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Executive Summary 
 

In research academic computing, may be natural to emphasize data integrity over 

confidentiality.  However, there are numerous categories of academic research that do have 

data confidentiality requirements, from research that is simply embargoed until a future 

publication date to research that contains industry-owned proprietary information or is 

subject to government regulation.  The contents of this report are based on numerous 

community conversations with leaders in academic research IT, data librarians, computer 

science researchers, computer security professionals, and others with roles involving using 

or enabling the use of sensitive data in academic research.  The report discusses challenges 

to conducting research on data that is in some way sensitive, and solutions that are being 
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used or could be used to address those challenges and enable the research to take place. 

Those solutions include technical solutions as well as administrative and procedural issues. 

The report concludes with recommendations to campuses on issues to consider in order to 

enable research on sensitive data while ensuring security and privacy as well as usability 

and usefulness of the environment hosting that data. 

 

1 Introduction and Background 
 

There are many reasons why confidentiality issues are present in scientific research, even 

in “open” (unclassified) science.  These issues range from scientists seeking protections 

against being “scooped” on career-changing research; to commercial proprietary ownership 

issues; to legal and regulatory restrictions on exposing personally identifiable information, 

protected health information (PHI), student information, or national security; to cultural or 

social norms about the exposure of data.  Recent increases in restrictions in the United 

States for national security purposes, such as Controlled Unclassified Information [CUI], 

and in Europe and a handful of U.S. States, due to the General Data Protection Regulation 

(GDPR) [GDPR], and laws such as the California Consumer Privacy Act (CCPA) [CCPA] 

have only increased the need for ensuring proper computing controls regarding data 

confidentiality.  In cases where data is regulated or considered proprietary, scientists may 

be unable to obtain access to the data and/or even receive certain types of funding without 

the ability to ensure proper confidentiality protections. 

 

Nonetheless, sensitive data is important and even prevalent in many scientific disciplines. 

Implementing security and privacy-preserving methods to enable use of that data is vital to 

advancing science and medicine and improving public policy [HHL+19].  In some of these 

cases, it is sufficient for scientists to rely on a well-maintained computing system with 

appropriate authentication mechanisms and access controls.  Examples of where this is 

employed include many institutional high-performance computing resources and National 

Science Foundation HPC resources, such as members of the XSEDE consortium, and 

Department of Energy Office of Science HPC resources, such as NERSC, the ALCF, and the 

OLCF.  It is also how commercial cloud computing environments (e.g., Amazon Web 

Services, Google Cloud Platform, Microsoft Azure) are typically set up and used for 

scientific computing. 

 

In other cases, more stringent requirements are necessary, which is the focus of this report. 

These requirements include the information that many people would expect to be protected, 

including protected health information, such as that collected by academic medical centers, 

but also includes:  

● social science information, notably including financial data;  

● student data, protected by the Family Educational Rights and Privacy Act (FERPA); 
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energy-related data, including advanced metering information (AMI), electrical 

topology maps, and supervisory control and data acquisition (SCADA);  

● underwater acoustical information;  

● chemical and biological data, notably that related to genomic analysis, 

pharmaceuticals, advanced manufacturing techniques, and materials production; 

engineering analyses such as airflow dynamics or explosion analysis; and  

● computer science and data analysis techniques, including advanced artificial 

intelligence research (notably for computer vision), quantum computing, and even 

computer and network traces showing end-user activity. 

 

For data that is regulated, this may be due to needing to adhere to particular NIST 

standards relating to FISMA [Fism] or DFARS [Dfar], such as SP 800-53 [N53], for 

operating Federal computing systems, SP 800-66 [N66] for implementing the HIPAA 

Security Rule [HHSS], or SP 800-171 [N171] for protecting “controlled unclassified 

information” [CUI] on non-Federal networks.  In many situations, scientists use data that 

may not be regulated but may be considered proprietary by the organization that collected 

the data, perhaps because it is key to the business model. In these situations, it is common 

to employ computing resources designed explicitly with increased security properties.  It is 

common to have campus security and privacy officers involved in evaluating such 

computing resources, the protocols around using them, and vetting and signing data use 

agreements (DUAs). 

 

Privacy-preserving computational techniques and technologies may also address the 

sensitive data issue: including data anonymization, differential privacy, secure multiparty 

computation, or homomorphic or functional encryption, which can also be useful in certain 

situations.  Rather than securing the data more heavily, these techniques reduce the 

sensitivity of the data returned to the end-user, thereby potentially serving as either an 

alternative or an adjunct to building and using computing environments that implement 

rigorous NIST-like standards. 

 

This report describes lessons learned from our experiences in speaking to people involved in 

decisions around the acquisition and use of sensitive data. These people include domain 

scientists who use scientific computing resources, the operators of campus-level secure 

enclaves, and security and privacy officers and policy experts in campus research 

information technology (IT), legal, and university library type environments.  

 

Some of the points that we addressed with scientists and computing operators included 

discussing security and privacy constraints that currently exist with research data, why 

those constraints exist (e.g., regulated data, privacy concerns, national security concerns, 

and proprietary concerns), and which entity imposes those requirements.  We also 
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discussed where constraints exist — on data analysis inputs, outputs of data analysis, or 

both, and restrictions on publishing research; and ways in which security and privacy 

constraints on sensitive data hinder science, e.g., by limiting access to necessary data, or in 

preventing access entirely (e.g., can use data only in a particular location/ or only through a 

limited set of tools) 

 

We also dug into scientific computing workflows themselves to understand the interaction 

model with the data, the degree to which data is clean and curated, or dirty and messy, and 

the processes for cleaning messy data before real work can get done.  Vitally for much of 

modern science, we also discussed collaboration external to scientists’ institutions 

leveraging sensitive data and ways in which current environments, tools, and other 

restrictions hinder sharing and collaboration. 

