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Abstract

Essays in Labor Economics

by

Benjamin Scuderi

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Patrick Kline, Chair

This dissertation develops and applies econometric methods to understand key issues
in labor economics. In particular, this dissertation investigates methods to transparently
measure quantities of central importance to understanding equity and efficiency in labor
markets, like the productivity of workers and firms, the nature of worker’s preferences and
firm’s strategic behavior, and the size of wage markdowns.

The first chapter studies the nature and implications of firm wage-setting conduct on a
large online job board for full-time U.S. tech workers. Utilizing granular data on the choice
sets and decisions of firms and job seekers, I first develop and implement a novel estimator of
worker preferences that accounts for both the vertical and horizontal differentiation of firms.
The average worker is willing to pay 14% of their salary for a standard deviation increase
in firm amenities. However, at the average firm, the standard deviation of valuations of
that firm’s amenities across coworkers is also equivalent to 14% of their salaries, indicating
that preferences are not well mdescribed by a single ranking of firms. Following the modern
Industrial Organization literature, I use the labor supply estimates to compute the wage
markdowns implied by a series of models of firm conduct that vary in the degree to which
worker preference heterogeneity gives rise to market power. I then formulate a testing pro-
cedure that can discriminate between these models. Oligopsonistic models of wage setting
are rejected in favor of monopsonistic models exhibiting near uniform markdowns of roughly
18%. Relative to a competitive benchmark, imperfect competition substantially exacerbates
gender gaps in both wages and welfare. However, blinding employers to the gender of job
candidates would have negligible effects on wage inequality.

The second chapter proposes a novel framework for conducting causal inference when re-
searchers wish to compare a large number of treatments, as in studies of value-added that aim
to quantify heterogeneity in skill, productivity, or preferences across workers, decisionmakers
or service providers. Rather than apply parametric assumptions about the data-generating
process, the framework I propose leverages only the common assumption that assignment of
observations to treatments is unconfounded, and as such leads to “design-based” inferences of
causal effects (in contrast to “model-based” approaches). I first illustrate identification of the
causal effects of interest when the mechanism governing assignment – the propensity score –
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is known. I then propose a method for estimating the features of the assignment mechanism
when the true propensity scores are unknown and must be estimated. In settings with a large
number of treatments (e.g. teachers, judges, or firms), the standard overlap assumption that
all observations face a strictly positive probability of assignment to every treatment is likely
to fail. I therefore propose a propensity score estimator that allows for structural failures
of overlap, provide a computational guarantee for the estimation algorithm, and develop a
finite-sample bound on the error of the estimator that holds with high probability. Finally, I
provide an algorithm for using the estimated propensity scores to optimally trim the sample,
such that a traditional notion of overlap is likely to hold on the resultant subsample and
treatments can be reliably compared.

The third chapter applies the econometric framework of the second chapter to understand
the distribution of productivity in a particular setting: legal defense for indigent individu-
als. This chapter quantifies the extent to which variation in case outcomes across indigent
criminal defendants can be attributed to variation in the quality of their assigned counsel.
Applying my estimation framework to data on case outcomes from three Texas counties that
assign cases through conditionally randomized “wheel” systems, I find that attorney qual-
ity is highly variable. For defendants in felony cases, a one-standard-deviation decrease in
attorney quality is associated with a 5.6 percentage-point increase in the probability of in-
carceration. These findings suggest that outcomes in criminal cases are driven in a nontrivial
way by the luck of the draw, undermining the extent to which the criminal legal system can
achieve traditional notions of fairness and efficiency. Using estimates of attorney quality,
I evaluate the effects of a program that allowed defendants to choose attorneys. Perhaps
because attorney quality is difficult to predict using observable characteristics, the program
had essentially no effects on aggregate case outcomes, although it did significantly shift the
burden of caseloads across attorneys.
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Chapter 1

Bidding for Talent: Equilibrium Wage
Dispersion on a High-Wage Online
Job Board

This chapter is coauthored with Nina Roussille.

1.1 Introduction

How should economists interpret the empirical regularity that observably similar workers
often receive markedly different wages across firms (Card et al. 2018)? A large literature has
explored a variety of factors that can explain this heterogeneity: productivity (Abowd, Kra-
marz, and Margolis 1999; Gibbons et al. 2005; Faggio, Salvanes, and Reenen 2010; Dunne
et al. 2004; Barth et al. 2016), compensating differentials (Rosen 1986; Hamermesh 1999;
Pierce 2001; Mas and Pallais 2017a; Wiswall and Zafar 2018; Taber and Vejlin 2020; Sorkin
2018), and, more recently, imperfect competition (Manning 2011; Lamadon, Mogstad, and
Setzler 2022; Berger, Herkenhoff, and Mongey 2017; Jarosch, Nimczik, and Sorkin 2021).
Because most studies of the relative contributions of each of these factors use data on equi-
librium matches, they generally rely on strong assumptions about the nature of the process
by which workers and firms meet and by which wages are formed. For instance, a form of
random matching is often assumed: given a set of equilibrium wages, workers have no control
over the vacancies they are matched up with. An assumption of this kind is necessary when
the menu of jobs workers choose from (their “choice set”) is not measured, but instead must
be inferred. However, erroneous inference of these choice sets can introduce substantial bias
(Barseghyan et al. 2021).

A particularly important assumption for any analysis of equilibrium wage dispersion re-
gards the nature of firm wage-setting conduct: how firms determine which workers to hire,
and how much to pay them. Despite the recent surge in interest in imperfect competition,
little attention has been paid to testing which of the many possible models of conduct best
describes firms’ observed behavior. Typically, existing analyses either propose a reduced-
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form test of a particular imperfect-competition alternative relative to a perfect-competition
null, or simply assume a single form of firm conduct. In practice, this means that prior stud-
ies make untested assumptions about key aspects of firm behavior, like whether firms behave
strategically or the extent to which firms know workers’ preferences. These assumptions then
become key ingredients in the estimation of the size of markdowns and the distribution of
welfare. Yet, different modes of conduct imply markedly different conclusions about the
sources of wage dispersion and the extent of firms’ market power. For example, models
with strategic interactions predict more substantial markdowns at larger firms, implying
that observed firm size-wage gradients are indicative of even steeper gradients in unobserved
productivity. In contrast, models without strategic interactions need not imply differential
markdowns by firm size, ceteris paribus (Boal and Ransom 1997). More broadly, erroneous
assumptions about the form of conduct can lead to severely biased inferences about welfare
and efficiency (Berger, Herkenhoff, and Mongey 2017).

This paper provides direct evidence about the nature of firms’ wage-setting behavior by
developing a testing procedure to adjudicate between non-nested models of conduct in the
labor market. In particular, we focus on two sets of alternatives relevant to ongoing debates
in the labor literature: first, whether firms compete strategically (Berger, Herkenhoff, and
Mongey 2017; Jarosch, Nimczik, and Sorkin 2021), and second, whether firms tailor wage
offers to workers’ outside options (Caldwell and Harmon 2019; Flinn and Mullins 2021). We
overcome the data limitations of previous studies by using detailed information from a large,
high-stakes online job board on the choice sets and decisions of candidates and firms. On
the platform, workers do not directly apply to jobs—rather, firms looking to fill vacancies
submit “bids” on workers. Each bid must include an initial indication of the salary the firm is
willing to pay (hereafter “the bid salary”), as well as a description of the job they are trying
to fill, both of which may be individually tailored to each candidate. Because candidates can
only enter the recruitment process at firms that bid on them, we are able to measure the full
set of options they choose from. And, since the platform records whether candidates accept
or reject firms’ initial bids, we can cleanly infer candidates’ revealed preferences over firms.
Further, our data on bids reveal detailed variation in firms’ willingness to pay for candidates
that extends beyond just those the firm ultimately hires. These features of the data allow us
to disentangle workers’ selection into firms (labor supply) from firms’ preference over workers
(labor demand).

Armed with these data, our paper develops and implements a new framework for analyzing
worker preferences over firms and the wage-setting conduct of those firms. In a first step, we
propose a novel method for estimating the amenity values candidates associate with firms.
Because we fully observe candidates’ choice sets, we can cleanly infer a partial ordering
of options for every candidate—our estimator ranks firms by aggregating those revealed
preferences. The logic of our estimator is recursive, like that of Sorkin (2018), in that the
estimated amenity value of any firm depends on the estimated amenity values of the firms it
was revealed-preferred to: conditional on the bid salary, firms that offer good amenities will
be revealed-preferred to other firms that offer good amenities. Importantly, our estimator
flexibly models both the vertical differentiation (between-firm differences in amenity values
common to all candidates) and horizontal differentiation (within-firm differences in amenity
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values across candidates) of firms. In contrast to existing estimates of amenity values, we
neither assume that all candidates share the same (mean) ranking of amenities, nor that
candidates’ (mean) rankings are a deterministic function of their demographics. Instead, we
describe candidates’ preferences as a mixture over types, each with a unique mean ranking
of firms, where the distribution of types can depend upon candidate characteristics. Our
estimator incorporates another unique feature of our data: candidates must publicly list the
salary they wish to make at their next job (what we call the ask salary). To match reduced
form evidence from both our setting and similar settings (e.g. Hall and Mueller 2018), we
model preferences as reference-dependent: the labor supply function is kinked at the ask
salary, which is analogous to an older tradition in IO where firms conjecture kinked product
demand curves (Sweezy 1939; Bhaskar, Machin, and Reid 1991; Camerer et al. 1997; Farber
2015).

Next, we propose a general blueprint for analyzing labor demand that allows us to ad-
judicate between many non-nested models of firm wage-setting conduct. The fundamental
intuition of our test is that if labor supply can be identified in a first step, applying an
assumption about firm conduct immediately reveals implied equilibrium markdowns and
therefore firms’ valuations of candidates’ labor (or, interchangeably, candidates’ productiv-
ity) (see e.g. Berry and Haile 2014). Model-implied estimates of the valuations can then
be used to test between modes of conduct via exclusion restrictions: instrumental variables
that are excluded from the determinants of labor productivity should not be correlated
with model-implied valuations. The logic of our procedure builds on the modern Industrial
Organization literature studying product markets, beginning with Bresnahan (1987) and
recently reviewed by Gandhi and Nevo (2021). Importantly, this empirical strategy avoids
the endogeneity issues associated with relating variation in prices to variation in measures of
market structure (like the Herfindahl–Hirschman Index) across markets, as in the “Structure-
Conduct-Performance” (SCP) paradigm (Robinson 1933; Chamberlain and Robinson 1933;
Bain 1951).

We translate this logic to the labor market setting: given our estimates of candidate
preferences, we compute the wage markdowns implied by a set of non-nested models of firm
wage-setting conduct. In order to adapt models of conduct to our data, we analogize the
behavior of firms on the platform to that of bidders in a large online auction marketplace: just
as in an auction market, firms compete against each other by bidding for workers’ talent. We
draw upon insights from the empirical auction literature (e.g. Guerre, Perrigne, and Vuong
2000; Backus and Lewis 2020) to define an equilibrium concept, establish the identification
of markdowns, and propose a method for estimating those markdowns. To test between
the various models of conduct, we implement the Vuong non-nested model comparison test
(Vuong 1989; Rivers and Vuong 2002). The logic of the Vuong test is simple: when comparing
two alternative models, the one that is closer to the truth should fit better. Following Berry
and Haile (2014), Backus, Conlon, and Sinkinson (2021) and Duarte et al. (2021), we ensure
that our test has power to discriminate between alternatives by using instruments that shift
predicted markdowns but are excluded from productivity.

