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Abstract

In molecular biology, it is a general assumption that the ensemble of expressed molecules, their activities and interactions determine
biological function, cellular states and phenotypes. Stable protein complexes—or macromolecular machines—are, in turn, the key
functional entities mediating and modulating most biological processes. Although identifying protein complexes and their subunit
composition can now be done inexpensively and at scale, determining their function remains challenging and labor intensive. This
study describes Protein Complex Function predictor (PCfun), the first computational framework for the systematic annotation of
protein complex functions using Gene Ontology (GO) terms. PCfun is built upon a word embedding using natural language processing
techniques based on 1 million open access PubMed Central articles. Specifically, PCfun leverages two approaches for accurately
identifying protein complex function, including: (i) an unsupervised approach that obtains the nearest neighbor (NN) GO term word
vectors for a protein complex query vector and (ii) a supervised approach using Random Forest (RF) models trained specifically
for recovering the GO terms of protein complex queries described in the CORUM protein complex database. PCfun consolidates
both approaches by performing a hypergeometric statistical test to enrich the top NN GO terms within the child terms of the GO
terms predicted by the RF models. The documentation and implementation of the PCfun package are available at https://github.com/
sharmavaruns/PCfun. We anticipate that PCfun will serve as a useful tool and novel paradigm for the large-scale characterization of
protein complex function.
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Introduction
Proteins are known to catalyze and control the majority
of the reactions of cellular biochemistry [1]. Frequently,
they exert their function only if they stably interact
in precise stoichiometric ratios and defined steric
arrangements with other proteins in the form of complex
macromolecular structures, a notion that has been
encapsulated in the term ‘modular cell biology’ [2].
With the advent of high throughput ‘omics’ technologies
for the study of biological systems, it is now possible
to accurately quantify and identify different types of
biologically relevant molecules across various conditions
at high throughput. However, associating the identified
molecules with biological functions and phenotypes
has remained challenging and requires a functional
understanding of the molecules and their associations.
Detailed biochemical and cell biological studies have
identified the composition and even the atomic struc-
tures of numerous protein complexes with well-defined
roles in a variety of fundamental biological processes [3],
such as in their participation in transcriptional regula-
tion [4–7], cell cycle control [8–10] signal transduction
[11, 12] and protein homeostasis [13, 14]. Therefore,
protein complexes can be considered essential agents
and indicators of cellular functionality. Recent technical
advances, particularly in mass spectrometry (MS) based
proteomics, have greatly enhanced our capacity to deter-
mine the composition, stoichiometry and abundance
of known protein complexes and identify new entities
[15–19]. They also support the systematic identification
of compositional or quantitative changes in complexes
as a function of cellular state. These include methods
such as biochemical fractionation MS [16–21], affinity
purification MS [22, 23], cross-linking MS [24, 25] and
limited proteolysis/thermal proteome profiling [26, 27].
Compared to the experimental detection of new protein
complexes, the determination of their biochemical or
cellular function has significantly lagged behind because
functional characterization via experimentation for
specific complexes is highly challenging. Given this
challenge of characterizing the function of protein
complexes, hypotheses regarding the functional roles in
which a newly discovered protein complex participates
are typically generated by a careful manual review of
prior literature.

The standard approach to manual literature review for
identifying the putative functions of a protein complex
consists of first searching for publications and database
entries describing the function of individual protein
subunits and subsequent consolidation attempts to
retrieve the information. An additional confounding
consideration is the highly biased functional annotations
toward well-studied individual proteins [28, 29]. There-
fore, manual curation would present several limitations
that make it inefficient and biased. Exhaustive literature
curation for all proteins belonging to even a single com-
plex can easily become prohibitively time-consuming
due to the sheer volume of publications required to
parse through. Given that the manual curation for

retrieving high-confidence functional annotations of
a single protein complex can be extremely laborious,
performing such annotation on dozens or hundreds of
novel entities discovered in large-scale complex centric
proteomic fractionation experiments quickly becomes
infeasible. Computational methods from text-mining
and natural language processing—the fields concerned
with computationally extracting information from
unstructured natural language text—have been applied
to a range of studies in the area of biomedical research
and provide a promising avenue to address our task.
These include protein-protein relations and functions
[30–34], protein structure [35], protein localization [36]
and gene-disease relationships [37]. However, to date, no
computational tool designed to annotate the functions
of protein complexes has been described.

