.43 1.95 1.02 X
0.90 1.04 0.90 1.25 2.00 1.05
0.89 0.99 0.90 1.11 1.91 1.01
0.86 1.11 0.85 1.82 1.91 1.03 X
0.85 1.10 0.85 1.67 1.91 1.03

UPUA 0.84 0.96 0.85 1.11 1.77 0.97
0.80 1.08 0.80 2.00 1.88 1.04
0.80 1.03 0.80 1.67 1.81 1.01
0.78 0.92 0.80 1.11 1.74 0.98
0.68 0.95 0.70 1.67 1.60 0.95
0.68 0.92 0.70 1.43 1.46 0.87
0.69 0.91 0.70 1.25 1.32 0.78
0.67 0.85 0.70 1.11 1.08 0.65∗
0.58 0.85 0.60 1.67 1.03 0.6∗
0.57 0.77 0.60 1.11 1.02 0.65∗

TABLE 1. Summary of simulation parameters and results for ReΓ = 5000. Values for ε
and η are evaluated at t∗end. Starting Λ = Γ1/Γ2 is evaluated at t∗start. See § 4 for details
and definitions of t∗start and t∗end. ∗ indicates that the straining-out regime has been reached
and η is therefore not a meaningful physical quantity. ‘Weak winner’ indicates that the
peak of the weaker initial vortex becomes the peak of the resulting post-interaction vortex
(see § 5).

destruction of the weaker vortex may occur before detrainment can be established at
the stronger vortex. The implication is that either a mutual but unequal entrainment
process occurs (Λ0 = 0.90, figure 2b, columns 3–4) or no entrainment occurs
(Λ0 = 0.70, figure 2c, column 3). In the former case, there is some intertwinement
(figure 4b) with only the weaker vortex destroyed. The stronger vortex entrains
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(a) (b) (c)Vortex 1 (weaker)

Vortex 2 (stronger)

4

4

FIGURE 3. (Colour online) Time development of the normalized translational speed
|V|/|V0| of each of the vorticity peaks, based on the initial translational speed of each
vortex V0, for the cases depicted in figure 2. (a) Λ=Λ0 = 1.0, (b) Λ= 0.88 (Λ0 = 0.90),
(c) Λ= 0.68 (Λ0 = 0.70).

(a) (b) (c)

FIGURE 4. (Colour online) Trajectories of vortex peaks for the cases depicted in figure 2.
Red ×: vortex 1 (weaker), blueE: vortex 2 (stronger). Initial positions indicated by filled
square and circle respectively. Plotted data points correspond to intervals of approximately
200 time steps.

vorticity from the weaker vortex thereby yielding a compound vortex. In the latter
case, there is no apparent interpenetration of vorticity from the original vortices
(figure 4c); the weaker vortex is destroyed while the stronger vortex remains,
surrounded by vorticity from the weaker vortex.

The entrainment mechanism can be understood by considering the influence that
each vortex exerts on the other. Huang (2005) elucidated this in a Lagrangian study
of symmetric merger which showed that the vorticity that is detrained from one core
and advected around the companion core, induces motion of the companion core
towards it. In the symmetric case, since the cores are equal, the process is reciprocal
and results in the rapid motion of the vorticity peaks towards each other as they are
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Assessment of asymmetric vortex pair interactions 9

mutually entrained, as observed in figures 3(a) and 4(a) (Λ0= 1.0). In the asymmetric
case, as discussed in Brandt & Nomura (2010), the outcome depends on the relative
time scales of each core’s detrainment and destruction. Consider two vortices 1 and
2 with Γ1/Γ2 < 1. If vortex 1 is moderately weaker than vortex 2, although vortex
2 will detrain vortex 1 more quickly, vortex 1 will still detrain vortex 2, and the
associated detrained vorticity will advect it inwards towards vortex 2. Since both
vortices detrain, subsequently a mutual but non-reciprocal entrainment process will
occur. This is observed in figures 3(b) and 4(b) (Λ0 = 0.9) which show vortex 1
accelerating with its trajectory moving inward while vortex 2 maintains its induced
motion. Since vortex 1 is eventually eroded, its advection inward is limited, and only
fluid from vortex 2 will become the centre of the resulting flow (figure 4b). If vortex
1 is significantly weaker than vortex 2, it will be unable to detrain vortex 2 before
it is eroded away by vortex 2 and thus will not be advected inwards. Hence, in this
case, entrainment will not occur. This is seen in figures 3(c) and 4(c) (Λ0 = 0.7),
wherein the peak of vortex 1 accelerates somewhat as it weakens but undergoes no
inward motion, while vortex 2 decelerates as it establishes itself as the sole vortex
in the flow. This is consistent with the results presented in a Lagrangian study of a
highly asymmetric pair with Λ0 =ω1/ω2 = 0.5 by Huang (2006).

In all cases, whether or not entrainment occurs, by the end of the primary
convective phase there exists only a single vortex structure, comprised of fluid from
one or both starting cores, shown in column 4 of figure 2 for Λ0= 1.0, 0.9 cases and
in column 3 for Λ0 = 0.7 case (since no entrainment occurs). Beyond the convective
phase, the resulting structure undergoes a final phase (column 5 of figure 2) during
which it axisymmetrizes into a circular Gaussian vortex which continues to evolve by
viscous diffusion.

4. Assessing the product of asymmetric interactions
In order to quantitatively assess the interaction, an ε-type enhancement factor is

evaluated,

ε≡
Γend

Γ2,start
, (4.1)

and, since ε (Γend) depends directly on the total available circulation of the starting
pair, a corresponding merging efficiency,

η≡
Γend

Γtot,start
, (4.2)

is also considered. Both quantities are based on the circulation of the vortex, Γend, at
the end time of the interaction (t∗end) relative to the circulation of the stronger vortex,
Γ2,start, and of the total circulation of both vortices combined, Γtot,start, respectively, at
the starting time of the interaction (t∗start). Since the key processes that lead to a single
vortex occur in the primary convective phase, the vortex pair interaction is considered
to be the primary convective interaction only (see appendix A), and the start and end
times are considered to be those of this phase.

In order to evaluate (4.1) and (4.2) for viscous flow, the vortex cores must be
identified in a consistent manner throughout the entire flow development including the
transition from two vortices into one. To do this, a criterion is used based on the
second invariant of the velocity gradient tensor: II = 1/2(ω2/2 − S2) > IIt, where IIt
is an arbitrary threshold level (Hunt, Wray & Moin 1988). For the present study, the
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10 P. J. R. Folz and K. K. Nomura

threshold level is set by II∗t ≡ IIt(t)/IIpeak(t)= 0.10, where IIpeak(t) is the instantaneous
value of II at the location of the higher of the values of IIi evaluated at the location
of each vorticity peak i= 1, 2 (or at the location of the only peak, if only one exists)
unless otherwise noted. The value II∗t = 0.10 corresponds to the characteristic radius of
a single isolated Gaussian vortex based upon the second moment of vorticity, r= aω,
and is therefore used to identify the cores throughout the present study (Saffman
2001; Meunier et al. 2002). For more discussion of the choice of IIt, see appendix A.
Each lower row of figure 2 depicts the portion of the flow considered to be core by
II > IIt. It is seen that low-level peripheral and filamentary vorticity is excluded and
the transformation of the flow from two distinct structures into one is captured.

Since the interaction between two isolated co-rotating vortices in viscous fluid
always ultimately results in a single vortex, aggregate area and circulation of the
vortex core(s) are evaluated by

AII(t)=
∫

II>IIt

dA (4.3)

and
ΓII(t)=

∫

II>IIt

ω dA, (4.4)

where dA refers to an area element of fluid (properties of each individual vortex
i = 1, 2 are computed similarly using a separate IIt,i for each, not shown). While
this means that the definition of the weaker vortex core is somewhat inconsistent
across Λ, by monitoring the properties continuously, the times of start (t∗start) and
end (t∗end) of the interaction can be identified without presupposing when the vortices
are destroyed or when a new one is formed. Illustrative plots of AII(t) and ΓII(t)
are presented in figure 5 which correspond to the cases depicted in figure 2. The
aggregate properties are normalized by their values at the initial condition. Equivalent
plots for a single Gaussian vortex having the same ReΓ as one member of the
symmetric pair (ReΓ = 5000) are also included in figure 5(d) for reference. In this
case, AII(t) increases linearly in time while ΓII(t) remains very nearly constant, as
expected, which verifies the evaluation of (4.3) and (4.4). Prior to t∗start, each individual
vortex’s ΓII,i and AII,i evolve similarly to those of the single vortex (not shown).

In each of the pair interactions in figure 5(a–c), at first AII(t) grows linearly by
viscous diffusion (i.e. during the first diffusive phase), while ΓII(t) decreases slightly
due to the intensifying induced strain. There is then a deviation from linear growth
of AII(t) due to filamentation and core detrainment. Since the start of detrainment
is considered to be the start of the main convective interaction, t∗start is chosen to
be the earlier time at which the evolution of either of the individual AII,i(t) begins
a continual deviation from linear growth, reaching and thereafter maintaining at
least a 0.5 % deviation from the AII,i value predicted by continual linear growth
(note that computed ε and η are relatively insensitive to choice of t∗start since ΓII
remains approximately constant prior to detrainment, see appendix A for details).
This essentially corresponds to the departure from linear growth of aggregate AII(t)
but is somewhat easier to detect in UPUA cases. Note that for the remainder of
this study, unless otherwise noted, vortex parameters such as ΓII,1, ΓII,2, and Λ refer
to quantities evaluated at t∗start, and that cases are identified by these properties (e.g.
Λ= 0.88 rather than Λ0 = 0.90).

Subsequent to t∗start in figure 5(a–c), ΓII(t) rapidly decreases to a local minimum, at
time t∗det, as vorticity detrains from the cores (column 3 of figure 2 corresponds to this
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FIGURE 5. Time development of normalized aggregate core area AII(t)/AII,0 and
circulation ΓII(t)/ΓII,0 (see (4.3) and (4.4)) for (a–c) the cases depicted in figure 2 and
(d) a single vortex with same ReΓ . The dots in (a–c) correspond to the times of the
columns in figure 2. (a) Symmetric (Λ = Λ0 = 1.0), (b) Λ = ω1/ω2 = 0.88 (Λ0 = 0.90),
(c) Λ=ω1/ω2 = 0.68 (Λ0 = 0.70), (d) single vortex.

minimum). For vortices similar in strength (figure 5a,b), immediately after the time
the ΓII(t) local minimum is reached, both AII(t) and ΓII(t) grow rapidly, with ΓII(t)
quickly reaching a sharp peak, at time t∗ent, before diminishing again (column 4 of
figure 2 corresponds to this maximum). For vortices having more disparate strengths
(figure 5c), after AII(t) and ΓII(t) reach their (simultaneous) local minima they both
experience smooth, nonlinear behaviour without any spike, and ultimately return to
single Gaussian vortex behaviour which is maintained until the end of the simulation.
Note that there is not a sharp or sudden change in qualitative behaviour: intermediate
cases contain qualitative elements of both (not pictured; these cases are treated as
spike-occurring cases in all subsequent analysis).
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FIGURE 6. Results for ε and η versus initial circulation ratio, Λ0: (a) ε versus Λ0 and
(b) η versus Λ0, for ReΓ = 5000 cases.C: UPEA;A: EPUA;6: UPUA, stronger wins; ×:
UPUA, weaker wins;E: no winner (includes symmetric).

Comparing figures 5(a,b) and 3(a,b), it is seen that the spikes in the symmetric
and Λ0 = 0.90 cases coincide with the speed increase that is associated with mutual
entrainment as described in § 3. It is also seen that there is no spike or rapid
acceleration in the UPEA Λ0 = 0.70 case for which no entrainment occurs. The
spike in the ΓII(t) plot is therefore associated with entrainment, in these cases t∗end is
chosen to be t∗ent since at this time there exists only one continuous II > IIt region,
i.e. effectively one vortical structure (see lower rows of figure 2a,b). Then for cases
having no spike, t∗end is chosen to be t∗det since at that point there is already only one
continuous region because no entrainment occurs (see lower row of figure 2c). If
multiple local minima or maxima exist, t∗det and t∗ent are taken at the extremum with
the smallest or largest ΓII , as appropriate.

With t∗start and t∗end determined, ε and η can be computed and results are discussed in
the following sections. Alternative choices of t∗start and t∗end were considered and found
to yield similar results in terms of both values and trends of ε (and η) (see appendix A
for details). It is noted that AII(t) and ΓII(t) continue to evolve subsequent to t∗end,
and careful observation shows that this corresponds to the axisymmetrization of the
combined (i.e. final) structure and the diffusion of this structure into the non-quiescent
post-interaction surrounding fluid (see appendix A). Since this predominantly viscous
process occurs after the conclusion of the convective phase, it is not considered to be
a part of the main interaction of the two vortices (i.e. not a part of the convective
merging) and is therefore not considered in the evaluation of the interaction.

5. Results

Numerical values for ε and η are tabulated in table 1 along with the initial condition
and start of interaction pair properties for each case. Note that although the theoretical
maximum value is εmax = Γend,max/Γ2,start = (Γ1,start + Γ2,start)/Γ2,start =Λ+ 1, this limit
could be exceeded due to the use of IIt. These values of ε and η are plotted against
initial Λ0 in figure 6 and starting Λ in figure 7 on a reversed horizontal axis, and the
similarity of the plots suggests that the observed variance is not a consequence of the
choice of the evaluation time of the parameter.
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FIGURE 7. Results for ε and η versus starting circulation ratio, Λ: (a) ε versus Λ and
(b) η versus Λ, for ReΓ = 5000 cases.C: UPEA;A: EPUA;6: UPUA, stronger wins; ×:
UPUA, weaker wins;E: no winner (includes symmetric).

5.1. Symmetric merger
The symmetric interaction (Λ=Λ0=1.0, no winner) produces an enhancement ε≈2.1.
This value indicates that the core circulation is essentially conserved in the interaction,
having η ≈ 1.0, and comparable to the values of ε ≈ 1.6–1.8 and η ≈ 0.8–0.9 found
for inviscid symmetric pair interactions (with Gaussian initial vorticity distribution) by
Waugh (1992), Maze, Carton & Lapeyre (2004) and Trieling et al. (2005). It is noted
that the presence of viscosity does not appear to induce any significant additional
losses in the symmetric case in the present study. This is attributed to the fact that
losses during merging arise primarily due to the dissipation of the vorticity filaments,
which are associated with the low-level vorticity at the periphery of the vortex, which
itself does not meet the II∗t > 0.10 threshold even at t∗start. This effect was noted by
Trieling et al. (2005), whose radius method used to define the ‘core’ is comparable
to using II∗t ≈ 0.10. This exclusion of the low-level vorticity accounts for ε and η

here being higher than has been found in studies of inviscid Rankine vortices (Waugh
1992; Maze et al. 2004; Trieling et al. 2005). That ε and η found in the present study
are somewhat higher than those found by Trieling et al. (2005) for Gaussian vortices
is attributed primarily to the differing choice of initial aspect ratio, as well as viscous
effects.

5.2. Asymmetric interactions: UPEA and EPUA cases
For vortices with unequal initial vorticity peaks but equal areas (UPEA), ε is found
to decrease monotonically from ε ≈ 2.0 in the symmetric case to ε ≈ 1.0, reaching
this value at Λ= ω1/ω2 = 0.77 for ReΓ = 5000, and remains at approximately 1 for
further decreases in Λ (see figure 7). The value of ε≈ 1 corresponds to a straining-out
interaction.

That ε decreases with Λ is to be expected since total initial circulation is
proportional to 1 + Λ0, but η decreases monotonically as well, indicating that a
progressively greater percentage of the initial circulation is lost during interaction.
These η values are found to be relatively high (greater than 90 %) until decreasing
rapidly between 0.80>Λ> 0.77 (corresponding to approximately 0.825>Λ0 > 0.785
for the UPEA case), a relatively small transition region in the parameter space. Note
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14 P. J. R. Folz and K. K. Nomura

that once ε= 1 is reached, η= 1/(1+Λ) and ceases to be a meaningful quantity for
further changes in Λ.

Cases having equal peak vorticity and unequal areas (EPUA cases), ω1/ω2=1.0 and
A1/A2 < 1.0, proceed qualitatively similarly to the UPEA cases, achieving somewhat
higher enhancement for Λ≈0.8 but similarly reaching ε≈1 for Λ≈0.7 (see figure 7).

The results are in reasonable agreement with the qualitative assessments of other
asymmetric flows (Dritschel & Waugh 1992; Brandt & Nomura 2010) if ‘straining
out’ is taken to correspond to ε ≈ 1 and ‘merging’ to ε significantly greater than 1.
Trieling et al. (2005) found a similar qualitative trend for enhancement produced by
the mergers of inviscid initially Gaussian vortices, although they found the ε ≈ 1.0
regime occurs at much smaller Λ (strictly, Λ0) than the present study (approximately
0.36 for unequal area pairs), with similarly high η values (minimal η ≈ 0.8, some
nearly 95 %). Since Trieling et al. (2005) consider inviscid flows, and other studies of
viscous merging at comparable ReΓ indicate an upper bound for Λ for the straining-
out regime to be between 0.6–0.7 (Brandt & Nomura 2010) and between 0.5–1.0
(Huang 2005, 2006), this discrepancy is attributed to Trieling et al.’s use of much
larger initial aspect ratios (a/b)0 (i.e. smaller initial separations (b/a)0).

5.3. Asymmetric interactions: UPUA cases
Though most prior studies have considered asymmetric pair interactions having either
unequal peaks or unequal areas, vortex pairs may in general simultaneously have both
ω1/ω2 6= 1 and A1/A2 6= 1, including those in which Λ=Γ1/Γ2 < 1.0 but ω1/ω2 > 1.0.
Simulations of pairs having unequal peaks and unequal areas (UPUA) were performed
within the range of parameters judged to be computationally feasible.

Unlike the UPEA and EPUA cases, the enhancement produced by these UPUA
cases does not follow simple monotonic behaviour with respect to Λ, leading to the
scatter seen in figure 7 for ReΓ = 5000. The most extreme discrepancy is found to
occur around Λ= 0.7, with interactions capable of producing significant enhancement
(ε≈ 1.60) or none at all (ε≈ 1.01) depending on the exact parameters of the pair.

An interesting aspect of these UPUA cases is that in some cases the peak of the
initially weaker vortex is found to become that of the resulting final vortex, a result
not possible in the UPEA and EPUA cases. An example is presented in figure 8,
where for a given Λ≈ 0.9, vortices of differing ω1/ω2 at the start of detrainment are
observed to each follow trajectories qualitatively similar to the UPEA Λ0= 0.90 (Λ=
0.88) asymmetric merger case shown in figure 4(b), but in figure 8(b) the peak of the
initially weaker vortex becomes the peak of the resulting compound structure. Careful
consideration of the underlying physics yields a simple explanation that generalizes
this finding and the observed ε and η trends, as discussed in § 6.

6. Relative straining and the mutuality parameter

The relationship between the metrics characterizing the interaction outcome (ε
and η) and the basic parameters of the starting vortex pair (i.e. Λ, ω1/ω2, A1/A2)
presented in figure 7 and table 1 is unclear. A more effective parametrization may
be developed by considering the underlying physics of the interaction. The analysis
is given below and results are presented in figures 9–12. These figures include the
ReΓ = 5000 cases as well as the ReΓ = 1000 cases. This section will focus on the
ReΓ = 5000 results except where indicated; discussion of the ReΓ = 1000 results and
viscous effects will be given in § 7.
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(a) (b)

FIGURE 8. (Colour online) Trajectories of vortex peaks of UPUA pairs having Λ≈ 0.9
with differing peak vorticity ratios. Red ×: vortex 1 (weaker), blueE: vortex 2 (stronger).
Initial positions indicated by filled square and circle respectively. (a) The stronger vortex’s
peak becomes the post-interaction vortex centre (i.e. the stronger wins) for ω1/ω2 = 1.04,
(b) the weaker vortex’s peak becomes the post-interaction vortex centre for ω1/ω2 = 1.18
(i.e. the weaker wins).