Our initial set of findings focuses on the labor supply. We document substantial vertical
differentiation of firms on the platform: the average worker is willing to pay 14% of her
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desired salary to enjoy a standard deviation increase in firm amenities. However, horizontal
variation is just as important—the average standard deviation in valuations of amenities
across coworkers at the same firm is also 14%. Our preferred estimates of labor supply
describe preferences as a mixture over three types of workers. While preferences vary on
a number of axes, the three groups can roughly be distinguished by preferences over firm
size: some workers strongly prefer larger, more established firms, while others prefer smaller
firms. Because the platform focuses on tech jobs, we loosely interpret these differences as
differences in candidates’ risk tolerance. Finally, there is a residual gender gap in welfare,
even conditional on the gender gap in bid salaries. This finding contrasts with other settings
in which gender gaps in compensation have been shown to be driven in part by differences
in preferences over working conditions (e.g. Bolotnyy and Emanuel 2022).

We then use those estimates to implement our procedure for comparing models of firm
behavior. As a baseline, we are able to resoundingly reject the perfect competition model
against all possible imperfect competition alternatives. However, in every version of our test,
models that assume firms ignore strategic interactions in wage setting significantly outper-
form models that incorporate strategic interactions. This finding has significant implications
for our conclusions about the size of wage markdowns—under the preferred model, we find
markdowns of 18.2% on average, while models with strategic firms would have implied aver-
age markdowns of 25.8%. We also find evidence that firms do not actively tailor wage offers
to candidates on the basis of predictable horizontal variation in preferences. In other words,
our tests suggest that firms do not take advantage of predictable variation in firm-specific
labor supply when making hiring decisions, which may lead to substantial misallocation in
equilibrium. This finding is especially striking in the context of online labor markets which
ostensibly seek to reduce information frictions in the search and matching process.

To quantify the impacts of imperfect competition on welfare, we use labor demand es-
timates from the preferred model to compute counterfactual equilibria under a range of
conduct assumptions. Relative to a price-taking baseline, we find that firms make signifi-
cantly more offers under the preferred model, but that the wages firms attach to those offers
are lower. On net, this change leads to meaningful welfare losses. Relative to the preferred
model, however, the average value of bids and the total number of bids are significantly lower
in simulations of strategic firms, substantially decreasing overall welfare. We also find that
the form of conduct has important implications for gender gaps: relative to men, women
receive significantly fewer bids when firms predict horizontal preference variation than when
they do not. Imperfect competition exacerbates gender gaps relative to the price-taking
baseline. Finally, we find that blinding employers to the gender of candidates may lead to
modest reductions in gender gaps.

This paper contributes to several strands of literature. First, our paper is most directly
related to a growing literature that employs tools from industrial organization to study
the role of firms in labor market inequality. Studies in this literature typically assume a
single model of firm conduct, which they estimate using matched employer-employee data.
Card et al. (2018) and Lamadon, Mogstad, and Setzler (2022) consider models in which
firms are assumed to be monopsonistically competitive: that is, firms internalize upward-
sloping labor supply, but do not act strategically. Berger, Herkenhoff, and Mongey (2017)
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and Jarosch, Nimczik, and Sorkin (2021), on the other hand, write down models of non-
atomistic firms that compete in local oligopolies. Our study departs from this prior work
by explicitly formulating a testing procedure for discriminating between different modes of
firm conduct, rather than assuming a single mode of conduct, more closely mirroring the
industrial organization literature on estimating supply and demand and testing between
models of conduct in product markets (Bresnahan 1989; Nevo 2001; Berry and Haile 2014,
2020; Backus, Conlon, and Sinkinson 2021; Gandhi and Nevo 2021). Second, because our
data records not only equilibrium matches, but also the full set of offers made by firms to
candidates (both accepted and rejected), we are able to separate the estimation of supply
and demand. Finally, we focus on a single labor market in which it is likely that conduct
of all firms is well-approximated by a single model, rather than applying our model to a
national labor market defined by regional sub-markets. In this way, our study is related to
a long tradition of single-industry studies in labor economics (Freeman 1976; Lipsky and
Farber 1976; Staiger, Spetz, and Phibbs 2010; Goldin and Katz 2016) .

Our paper more broadly contributes to a large literature exploring imperfect competition
in labor markets (Boal and Ransom 1997; Bhaskar and To 1999; Bhaskar, Manning, and To
2002; Bhaskar and To 2003; Manning 2005, 2011). We adapt models of imperfect labor mar-
ket competition to our setting, which combines the characteristics of online auction markets
and terrestrial labor markets. In a similar context, Azar, Berry, and Marinescu (2019) gauge
the potential market power of employers by estimating labor supply to individual firms on a
large, online labor market using modern discrete choice methods. Our paper extends their
analysis by characterizing both the nature of horizontal differentiation and the nature of
firm conduct. A number of recent studies have examined the relationship between measures
of market structure—typically, concentration measures like the Herfindahl–Hirschman Index
(HHI)—and wages across markets in order to gauge the importance of imperfect competition
(Azar et al. 2020; Schubert, Stansbury, and Taska 2021; Arnold 2021; Macaluso, Hershbein,
and Yeh 2021). Since wages and market concentration are joint outcomes in models of labor
markets, and finding excludable instruments for market structure is challenging (Berry 2021;
Schmalensee 1989). In testing whether firms’ wage offers depend upon workers’ preference
types, our study also relates to a line of research that connects heterogeneity in wages to
outside options and the mode of wage determination (Hall and Krueger 2012; Caldwell and
Harmon 2019; Lachowska et al. 2021).

Next, our paper relates to the literature on the estimation of non-wage amenities and
their role in wage dispersion (Rosen 1986). Recent contributions in this area include Sorkin
(2018) and Taber and Vejlin (2020) who use matched employer-employee data to identify
search models that incorporate dispersion in non-wage amenities of firms. Because these
studies use data on equilibrium matches, they infer amenity values from flows of workers
across firms. By contrast, we observe the full set of options available to each worker on
the platform, and therefore estimate amenity values by aggregating candidates’ revealed
preferences over these options. In providing estimates of amenity values and exploring the
relationship between those values and candidate characteristics, our paper also relates to a
large literature on estimating heterogeneity in amenity values, e.g. Mas and Pallais (2017b)
and Wiswall and Zafar (2018). In contrast to these studies, which are primarily carried out
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in lab or experimental settings, we study the career decisions of workers in a high-stakes
environment.

Finally, our paper contributes to strands of the literature in labor and industrial organiza-
tion on the nature of competition on online markets. Using experiments, Dube et al. (2020)
and Dube, Manning, and Naidu (2020) demonstrate the importance of monopsony in online
labor markets for task work, and conclude that the presence of monopsony power in markets
that are specifically designed to reduce search frictions suggests that imperfect competition
may be pervasive in other “putatively thick” markets. Our paper more broadly relates to
others describing the behavior of firms and workers in online labor markets. For instance,
a recent study by Horton, Johari, and Kircher (2021) on the informative content of cheap
talk about wages in online labor markets. We similarly find that cheap talk on Hired.com—
in the form of firms’ initial offers and workers’ desired salaries—is an important signalling
mechanism.

1.2 Setting and Data

Market description

As illustrated in Appendix Table A.1, a key limitation of the literature estimating revealed
preferences from worker flows is that workers’ choice sets are rarely observed, and almost
never available in a high-stakes, real-world environment. Because of this, existing estimates
of worker preferences are either computed in surveys and lab environments (e.g., Wiswall
and Zafar (2018), Mas and Pallais (2017b)), or reliant on strong assumptions applied to
observational data. In survey or experimental settings, sample sizes and external validity to
more traditional labor markets can be limited. In observational settings, estimates may be
confounded by differences in choice sets or erroneous inference of workers’ options.

Two features of the recruitment process on Hired.com allow us to overcome this limitation.
First, wage bargaining on Hired.com is high-stakes: the modal candidate on the platform is a
software engineer in San Francisco looking for a full-time job with a salary of about $120,000.
Second, the recruitment process on Hired.com allows us to cleanly identify the choice set of
candidates deciding which firms to interview with as well as the full set of observable profile
characteristics firms have access to when deciding to send interview requests to a candidates.
We explore these distinctive features below.

On the candidate side, Hired.com mostly serves candidates looking for full-time, high-
wage engineering jobs based in the U.S. Table 1.1 shows that, on Hired.com, candidates
are highly educated: 87.2 % of them have at least a bachelor’s degree and 40.3% have at
least a master’s degree. Accordingly, the average salary offered by firms on the platform
is high ($114,505). Candidates on Hired.com are broadly comparable to those listed on
other recruitment platforms for similar careers. For instance, the most common profile on
Hired.com is a software engineer in San Francisco. As of April 2020, the average salary of
candidates with this profile was $119,488 on Glassdoor and $132,000 on Paysa.1. Hired’s
1 Paysa is a personalized career service offering salary compensation and job matching for corporate

employees. It is a useful reference for comparing employee salaries in the tech industry.
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average salary for such profiles is $129,783, which is between Glassdoor’s (lower bound) and
Paysa’s (upper bound) salaries. The Hired.com sample also features profiles with different
levels of seniority. For instance, among SF software engineers, 6% have 0-2 years of experience
in software engineering, 22% have 2-4 years of experience, 22% have 4-6 years of experience,
33% have 6-10 years of experience, 8% have 10-15 years of experience, and 7% have more
than 15 years of experience. This distribution is similar to the one reported by Payscale for
this combination of job and location.2 On the firm side, companies hiring on the platform
are representative of the tech ecosystem: a mix of early stage firms, more mature start-ups
(e.g Front, Agolia), and larger, more established firms (e.g. Zillow, Toyota). With more than
13,000 candidates and jobs in our analysis sample, the market we study should be thought
of as a large, high stakes job board for well-qualified candidates.

Our ability to cleanly identify the choice sets of candidates deciding which firms to inter-
view with emerges from the unique chronology of hiring on the platform. On a traditional
job board, firms post a job description and then candidates apply to each posted job sep-
arately. By contrast, on Hired.com, companies apply to candidates based on their profiles,
and candidates decide whether or not to interview with companies based on the job de-
scriptions and bid salaries they receive. Importantly, candidates have no way to directly
view and apply to job postings without receiving an interview request. As a result, for each
candidate on Hired.com, we know their consideration set (the set of all the firms that apply
to them), and their choices (whether or not they decided to interview with any given firm
in the consideration set).

Formally, the recruitment process can be divided into the following three sequential steps,
also described in Figure 1.1:

Supply side: Candidates create a profile that contains standardized resume entries (edu-
cation, past experience, etc.) and, crucially, the salary that the candidate would prefer to
make. We call this the ask salary. Appendix Figure A.1 is a screenshot of a typical can-
didate’s profile. In short, every profile includes the current and desired location(s) of the
candidate, their desired job title (software engineering, web design, product management,
etc.), their experience (in years) in this job, their top skills (mostly coding languages such
as R or Python), their education (degree and institution), their work history (i.e., firms
they worked at), their contract preferences (remote or on-site, contract or full-time, and visa
requirements), as well as their search status, which describes whether the candidate is ready
to interview and actively searching or simply exploring new opportunities. Importantly, the
ask salary is prominently featured on all profiles since it is a required field.

Demand side: Firms get access to candidate profiles that match standard requirements for
the job they want to fill (i.e., job title, experience, and location). To apply for an interview
with a candidate, the company sends them a message—the interview request—that typically
contains a basic description of the job as well as, crucially, the salary at which they would be
willing to hire the candidate. We call this the bid salary. Appendix Figure A.2 is a screen-
2 Payscale’s page for SF software engineer profiles can be found here.

https://www.payscale.com/research/US/Job=Software_Engineer/Salary/a5e48575/San-Francisco-CA
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shot of a typical message sent to a candidate by a company. The bid salary is prominently
featured in the subject line of the message and is required to be able to send the message.
The equity field also exists but is optional.