To address this dearth of direct functional annotation
methods for protein complexes, in this work, we integrate
text-mining and machine-learning techniques into a
hybrid computational framework, termed PCfun, which
can be applied to large scale, complex-centric proteome
experiments for predicting the function of protein
complexes. At a high level, PCfun is developed based
upon a word embedding generated from the machine
reading of 1 million open access PubMed Central (PMC)
articles, whereby both unsupervised and supervised
machine learning algorithms were used to generate two
separate lists of predicted functional Gene Ontology
(GO; biological process, molecular function and cellular
component) terms for a queried protein complex.
Specifically, the unsupervised method was the nearest
neighbor algorithm using cosine similarity between a
protein complex query, and putative GO terms and
the supervised machine-learning method was a model
trained on the associations between protein complexes
and their GO terms documented in the comprehensive
resource of mammalian protein complexes (CORUM)
database [38]. Hence, the unsupervised candidate list
provides functional predictions solely based upon the
word vector relationships observed within the embed-
ding that are unbiased to protein complex-function
associations, while the supervised candidate list tailors
the annotations to relationships similar to the CORUM
database. To leverage the insights provided by both
approaches, we attempted to consolidate the two lists by
leveraging the hierarchical structure of the GO by testing
for the enrichment of certain supervised terms within
the unsupervised list. An adapted leave-one-out cross-
validation scheme was used to test the performance and
suggested that PCfun achieves outstanding prediction
performance with area under the receiver operator
characteristic curve (AUC) values of 0.895, 0.927 and
0.957 for biological process, molecular function, and
cellular component terms, respectively. In addition, we
compared the prediction outcomes by PCfun and the
GO annotations from the Complex Portal database [39]
using protein complexes not documented in CORUM.
Taken together, we anticipate that PCfun will serve
as an accurate annotation tool for protein complex
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function and provide us with a better understanding
of the functional roles of protein complexes in biological
systems.

Materials and methods
PCfun architecture overview
A word embedding was generated using the ‘fastText’
algorithm trained on approximately 1 million PubMed
articles to build a vector representation space where
biological semantic relationships were well reflected. To
use this latent semantic space to predict the function
of protein complexes, we extracted out sub-embeddings
corresponding to all protein complexes and GO terms.
To obtain the first predicted list of unsupervised GO
annotations for a protein complex query, we stored
the high-dimensional GO term sub-embeddings into k-
d trees to easily retrieve predicted GO terms (nearest
neighbors based on cosine similarity) when a protein
complex was queried. To leverage a supervised learning
paradigm for functional annotation, we generated
datasets with binary-labeled relationships between
protein complex embedding features and their GO
annotations (also presented in their corresponding
word embeddings) based on the CORUM database. We
generated negative labels by sampling GO annotations
that were not labeled for a particular protein complex.
We then trained supervised machine learning classifiers
on these generated datasets and tested the models
on held-out portions of the generated datasets. For
a new protein complex query (presented by its word
embedding), we then tested it against every possible
GO term with the supervised model and reported the
terms that were predicted to positively associate with
the protein complex query. This resulted in two predicted
GO terms lists: one from the unsupervised approach and
the other from the supervised model. To consolidate
the information across the two models, we check for
the enrichment of the unsupervised predicted GO terms
within the child nodes of the predicted GO terms from the
supervised classifier. For the functionally enriched terms
(where information is agreed upon between the two
approaches), we optionally plotted out the cut GO tree
with the supervised algorithm’s predicted GO term and
the multiple GO terms from the unsupervised method
that were the children of the supervised model’s GO
term. We then finally output the optional plots and the
raw predicted lists from each method and the statistics
indicating which terms were functionally enriched
within the list by the Random Forest (RF) classifier.

Text corpus generation and data processing
Approximately 1 million articles (including open-access
full-text articles and their abstracts) were downloaded
from PMC in February 2018. Note that these publica-
tions are not species/organism specific, which means the
developed PCfun, built on the corpus, is a generic tool for
protein complex function prediction. For processing the

articles into a text corpus, we followed the text process-
ing pipeline described in the study of Manica et al. [34].
All of the natural language queries were pre-processed
by removing all punctuation characters, fixing Unicode
mojibake and garbled HTML entities, and converting all
uppercase characters into lowercase. To extract a single
word vector for a natural language query (e.g. a protein
complex or GO term name), individual component L2
normalized bi-gram vectors that built up the entire name
were extracted from the embedding and then averaged.
The final averaged vector of the component vectors of the
name was once more L2 normalized and subsequently
used as the final word vector for the natural language
query.

Databases for protein-complex annotations
For this work, we employed the CORUM database [38]
as the main resource for the ground-truth annotation
of protein complexes with GO terms, as CORUM is a
compendium of manually curated and experimentally
validated protein complexes for various organisms [38].
Annotations in CORUM for the function of protein
complexes have been collected from various types
of evidence, including experimental evidence (‘exp’),
evidence from literature (‘lit’), known mammalian
homologs (‘kmh’), high-throughput experiments (‘htp’),
and predicted function (‘pred’). Here the ‘predicted
function’ refers to the potential function suggested
by the experimental results. In this work, we utilized
annotations from all species in the CORUM database to
keep as much information as possible for constructing an
accurate supervised machine-learning model, given that
the corpus we obtained from PubMed is not species/or-
ganism specific. In our study, the non-redundant 3414
core protein complexes (downloaded in March 2019) from
the CORUM database were used.