 

Finally, concerning specific advanced privacy-preserving solutions, we examined places 

where techniques other than secure enclaves might enable privacy-preserving analysis of 

data. Such analysis could reduce usability issues with accessing sensitive data, lower 

certain barriers to data access, and lower costs to institutions for maintaining specialized, 

secure computing environments. 

 

This document is organized as follows: In Section 2, we present an overview of our findings. 

In Section 3, we describe a set of technical solutions currently employed by a variety of 

scientists conducting research on data with higher requirements to ensure the control and 

confidentiality of that data.  These solutions range from operational security controls 

prescribed by NIST to a set of state of the art best practices for data privacy approaches.  In 

Section 4, we describe administrative and procedural issues almost always paired with 

technical solutions.  In Section 5, we conclude this document with a summary and a set of 

recommendations for scientists, research computing professionals, campus security and 

privacy officials, and other related personnel to consider the appropriate paths forward for 

their situations. 

 

2 Overview of Findings 

 
Our community conversations show that many areas within academic research involve 

sensitive data of some kind, requiring higher-than-normal protections.  To that end, it is 

clear that the university’s critical role is to provide standardized technologies, policies, and 

procedures at scale for the university environment to enable the use of sensitive data.  Most 

universities have expertise in developing DUAs and also have expertise either in 

provisioning on-campus computing environments or in helping to identify alternative 

environments elsewhere.   
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At the same time, an overriding theme among those institutions who provide secure data 

computing and storage environments, or oversee legal agreements to accept data is that 

there exist many scientists engaged on their own in research with sensitive data, without 

involvement by university IT or legal staff but for which the university is legally 

responsible.  In these situations, researchers often sign their DUAs on their own and set up 

computing environments that are often not appropriately secured. 

 

This report discusses both the technical aspects of secure computing environments and the 

legal and procedural issues involved in accepting and using sensitive data. 

 

3 Technical Solutions 

 
In this section, we describe a set of technical solutions currently employed by a variety of 

scientists for conducting research on data with a higher set of requirements for ensuring 

the control and confidentiality of that data.  These solutions range from operational security 

controls prescribed by NIST to a handful of state of the art data privacy approaches.   

3.1 Campus or College-Operated Secure Enclaves 

Most campus computing clusters, be they small departmental or college-level systems to 

campus-wide high-performance computing environments, are not designed with an eye to 

regulatory compliance typically required for processing legally-regulated data.   

 

Campuses that do have computing environments designed for regulated or otherwise 

“sensitive” data have come about those environments in a variety of ways — sometimes 

campuses have made a strategic investment to build such environments, and other times, 

such environments have evolved out of smaller solutions built by individual PIs with a need 

for secure computing, or a collection of PIs who have pooled their resources to set up such 

an environment.  Unlike “traditional” computing, however, most campuses do not subsidize 

computing systems for regulated data.  Given this, despite the need of many PIs to have 

such environments, comparatively few exist in academic settings. 

 

A non-exhaustive list of well-known universities with “secure computing enclaves” include 

Duke University [Duk], Indiana University [Ind], Purdue University [Pur], Stanford 

University [Stan], University of Chicago [Chi], University of Connecticut [Con], University 

of Florida [Flo], University of California, Berkeley, and University of California, San Diego 

[She].  Trusted CI has evaluated such environments, such as REED+ at Purdue University 

[Ada19] and UC Berkeley’s Secure Research Data and Compute (SRDC) Platform [Sha20]. 

While many of these environments exist, they are still not especially common due to the 
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cost involved in both standing up and maintaining them, and the expertise required to do 

so.  We note that most secure computing environments are distinct from more 

general-purpose campus computing environments, some of the environments, notably 

Indiana University’s, use the same high level of security regardless of the data involved to 

avoid duplicative hardware, software, and the necessary duplicate administration of 

multiple sets of hardware.  In other cases, there are even more than two tiers, to enable 

controls specific to certain regulations.  For example, one university has a campus 

computing environment for “fully public” data, a second computing environment for data 

covered by the HIPAA Security Rule, GDPR, and CCPA, and other personally identifiable 

information, and a third computing environment for Controlled Unclassified Information 

(CUI), which includes data that is “official use only” or is covered by U.S. International 

Traffic in Arms Regulations (ITAR) and is therefore export controlled. 

 

While most of these campus-level computing environments are run within the auspices of a 

campus-level Research IT team, given the particular security requirements derived from 

the laws protecting the sensitive data that make these systems distinctive from “fully 

public” environments, these systems often have dedicated teams of people who build, 

maintain, and administer these specialized systems, often making them quite expensive to 

operate — dedicated hardware, dedicated IT staff with a U.S. Citizenship requirements and 

a high degree of specialization, often significant documentation and audit requirements 

pertaining to the regulations that govern the use of the systems, and even 

stronger-than-normal physical protection requirements for the buildings and rooms in 

which these systems reside. 

 

Common threads of these environments includes additional physical security of the 

computing machinery, virtual private networks with end-to-end encryption over networks, 

encryption of data at rest, two-factor authentication (typically using physical tokens, not 

just “soft” tokens), remote desktop to access the compute environment itself, including 

disabling cut/copy/paste operations, “airlocks” with two-person rules to get data or software 

into or out of the system, rigorous access controls, data deletion policies, and strict isolation 

or separation of processes — that is, two different users cannot execute processes on the 

same nodes at the same time.  Furthermore, it goes without saying that all transfers of 

sensitive data in or out of the enclave must be encrypted as well.  This can be enabled at 

small scale with scp / sftp or at large scale leveraging encrypted data transfer functionality 

in Globus’s GridFTP.  This list is not intended to be exhaustive by any means, but to 

provide a flavor of the kind of expertise that is needed.  In some cases, additional 

techniques, including secure boot, or encrypted virtual machines were used.   
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For cases requiring maximum security, some “secure compute” environments were 

described as being entirely offline, locked in an electronically keyed and tracked room, and 

not connected to any network. 