10 2 3 10 2 3

 0.5

1.0  0.5

1.0

1.5

2.0

MP MP

(a) (b)

FIGURE 9. Results for ε and η versus mutuality parameter, MP: (a) ε versus MP and (b)
η versus MP, for all cases. For ReΓ =5000 cases,C: UPEA;A: EPUA;6: UPUA, stronger
wins; ×: UPUA, weaker wins;E: no winner. For the ReΓ = 1000 cases,p: UPEA;u: no
winner.

As discussed in § 3, for vortex merger to occur, i.e. for a compound vortex with
ε > 1 to be produced, mutual entrainment must occur to some extent so that there
is some interpenetration of vorticity of the two vortices. This requires detrainment
to be established in both vortices. If the disparity between the vortices is too great,
detrainment will only be initiated in one vortex, which will then erode and be
destroyed before it can induce detrainment of the other vortex, leaving it unenhanced,
i.e. ε ∼ 1. Since detrainment of a vortex is initiated by the induced strain and
resulting deformation of vorticity, it may be characterized by a ratio of the strain rate
to vorticity, (S/ω)i, which is here referred to as the relative straining. Here, Si and ωi
are evaluated at the location of the vorticity peak of vortex i at the start of convective
interaction t∗start (note S =

√
S2 where S2

= tr[SmnSmn]). A mutuality parameter MP is
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16 P. J. R. Folz and K. K. Nomura

then defined as the ratio of the relative straining of each vortex,

MP=
(S/ω)1
(S/ω)2

(6.1)

which indicates the degree of mutuality of the interaction. A value of MP = 1
corresponds to a fully two-way interaction. When MP ∼ 1, the vortices experience
comparable relative straining so that both vortices are detrained, resulting in
entrainment and ε > 1. As MP deviates from unity, it is expected that the interaction
will become increasingly dominated by one vortex and ε will decrease until some
critical value is reached, beyond which ε∼ 1, i.e. a one-way interaction.

Figure 9 shows ε and η as functions of MP. Note that figure 9 includes all the cases
in figure 7 (i.e. ReΓ = 5000) as well as ReΓ = 1000 cases. For the ReΓ = 5000 results,
the previous scatter in both ε and η across all cases (UPEA, EPUA and UPUA) is
seen to be significantly reduced, indicating a more effective characterization than Λ.
The dependence is peaked at MP= 1 and generally monotonic to either side with both
ε and η decreasing as MP varies from 1.

The majority of results correspond to MP> 1; in this case, since (S/ω)1 > (S/ω)2,
the weaker vortex detrains first and the stronger vortex then dominates. The associated
values of ε decrease as MP increases from 1, at first relatively gradually and then
quite rapidly near a critical value of MP, beyond which they remain constant at
ε ∼ 1. The critical value, MPcr ≈ 1.78 ± 0.04, thus gives a criterion for merger in
these cases. These interactions may then be characterized as follows: for MP = 1,
symmetric merger (and in principle asymmetric merger with (S/ω)1/(S/ω)2 = 1, see
figure 10) occurs and ε exhibits peak values; for 1<MP<MPcr, ε > 1, asymmetric
merger occurs resulting in the stronger vortex being enhanced; and for MP > MPcr,
ε ∼ 1, straining out occurs with the stronger vortex surviving unenhanced. The
behaviour of η is similar, although for MP < MPcr, the decline is somewhat more
muted; asymmetric merger is seen to be relatively high efficiency (most having
η > 0.85) indicating relatively minor losses for mergers in general.

When MP < 1, (S/ω)1 < (S/ω)2, and the corresponding cases in figure 9 are
asymmetric mergers in which the weaker vortex dominates (as seen in figure 8b)
and is ultimately enhanced by the interaction, i.e. wins (computed ε is based on
the stronger starting vortex regardless of which wins). It is expected that straining
out will occur for MP < MPcr ≈ 1/1.78 = 0.56, however, resolution considerations
preclude further investigation of this weak-winner regime. When MP ≈ 1, neither
vortex dominates or clearly wins (identified as ‘no winner’ in figure 9). Recall that
in the symmetric case where MP = 1, both vortices are destroyed as they become
mutually entrained and the flow transforms into a new vortex. This scenario can also
occur in asymmetric (UPUA) cases when the relative straining on each vortex is
nearly equal. An example of a no-winner UPUA case is given in figure 10, which
shows that neither vortex dominates and the interaction proceeds in a similar manner
to the symmetric case (figure 2a). The symmetric and no-winner UPUA MP≈ 1 cases
in the present study are seen to produce similar η, implying comparably effective
merging.

It is useful to relate MP to the previously considered vortex parameters. Simple
expressions for (S/ω)i can be obtained by considering the external strain rate produced
by a point vortex, i.e. the strain rate induced by one vortex at the location of the other
were the other not present, e.g. S1=Γ2/(2πb2) (a similar expression can be obtained
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1 2 3 4 5

FIGURE 10. Vorticity contours at the initial condition and key times during the interaction
for a UPUA case (Λ = 0.85, ω1/ω2 = 1.10, ReΓ = 5000) in which no winner can be
determined (MP= 1.02). See figure 2 for meanings of the rows and columns.

using the expression for strain rate produced by a Lamb–Oseen vortex Saffman 2001),
and using Γi =πa2

iωi,

(
S
ω

)

1

∼
1

2Λ

(a1

b

)2
, (6.2)

(
S
ω

)

2

∼
Λ

2

(a2

b

)2
. (6.3)

This relates (S/ω)i to the vortex aspect ratios. For symmetric and UPEA pairs,
equations (6.2)–(6.3) imply MP = 1/Λ2, which is observed to hold approximately
true across the range of Λ considered in the present study (not shown). The critical
MPcr ≈ 1.78 then implies a critical Λcr ≈

√
1/1.78= 0.75, very close to the observed

UPEA Λcr ≈ 0.79 (figure 7).
A simple relation for MP may then be obtained from (6.2)–(6.3),

MP=
(S/ω)1
(S/ω)2

∼
ω2

2a2
2

ω1
2a1

2
, (6.4)

where ω2
i a2

i is the enstrophy of a Rankine vortex. This suggests that the enstrophy
ratio at the onset of convective interaction may capture the same physical principles
and consequent ε and η behaviour as (S/ω)1/(S/ω)2. More generally, the enstrophy
ratio can be defined as

Z2

Z1
=

∫

II>IIt,2

ω2
2 dA2

∫

II>IIt,1

ω2
1 dA1

, (6.5)

where the integral is evaluated for each vortex at t∗start. Figure 11 shows ε and
η plotted against Z2/Z1; the observed dependence is similar to that of MP. It is
noted, however, that this parameter is somewhat less successful at indicating the
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0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0

 0.5

1.0

1.5

2.0

0.2

 0.4

0.6

 0.8

1.0

(a) (b)

FIGURE 11. Results for ε and η versus enstrophy ratio, Z2/Z1: (a) ε versus Z2/Z1 and (b)
η versus Z2/Z1, for all cases. For the ReΓ = 5000 cases,C: UPEA;A: EPUA;6: UPUA,
stronger wins; ×: UPUA, weaker wins;E: no winner. For the ReΓ =1000 cases,p: UPEA;
u: no winner.

weak-winner regime boundary (figure 11). The critical enstrophy ratio beyond which
no enhancement occurs is found to be (Z2/Z1)cr ≈ 1.63± 0.03 for ReΓ = 5000.

To the authors’ knowledge, the only other study to consider strong-winner
and weak-winner interactions is Melander et al. (1987b), who found a transition
region between these cases in their parameter space, which they approximated by
(ω1/ω2)= (A1/A2)

−0.36. A similar expression can be obtained from (6.4) with MP= 1
(the boundary for the weak-winner regime in the present study), (ω1/ω2)= (A1/A2)

−0.5,
which approximately corresponds to the ‘lower edge’ of the transition region of
Melander et al. (see their figure 2). Considering the slightly different definitions of
‘winner’ and the presence of viscosity in the present study, this correspondence is
notable.

Examining (S/ω)i of each vortex separately, it is observed that the convective
interaction begins when the relative straining of the first vortex to detrain reaches some
consistent value. Figures 12(a) and 12(b) show the starting (S/ω)1 and the maximum
value of (S/ω)2 reached before the end of detrainment, respectively, plotted against
the corresponding MP for all numerical cases. For each case the interaction outcome
is coded as binary ‘merger’ or ‘straining out’ based on whether an entrainment
process is evident in the AII(t) and ΓII(t) plots (this classification is consistent with
a ε-based assessment, but avoids invoking an arbitrary ε cutoff to classify the ε ≈ 1
cases). Considering the results at both ReΓ = 5000 and ReΓ = 1000, it is observed that
entrainment only occurs if the stronger vortex achieves a maximum (S/ω)2,max > 0.138
prior to the end of detrainment and never occurs for (S/ω)2,max 6 0.132, suggesting
a critical (S/ω)cr ≈ 0.135 (see figure 12b), which is comparable to the relatively
consistent mean value of starting (S/ω)1 = 0.147 with an average deviation of 0.016
(figure 12a). The scatter in the starting (S/ω)1 values in the present study is attributed
to imprecision in determining the exact starting time (see § 4). Thus, the critical value
(S/ω)cr ≈ 0.135 generally characterizes the onset of detrainment of Gaussian vortices
having ReΓ in the range considered in this study.

A critical strain rate to vorticity ratio has also been considered in a number of
related studies. Le Dizès & Laporte (2002) and Le Dizès & Verga (2002) showed that
a similar quantity evaluated in the co-rotating frame is a leading-order approximation
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10 2 3 10 2 3
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0.45
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(a) (b)

FIGURE 12. Results for the relative straining at each vortex with indication of occurrence
of detrainment: (a) (S/ω)1 versus MP at t∗start, (b) maximum (S/ω)2 prior to the end of
detrainment t∗det versus MP. ReΓ = 5000: @: merger, +: straining out. ReΓ = 1000: 6:
merger, ×: straining out. Dashed line indicates the critical (S/ω)cr = 0.135, obtained from
(b) (see § 6). Merger and straining out assessed by occurrence of entrainment phase and
lack thereof respectively.

of the eccentricity of streamlines near the centre of an elliptical Gaussian vortex,
i.e. a local eccentricity. Brandt & Nomura (2010) identified a critical value of their
strain rate parameter (the strain rate evaluated at the central hyperbolic point in the
co-rotating frame) that characterized the start of detrainment. Their results also show
that start of detrainment corresponds to an approximately consistent local eccentricity
εl ≈ 0.2 at the start of interaction (compare their figures 6a and 8), equivalent to
(S/ω)≈ 0.14 (although here (S/ω) is not evaluated in the co-rotating frame), which
is similar to the observed (S/ω)cr ≈ 0.135 in the present study. Mariotti, Legras &
Dritschel (1994) considered the similar phenomenon of vortex stripping of a single
vortex by external adverse shear and likewise found a comparable critical ratio of
strain rate to vorticity, equivalent to S/ω≈ 0.095 in the present study, and moreover
found this value to be consistent over a range of ReΓ , i.e. that this ‘stripping’ (and
ultimately vortex breakup) is an inviscid mechanism, even in viscous flow. Trieling
et al. (2005) utilized a similar critical strain rate to characterize the boundary between
complete and partial straining-out regimes in inviscid flow, relating the critical shear
required to destroy the weaker vortex to a critical separation distance. This effectively
distinguished partial (two vortices survive) and complete (one vortex completely
destroyed) straining-out cases in inviscid flow for EPUA and UPEA pairs having
small radius ratio R2/R1 and small peak vorticity ratio ω1/ω2, respectively, for
distributed vortices having various vorticity distributions, including a Gaussian profile.
Since viscous effects in the present study reduce ω in (S/ω), the critical value (S/ω)cr
(directly related to critical separation distance for symmetric merger; see (6.2)–(6.3))
is always attained by at least one of the vortices which is ultimately destroyed,
precluding two-vortex outcomes. Trieling et al. (2005) attributed the inefficacy of
this criterion for pairs of low asymmetry (i.e. those having higher R2/R1 or ω1/ω2)
to spatial effects and captured circulation by the stronger vortex altering its induced
strain. In light of the present analysis, it is suggested that this could be attributed
to the mutual detrainment of both vortices activating the convective entrainment
mechanism before either is completely destroyed (i.e. before the critical (S/ω) for
vortex destruction in inviscid flow is reached).
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Starting (t∗start) Initial (t∗ = 0) Ending (t∗end) Weak
ReΓ Λ ω1/ω2 Λ0 ω1,0/ω2,0 ε η winner

1000 1.00 1.00 1.00 1.00 2.21 1.11
1000 0.95 0.95 0.95 0.95 2.05 1.05
1000 0.88 0.90 0.90 0.90 1.88 1.00
1000 0.83 0.85 0.85 0.85 1.72 0.94

Num. 1000 0.77 0.79 0.80 0.80 1.61 0.91
1000 0.71 0.74 0.75 0.75 1.44 0.84
1000 0.67 0.69 0.70 0.70 1.16 0.69∗
1000 0.63 0.65 0.65 0.65 1.06 0.65∗
1000 0.57 0.60 0.60 0.60 1.03 0.66∗
1000 0.47 0.50 0.50 0.50 1.00 0.68∗

1500 0.97± 0.02 0.86± 0.06 0.86 0.88 1.89± 0.20 0.96± 0.09
1100 0.92± 0.08 1.15± 0.13 0.85 1.29 2.11± 0.24 1.09± 0.09 X

Expt. 1000 0.69± 0.06 0.74± 0.05 0.76 0.78 1.23± 0.19 0.70∗ ± 0.08
1300 0.58± 0.05 0.59± 0.02 0.68 0.67 1.21± 0.07 0.73∗ ± 0.04
900 0.42± 0.01 0.50± 0.02 0.49 0.52 0.96± 0.05 0.68∗ ± 0.04

TABLE 2. Summary of parameters and results for ReΓ = 1000 computational simulations
(‘Num.’) and laboratory experiments (‘Expt.’). Here all numerical cases are UPEA cases.
ε and η are evaluated at t∗end. Starting Λ= Γ1/Γ2 is evaluated at t∗start. Due to the nature
of the experiments, only Λ0 was controlled in the initial condition. ∗ indicates that the
‘straining-out’ regime has been reached and η is therefore not a meaningful physical
quantity. ‘Weak winner’ indicates that the peak of the weaker initial vortex becomes the
peak of the resulting post-interaction vortex (see § 5). Margins of error for the experimental
cases correspond to extrema of error bars in figure 16 (for details see § 7).

7. Comparison with experimental results and ReΓ effects

A series of UPEA numerical simulations at ReΓ = 1000 are performed in order
to facilitate comparison with available experimental data. The simulation parameters
and results are summarized in table 2. Contour plots for illustrative cases (symmetric
Λ=1.0 and UPEA Λ=0.88, 0.67), corresponding to those for ReΓ =5000 in figure 2,
are presented in figure 13. It is clear that diffusion and the onset of detrainment
occur more rapidly for each case than in the comparable higher-ReΓ case. These basic
effects are also seen in the evolutions of AII(t) and ΓII(t) (figure 14a,b; symmetric case
not shown). Otherwise, these results exhibit qualitatively similar features indicating
that the flows experience the same underlying processes.

The most significant implication of decreasing ReΓ is to increase MPcr (≈2.15 ±
0.16) and increase (Z2/Z1)cr (≈2.00 ± 0.14) relative to the ReΓ = 5000 case, as
indicated in the plots of ε and η versus MP and Z2/Z1 for ReΓ = 1000 (figures 9
and 11). Careful examination of the ΓII(t) and vorticity contour plots for all the
simulations verifies that an entrainment process occurs in some low-ReΓ cases
where there is none at the corresponding high ReΓ case with similar Λ and ω1/ω2.
As discussed in the previous section, (S/ω)cr ≈ 0.135 is consistent for both ReΓ
considered (see figure 12). The increase of MPcr with decreasing ReΓ is therefore
attributed to the more rapid diffusion enabling comparatively stronger vortices to
achieve (S/ω)cr by reducing ω more quickly. This is consistent with the results
of Mariotti et al. (1994) for a single vortex, which indicate that the critical S/ω
for vortex breakup by erosion, found to be independent of ReΓ , is reached more
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(a)

(b)

(c)

Symmetric

1 2 3 4 5

FIGURE 13. Vorticity contours at the initial condition and key times during the interaction
for (a) Symmetric (Λ0 = 1.0) and UPEA (b) Λ = 0.88 (Λ0 = 0.90) and (c) Λ = 0.67
(Λ0 = 0.70) cases at ReΓ = 1000. The first row depicts the vorticity contours of the total
flow, and the second row depicts the vorticity contours within the region considered ‘core’
using II > IIt (see § 4). See figure 2 for meanings of columns.

quickly for lower ReΓ . Although the case of interacting vortices is more complex,
the processes underlying the onset of detrainment are similar (Kimura & Herring
2001; Brandt & Nomura 2006). Additional effects of reducing ReΓ may include
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FIGURE 14. Time development of normalized aggregate core area AII(t)/AII,0 and
circulation ΓII(t)/ΓII,0 (II > IIt) for ReΓ = 1000 numerical cases (a) Λ = 0.88 and (b)
Λ= 0.67, and comparable experimental cases (c) Λ≈ 0.97, ReΓ ≈ 1500 and (d) Λ≈ 0.69,
ReΓ ≈ 1000. Note that the ‘initial’ time for (c) and (d), i.e. time of evaluation of XII,0
quantities, corresponds to the time at which vortices are judged to have formed.

an increase in ε values as a result of the earlier onset of detrainment potentially
reducing the amount of filamentation that can occur (although such a reduction is
difficult to quantify), as well as increased diffusion of vorticity directly from one
vortex into the other (although this effect is considered to be minor since the vortices
are well-separated prior to convective merging, which then occurs on a much more
rapid time scale than diffusion).

The numerical results are compared with digital particle image velocimetry (DPIV)
data taken from water tank experiments of co-rotating symmetric and asymmetric
vortex pairs (see Meunier 2001; Meunier et al. 2002). The vortices are generated
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(a)

(b)

1 2 3 4 5

FIGURE 15. PIV results for experimental cases having (a) Λ≈ 0.97, ReΓ ≈ 1500 and (b)
Λ≈ 0.69, ReΓ ≈ 1000. The first row depicts the vorticity contours of the entire flow and
the second row depicts the vorticity contours of the portion considered ‘core’ using II> IIt.
See figure 2 for meanings of columns. Note that the ‘initial condition’ corresponds to the
time at which vortices are judged to have formed.

impulsively by the rotation of sharp-edged flat plates about their vertical axes such
that they behave as laminar, two-dimensional vortices without axial velocity in the
observation volume, with Λ0 adjusted by varying the relative angular velocity of the
plates. The experimental cases are summarized in table 2. The Λ0 value is evaluated
at the time at which the vortices are judged to have become coherent and detached
from the flaps by visual examination (which may differ slightly from Meunier et al.
2002). The starting Λ value in each case is the average of the highest and lowest of
several possible Λ values computed using different plausible choices of starting time
in order to minimize the effect of the variability in these values (since with noisy
data slight differences in choice of start/end times can have a relatively pronounced
effect).

Contours of vorticity comparable to those in figure 13 are presented in figure 15 for
the Λ≈ 0.97, ReΓ ≈ 1500 and Λ≈ 0.69, ReΓ ≈ 1000 experimental cases. The oblong
structures visible at the early times are the plates that produce the vortices and should
be disregarded. Despite the noise, these appear qualitatively similar to those of the
comparable numerical cases.