In addition to CORUM, we utilized the well-annotated
Homo sapiens protein complexes (downloaded in Novem-
ber 2019) from the Complex Portal database [39] to inde-
pendently assess the prediction performance of PCfun.
Similar to CORUM, the Complex Portal contains the
protein complexes and their annotations of GO terms.
As the Complex Portal has fewer protein complexes
documented, we did not use it for the model training
purpose. For the independent test, only the protein
complexes annotated as ‘physical interaction evidence
used in manual assertion’ with the evidence code
‘ECO:0000353’ coupled with experimental evidence from
the IntAct database [40] were retained. To objectively
benchmark the performance of PCfun on the Complex
Portal, we further removed those protein complexes from
the Complex Portal that had a subunit overlap of larger
than 50% compared to the complexes in the CORUM
database. As a result, the numbers of protein complexes
from the Complex Portal for the independent test were in
total 34, of which 34, 31 and 33 protein complexes have
biological processes, molecular functions and cellular
component annotations, respectively.
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Semantic similarity calculation between GO
terms
To compare the GO terms predicted by PCfun and the
annotations from Complex Portal, we did not perform the
direct comparison/matching of the GO terms due to the
low number of intersecting GO terms between CORUM
and Complex Portal. Instead, we applied the semantic
similarity introduced by Wang et al [41] to perform the
comparison. This method considers biological meanings
and hierarchical relationships in the GO direct acyclic
graph (DAG) structure of the given GO term pair. Any
GO term pairs with the semantic similarity ≥0.5 were
considered similar. When comparing the predicted GO
terms by PCfun and the annotations from Complex Portal
for each protein complex, we first calculated the simi-
larities for all possible GO term pairs between the PCfun
outputs and Complex Portal annotations. The pairs with
a similarity score ≥ 0.5 were selected, and the unique
Complex Portal GO terms (N) in the pairs were counted.
Then the percent coverage of the predicted GO terms to
the Complex Portal annotation for the particular protein
complex was calculated using Coverage = (N/M) × 100,
where M denotes the number of GO terms annotated in
Complex Portal for the particular protein complex.

GO term enrichment analysis of predicted
functional terms
This step aims to systematically and comprehensively
combine the two predicted GO term lists in each cat-
egory (i.e. biological process, molecular function, and
cellular component) by RF and the k-d tree for a given
protein complex, respectively, because this shortlist of
terms predicted by RF that recovers CORUM database
well but tends to predict broader GO terms for a pro-
tein complex. Given the predicted GO term list by RF
with the size N (N ≤ 10), we supplemented the informa-
tion from this list with the list of GO terms (i.e. the
nearest neighbors) obtained directly by querying the GO
term sub-embedding. To accomplish this, we developed
a functional enrichment analysis pipeline based on the
hypergeometric test to assess if all the child nodes of
the GO term by RF are significantly enriched in the
predicted GO terms by the k-d tree, using the following
formula:

p = fhypergeometric (x − 1, M, n, N) ,

where M denotes the number of total GO terms for a
particular GO term class, n denotes the number of child
terms of a parent GO term plus the parent term predicted
by the supervised classifier that exists within the specific
GO term class, where N denotes the sample size which is
the mean number of GO terms required for the nearest
neighbor list to recover all GO terms annotated for a
protein complexes (biological process = 11 044, molecular
function = 5213, and cellular component = 1896, respec-
tively), and x denotes the number of child terms for a
particular supervised term that exists in the set of the

sample size list. The function fhypergeometric was the
survival function for the hypergeometric distribution
as implemented in the SciPy package. If the child
nodes/terms are significantly enriched in the predicted
list by the k-d tree, 10 top-ranked terms based on cosine
similarity from the k-d tree list are selected. We could
therefore obtain a ‘combined’ predicted list that not
only accurately recovers the CORUM database but also
supplements the list by RF using the detailed GO terms
predicted by the k-d tree. To visualize the results, PCfun
plots a GO tree structure of the predicted GO term by RF
(in green) and the 10 top-ranked GO terms by the k-d tree
(in purple) to demonstrate the hierarchical relationships
of these terms. For the cellular component category and
the combination of the two lists from the k-d tree and
the RF model by functional enrichment analysis, we also
considered adding the overlap of cellular component
annotations of all the subunits to the final outputs. The
cellular component annotations for each subunit were
downloaded from the QuickGO database [42].

PCfun prediction output organization
In total, there are six output lists (two for each GO cat-
egory) for a given protein complex generated by PCfun.
For each GO category (i.e. biological process, molecular
function and cellular component), one list contained the
RF predictions and the top 10 significantly enriched GO
terms by the k-d tree, while the other lists provided the
top-20 GO terms by the k-d tree only. In addition, for
each RF predicted term, a GO DAG structure is plotted
to illustrate the hierarchical relationships between the
RF prediction and the top 10 significantly enriched terms
from the k-d tree.

Results
Architecture of PCfun for predicting the function
of protein complexes
The development of PCfun involved three main steps,
which are schematically illustrated in Figure 1. Collec-
tively these steps constitute a workflow that uses auto-
mated text mining and structured, curated information
on biological functions to predict the function of com-
plexes of interest. The following describes the steps of
PCfun in detail.