 

Some campuses, such as University of Florida and Indiana University, leverage the same 

high-performance computing systems for both "sensitive" and "non-sensitive" computing. 

This can have significant advantages both in "raising the bar" for security of the 

non-sensitive computing environment, and also reducing duplication and complexity 

involved in maintaining two systems.  Indeed, the duplication can be significant, involving 

not just having two or more sets of computing hardware and the people who administer it, 

but also requiring additional machine rooms, power, and more.  Potential downsides of 

shared sensitive / non-sensitive infrastructure include usability and cost.  The additional 

layers of security required for computing systems hosting sensitive data add cost.  If there 

is a roughly similar or even greater amount of computing on sensitive data than on 

non-sensitive data, then a shared system might make sense.  If the scope and scale of 

non-sensitive computing research vastly outstrips computing on sensitive data, then it 

could cost more to make an HPC system meet the security requirements for sensitive data 

than it might to add a much smaller, second system.  Similar issues arise with usability 

and whether it makes sense to subject all users to the same (high) requirements. 

 

Campus-provided computing enclaves can help with improving security and, of course, 

economies of scale over PI-managed solutions.  In line with this, they can also enable larger 

systems that can handle larger size datasets and computations.  To build such 

environments requires significant campus resources beyond a little overhead from small 

research grants in order to stand up such an environment and operate it.  Some campuses 

resist committing such resources.  Others see a critical mass needing such resources or 

simply “build it” hoping “they will come” — in most institutions, the need seems either to be 

there or grows into the infrastructure.  Institutions with secure computing enclaves seem 

not to regret constructing and operating them, and indeed, such environments seem 

typically to end up being the basis for huge amounts of future funding, given that very large 

new doors are opened through their availability. 

 

However, performance is not always paramount and not all data is “big.”  Sometimes all 

that is needed is a compliant desktop.  Indeed, some data transfers do not even use 

networks at all but move data by DVD.  Even in this case, however, campus oversight is 

critical to track where such environments exist, how they are developed and maintained, 

and what sensitive data is present. 

 

As we will discuss in later sections, some universities that do not provide campus or 

college-level solutions for secure computing, and may require researchers to seek alternate 
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environments.  In some cases, this rationale may simply be due to lack of resources.  In 

other cases, the rationale may be due to (or also due to) the simple desire for the university 

not to assume liability that comes with taking responsibility for hosting the data.  Alternate 

environments that researchers may need to use might include shared cyberinfrastructure, 

commercial cloud computing environments, solutions stood up by individual PIs, external 

environments provided by the data provider themselves, or other third-party solutions.  In 

the subsequent sections, we describe these environments and what some of the pros and 

cons of using them might be. 

3.2 Cloud Computing Resources 

Given the startup costs involved in acquiring, configuring, and hosting “secure computing” 

resources for sensitive data, and also the liability involved with hosting data in a 

university-hosted environment, some campuses leverage cloud computing environments 

instead.  In general, the cloud computing environments referred to in this case are the ones 

that are rated for storing data covered by HIPAA, DFARS, or FISMA.  The file-sharing 

platform, Box, as well as all three major cloud computing platforms (Amazon AWS, Google 

Cloud Platform (GCP), Microsoft Azure) have HIPAA-Compliant infrastructure and 

services, although in order for a customer to leverage those portions of the platforms, 

specific Business Associate Agreements (BAAs) are required.  When FISMA or DFARS 

compliance is referred to, it is typically in the context of FISMA “moderate” or “high impact” 

data and likely refers to access via specialized cloud environments, including FedRAMP, 

including AWS GovCloud, and similar services from Google and Microsoft, that have 

instances only in the United States and are hardened and audited in a variety of other ways 

to comply with U.S. government regulations. 

 

On the surface, cloud computing can seem like it would shift liability to the cloud provider 

for securing data both for storage (Box, AWS, Azure, GCP) and computation (AWS, Azure, 

GCP).  In some cases, this can partially be true.  For example, in many Software as a 

Service (SaaS) applications, responsibility for the operating system and software security 

patching is delegated to the cloud provider, reducing much of the security configuration 

that end users are responsible for to the access control settings for the software.   However, 

SaaS is not the most frequent use of cloud computing — many scientific computing users 

are instead leveraging Infrastructure as a Service (Iaas), where the responsibility for 

managing the server operating systems and the software running on those systems is the 

responsibility of the end user.  In this situation, the liability for security is nearly entirely 

still the responsibility of the end user, other than the physical and architectural security for 

the underlying cloud platform.   
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Therefore, cloud computing is clearly not a panacea for many reasons.  While it can reduce 

or eliminate the need for personnel with local expertise in operating physical systems, and 

data center costs in keeping the disks spinning and the lights on, it does not necessarily 

improve security at all, and itself comes at significant cost of storing and computing data, 

and, importantly, getting any derived data out of the cloud environment again, after 

processing has taken place.  It also requires specific expertise in using cloud computing 

environments, which can also be harder to find that expertise in traditional UNIX and 

Windows server administration, given its relative newness and the speed with which it is 

evolving and changing. 

 

It is also possible to implement a system that involves a hybrid on-premises / cloud 

environment to find a balance in the the tradeoffs between each solution other than all or 

nothing.  For example, the cloud environment might be used for long-term data storage and 

scalability, but the local environment may have superior usability.  Such solutions can alter 

the cost considerations somewhat but then require hiring personnel with expertise in both 

server administration and also cloud administration. 

