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Abstract 

The primary current distributions on disk electrodes and two-

dimensional electrodes that are recessed in insulating planes are giv~n. 

The ohmi'c resistances are also given and are compared to previous esti-

mates that were given in references [2] through [5]. A singu1ar-

perturbation analysis, valid for small aspect ratios, shows general 

behavior to be . expected for all cells containing an electrode that is 

recessed slightly from the insulating plane. 

Introduction 

The primary current distributions and ohmic resistances of 

recessed, disk and planar electrodes are given. Recessed planar e1ec-

trodes may be important, for example, for electroplating processes in 

the electronics industry. Recessed disk electrodes (see figure 1) may 

be designed to attain a fairly uniform current distribution on the disk 

[1]. They are also undoubtedly used because of an inability to con-

struct disks that are perfectly coplanar with the insulating plane. 
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Figure 1. Schematic diagram of a recessed disk electrode. 
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The primary current distribution is valid when concentration varia-

tions are negligible and when the resistance of the interfacial reaction 

is zero. For these conditions, the distribution of current density and 

potential is given by Laplace's equation. The boundary conditions for 

the disk geometry are 

~ = 0 
2 2 (1) as z + r 

_ 00, 

~ == V at z = 0 and r < r o ' (2) 

a~ == 0 
az 

at z == Land r > r o ' (3) 

and 

a~ = 0 at r = rand 0 < z < L. ar 0 
(4) 

The outer radius of the insulating plane (at z = L) is assumed to be 

much larger than r . 
o 

Previous Work 

As early as 1904, Maxwell [2]' gave an approximate analysis that 

determined the ohmic resistance of a recessed disk electrode. He was 

unconcerned with the current distribution. Rayleigh [3] gave an approx-

imate analysis, which resulted in an estimate of the mathematical 

equivalent to the ohmic resistance. In 1963, Kelman [4,5] investigated 

a steady-state diffusion problem that is the mathematical equivalent to 

the ohmic resistance. 

The ohmic resistance R for current flow from the recessed disk to a 

countere1ectrode at infinity can be given by 



RK.r 
o 

4 

(5) 

The first two terms are the resistance of an isolated disk and the 

resistance of a circular cylinder. h (Llr ) is the explicit correction 
a 0 

to the estimate of the resistance given by the other two terms. Maxwell 

[ 2] estimated an upper bound for h (Llr ) to be 0.02019, and Rp.yleigh 
a 0 

[3] gave a refined estimate of the upper bound of 0.01235. 

Kelman [4,5] gave a formal solution that utilizes Bessel functions 

for z < L and Legendre polynomials for z > L. The coefficients of the 

two series were determined by matching at z = L' and r < r the potential 
o 

and the z derivative of the potential. He did not present the infinite 

series solution in a graphical form, so it is difficult to judge whether 

his solution converges in a finite number of terms. 

Near z - L, r - r (see figure 1), Laplace's equation can be solved 
o 

to show that 

~(p,8) ~ p2/3cos(2813), (6) 

where p is the radial distance from the singular point and 8 is the 

311' 
angular coordinate with 8 - 0 corresponding to z = L, r > ro and 8 = 2 

corresponding to r z < L. This implies that along the mouth of 

the pore, 

1 . a~ -1/3 
1m az ~ p , 

r-+r 
(7) 

o 

which is singular at r = r. A corresponding behavior for the radial 
o 

derivative of potential prevails on the insulating plane near the open-

ing. 
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We can ask whether Kelman's two series can give this behavior. 