Demand meets supply: Hired.com records whether the candidate accepts or rejects the
interview request. While interviews are conducted outside of the platform, Hired.com gathers
information on whether the company makes a final offer of employment to the candidate and
at what salary. We refer to this as the final salary. It is important to note that the bid
salary is non-binding, so the final salary can differ from the bid. Finally, we observe whether
the candidate accepts the final salary offer, in which case the candidate is hired. Given
these three steps of the recruitment process and the nature of candidates and jobs on the
platform, our setting combines a high stakes environment with clean identification of the
consideration set of each candidate and their decisions at the interview stage. One a priori
caveat is that, while the consideration set is comprehensive—that is, we observe all the firms
that the candidate considers on the platform—it is not exogenous, as firms select into sending
an interview request to candidates. However, the fact that we observe all information about
candidates available to firms at the time they decide to send an interview request allows us
to circumvent this issue.3

Sample restrictions: connected set

As we explain below, we can only estimate amenity values for firms that are members of a
connected set. To be a member of this set, a firm must have been both revealed-preferred to at
least one member of the set, and have been revealed-dispreferred to at least one member of the
set. While several job titles and locations are represented on Hired.com, the candidate market
is highly skewed towards software engineers in San Francisco: 60.1% of the candidates are
software engineers and 31.1% live in the Bay Area. In addition, the jobs on the platform are
even more concentrated in these profiles: 76% of interview requests go to software engineers
in the Bay Area. Therefore, while the average number of interview requests on the platform
is 4.5, the average number of interview requests received by a software engineer in the Bay
Area is 11.2. For these reasons, we zoom in on the highly connected market of San Francisco
software engineers. Table 1.2 provides simple descriptive statistics on the sample sizes, for
the full dataset, for the subset of jobs in the San Francisco Bay Area and finally for the
connected set of firms within that market. The full sample includes 7,877 companies that
sent 856,665 requests for 64,539 different jobs to 224,499 candidates. While the average
number of bids sent per job is 13.3, the median is 5.0, suggesting large differences in the
extent to which companies reach out to candidates. More than a fourth (n=16,907) of all
jobs on Hired.com in the full sample are based in the SF Bay area. For these jobs, 2,121
companies sent out 267,940 interview requests to 44,321 candidates, averaging 15.8 bids per
job (median 5 bids) and 4.1 bids per candidate. The average probability of accepting a bid
remains almost constant between 60% and 62.5 % in both sets. 1,649 companies meet the
3 Assumption 1.1 in Section 1.4 formalises this argument.
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requirements to qualify for the connected set. Companies in this sample are more targeted
when approaching candidates, sending on average only 9.5 bids (median 4 bids) for 13,072
different jobs to 14.344 candidates. However, the average number of bids per person is with
4.8 around 37% higher than in the full sample and candidates accept only 56.4% of received
interview requests.

Descriptive Statistics

As noted above, we can only estimate the amenity values of firms that have both been
accepted and rejected by at least one candidate. This implies that candidates must neces-
sarily incur an interview cost, such that they would not accept all the interview requests
they receive. Figure 1.2 empirically tests this assumption by displaying the distribution of
the share of bids accepted for a given firm. It first shows that firms are frequently rejected
by candidates: on average, candidates only accept 60.5% of the inverview requests they re-
cieve. In addition, there is significant heterogeneity across companies in the likelihood that
an interview request is accepted: while the mean share of bids accepted is 60.5%, 10.2% of
the firms see less than 40% of their interview requests accepted, while 16.2% of the firms see
more than 75% of their interview requests accepted.

Figure 1.3 further illustrates several empirical patterns that are the foundation of our
modelling strategy. Figure 1.3a plots the probability of acceptance of an interview request
against the ratio of the bid to ask salary. The first fact is that higher bids are associated with
a higher acceptance probability: when the bid salary matches the ask salary, the acceptance
probability is 62%. When the ratio is 1.2 or more, the acceptance probability goes to 73%,
whereas when it is 0.8 or less it averages 36%. The second notable pattern is that there is
a clear discontinuity of the probability of acceptance in the neighborhood of bid

ask
= 1. In

particular, while the probability of acceptance is 52% when bid
ask

= 0.95, it jumps to 62%
when the ratio is 1.4 Figure 1.3b shows the relationship between the probability that the bid
is, respectively, less than, equal to, or greater than the ask, and the level of the ask salary.
First, across all levels of ask salary, the probability that the bid is exactly equal to the
ask is very high, averaging 76.5%. A second, intuitive, observation is that the probability
that the ask is lower than the bid increases with the level of the ask from virtually 0%
at the lowest levels of ask salary to just shy of 40% for the highest levels of ask salary.
Symmetrically, the probability that the bid is greater than the ask decreases from around
20% to 0%. This empirical pattern provides strong suggestive evidence that the asked wage
serves as a behavioral reference point in the formation of the bid salary. Figure 1.3c shows
the relationship between the bid premium - the difference between bid and ask salaries -
and the within-job deviation of the log salary. This figure illustrates the fact that there is
large heterogeneity of bid salaries for the same job. Indeed, if the data were on the -45 red
line, firms’ bids for the same job would remain constant, independent of the candidates’ ask
salaries. Empirically, we observe that the slope of the relationship is dramatically flatter
4 Leveraging a survey of 6,000 job seekers in New Jersey, Figure 3 in Hall and Mueller (2018) shows the

job offer acceptance frequency as a function of the difference between the log hourly offered wage and
the log hourly reservation wage. A clear kink is observed at offered wage = reservation wage.
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than this “full compression” line: changes in the ask are almost entirely offset by changes in
the bid - indicating that, even for a given job, firms increase their bids almost one for one
with the asks. In fact, only 1.4% of jobs offer the same bid salary to all candidates, and the
within-job variation in salaries is substantial: the average standard deviation of offers for a
given job is $23,041.

The bid salary is what firms declare they are willing to pay the candidate solely based on
their profile, before any interaction with them. The final salary is offered to a candidate at
the hiring stage. Given that companies are by no means contractually bound by their bids,
final salaries may differ from bids. Given our focus in this paper on the interview stage of
the process, it is important to point out that firms effectively commit to making final offers
that are close to the bids. Figure 1.4 shows the relationship between the bid and final offer
for the subset of candidates that receive one. Strikingly, this relationship is very linear, with
a slope close to one. Additionally, 31% of all final offers are identical to the bid and 72% of
all final offers are within 10% of the bid.

1.3 Model

Setup

This section describes our model of the recruitment process on the platform. We index
candidates by i = 1, . . . , N and firms by j = 1, . . . , J . Firms encounter a candidate pool, Ij,
the size and composition of which varies depending on the time period of the firm’s search.
Likewise, candidates encounter a time-specific firm pool Ji.5 We denote the observable
characteristics of firms by zj (which includes a constant), and let j = 0 denote an outside
option. Candidates post resume information xi, which includes their asked salary ai (and
a constant), before interacting with firms on the platform. Firms browse active candidate
profiles and decide whether to send each candidate an interview request, and if so, how much
to bid. As stated above, firms’ bids are made before the firm has had any interaction with the
candidate, on the basis of the observable candidate characteristics xi alone. We denote the
bid of firm j on candidate i by bij, and let the indicator variable Bij equal one if firm j sends
a bid to candidate i. After a candidate receives an interview request, she decides whether
to accept and thereby move forward with the recruitment process, or to reject the offer.
We let the indicator variable Dij equal one if candidate i accepts firm j’s interview request.
After the interview process is complete, the firm can make a final offer of employment to
the candidate. We let Bf

ij equal one if j makes a final offer to i, and we denote the salary
attached with that final offer by bf

ij. Finally, we let Df
ij equal one if i accepts j’s final offer

of employment.
Our analysis focuses on the initial stages of the recruitment process. In order to specify

a tractable model of firm and candidate behavior at the initial stages, we make several
simplifying assumptions about the later stages of the process. In particular, we assume firms
are risk neutral, and that firms do not treat bids as cheap talk – rather, we assume that firms
5 We assume that agents’ beliefs are stationary, such that they behave as if they are in a steady state, as

in Backus and Lewis (2020). We defer consideration of dynamics for future research.
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credibly expect to pay their bids, should they decide to make a final offer. In practice, this
assumption is an accurate description of firm behavior: the correlation between initial bids bij

and final offers bf
ij is 0.86 (see Figure 1.4). Second, we assume that candidates’ choices at the

interview request and final offer stages are governed by the same basic preference structure.
While our framework is consistent with certain forms of preference updating on the part
of candidates after interviews take place, we remain agnostic about those mechanisms here.
These assumptions allow us to model the bid determination process straightforwardly: when
a firm encounters a candidate, the firm decides to bid on that candidate by maximizing the
ex-ante option value associated with an interview request. The option value is determined
by the firm’s forecast of the candidate’s marginal revenue product, net of the bid, and the
probability that the candidate would accept a final offer of employment, given the bid.

Labor Supply

The first component of our model is a labor supply system. In our model, candidates’
asked wages ai play two important roles. First, motivated by the visual evidence in Figure
1.3, we assume that the asked wage acts as a behavioral reference point: the elasticity of
labor supply may be relatively larger when firms offer less than the asked wage than when
they offer more than the asked wage. This feature is a potential mechanism driving the
bunching of offered wages at exactly the asked wage, even conditional on detailed candidate-
specific controls. Second, we assume that the asked wage serves as a sufficient statistic for the
monetary component of utility associated with candidates’ outside options, up to an additive
constant. For the large fraction of workers on the platform engaging in on-the-job search,
this assumption can easily be justified if candidates formulate asked wages as a function
of their current wage. Workers searching from unemployment post lower asked wages even
conditional on a rich set of covariates (conditional on other profile characteristics, employed
candidates ask for $8,366 more than unemployed candidates), suggesting that asked wages of
unemployed candidates indeed reflect the relatively worse outside options available to those
workers. We therefore normalize the “bid” associated with the outside option as bi0 = ai.

We model the utility candidate i associates with option j at bid bij as additively separable:

Vij = u(bij, ai) + Ξij,

where the function u(bij, ai) is the monetary component of utility and Ξij is the non-monetary
component of utility that candidate i associates with option j. Because only relative utilities
matter for choices, we normalize u(a, a) = 0 without loss of generality. The utility of the
outside option is therefore given by:

Vi0 = Ξi0.

We assume that u(b, a) is continuous, strictly increasing, and twice continuously differ-
entiable in its first argument, except at the point b = a, where limb→a− ∂u(b, a)/∂b >
limb→a+ ∂u(b, a)/∂b. This assumption encodes reference-dependence around the asked wage:
utility decreases relatively more quickly for every dollar below the asked wage than it in-
creases for every dollar above the asked wage.
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The non-monetary component of utility can be further decomposed into a systematic
amenity value and an idiosyncratic taste shock:

Ξij = Aij + ξij.

We assume that the idiosyncratic preference shocks ξij are independent and identically-
distributed draws from a probability distribution, ξij

iid∼ Fξ(·), where Fξ admits a continuous,
log-concave density fξ(·) with support on the full real line.6 Preference shocks ξij are private
information: they are observed by workers, but not by firms. Further, the distribution of
preference shocks is independent of xi: Fξ|x = Fξ.

The amenity value candidate i associates with option j is determined by i’s latent prefer-
ence type, which we denote by Qi:

Aij = Aj(Qi).