Word embedding

The first step is the generation of the word embedding
(Figure 1A). Approximately 1 million open access articles
were downloaded from the PMC Repository, and the
texts were processed (‘Supplementary Methods’) as
described in Manica et al [34] to populate a text corpus.
A word embedding of 129 459 words was constructed
using the text corpus and the ‘fastText’ [43] package
with a skip-gram model. In this matrix, each word is
represented using a 500-dimension continuous real-
valued vector (‘Supplementary Methods’). Using this
property of the constructed word embedding, we next
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Figure 1. The overall framework of the PCfun methodology. (A) A word embedding containing a 500-dimensional vector for each word was first generated
based on the open-access full-text articles and their abstracts using the ‘fastText’ with a skip-gram model. Based on the word embedding, two machine-
learning algorithms were used, specifically (B) a k-d tree for nearest-neighbor search and (C) a supervised RF model for PC association with molecular
function (MF), biological process (BP), and cellular component (CC), respectively. A simplified k-d tree example is shown in the top panel of (B). To combine
the outputs of the two models, function enrichment analysis (D) was performed. PCfun utilizes the enrichment analysis and GO DAG structure (E) to
represent and visualize the predicted GO terms for a given protein complex. The testing protein complex (i.e. ‘PC’) is used to illustrate the procedures
of PCfun.

extracted sub-embeddings consisting of all protein
complex and GO terms (split into biological process,
molecular function, and cellular component classes).
Since the ‘fastText’ skip-gram model was trained using
character bi-grams, the vector for a protein complex or a
GO term was obtained by averaging the 500-dimensional

vector embeddings of the individual character bi-grams
make up the natural language protein complex name
or the GO term. For example, for the GO term ‘positive
regulation of viral transcription,’ fastText would first
split the term into bi-grams (e.g. ‘po,’ ‘os,’ ‘si,’ ‘it,’ ‘ti,’
‘iv,’ ‘ve’), obtain each bi-gram’s 500-dimensional vector
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embedding, and then average all of the component bi-
gram vectors to obtain a final 500-dimensional vector
embedding for the whole query GO term. The same
process is performed for calculating a vector for a
protein complex using either the complex canonical
name or the names of the complex subunit components
(‘Supplementary Methods’). Figure 2A presents a graphic
illustration of the approach we used to generate the word
vectors.

Model creation for functional prediction

The second step aims to construct the models for
functional annotation of protein complex queries. We
employed two strategies capable of returning ranked
protein complex—GO associations: (i) an unsupervised
nearest-neighbor approach illustrated in Figure 1B, and
(ii) a supervised machine learning approach displayed
in Figure 1C. The first algorithm is agnostic to the
question of functional annotation of protein complexes
and was based solely upon contextual relationships
provided by the vector representation derived from text
mining. The second approach is a tailored approach
trained specifically to recover functional terms for a
protein complex query. The rationale for using two
distinct approaches is that they are likely to produce
complementary and potentially if combined, more
informative outputs. As illustrated in Figure 1B, we built
a k-d tree (k-dimensional tree) [44], a space-partitioning
structure for storing the sub-embeddings’ vectors of GO
terms to support the rapid application of the nearest
neighbor algorithm. These algorithm shortlisted GO
terms ranked by cosine similarity between the queried
protein complex vector and each word vector for a GO
term to recover CORUM’s ground-truth annotations of
each protein complex. The supervised machine-learning
models (Figure 1C), on the other hand, learns from
the experimentally verified and highly curated protein
complex—GO term associations and are therefore able
to accurately cover the ground truth in the CORUM
database. We constructed and evaluated four widely
applied machine-learning algorithms, including RF [45],
Logistic Regression (LR) [46], and Naïve Bayes (NB; with
Gaussian and Bernoulli distributions) [47] classifiers. A
ranked list of GO term annotations was generated by
both the unsupervised k-d tree algorithm (Figure 1B) and
the supervised machine learning models (Figure 1C).

Functional enrichment analysis

The third step aims at combining the prediction out-
comes from the RF and the k-d tree via a functional
enrichment analysis approach (Figure 1D). An optional
visualization of a GO DAG structure for functionally
enriched predicted GO terms is performed to represent
the contextual information of predicted GO terms of
biological process, molecular function and cellular
component, respectively (Figure 1E). Given a protein
complex of interest, PCfun first applies the two models
to generate two prediction lists using the k-d tree and

RF, assesses the agreement between the two prediction
outcome lists via the functional enrichment analysis,
and then visualizes the GO DAG structure (‘Material and
Methods’ and ‘Supplementary Methods’).

Benchmarking the performance of PCfun
In this section, we systematically evaluated the predic-
tion performance of PCfun. We first separately assessed
the predictive ability of the two modules of PCfun, specif-
ically the unsupervised k-d tree and the RF model, for
annotating protein complex function. We further inde-
pendently compared the prediction outputs from the
enrichment analysis of PCfun with the functional anno-
tations documented in the Complex Portal database [39].