Inside the pore, his expression for the current density at z = L can be 

written as 

a~ 

az A + 
o 

I A J (a rlr ). 
n=l non 0 

(8) 

Since the Bessel functions J (x) are well-behaved, it is difficult for 
o 

this series to converge for all r 7'" r and still to give the correct 
o 

asymptotic behavior near r = r . 
o 

In the outer region, his expression for the current density can be 

written as 

a~ 

az 
co 

(9) 

2 2 ~ 
where ~ - (1 - r Iro ). Since the P2n(~) are well-behaved, equation (9) 

is also unlikely to converge for all r 7'" r and to give the correct 
o 

asymptotic behavior near r - r. Note that, when Llr = 0, the nature 
o 0 

of the singularity changes, and the solution is valid because the term 

mUltiplying the summation goes tOe infinity in the correct manner as 

r --+ r . 
o 

The above discussion indicates that Kelman's solution should be 

viewed with caution because it does not deal with the singular behavior 

in a natural way. This does not imply that his results should be com-

pletely disregarded because numerical solutions that are clearly in 

error near a singular point have been observed to be approximately 

correct over the remainder of the domain. 

Kelman [4,5] gave three asymptotic formulae, valid for different 

ranges of Llr , that can be used to estimate the cell resistance. These 
o 
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formulae, when expanded, predict that h (L/r ) ~ 0.011 as L/r ~ ~ and 
a 0 0 

h (L/r ) ~ 0.067 L/r In(L/r) as L/r ~ O. Kelman estimated that 
a 0 0 0 0 

these formulae for the resistance give a maximum relative error of 

0.0341 in the total current for a set potential difference between the 

counter and working electrodes. Kelman's estimated error translates into 

an absolute error for h (L/r ) of at least 0.0085, larger than or nearly 
a 0 

as large as h (L/r ) itself. 
a 0 

Diem et al. [6] investigated the primary current distribution of 

the two-dimensional, recessed electrode shown in figure 2. The ratios 

of characteristic lengths that were held constant in their analysis are 

also shown. It can be seen that min is analogous to the aspect ratio 

L/r of the axisymmetric geometry. 
o 

Their solutions should be quite 

accurate because conformal mapping procedures, which they used, account 

explicitly for the inherent singularities of the problem. 

Small Aspect Ratios 

In this section, we show how the current; distribution and ohmic 

resistance can be estimated for recessed electrodes with very small 

aspect ratios. Away from the electrode/insulator edge, the current den-

sity is nearly indistiguishable from the current distribution valid for 

zero aspect ratio. Near the edge, the deviation from a zero aspect 

ratio has a major influence on the distribution. A singular-

perturbation analysis in the aspect ratio can elucidate this behavior. 

The region away from the edge will be referred to as the outer 

region. In the outer region, the current distribution for an isolated 

disk would be approximated by [7] 



L 

~te------ 2h ----.... 1 
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~= 1.622 L-m 
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Figure 2. Two-dimensional, recessed electrode investigated by Diem et al. [6]. 
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(10) 

and, for a planar electrode with a countere1ectrode placed at a distance 

very far from the working electrode [8], 

.ti!Sl 
i avg 

2/rr: 
(11) 

Near the edge, the behavior of both current distributions is the same: 

1 im i (p) =. p 0 1 Jp . ( 12 ) 
p-o 

For a disk electrode, P - Jr 18 i , and for an isolated, planar ~lec­
o 0 avg 

trode, P - (J2n/~) i For the cell shown in figure 2, the value of 
o avg 

the coefficient for P will differ slightly from the value for an iso­
o 

1ated, planar electrode. 

In the inner region, the countere1ectrode placement and the 'details 

of the geometry influence the current distribution only through P. In 
o 

this region, the geometry can be approximated by figure 3a, with a coun-

tere1ectrode placed at a distance very far from the working electrode. 

Conformal mapping techniques are, therefore, ideal for this problem. 

The current distribution on the electrode is described by 

a~ 

ay 

J~LI2 P o (13) 

where the coordinates are shown in figure 3 and wand z are related 

through 

z 
z - L 2 wJ~-l + ~ 1n[J~ -J~J. 

~ Jw Jw-l + Jw 
(14) 

The coefficient of equation (13) was determined by matching with equa-

tion (12). To apply equations (13) and (14) to the two-dimensional 



0,1 

3a. 

z=x +jy 

0,0 

3b. 
w = u + jv 

" ~ ", .... . ......... ,' ... :. .......... -> ......................... .r ..... /' ,,',' .... , ••• : •• , •• > ... .-: ......... ',.:" /', '" ........ . 