 

As we discuss in a subsequent section, there are solutions, including cloud-based solutions, 

that can enable IaaS cloud computing while reducing liability for the end user.  These 

solutions come with an even higher cost, but can be appropriate in certain circumstances. 

 

Finally, we note that cloud computing is not currently universally permitted as a solution 

for storing and computing regulated data.  For example, the U.S. Department of Defense 

permits the use of AWS GovCloud, but the U.S. Department of State currently does not. 

3.3 PI-Managed Solutions 

Sometimes PIs build their own solutions for handling sensitive datasets, particularly when 

campuses don’t provide solutions. It can also come up when campuses do provide computing 

environments, but PIs either don’t know about those environments or choose not to use 

them, for reasons that might include elements such as cost, control, performance, or 

usability. In either case, PI-built and managed solutions are particularly common in 

disciplines that have the traditional capabilities to manage computing systems, such as 

computer science and other physical sciences and engineering disciplines.   

 

While it is not impossible that individual PIs or academic departments could be capable of 

managing their own such systems in a responsible way, when PIs do so, it tends to suggest 

that the campus isn’t involved at all.  As we discuss further in Section 4, this means that 

the campus likely has not reviewed and approved any data use agreements, had any review 

on the design and implementation of the computing environment, nor had any input on the 
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policies and procedures in place.  As a result, the campus is implicitly taking on substantial 

risk of regulatory penalties should a data breach occur, and without its knowledge.  HIPAA 

even has a category of penalties for “did not know” (that the campus had PHI). 

3.4 Data Provider-Managed Solutions 

There are situations in which researchers leverage neither a campus solution for sensitive 

data, nor their own solution.  In some cases, campuses don’t want any sensitive data on 

campus at all, and require researchers to find external solutions, such as those provided by 

the data provider itself.  In addition, there are times when some data providers, notably 

those from private industry, want data analysts to use systems provided by the company 

providing the data.  This situation is often true in the defense, finance, and pharmaceutical 

industries where the sensitivity relates to intellectual property, and not “just” government 

regulations. 

3.5 Third-Party Secure Enclaves 

As we have discussed, not every campus has the resources to set up a secure computing 

environment on its own -- particularly outside of the R1, PhD granting institutions.   One 

alternative to campus computing solutions, data-provider-provided solutions and typical 

FedRAMP cloud computing environments, is a managed cloud environment such as that 

run by the San Diego Supercomputer Center (SDSC) at the University of California, San 

Diego, called “Sherlock” [She].  While Sherlock began as a local computing environment at 

SDSC for certain FISMA and HIPAA categories, it moved into the cloud as the desire for 

reducing local computing footprint and more elastic computing scalability increased. In 

addition, the Sherlock service is available outside of UCSD — any U.S. academic institution 

can partner with SDSC/Sherlock to gain access to these services. 

 

Sherlock provides what many cloud environments do not provide.  That is, it does not just 

give an environment located in the United States that is rated for compliance with 

regulations, but actually provides managed solutions and platforms to implement NIST SP 

800-53 (e.g., vulnerability scanning, OS management, encryption, physical security, 

segmentation, documentation), and secure applications running within the environment. 

At the same time, as one might expect, given that SDSC has “invested millions of dollars on 

infrastructure, software, and personnel” [Shep], the use of Sherlock comes with a cost, 

which can run into the tens or hundreds of thousands of dollars per year for the managed 

service and security compliance alone [Shep] depending on the number of VMs used, 

complexity of the project scope, and the degree of management and customization 

desired — and the compute and storage costs for the commercial cloud provider are added 

on top of the managed services fees.  
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“Skylab” [Sky,Skyd] is an SDSC solution that provides the core of the Sherlock solution in a 

customer owned/managed capacity.  As with the original Sherlock service, Skylab is also 

available beyond UCSD as well.  As described by the SDSC Sherlock team, end users 

desiring the ability to manage their own cloud environment, but still wishing to leverage a 

well-designed, easy to use software framework for cloud computing, may instead wish to 

use the Skylab software product.  End users can either fully manage the deployment or 

engage SDSC Sherlock team to provide support.  As with other aspects of cloud solutions, 

this choice has tradeoffs between cost, control, and security responsibility and liability. 

 

An alternative to secure computing facilities at every individual campus, without going all 

the way to leveraging cloud environments (including managed environments, such as 

Sherlock), is cyberinfrastructure for secure computing that is shared among multiple 

institutions.  An example of such a facility is Virginia ACCORD — an NSF-funded, 

HIPAA-compliant, secure computing environment managed by the University of Virginia 

and originally made available to a consortium of eleven public universities in Virginia 

[ACC]. ACCORD focuses on addressing policy and regulatory issues around data collection, 

management, and sharing. Most recently, through another NSF grant, and in order to 

support broader access to secure computing resources for COVID-19 research, UVA 

established a national ACCORD-COVID program with the goal of making secure computing 

resources available to all COVID-19 research projects funded by NSF [ACCC].  As of this 

writing, NCSA is also in the process of seeking security certification for its “Advanced 

Computational Health Enclave” that would enable processing of PHI [NCS]. 

 

NSF has long supported high-performance computing facilities, such as NCSA at UIUC, 

SDSC at UCSD, TACC at UT, and PSC at CMU, to make computing broadly available to 

NSF-funded science.  However, specialized secure computing facilities for sensitive data, 

such as ACCORD and ACCORD-COVID, are currently rare, if not even unique.  They may 

provide a model for other regional and national computing consortia going forward, as well. 

 

There are also commercial “Managed Service Providers” (MSP) that provide compliant 

environments and consulting on how to use them, but are typically quite costly, and, as a 

result, beyond the reach of many institutions, especially those with budgetary challenges.. 