The word embedding and k-d tree facilitate the ranking of
potential GO terms for protein complexes

A useful property of word embedding is that words
with related semantic meanings have corresponding
word vectors that exist closer to each other in the word
vector space—as measured by the cosine similarity
(i.e. same orientation)—than words with a different
meaning. Therefore, one can find similar words to an
input query word by simply finding the nearest neighbors
of the input query word vector. To aid in rapid nearest-
neighbor calculations for these large sub-embeddings,
we stored each sub-embedding into a k-d tree, allowing
us to efficiently retrieve similar word vectors to the
input query vector. We performed principal component
analysis of the word vectors for each extracted sub-
embedding of different types, including biological
process vectors, molecular function vectors and cellular
component vectors, and the protein complex vectors
with the two naming schemes, including ‘canonical name’
and ‘subunit name’ (‘Supplementary Methods’). Figure 2B
demonstrates that the sub-embeddings’ word vectors
of each type are well clustered, indicating the reliable
quality of the word embedding.

To access the prediction power of the k-d tree, we mea-
sured the ability of each GO term class sub-embedding
to recover the ground-truth functional annotations for
a protein complex from CORUM. This was accomplished
by recording the number of nearest neighbors (i.e. GO
terms for a protein complex query vector ranked by
their cosine similarity) required to recover 100% of the
ground-truth functional annotations for the input pro-
tein complex query. We hypothesized that the results
might change depending on the name used to represent
a protein complex. Additionally, considering that de novo
detected protein complexes will not be characterized
with an accepted name, we proposed a subunit naming
scheme for a protein complex that would still allow for
the functional annotation of even newly identified pro-
tein complexes by PCfun. We tested the two protein com-
plex naming schemes’ (i.e. ‘canonical name’ and ‘subunit
name’) sub-embeddings. Figure 2C, D indicate that the
sub-embeddings required, on average 13,487, 5119, 2692
and 11,044, 5214, 1894 nearest neighbors to recover the
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Figure 2. Shortlisting the GO terms for protein complexes using the word embedding and k-d tree. (A) A graphical illustration of the vectors of phrases
‘Proteasome,’ ‘E3 Ubiquitin Ligase’ and ‘DNA synthesis’ in a 3D space using simplified vector representation, for example, < a, b, c, . . . > denotes the
numerical word vector for the natural language query ‘Proteasome’. (B) The principal component analysis results of different types of sub-embeddings,
including molecular function, biological process, cellular component, protein complexes with canonical names, and subunit names. (C) The numbers
of nearest neighbors required from the k-d tree search outputs for protein complexes using canonical names to cover the CORUM ground truth. (D) The
numbers of nearest neighbors required from the k-d tree search outputs for protein complexes using subunit names to cover the CORUM ground truth.

ground truth for biological process, molecular function,
and cellular component categories using the canonical
names and subunits names, respectively. It is evident
that to recover CORUM’s ground-truth annotations, a
large number of nearest neighbors are required. Despite
the low performance on our recovery benchmark metric,
we suspected that the top nearest neighbors may actu-
ally still contain useful information that went beyond

the annotation within the CORUM database. We there-
fore subsequently performed a manual literature search
based on the top nearest neighbor GO terms for certain
protein complexes and observed that the predicted GO
terms were actually still quite informative and were
recovering known biological knowledge.

To illustrate this effect, we chose the protein complex
termed ‘Mothers against decapentaplegic homolog 2
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(SMAD2)-Mothers against decapentaplegic homolog 4
(SMAD4)-Forkhead box protein H1 (FAST1)-Homeobox
protein TGIF1 (TGIF)-Histone deacetylase 1 (HDAC1)
complex, Transforming growth factor (TGF) (beta)
induced’ for a manual literature review comparison
to the k-d tree nearest-neighbor results. We used the
subunit naming scheme [‘smad4 tgif1 smad2 hdac1
foxh1 (fast1)’] for the generation of its corresponding
word vector and then queried the vector into the
biological function, molecular function and cellular
component sub-embedding k-d trees. While the k-d
trees required 27,400, 2182 and 990 nearest neighbor
terms in the biological function, molecular function
and cellular component trees, respectively, to recover
the six CORUM annotated GO terms (DNA topological
change; negative regulation of transcription, DNA-
templated; DNA binding; transforming growth factor
beta receptor signaling pathway; chromosome orga-
nization; nucleus), for this protein complex, the top
returned k-d tree nearest neighbors (Supplementary
Table S1) still provided relevant GO terms that had
related biological meanings. For example, the top 10
nearest neighbors for the biological function category
are related to the Transforming Growth Factor Beta
(TGFβ) or bone morphogenic protein response. According
to Massague et al [48], the SMAD proteins accumulate
in the nucleus to execute transcriptional control in
response to TGFβ signal transduction and may be co-
activated or co-repressed by various DNA-binding co-
factors. We observed that ‘negative regulation of smad
protein signal transduction’ was the 8th nearest neighbor
term for the queried protein complex vector, which
recovers the role of the co-repressor activity of HDAC1
and TGIF that act to repress the transcriptional control
of the activated SMAD2:SMAD4 subcomplex localized
in the nucleus [49, 50]. Thus, a manual literature
review indicated co-repression activity in response to
TGFβ signal transduction, which the k-d tree recovered
within its top 10 neighbors. For the complex ranking
of GO terms by the k-d tree for this protein complex,
please refer to Supplementary Files S2 (available under
the ‘SupplementaryFiles_Tables’ on the PCfun GitHub
repository (https://github.com/sharmavaruns/PCfun) for
more details. Despite the poor ability of the k-d tree
to recover CORUM’s ground-truth annotations, the top
nearest neighbor results still provided significant insight
into the relevant biology.