0,0 

Figure 3. The original and transfonned coordinate systems used to elucidate the cur­
rent distribution near the edge of a recessed electrode for small aspect ratios. The 
mapping is achieved by requiring that 

di 21W-T rw=; fW . 
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cell, L should be replaced with m. 

The above analysis shows that the current distribution near the 

edge is inversely proportional to the square root of the aspect ratio. 

For the disk electrode, 

i 
~ 
i avg 

£ --
4 Jro/L, 

and, for the isolated, planar electrode, 

i 
~ 
i avg 

1 In/m. 
J; 

(15) 

(16) 

Equation (16) can be verified by the complete analysis of a recessed 

planar electrode, given in the appendix. Figure 4 uses equations (13) 

and (14) to show how the current distribution near the edge of the disk 

deviates from the distribution valid for L/r = O. 
o 

Relative to the 

latter case, current is deflected from the edge region ~y the lip, but 

it still reaches the disk ata position somewhat away from the edge. 
\ 

Numerical Analysis 

Axisymmetric boundary integral equations were used to solve for the 

current distribution on the, recessed disk. The problem was solved as 

one with a prescribed current distribution. Corresponding distributions 

of potential were superimposed until a constant potential on the disk 

was achieved. 

The current distributions that were superimposed are 

:: - p 2n[s1n(270)) · (17) 

where P 2n are the even Legendre polynomials. It was found that the 
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Llro = 10-4 
-----------------

-------------------------

Figure 4. The distribution of current density, valid for small aspect ratios, near 
the edge of a recessed disk. The dashed lines were obtained from equations (13) 
and (14), and the solid line is the primary current distribution for a disk electrode, 
as given by equation (10). 
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polynomials from 2n = 0 to 2n = 24 were sufficient. Additional polyno­

mials did not change appreciably the distribution. The argument for the 

polynomials is chosen so that the radial derivative of the current den-

sity is zero at the center and edge of the electrode. The recurrence 

formula used to evaluate the polynomials can be found in references [9] 

and [10], for example. To provide a check on our choice of current dis­

tributions, we also used the functions suggested by equation (8). The 

answers were essentially unchanged. 

For this cell geometry, other techniques for determining the 

current density on an electrode with a constant potential boundary con-

dition might give accurate solutions. For cells with obtuse angles of 

intersection between the electrode and insulator, the infinite current 

densities that arise can not be calculated accurately unless the correct 

form of the singularity is imbedded into the problem. Miksis and Newman 

"[11] and Pierini and Newman [12] followed this procedure. 

For small aspect ratios, the numerical technique ~iscussed above 

fails to give reliable solutions. By using the results of the previous 

section it is possible to develop a modified procedure that allows for 

an accurate solution. Since the important features of the current dis-

tribution and ohmic resistance are elucidated by the perturbation 

analysis, we did not feel that it was necessary to devote more effort to 

the numerical calculations. 

Results and Discussion 

Figure 5 shows current distributions on a recessed disk for various 

aspect ratios. The dashed line is an approximation given by the compo­

site solution obtained from the perturbation analysis: 



2.0 
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I =~~~~_~_~_;-~-~~~-
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f , , , 
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0.01 : 

1.0 

Figure 5. The primary current distribution on a recessed disk electrode for various values 
of the aspect ratio as detennined by the numerical procedure. The current distribution given 
for an aspect ratio of 0.01 (the dashed line) is estimated from the perturbation analysis. 



l.iD.[ i avg = (1 J2(1 
0.5 ~l(l 

r/r ) o 

14 

-1 
- €) , (18) 

where 1 - E arises because the ohmic resistance of the cell changes. It 

is the correction to the average current from the case when L/r = O. It 
o 

can be shown that 

E = ~[- Ii. 
4 

Jr /L o -:::== + Jl - u 
0.5 1 d ~ r r. 

r/r ) 
o 

(19) 

When L/r - 0.01, E - 0.012. Appendix B shows that the correction to 
o 

the current density away from the edge region should be of the order 

(L/r ) In(L/r ) for small aspect ratios. 
o 0 

Figure 6 gives the current density at the edge of the disk as a 

function of the aspect ratio. The dashed line is the prediction of the 

perturbation analysis, the solid line represents the case when 

i - i and the points are the results of the numerical analysis. edge avg' 

This figure indicates when the current distribution will be uniform. 