Plots of AII(t) and ΓII(t) for the experimental results are presented in figure 14(c,d)
along with the ReΓ = 1000 numerical cases. No smoothing or averaging has been
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FIGURE 16. Results for ε and η versus enstrophy ratio, Z2/Z1: (a) ε versus Z2/Z1 and
(b) η versus Z2/Z1, for all cases. For the ReΓ = 5000 cases, C: UPEA; A: EPUA; 6:
UPUA, stronger wins; ×: UPUA, weaker wins;E: no winner. For the ReΓ = 1000 cases,
p: UPEA;u: no winner. The experimental results are indicated by C with error bars, see
§ 7 for explanation.

applied to the experimental data, but despite the noise they qualitatively resemble
those of the comparable numerical cases: the AII(t) of both experimental cases suggest
a linear growth at first, then nonlinear behaviour before returning to linear viscous
growth, while ΓII(t) of both appears to grow slightly at first (attributed to the method
used to create the vortices) followed by a decline to a local minimum, then a spike
in the Λ ≈ 0.97 case but not in the Λ ≈ 0.69 case, followed by relatively smooth
nonlinear behaviour. These features are interpreted to correspond to the diffusive,
convective and final phases of interaction that are observed in the numerical cases.
The longer diffusive phase in the experimental Λ ≈ 0.69 case (compared to the
numerical Λ = 0.67, ReΓ = 1000 case) is attributed to its having a somewhat lower
initial aspect ratio a0/b0.

Results for ε and η for the experimental cases are summarized in table 2 and
plotted with the low- and high-ReΓ numerical results in figure 16. As with Λ, for
each case several ε and η were computed using a number of plausible choices for
ending times due to the noise in the data. The integrated quantity Z2/Z1 is used to
examine the trends since the local quantities (S/ω) and MP are too uncertain to give
meaningful results. The experimental results in figure 16 are shown with horizontal
error bars indicating the maximum and minimum plausible Z2/Z1 and vertical error
bars indicating the maximum and minimum potential ε and η within this range, and
ε and η plotted at the midpoint. It is noted that one experimental case (Λ ≈ 0.92
with ω1/ω2 > 1, ReΓ ≈ 1100) is a UPUA weak-winner case. Despite the limitations
of the data, the experimental values are in reasonable accordance with the numerical
results.

8. Summary and discussion
The interactions of two unequal co-rotating vortices in viscous fluid have been

further investigated and for the first time, their outcomes quantitatively assessed.
A new parameterization of the possible interaction outcomes has been developed.
Numerical simulations were performed to consider a range of vortex strength ratios,
Λ= Γ1/Γ2 6 1, corresponding to vortices of differing size and/or peak vorticity, and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

52
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
D

 L
ib

ra
ri

es
, o

n 
19

 S
ep

 2
01

7 
at

 0
4:

45
:1

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

53



Assessment of asymmetric vortex pair interactions 25

with ReΓ = 5000. An additional set of simulations at lower ReΓ was also performed
in order to compare with available data from the experiments of Meunier (2001).

The primary convective interaction between the two vortices is initiated by the
induced strain of each vortex on the other, and in viscous flow, leads to a single vortex.
The post-interaction vortex is quantitatively assessed in terms of an enhancement
factor, ε = Γend/Γ2,start, and a corresponding merging efficiency, η = Γend/Γtotal,start,
similar to the analysis of inviscid flow by Dritschel & Waugh (1992), which compare
the vortex strengths at the start and end of the convective interaction. An effective
parameterization is developed by characterizing the degree of mutuality of the
interaction with the mutuality parameter, MP ≡ (S/ω)1/(S/ω)2, where the relative
straining (S/ω)i, evaluated at the start of the interaction, is an indicator for core
detrainment of each vortex.

Analysis of the simulation results demonstrates the general description: two vortices
will undergo mutual entrainment (merger) if MP is sufficiently close to unity, i.e.
within some critical value, MPcr. For the present results, MPcr ≈ 1.8 for MP > 1
(stronger vortex dominates). Asymmetric merger with MPcr < MP < 1 may also
occur, and in this case the originally weaker vortex dominates and survives enhanced.
Symmetric merger (MP = 1) is the limiting case of a fully two-way reciprocal
interaction with ε ∼ 2 and correspondingly, η ∼ 1; the most efficient merger. As MP
increasingly deviates from unity, both ε and η diminish until MP ∼ MPcr, beyond
which ε≈ 1 and the interaction is essentially one-way; entrainment does not occur and
the dominating vortex erodes the other away (straining out) and survives relatively
unaffected. The enstrophy ratio Z2/Z1 is found to characterize the behaviour of ε and
η similarly to MP overall, although it is somewhat less effective at distinguishing
the weak-winner regime. Results also indicate that core detrainment is initiated when
(S/ω)i reaches a critical value of (S/ω)cr≈0.135. A simple analysis shows that (S/ω)i
can be related to Λ and ai/b. In the case of symmetric merger, this is consistent with
the initiation of detrainment corresponding to the critical aspect ratio, (a/b)cr, which
is inevitably achieved in viscous flow. This may then also explain, more generally,
why the outcome of interactions in viscous flow is always a single vortex: diffusion
of core vorticity will weaken the cores so that eventually (S/ω)cr is attained by at
least one of the vortices, which in time becomes completely eroded.

These observations generally hold for the lower ReΓ simulations and for the
available experimental data. Since initiation of detrainment is essentially an inviscid
mechanism, we may expect the value of (S/ω)cr to remain constant with ReΓ , as the
present results support. However, the value of MPcr (and (Z2/Z1)cr) is found to vary
somewhat (favouring merger) as ReΓ decreases. Since MP may be considered a ratio
of time scales, i.e. the disparity in timing for detrainment to be established in each
of the vortices, this is influenced by viscous effects. With decreasing ReΓ , the more
rapid diffusion of vorticity will accelerate the achievement of (S/ω)cr so that more
disparate vortices may still both detrain within the interaction time.

The present results have implications for two-dimensional turbulence. The
observation that in asymmetric interactions, one of the original vortices essentially
survives with its peak becoming that of the post-interaction vortex, may explain
the noted persistence of vorticity extrema throughout the evolution of turbulent flow
(McWilliams 1990; Carnevale et al. 1991, 1992; Dritschel et al. 2008). Moreover, the
findings of the present study show how the peak of the post-interaction vortex can
be related directly to the original pair, which in principle allows for modelling and
perhaps analytical consideration of two-dimensional turbulent flows having vortices
of varying peak vorticity. Such analysis remains for future work.
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The present findings also suggest that the simple transformation rule utilized in a
number of point vortex models of two-dimensional turbulence to incorporate vortex
merging may not accurately reflect the enhancement produced by interactions of real
vortices. This rule is derived from conservation of energy and typically takes the form
Γ 2

A + Γ
2

B = Γ
2

C , where A and B are the interacting vortices and C is the resulting
vortex, which ‘replaces’ A and B to emulate merging (Carnevale et al. 1991; Riccardi
et al. 1995; Sire et al. 2011). This expression can be written in terms of enhancement
as 1 + Λ2

= ε2
model by dividing by the Γ of the stronger initial vortex, and it can

be seen that this generally underestimates the enhancement produced by symmetric
or slightly asymmetric mergers (e.g. for symmetric pairs, εmodel = 1.41 but observed
ε≈ 2), but overestimates the enhancement produced by very asymmetric pairs (e.g. for
the Λ= 0.7 UPEA case, εmodel = 1.22 but observed ε≈ 1). It is emphasized that this
theory was never intended to be precise at the level of individual interactions, but it
is nevertheless at odds with the findings of isolated vortex pair studies. Trieling et al.
(2005) reported a similar finding and proposed that conservation of circulation may
be more accurate, although they found this overestimates the enhancement produced
by straining-out interactions, a finding supported by the rapid diminishing of η with
increasing MP (and Z2/Z1) observed here.

Based on the present findings, it is suggested that a simple binary transformation
rule could improve accuracy without adding prohibitive complication: when (S/ω) of
a vortex in a two-dimensional turbulent flow exceeds (S/ω)cr (≈0.135), this value is
compared with the (S/ω) of the nearest vortex to determine MP. If MP<MPcr, the
merger conserves circulation, i.e. the two vortices A and B are replaced with a single
vortex C having circulation ΓC = ΓA + ΓB. If MP>MPcr, the stronger’s circulation is
preserved, i.e. ΓC = ΓA, where ΓA > ΓB. Further study is needed to determine MPcr
as a function of ReΓ , but it is expected that for most typical flows values of MPcr in
the range presented here will constitute reasonably accurate choices. A more nuanced
transformation rule, perhaps incorporating the continuous variation of ε and η with
MP and/or incorporating the concept of interaction winners, could also be considered.
This remains for future work.

One major aspect of two-dimensional turbulence not considered in this study is the
influence of the surrounding vortices in the flow on the interacting pair, which could
be simply approximated by an imposed external strain. Although a few studies have
considered the effect of a background flow on the interactions of symmetric vortex
pairs (see, e.g. Maze et al. 2004; Perrot & Carton 2010; Trieling, Dam & van Heijst
2010; Folz & Nomura 2014), none have considered the case of asymmetric pairs. Such
a study, using the present analysis framework, is currently in progress by the authors.
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Appendix A. Details of the assessment method
A method to quantitatively assess the interaction outcomes was presented in § 4.

Here, further details of the method are provided, and the sensitivity of the assessment
to key parameter values is examined.
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II∗t = IIt/IIpeak

0.10 0.25 0.50

1 2.10 2.15 2.31
Λ0 0.9 1.83 1.76 1.04

0.6 1.00 0.99 0.97

TABLE 3. Effect of II∗t on computed ε values for UPEA cases having various values of
Λ0 at ReΓ = 5000.

A.1. Effect of choice of II∗t
In general, values of II∗t = 0.01–0.15 are found to approximately correspond to the
values of II|r=a/IIpeak at aω and the characteristic radius based on the azimuthal
velocity maximum, aθ , for a vortex in a co-rotating pair and therefore effectively
capture what has commonly been considered to be the ‘core’ in prior vortex merger
studies (e.g. Meunier et al. 2002; Brandt & Nomura 2007). For all choices of II∗t
within this range, the time development of AII(t) and ΓII(t) proceeds similarly and
yields quantitatively similar values for ε and η for a given case and choice of (tstart,
tend).

For this study, the value of IIt= 0.10 was chosen due to its correspondence with the
characteristic vortex radius based upon second moment of vorticity, aω. For a single
isolated axisymmetric Gaussian vortex, II∗= II(r)/IIpeak= (ω(r)2/2− Srθ(r)2)/(ω2

peak/2)
because there is zero strain at the location of the peak. Evaluating this using
expressions for the vorticity distribution ω(r) = ωpeak exp(−r2/a2

ω) and strain
distribution Srθ = a2

ω(ωpeak/2)[−1/r2
+ (1/a2

ω + 1/r2) exp(−r2/a2
ω)] at r= aω implies a

value for II∗ = 0.10 (Saffman 2001).
For II∗t > 0.15, the behaviour of AII(t) and ΓII(t) for asymmetric Λ > Λcr cases

exhibits significant qualitative change as II∗t increases, losing the characteristic
entrainment spike and resembling the straining-out case, and eventually exhibiting
essentially single vortex behaviour when II∗t is so high that the weaker vortex is not
counted at all, even in the initial condition. Note that the portion counted by II∗t
in the initial condition in this manner may belong to the losing vortex, in certain
UPUA cases. Choosing II∗t > 0.15 therefore can affect the computed values of ε, and
so are not used in this study and not recommended in general. In the other extreme
case, approximately II∗t < 0.01, the threshold captures too much of the low-level
vorticity surrounding the core, and so this threshold cannot be said to capture what
is commonly considered to be the ‘vortex core’. Example results for various II∗t are
tabulated in table 3.

A.2. Effect of choice of t∗start

The influence of choice of t∗start on the assessment was examined by computing ε and
η using several alternative choices of t∗start in the vicinity of the departure from linear
AII(t) growth (using II∗t = 0.10 and maintaining the same choice of t∗end for a given
case as was used in the main body of this study). Results are presented in figure 17.
Even when the most extreme plausible values of t∗start are used (approximately 37 %
earlier and 15 % later than the selected t∗start), a maximum ε deviation of only 2.4 %
was observed relative to the canonical value of ε (i.e. that used in the main body of
the study) for the UPEA cases (EPUA and UPUA cases were not tested). Moreover,
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FIGURE 17. Collected results for ε of UPEA as a function of (a) Λ and (b) MP for
various choices of t∗start, II∗t = 0.10, ReΓ = 5000. Solid line withC indicates t∗start as selected
in the main body (figures 7 and 9); + indicates earlier choice of t∗start, × indicates later
choice of t∗start.
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0.5
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FIGURE 18. Collected results for ε of UPEA cases as a function of (a) Λ and (b) MP
for various choices of t∗end, II∗t = 0.10, ReΓ = 5000.C indicates t∗end as selected in the main
body (figures 7 and 9),6 indicates t∗det used for all cases,@ indicates t∗single used for all
cases. Note that these methods give identical results in the straining-out regime.

a similar general trend was found for ε (and η, not pictured) with respect to Λ and
MP for all t∗start considered (see figure 17), indicating that the choice of t∗start has little
influence on the findings discussed in the present study.

A.3. Effect of choice of t∗end

Likewise, the effect of choice of t∗end was examined by considering two alternative
choices: t∗det for every case, since it constitutes a consistent objective time identifiable
in every case even though it does not mark the ‘end’ of the interaction for cases in
which entrainment occurs, as well as a time t∗single subsequent to both t∗det and t∗ent at
which the final vortex is judged to have formed (using II∗t = 0.10 and maintaining
the same choice of t∗start for a given case as was used in the main body of this study).
Results are presented in figure 18, where it can be seen that although different choices
can give different values of ε and η (with t∗ent giving somewhat higher values for high
Λ and MP near 1), all three capture essentially the same trend with respect to Λ
and MP, and the critical value MPcr remains unchanged. Note that this is true even
using exclusively t∗det, despite this not being the ‘end’ of interaction for cases in which
entrainment occurs.
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On asymmetric vortex pair interactions in shear

Patrick J.R. Folz1,† and Keiko K. Nomura1

1Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500
Gilman Drive, La Jolla, CA 92093-0411, USA

(Received 6 November 2022; revised 10 April 2023; accepted 13 June 2023)

This study examines the two-dimensional interaction of two unequal co-rotating viscous
vortices in uniform background shear. Numerical simulations are performed for vortex
pairs having various circulation ratios Λ0 = Γ1,0/Γ2,0 = (ω1,0/ω2,0)(a2

1,0/a2
2,0) � 1,

corresponding to different initial characteristic radii ai,0 and peak vorticities ωi,0 of each
vortex i = 1, 2, in shears of various strengths ζ0 = ωS/ω2,0, where ωS is the constant
vorticity of the shear. Two primary flow regimes are observed: separations (ζ0 < ζsep < 0),
in which the vortices move apart continuously, and henditions (ζ0 > ζsep), in which the
interaction results in a single vortex (where ζsep is the adverse shear strength beyond
which separation occurs). Vortex motion and values of ζsep(Λ0) are well-predicted by
a point-vortex model for unequal vortices. In vortex-dominated henditions, shear varies
the peak–peak distance b, and vortex deformation. The main convective interaction begins
when core detrainment of one vortex is established, and proceeds similarly to the no-shear
(ζ0 = 0) case: merger occurs if the second vortex also detrains, engendering mutual
entrainment; otherwise straining out occurs. Detrainment requires persistence of straining
of both sufficient magnitude, as indicated by relative straining above a consistent critical
value, (S/ω)i > (S/ω)cr, where S is the strain rate magnitude at the vorticity peak, and
conducive direction. Hendition outcomes are assessed in terms of an enhancement factor
ε ≡ Γend/Γ2,start. Although ε generally varies with ζ0, (a2

1,0/a2
2,0) and (ω1,0/ω2,0) in a

complicated manner, this variation is well-characterized by the pair’s starting enstrophy
ratio, Z2/Z1. Within a transition region between merger and straining out (approximately
1.65 < Z2/Z1 < 1.9), shear of either sense may increase ε.
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1. Introduction

Vortices and their interactions play significant roles in myriad flows ranging from the
astrophysical (Fu et al. 2014) to the quantum mechanical (Baggaley & Barenghi 2018),
and as such, have attracted intense research interest for decades. A large portion of this
research has focused on the relatively simplified case of two-dimensional vortices, which
are generally agreed to play a role in the famous inverse energy cascade in two-dimensional
turbulence, although by what means and to what extent remain uncertain (Xiao et al.
2009; Burgess, Dritschel & Scott 2017a,b; Sutyrin 2019). Studies of two-dimensional
vortices and their role in inter-scale flow phenomena have generally fallen into one of two
categories: macroscopic studies of the vortex population in aggregate, which generally
focus on the evolution of the number of vortices in the flow field and the distribution
of their properties (Tabeling 2002); and atomic studies that consider in detail a single
pair of vortices, whose interaction is often considered a ‘building block’ of the more
complicated flows (Leweke, Le Dizès & Williamson 2016). The vast majority of these
atomic studies have considered a symmetric pair – two identical vortices – interacting
in isolation; a handful have considered unequal vortices interacting in isolation; a small
number have considered a symmetric pair in a background flow such as linear shear; and
to date none have considered the most general case of two unequal vortices interacting in
background flow. This is despite that last-mentioned case being, self-evidently, the most
common in turbulent flows; to study it necessitates a robust, general understanding of the
isolated two-vortex interaction, which until recently has remained elusive. However, recent
developments have elucidated a general underlying physical model for vortex interactions,
enabling the more general case to now be considered.

An isolated symmetric pair of two-dimensional co-rotating vortices undergoes merger,
combining the fluid of each into a single compound vortex, when its aspect ratio surpasses
a critical value, a/b > (a/b)cr, where a is the characteristic vortex radius, and b is
the peak–peak distance; prior to the onset of the merging process, a = a(t) grows (in
viscous flow) and b = b0 remains constant (see e.g. Melander, Zabusky & McWilliams
1988; Cerretelli & Williamson 2003; Meunier, Le Dizès & Leweke 2005). This critical
distance corresponds to the point at which their mutual strain causes the vortices to
become sufficiently deformed that fluid detrains from the vortex cores, in the vicinity
of a central hyperbolic point in the instantaneous streamline pattern (e.g. Velasco Fuentes
2005; Brandt & Nomura 2006). This engenders a mutual entrainment process whereby
the vortex cores move together rapidly, producing the compound vortical structure (Huang
2005; Brandt & Nomura 2007). When viscosity is present, the continuous growth of a
ensures that (a/b)cr is always eventually met (Melander et al. 1988).