Supervised machine-learning models substantially
improved the performance of ground-truth recovery of GO
terms in CORUM

To improve the performance of ground-truth recovery
of CORUM, we implemented supervised machine-
learning classifiers based on the word vectors for a
‘protein complex-GO association’ pair (termed ‘PC-
GO’). In our study, the annotated association of a PC-
GO term was regarded as a positive sample, whereas
the synthetic pairs of a protein complex and other
GO terms that were not associated in CORUM were

regarded as negative ones. As the negative samples
significantly outnumbered the positive samples in the
resulting datasets, we generated five different training
datasets with randomly selected negative samples and
all positives for each protein complex to ensure an
equal distribution of positive and negative samples for
training the classifier. This process was conducted for
both naming schemes. With the training datasets, we
assessed the performance of three machine-learning
classification algorithms, specifically RF, LR, and NB with
a Gaussian or Bernoulli prior (NB_Gauss or NB_Bernoulli,
respectively), through the adapted ‘protein complex’-
leave-one-out cross-validation strategy using standard
performance measures (‘Supplementary Methods’).

Across these classifiers tested, RF consistently per-
formed best as measured by all performance metrics
(Figure 3, Supplementary Table S2, and Supplementary
Figures S1 and S2) and achieved a robust performance
across the two naming schemes. For example, via the
‘protein complex’-leave-one-out cross-validation strat-
egy, the RF classifier achieved AUC values of 0.885 and
0.895 for biological function, 0.925 and 0.927 for molecu-
lar function, and 0.951 and 0.957 for the cellular com-
ponent category for protein complexes with ‘canonical
names’ and ‘subunit names,’ respectively. In addition, we
also observed that the resulting GO term lists predicted
by the RF classifiers were able to significantly reduce
the number of nearest neighbors needed to recover the
majority of the ground-truth GO term annotations for a
protein complex when compared to the nearest-neighbor
results from querying the k-d tree (Figure 3D). For exam-
ple, for protein complexes with subunit names, the RF
classifier predicted terms were able to recover 80.5, 83.6
and 89.2% of CORUM’s ground-truth in 102, 49 and 11
positively predicted terms for biological process, molec-
ular function, and cellular component, respectively.

While the RF classifiers performed well to recover the
ground truth as documented in the CORUM database,
the supervised approach’s performance may belie the
inherent bias to the database that it was trained on.
Although protein complexes within CORUM have been
extensively studied and the GO term annotations have
been manually curated, there is an obvious right skew
in the frequency of GO terms with low to middle depth,
based on the GO DAG structure. From Supplementary
Figure S3, we observed that the logged frequency of
a particular GO term (i.e. the number of times a GO
term has been annotated in CORUM) versus each GO
term’s depth in the GO DAG structure reveals a biased
annotation distribution for GO terms in CORUM. For
example, the biological process term ‘Regulation of tran-
scription DNA templated,’ molecular function term ‘DNA
binding’ and cellular component term ‘Nucleus’ were
annotated in 233, 278 and 702 protein complexes in the
CORUM database. Such over-annotated GO terms would
lead to biased machine-learning algorithms favorably
toward them. Therefore, to address the biases of the
dataset that the RF classifier was trained on, we sup-
plemented the predicted terms from the RF classifier

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac239#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac239#supplementary-data
https://github.com/sharmavaruns/PCfun
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac239#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac239#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac239#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac239#supplementary-data
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Figure 3. Prediction performance of RF model trained on the ground-truth protein complex – GO term annotations in the CORUM database for biological
process, molecular function, and cellular component using canonical and subunit naming schemes for protein complexes, respectively, including (A)
performance measures of RF models; (B) ROC curves and mean AUC values; (C) the precision-recall curves of the RF models via the adapted protein
complex leave-one-out cross-validation, and (D) the numbers of predicted GO terms by the RF models to recover the CORUM database annotations.

with the predicted nearest neighbors from the k-d tree. A
graphical illustration of the combination of the RF and k-
d tree prediction lists together and an example is shown
in Figure 4. It can be concluded that RF achieved the
best performance in recovering the CORUM annotations
for a given protein complex. In summary, the prediction
results of the k-d tree and RF model are complementary
and thus highlight the necessity of systematically and

statistically combining the predictive outcomes from the
k-d tree and RF models.