Slow electrode kinetlcs will make the current density on the electrode 

yet more uniform, and when concentration variations are important, con-

vection will further distort the results. 

Figure 7 shows the correction to the estimate of the ohmic resis-

tance, defined by equation (5). The curve represents the different 

asymptotic formulae of Kelman, and the points are the result of the 

numerical analysis. For L/r - 10.0, we calculated that h (L/r ) 
o a 0 

0.011, in agreement with the prediction of Kelman. Appendix B shows 

that h (L/r ) ~ (L/r ) In(L/r ) as L/r ~ 0, also in agreement with the a 0 000 

analysis of Kelman. Figure 7 shows that this correction is relatively 

unimportant since the maximum relative error in the resistance, when 

I .. 



" 

1.0 

b.O 

~ 0.8 

~ 
"0 o .... 

trl 

ci -.. 
, .. ..0 ::r 0.6 --

0.4 

o 

Figure 6. The current distribution on the edge of a recessed, disk electrode as 
a function of the aspect ratio. The dashed line is the asymptotic prediction for 
small aspect ratios, and the solid curve is the asymptotic prediction for large aspect 
ratios, which assumes that iedge= i avg' 

15 

!i: 



12 

10 o 

8 

4 

2 
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16 

o 
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Figure 7. A correction to an estimation of the ohmic resistance of a recessed disk 
electrode as calculated by Kelman's fonnulae [4,5] and by the numerical procedure 
(open circles). 
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predicted by the first two terms of equation (5), is estimated to be 

0.03 and occurs near L/r = 0.1. 
o 

Conclusions 

The primary current distribution and ohmic resistance for various 

aspect ratios are given. The results can be used to design a cell that 

would have an approximately uniform current distribution in the absence 

of concentration variations. With convection, the mass-transfer limited 

current distribution can be nonuniform. 

Appendix A 

Figure A.l shows the conformal mappings that determine the current 

distribution on a recessed, planar electrode with a counterelectrode 

placed essentially at infinity. The constants a and C are determined 

through 

(A. 1) 

and 

-2 n - C (l+a) E[(l+a) ], (A.2) 

-2 where E[(l+a) ] is the complete elliptic integral of the second kind, 

as defined in reference [13]. For small aspect ratios, these equations 

become 

and 

m - 11' aC 
2 

a 
n - C(l - 2 Ina). 

(A.3) 

(A.4) 



z-plane 

! 
J m 

-n 0 n t 
w-plane 

I 2 h*6 

-1-a -1 0 1 1+a 

s-plane 0 

-7rl2 o 7rl2 

dz = C ~w-l-a ~w+l+a 
dw rw:r ~w+l 

w = sin (s) 

Figure A.1. A schematic of the mappings used to determine the ohmic resistance of a 
recessed, planar electrode, with a counterelectrode placed at a distance very far from 
the working electrode. Also shown are the coordinate transformations that provide 
the mappings. The constants a and C are determined as described in the text. 
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The current distribution can be written as 

i (xln) 
i avg 

1 2[1'( 
C 2 2~' 

«l+a) - w ) 
r 
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(A.S) 

where x and ware related through the equation given in figure A.I. 
r 

Equation (A.S), evaluated at x = n, is shown in figure A.2 as a function 

of min. The dashed line represents the prediction of equation (16). 

An equation analogous to equation (S) can be written for this two-

dimensional cell: 

m 
W~R = W~Ro + 2n + h2(~/n), CA.6) 

where W is the width of the electrode (perpendicular to figure A.l) and 

W~R is the resistance of the cell when min = O. 
o 

h 2(mln) , which is given by 

For small min, 

h 2(mln) 1 m 
2 n 

11' 

In(mln) , 

Figure A. 3 shows 

(A.7) 

(A.8) 

and, for large min, h 2(mln) - 0.0208. Equation (A.8) also applies to 

the cell shown in figure 2 when min is small. 