An isolated asymmetric pair – two unequal co-rotating vortices – on the other hand, may
interact in one of several different ways, depending on a number of factors (e.g. Melander,
Zabusky & McWilliams 1987; Dritschel & Waugh 1992; Yasuda & Flierl 1997; Trieling,
Velasco Fuentes & van Heijst 2005). There is therefore no simple critical merging distance
or similar criterion for interaction (Dritschel & Waugh 1992). When viscosity is present,
the interaction always produces a single vortex, but the interaction may be either a merger
similar to the symmetric case, or a straining out in which only one vortex is induced to
detrain and is ultimately broken up and destroyed, while the survivor remains essentially
unaffected (Huang 2006). Thus the outcome of interaction depends upon the relative
timing of detrainment and destruction (Brandt & Nomura 2010): once the first vortex is
induced to detrain, if it can induce the second to also detrain before the first breaks up,
then mutual entrainment ensues (i.e. merger occurs); otherwise, the first-detraining vortex
is simply destroyed (i.e. straining out occurs).
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Asymmetric vortex pairs in shear

In other words, the outcome of an asymmetric pair interaction derives from the
degree of mutuality of the interaction. Folz & Nomura (2017) assessed these outcomes
quantitatively in terms of an enhancement factor ε ≡ Γend/Γ2,start and a merging
efficiency η ≡ Γend/Γtot,start, and found that all interaction outcomes across a wide range
of pair parameters (including initial peak vorticity ratio ω1,0/ω2,0 and initial radius ratio
a1,0/a2,0) were well-characterized by a mutuality parameter

MP = (S/ω)1

(S/ω)2
, (1.1)

which compares the relative straining (S/ω)i of each vortex i = 1, 2, where S is the
strain rate magnitude (note that S =

√
S2, where S2 = tr[SmnSmn]), and ω is the absolute

vorticity at the vortex peak. Merger corresponds to MP near unity and straining out
to high MP, with a narrow transition region between them. This is consistent with an
earlier finding by Trieling et al. (2005) that the occurrence of complete merger of an
asymmetric pair (in inviscid flow) was characterized reasonably well by a critical merging
distance based on the pair’s mean radius (ā), while complete straining out occurred when
b0 was below that associated with an induced relative strain rate sufficient to cause
breakup of a single vortex in shear. Dritschel & Waugh (1992) found similar results for
highly disparate Rankine vortices. The relative straining, in turn, reflects the deformation
(i.e. eccentricity) of each vortex (see Le Dizès & Laporte 2002; Leweke et al. 2016), and
the onset of detrainment for a given vortex is associated with a consistent critical value
(S/ω)cr ≈ 0.135 ± 0.003 (Folz & Nomura 2017). For a symmetric pair, these criteria
are equivalent to (a/b)cr. This mutuality model (including the detrainment–entrainment
processes) constitutes a general model for the interaction of two two-dimensional vortices
in isolation.

This paper now examines the influence of linear background shear – which can be
considered a first-order approximation of the flow generated by surrounding vortices in
a turbulent flow field – on these processes (e.g. Trieling, Dam & van Heijst 2010). The
shear is characterized in terms of a shear strength parameter of the form

ζ ≡ ωS/ω2, (1.2)

which compares the constant vorticity of the shear ωS = −α ≡ −dU/dy to a characteristic
vorticity of the pair (which potentially could be time-varying; here the vorticity of the
stronger vortex 2 is used). Shear is considered favourable when it has the same rotational
sense as the vortices, i.e. when ζ > 0, and adverse when they are opposed, i.e. when
ζ < 0. In general, shear deforms a vortex elliptically, with the major axis oriented
approximately orthogonal to or aligned with the shear direction in favourable and adverse
shear, respectively.

When adverse shear acts on a single isolated vortex, the opposing rotations of the vortex
and the shear create a pair of hyperbolic stagnation points in the elliptical streamline
pattern about the vortex center, which causes peripheral vorticity of a non-uniform vortex
to be advected away, or ‘stripped’, in the form of filaments (see e.g. Legras & Dritschel
1993; Kimura & Herring 2001; Legras, Dritschel & Caillol 2001; Hurst et al. 2016). This
is fundamentally the same physical process as detrainment of a vortex in a pair. Increasing
the relative strength of adverse shear (i.e. making ζ < 0 more negative) causes detrainment
to occur at progressively higher vorticity levels within the non-uniform vortex (Legras &
Dritschel 1993), until a generally consistent critical shear strength is reached at which
the vortex breaks up and is rapidly elongated into a filament (ζbu = −0.10 to −0.13; see
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also Mariotti, Legras & Dritschel 1994; Paireau, Tabeling & Legras 1997). In viscous
flow, the peak vorticity of the vortex, ω = ω(t), generally decays in time due to viscous
diffusion, causing |ζ | (of either sense) to increase (as ∼ 1/ω, due to conservation of
circulation Γ = πa2ω = const. as area increases, linearly for the no-shear, i.e. ζ0 = 0,
case, a2(t) = a2

0 + 4νt; see e.g. Meunier et al. 2002), ensuring that detrainment and
breakup always ultimately occur in adverse shear.

When two co-rotating vortices are present, the shear exerts these same influences
directly upon each as they interact with each other. As noted above, all studies of this
case to date have considered a symmetric pair (e.g. Carton, Maze & Legras 2002; Perrot
& Carton 2010; Marques Rosas Fernandes et al. 2016). Additionally, and perhaps most
significantly, sufficiently adverse shear, i.e. ζ < ζsep, causes separation of the pair, wherein
the vortices simply move apart indefinitely rather than merging or orbiting (observed
by Kimura & Hasimoto (1985) for point vortices; Maze, Carton & Lapeyre (2004) for
finite-area inviscid vortices; and Folz & Nomura (2014) for finite-area vortices with
viscosity). If it does not cause separation, the shear causes the vortices to follow elliptical
trajectories rather than circular. Note that whether the shear causes b = b(t) to increase or
decrease from the initial b0 depends not only upon the relative sense of shear, as is often
stated in the literature, but also upon the initial orientation of the vortices (this is discussed
briefly in § 5). In inviscid flow, a stationary case (ζ = ζsep) exists between the separation
and elliptical motion cases, with two distinct types of cases for ζ > ζsep: periodic motion
and merger. The occurrence of merger is found to be reasonably well-characterized by
the minimum b falling sufficiently low that the aspect ratio surpasses the critical value
previously found for symmetric pairs without shear (Trieling et al. 2010). In viscous flow,
the presence of viscosity effectively ensures that merger always occurs when ζ > ζsep,
commencing when the combined variation of a and b results in a/b > (a/b)cr, where the
value of (a/b)cr is similar to that observed in the no-shear case (Folz & Nomura 2014). In
these cases, the primary effect of shear is to accelerate or delay the onset of the merging
process.

Drawing upon these observations, the convective interaction of two unequal vortices
under the influence of linear background shear is now examined. Numerical simulations
of an asymmetric pair of two-dimensional viscous vortices in linear background shear
are performed. The interaction regimes are identified and supported by analytical and
point-vortex results. This study focuses primarily on cases in which the vortices interact
to produce a single resulting vortex, i.e. henditions (see § 1.1). For these cases, the
influence of shear on vortex motion, deformation and interaction processes is examined
both qualitatively and quantitatively. A characterization of the interaction outcomes is
developed, in the course of which a quantitative assessment is performed in the manner
of Folz & Nomura (2017), and the results are correlated to significant pair parameters.
Since the parameter space of this flow is quite large, this study considers primarily the
effects of initial shear strength ζ0 and initial circulation ratio Λ0, with two sub-categories
of the latter. These results elucidate the major effects of shear on a pair of interacting
vortices, and show how their interaction outcomes relate to the considered initial flow
parameters, forming a basis from which future studies may consider further parameters
and flow regimes.

This paper is organized as follows. First, § 2 discusses the motion of a pair of unequal
point vortices in linear background shear, and an analytical expression for the critical shear
strength for separation is obtained. Next, § 3 describes the flow set-up and simulations.
Then § 4 gives general observations for vortex interactions in shear and identifies the main
flow regimes: § 4.1 discusses separations, and § 4.2 outlines the vortex-dominated regime.
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Asymmetric vortex pairs in shear

In § 5 is the heart of the study, which analyses vortex-dominated henditions. The first
subsection, § 5.1, describes the method used to perform the quantitative assessment of
the hendition outcomes; the second subsection, § 5.2, examines the influence of the shear
on the timing and duration of detrainment; and the final subsection, § 5.3, presents the
results of the quantitative assessment and discusses the influence of shear. Finally, § 6
summarizes the findings, and discusses some implications and potential areas of further
study. Supplementary material is also provided (available online at https://doi.org/10.1017/
jfm.2023.525), which includes additional information about the quantities used to evaluate
henditions, including their time development in the single-vortex case.

1.1. A note on nomenclature: hendition
There is no extant word in the English language that means, simply, ‘two things
become one thing’ without also implying either increase or enhancement (combination,
unification, consolidation, fusion, incorporation, etc.). This is certainly the case for
‘merger’, which is used as a generic term by some researchers (e.g. Melander et al. 1987;
Tabeling 2002; Jing, Kanso & Newton 2012), while others use it to denote specifically
interactions that produce an enhanced resulting vortex (e.g. Dritschel & Waugh 1992;
Trieling et al. 2005; Brandt & Nomura 2010). Other terms imply only destruction without
any increase or enhancement (annihilation, removal, etc.). This muddles the terminology
and obscures the distinction between fundamentally different types of interaction (those in
which mutual entrainment does, and does not, occur).

As such, the authors introduce the new term ‘hendition’, from the Greek phrase
‘ ’ meaning ‘one through two’. A hendition is an occurrence in which there are
two vortices at the start and only one at the end, regardless of the properties of the resulting
vortex (relative to the starting vortices) or the physical process by which this interaction
proceeds. Merger and straining out are then specific types of hendition, as is the case of
two vortices becoming one through diffusion (not considered here). In a more complicated
flow, such as two-dimensional turbulence, the case of a dipole encountering a third vortex,
after which the two like-signed vortices interact to produce one, would be considered
a hendition. The case of three or more like-signed vortices interacting simultaneously,
resulting ultimately in a single vortex, could be referred to by a similar term: henmultion.
It is hoped that the use of the term ‘hendition’ will ensure clarity of this paper, and more
generally may be of use in vortex-related discussions going forward.

2. Modified point-vortex model for unequal vortices

The basic behaviour of two well-separated vortices is similar to that of two point vortices
(Trieling et al. 2010), even in viscous flow (Folz & Nomura 2014). Kimura & Hasimoto
(1985) studied the motion of equal point vortices in shear, and Ryzhov, Koshel & Carton
(2012) studied the motion of unequal point vortices in an arbitrary deformation flow. Here,
the motion of two unequal point vortices in uniform background shear is examined, and
the boundary between the major flow regimes is identified.

Two point vortices having circulation ratio Λ ≡ Γ1/Γ2 are located initially at x1 =
−b0/2 and x2 = b0/2 and y0 = 0, where b0 is the initial peak–peak distance, and x and y
are the flow and shear directions, respectively. The linear background shear has constant
strength α ≡ dU/dy. The vortices’ motion is described by a system of equations (Kimura
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(a) (b) (c) (d )

Figure 1. Trajectories of point vortices of pairs (red for vortex 1, blue for vortex 2), having circulation ratio
Λ = Γ1/Γ2 = 0.70, within shear of various strengths μ = αb2

0/Γ2. For this case, separation shear strength is
μsep = 0.0995. The filled circles indicate the starting positions for the integrated trajectories (2.1)–(2.4), with
(a) μ = −0.0992, (b) μ = 0, (c) μ = 0.0992, and (d) μ = 0.128.

& Hasimoto 1985)

dx1

dt
= − Γ2

2π

y1 − y2

b2 + αy1, (2.1)

dy1

dt
= Γ2

2π

x1 − x2

b2 , (2.2)

dx2

dt
= − Γ1

2π

y2 − y1

b2 + αy2, (2.3)

dy2

dt
= Γ1

2π

x2 − x1

b2 , (2.4)

where (xi, yi) are the coordinates of vortex i = 1, 2, and the instantaneous peak–peak
distance b =

√
(x1 − x2)2 + ( y1 − y2)2 may vary in time. The y-coordinate of the centre

of rotation of the system is Y = (Γ1y1 + Γ2y2)/(Γ1 + Γ2), and is always at 0.
These equations can be integrated to find the vortex trajectories. In symmetric flow,

these trajectories are either closed or open, with a critical stationary case separating these
regimes (Kimura & Hasimoto 1985). Trieling et al. (2010) characterized these regimes
using a non-dimensional shear strength parameter μs = αb2

0/Γ for symmetric vortices.
Closed trajectories occur in favourable (μs < 0) to weakly adverse (μs,sep > μs > 0)
shear, where μs,sep is the critical shear strength associated with the stationary case. In
this regime, from their initial position, the vortices follow overlapping elliptical trajectories
where an extremum of b occurs when the vortices are aligned vertically, i.e. along the shear
direction. This extremum is minimum b in favourable shear, and maximum b in adverse
shear, respectively, with circular trajectories occurring in the no-shear case (μs = 0). Open
trajectories occur in strongly adverse shear (μs > μs,sep > 0), and the vortices simply
move apart continuously; this behaviour is termed separation.

For the case of unequal vortices, a similar parameter is constructed:

μ = αb2
0/Γ2 (2.5)

based on the stronger vortex, here taken to be 2. Figure 1 shows example trajectories
for a pair having Λ = 0.70 in various μ. Similar regimes are observed, with the
vortices following closed concentric elliptical trajectories for favourable (μ < 0) or weakly
adverse (μsep > μ > 0) shear, and open trajectories for strongly adverse shear (μ > μsep),
distinguished by a critical separation shear strength μsep.

In the symmetric case, an analytical expression for the critical shear strength associated
with the stationary case, similar to μs,sep, was derived by Kimura & Hasimoto (1985)
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Asymmetric vortex pairs in shear

using the Hamiltonian of the system (2.1)–(2.4),

H = −Γ1Γ2

4π
ln[((x1 − x2)

2 + ( y1 − y2)
2)] + α

2
(Γ1y2

1 + Γ2y2
2). (2.6)

When the vortices are unequal, many of their simplifying assumptions cannot be made,
but an analytical expression for μsep may nevertheless be found in the following manner.

Rearranging (2.6) gives

H − α

2
(Γ1y2

1 + Γ2y2
2) = −Γ1Γ2

4π
ln[((x1 − x2)

2 + ( y1 − y2)
2)]. (2.7)

Then

exp
(

H
−4π

Γ1Γ2
− −4π

Γ1Γ2

α

2
(Γ1y2

1 + Γ2y2
2)

)
= ((x1 − x2)

2 + ( y1 − y2)
2), (2.8)

and noting that H is constant,

C exp
(

4π

Γ1Γ2

α

2
(Γ1y2

1 + Γ2y2
2)

)
= ((x1 − x2)

2 + ( y1 − y2)
2) = ξ2 + η2, (2.9)

where ξ ≡ x1 − x2 and η ≡ y1 − y2 (using the nomenclature of Kimura & Hasimoto
1985), and C = ξ2

0 since η = 0 in the initial condition.
When the vortices are oriented vertically, the coordinates y1 and y2 are equal to the

distances of the weaker and stronger vortices from the centre of rotation, r1 and r2
respectively, since that centre remains fixed in space. Additionally, η = b in the vertical
orientation. Therefore, at the critical time,

y1 = r1 ≡ 1
1 + Λ

ηv, y2 = r2 ≡ Λ

1 + Λ
ηv, (2.10a,b)

where ηv is η when the vortices are aligned vertically, and Λ ≡ Γ1/Γ2. So

ξ2
0 exp

(
2πα

Γ1Γ2
(Γ1r2

1 + Γ2r2
2)

)
= η2

v, (2.11)

ξ2
0 exp

(
2πα

ΛΓ2

(
Λ

η2
v

(1 + Λ)2 + Λ2η2
v

(1 + Λ)2

))
= η2

v, (2.12)

and ultimately

ξ2
0 exp

(
2πα

Γ2(1 + Λ)
η2

v

)
= η2

v. (2.13)

Normalizing (2.13) by the initial peak–peak distance ξ0 = b0,

exp

(
2παb2

0
Γ2(1 + Λ)

(
ηv

b0

)2
)

=
(

ηv

b0

)2

. (2.14)

For this equation to have a finite solution, it must be true that

2παb2
0

Γ2(1 + Λ)
� 1

e
, (2.15)
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ζsep

Λ0 a2
1,0/a2

2,0 ζsep,p ReΓ = 5000 ReΓ = 1000

1.0 1.0 −0.0091 −0.0093 ± 0.0001 −0.0093 ± 0.0001
0.9 1.0 −0.0086 −0.0089 ± 0.0002 −0.0089 ± 0.0002
0.8 1.0 −0.0082 −0.0084 ± 0.0002 −0.0084 ± 0.0002
0.7 1.0 −0.0077 −0.0077 ± 0.0002 −0.0079 ± 0.0001
0.6 1.0 −0.0073 −0.0074 ± 0.0001 −0.0074 ± 0.0001
0.5 1.0 −0.0068 −0.0069 ± 0.0001 —
0.9 0.9 −0.0086 −0.0089 ± 0.0002 −0.0089 ± 0.0002
0.8 0.8 −0.0082 −0.0084 ± 0.0002 −0.0084 ± 0.0002
0.7 0.7 −0.0077 −0.0077 ± 0.0002 −0.0080 ± 0.0002
0.6 0.6 −0.0073 −0.0074 ± 0.0001 −0.0074 ± 0.0001
1.0 0.9 −0.0091 −0.0093 ± 0.0002 —
1.0 0.6 −0.0091 −0.0093 ± 0.0003 —
0.9 0.81 −0.0086 −0.0086 ± 0.0002 —
0.9 0.54 −0.0086 −0.0088 ± 0.0002 —

Table 1. Predicted ζsep,p from (2.18), with corresponding observed ζsep = −α/ω2,0 from numerical simulation
of various starting pairs having a2,0/b0 = 0.157 (see § 4.1). The margin of error on the empirical data
corresponds to the bracketing values used to determine ζsep.

so the critical criterion in terms of μ = αb2
0/Γ2 is

μsep = (1 + Λ)

2πe
. (2.16)

Note that for symmetric vortices, this is identical to the criterion found by Trieling et al.
(2010).

This criterion can be modified to apply for well-separated finite area vortices. Recalling
that each vortex’s circulation remains constant in this case, Γ2 = Γ2,0 = πa2

2,0ω2,0 may
be substituted into (2.16), where a2,0 and ω2,0 are the stronger vortex’s initial characteristic
radius and peak vorticity, respectively:

μsep = (αb2
0/πa2

2,0ω2,0)sep = (1 + Λ)

2πe
. (2.17)

Then ( −α

ω2,0

)
sep

≡ ζsep,p = −(1 + Λ)

2e

(
a2,0

b0

)2

, (2.18)

where ζsep,p is a critical shear strength for the separation of finite-area vortices as predicted
by this modified point-vortex model (an equivalent expression can be found by normalizing
using vortex 1). It is seen that there is direct dependence between the magnitude of ζsep,p
and both Λ and (a2,0/b0): a more disparate pair (i.e. having lower Λ) will separate for
weaker adverse shear than a more similar pair, although there is a minimum adverse shear
strength required for any separation to occur (limΛ→0 ζsep,p(Λ) = (a2,0/b0)

2/(2e) /= 0).
Likewise, a given pair (i.e. having a given Λ) will separate for weaker shear the smaller
their initial aspect ratio a2,0/b0 is (i.e. the larger their initial normalized peak–peak
distance). Values for ζsep,p for various pairs are shown in table 1. In § 4.1, these values
are compared to empirical results from simulations of finite-area pairs.
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Asymmetric vortex pairs in shear

2a1,0 2a2,0

b0

y

x

ω1,0 ω2,0

dU
dyα = 

Figure 2. Initial flow configuration: two co-rotating vortices, i = 1, 2 (peak vorticity ωi,0, characteristic radius
ai,0, Gaussian vorticity distribution), whose peak–peak axis is oriented orthogonally to the direction of linear
background shear (strength α = dU/dy). The case shown has ζ0 > 0.