3.6 Alternatives to “Higher Walls” 

A variety of techniques and technologies exist that can reduce the sensitivity of data and 

therefore reduce the need to use campus resources to  build, protect, and maintain “secure 

computing enclaves.”  We discuss several such techniques at a high level in this section. 

These techniques will also be discussed in greater detail in an appendix to this document, 

planned to be released later in 2020.   
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We note that while several of the techniques we discuss in this section are interesting and 

powerful options that are or are becoming best practices in commercial industry, it is also 

important to note that they are not silver bullets.  Each technique has its own distinct set of 

tradeoffs, including numerous vital implementation details that are as easy to “get wrong” 

as configuring and maintaining the secure computing environments we have discussed 

earlier in this document.  Employing these techniques does not absolve institutions of their 

responsibility for protecting data.  At the same time, several of these options represent 

compelling tools in the toolbox for institutions to consider as options for protecting sensitive 

data. 

 

3.6.1 Data De-Identification 
A variety of approaches exist to reduce the sensitivity of a dataset simply by removing the 

parts of the dataset deemed to be most sensitive.  One way of reducing the sensitivity of 

data regulated by the HIPAA Privacy Rule [HHSP] and the HIPAA Security Rule [HHSS], 

known as “Safe Harbor,” [HHSG] is to remove the 18 identifiers designated as sensitive. 

These include the obvious identifiers, such as names, birthdates, and social security 

numbers and also include “geographic subdivisions smaller than a state, including street 

address, city, county, precinct, ZIP code, and their equivalent geocodes,” health plan 

identification numbers, IP addresses, biometric identifiers, and so on. HIPAA also provides 

an “expert determination” option where a de-identification expert can analyze the data and 

provides documented evidence that the data is in fact de-identified, although this method is 

used much less frequently.  One approach to achieving this method is differential privacy, 

which we will discuss further in Section 3.6.4. 

 

It is worth noting that there are times when reducing the sensitivity of data can also reduce 

its utility.  For example, if some type of research requires finding correlations between 

relatively precise locations or birthdates or IP addresses, removing that information can 

limit its usefulness.  A great deal of clinical research involves fully-identified patient data, 

as a result. 

 

A related approach from simply removing data fields is one that enforces generality.  One 

such technique is called k-anonymity [Swe97].  A variety of other techniques in the same 

“family” of approaches also exists, including ℓ-diversity and 𝜏-closeness.  With k-anonymity, 

sufficient data is masked so that first, all “identifiers” are removed.  Identifiers are data 

fields that uniquely identify an individual on their own, including full name, social security 

number, drivers license number, street address, etc…  In addition, sufficient 

“quasi-identifiers” are masked so that the quasi-identifiers for each record looks like k other 

records.  Quasi-identifiers are data fields that do not uniquely identify an individual on 

their own, but collectively can identify an individual if two or more are put together.  So, for 
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example, birthdate, zip code, and gender could be examples of quasi-identifiers.  Using 

k-anonymity, depending on the composition of the dataset, we may, for example, wish to 

mask the gender entirely, and perhaps not eliminate the zip code but at least remove the 

two least significant digits, and perhaps the day of the month of the birthdate.  Only the 

“sensitive attribute” — that is, the key data field that we wish to protect against association 

with an individual — is left un-altered.   

 

Simply removing data fields or performing k-anonymity clearly can help protect privacy. 

However, these approaches also reduce utility.  And moreover, these approaches have been 

repeatedly been attacked by using statistical correlation and internal and external linkage 

attacks in order to de-anonymize data, thus defeating the goals of the anonymization 

[Swe97, NS08, SAW13].  While this does not mean the de-identification methods have no 

value, their value is also difficult if not impossible to quantify due to near-impossibility of 

knowing of all current and future external sources of information that can introduce 

possible linkage and correlation attacks [NF14]. 

 

Given this, de-identification seems risky to entirely rely on, and is perhaps best used in 

combinations with other technical, legal, and procedural controls.  For example, it may be 

enough to remove the 18 HIPAA identifiers in a way that enables research use of the data 

(as opposed to simply clinical use) but still requires a certain set of technical controls, 

security and privacy training, and legal agreements on the use of the system and data. 

 

3.6.2 Secure Multiparty Computation and Fully Homomorphic Encryption 
Secure multiparty computation (MPC) is a technique that enables two or more parties that 

hold sensitive data to enable all that data to be computed collectively without revealing the 

sensitive data to any other data providers or external parties   In its most basic form, 

framed originally as “Yao’s Millionaire Problem,” [Yao86], two millionaires are able to 

determine which millionaire is wealthier without either having to reveal their actual 

wealth to the other, or even to a trusted third party.  This process can be expanded to 

arbitrary numbers of parties providing data. 

 

Applications of MPC to enabling scientific research using sensitive data are being explored 

at a number of institutions.  In practical terms, researchers from Boston University 

recently applied such techniques to track trends in salaries in the City of Boston, to 

evaluate progress on reducing pay gaps among workers of similar jobs that have 

traditionally been underpaid  [VSG+19].  Using a secure multiparty computation 

framework, employers could submit data to a central location and statistics on pay 

disparity could be calculated without violating the privacy of individual workers or 

specifically calling out the employers who were not doing well — a key criteria, since the 
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goal was to simply calculate citywide progress, not reveal individual employers not making 

such progress.   

 

Among other institutions leveraging MPC, the Infrastructure for Privacy-Assured 

CompuTations (ImPACT) project at RENCI is also exploring the use of MPC for supporting 

multi-institutional analysis of sensitive data [REN] leveraging the SPDZ/2 software 

libraries developed by researchers at the University of Bristol [KPR17]. 

 

Similar to secure multiparty computation, and sometimes even used as a basis for 

implementing it, fully homomorphic encryption (FHE) [Gen09, Gen10] is a technique that 

enables encryption over encrypted data without ever decrypting the data and without 

exposing that data to any party, including the system upon which it is being computed. 