Candidates i and ℓ with Qi = Qℓ share a common mean valuation of amenities at all
firms. We assume that candidates’ preference types are not directly observable by recruiters,
but that the distribution of preference types FQ may depend non-trivially on candidates’
observable resume characteristics xi: FQ|x ̸= FQ. In this sense, Aij is not purely the private
information of the candidate, but instead may be forecast by firms on the basis of the
observables available on candidate profiles.

We assume that a candidate accepts an interview request if and only if the utility associ-
ated with that requests exceeds that of her outside option:

Dij = Bij × 1[Vij ≥ Vi0].

Likewise, let V f
ij denote the utility level i associated with a final offer of bf

ij from j. Candidates
pick the top choice among all final offers, such that:

Df
ij = 1

[
V f

ij ≥ V f
ik ∀k s.t. Bf

ij = 1
]
.

For simplicity’s sake, we model the utility candidates associate with final offers as V f
ij =

u(bf
ij, ai) + Ξij, such that the same utility shocks that enter into candidates’ interview offer

decisions also govern candidates’ final job choice. Because we focus mainly on the ex-ante
perspective of firms formulating bids, we view this assumption as a simplifying abstraction
that may be relaxed in future work.
6 A function fξ is log-concave if:

fξ(λy + (1− λ)x) ≥ fξ(y)λfξ(x)1−λ ∀x, y ∈ R, λ ∈ [0, 1].

A large number of common probability distributions admit log-concave densities, including but not
limited to the normal, logistic, extreme value, and Laplace distributions. Log-concave probability
distributions are commonly used in models of search (Bagnoli and Bergstrom 2005) , and possess a
number of desirable qualities. Among other things, log-concavity of fξ implies that Fξ and 1−Fξ = F ξ

are also log-concave, that fξ/Fξ is monotone decreasing, and that fξ/F ξ is monotone increasing.
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Labor Demand

A General Bidding Framework

We next write down a general framework for rationalizing firms’ bidding behavior. Firms
are risk neutral and equally well informed. Firms do not observe candidates’ latent types Qi,
but rather can form predictions over those types using the available candidate characteristics
xi. For each candidate i it encounters, firm j formulates an optimal bid b∗

ij to maximize the
expected option value of making an interview request given that candidate’s observables.
This is given by maximizing an expected option value function πij(b):

b∗
ij = arg max

b
πij(b).

Firms decide to bid on candidates if the maximized value of the expected option value
function surpasses an interview cost threshold cj:

Bij = 1
[
πij(b∗

ij) ≥ cj

]
.

We may therefore write realized bids as:

bij = Bij × b∗
ij.

We use the shorthand bij = 0 to indicate the event Bij = 0.
The option value of an interview request to a particular candidate depends upon both her

labor supply decision and her productivity. Define the potential outcome:

D◦
ij(b) ≜ 1

[
i would accept j’s offer of employment | bij = b

]
,

which encodes candidate i’s final labor supply decision, given the firm’s choice of bid b. We
refer to πij(b) as an expected option value function because even if the event D◦

ij(b) = 1 is
realized, the firm may choose not to hire i (for instance, if a candidate the firm prefers over i
would also accept its offer). Denote the ex-post productivity of a match between candidate
i and firm j as ε◦

ij. Given these definitions, the expected option value/profit function can
then be written:

πij(b) = Eij

[
D◦

ij(bij)× (ε◦
ij − bij) | bij = b

]
where Eij denotes expectation taken over the information set of firm j when it evaluates
candidate i, and so implicitly conditions on firm, candidate, and market-level variables. The
connection between this representation of the firm’s problem and the objective function of
a bidder in a standard first-price auction is immediate: indeed, the problems are nearly
identical. In a first-price auction, a bidder’s objective is simply to maximize her expected
utility, where her bid affects both the net payoff should she win (ε◦

ij − b) and the probability
that she wins the auction (the distribution of D◦

ij(b)). In a standard auction, the win
probability depends only upon the monetary values of the competing bids – the bidder who
submits the highest bid wins. In our setting, horizontal differentiation weakens this relation:
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the firm that submits the highest monetary bid is not guaranteed to be the candidate’s
top-ranked choice.

Conditional on the firm’s information set, we assume that potential outcomes D◦
ij(b)

and ex-post marginal revenue products ε◦
ij are independent. Further, conditional on the

information known to the firm at the time it bids, ε∗
ij is independent of the firm’s choice of bid

bij. The first of these assumptions rules out, among other things, scenarios in which the event
of winning the “auction” for candidate i reveals information about other firms’ productivity
forecasts that is relevant to j’s forecast (sometimes called the “winner’s curse”). Since
all firms must bid on candidates before productivity is revealed, this assumption essentially
establishes the sufficiency of the observables available to the firm for forecasting productivity.
The second assumption rules out behavioral effects of increasing compensation (e.g. efficiency
wages). Together, they imply:

πij(b) = Prij

(
D∗

ij(b) = 1
)
×
(
Eij[ε∗

ij]− b
)
.

The first term in the above expression is j’s forecast of i’s labor supply decision, which we
denote by:

Prij

(
D∗

ij(b) = 1
)
≜ Gij(b).

Firms’ forecasts of ex-post productivity, which we denote by εij, are functions of a systematic
component (determined by candidate covariates) and an idiosyncratic component:

Eij[ε∗
ij] ≜ εij = γj(xi, νij).

We further assume νij
iid∼ Fν(·), and that νij is independent of xi, zj, and market-level

variables. The function γj(x, ·) encodes the systematic component of productivity shared by
all candidates with observables xi = x at firm j. We impose the normalization E[νij] = 0
without loss of generality. Substituting these definitions into the expected option value
function gives:

πij(b) = Gij(b)×
(
εij − b

)
= Gij(b)×

(
γj(xi, νij)− b

)
.

Given the parallels between our setting and the auction setting, we refer to εij as either j’s
valuation for i or i’s (ex-ante) productivity at j, and Gij(b) as either j’s win probability for
i or i’s labor supply to j. Firms’ strategies are described by an optimal bidding function
that maps valuations into actions:

bij(ε) =

arg maxb Gij(b)× (ε− b) if maxb Gij(b)× (ε− b) ≥ cj

0 otherwise.

To close the model, we define a notion of equilibrium. In a standard Bayes-Nash equilib-
rium, players’ actions are best responses given their beliefs, which are themselves consistent
with equilibrium play. In the subsequent analysis, we test models of firm behavior in which
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firms’ forecasts of candidates’ labor supply decisions may not fully incorporate the relevant
available information. In order to accommodate these models, we modify the standard def-
inition of equilibrium as follows. Denote the maximum utility level offered to i by V 1

i , and
let Λi be a random variable that governs the distribution of V 1

i . We assume that beliefs are
consistent conditional on the information firms use to construct those beliefs. In particular,
let Ωij = {ωΛ

ij, ω
Q
ij} encode the information j uses to forecast Λi and Qi, respectively, and let

FΛ,Q(λ, q | Ω) denote the population joint CDF of Λi and Qi, conditional on Ωij. We may
now define equilibrium as follows:

Definition 1.1 (Equilibrium). Conditional on an information structure {Ωij}N,J
i=1,j=1, a

pure strategy equilibrium is a set of tuples {bij(·), Gij(·)}N,J
i=1,j=1 such that:

(Optimality) bij(ε) is j’s best response for valuation ε given beliefs Gij(b).

(Consistency) Conditional on the information Ωij, firm j’s beliefs obey:

Gij(b) =
∫∫

Pr
(
Vij = V 1

i | Λi = λ,Qi = q, bij = b
)
× dFΛ,Q

(
λ, q | Ωij

)
.

In the classic first-price auction setting, the function Gij(b) is nonparametrically identified
by the observed distribution of bids: the seller accepts the highest bid, and so (under the
assumption that bidders have rational expectations) an estimate of Gij(b) can be constructed
by calculating the empirical CDF of winning bids. This argument is the basic intuition of
the approach of 2000 (GPV). In our setting, the win probability Gij(b) depends not only
upon the monetary value of the bid a firm submits, but also the non-monetary components
Aj(Qi) + ξij. Despite this difference, we adopt the basic logic of GPV in our estimation
strategy, which we detail below: given estimates of the labor supply parameters and the
assumption of rational expectations, the empirical distribution of inclusive values for each
candidate can be used in combination with an assumption on firm conduct (where various
models of conduct are indexed by m) to construct estimates of Gm

ij (b) – the conditional win
probability under model m.

Defining Firm Conduct

Given the framework of the previous section, we next consider various modes of firm
conduct. We operationalize our notion of conduct in this setting as sets of assumptions on
the information firms use to forecast candidates’ labor supply decisions. In practice, that
means specifying which variables are included in the components of Ωij. This notion of
conduct is not the only interesting feature of firm behavior in wage setting, and indeed there
are many potentially interesting questions about the ways firms behave in labor markets
that we do not test. However, our setting – one in which firms have the ability to offer fully
individualized wages to each candidate – is particularly well-suited for thinking about how
firms incorporate information about the distribution of preferences into their recruitment
decisions. In Appendix A.3, we illustrate the implications of our conduct assumptions,
and how the conceptual framework of our study differs from those that relate measures of
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market structure to wages, via a simplified model similar to that of Bhaskar, Manning, and
To (2002).

We first consider a model of “perfect competition” in which firms are assumed to bid their
valuations: bij(ε) = ε. In this model, interview costs cj are normalized to 0 without loss
of generality. This model does not fit cleanly into the framework of the previous section –
to rationalize bidding at exactly its valuation, a firm must believe that there always exists
a competitor with a valuation arbitrarily close to its own valuation. Even so, the perfect
competition model we estimate serves as a useful baseline against which we can compare
more complicated models of conduct that incorporate additional sources of wage dispersion
beyond differences in the marginal revenue product of labor (MRPL).

In order to specify additional conduct assumptions of interest, we decompose the joint
CDF of Λi and Qi given Ωij as:

FΛ,Q

(
λ, q | Ωij

)
= FΛ|Q

(
λ | Qi = q, ωΛ

ij

)
× FQ

(
q | ωQ

ij

)
.

The first conduct assumption we test concerns the information firms use to forecast types.
We specify two alternatives – firms are assumed to be either:

◦ Type Predictive: ωQ
ij = xi, such that FQ

(
q | ωQ

ij

)
= FQ|x(q | xi), or

◦ Not Predictive: ωQ
ij is empty, such that FQ

(
q | ωQ

ij

)
= FQ(q).

This assumption governs how firms internalize horizontal differentiation: do firms engage
in what is sometimes called direct segmentation? Our model allows for the possibility that
workers who have the same level of productivity at a particular firm may belong to different
preference types. Variation in preference types can itself be partially predicted by candidate
characteristics, raising the possibility that type-predictive firms might offer different wages
to candidates with identical productivity levels. Non-predictive conduct implies that firms
make fewer offers than under an efficient allocation, although workers may capture a larger
share of the surplus. Type-predictive conduct implies less misallocation, but potentially at
the cost of workers’ share of the surplus. How firms do or do not use information has been a
matter of debate in the labor literature. For instance, Burdett and Mortensen (1998) assume
that firms are not type-predictive, leading to efficiency losses that they show can be reduced
by the introduction of a minimum wage. On the other hand, Postel-Vinay and Robin (2002)
assume that firms are not just type-predictive, but fully informed about the types of workers
they meet, allowing them to engage in classic first-degree price discrimination. More recently,
Postel-Vinay and Robin (2004) and Flinn and Mullins (2021) analyze models in which firms
differ in whether they commit to posted wages (akin to non-predictive conduct) or negotiate
wages in response to outside offers (akin to type-predictive conduct). Similarly, whether firms
use information on within-firm variation in price elasticities has been the subject of interest
in the industrial organisation literature on uniform pricing (DellaVigna and Gentzkow 2019).