3. Set-up and numerical simulations

The initial flow configuration is shown in figure 2: for each case, two finite-area,
co-rotating vortices are initially oriented along the flow direction of linear background
shear, separated by an initial peak–peak distance b0. Each vortex i = 1, 2 is initially
circular with a Gaussian vorticity distribution, and has an initial peak vorticity ωi,0 and
characteristic radius ai,0, giving an initial circulation ratio

Λ0 ≡ Γ1,0

Γ2,0
= ω1,0a2

1,0

ω2,0a2
2,0

� 1. (3.1)

This study focuses primarily on pairs having either ω1,0/ω2,0 < 1, a2
1,0/a2

2,0 = 1 (termed
‘UPEA’ for ‘unequal peaks, equal areas’), or ω1,0/ω2,0 = 1, a2

1,0/a2
2,0 < 1 (termed

‘EPUA’ for ‘equal peaks, unequal areas’), as well as symmetric pairs (i.e. those having
ω1,0/ω2,0 = a2

1,0/a2
2,0 = 1). A handful of pairs having ω1,0/ω2,0 /= 1, a2

1,0/a2
2,0 /= 1

(termed ‘UPUA’ for ‘unequal peaks, unequal areas’) are also included in § 4.1. The overall
range of circulation ratios considered is 0.6 � Λ0 � 1 (a few additional UPEA cases with
Λ0 = 0.50 were also performed to aid in the analysis of separations). The pair’s initial
aspect ratio a2,0/b0 = 0.157 and the circulation Reynolds number ReΓ = Γ2,0/ν = 5000
are maintained at constant values in order to facilitate comparison with the no-shear case
(ζ0 = 0) examined previously in Folz & Nomura (2014, 2017). This also allows each
vortex of the initially well-separated pair to adjust to the combined influence of the other
vortex and the shear prior to interacting. This methodology helps to ensure that observed
differences between the present results and the no-shear case are attributable primarily to
the effects of shear.

The numerical simulations are performed using a hybrid finite-difference/pseudo-
spectral code with periodic boundary conditions in the flow direction and shear-periodic
boundary conditions in the shear direction (see Gerz, Schumann & Elghobashi (1989)
for details of the method). The pair is initially positioned at the centre of a square
domain of size L × L with 20482 grid points, and b0 = 1/24L. This gives a resolution of
approximately 38 points across the larger core. In comparison with a 10242 grid for cases
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P.J.R. Folz and K.K. Nomura

spanning the considered parameter range, differences in computed vortex quantities were
found to be small (e.g. core circulation, an integrated quantity, differed by at most 2 %,
and the starting relative straining (S/ω)1, a pointwise quantity, differed by at most 5 %),
the quantitative assessments were similar (e.g. the merging efficiency η differed by at most
five percentage points, and typically less than two; these quantities are discussed in § 5),
and qualitatively all notable phenomena were observed for both resolutions in each case.
Domain size independence was also tested using an initial separation distance b0 = 1/12L
in the favourable case and b0 = 1/18L in the adverse case, with similarly small observed
differences (e.g. η differed by at most six percentage points). The higher 20482 resolution
and smaller b0 = 1/24L were utilized in all cases in order to minimize spurious variation
in core quantities employing the threshold (see § 5), and to maintain maximum fidelity in
general (this resolution was also previously found to be sufficient for the no-shear case;
see Brandt & Nomura 2007, 2010).

The relative strength of the constant shear, α ≡ dU/dy, is characterized in terms of its
vorticity ωs relative to that of the stronger vortex in the initial condition ω2,0:

ζ0 ≡ ωs

ω2,0
= −α

ω2,0
. (3.2)

In order to allow the vortices to adjust to the shear prior to the start of the main convective
interaction, the range of |ζ0| considered is limited to |ζ0| < ζadj, where ζadj is a value
chosen such that the viscous increase of |ζ | (∼ 1/ω(t); see § 1) would not be sufficient to
induce detrainment prior to the end of the adjustment period of the vortices to each other,
t∗adj. This value ensures that |ζ1(t∗adj)|, |ζ2(t∗adj)| < |ζcr,s|, where the critical shear strength
associated with detrainment, ζcr,s ≈ −0.063, was found through simulations of a single
vortex in shear (see the supplementary material). An estimate for t∗adj is made using results
from Le Dizès & Verga (2002) for a Gaussian vortex having ReΓ = 2000 (the lower ReΓ

result is used to ensure a conservative estimate), which indicate an adjustment period of
approximately tν/(πa2

1,0) = 0.05 using their nomenclature. Using analytical results for a
single isolated Gaussian vortex (see § 1) gives a requirement that |ζi,0| � 0.0387, which in
turn gives a value |ζ2,0| � ζadj ≡ 0.0387(ω1,0/ω2,0).

In all cases, temporal results are presented on a convective time scale t∗ = t/T0, where
T0 = (4πb2

0)/(Γ1,0 + Γ2,0) is the period of revolution of a pair of point vortices having
the same Λ0 and ζ0 = 0.

4. General flow behaviour

First, observations of the general flow behaviour are made, and the major interaction
regimes identified, for two unequal vortices interacting in the presence of shear (with finite
viscosity). Figures 3 and 4 show vorticity contours of example cases demonstrating the
major trends with respect to shear strength ζ0 and vortex circulation ratio Λ0. Observations
for UPEA and EPUA cases are qualitatively similar, so only UPEA cases are shown. The
motion and full flow development of two illustrative cases, ζ0 = 0.0167, Λ0 = 0.90 and
ζ0 = −0.0073, Λ0 = 0.70, can be seen in supplementary movies 1 and 2, with useful
related information presented in figure 5.

For comparison, a no-shear merger case is included (ζ0 = 0, Λ0 = 0.90, figure 3d)
and reviewed briefly. As discussed in § 1, when shear is not present, the vortices
initially (columns 1–4) revolve along concentric circular trajectories (maintaining constant
peak–peak distance b0; see dashed lines in figures 5b,e), growing by viscous diffusion and
deforming elliptically along the peak–peak axis due to their intensifying mutually induced
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0

(a)

0.05 0.07 0.12 0.14 0.30

0

(b)

0.15 0.55 0.66 1.14 1.22

0

(c)

0.24 0.73 0.97 1.62 1.86

0

(d )

0.22 0.85 1.56 2.04 2.23

0

(e)

0.32 1.38 1.62 2.51 2.67

0

( f )

0.20 0.40 0.60 0.80 1.00

0

(g)

0.02 0.03 0.05 0.07 0.08

Figure 3. Vorticity contour plots showing time evolution of flows for UPEA pairs having ReΓ = 5000 and
Λ0 = 0.90, with varying shear strength ζ0: (a) ζ0 = 0.1, (b) ζ0 = 0.0167, (c) ζ0 = 0.0045, (d) ζ0 = 0 (no
shear), (e) ζ0 = −0.0045, ( f ) ζ0 = −0.0091, and (g) ζ0 = −0.1. For Λ0 = 0.90, ζsep = −0.0089 (see table 1)
and ζadj = 0.0348; cases (b–e) fall within the vortex-dominated regime, ζsep < ζ0 < ζadj. For these cases, each
column corresponds to an equivalent stage of flow development (see §§ 4 and 5.2): column 1, initial condition;
column 2, first quarter-turn; column 3, oriented approximately 45◦ above the positive x-axis; column 4, start
of core detrainment, t∗ = t∗start; column 5, end of core detrainment and start of mutual entrainment, t∗ = t∗det;
and column 6, end of mutual entrainment, t∗ = t∗ent. For cases (a, f ,g), the column images have been chosen to
illustrate the general flow development. The vortices rotate clockwise in favourable shear (counter-clockwise
in adverse shear). The contour interval is 10 %, and t∗ for each plot is indicated at the lower left. The data in
(d) were presented previously in Folz & Nomura (2017). 969 A21-11
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0

(a)

0.18 0.27 0.49 1.43

0

(b)

0.20 0.65 0.90 1.45 1.60

0

(c)

0.16 0.68 0.95 1.52 1.63

0

(d )

0.42 1.74 2.16 2.73 2.89

0

(e)

0.45 1.00 1.75 2.75 2.90

0

( f )

0.58 1.25 1.56 2.95

0

(g)

0.20 0.39 0.59 0.79 0.99

Figure 4. Vorticity contour plots showing time evolution of flows for UPEA pairs having ReΓ = 5000 and
|ζ0| = 0.0073, with varying Λ0: (a) Λ0 = 0.7, (b) Λ0 = 0.9, (c) Λ0 = 1.0 having favourable shear (ζ0 =
0.0073); and (d) Λ0 = 1.0, (e) Λ0 = 0.9, ( f ) Λ0 = 0.7, (g) Λ0 = 0.5 having adverse shear (ζ0 = −0.0073).
The columns have meanings equivalent to those in figure 3, but the sixth column of the straining out cases has
been omitted since no entrainment occurs. The vortices rotate clockwise in favourable shear (counter-clockwise
in adverse shear). The contour interval is 10 %, and t∗ for each plot is indicated at the lower left.
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Asymmetric vortex pairs in shear

0.5 1.0 1.50

0.5

1.0

1.5

b/
b 0

1 2 3 40

0.5

1.0

1.5

0.5

ζ0 = 0.0167, Λ0 = 0.90 ζ0 = –0.0073, Λ0 = 0.70

1.0 1.5

t∗
0

0.5

1.0

co
s2

(θ
)

1 2 3 4

t∗
0

0.5

1.0

(a) (d )

(b) (e)

(c) ( f )

Figure 5. Time development of the vortex pair prior to the end of core detrainment for illustrative cases (solid
lines): (a,d) trajectories of vortex peaks (red × indicates vortex 1, blue + indicates vortex 2); (b,e) normalized
separation distance b/b0; and (c, f ) cos2(θ) of the angle θ between the peak–peak axis of the pair and the
principal extensional strain eigenvector of the shear, eα , which is oriented 45◦ from the flow direction. The
Reynolds number is ReΓ = 5000. Filled circles indicate starting positions, a square indicates the time of the
first deformation maximum prior to the start of detrainment, and a diamond indicates the second such maximum
that occurs in the ζ0 = 0.0167, Λ0 = 0.90 case. These times are taken at the corresponding local maxima in
the relative straining of the weaker vortex in each case, (S/ω)1, as discussed in § 5.1. In (b,e), the dashed line
corresponds to the no-shear case having the same Λ0.

strain, leading eventually to detrainment of at least one vortex’s core fluid in the vicinity of
the centre of rotation (column 4). This is the start of the main convective interaction: if both
vortex cores detrain (columns 4–5), then a two-way interaction with mutual entrainment
(columns 5–6), i.e. merger, occurs (as in figure 3d); otherwise, one vortex detrains and
breaks up while the other remains relatively unaffected, i.e. straining out occurs. Due to
the presence of viscosity, all like-signed pair interactions without shear are henditions,
i.e. they result in a single vortex.
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0 0.18 0.38 0.78 0.81 0.93

Figure 6. Vorticity contours for ζ0 = 0.033, Λ0 = a2
1/a2

2 = 0.70, EPUA case (contour interval is 10 %, and
ReΓ = 5000). This case is a merger, whereas the equivalent no-shear case is a straining out (discussed further
in § 5.1).

When shear is present (ζ0 /= 0), it alters the motion and deformation of a pair (having
a given Λ0) in a manner and degree determined by its relative strength (figure 3). When
shear is favourable (ζ0 > 0, figures 3a–c) or weakly adverse (ζsep < ζ0 < 0, figure 3e),
the interaction is a hendition; otherwise, when shear is strongly adverse (ζ0 < ζsep < 0,
figures 3f ,g), the vortices undergo separation and move apart continuously. The separation
case is discussed in § 4.1.

During shear-influenced henditions (such as those shown in the illustrative cases, i.e.
figures 3(b) and 4( f ) and supplementary movies 1 and 2), the vortices follow concentric
elliptical trajectories in which the peak–peak distance b reaches a minimum (when
ζ0 > 0) or maximum (when ζ0 < 0) when the peak–peak axis is aligned with the shear
direction, akin to the point-vortex case discussed in § 2 (figures 5a,d,b,e). The shear causes
periodic amplification of the deformation of the vortices, but, notably, this deformation
is greatest when the peak–peak axis is oriented through the first and third quadrants,
i.e. approximately along the direction of principal extensional strain of the shear, and not
when b is minimal (figures 3a–c,e and 4a–f, columns 1–3, and figure 5). When shear is
strongly favourable (figure 3a), it reduces b and amplifies deformation so substantially that
it is the predominant cause of the hendition. Otherwise, when shear is weakly favourable or
adverse, it is the viscous growth of the vortices and concomitant intensification of mutual
strain that eventually cause detrainment to initiate and the main interaction to occur, similar
to the no-shear case.

For a given shear strength ζ0, the circulation ratio of the pair, Λ0, influences whether
the interaction is a hendition or a separation, and the type of hendition should one
occur (figure 4). For a symmetric pair in weakly favourable or adverse shear (figures
4c,d), assuming ζ0 > ζsep(Λ0 = 1.0) (recall from § 2 that ζsep = ζsep(Λ0)), the interaction
is a merger, similar to the no-shear case, but with the vortices experiencing equal
shear-induced periodic amplification of deformation. For increasing asymmetry of the
pairs (figures 4b–a,e–f ), the variation of b increases, the deformation amplification
becomes increasingly unequal (greater for the weaker), and during the main convective
interaction, the mutual entrainment process becomes increasingly one-sided (e.g. the ζ0 =
0.167, Λ0 = 0.90 illustrative case). When the pair is sufficiently disparate (figures 4a, f ),
the interaction is entirely one-sided and the weaker vortex is simply destroyed, leaving the
stronger one essentially unaffected, i.e. straining out occurs (e.g. the ζ0 = −0.0073, Λ0 =
0.70 illustrative case). In adverse shear, sufficiently small Λ0 may result in ζ0 < ζsep(Λ0)
(unless ζ0 > ζsep(Λ0 = 0)), and separation may occur instead, i.e. asymmetry may in a
sense ‘cause’ separation in certain circumstances.

Additionally, merger may occur in certain cases with higher |ζ0| that for lower or zero
|ζ0| are straining out. An example is shown in figure 6, an EPUA case having ζ0 = 0.033,
Λ0 = 0.70 (several lower-|ζ0| EPUA Λ0 = 0.70 cases are straining out, as is the UPEA
case with the same ζ0 and Λ0; this will be seen in § 5.1). In these cases, the influence of
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Asymmetric vortex pairs in shear

the shear enables the second vortex to detrain, and thereby allows for mutual entrainment
to occur. It can therefore be said that, in general, the outcome of a given interaction is a
function of ζ0, Λ0, and whether the pair is UPEA or EPUA.

In all cases, the resulting vortex or vortices continue(s) to evolve through viscous
diffusion akin to a single vortex under the influence of shear (not shown). In adverse
shear, this inevitably leads to filamentation (i.e. detrainment) and, ultimately, breakup. See
§ 1 and references for general discussion of this case.

4.1. Separation and determination of ζsep

Shear is seen to cause separation when adverse shear strength surpasses a critical value
ζ0 < ζsep(Λ0), consistent with the analysis in § 2. To determine the value of ζsep(Λ0)
for a given Λ0, a series of simulations is performed for increasing ζ0 until separation
occurs; ζsep is taken to be the midpoint of the bracketing ζ0 values. Empirical results for
ζsep are collected in table 1 for a variety of cases, including UPEA, EPUA and UPUA
pairs having several Λ0 values, and both ReΓ = 5000 and 1000 (except UPUA cases).
Close agreement is seen, across the entire range of parameters considered, between these
empirical ζsep values and predicted ζsep,p values computed using (2.18). Although a full
exploration of the separation regime is beyond the scope of this study, these results give a
general indication of the behaviour of ζsep for finite-area unequal vortices, and attest to the
accuracy of (2.18) within the parameter range considered: ζsep decreases with decreasing
Λ0, and is not significantly sensitive to ReΓ (it is expected that this would remain true as
ReΓ → ∞), or whether the pair is UPEA, EPUA or UPUA. These findings are consistent
with previous studies of symmetric pairs in inviscid (Trieling et al. 2010) and viscous (Folz
& Nomura 2014) flow. Note that (2.18) also predicts dependence on a2,0/b0, which is not
considered in this study.

Due to ongoing viscous diffusion, the separated vortices eventually detrain and break
up (not shown). There is therefore no distinction between ‘separation without elongation’
and ‘separation with elongation’ in viscous flow, as there is in the inviscid case (Trieling
et al. 2010). In the cases considered, separation always occurs before filamentation
(i.e. detrainment) and breakup: increasing adverse |ζ0| simply causes filamentation to
begin earlier, and for more disparate pairs (generally, lower Λ0, except for the UPUA case)
one vortex begins filamentation significantly before the other. It is theoretically possible
for a vortex in a UPUA pair to be induced to undergo filamentation and breakup by shear
insufficient to cause separation, based on examination of (2.18) in conjunction with known
critical values associated with these processes (Moore & Saffman 1971; Mariotti et al.
1994; Folz & Nomura 2017; see also this paper’s supplementary material), but these cases
are difficult to simulate and are beyond the scope of the present study.

4.2. The vortex-dominated regime
This study focuses on interactions between the two vortices of a pair, which are influenced
by the shear. This excludes cases in which the shear causes the vortices to separate, and
cases in which the shear essentially forces them together. Separation is precluded when
ζ0 > ζsep, as discussed, whereas the latter set of cases is less clearly delineated. However, a
reasonable demarcation can be found in the requirement, discussed in § 3, that the vortices
be afforded sufficient time to adjust to each other’s presence (i.e. a mutually induced strain
field) prior to the onset of detrainment, i.e. that |ζ0| < ζadj. This effectively ensures that the
main interaction is initiated primarily through the vortices’ influence (i.e. their intensifying
mutual strain).
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The vortex-dominated regime, therefore, consists of all cases in the range ζsep < ζ0 <

ζadj (since |ζadj| > |ζsep| for the cases considered in this study). Within this range, all
interactions occur primarily between the two vortices, with the shear an external influence.
Note that both ζsep and ζadj are functions of Λ0, and ζadj depends on ω1,0/ω2,0 as well (see
§ 3; in the full parameter space, both are functions of a2,0/b0 as well). The remainder of
this study considers only vortex-dominated interactions, unless noted otherwise.

5. Analysis and characterization of vortex-dominated interactions

When two like-signed vortices interact under the influence of external shear, i.e. when the
pair’s interaction is vortex-dominated, in viscous flow, hendition always occurs. In these
cases, the shear affects primarily the occurrence and timing of core detrainment, which can
have a significant effect on the ensuing processes and resulting vortex. As seen in § 4, it
can even, in some cases, enable entrainment and merger to occur when, in its absence, they
would not. In order to examine the shear’s net influence on vortex-dominated henditions,
their outcomes must be assessed quantitatively. These results can then be related to basic
pair parameters, and, ultimately, a general characterization of vortex-dominated henditions
developed.

5.1. Quantitative assessment of interaction outcomes in shear
The outcome of any hendition can be assessed quantitatively in terms of an enhancement
factor

ε ≡ Γend

Γ2,start
(5.1)

and a corresponding merging efficiency

η ≡ Γend

Γtot,start
, (5.2)

based on the ratio of the circulation of the resulting vortex, Γend, at the end of the main
convective interaction, t∗end, to that of the stronger vortex, Γ2,start, and of the pair combined,
Γtot,start, respectively, at the start of the main convective interaction, t∗start. (Note that the
symbol η has a different meaning here than in § 2.) Mergers correspond to ε > 1, while
strainings out correspond to ε ≈ 1. Note that η is not a meaningful quantity for strainings
out.