 

Both fully homomorphic encryption and secure multiparty computation have extraordinary 

promise for altering the threat models associated with computing.  They do also, however, 

currently have two drawbacks.  The first is that programs leveraging them typically need to 

be rewritten to use MPC or FHE libraries and/or recompiled with specialized compilers that 

implement the technique.  The other drawback is performance.  While both MPC and FHE 

have made significant strides in recent years, and are no longer always many orders of 

magnitude slower than cleartext computing as they originally were, they both still do have 

significant performance penalties, which are exacerbated depending on the complexity of 

the  computation being performed, and with larger amounts of data being computed. 

 

3.6.3 Trusted Execution Environments (TEEs) 
Trusted execution environments (TEEs) are hardware elements in microprocessors (and 

sometimes memory controllers) that provide hardware-mediated separation from other 

processes on the system.  Some TEEs can also provide protection against malicious 

hypervisors, malicious operating systems, and system administrators.  In some cases, these 

systems even enable computing over encrypted data, like homomorphic encryption, but 

many times faster, due to the hardware support.  This increases the ability to protect even 

against physical attacks against the data being computed on.  An example of the simplest 

form of TEEs is ARM’s “TrustZone” technology.  Intel’s SGX and AMD’s Secure Encrypted 

Virtualization (SEV) family (which builds on AMD’s Secure Memory Encryption (SME)) 

both enable computing while data is encrypted in memory.  Each has very different use 

models and somewhat different threat models that they protect against.  However, neither 

SGX nor TrustZone seem well-suited for scientific computing in the traditional sense, due to 

the fact that performance overhead is very significant, and neither are designed to run 

whole operating systems or even whole programs inside of them.  Rather significant 
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program rewrites are typically necessary to leverage the APIs that enable use of the secure 

aspects of chips supporting SGX and TrustZone. 

 

In contrast, AMD SEV is now widely supported in modern AMD EPYC CPUs and allows 

programs to run inside whole virtual machines with no program modification at all, and 

with very small performance overheads [AGA+20].  Amazon [Amz] and Microsoft’s [Mic17] 

cloud environments both support Intel SGX, and Google [Goo20] recently announced AMD 

SEV support.  Most recently, the Confidential Computing Consortium [CCC], currently 

composed of organizations such as AMD, ARM, Google, Intel, Microsoft, and Red Hat, 

among others, have issued white papers [CCC20a, CCC20b] outlining key benefits of the 

use of TEEs over traditional computing environments in terms of data integrity, 

confidentiality, and testability as well as programmability and performance.  These white 

papers suggest that the need to avoid using cloud systems due to lack of trust of the cloud 

platform may be changing quickly.  One might expect, given the general availability of 

TEEs that this technology will eventually trickle down to scientific computing at a campus 

level, though doing so may take a while due to the fact that leveraging TEEs not only 

requires hardware but the infrastructure to be built up around them. 

 

In the meantime, in leveraging TEEs in the cloud, users and data providers have much 

stronger protections against malicious co-resident processes, and also no longer have to 

include Amazon and Microsoft in the threat model of potential malicious actors to protect 

against, at least with respect to data confidentiality.  Particularly given the fact that SEV 

requires no change in software to leverage, it seems quite possible that the future of 

computing will broadly leverage SEV-like technology by default, and particularly in 

environments outside of the direct control of the end user (e.g., the cloud, HPC centers) to 

acquire the benefits of the stronger security model at very modest performance cost. 

 

3.6.4 Differential Privacy 
Releasing statistical information about data, rather than raw data, would seem like a 

tempting approach for maintaining privacy.  However, as shown by Dorothy Denning, 

Hoffman and Miller [HM70], Schlorer [Sch75], and others, in the 1970s and 1980s, 

numerous attacks on statistical databases can end up revealing private information 

[DD79,Den82], including the notoriously thorny issue of trackers [DDS78].  

 

Similarly, much has been made in recent years about “federated machine learning” in 

which a model is trained on distributed datasets without the raw data ever leaving the 

computing facilities of the institution hosting the data and training.  Such a method has 

undeniable appeal for institutions wishing to maintain greater control over their data while 

making it available in some form for use.  However, trained machine learning (ML) models 
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have been shown to be vulnerable, too, to model inversion attacks, external linkage attacks, 

and other methods [SS15] for revealing information about both the data used to train the 

model, as well as details about the structure of the model that expose more than the 

providers of the data on which the model is trained may feel comfortable. 

 

Both of these situations, among others, can potentially benefit from applications of 

differential privacy.  Differential privacy [Dwo06] is a statistical technique that guarantees 

that if an arbitrary calculation is made on a dataset that a data analyst should not be able 

to determine before or after any individual record has been added to the dataset if that 

individual record is present.  Thus, the technique can provide strong statistical guarantees 

regarding the privacy of individual records.   

 

Differential privacy is now a mainstream solution, with production use by Apple [App17], 

Google [ACG+16], Uber [Nea18], the U.S. Census Bureau [Abo18], and the United Nations 

[Uni19], among others, and even open source distributions from a variety of developers, 

including Google’s general-purpose library for differential privacy [Goo19a], Google’s 

TensorFlow Privacy to enable privacy-preserving machine learning [Goo19b], and IBM’s 

differential privacy library [Dif].  Most recently, Harvard University and Microsoft, with 

funding from the Sloan Foundation, have embarked upon the creation of a coalition that 

will build and maintain a set of open-source differential privacy tools called “OpenDP.” 