The second conduct assumption we test concerns the nature of interactions between
vertically-differentiated firms. Again, we specify two alternatives – firms are assumed to
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be either:

◦ Monopsonistically Competitive: ωΛ
ij omits j’s bid as a (direct) determinant of Λi,

or
◦ Oligopsonists: ωΛ

ij includes j’s bid as a (direct) determinant of Λi.

In a monopsonistically competitive model, firms are differentiated, but view themselves as
atomistic relative to the market: they ignore the effect of their behavior on the distribution of
options available to each candidate. This assumption is maintained in a number of studies,
including Card et al. (2018) and Lamadon, Mogstad, and Setzler (2022), among others.
When firms are oligopsonists, on the other hand, they actively incorporate the effects of their
behavior on the distribution of options available to each candidate into their wage-setting
decisions. In this way, models of oligopsony incorporate strategic interactions between firms.
Berger, Herkenhoff, and Mongey (2017) and Jarosch, Nimczik, and Sorkin (2021) estimate
models that include strategic interactions of this form. Berger, Herkenhoff, and Mongey
(2017) note that, under oligopsony, structural labor supply elasticities to the firm are not
equal to reduced-form elasticities, as they are under monopsonistic competition. Under
oligopsony, these elasticities depend upon the value of the firms’ own amenities, in addition
to competitor’s amenities (and bids). Importantly, our definition of oligopsonistic behavior
encompasses multiple mechanisms that have been explored separately in prior work (for
instance, our framework subsumes both size- and differentiation-based mechanisms by which
oligopsonists generate wage markdowns).

1.4 Econometric Framework

Candidate Preferences

Identification

We first consider identification of the preference structure from choice data. Our principal
identification assumption is that firms do not directly observe Qi, but rather predict type
membership on the basis of observable characteristics. This implies that, given a vector
of characteristics xi, the probability that candidate i receives offer set Bi = {bij, Bij}J

j=0 is
independent of i’s true type membership Qi:

Assumption 1.1. (Conditional Independence) Firms do not observe Qi, and so only
make decisions about whether and how much to bid on the basis of xi. This implies that,
conditional on posted resume characteristics xi, firms’ bids are independent of candidates’
latent preference types Qi:

Pr(Bi | Qi = q, xi) = Pr(Bi | xi).



CHAPTER 1. BIDDING FOR TALENT 18

An immediate consequence of Assumption 1.1 is that the distribution of candidate types
conditional on received bids Bi and characteristics xi is equal to the distribution of types
conditional on xi alone:

Pr(Qi = q | Bi, xi) = Pr(Bi | Qi = q, xi) Pr(Qi = q | xi)
Pr(Bi | xi)

= Pr(Qi = q | xi).

In administrative data, like linked employer-employee records, assumptions similar to As-
sumption 1.1 are highly implausible due to the various selection mechanisms at play in the
formation of equilibrium matches. By contrast, our data contains not only the final matches
between firms and candidates, but also the full distribution of bids candidates receive. Fur-
ther, the rules of contact on the platform require firms to make initial bids on the basis
of candidate profiles alone, before they have the chance to interact with candidates (and
thereby update their forecasts of candidate preferences). Since we observe the same profile
information that firms do (xi), we are able to closely approximate the information set avail-
able to firms when forming bids. This feature is one of the advantages of using data from
online hiring platforms and has been recognized in other studies. For instance, Hangartner,
Kopp, and Siegenthaler (2021) study discrimination in hiring on a large online job board.
Because they observe all variables visible to employers on the site, they argue that they are
able to control for all relevant confounds.

We next formalize additional assumptions about the structure of preferences implicit in
the model of labor supply specified in the previous section. Denote the set of bids that i
accepts by B1

i , and likewise denote the set of bids i rejects by B0
i = Bi \ B1

i . Given a set
of bids Bi, we let B1

i ≻ B0
i denote the event minj∈B1

i
Vij ≥ maxk∈B0

i
Vik: every option in i’s

accepted set is revealed-preferred to every option in i’s rejected set. We refer to B1
i ≻ B0

i as
a partial ordering over options.

Assumption 1.2. (Mixture Model) The probability of observing any partial ordering is
described by a finite mixture model over latent preference types:

a) (Finite Support) The support of the distribution of latent types is finite – without
loss of generality, we restrict the support of Qi to the integers 1, . . . , Q. The conditional
probability of type membership is denoted by:

Pr(Qi = q | xi) ≜ αq(xi).

b) (Exclusion Restriction) Conditional on a candidate’s latent type and offer set, the
probability of observing any partial ordering is independent of xi:

Pr
(
B1

i ≻ B0
i | Qi = q, xi

)
= Pr

(
B1

i ≻ B0
i | Qi = q

)
≜ Pq

(
B1

i ≻ B0
i

)
.

Assumption 1.2a is a modelling choice about the form of unobserved heterogeneity in
preferences over firms. Assumption 1.2b is an exclusion restriction that governs how pref-
erences are related to individual characteristics: the variables in xi shift the distribution of
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types, but provide no additional information about preferences conditional on those types.
Importantly, Assumption 1.2b is an implication of the labor supply model we specified in
the previous section.

Combining Assumptions 1.1 and 1.2, we may express the likelihood of the partial ordering
B1

i ≻ B0
i , given an option set Bi and profile characteristics xi, as:

Pr
(
B1

i ≻ B0
i | Bi, xi

)
=

Q∑
q=1

Pr(Qi = q | xi)× Pr
(
B1

i ≻ B0
i | Qi = q

)

=
Q∑

q=1
αq(xi)× Pq

(
B1

i ≻ B0
i

)
.

Mixtures of random utility models (RUMs) of this form have been studied in both economet-
rics and computer science/machine learning. In particular, Soufiani et al. (2013) establish
identifiability of a finite-mixture-of-types RUM for which the idiosyncratic error components
follow a log-concave distribution, as assumed in our model. As in Sorkin (2018), we can
only rank firms that are members of a connected set: to be a member of the set, a firm
must have been both revealed-preferred to at least one member of the set, and have been
revealed-dispreferred to a at least one member of the set. This identification condition is
identical to that of conditional logit models that require variation in binary outcomes for
every unit.

Estimation

We produce estimates of the labor supply parameters using a two-step procedure. In
the first step, we estimate β and a transformation of the amenity values Aqj. To do so,
we maximize the likelihood of each candidate’s revealed preference ranking over firms for
which they received identical wage offers.7 Once we have obtained first step estimates, we
use them in a second step to estimate the remaining labor supply parameters. In particular,
we estimate those parameters in a generalized method of moments procedure in which we
specify conditional moment restrictions on the interview acceptance probability.

Parameterization. In order to estimate preferences, we first specify a tractable parame-
terization of the labor supply model. The monetary component utility function is assumed
to be continuous, with a kink at the point at which the bid salary equals the ask salary. We
7 Typically, exact matching of observations on a continuous covariate is extremely challenging. In our

case, however, the overwhelming bunching of wage offers at ask (in addition to additional bunching of
wage offers at round numbers) means that we may still use the majority of observations for estimation
of amenity values and the distribution of unobserved heterogeneity.
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write this function as:

u(b, a) = θ0 ·
[

log(b)− log(a)
]

+ θ1 ·
[

log(b)− log(a)
]

−

=
(
θ0 + θ1 · 1[b < a]

)
· log(b/a)

=

θ0 · log(b/a) if b ≥ a(
θ0 + θ1

)
· log(b/a) if b < a,

where [x]− = x · 1[x < 0] denotes the negative part of x. Note that we have defined
u(b, a) relative to the outside option: when b = a, log(b/a) = log(1) = 0, and so u(b, a) is
continuous at b = a.8 Under monopsonitic competition, the structural labor supply elasticity
parameters θ0 and θ1 coincide with the elasticities of labor supply to individual firms, and
markdowns only vary based upon whether bids are above or below ask. Under oligopsony,
the elasticity of labor supply to each firm depends additionally on the amenity value of the
firm, and therefore varies both across firms and within firms between workers of different
preference types. When oligopsonistic firms are not type-predictive, they only exploit across-
firm differences in average labor supply elasticities, while type-predictive oligopsonists exploit
both between- and within-firm differences in labor supply elasticities.

We let Qi denote a Q × 1 vector of mutually exclusive and exhaustive indicators Qiq

for membership in type q (Qiq = 1 if Qi = q). We specify the distribution of types as a
multinomial logit in profile characteristics xi:

Pr(Qiq = 1 | xi) = αq(xi | β) = exp(x′
iβq)∑Q

q′=1 exp(x′
iβq′)

.

We additionally let Aj(Qi) = Q′
iAj, where Aj is a Q×1 vector of type-specific mean amenity

values at firm j with q-th component Aqj. Finally, we assume that the distribution of taste
shocks is extreme value type 1:

ξij
iid∼ EV1,

and so the particular labor supply system we estimate is a discrete mixed-logit random util-
ity model.

First Step. The first step of our procedure is to estimate the distribution of preference
types and (a transformation of) the type-specific mean amenity valuations, or rankings, for
each firm. Our estimation strategy is based on a simple observation: if candidate i accepts
an offer from j and rejects an offer from k when bij = bik, then by revealed preference:

Q′
i(Aj −Ak) ≥ ξik − ξij.

Candidates often have several offers at the same bid salary – most often at exactly their ask,
but also often at round numbers. Because exact matching of offers at the same salary is
8 To make comparisons of utility between candidates, we add back the monetary component associated

with the outside option: u(b, a) + θ0 · log(a).
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possible in our setting, we subset to sets of offers made to candidates at the same bid salary
for the purpose of estimating amenity values.

In order to model the joint probability of the full set of choices candidates make, we
must derive the probability of observing an arbitrary partial ordering of firms, Pq(B1

i ≻ B0
i ).

Define the re-parameterization:

ρqj = exp(Aqj)∑J
k=1 exp(Aqk)

,

and let σ(·) : {1, . . . , J} → {1, . . . , J} denote a linear order or ranking of all J alternatives.
A multinomial logit model over rankings of alternatives is sometimes called a Plackett-Luce
(Plackett 1975; Luce 1959) model, or an exploded logit. Given this notation, the likelihood
of observing any full ranking of alternatives is given by:

Pr(σ(·) | ρq) =
J∏

r=1

ρqσ−1(r)∑J
s=r ρqσ−1(s)

.

Unlike the standard Plackett-Luce/exploded logit setting, we only observe candidates’
partial orderings of firms. Following Allison and Christakis (1994), we could compute the
probability of observing any particular partial ordering of preferences by summing over all
linear orders that are consistent with that partial ordering. Even with a small number of
alternatives, however, this strategy is computationally intractable: the number of concordant
linear orders grows exponentially in the number of alternatives. Simulation methods that
sample linear orders (e.g. Liu et al. 2019) are likely to be slow, and introduce additional
sources of noise.