Appendix B 

The order of the next term, for either the potential or current 

densi ty, in the outer region for the disk geometry is shown to be 

(Llr) In(Llr). For a given electrode potential, the value of h (Llr ) 
o 0 a 0 

comes, indirectly, from an integration of the average current density 

over the surface of the disk. The fact that the correction of the 

current density in the edge region is OUr IL) and the size of this 
o 
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Figure A.2. The current distribution on the edge of a recessed, planar electrode as 
a function of the aspect ratio min. The dotted line is the asymptotic prediction for 
small aspect ratios, and the solid curve is the asymptotic prediction for large aspect 
ratios, which assumes that iedge= i avg' 
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Figure A.3. The correction to the ohmic resistance of the recessed, planar electrode 
as a function of the aspect ratio min, as given by equation (A.7). The dashed line is 
the asymptotic limit valid for small aspect ratios. 
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region is O(L/r ) might suggest that the edge region would lead to a 
o 

correction h (L/r ) of O<JL/r ). However, the current deflected from 
a 0 0 

the edge itself mostly reaches the disk but is displaced inward from the 

edge (see figure 4). Consequently, the order of the first term describ-

ing h (L/r) is obtained from the outer region and is also of order 
a 0 

(L/r) In(L/r ). 
o 0 

The next term in a perturbation analysis arises from previously 

neglected terms in the matching conditions, boundary conditions, or 

governing equations. In the outer region, no terms were neglected in 

Laplace's equation. Since the electrode boundary condition was imposed 

at a position coplanar with the insulating plane, this boundary condi-

tion was not strictly satisfied. The term arising from this discrepancy 

can be shown to <'be of the order L/r. A larger term, though., arises 
o 

from the matching condition. 

The potential in the inner region can be expanded formally as 

... , (B .1) 

and the potential in the outer region as 

~ _ ~ _ ~(O) + I (L/r ) ~(1) + 
V 1 0 

(B.2) 

The matching condition for these two series is 

(B.3) 

where ~ and e are rotational elliptic coordinates, given by 

(B.4) 

and 



.. 

" 

r = r 
o 

Newman [7] gave the first term of the outer expansion: 

q;(O) 2 -1 
tan e. 

7r 

The first term of the inner expansion is 

~(O) _ 2/2 (p + u)~, 
3/2 w 

7r 

23 

(B.s) 

(B.6) 

(B.7) 

2 2 ~ where p - (u + v) and u and v are the coordinates described in fig­
w 

ure 3. Equation (B. 7), when expanded for large wand related to the 

outer variables, becomes 

(B.8) 

~ 
+ l2/L/r In(L/r) (p + x) + O[(L/r )~]. 

o 0 3/2 0 
7r P 

The outer solution for small e and ~, is 

q;(~~O,e~O) - £ e - £ (p + x)~ + O[pl/2], (B.9) 
7r 7r 

where p - (x2 + y2)~ (see figure 3). The leading terms of the inner and 

outer expansions are matched. The second term on the right of equation 

(B.8) must be matched by q;(l), which implies that Il(L/r
o

) 

(L/r) In(L/r ). 
o 0 
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List of Symbols 

coefficients in a series 

correction to estimate of axisymmetric cell resistance 

correction to estimate of two-dimensional cell resistance 

current density, A/cm2 

Bessel function of the first kind of order zero 

depth of recess, cm 

ratio of lengths 

even Legendre polynomials 

cylindrical coordinates 

radius of the disk electrode, cm 

cell resistance, ohm 

electrode potential, V 

rotational elliptic coordinates 

-1 -1 specific conductivity, 0 cm 

3.141592654 

cylindrical coordinates used near r = r
o

' z = L 

solution potential, V 

Subscripts 

average 

center 

edge 

denotes a point at which the potential is solved 
.' 
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