[OpDP]  In addition to enabling privacy-preserving statistical queries, machine learning, 

and a variety of other analyses, differential privacy can also be used to generate synthetic 

datasets that enable analysis on data that looks like the original raw data and maintains 

most of its properties, but contains the same statistical guarantees regarding the ability to 

identify individual records as other uses of differential privacy does [BLR13].   

 

In addition to the open source tools available that enable interactive differential privacy 

and non-interactive differential privacy (creation of differentially private synthetic dataset), 

a number of commercial organizations exist that offer services to perform the 

currently-extensive process of application and optimization of differential privacy 

algorithms to a given dataset and analysis applications. 

 

4 Administrative and Procedural Issues 

 
Having “sensitive data” is never simply a technical matter — legal issues are key to 

sensitive data, and procedures for engaging appropriate personal, as well as procedural 

methods for managing technologies, are vital.  The most high-functioning universities 

typically have well developed policies and procedures in place that help researchers, 

campus IT, campus privacy officers, campus risk management, campus legal, and data 
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providers to all understand the risks involved in accepting data, the methods needed to 

manage risk, and the responsibilities of all parties involved to optimally manage that risk. 

For example, a high-functioning campus would never enable individual PIs to sign their 

own data use agreements, but would require review and approval by the office of the Chief 

Information Security Officer, and, depending on the campus and the nature of the data, 

potentially also the Chief Information Privacy Officer, Institutional Review Boards, campus 

research data leadership (e.g., as part of a campus library), and campus security and risk 

committee as well. 

 

On the other hand some campuses do not have such policies.  While campuses may think 

that this means that accepting sensitive data is implicitly or even explicitly prohibited, 

more likely than not, it simply leaves researchers wanting to accomplish their research to 

sign their own data use agreements and to come up with their own procedures.  Taking 

matters in their own hands may feel like the only choice for researchers whose campuses do 

not have key policies and procedures, but it also leaves campuses significantly exposed to 

legal risks in the event of improper data handling, including a data breach.  Campuses are 

ill-advised to simply have a blanket ban on accepting sensitive data, and are also ill-advised 

to ignore the need for sensitive data as part of scientific research. 

 

Even where policies on sensitive data exist, barriers to efficient and effective handling of 

questions around sensitive data can vary wildly by institutions.  The most effective 

institutions seem to have broad representation by stakeholders and significant campus 

visibility.  Where there is a disconnect between campus Institutional Review Boards (IRBs), 

research IT, campus security and privacy officials, and researchers, policies and procedures 

can cause data issues to become lost in a quagmire.  In such situations, not unlike when 

campuses do not provide leadership on technical solutions, researchers will once again 

avoid bringing in campus research IT at all, and instead formulate their own solutions, 

leaving campuses exposed to risk but without a voice in managing it.  While campuses 

should be inclusive regarding representation, campuses must also be nimble — while 

controls for government-regulated data may follow similar rules year after year, commercial 

entities providing data may have significantly varying controls and legal provisions to 

protect sensitive data.  Commercial entities will  try to minimize their own liability 

contractually with universities, and the security, privacy, and legal entities can often have 

to be very creative to address the needs of the data provider while satisfying the needs of 

the research.  It is not always possible to negotiate terms — the U.S. Government often has 

“flow-down requirements” that commercial entities are unable to relax. 

 

Cost and campus-level will are not the only issue that can prevent campuses from 

developing computing enclaves for sensitive data.  Sometimes the issue is simply political, 

and authority, including authority over IT resources, is distributed amongst schools or 
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colleges rather than a single campus-level entity.  This is true even among the largest and 

most well known universities in the country.  While there is clearly no single right answer 

for anything, most would point out that while college-level control can avoid acrimonious 

political fighting about requirements and costs between colleges, even with competent IT 

staff at the college level, such solutions can still leave a campus open to a morass of 

different policies that it is ultimately legally responsible for but has no control over. 

 

Scientists from disciplines that have long dealt in sensitive data, such as medicine and 

certain social sciences can tend to take security and privacy policies and procedures most 

seriously.  Safety procedures are part of every healthcare environment, and privacy is 

codified in the Hippocratic Oath.  Disciplines in which data can be seen to “want to be free” 

such as computer science may tend to be less compliant, and have an attitude of “asking for 

forgiveness, not permission.”  It is the latter case that may be more inclined to pursue their 

own solutions and ignore standard procedures.  Campuses would benefit by considering the 

range of expertise and historical attitudes that span the disciplines present in their 

environments.  Few policies are universal across all domains, all disciplines, and all 

institutions.  This also can make it challenging for researchers who move between 

institutions — what happens when a researcher moves from one university that has well 

defined security policies for sensitive data to another that does not?  Or vice versa — how 

are researchers who move from lax environments to strict ones properly indoctrinated? 

How is data deleted after the researcher leaves?  And how should access with more 

transient individuals (e.g., visitors, students) be handled?  Few easy answers exist — this is 

the nature of a great deal of scientific research and is why these situations involve 

accepting and managing acceptable risk, not eliminating it entirely.  An effective approach 

to consider is spending some effort understanding and enumerating researcher needs and 

use cases, and designing and offering solutions that have security baked in from the outset.  

 

A data management plan (DMP) is a document describing the data that is acquired or 

produced during the course of a research project, and the ways in which that data will be 

handled both during the project and after the project has concluded.  A DMP is theoretically 

an agreement between the PI and the sponsor of the research (in contrast to DUAs, which 

are agreements between the PI’s institution and the data provider). Many or even most 

sponsored research projects, such as those funded by the National Science Foundation or 

National Institutes of Health, require DMPs.  One might think that the requirement of 

submitting DMPs along with proposals would address many policies and procedures 

relating to sensitive data from the outset, before any data or funding ever starts following. 