Independent test demonstrates divergent GO term
predictions by PCfun compared to complex portal

To assess the consistency of PCfun predictions and
the experimental annotations of a protein complex, we
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Figure 4. Functional enrichment analysis of the combined prediction lists from the k-d tree and the supervised RF model. (A) Hypergeometric enrichment
test based on the RF prediction list. For each term in the list, all the child nodes of the term were collected and used for the statistical significance test
with the terms from the k-d tree. If significant, the top-10 terms from the k-d tree, the child nodes of the RF term, were selected and visualized in
the GO DAG structure. (B) An example of prediction results for the protein complex ‘Stress-70 protein, mitochondrial (hspa9) GrpE protein homolog 1,
mitochondrial (grpel1) GrpE protein homolog 2, mitochondrial (grpel2) complex’ illustrates the enrichment analysis procedure.

compared our predicted terms with the annotations pro-
vided in the Complex Portal. We first identified that only
110 annotated human protein complexes were shared by
the CORUM and Complex Portal databases with identical
subunit composition. We subsequently interrogated the
semantic similarity of their biological process, molecular
function and cellular component terms between the two
databases (‘Material and Methods’). The heatmaps of the
pairwise similarity scores using the method reported by
Wang et al [41] are shown in the left panel of Figure 5. The
average semantic similarity scores of biological process,
molecular function and cellular component categories
were 0.40, 0.34 and 0.54, respectively, suggesting that
even for the same protein complex with precisely the
same subunit composition the annotations of CORUM
and Complex Portal are dissimilar. We examined the
numbers of identical GO terms used for each overlapping
protein complex more stringently. As a result, on
average less than one GO term across all categories
(0.22 biological process term, 0.05 molecular function

term and 0.13 cellular component term, respectively)
was shared per protein complex between CORUM and
Complex Portal. This means that the annotations for
protein complexes are extremely divergent across the
two databases, making it challenging for PCfun (built
on CORUM) to accurately cover the GO annotations
in the Complex Portal. We then sought to gauge the
approximate similarity of GO terms predicted by PCfun
with Complex Portal annotations. The right panels
of Figure 5 show the comparison between predicted
biological process, molecular function and cellular
component terms by PCfun and the Complex Portal
annotations for the non-overlapping protein complexes
(i.e. with <50% of overlapping subunits). For a biological
process, as shown in Figure 5A, 15 (approximately 44.1%)
non-overlapping complexes covered 90–100% of similar
terms compared to Complex Portal biological process
annotations, while 14 complexes (41.2%) had divergent
predictions (i.e. coverage between 0 and 10%) compared
to the annotations in the Complex Portal. Similarly, for
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cellular components (Figure 5C), approximately 69.7%
(23) of the complexes covered 90–100% of similar terms
compared to Complex Portal cellular component anno-
tations of 30.3% (10). In contrast, PCfun demonstrated
highly divergent predictions for the molecular function
category, with only 1 (3.2%) complex covering 90–100% of
similar terms and 27 (87.1%) complexes demonstrating
0–10% coverage of similar terms when compared to
Complex Portal’s annotations. The low coverage of PCfun
prediction for the molecular function category might
be related to the poor similarity between the molecular
function annotations between the CORUM and Complex
Portal databases (the left panel of Figure 5B). It is
noteworthy that different studies and databases may
have divergent annotations for a protein or protein
complex. Despite the generally low semantic similarities
of all the biological processes, molecular functions and
cellular component terms between the two databases,
PCfun still demonstrates its ability to recover the ground
truth of the databases and to provide novel biological
knowledge for a given protein complex.

Discussion
Although computational methods for gene function
prediction [51–53] have significantly broadened our
understanding of single proteins, the extrapolation from
the functions of the constituent proteins to the function
of a protein complex is non-trivial, and the scarcity
of high confidence functional annotation of protein
complexes is impeding molecular biology research in
several ways. First, functional annotation of protein
complexes is inconsistent between databases. Although
CORUM and Complex Portal offer experimentally and
manually validated functional annotations for protein
complexes (i.e. the ground truth), the literature-based
functional annotations for protein complexes shared
across the databases can be highly dissimilar depending
on the database chosen. Second, we argue that because
complexes with already annotated functions are pref-
erentially cited in the literature, an increasing fraction
of research is focused on already well-known entities,
introducing a strong bias in contents. Third, some
proteins are multifunctional and perform unique tasks
in the context of different protein complexes, thereby
highlighting that the function of protein complexes is not
simply the aggregate of their subunits’ functions [54–56].
As a case in point, a brief examination of the GO terms
annotated for whole protein complexes in the CORUM
database compared to each individual subunit’s GO term
annotations in the QuickGO database [42] showed that
2155 (61.4%), 319 (9.1%) and 169 (4.8%) protein complexes
contained at least one novel biological process, molecu-
lar function, or cellular component term, respectively,
that was not annotated for any individual subunit’s
QuickGO entry. In other words, certain proteins may
participate in emergent functionality when assembled in
a macromolecular complex that would be non-obvious

based upon the known functions of the individual
protein complex’s subunits. Therefore, we argue that
it is of great importance to employ computational tech-
niques to assist with the prediction of protein complex
function and provide useful insight and guidance for
experiments to characterize the functions of protein
complexes.