We circumvent this issue by implementing a novel numerical approximation to the partial
order likelihood that greatly reduces the computational burden of estimation. Our strategy
relies on the well known fact that the maximum of independent EV1 random variables is also
distributed EV1:

Pr
(

max
k∈B0

i

log(ρqk) + ξik < v

)
= Fξ

(
v − log

(∑
k∈B0

i
ρqk

))
,

where Fξ(x) = exp(− exp(−x)) is the EV1 CDF. Using this observation, in combination with
a simple change of variables argument, we can re-write the probability of the partial ordering
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B1
i ≻ B0

i , conditional on preference parameters ρq, as:

P
(
B1

i ≻ B0
i | ρq

)
= Pr

(
min
j∈B1

i

log(ρqj) + ξij > max
k∈B0

i

log(ρqk) + ξik | ρq

)

=
∫ ∞

−∞

∏
j∈B1

i

(1− Fξ (v − log(ρqj)))× dFξ

(
v − log

(∑
k∈B0

i
ρqk

))

=
∫ ∞

−∞

∏
j∈B1

i

(
1− Fξ

(
v − log

(∑
k∈B0

i
ρqk

))ρqj/
∑

k∈B0
i

ρqk
)

× dFξ

(
v − log

(∑
k∈B0

i
ρqk

))
=
∫ 1

0

∏
j∈B1

i

(
1− uρqj/

∑
k∈B0

i
ρqk

)
du.

The second line uses the independence of ξij and the distribution of maxk∈B0
i

log(ρqk) + ξik,
the third line uses the fact that Fξ(x − log(a)) = Fξ(x − log(b))a/b, and the fourth line
substitutes u = Fξ(v − log(∑k∈B0

i
ρqk)). This expression, and its derivatives, can be quickly

and accurately approximated by numerical quadrature. The log-integrated likelihood of i’s
revealed partial order is therefore given by:

L(B1
i ≻ B0

i | xi,β,ρ) = log
(∑Q

q=1 αq(xi | β)× P
(
B1

i ≻ B0
i | ρq

))
.

We estimate β and ρ via a first-order generalized EM-algorithm. Details of the estimation
procedure are given in Appendix A.4.

While our estimation procedure differs in several ways from those of existing studies, the
logic of the ranking methodology is similar to that of Sorkin (2018) and Avery et al. (2013).
As in those studies, the estimated rank of firm j depends not on j’s raw acceptance proba-
bility, but the composition of firms to which j was revealed preferred. Sorkin (2018) summa-
rizes this property as a recursion: highly-ranked firms are those that are revealed-preferred
to other highly-ranked firms. Avery et al. (2013) note that producing rankings in this way is
robust to potential strategic manipulations of the units being ranked – a key property in our
setting. While we do not present a formal proof of consistency here, parameter consistency
of the MLE for similar models has been established under sequences in which the number of
items to be ranked (here, the number of firms J) grows asymptotically, avoiding the usual
incidental parameters problem (Neyman and Scott 1948). Simons and Yao (1999) estab-
lished the consistency and asymptotic normality of the maximum likelihood estimator of the
parameters of Bradley-Terry models of paired comparisons (a special case of Plackett-Luce)
under asymptotics that hold fixed the number of comparisons available between each pair
of choices, but let the number of choices tend to infinity. Yan, Yang, and Xu (2012) and
Han, Xu, and Chen (2020) generalized this result to sparse comparison matrices in which not
all choices are compared and the numbers of available comparisons for each pair of choices
are random variables. Graham (2020) develops similar results for logistic regression under
sparse network asymptotics.
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Second Step. The second step of our procedure requires estimating the labor supply
elasticity parameters (θ0, θ1), outside option values (A0), and scaling factors (σ), which we
carry out by GMM. We form moment conditions around the model-implied probability of
accepting an interview request, given our first-step estimates β̂ and ρ̂ and the remaining
parameters Θ = {θ0, θ1,A0,σ}. This probability is given by:

Pr(Dij = 1 | bij, xi) =
Q∑

q=1
αq

(
xi | β̂

)
× Λ

(
(θ0 + θ1 · 1[bij < ai]) · log(bij/ai) + σq × log(ρ̂qj)− Aq0

)
,

where the function Λ(x) = (1 + exp(−x))−1 is the logistic CDF. Let m(bij, xi | Θ) denote
this model-based estimate of Pr(Dij = 1 | bij, xi) evaluated at the parameters Θ. We specify
conditional moment conditions of the form:

E
[
xi · (Dij −m(bij, xi | Θ))

]
= 0 and E

[
zj · (Dij −m(bij, xi | Θ))

]
= 0.

We compute the sample analogues of these moment conditions and stack them in the vector
m̂(Θ). We estimate the components of Θ by minimizing:

Θ̂ = arg min
Θ
m̂(Θ)′W m̂(Θ)

for a symmetric, positive-semidefinite weighting matrix W . In practice, we use an efficient
two-step GMM procedure, in which we produce an initial estimate Θ̂0 with W 0 set equal
to an identity matrix. We construct an updated weighting matrix W by computing the
inverse of the covariance matrix of the moment conditions evaluated at the initial estimate
Θ̂0, which we then use to construct an efficient estimate Θ̂.

Labor Demand

Preliminaries: Construction of Gm
ij (b)

Before we can implement the estimation and testing procedure outlined below, we must
first produce approximations to firms’ beliefs for each combination of conduct assumptions.
Definition 1.1 specified a general form for beliefs in equilibrium. Beliefs depend upon the
probability that candidates will rank a firm’s bid highest among all available options, and
that probability conditions on a random variable Λi which summarizes the distribution of
the maximum of the utilities available to i. In our multinomial logit setting, we take Λi to
be the inclusive value of the full set of bids offered to i:

Λi = log
(∑

k:Bik=1 exp
(
u(bik, ai) +Q′

iAk

))
.

Given Λi, the probability that i ranks j’s bid highest can be written:

Pr
(
Vij = V 1

i | Λi, bij = b
)

= exp
(
u(b, ai) +Q′

iAj

)/
exp

(
Λi

)
.
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Using this expression, we re-write firms’ beliefs as:

Gij(b) =
Q∑

q=1

(∫ [
exp

(
u(b, ai) + Aqj

)/
exp

(
λ
)]
dFΛ|Q

(
λ | Qiq = 1, ωΛ

ij

))
× αq

(
ωQ

ij

)
.

We construct approximations to Gij(b) under two alternative conduct assumptions about
firms’ beliefs about the distribution of Λi:

Monopsonistic Competition: Under the monopsonistic competition alternative, firms do
not take into account the contribution of their own bid on the inclusive value Λi – in other
words, bij ̸∈ ωΛ

ij. Let Λiq denote the inclusive value of i’s offer set, conditional on Qiq = 1.
Under this assumption, the expression for firms’ beliefs simplifies to:

Gij(b) =
Q∑

q=1

(
exp

(
u(b, ai) + Aqj

)
× E

[
exp

(
− Λiq

)
| ωΛ

ij

])
× αq

(
ωQ

ij

)
.

Since firms are assumed to have rational expectations conditional on the information ωΛ
ij, the

quantity E
[

exp
(
−Λiq

)
| ωΛ

ij

]
can be approximated by regressing exp(−Λiq) on a flexible func-

tion of the variables contained in ωΛ
ij (which include xi, zj). This argument mirrors the intu-

ition of Guerre, Perrigne, and Vuong (2000): in a rational expectations equilibrium, bidders’
beliefs are consistent with the true distribution of winning bids in an auction, and so beliefs
(and therefore markdowns) can be approximated by the empirical distribution of winning
bids. Given estimates of the labor supply parameters and E

[
exp

(
− Λiq

)
| ωΛ

ij

]
, the beliefs

of monopsonistically-competitive firms can be written as: Gm
ij (b) = (b/ai)θ0+θ11[b<ai] × Cm

ij ,
where Cm

ij is a model-specific constant. This implies that markdowns are a constant fraction
of the wage on either side of bij = ai: θ0

1+θ0
when bij > ai, and θ0+θ1

1+θ0+θ1
when bij < ai. When

bij = ai, we have that µm
ij = ai/εij ∈

[
θ0

1+θ0
, θ0+θ1

1+θ0+θ1

]
.

Oligopsony: Under the oligopsony alternative, firms do take into account the contribution
of their own bid on the inclusive value Λiq – in other words, bij ∈ ωΛ

ij. In this case, we have
that:

Λiq | bij ∼ exp
(
u(bij, ai) + Aqj) + exp

(
Λ−j

iq

)
,

where Λ−j
iq = log

(∑
k ̸=j:Bik=1 exp

(
u(bik, ai) +Q′

iAk

))
is the leave-j-out inclusive value. De-

note the probability distribution of Λ−j
iq by FΛ−j

q
. Under this assumption, firms’ beliefs can

be written:

Gij(b) =
Q∑

q=1

∫  exp
(
u(b, ai) + Aqj

)
exp

(
u(bij, ai) + Aqj) + exp

(
λ
) × dFΛ−j

q

(
λ | ωΛ

ij

)× αq

(
ωQ

ij

)
.

Again, since firms’ beliefs are assumed to be consistent, FΛ−j
q

(
λ | ωΛ

ij

)
can be approximated

by computing the distribution of leave-one-out inclusive values in the sample – for instance,



CHAPTER 1. BIDDING FOR TALENT 25

by computing a series of quantile regressions of Λ−j
iq on a flexible function of the variables

contained in ωΛ
ij. We can then use these estimates to construct a numerical approximation

to the integral over the distribution of leave-j-out inclusive values. Unlike monopsonistic
competition, there is no simple closed-form expression for markdowns in the oligopsony
case.

In order to approximate Gij(b), we must also specify how firms forecast candidate prefer-
ences. We consider two alternatives for assumptions about firms’ beliefs about the distribu-
tion of Qi:

Type Predictive: Under the type-predictive alternative, firms predict candidate types
given observed profile characteristics xi (ωQ

ij = xi). In this case, we approximate these pre-
dictions using the estimated prior over types, αq

(
ωQ

ij

)
= αq

(
xi | β̂

)
.

Not Predictive: Under the not-predictive alternative, firms do not predict candidate
types given observed profile characteristics xi (ωQ

ij = ∅). In this case, we assume that
firms weight type-specific win probabilities by the average probability of type membership,
αq

(
ωQ

ij

)
= αq = 1

N

∑N
i=1 αq

(
xi | β̂

)
.

We produce approximations to Gij(b) under all four combinations of these conduct as-
sumptions. In addition, we consider a baseline Perfect Competition case, in which firms
are assumed to bid their valuations.

Identification and Estimation in the General Model

Next, we consider identification and estimation in our general framework for labor de-
mand. Let m denote a choice of model, as specified by a combination of conduct assumptions.
Each model m is associated with a particular belief about the population win probability
Gij(b), which we denote by Gm

ij (b). To illustrate the intuition of our estimation procedure,
assume for the moment that Gm

ij (b) is differentiable, and denote the derivative of Gm
ij (b) with

respect to b as gm
ij (b). Under this assumption, bids must satisfy the first-order condition:

b+
Gm

ij (b)
gm

ij (b)︸ ︷︷ ︸
=εm

ij (b)

= γm
j (xi, ν

m
ij ),

where εm
ij (b) is the inverse bidding function under model m (b = bm

ij (εm
ij (b))).9 Crucially,

the inverse bidding function is known once we have specified a set of conduct assumptions
9 Labor economists may be more familiar with the equivalent formulation of the firms’ first-order condition

in terms of a multiplicative markdown µm
ij (b) expressed as a function of the elasticity of labor supply to

the firm, ηm
ij (b), evaluated at the optimal bid:

µm
ij (b) =

b× gm
ij (b)/Gm

ij (b)
1 + b× gm

ij (b)/Gm
ij (b) =

ηm
ij (b)

1 + ηm
ij (b) .
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m and plugged in labor supply parameters estimated in a previous step: in a Bayes-Nash
Equilibrium, productivity is “revealed” by the bid. If the function εm

ij (·) is an injection, then
a unique implied valuation εm

ij = εm
ij (bij) can be inferred for every bid bij. Given conditional

moment restrictions of the form E[νm
ij | Ωij] = 0 (arising, for instance, from exclusion restric-

tions), we could estimate the productivity function γm
j (xi, νij) by regressing εm

ij on (flexible
functions of) the determinants of productivity under a functional form assumption. By stan-
dard arguments, the parameters that govern γm

j (·, ·) are identified given sufficient variation
in model-implied markdowns and the covariates. This approach is taken by Backus, Conlon,
and Sinkinson (2021) in their analysis of the common-ownership hypothesis in product mar-
kets. Our setting differs from this example in two important ways, both of which motivate
the maximum likelihood framework we adopt.