In order to identify the appropriate Γ , t∗start and t∗end in the course of the flow
development, which proceeds continuously due to the viscosity, a method is used that
is similar to that developed for the no-shear case in Folz & Nomura (2017). The vortex
cores are identified via a threshold based on the second invariant of the velocity gradient
tensor: II∗

t = II/IIpeak = 0.10, where II = 1/2(ω2/2 − S2) is the second invariant at a
given location and time, ω is the local vorticity, S is the local strain rate magnitude, and
IIpeak refers to the value of II at the location of the vorticity peak within a contiguous
II > IIt region (see Folz & Nomura (2017) for discussion of this choice of II∗

t value).
Aggregate properties of the vortex cores are then computed for the entire flow region

meeting the II > IIt criterion, which allows the entire flow development to be monitored
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Figure 7. Time development of key quantities for illustrative cases, scaled for better visualization:
(a) ζ0 = 0.0167, Λ0 = 0.90; (b) ζ0 = −0.0073, Λ0 = 0.70. Left-hand axis: normalized core area AII/AII,0
(solid line); and normalized core circulation ΓII/ΓII,0 (dashed line), scaled by a factor of 2 in (a) and 3 in (b).
Right-hand axis: relative straining of weaker vortex (S/ω)1 (through t∗det; thick dotted line), with critical (S/ω)cr
also indicated (thin horizontal dotted line). The + signs indicate the start and end times of a supercritical peak
of (S/ω)cr and corresponding troughs in AII/AII,0 and ΓII/ΓII,0. The � and � symbols indicate the start and
end of core detrainment, t∗start and t∗det, respectively. The � symbols indicate the end of mutual entrainment, t∗ent
(occurs in (a) only). See text for definitions of the times.

continuously, including the transition from two vortices to one:

AII =
∫

II>IIt

dA (5.3)

and

ΓII =
∫

II>IIt

ω dA, (5.4)

where AII is the aggregate core area, ΓII is the aggregate core circulation, and dA refers
to an area element of fluid (similar properties of each individual vortex i = 1, 2 are
also computed using a separate II∗

t,i based on the peak of each, not shown). The time
development of the relative straining of each vortex, (S/ω)i, is also monitored.

The time development of these quantities is presented for the illustrative cases in
figure 7; see the supplementary material for the complete flow development of all the
cases shown in figures 3 and 4. The salient features (which are observed in every case
considered) are similar to those observed in the no-shear case (Folz & Nomura 2017).
First, there is a period dominated by growth of AII and simultaneous slight decline
of ΓII , corresponding to the initial revolving and viscous growth of the pair. This is
followed by diminishing growth (until a local maximum is reached) then decline of AII and
simultaneous more rapid decline of ΓII , until each reaches a local minimum, corresponding
to core detrainment. In some cases (such as that in figure 7a), these local minima are
followed by rapid rises to local maxima, i.e. spikes, corresponding to mutual entrainment.

The most significant effect of shear is the introduction of additional local minima in the
ΓII development (with corresponding variations in the AII development, e.g. beginning at
t∗ = 0.50 in figure 7(a), and at t∗ = 1.1 in figure 7(b)). It is seen that these ‘troughs’
correspond to local maxima, or ‘bumps’, in the time development of (S/ω)1 (which
exhibits net growth due to viscous diffusion intensifying (S/ω)1), which in turn correspond
to the periodic amplified deformation, associated with the vortices’ orientation, observed
in § 4. (The squares and diamonds in figure 5 correspond to the peaks of bumps in (S/ω)1
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P.J.R. Folz and K.K. Nomura

in figure 7; corresponding bumps also occur in (S/ω)2, not shown here.) Notably, (S/ω)i
of either vortex may temporarily exceed the critical (S/ω)cr = 0.135 (associated with core
detrainment) one or more times, with negligible evident detrainment, before (S/ω)1 (and
in some cases, (S/ω)2) ultimately surpasses it terminally as AII growth diminishes and ΓII
decline accelerates.

Due to these nonlinearities, t∗start is taken to be the earlier time at which one vortex
achieves – and thereafter maintains – (S/ω)i > (S/ω)cr = 0.135 through to the end of
detrainment. (In the no-shear case, t∗start had been identified as the time of deviation of
AII from linear growth – see Folz & Nomura (2017); t∗start as identified in the present
manner produces similar results in those cases, not shown.) This time is indicated for the
illustrative cases in figure 7 (in figures 3(b–e) and 4(a–f ), column 4 corresponds to t∗start).
Maintaining the critical (S/ω)cr = 0.135 value has been seen to correspond to detrainment
both here and in the no-shear case, and is also consistent with the value observed in
simulations of a single Gaussian vortex in adverse shear (e.g. Mariotti et al. 1994),
suggesting that this is a general critical value for Gaussian vortices subject to external
strain. In this study, the first detraining vortex is always vortex 1. This identification of t∗start
with the maintaining of (S/ω)1 > (S/ω)cr is consistent with the observation in Trieling
et al. (2010) that symmetric pairs in shear always merge when their peak–peak distance
remains within the critical merging criterion for symmetric pairs without shear; it is noted,
though, that they do observe merger to occur in cases (typically having favourable shear) in
which the vortices only temporarily surpass the critical criterion. The choice of t∗start here
therefore likely constitutes a conservative estimate for the start of the main convective
interaction.

The end of the interaction, t∗end, is taken to be the time of the first peak (i.e. spike)
immediately following the minimum if there is one (i.e. the end of entrainment, t∗ent),
or the time of the local minimum otherwise (i.e. the end of detrainment, t∗det). These
times are indicated for the illustrative cases in figure 7 (and in figures 3(b–e) and
4(a–f ), column 5 corresponds to t∗det, and column 6 to t∗ent). In all cases considered,
t∗end corresponds to the existence of only a single vortical structure meeting the II > IIt
criterion. These are identical to the criteria used in the no-shear case (Folz & Nomura
2017).

5.2. The influence of shear on the timing and duration of detrainment
The shear has a significant influence on the timing of detrainment, as seen in figures 8(a,b),
which show t∗start and Δdt∗ = t∗det − t∗start, the duration of the detrainment-dominated
portion of the main convective interaction, respectively. The large degree of variation
of t∗start with ζ0 reflects the influence of shear on b, and thereby the overall growth of
(S/ω)i leading to detrainment: lowering and increasing t∗start, i.e. accelerating or delaying
the onset of detrainment, derives from shear reducing or increasing b from b0, respectively
(here associated with favourable and adverse shear; this is discussed further below). The
variation of t∗start with Λ0 (and whether the pair is UPEA or EPUA) is consistent with
that observed in the no-shear case: t∗start decreases for increasing pair disparity (lower Λ0;
Folz & Nomura 2017). It is also noted that as ζ0 increases from 0, the variation of t∗start
with Λ0 is reduced, consistent with the (increasingly strong, favourable) shear playing
an increasingly significant role in the initiation of detrainment. The observed variation of
Δdt∗ likewise reflects the influence of shear on b, with reduction and increase likewise
generally shortening and prolonging the duration of detrainment, although the effect here
is not strictly monotonic. This is attributed to the complexity of the detrainment process,
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Figure 8. For vortex-dominated henditions: (a) time of interaction start, t∗start, and (b) the duration of
detrainment, Δdt∗ ≡ t∗det − t∗start, as functions of ζ0 and Λ0 (both UPEA and EPUA). The meanings of symbol
shapes and colours are indicated in (a,b), respectively; a black outline indicates UPEA cases (and symmetric),
and a white outline indicates EPUA cases (ReΓ = 5000).

as well as the method of assigning t∗start and t∗end. It is also seen that Δdt∗ increases with
decreasing Λ0 (consistent with Folz & Nomura 2017), and that in some cases this can be
quite significant, especially for ζ0 < 0.

It should be understood that the net influence of the shear on Δdt∗ derives not only from
the time variation of b, but also from directional effects that inhibit core detrainment. In
order to examine this influence, the angle φi is computed for each vortex i = 1, 2, where
φi is the angle between the peak–peak axis and epk,i, the unit vector corresponding to
the direction of principal extensional strain evaluated at the vorticity peak. The angle
φi serves as an instantaneous indicator of the vortex’s response to the net directional
influence of the strain rate fields induced by the shear and the other vortex as their relative
prevalence and direction vary in time. The time variations of cos2(φi) for each vortex for
no-shear cases having Λ0 = 0.90 and Λ0 = 0.70 are presented in figures 9(a,b), and it is
seen that cos2(φi) ≈ 0.5 is maintained (i.e. φi ≈ 45◦, after the initial adjustment period)
until detrainment begins, after which cos2(φi) decreases (i.e. φi increases); this occurs
for both vortices in the Λ0 = 0.90 case – a merger – and only for the weaker vortex
in the Λ0 = 0.70 case – a straining out. It can therefore be said that cos2(φi) < 0.5 is
associated with core detrainment. When shear is present (shown for the illustrative cases
in figures 9c,d), its principal extensional strain rate remains fixed in the Eulerian frame
(oriented 45◦ from the background flow direction), which initially causes cos2(φi) of both
vortices to oscillate about 0.5 as they revolve; this occurs such that the bumps in (S/ω)i

correspond to maximum cos2(φi), i.e. when the directional effects are unfavourable for
detrainment. This may explain why little evident detrainment occurs even when (S/ω)i >

(S/ω)cr during a bump. After t∗start, one vortex (at least) maintains (S/ω)i > (S/ω)cr and
cos2(φi) < 0.5 simultaneously, thereby undergoing detrainment and causing hendition
to occur. These observations suggest that in order for core detrainment to occur, the
vortex must maintain both sufficient relative straining ((S/ω)i > (S/ω)cr) and conducive
directionality (cos2(φi) < 0.5) of its straining response.

It is critical to note that accelerating/delaying t∗start and shortening/prolonging Δdt∗ are
not necessarily associated with ‘favourable’ or ‘adverse’ shear. If the vortices are initially
oriented along the shear direction, then the favourable shear delays/prolongs while adverse
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Figure 9. Time development of cos2(φi), where φi is the angle between the peak–peak axis and the principal
extensional strain eigenvector at each peak, epk,i (left-hand axis; solid red line shows vortex 1, dashed blue line
shows vortex 2), for no-shear cases having (a) Λ0 = 0.90 and (b) Λ0 = 0.70; and the illustrative shear UPEA
cases having (c) ζ0 = 0.0167, Λ0 = 0.90 and (d) ζ0 = −0.0073, Λ0 = 0.70. In all cases, ReΓ = 5000. In (c,d),
the time development of b/b0 is also included for reference (right-hand axis; solid black line), and � (and �)
indicate times of first (and, in (c), second) local S/ω peak (see figures 5 and 7).

shear accelerates/shortens (since, in this orientation, the vortices are initially located at
minimum b in the favourable case and maximum b in the adverse). This can be seen
in table 2, which shows t∗start and Δdt∗ for equivalent cases having each initial orientation
(i.e. maintaining all pair parameters described in § 3). A full exploration of the relationship
between the initial orientation, the flow development, and outcomes is beyond the scope
of this study, but it can be concluded that the observed effects of shear on timing derive
primarily from the relative motion of the vortices that it engenders, and not, strictly
speaking, the shear’s relative sense.

5.3. Results for ε and η

It has been seen that shear affects the timing and duration of core detrainment, and it is
known that the outcome of an asymmetric pair interaction derives from the relative timing
of detrainment and destruction of the vortices (Brandt & Nomura 2010). The influence of
the shear on interaction outcomes is therefore most significant when the outcome of the
case is particularly sensitive to changes in this timing. To examine this, and the influence
of shear on interaction outcomes overall, ε and η are computed for every case using (5.1)
and (5.2).

Figure 10 shows each hendition case, with ε indicated via colour, for both UPEA
and EPUA cases (similar trends are observed for η). Linear interpolation has also been
employed to estimate ε values between the simulated cases, in order to better visualize
the overall trends. In the broadest sense, the variation of ε is similar to that of the
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Asymmetric vortex pairs in shear

Horiz Vert Horiz Vert Horiz Vert
ζ0 Λ0 t∗start t∗start Δdt∗ Δdt∗ ε ε

0.0073 1.0 0.95 1.79 0.58 0.58 2.19 1.96
0.0073 0.9 0.90 1.50 0.55 1.10 1.81 1.81
0.0073 0.7 0.49 0.98 0.94 1.43 1.02 1.04
−0.0073 1.0 2.16 1.05 0.58 0.42 2.09 2.09
−0.0073 0.9 1.75 0.75 1.00 0.90 1.81 1.78
−0.0073 0.7 1.56 0.27 1.39 1.07 1.01 1.00
0.0167 1.0 0.71 2.07 0.44 0.55 1.94 2.05
0.0167 0.9 0.66 1.84 0.43 0.79 1.80 1.81
0.0167 0.7 0.35 1.37 0.70 1.33 1.03 1.06

Table 2. Time of start of core detrainment, t∗start, and duration of detrainment, Δdt∗ ≡ t∗det − t∗start, for
equivalent UPEA cases initially oriented horizontally (Horiz) and vertically (Vert) (ReΓ = 5000).
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Figure 10. Interaction outcomes for vortex-dominated henditions for (a) UPEA and (b) EPUA cases. Symbols
indicate the outcomes of the cases included in figure 8, categorized: � indicates merger; + indicates straining
out (see § 5.1). Colours indicate enhancement factor ε: values for each denoted case are exact, while those in
between are produced by linear interpolation (both plots use same colour map, indicated in (b)). The solid black
line indicates ζ0 = 0, the dashed line indicates ζsep,p (see § 2), and the dash-dotted line indicates ζadj (see §§ 3
and 4). The data for the no-shear (ζ0 = 0) cases were presented previously in Folz & Nomura (2017). Note
that ε inherently declines with decreasing Λ0, since the theoretical maximum is εmax = 1 + Λ0. In all cases,
ReΓ = 5000.

no-shear case: ε is maximal (ε ≈ 2) for symmetric pairs, and minimal (ε ≈ 1) for highly
disparate ones (approximately Λ0 < 0.70 for UPEA, and Λ0 < 0.60 for EPUA). The Λ0,cr
value at which this minimum ε is reached is seen to vary with ζ0, particularly in the
transitional range (approximately 0.80 � Λ0 � 0.70 for UPEA, and 0.80 � Λ0 � 0.60
for EPUA), being generally lower for higher |ζ0| (with the notable exception of the ζ0 � 0,
0.75 � Λ0 � 0.70 subregion). More generally, the variation of ε with ζ0 is not always
monotonic, for Λ0 > Λ0,cr.

Also indicated in figure 10, via the symbols, is the occurrence of mutual entrainment
(i.e. merger) or not (i.e. straining out) in each case (as ascertained from the presence of one
or more spikes post-t∗det in the ΓII time development; see § 5.1). It is seen that the presence
of shear can engender entrainment in some cases where it does not occur in the equivalent
no-shear case, and that this typically occurs for more disparate pairs when shear is stronger
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Figure 11. For vortex-dominated henditions: (a) ε and (b) η, as functions of Λ0. See figure 8 for meanings of
symbol shapes, colours and outlines. In all cases, ReΓ = 5000.

(again there are notable exceptions, particularly in the EPUA ζ0 � 0, 0.75 � Λ0 � 0.70
subregion). This promotion of merger is attributed to the shear – of either sense – altering
the rate of increase of (S/ω)i of each vortex, making detrainment of the second vortex
more likely prior to the destruction of the first.

The variations of ε and η with ζ0 and Λ0 for all hendition cases are presented in
figure 11. It is seen that, within the transition region, cases with ζ0 /= 0 typically have
higher ε and η than the no-shear case with the same Λ0, and that increasingly favourable
shear generally (though not universally) results in greater enhancement and more efficient
merger for EPUA cases. (Note that the variation for the symmetric case results largely from
the use of IIt in conjunction with its uniquely reciprocal mutual strain.) The handful of
cases with lower ε and η than in the no-shear case have ζ0 < 0: the weaker ζ0 = −0.0045
cases always produce ε < ε(ζ0 = 0) for a given Λ0, while the stronger ζ0 = −0.0073
begins to produce ε > ε(ζ0 = 0) for more disparate pairs (Λ0 � 0.75 for EPUA) only until
the straining out regime is reached, i.e. stronger adverse shear better enables entrainment to
occur. Similar trends are observed in the ε−Λ and η−Λ variations, where Λ is evaluated
at t∗start (not shown). It is noted that the initially vertical cases considered in § 5.2 produce
ε and η similar to those for their initially horizontal counterparts (table 2; not otherwise
included in the present results or discussion).

An example of shear of either sense promoting merger is presented in figures 12(a,b,c),
which show the time development of (S/ω)i for EPUA Λ0 = 0.70 cases having
ζ0 = 0.033, no shear and ζ0 = −0.0073, respectively. In these cases, entrainment does not
occur for the no-shear case, but it does occur for ζ0 = 0.033 (ε = 1.46; vorticity contours
for this case are shown in figure 6), and to a small degree for ζ = −0.0073 (ε = 1.11;
vorticity contours not shown). It is seen that the influence of the shear causes (S/ω)2 to
surpass (S/ω)cr in both ζ0 /= 0 cases, allowing detrainment of the second vortex to occur.
For the ζ0 = 0.033 case, this is done primarily by accelerating the rate of increase of
(S/ω)2 (i.e. reducing t∗start); for the ζ = −0.0073 case, this is done primarily by prolonging
the detrainment of vortex 1 (i.e. increasing Δdt∗), allowing (S/ω)2 to increase sufficiently
to surpass (S/ω)cr prior to the end of the interaction.
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Figure 12. Time development of (S/ω)1 and (S/ω)2 (red solid and blue dashed lines, respectively; right-hand
axis), along with b/b0 (thick dotted line; left-hand axis), for EPUA cases having ReΓ = 5000 and Λ0 = 0.70,
with (a) ζ0 = 0.0167, (b) ζ0 = 0 (no shear), and (c) ζ0 = −0.0073. In all plots, the horizontal thin dotted line
indicates (S/ω)cr = 0.135. The ζ0 /= 0 cases are mergers (ε > 1), whereas the no-shear case is a straining out
(ε ≈ 1).

5.3.1. Mutuality and the fundamental characterization of henditions in shear
Fundamentally, the outcome of the interaction of two like-signed vortices derives from
the degree of mutuality of the interaction. In the no-shear case, Folz & Nomura (2017)
introduced a mutuality parameter MP = (S/ω)1/(S/ω)2, which compares the relative
straining of each vortex at t∗start, and thereby captures the degree of mutuality of the
interaction. When the relative straining of both vortices is similar at t∗start (approximately
1 � MP < 1.8 for ReΓ = 5000), the second vortex can begin to detrain before the first is
destroyed, enabling mutual entrainment (i.e. merger occurs); when the disparity is greater
(approximately MP > 1.8), it cannot, and the first detraining vortex is simply destroyed
(i.e. straining out occurs). In the vortex-dominated regime, MP is computed for the shear
cases in the same manner.

Figure 13 shows the variations of ε and η with MP. A generally monotonic relationship
is observed between ε and MP (likewise η and MP), with ε ≈ 2 (and η ≈ 1) near MP = 1,
then generally declining as MP increases until MP ≈ 2, at which point ε ≈ 1 is reached
and thereafter maintained (recall that η ceases to be a meaningful quantity for strainings
out). However, significantly more scatter is observed in the shear case (as compared with
figure 9 in Folz & Nomura 2017). This is attributed to MP being a pointwise quantity, and
therefore sensitive to significant and rapid variations as the vortices revolve.

However, MP is related closely to the vortex enstrophy ratio, an integrated quantity less
susceptible to fluctuations:

Z2

Z1
=

∫
II>IIt,2

ω2
2 dA2∫

II>IIt,1

ω2
1 dA1

, (5.5)

where the integral is evaluated for each vortex at t∗start. This quantity was also seen to
effectively characterize the variation of ε and η in the no-shear case (Folz & Nomura
2017).

Figure 14 shows the variations of ε and η with Z2/Z1. It is seen that the scatter is
greatly reduced (even for high |ζ0|), such that the variation is essentially monotonic
outside of a transition region, reached at 1.65 ± 0.01 and extending to 1.91 ± 0.02 (where
the margins of error for each are found from the extremal midpoint between a merger
and a straining out case). In this region, cases having similar Z2/Z1 but different ζ0,
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Figure 13. For vortex-dominated henditions: (a) ε and (b) η as functions of MP = (S/ω)1/(S/ω)2. See figure 8
for meanings of symbol shapes, colours and outlines. The dotted line indicates MP = 1. In all cases, ReΓ =
5000.
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Figure 14. For vortex-dominated henditions: (a) ε and (b) η as functions of Z2/Z1. See figure 8 for meanings
of symbol shapes, colours and outlines. The dotted line indicates Z2/Z1 = 1. In all cases, ReΓ = 5000.