As discussed in the ‘Results’ section, one issue during
the construction of the machine-learning models is the
biased functional annotations in the CORUM database,
as shown in Supplementary Figure S3. Therefore, the pre-
dictive power of the RF model in PCfun is limited to the
CORUM annotations, demonstrating that it is crucial to
combine the ‘non-biased’ prediction results of the unsu-
pervised k-d tree method with RF predictions via enrich-
ment analysis for PCfun to deliver non-biased predicted
functions for a given protein complex. Another notewor-
thy issue is the negative data for training the supervised
RF model of PCfun. This problem has been brought to
attention and discussed in our previous studies [57, 58].
In this study, similar issues occurred when constructing
the negative PC–GO associations in the training datasets
(‘Supplementary Methods’). Theoretically, there would
be many negative protein complex-GO pairs, some of
which might be mislabeled. Compared to the traditional
supervised machine-learning models, positive-unlabeled
learning [57, 59] only requires positive and unlabeled (i.e.
either positive or negative) training samples to build reli-
able predictors with competitive prediction performance
and, therefore, can be considered as an alternative option
for tackling this issue.

Further limitations to the PCfun word embedding
strategy for annotating protein complex function lie in
the featurization of the protein complex itself, which
currently does not leverage any structured database
information on the protein interactome network for
achieving an informative embedding. Currently, the
word embedding only leverages inferred relationships
between character n-grams to build word-embedding
relationships between complicated multi-character
strings (e.g. protein complex names). However, protein
complexes can also be viewed as functional subgraphs
of a protein-protein interaction network [60, 61], and
the network connectivity itself may explicitly encode
important functional information about the protein
complex that is not leveraged by the current word
embedding methodology.

To address these limitations regarding (1) the bias
of training/assessing an algorithm on just the CORUM
and Complex Portal databases and (2) the current
exclusion of structured protein network information
in the protein complex embeddings, we propose the
following future work. Firstly, a systematic analysis of the
shared and diverging information between the current
protein complex–functional annotation databases would
be extremely informative for formally detecting biases
in the databases and defining confidence metrics for
certain annotations. Thus, a consolidated gold-standard

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac239#supplementary-data
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Figure 5. Semantic similarity comparison of (A) biological process, (B) molecular function and (C) cellular component terms for the Complex Portal
annotations with the CORUM annotations on identical protein complexes (left panel) and PCfun predictions on non-overlapping protein complexes
(right panel). The right panel illustrates the percentage breakdowns of the predicted similar biological process and molecular function terms by PCfun
to the Complex Portal annotations, respectively. Any GO term pairs between PCfun predictions and Complex Portal annotations with the semantic
similarity ≥ 0.5 were considered similar.

database of all such protein complex–functional annota-
tions could be constructed, thereby enabling much more
accurate and generalizable models to be built for this
task. Regarding the featurization limitation, we believe
that tailoring embedding representations from con-
structed knowledge graphs such as from Himmelstein

et al [62], where both gene and GO annotations have
been incorporated into the database, along with addi-
tional functional information such as pathways and
diseases, could act as a sophisticated source for alternate
embeddings that could be well suited for this pro-
tein complex-functional annotation task. Furthermore,
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state-of-the-art modeling approaches such as Graph
Neural Networks could be used, which are capable of
learning highly expressive embedding representations
of graph-structured data and have been applied to
protein function prediction [63], and human microbe–
drug associations embeddings [64]. These interactomes
or structure-based protein complex embeddings could
then be tailored for their functional annotations using
concepts from representation learning. Alternatively, it
would be useful to compare the performance of word
or interactome-based network embeddings to traditional
matrix factorization latent space learning techniques
where our task would be link prediction in a bipartite
graph that connects protein complexes to GO terms
[65, 66].

Overall, we believe PCfun is the first-in-class word
embedding-based functional annotator for protein
complexes and can be applied to broad biological
and personalized medicine applications. It could be
possible to compare the functional differences of
subunit composition by interrogating the prediction
outputs of PCfun for a protein complex across different
biological/medical conditions, given that the differential
analysis of protein composition is possible through the
development of new techniques and computational
methods [17, 20, 21, 67]. Taken together, we anticipate
that PCfun can be exploited as an instrumental computa-
tional approach for the identification of novel functions
and the demarcation of functional alterations of the
complex-centric proteomic across different biological
conditions.

Key Points

• PCfun is the first computational framework focusing
on rapid and accurate annotations of functional Gene
Ontology (GO) terms for protein complexes by integrat-
ing word embedding and supervised machine learning
approaches.

• The word embedding was constructed using the fastText
algorithm on approximately 1 million PubMed articles,
and an unsupervised k-d tree using the word embedding
was trained to rank the GO terms.

• We separately trained a Random Forest using the manu-
ally curated CORUM protein complex database for super-
vised learning of protein complex–GO relationships.

• We anticipate that PCfun will serve as an instrumental
computational tool for annotating the functional GO
terms of protein complexes.
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