First, we explicitly model labor supply as a kinked function of the bid. This implies that
Gm

ij (b) is not differentiable at b = a, and so the first-order condition for pricing does not hold
in general. In Appendix A.5, we establish that bidding strategies bm

ij (·) and option values
πm∗

ij (·) are continuous, monotonic functions of firms’ valuations εij as a consequence of the
log-concavity of Fξ and the shape restrictions we place on u(b, a). In particular, we show
that bm

ij (·) is a strictly-increasing function of εij outside an interval [εm−
ij , εm+

ij ], and is equal
to ai when εij is inside that interval. We also show that πm∗

ij (·) is strictly increasing over all
valuations. This implies that bids partially identify valuations (and therefore option values)
in each model: bids not equal to ask map to a unique valuation, while bids equal to ask
map to an interval of possible valuations [εm−

ij , εm+
ij ]. This motivates our use of a Tobit-style

maximum likelihood procedure that incorporates a mass point of bids made exactly at ask.
Second, selection into bidding is a key feature of our setting: firms only bid on candi-

dates for whom the maximized option value exceeds a threshold cj. This implies that the
conditional moment restriction E[νm

ij | Ωij] = 0 does not hold in general, but rather that
E[νm

ij | Ωij] > 0 in the sample for which bids are observed. While selection poses an esti-
mation challenge, it also provides an opportunity for an additional source of differentiation
between models: different conduct assumptions lead to different predictions about the option
value of each bid, and thereby imply different patterns of selection which may or may not
be reflected in the data. We deal with selection by leveraging a feature of our models of
bidding: under each conduct assumption, firms’ bids reveal not only their valuations, but
also the maximized value of their objective functions. For every bid made not at ask, we
can construct the option value implied by the model, and for every bid made at ask, we
can construct an upper bound on the option value implied by the model. We denote these
values by π̂m∗

ij , and use them to construct a consistent estimate of each firm’s interview cost
threshold (under the assumptions of model m) by taking the minimum among all bids made
by that firm:

ĉm
j = min

i:Bij=1
π̂m∗

ij
a.s.→ cm

j .

The consistency of our estimate of cj necessarily depends upon the number of observations
per firm growing without bound. See Appendix A.6 for a proof of this result.10

10 Our proof of the consistency of ĉm
j for each firm j (and model m) closely follows the proof of Lemma 1

(ii) of Donald and Paarsch (2002).
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Using this estimate, we can compute a lower bound on the valuation associated with
each bid, which we use to implement a selection correction. Because πm∗

ij (·) is a strictly
increasing function, there is a unique lower-bound valuation εm

ij at which firm j is indifferent
between bidding and not bidding on candidate i. This lower bound controls the selection
into bidding: employer j must draw a valuation of at least εm

ij to make a bid on candidate
i, and so the distribution of valuations is censored from below by εm

ij . Given our estimate of
cj, we construct candidate-specific lower bounds by numerically inverting the option value
function; ε̂m

ij is the number that sets:

πm∗
ij

(
ε̂m

ij

)
= ĉm

j .

We use these lower bound estimates to construct the likelihood contribution of each bid,
which is given by:

Lm
ij (Ψm) = Pr

(
εij = εm

ij (bij) | εij ≥ ε̂m
ij , Ψm

)1[bij ̸=ai]

× Pr
(
εij ∈ [εm−

ij , εm+
ij ] | εij ≥ ε̂m

ij , Ψm
)1[bij=ai]

=
fε

(
εm

ij (bij); Ψm
)

1− Fε

(
ε̂m

ij ; Ψm
)
1[bij ̸=ai]

×

Fε

(
εm+

ij ; Ψm
)
− Fε

(
max(εm−

ij , ε̂m
ij ); Ψm

)
1− Fε

(
ε̂m

ij ; Ψm
)

1[bij=ai]

,

where Ψm denotes the parameters for model m, fε(·; Ψm) is the density of εij given param-
eters Ψm, Fε(·; Ψm) is the CDF of εij given parameters Ψm, εm

ij (·) is the inverse bidding
function for model m, and εm+

ij and εm−
ij are the model-implied upper and lower bounds on

εij when bij = ai.11

Parameterization: In order to estimate the distribution of valuations under each set of
conduct assumptions, we make assumptions about the functional forms of γj(xi, νij) and
the distribution of νij, Fν . We parameterize γj(xi, νij) as log-linear in the sum of νij and
a bi-linear form in candidate and firm characteristics, as in Lindenlaub and Postel-Vinay
(2021):

γj(xi, νij) = exp
(
z′

jΓxi + νij

)
z′

jΓxi =
∑

k

∑
ℓ

γkℓzjkxiℓ,

where both xi and zj include a constant. We further assume:

νij
iid∼ N(0, σν).

11 The approach we take here – concentrating the cj parameters out of the likelihood by computing the
minimum order statistic – is similar to that of Donald and Paarsch (1993, 1996, 2002) , who consider
models in the classic procurement auction setting. However, because the thresholds cj are not functions
of any of the other parameters of the model, our estimation procedure yields a proper likelihood (unlike
some of the cases they consider).
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For each model m, we construct estimates Γ̂m and σ̂m
ν by maximizing the log-likelihood of

the complete set of bids for all companies in the connected set (this includes bids on all
candidates, not just those in the connected set).

Discriminating Between Non-Nested Models of Conduct

We next turn to our testing procedure. Given sets of parameter estimates for each model,
our objective is to determine which of those models is closest to the true data-generating pro-
cess. The models we consider are non-nested: “Broadly speaking, two models (or hypotheses)
are said to be ‘non-nested’ if neither can be obtained from the other by the imposition of
appropriate parametric restrictions or as a limit of a suitable approximation; otherwise they
are said to be ‘nested”’ Pesaran (1990). In our setting, models are non-nested as long as
they 1) generate distinct combinations of markdowns and selection corrections, and 2) those
markdowns and selection corrections are not co-linear with the determinants of productivity
(the elements of zj and xi and their interactions).

To provide intuition for our testing procedure, consider again the simpler case in which
Gij(b) is assumed to be differentiable. Under our functional form assumptions and the true
conduct assumption, we may write:

log
(
εij(bij)

)
= z′

jΓxi + νij.

This equation includes only one source of error: the idiosyncratic component of firms’ valua-
tions, νij, which are assumed to be independent of both xi and zj, in addition to market-level
variables. Of course, the true model of conduct is unknown, so in practice we must substitute
the true inverse bidding function εij(·) with our approximation under conduct assumption
m, εm

ij (·).12 If model m is mis-specified, then using εm
ij (·) in place of εij(·) introduces a

mis-specification error:
log

(
εm

ij (bij)
)

= z′
jΓxi + νij + ζm

ij .

The presence of mis-specification error suggests two rather intuitive conclusions. First, mod-
els that are further from the truth should perform worse on standard goodness-of-fit metrics,
since the residual variance combines the contributions of both νij and ζm

ij . Second, if labor
supply responses (and therefore markdowns) are determined in part by variables that are
excluded from the productivity function, then the estimated residuals of models that are far
from the truth should be strongly correlated with those excluded variables.

This is the basic logic of Berry and Haile (2014). They establish the necessity of instru-
ments that shift demand (analogous to labor supply in our setting), but that are excluded
from the marginal cost function (analogous to valuations or productivity in our setting), for
identification in the product market setting with data only on market shares. Such variation,
they note, is particularly important for testing between models of conduct. Following this
logic, Backus, Conlon, and Sinkinson (2021) implement a test of conduct that formalizes the
second conclusion above: under true conduct assumptions, instruments that affect markups
12 Keeping in mind, under assumption m, we may treat εm

ij (bij) as data.
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(markdowns) but do not affect marginal costs (valuations) should not be correlated with
recovered idiosyncratic cost shocks (νij).

Our setting, and the nature of the data we use, differs in several key ways from that of
Berry and Haile (2014). The most basic difference is that we have access to micro data
on individual choices, rather than market-level data. Berry and Haile (2020) consider iden-
tification of differentiated products demand using micro data on individual choices, and
demonstrate that access to micro data significantly reduces reliance on instruments. Our
use of micro data in the form of multiple choices for each candidate, combined with our abil-
ity to condition on all information available to firms when they bid, allowed us to identify
candidate preferences without requiring additional instruments for prices (bids). A second
major difference between our setting and that of Berry and Haile (2014) is that we analyze
individualized bids rather than uniform market prices. Bids are made before any negotiation
has taken place and without direct knowledge of the competition, and so they do not have
to satisfy a market clearing condition. Rather, we assume that firms’ behavior must sat-
isfy a conditional form of rational expectations about competition. Given this assumption,
our identification arguments follow those of the empirical auction literature, like Guerre,
Perrigne, and Vuong (2000) or Backus and Lewis (2020).

Despite the relatively less stringent requirements for instruments to identify labor supply
in our setting, the power of our testing procedure to discriminate between models of conduct
still depends upon using additional sources of variation in markdowns that are independent
of the determinants of firms’ valuations. Without such variation, our ability to discriminate
between models of conduct may be severely limited. In other words: without an instrument,
our ability to discriminate between models will be driven by differences in functional form.

Instrumenting Labor Supply with Market Tightness

To obviate these concerns, and thereby increase the power of our testing procedure, we
use relative market tightness as an instrument for firms’ expectations about competing bids.
Our use of market tightness as an instrument mirrors the arguments of papers studying
auctions with entry that use variation in the potential number of entrants to identify models
of auctions with selective entry (e.g. Gentry and Li (2014)). We define tightness as the
number of active candidates in a particular experience, occupation, and two-week period
cell divided by the number of firms searching for candidates in that experience, occupation,
and two-week period cell.13 For every candidate, we define the variables nJ

iw, nI
iw as the

number of firms searching for i’s experience level and occupation during two-week period
w and the number of candidates with active profiles in i’s experience level and occupation
during two-week period w, respectively. Market tightness is the ratio of the two counts:

tiw = nI
iw/n

J
iw,

where the prevailing level of tightness at the time j bids on i is denoted tij (similarly define
nI

ij and nJ
ij). We define tightness within occupation and experience bins because those

13 Technically, our instrument is the inverse of the usual definition of market tightness, which is the ratio
of vacancies to the level of unemployment. The particular form of instrument does not matter for our
analysis.
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categories are the primary search fields recruiters use when browsing candidates. Further,
we define tightness within two-week periods because that is the default length of time a
candidate’s profile will remain active, and therefore variation in tightness between periods
is driven primarily by the rate of flow of new candidates onto the platform.

We assume that labor market tightness does not affect firm valuations, but does affect
firms’ expectations about competition for i as encoded by Λi. The intuition is simple: the
more active firms there are per active candidate, the more bids those candidates can expect
to receive. We formalize this assumption as:

Assumption 1.3. (Instrument Exogeneity) Labor market tightness is independent of
idiosyncratic determinants of labor demand:

tij ⊥⊥ νij | xi, zj.

We incorporate variation in tightness by including tij (and nI
ij, nJ

ij, and occupation, ex-
perience, and two-week period dummies) in the set of variables firms use to predict inclusive
values, ωΛ

ij (which also includes xi and zj). Variation in tightness thereby drives variation in
predicted markdowns that is independent of firms’ valuations. We propose two non-nested
model comparison tests that leverage this exclusion restriction in different, but complemen-
tary, ways.