However, this frequently turns out not to be the case — most DMPs submitted to funding 

agencies are either entirely wishful thinking or too high level to be actionable, and are 

rarely coordinated with campuses until after the proposal is funded, or not at all.  Some 

campuses try to work with scientists to avoid DMP problems preemptively, before the 
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proverbial clock is ticking in order to accept the terms of grant funding or data access, but 

such institutions remain in the minority. 

 

5 Discussion and Summary 
 

“Sensitive” data is a part of numerous research domains, and is fundamental to at least 

some of them.  At the smallest scale, at least some degree of campus involvement to enable 

academic research involving sensitive data is necessary to enable work in fields that 

otherwise cannot function well, or at all.  However, taking this much further, by developing 

large-scale, campus-level efforts, with robust technical and procedural methods for handling 

sensitive data can open huge opportunities for campuses and its researchers across domains 

that may be unavailable without such efforts.  
2

 

However, there is no universal answer or silver bullet for protecting such data. “Sensitive” 

data may be stored on campus, in community-owned cyberinfrastructure, in 

government-sanctioned clouds, in third-party environments, in environments provided by 

the data provider themselves, or simply be made less sensitive through any of a variety of 

privacy methods.  The criteria as to which of these environments and approaches should be 

adopted should consider the requirements of the data provider, resources (financial and 

technical) of the university, and the research methods of individual researchers.  Each 

solution may have its own place, and as technology develops, the best solution for any given 

organization or researcher within an organization continues to evolve.  Campuses must stay 

alert and nimble to changing needs of researchers, changing rules from sponsors and data 

providers, and evolving technological solutions. 

 

Traditional de-identification simply by removing certain fields may increasingly be a 

problem as a standalone technique as data volumes grow.  Inherently, machine learning 

and artificial intelligence algorithms will conflict with the privacy goals of de-identification, 

given that the whole point of ML/AI is to reveal the biases and structure of data mixed with 

the real patterns of interest, thus inherently opening up the opportunity for linkage 

attacks.  De-identification may be best used in tandem with other controls, including 

technical security controls and legal agreements.  For example, de-identification can be 

seen as a method for removing obvious details so that analysts don't stumble upon 

identifying information accidentally.  In addition, strong technical security controls could be 

seen as methods for preventing leakage of information, and legal controls could be put in 

place to require that researchers do not attempt to re-identify any of the information. 

2
 This conclusion is similar to one of those drawn at the "Enabling Trustworthy Campus 

Cyberinfrastructure for Science” workshop, hosted jointly by Internet2 and Trusted CI, and held at 

the University of Maryland in September 2018 at the Quilt/CC* PIs meeting. 
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In contrast, where appropriate, differential privacy is increasingly seen as the gold 

standard for preserving privacy, as has been increasingly demonstrated through industry 

and U.S. government use, and as the the Sloan Foundation-funded Harvard and 

Microsoft-led OpenDP effort has shown, and may be a more secure, private, useful, and 

usable approach for preserving privacy where its techniques are applicable.  That said, 

calibrating and applying differential privacy is currently non-trivial, and scientists typically 

don't have tremendous amounts of time to learn technologies and adapt their code to use 

them.   At one extreme, consider how long source code is often used in certain domains --- 

the high energy physics community often uses Fortran code for decades.  Or, more recently, 

how long it has taken for GPUs to be adopted in genomics.  Most researchers typically can't 

afford the development time for these new approaches.  Thus, in the near term, differential 

privacy is likely to be best applied in situations where the effort is worthwhile.  For 

example, differential privacy may be best used in scientific computing where the given 

dataset has significant importance (e.g., analyzing data related to a large-scale global 

health issue), lasting use (e.g., the data will be used over many years), and/or where the 

data will be used very broadly, rather than in situations where data need only be made 

available for a very small group of individuals. 

 

Similarly, encrypted computing algorithms clearly have their place, as we have discussed. 

However, they also have usability constraints, and also performance constraints that might 

limit their adoption in scientific computing workflows in the near-term.  Again, an 

exception may be in situations in which the effort of modifying and recompiling programs 

with cryptographic libraries is worth the time of the scientists using the data, and where 

data is small enough or timing requirements are low enough so that performance issues are 

reduced. 

 

As we have discussed, trusted execution environments, such as the AMD SEV solution 

seems likely to provide substantial benefit in removing the requirement of having to trust 

the data center.  In addition, in cloud computing environments, such as Google Cloud 

Confidential Computing [Goo20], mentioned earlier, the approach can be relatively 

turn-key.   For a campus environment, however, recall that TEEs are not themselves full 

solutions, as they require whole infrastructures to be built around them.  However, in 

either the cloud case, or in the campus case, once built, whole-VM TEEs can provide 

significant value in which scientists can more or less simply perform the computing 

workflows they are used to performing, except with the knowledge they are more secure. 

 

The one universal rule is that sensitive data in research cannot be ignored, or individual 

PIs will develop their own — and likely unacceptable — environments and procedures to 

handle such data.  Campuses must be involved.  Ensuring minimal compliance may protect 
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against certain lawsuits, although true security that actually protects both the data and the 

institution and its personnel against reputational damage requires robust technical, 

procedural, political, and legal protections.  These protections must be managed at the 

highest level but must be developed in concert with the end users — the researchers, or the 

researchers will either not know about them or may feel a lack of ownership in the solution 

and seek alternative solutions that feel more usable and useful.   

 

Thus the development of such procedures need to involve campus personnel including chief 

research officers, chief information officers, chief information security officers, campus 

counsel, chief privacy officers, IRBs, sponsored research, research IT, libraries, and a very 

broad cross-section of both individual researchers, and also potentially should include 

certain data providers.  Doing so will ensure that solutions have the full weight of campus 

resources behind them, that the solutions are broadly understood and known to be useful, 

and that the solutions are acceptable to the organizations whose sensitive data is to be 

stored. 
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