Λ0 and/or UPEA/EPUA status can produce significantly different ε and η, with higher
|ζ0| generally (though not universally) corresponding to higher ε and η. The consistently
lesser enhancement and less efficient merging when weak adverse shear is present (ζ0 =
−0.0045) are attributed to greater dissipation of detrained fluid due to the increase of b,
while the greater enhancement and more efficient merging produced by stronger adverse
shear (ζ0 = −0.0073) are attributed to the interaction being sufficiently prolonged to
enable entrainment. The lower bound of the transition region is comparable to the critical
(Z2/Z1)cr ≈ 1.63 ± 0.03 for straining out observed in the no-shear case, and merger cases
having greater Z2/Z1 correspond to higher |ζ0|.

As such, it can be concluded that favourable and sufficiently strong adverse shear
(approximately ζ0 < −0.0045) promote enhancement and merger for interactions that are
moderately disparate (i.e. having approximately 1.65 < Z2/Z1 < 1.9). Efficient merger
occurs in interactions with a high degree of mutuality, regardless of shear strength
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(typically η > 0.85 for Z2/Z1 < 1.65), while more disparate ones always result in straining
out of the weaker vortex (ε ≈ 1 for Z2/Z1 > 1.9).

The fact that the variations of ε and η with Z2/Z1 are generally monotonic is taken as
evidence that the choice of t∗start ((S/ω)1 > (S/ω)cr = 0.135 terminally) does effectively
characterize the start of convective detrainment (see § 5.2). These trends are also observed
when only the relative vorticity is considered (not shown), indicating that they reflect
the shear’s effect on the physical mechanisms of vortex interaction and not spurious
consequences of the use of IIt.

6. Summary and discussion

This study considers the interaction of a pair of unequal vortices in background shear
with finite viscosity. In these cases, the flow development is determined by the relative
significance of the vortices’ mutual influence and that of the shear. Sufficiently adverse
shear causes the vortices to separate; the critical adverse shear strength for separation,
ζsep, varies with the pair’s circulation ratio Λ0 (and aspect ratio), and its empirical values
are well-predicted by point-vortex analysis. Otherwise, the interaction between the vortices
is a hendition (§ 1.1), resulting in a single vortex.

In henditions occurring in background shear, the flow development is essentially
governed by three constituent external influences occurring simultaneously, whose relative
significance varies in time: the shear causes the peak–peak distance b between the
vortices to vary as they revolve; the vortices influence each other through their mutually
induced strain, which depends on b; and the strain induced by the constant shear acts
directly on each vortex. When the shear is strongly favourable, it causes such significant
reduction of b and amplified deformation of the vortices that it is the principal cause of
hendition; otherwise, when the shear is weakly favourable or weakly adverse, the flow is
vortex-dominated.

In vortex-dominated henditions in shear, viscous diffusion causes the vortices’ mutually
induced strain to become predominant, which enables sufficient persistence of straining for
one vortex to begin detraining core fluid: the relative straining remains sufficiently strong
in magnitude ((S/ω)i > (S/ω)cr = 0.135 for detraining vortex i), and the directionality of
the vortex’s response to the external strain field maintains a conducive relative orientation
(cos2(φi) < 0.5) for sustained detrainment despite the continuing influence of shear on
b and on each vortex directly. The flow development then proceeds similarly to the
no-shear case: if the second vortex is induced to detrain before the first is destroyed, then
a two-way interaction leads to a mutual entrainment process that produces an enhanced
resulting vortex i.e. merger occurs; otherwise, the interaction is essentially one-way and
the detraining vortex is broken up, leaving the other largely unaffected, i.e. straining out
occurs.

The post-interaction vortex is assessed quantitatively in terms of an enhancement factor
ε and a merging efficiency η, using a method adapted from one utilized in the no-shear
case (Folz & Nomura 2017). It is found that all vortex-dominated hendition outcomes
across the parameter range considered are effectively characterized by the pair’s core
enstrophy ratio at the start of detrainment, Z2/Z1, which encapsulates the mutuality of the
interaction similarly to MP = (S/ω)1/(S/ω)2 (utilized previously in the no-shear case)
but is less sensitive to the time variation caused by the shear. For Z2/Z1 near unity,
merger essentially conserves circulation, while mergers between more disparate vortices
become less efficient until straining out occurs. Within the transition region, approximately
1.65 < Z2/Z1 < 1.9, weak adverse shear reduces enhancement; otherwise, the presence of
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shear of either sense generally promotes enhancement and merger relative to the no-shear
case (in which straining out occurs for Z2/Z1 > (Z2/Z1)cr ≈ 1.63 for ReΓ = 5000, similar
to the value at which it first occurs with shear present). In favourable shear, this results
from more rapid increase of (S/ω)2 due to reduction of b, while in adverse shear,
this results from prolonging the interaction due to a combination of increase of b and
periodic detrainment-inhibiting orientation effects allowing (S/ω)2 to reach (S/ω)cr (with
simultaneous cos2(φi) < 0.5) before the first vortex is destroyed.

Additional study must examine vortex pair parameters beyond those considered here.
In particular, it is possible that the boundary values of the Z2/Z1 transition region may
vary with parameters such as the Reynolds number or initial aspect ratio, either of which
would be expected to affect the rate of increase of (S/ω)i and therefore promote or inhibit
detrainment of the second vortex. It has also been seen that the initial orientation of the
vortices relative to the shear is significant: certain effects can be associated with the
opposite sense of shear in the orthogonal initial orientation (e.g. when the vortices are
initially oriented along the shear direction, favourable shear increases b and prolongs the
interaction, while adverse shear reduces and shortens). Moreover, it would be desirable to
consider a time-varying background flow, which might better reflect that experienced by a
vortex pair in turbulence (the concept of persistence of straining leading to detrainment
may be a particularly significant concept in such flows). It is hoped that the current
study may provide a step towards a more all-encompassing characterization of vortex
interactions in background flow that incorporates these additional parameters, and others
(the influence of an opposite-signed vortex would be another priority for consideration).
Such studies remain for future work.

Supplementary material. Supplementary material and movies are available at https://doi.org/10.1017/jfm.
2023.525.
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Chapter 6

Conclusions and future work

The goal of this dissertation was to help bridge the gap between the understanding of

the interaction of a single co-rotating two-dimensional vortex pair and the overall behavior of

flows that include many such interacting vortices, such as two-dimensional turbulence. This

work consists of three basic components, which were published in peer-reviewed journals:

• a first study was done to confirm the consistency of key concepts for a symmetric pair

interaction in shear flow when viscosity is present, namely the critical merging distance

and the critical shear strength for separation (Folz & Nomura 2014, Chapter 3);

• a second study to develop tools to understand and quantitatively assess the outcome of

an interaction between unequal co-rotating vortices that could be used in the presence of

viscosity and/or background flow (Folz & Nomura 2017, Chapter 4);

• the ultimate (third) study, which builds upon the synthesis of the first two in order to

examine the influence of shear on a pair of unequal co-rotating vortices (Folz & Nomura

2023, Chapter 5).

This ultimate study examines the influence of background flow on the possible interaction

regimes for the pair, demonstrates that the background flow primarily influences the timing of

the inter-vortex interaction processes such that enhancement of the resulting vortex typically

(but not necessarily) occurs, and, perhaps most significantly, demonstrates that this influence is
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largely encompassed within the pair’s enstrophy ratio – i.e., the outcomes of vortex interactions

are well-characterized almost entirely by a single parameter, the core enstrophy ratio. This

constitutes a meaningful step towards bridging vortex-pair studies and the overall behavior of

two-dimensional turbulence, as recently- and independently-developed scaling laws also derive

from measures of vortex enstrophy (Burgess & Scott, 2017).

More generally, this work provides a useful qualitative model for understanding the

influence of background flow on an interacting vortex pair: the vortices’ mutually induced

strain acts on each vortex directly; the strain rate imposed by the background flow also acts on

each vortex directly; and the background flow varies the distance between the vortices in time,

which indirectly affects their mutually induced strain. These alter the occurrence and relative

timing of detrainment and destruction of the vortices, the key mechanisms of their interaction

(as established by Brandt & Nomura 2010). In the parameter range considered, the influence

of the shear has the ultimate effect of promoting detrainment of the second vortex, and thereby

entrainment and merger. This may not necessarily be true in stronger shear and other parameter

ranges, which must be explored in future work. Nevertheless, this constitutes a first step upon

which future hypotheses may be developed.

This work also provides tools and insights that may be of use to future vortex interaction

research generally. These include:

• the onset of core detrainment is associated with a critical value of the relative straining,

(S/ω)cr ≈ 0.135, that appears to be a consistent value for Gaussian vortices regardless of

the source of external strain;

• core detrainment is associated not only with a critical value of the relative straining, but

also the directionality of the vortex’s response, i.e., the orientation of the deformed vortex

with respect to the underlying flow field – in other words, that detrainment requires both

sufficient magnitude and conducive directionality of the imposed strain;

• relatedly, and more generally, the relative straining – essentially the vortex’s eccentricity –
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is an important quantity for monitoring the development of a given vortex in time;

• further, the key concept governing hendition outcomes is mutuality – the degree to which

each vortex “participates” in the main convective interaction – which is well-characterized

by the mutuality parameter, MP, which is remarkably accurate at characterizing henditions

between even highly disparate vortices;

• mutuality and MP may also be well-characterized by the core enstrophy ratio, an easily

accessible integrated quantity that may be particularly useful in time-varying flows;

• the utility of aggregate core properties, which allow for the monitoring of the time devel-

opment of a vortex pair continuously through the interaction process without presupposing

start or end times for the main interaction, especially useful for viscous flows;

• the derivation of an accurate expression for the boundary of the separation regime in shear

flows;

• the observation that “favorable” and “adverse” shear can have opposite effects on the

distance between the vortices depending on their initial relative orientation;

• the term hendition to denote any interaction between two vortices that produces a sin-

gle final vortex (and its companion term henmultion for the like interaction of three or

more vortices simultaneously), which solves the problem of researchers sometimes using

“merger” as a general term and sometimes to mean specifically an enhancement-producing

interaction.

There are many avenues for this work to be continued and further developed. Most

significantly, the concept of directionality of the vortex’s straining response must be fleshed

out with, at the very least, more data and ideally a better metric than the φi of Chapter 5 (and

Appendix B), which is unfortunately based upon the vortices’ peak-peak axis rather than anything

intrinsic to the vortex itself. The present study (including the material in Appendix B) suggests a
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simple basic underlying concept for vortex behavior in general: when the flow field engenders a

hyperbolic stagnation point within the vortex core, core detrainment occurs, and what happens

thereafter depends on the particulars of the flow field (e.g., a like-signed vortex in proximity

leads to hendition if the hyperbolic point is sustained within the core through destruction of the

original vortex, or a “partial” interaction occurs if it is not, which may or may not result in the

detrained fluid enhancing the other depending on its ability to entrain the ejected fluid, which

is in turn predicated on the presence of a hyperbolic point within that vortex’s core, and so on).

This in turn suggests the potential to control vortex detrainment by controlling the degree and

orientation of its deformation with respect to the flow field (i.e. hyperbolic point) would allow for

useful practical applications, including the mitigation of airplane trailing vortices near runways,

active flow control on lifting bodies, and a method for chemical mixing. The incorporation of

more complex and time-varying background flows than simple shear would be an important next

step in these matters.

Those interested in vortex pairs in shear can consider additional and larger parameter

ranges as limitations (computational and/or experimental) permit. The author anticipates that the

enhancement-promoting effect of shear here observed may be lesser or even reversed for larger

initial aspect ratios (i.e., greater initial vortex separation); this may be the simplest parameter

to explore further. This is likely related to Reynolds number effects as well, which should

also be studied, although the range in which such effects are significant may be surprisingly

limited; additional work by Scott Carlson in the Nomura Group suggests that vortex interaction

outcomes are largely insensitive to Reynolds number difference above roughly ReΓ = 5000, while

interactions below roughly ReΓ = 1000 are largely viscosity-driven and thus involve completely

different physical processes than those here. Future research should also consider more UPUA

cases, and in particular explore the “weak winner” regime when shear is present, which may

particularly give important insights into the development and scaling behavior of complicated

flows. A thorough study of vortex interactions in shear should also consider various initial

orientations, which were considered only briefly in Chapter 5; the present results suggest little
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difference in interaction outcomes, although the sample of cases is quite limited, and the design

of a proper experiment to test these effects is subtle and somewhat difficult, since e.g., orienting

the vortices initially orthogonal to or along the shear direction is also orienting along the major or

minor axis of their elliptical trajectory, such that matching initial shear strength is not matching

initial separation distance (potentially causing resolution difficulties when attempting to match

aspect ratio), and moreover one must consider whether to match the initial peak-peak distance or

starting peak-peak distance, which may be more relevant but difficult to control.

It goes without saying that future work should also explore the strong favorable shear

regime further. For one thing, the delineation between that and the vortex-dominated regime

developed here is arbitrary and based in part on computational considerations that may not

be relevant in the near future; a more robust delineating heuristic should be developed. More

generally, since it was observed that reduction of the peak-peak distance by the shear promotes

enhancement and merger, it might be expected that even stronger favorable shear might cause

significantly greater enhancement in some cases and engender merger of more disparate pairs

(or those at smaller initial aspect ratios). It is noted, though, that studies of vortex merger in

shear in inviscid flow (symmetric pair studies only, all of them) essentially do consider this

regime, since inviscid merger only occurs if the vortices are arbitrarily placed sufficiently close

together – as though brought together by strong shear. For example, the merger shown in figure

7f of (Trieling et al. 2010, see also their figure 4f, showing similarly for Rankine vortices)

qualitatively resembles the shear-dominated merger shown in figure 3a in Chapter 5, with highly

deformed (elliptical) cores early in the development, sharply curled outer filaments, and ejection

of additional filaments near the center as the cores approach.

In fact, if the author may editorialize a bit further, a common question (criticism) of

this research has been the choice to use viscous flow – but this illustrates exactly why this was

necessary. The vortex-dominated regime of the interaction of a pair in shear cannot be explored

with inviscid methods, because inviscid vortices will not interact unless forced together by some

external influence, be it the shear or the hands of the omnipotent researcher creating the initial
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condition. However, this does mean that most inviscid studies of vortices “in isolation” are in

fact similar to studies of the shear-dominated regime, since they are always initially “forced” to

be within the critical distance for symmetric merging, or the equivalent criteria for asymmetric

pairs – which means that their results give insight into this regime (it is acknowledged that the

deformation of the vortices differs from what would occur with strong background flow, including

attempts to obviate the need for circular vortices to mutually adjust by imposing an initially

deformed geometry such as is typically done by Dritschel’s group, although it is suggested that

this is all the more reason to be very careful in setting up and interpreting the results of inviscid

pair studies). It is notable, then, that the results of Trieling et al. (2005) show increasing merging

efficiency with decreasing initial separation distance for asymmetric henditions in inviscid flow

– consistent with the present finding that efficiency generally increases the more shear reduces

the peak-peak distance (occuring in favorable shear here). It would be desirable to simulate the

strong favorable case “properly,” with the shear modeled explicitly, but the existing body of

vortex research (including the present study) collectively gives fairly strong indications of the

expected behaviors.

More important, in the author’s estimation, is to start directly considering the interaction

of vortices in relative motion along the peak-peak axis – equivalent to two co-rotating vortices

being brought into proximity by a translating opposite-sign dipole. This has been argued to be

the most common type of vortex interaction in two-dimensional tubulence (Sire et al., 2011), yet

very little research to date has considered this case directly. This is certainly a more common case

in most flows than that of two co-rotating vortices being forced together by strong like-signed

background flow, which has received more consideration (considerably more widely than is

perhaps consciously realized, as noted above), and basic questions remain: What are the major

interaction regimes? Under what circumstances does the interaction between the co-rotating

vortices become predominant? How does the continuous inward motion affect enhancement and

merging efficiency? And how do these results vary with offset distance and angle of incidence of

their translation axes? The results and analytical tools developed in the present study provide a
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basis to begin to tackle these questions, and the others that will inevitably arise.
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Supplementary material to: On asymmetric
vortex pair interactions in shear

Patrick J. R. Folz1†, Keiko K. Nomura1

1Department of Mechanical and Aerospace Engineering, University of California, San Diego,
9500 Gilman Drive, La Jolla, CA, 92093-0411, USA

In this supplementary material, the time evolution of the key quantities utilized
in the flow analysis — namely, core area, AII , core circulation, ΓII , and relative
straining, (S/ω)i — are presented for example cases of a single vortex in shear
(§S1) and vortex pairs in shear (§S2), accompanied by brief description highlight-
ing salient features. This reference is intended to benefit readers desiring a fuller
understanding the flow development and the quantities utilized to compute the
outcome quantities ε and η.
As indicated in the main text, the core area and circulation correspond to the

aggregate flow region meeting the threshold, II > IIt, where II = 1/2(ω2/2−S2)
is the second invariant at a given location and time, and the threshold II∗t =
II/IIpeak = 0.10:

AII =

∫

II>IIt

dA

and

ΓII =

∫

II>IIt

ωdA,

where dA refers to an area element of fluid. See main text and Folz & Nomura
(2017) for details.
These simulations are all performed using the computational methods described

in §3 of the main text. Note that these simulations were terminated after the
main convective interaction has been completed and the final vortex has begun
to axisymmetrize, in order to conserve computational resources; the end times of
each curve therefore have no significant physical meaning.

S1. Single vortex in shear

This section briefly reviews the flow development of a single vortex in favorable
and adverse shear, a useful reference when considering the pair case. In the
adverse case, the start of core detrainment is identified and found to correspond
to a critical (S/ω)cr value similar to that found for pairs in Folz & Nomura (2017).
A single vortex in shear deforms elliptically along a direction roughly orthogonal

to or aligned with the shear direction in favourable or adverse shear, respectively,
and in the adverse case, the intensifying deformation and relative straining
eventually leads to filamentation — i.e. detrainment — and breakup, as discussed
in §1 and references therein. These processes are reflected in the time evolution of
AII , ΓII , and (S/ω), which are presented in figure S1 along with the instantaneous
shear strength |ζ|, for a single vortex in favourable and adverse shear, respectively,
having |ζ0 = 0.01| and ReΓ = 1000 (in order to accelerate the flow development

† Email address for correspondence: pjfolz@ucsd.edu
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Figure S1: Time development of shear strength parameter magnitude |ζ|, and
key quantities: normalized core area AII/AII,0, normalized core circulation

ΓII/ΓII,0, and relative straining S/ω, for a single vortex: (a) favourable shear
(ζ0 = 0.01), and (b) adverse shear (ζ0 = −0.01). In (b), the dash-dot line
indicates the linear fit to the early portion used to ascertain the time of
departure from linear behavior (• at t∗ = 1.25 in ζ plot, and t∗ = 0.75 in
AII/AII,0 plot). This departure is found by computing the correlation

coefficient (R2) for a linear fit to progressively larger portions of the time
development (beginning with the first N = 20 output times) until R2 falls

below a pre-selected threshold value (R2
thresh = 0.999).

for better visualization of the major processes). In all cases, |ζ(t)| = α/ω(t)
increases continuously due to viscous diffusion reducing ω. For reference, in the
case of a single vortex diffusing without shear (ζ0 = 0), AII grows linearly and
ΓII remains constant (shown in Folz & Nomura 2017), while the relative straining
of this vortex remains (S/ω) = 0 (consistent with no deformation).
It is seen that, in favourable shear (ζ0 > 0), ζ, AII , ΓII , and S/ω all in-

crease monotonically throughout the flow development, which consists of viscous
spreading, elliptical deformation, and little else (the increase of ΓII here, where
it was constant in the no-shear case, results from the use of IIt as the vortex
diffuses and deforms). The increasing deformation results from the intensifying
shear strength ζ and is reflected in the increasing of S/ω. Although there is a
slight growth acceleration of AII and ΓII , and deceleration of S/ω and ζ over the
entire flow development, the growth of each of these quantities could reasonably
be approximated as linear in this case (a linear fit with R2 = 0.99 can be made
to each, not shown). These processes continue until the ultimate dissipation of
the vortex.
Conversely, in adverse shear (ζ0 < 0), a significant qualitative change in the

behavior of key quantities is observed, reflecting detrainment of the core and
subsequent breakup. The shear strength magnitude |ζ| again increases monoton-
ically, but this growth is seen to accelerate significantly in the latter portion of
the flow development (at t∗ ≈ 1.25, see figure S1 caption). The growth of AII ,
after an initial approximately linear increase, begins to decelerate (earlier than
|ζ|’s acceleration), reaching a local maximum and then decreasing; ΓII declines
approximately linearly at first, then more rapidly beginning at approximately
the same time as AII ’s deviation from linear (at t∗ ≈ 0.75). The growth of S/ω
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is likewise monotonic and accelerates slightly throughout, but most significantly
when |ζ| does as well. The deviation of AII growth from linear coincides with
the start of core detrainment (note that filamentation of low-level, i.e. non-core,
peripheral vorticity occurs before this time); this detrainment is reflected in the
accelerating decline of ΓII . In other words, the deviation of AII from linear
growth in this case reflects the transition from viscosity-dominated to convection-
dominated flow development, as it did in the case of no-shear pairs (see e.g. Brandt
& Nomura 2007; recall also that adverse shear approximates the influence of a
co-rotating vortex pair partner, see §1). The later deviation of |ζ|’s growth from
linear (as well as the concomitant significant acceleration of S/ω’s) reflects the
final, rapid breakup of the vortex, during which the II > IIt core is swiftly eroded
away and the vortex is ultimately dissipated (see e.g. Mariotti et al. 1994).
Significantly, the deviation of AII from linear growth — the start of core

detrainment — and the transition from viscosity-dominated to convection-
dominated flow development occurs when S/ω ≈ 0.128, very close to the critical
value of (S/ω)cr ≈ 0.135 ± 0.03 associated with detrainment in no-shear pairs
(Folz & Nomura 2017; the estimate made here derives in part from additional
simulations having ζ0 = −0.005 and ζ0 = −0.02, not shown). This suggests that
this critical value associated with core detrainment is generally consistent for a
Gaussian vortex in viscous flow. The value of ζ associated with vortex breakup,
ζbu ≈ −0.10, is comparable to the values ζbu = −0.10 to −0.13 found by Mariotti
et al. (1994) and Paireau et al. (1997).
These observations and critical values inform the discussion and analysis of

vortex pairs in shear.

S2. Vortex pairs in shear

This section briefly reviews the flow development of vortex pairs, which may
be unequal, in both favorable and adverse shear, utilizing the core quantities AII

and ΓII , as well as the relative straining of both the weaker and stronger vortices,
(S/ω)1 and (S/ω)2, respectively.
First, the time development of these quantities in no-shear flow, observed in Folz

& Nomura (2017), is here briefly reviewed: AII grows approximately linearly dur-
ing the viscosity-dominated portion of the interaction, then declines and, in some
cases, thereafter spikes during the convection-dominated portion, corresponding
to detrainment and entrainment, respectively; ΓII declines slightly but steadily
during the viscosity-dominated portion (due to the vortices’ intensifying mutual
strain), followed by a more rapid drop during detrainment, and then a spike in
cases in which entrainment occurs; and (S/ω)i grows continuously throughout
both the viscosity-dominated and convection-dominated portions, through the
end of detrainment (at which point either the vortex is destroyed, or, if it is the
“winner” of the interaction, (S/ω)i then declines during reaxisymmetrization).
Significantly, the initiation of detrainment of a vortex is seen to be associated
with the critical value, (S/ω)i ≈ (S/ω)cr = 0.135.
For vortex pairs in background shear (ζ0 6= 0), these properties are presented

in figures S2 and S3 (AII and ΓII are normalized by their initial values); these
figures correspond to the vortex-dominated cases shown in figures 3 and 4 in the
main text. Figure S2c shows an example of no-shear merger, in which one can
observe the behaviors just discussed. In the ζ0 6= 0 cases, as discussed in the
main text (§5.1), the time evolution of these quantities follows a similar pattern
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Figure S2: Time development of key quantities (aggregate normalized core area
AII/AII,0 and circulation ΓII/ΓII,0, and relative straining of each vortex

(S/ω)i, i = 1, 2) for the vortex-dominated cases shown in figure 3 of the main
text, UPEA pairs having ReΓ = 5000 and Λ0 = 0.90, with varying shear

strength ζ0: (a) ζ0 = 0.0167, (b) ζ0 = 0.0045, (c) ζ0 = 0 (no shear), and (d)
ζ0 = −0.0045. Dashed line in (S/ω)i plots indicates critical relative straining
(S/ω)cr = 0.135. The data in case (c) was previously presented in Folz &

Nomura 2017.

to the no-shear case, with the primary exception of nonlinear troughs in the
development of AII and ΓII , which correspond to times of amplified deformation
of the vorticies due to the shear and concomitant local maxima, i.e. bumps, in
the time development of (S/ω)i.
For a given Λ0 (figure S2), as |ζ0| increases, (S/ω)i generally grows more

rapidly and the bumps become larger. Also, smaller “secondary” bumps become
apparent at high ζ0, between those already discussed, i.e. at an orientation of
the peak-peak axis approximately orthogonal to theirs (e.g. in figure 7a of the
main text at t∗ ≈ 0.4). For a given ζ0 (figure S3), when the pair is asymmetric the
increase of (S/ω)1 is more rapid, and the bumps larger, than for (S/ω)2, with this
disparity increasing with decreasing Λ0 (indicating more disparate deformation
amplification, seen in figures 3-4 of the main text). For highly disparate pairs
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Figure S3: Time development of key quantities (aggregate normalized core area
AII/AII,0 and circulation ΓII/ΓII,0, and relative straining of each vortex

(S/ω)i, i = 1, 2) for the vortex-dominated cases shown in figure 4 of the main
text, UPEA pairs having ReΓ = 5000 and |ζ0 = 0.0073|, with varying Λ0: (a)

Λ0 = 0.7, (b) Λ0 = 0.90, (c) Λ0 = 1.0 having favourable shear (ζ0 = 0.0073); (d)
Λ0 = 1.0, (e) Λ0 = 0.90, and (f) Λ0 = 0.70 having adverse shear (ζ0 = −0.0073).
Dashed line in (S/ω)i plots indicates critical relative straining (S/ω)cr = 0.135.
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(typically Λ0 < 0.80), the “bumps” in (S/ω)2 are low-amplitude and often multi-
peaked, indicating minimal deformation amplification.
In all cases, the start of the significant slowing of AII growth and acceleration of

ΓII decline — behaviors associated with the start of core detrainment in no-shear
pairs — coincides with (S/ω)1 surpassing and maintaining (S/ω)cr = 0.135, the
value associated with the onset of core detrainment of a vortex in a no-shear
pair or in adverse background shear. It is also seen that, in the cases identified
as mergers in figures 3 and 4 in the main text, (S/ω)2 also surpasses (S/ωcr) at
or after the time that (S/ω)1 does. Because of this, and the correspondence to
qualitative observations of the vorticity contours, and the fact that these flows are
vortex-dominated, these behaviors are taken to correspond to detrainment (and
the spikes, entrainment) in these ζ0 6= 0 pairs. The outcomes of these interactions
and their quantitative assessment are discussed in §5.
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Appendix B

The influence of shear on vortex deforma-
tion and detrainment

The following material was developed as part of the article included in Chapter 5, and in-

cluded in the initial submission, but was removed in revision for scope and length considerations.

It builds directly on many of the concepts discussed in that Chapter, and references terms and

variables therein; therefore, see Chapter 5 for definitions.

It has been seen in Chapter 5 that the presence of shear alters the manner and rate at

which each vortex deforms (as indicated by (S/ω)i). This affects the occurrence and timing of

detrainment of each vortex, which in turn can affect the outcome of a given interaction. Here,

the influence of the shear on the flow development leading to detrainment is examined in further

detail.

When two vortices interact in background shear, vortex deformation and development of

(S/ω)i are essentially governed by three constituent external influences occurring simultaneously,

whose relative significance varies in time: the shear causes the peak-peak distance b between the

vortices to vary as they revolve; the vortices influence each other through their mutually induced

strain, which depends on b (the strain rate magnitude induced on vortex 2 by vortex 1 varies as

S2 ∼ Γ1/(2πb2), and vice versa); and the strain field induced by the shear acts directly on each

vortex. The latter two intensify in time due to viscous diffusion of ωi increasing (S/ω)i. These

influences combine in a complex manner due to their time variation and directionality.
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Most significantly, the periodic reduction (or increase) of b from its initial value, b0,

ensures that b≤ b0 (or b≥ b0; figure 5b. Since the strain induced by one vortex on the other is

therefore generally increased (or reduced), (S/ω)i accordingly increases at a greater (or lesser)

overall rate than in the corresponding no-shear case, thereby accelerating (or delaying) the onset

of detrainment. The periodic b variation would also be expected to cause local peaks in the

time development of (S/ω)i, but as has been noted, the observed peaks do not correspond to b

minima (e.g. compare figures 5 and 7). The bumps must therefore arise at least in part due to the

directionality of the strain rate fields induced by the other vortex and by the shear.

In order to examine the influence of this directionality on vortex development, φi, the

angle between the peak-peak axis and epk,i, the unit vector corresponding to the direction of

principal extensional strain evaluated at the vorticity peak, is computed for each vortex i = 1,2.

The angle φi serves as an instantaneous indicator of the vortex’s response to the net directional

influence of the strain rate fields induced as their relative prevalence and direction vary in time.

For a no-shear pair, φi remains approximately 45◦ as the vortices revolve (cos2(φi) = 0.5), and

then begins to increase once that vortex begins to detrain (cos2(φi) < 0.5), as seen in figures

B.1a-b (and cos2(φi) does not decrease for a vortex that does not detrain, as in the straining out

case shown in figure B.1b). When shear is present (ζ0 6= 0), its principal extensional strain rate

is directed 45◦ from the flow direction, which remains fixed. These directions are aligned at bmax

and orthogonal at bmin, for both favourable and adverse shear. Recall that for a no-shear pair, the

vortices tend to deform each other elliptically with the major axis oriented along the peak-peak

axis (e.g. Chapter 4, while shear tends to deform a single vortex with the major axis oriented

along a fixed direction that depends on its relative sense (along the flow direction for favourable

shear and along the shear direction for adverse); these deformation-directions are also aligned

at bmax and opposed at bmin. The appearance of the bumps (and associated amplification of

deformation) is attributed to the alternating mitigating tendencies associated with directionality

and varying b: at bmax, the deformation induced by the other vortex is mitigated by higher b,

and at bmin, it is mitigated by the orthogonal deformation-direction of the shear; the bumps
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Figure B.1. For the no-shear case (ζ0 = 0): time development of cos2(φi) (where φi is the angle
between the peak-peak axis and the principal extensional strain eigenvector at each peak, epk,i),
for (a) Λ0 = 0.90 and (b) Λ0 = 0.70 (UPEA); and (c) vorticity contours (10% contour interval)
as viewed in a frame co-rotating with the vortices, with instantaneous velocity vectors showing
the development of the tilt, for the case shown in (a). The solid red line in (a) and (b) corresponds
to the weaker vortex (which detrains in both cases), and the dashed blue line corresponds to
the stronger vortex (which detrains in case (a)). The early nonlinear behavior is due to vortex
adjustment to the initial condition.

occur in-between, where the net mitigation is minimal (the larger amplification of (S/ω)i and

deformation for a primary bump is attributed to b increasing as it occurs).

However, the directionality of these influences can also inhibit detrainment, even when

they cause (S/ω)i > (S/ω)cr during a bump. This can be seen in figures B.2 and B.3. Figures

B.2a and B.3a show vorticity contours for the illustrative cases at 1/8 turn intervals for a half-

turn of each case while the vortices are well-separated (times I-V), with arrows indicating the

directions of epk,i and eα , the unit vector indicating the direction of principal extensional strain

of the shear (it is noted that time V for the ζ0 =−0.0073, Λ0 = 0.70 case occurs shortly after the

start of core detrainment, t∗start = 1.56). The time development of cos2(φi) is shown in figures
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B.2b and B.3b, with times I-V indicated. As the vortices revolve, cos2(φi) oscillates between

cos2(φi)< 0.5 and cos2(φi)> 0.5 (prior to the onset of detrainment). At time I, corresponding

to bmax, cos2(φi)> 0.5. As the vortices revolve through time II to time III, corresponding to bmin,

cos2(φi) first diminishes (attributed to the reduction of b increasing the influence of the other

vortex) but then rises (attributed to the deformation-directions of the other vortex and the shear

approaching orthogonality); this corresponds to a secondary bump. From time III (bmin), the

vortices revolve through time IV to time V, corresponding to bmax again, and cos2(φi) continues

rising at first but then diminishes again (attributed to the increase of b reducing the influence of

the other vortex, despite the deformation-directions becoming aligned again); this corresponds

to a primary bump. It is seen that although (S/ω)1 surpasses (S/ω)cr during the bump (figure

7a); the net influence of the shear ensures that cos2(φi)> 0.5 throughout its duration, i.e., this

amplified deformation is not conducive to detrainment. This process repeats every half-turn until

the onset of core detrainment.

Once (S/ω)1 surpasses and remains above (S/ω)cr ≈ 0.135 (at t∗ > 0.66 for the

ζ0 = 0.0167, Λ0 = 0.90 case and t∗ > 1.56 for the ζ0 =−0.0073, Λ0 = 0.70 case), core detrain-

ment proceeds, and cos2(φ1)< 0.5 is maintained (although local maxima and minima are still

observed, since the aforementioned mitigating phenomena persist, albeit too weakly to stop core

detrainment entirely). Likewise, cos2(φ2)< 0.5 is maintained if and when (S/ω)2 > (S/ω)cr is

also maintained, i.e., if the hendition is a merger (as in figure B.2).

The significance of φi, therefore, is that it gives an indication of the relative orientation

of the deformed vortex (strictly speaking, in the vicinity of the vorticity peak) with respect to the

underlying velocity field. For the no-shear case, cos2(φi) = 0.5 reflects elliptical deformation

along the peak-peak axis, with diminishing cos2(φi) then reflecting the developing “tilt” of the

vorticity contours with respect to the peak-peak axis that leads to detrainment (an example is

presented in figure B.1c; it should be noted that this tilt, and the similar phenomena observed

in the ζ 6= 0 cases, result from spatial variation of the vortices’ mutually-induced strain field

across the finite-area vortex). This tilt is discussed in Brandt & Nomura (2006) and can be seen
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Figure B.2. For the ζ0 = 0.0167, Λ0 = 0.90 UPEA illustrative case: (a) Vorticity contours of the
at 1/8 turn intervals corresponding to the indicated t∗ times, with the principal extensional strain
unit eigenvectors indicated at each peak, epk,i (blue: stronger, red: weaker), and that of the shear,
eα , in the corner (black); (b) time development of cos2(φi) (left axis; dashed line: stronger, solid
line: weaker), along with the time development of b/b0 (right axis; solid black line); (c) vorticity
contours with instantaneous velocity vectors as viewed in a frame co-rotating with the vortices
(the weaker vortex is on the left). In (a) and (c), the subfigures correspond to times I-V (labels
under figure), and the contour interval is 10%. In (b), ◦ indicate times I-V, and � and � indicate
times of local S/ω peaks (see figure 5a of Chapter 4).
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Figure B.3. For the ζ0 = −0.0073, Λ0 = 0.70 UPEA illustrative case: (a) Vorticity contours
of the vortices at 1/8 turn intervals corresponding to the indicated t∗ times, with the principal
extensional strain unit eigenvectors indicated at each peak, epk,i (blue: stronger, red: weaker),
and that of the shear, eα , in the corner (black); (b) time development of cos2(φi) (left axis),
along with the time development of b/b0 (right axis; solid black line); (c) vorticity contours with
instantaneous velocity vectors as viewed in a frame co-rotating with the vortices (the weaker
vortex is on the left). In (a) and (c), the subfigures correspond to times I-V (labels under figure),
and the contour interval is 10%. In (b), ◦ indicate times I-V, and � indicates time of local S/ω

peak (see figure 5b of Chapter 4). Note that time V is shortly after the start of core detrainment,
t∗start = 1.56.
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(a) ζ0 = 0.0073 (b) ζ0 = 0, (c) ζ0 =−0.0073

Figure B.4. Streamline pattern produced by a pair of point vortices having Λ0 = 0.70 (as
viewed in the co-rotating frame), for: (a) favourable shear (ζ0 = 0.0073); (b) no shear (ζ0 = 0);
and (c) adverse shear (ζ0 = −0.0073). The • indicate locations of the hyperbolic stationary
points in the streamline pattern; their occurrence and relative position is similar throughout the
vortex-dominated regime.

most clearly in their figures 3 and 5, but in brief: the tilt corresponds to a misalignment between

the vorticity contours and instantaneous streamlines in the vicinity of the central hyperbolic

point in the streamline pattern, an example of which is shown in figure B.4b. This misalignment

causes vorticity initially within the separatrix streamline surrounding a vortex core to cross

into the “exchange band” region, i.e., between the separatrices about each core and the larger

separatrix that encompasses both (see also Le Dizès & Verga 2002; for further discussion of

the flow regions within the streamline pattern, see also Brandt & Nomura 2007, 2010). This

detrainment-causing misalignment is associated with cos2(φi)< 0.5 (as seen in figure B.1). Note

in figures B.4a and c that the presence and position of the central hyperbolic point is essentially

unchanged by the presence of shear.

Vorticity contours and the associated instantaneous velocity field, as observed in a frame

co-rotating with the pair, are presented at times I-V for the illustrative cases in figures B.2c and

B.3c. It is seen that from times I-III (i.e., during a secondary bump) the detrainment-favouring

tilt develops (the tilt and deformation may diminish slightly from times II-III, corresponding to

the “bump”). But from times III-V, the “tips” of the deformed vorticity contours then “sweep”

past each other, from one side of the peak-peak axis to the other, reversing the tilt. This is
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associated with cos2(φi)> 0.5, By time V, the contours have become re-aligned such that core

fluid does not cross streamlines, preventing it from being advected away and thereby inhibiting

core detrainment. This is consistent with the lack of evident ΓII loss after the troughs associated

with (S/ω) bumps in figure 7.

Regardless of the varying directional influences and tilt-sweep processes, the vortices’

continuous growth by viscous diffusion ensures that ultimately the vortices’ mutual strain

becomes predominant, and that one vortex (at least) eventually maintains the tilt (i.e., cos2(φi)<

0.5, and (S/ω)i > (S/ω)cr), thereby undergoing detrainment and causing hendition to occur.

However, the directional effects continue to cause oscillations in the tilt (i.e., cos2(φi)) and b

until the end of detrainment. This means that even once detrainment of the first vortex is initated,

the influence of shear (on both b and the vortices’ deformation) affects the occurrence and timing

of any potential detrainment of the second vortex, and thereby the outcome of the interaction.

This contributes significantly to the timing of vortex detrainment and destruction, and thus the

interaction outcomes, as discussed in Chapter 5.

The contents of this chapter were submitted for publication in the Journal of Fluid

Mechanics, Folz, Patrick J. R.; Nomura, Keiko K., “On asymmetric vortex pair interactions in

shear”, although they were not included in the published article. This material is instead being

prepared for potential submission as a separate article in the future. The dissertation author was

the primary researcher of this paper.
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