Option 1: The Vuong (1989) Likelihood Ratio Test

Because we estimate models by maximum likelihood, a natural first option for our test of
conduct is a straightforward application of the Vuong (1989) likelihood ratio test. The Vuong
(1989) test is a pairwise, rather than ensemble, testing procedure: rather than explicitly
identifying the “best” model among a set of alternatives, the test considers each pair of
models in turn and asks whether one of those models is closer to the truth than the other.
In the likelihood setting, the “better” of two models is the one with greatest goodness-of-fit,
as measured by the maximized log-likelihoods.14

Let s = |ij : Bij = 1| denote the sample size. For a pair of models m1 and m2, denote the
maximized sample log-likelihoods by Lm1

s and Lm2
s , respectively, where:

Lm
s = max

Ψ

∑
ij:Bij=1

log
(
Lm

ij (Ψ)
)
,

and Ψm denotes the arg max. The null hypothesis of our test is that m1 and m2 are equally
close to the truth, or equivalent. In this case, the population expectation of the difference in
log likelihoods is zero. There are two one-sided alternative hypotheses: that m1 is closer to
the truth than m2, and vice versa. When m1 is closer to the true data-generating process, the
population expectation of the likelihood ratio E0[log(Lm1

ij (Ψm1)/Lm2
ij (Ψm2)] is greater than

zero. Vuong (1989) shows that when m1 and m2 are non-nested, an appropriately-scaled
14 The population expectation of the log-likelihood measures the distance, in terms of the Kullback-Liebler

Information Criterion (KLIC), between the model and the true data generating process.
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version of the sample likelihood ratio is asymptotically normal under the null that the two
models are equivalent:

Zm1,m2
s = L

m1
s − Lm2

s√
s · ω̂m1,m2

s

D→ N (0, 1),

where ω̂m1,m2
s is the square root of a consistent estimate of the asymptotic variance of the

likelihood ratio, ω2
∗

m1,m2 . We set:

ω̂m1,m2
s =

1
s

∑
ij:Bij=1

log
(
Lm1

ij (Ψm1)
Lm2

ij (Ψm2)

)2
1/2

.

We construct test statistics Zm1,m2
s for every pair of models we estimate. Given a significance

level α with critical value cα, we reject the null hypothesis that m1 and m2 are equivalent
in favor of the alternative that m1 is better than m2 when Zm1,m2

s > cα, and vice versa if
Zm1,m2

s < cα. If |Zm1,m2
s | ≤ cα, the test cannot discriminate between the two models.

How does variation in the instrument increase the power of the test? The answer depends
on the relevance of the instrument for predicting markdowns. Returning to the simplified
example above, we may write the mis-specification error as:

ζm
ij = log

(
εm

ij (bij)
)
− log

(
εij(bij)

)
.

To the extent that variation in tightness drives variation in markdowns under the true
model, variation in tightness will also generate variation in ζm

ij if the assumed model m is
mis-specified. This implies that relatively more mis-specified models will imply valuations
that are more difficult to explain using observables than those that are closer to the truth.

Option 2: The Rivers and Vuong (2002) Test

Rivers and Vuong (2002) proposed a generalization of the Vuong (1989) testing procedure
that extended the logic of that test to a much wider class of objective functions. In their
analysis of firm conduct, Backus, Conlon, and Sinkinson (2021) implement a version of
the Rivers and Vuong (2002) test by specifying a single moment condition involving the
residuals of fitted models and excluded instruments. We propose a variant of that test using
the generalized residuals associated with the likelihood we estimate. Gourieroux et al. (1987)
define generalized residuals and explicate their use in testing. In the context of maximum
likelihood estimation, the generalized residuals are defined by the scores of the likelihood. Let
sm

ijkℓ(Ψ) = ∂Lm1
ij (Ψ)/∂ψm

kℓ denote the k, ℓ-th component of the score vector for observation
ij. The scores may be written as sm

ijkℓ(Ψ) = hm
ij (Ψ) · zjk · xiℓ, where hm

ij (Ψ) is the generalized
residual for observation ij under model m and parameters Ψ. The maximum likelihood
estimate Ψ̂m is the vector that sets the mean of the scores to zero:∑

ij:Bij=1
sm

ijkℓ

(
Ψ̂m

)
=

∑
ij:Bij=1

hm
ij

(
Ψ̂m

)
· zjk · xiℓ = 0 ∀ k, ℓ,

and so generalized residuals are constrained to be orthogonal to covariates. The generalized
residuals for each model can be easily computed by taking the derivative of the individual
likelihood contributions.



CHAPTER 1. BIDDING FOR TALENT 32

We form the generalized residuals for each model, and use them to compute the scalar
moment/lack-of-fit measure:

Qm
s =

1
s

∑
ij:Bij=1

hm
ij

(
Ψ̂m

)
· tij

2

.

Qm
s measures the covariance between the generalized residuals of each model and the excluded

instrument tij. Under proper specification, the influence of the instrument on markdowns
is completely summarized by the inverse bidding function, and so there should be zero
correlation between the instrument and the generalized residual. A separate way to motivate
the lack-of-fit measure Qm

s is as an unscaled version of the score test statistic for testing
against the null hypothesis that the coefficient on tij in the labor demand equation is zero.

Following Backus, Conlon, and Sinkinson (2021),15 we formulate a pairwise test statistic
for testing between models m1 and m2 as an appropriately-scaled difference between Qm1

s

and Qm2
s , which Rivers and Vuong (2002) show to be asymptotically normal:

Tm1,m2
s = Qm1

s −Qm2
s

σ̂m1,m2
s /

√
s

D→ N (0, 1),

where σ̂m1,m2
s is an estimate of the population variance of Qm1 − Qm2 . We compute an

estimate of σ̂m1,m2
s /

√
s as the variance of Qm1

s −Qm2
s across bootstrap replications. Given a

significance level α with critical value cα, we reject the null hypothesis that m1 and m2 are
equivalent in favor of the alternative that m1 is better than m2 when Tm1,m2

s < cα, and vice
versa if Tm1,m2

s > cα. If |Tm1,m2
s | ≤ cα, the test cannot discriminate between the two models.

The intuition for this test is relatively more straightforward than for the first test: the lack-
of-fit measures each pairwise test compares can themselves be interpreted as test statistics
associated with a score test of the exclusion restriction. In some ways, this feature makes the
test relatively more appealing than the first option. However, the power of the test depends
entirely on the ability of the instrument to predict differential markdowns and selection
corrections, which is not the case for our first test (see Duarte et al. (2021) for a discussion
of weak instruments problems in conduct testing). For these reasons, we present the results
of both tests and view the two procedures as complementary.
15 Backus, Conlon, and Sinkinson (2021) formulate their moment-based test statistic by interacting resid-

uals with an appropriate function of both the excluded instrument and all other exogenous variables,
and connect their choice of that function to the literature on optimal instruments (Chamberlain 1987).
In our setting, the formulation of an appropriate function that combines the instrument and other
exogenous variables is complicated by the issues of selection and partial identification we previously
highlighted. While we do not pursue it here, the formulation of such a function is a focus of future
work.
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1.5 Model Estimates

Labor Supply

Model selection and validation

Before describing the estimated preference orderings and group structures, we must settle
on a baseline version of the model. In particular, we need to specify the number of latent
preference classes Q, and we need to specify how class membership is related to candidate
observables. To that effect, for each pair of models – a given number of ladders and a given
set of observables used to define group membership – , we calculate a standard likelihood
ratio statistic and compute the appropriate χ2 p-value. In addition to formal likelihood
ratio (LR) statistics, we also compute a more directly-interpretable “goodness-of-fit” (GoF)
statistic for each model. The statistic is simply the fraction of pairwise revealed-preference
comparisons that are concordant with the estimated rankings for each model. Specifically,
we define:

GoF = 1
Npw

N∑
i=1

Q∑
q=1

αq

(
xi | β̂

)
×

 ∑
j∈B1

i

∑
k∈B0

i

1
[
Âqj ≥ Âqk

],
where Npw is the total number of pairwise comparisons implied by revealed preference.

Table 1.3 reports these goodness-of-fit statistics for several versions of our labor supply
model. Each row corresponds to a given number of ladders (from one to four) and each
column corresponds to the observables leveraged to construct class membership. In the
first row, we estimate the model with a single preference group (Q = 1), such that there
is no additional preference heterogeneity for a given firm aside from variation in idiosyn-
cratic preference shocks ξij. In the second row, we estimate a model with two preference
groups. The first column allows men and women to have different rankings of firms, and the
second columns splits candidates between above- and below-median experience. The last
column leverages all the observables we access for the candidates to define latent preference
groupings. In particular, we estimate the prior probability of group membership αq(xi) con-
currently with the preference orderings themselves. We then refer to each preference class
as a separate job ladder.

A model that assigns random numbers for each Aqj would in expectation yield a GoF
statistic of 0.5. As reported in the first row of Table 1.3, the single-ladder model, in which
there is common mean ranking of firms for all candidates, increases goodness-of-fit over
that baseline to 0.67.16 Table 1.3 second finding concerns the comparison of goodness-of-fit
between the single-ladder model and the two models that split candidates into preference
groups based on observable characteristics. In Column 1, allowing women and men to have
distinct rankings of firms on the second row has no additional explanatory power for the
16 The goodness of fit measure varies slightly across the three columns because the estimation samples are

different. For instance, to be ranked in the model that splits the ladder by gender, a firm needs to have
been accepted once and rejected once by candidates of both genders. The resulting sample will differ
from the model that splits by experience, where to be in the connected set, a firm needs to have been
accepted once and rejected once by candidates of all experience levels.
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revealed preferences in the data, in comparison to the single ladder model from the first
row: the GoF statistic increases imperceptibly (from 0.672 to 0.680), and the formal LR
test fails to reject the null that the two-ladder model is equivalent to the single-ladder
model (p = 0.27). The finding that men and women have very similar mean preference
orderings over firms mirrors that of Sorkin (2017), who also finds that the implied preference
orderings of men and women over firms are extremely similar. Splitting by experience does
only marginally better: while the LR test can reject the null that the two-ladder model is
equivalent to the single-ladder model (p < 0.001), the GoF statistic only increases by 1.6
percentage point. Our third finding is that the model using the full set of observables to
define the clusters performs markedly better than the gender- and experience-split models.
For the same number of ladders (two), the GoF statistics for the model-based clustering is
0.744, that is 10.7 percentage points higher than the gender or experience splits. Our final
finding concerns the number of ladders: sequential LR tests between the one- and two- ladder
models and two- and three-ladder models both reject the null that the more-complex models
are equivalent to the simpler models (p < 0.001). In addition to the two- and three-ladder
models, we estimated a model with four preference groupings, but were unable to reject
the null that this model was equivalent to the three-ladder alternative. We therefore adopt
the three-ladder model as our baseline model of candidate preferences. Plugging in those
estimated rankings into our second-step GMM procedure yields the following labor supply
elasticity parameter estimates:

u(bij, ai) =
[

4.05
(0.33)

+ 1.58
(0.28)

· 1[b < ai]
]
· log(b/ai).

These estimates are similar to others in the literature – for instance, Berger, Herkenhoff,
and Mongey (2017) report an estimate of 3.74 for this parameter (what they call the within-
market substitutability parameter), while Azar et al. (2020) report an estimate of 5.8.17

In order to validate the estimated rankings, we take advantage of the fact that candidates
may sometimes provide reasons for rejecting an interview request. While the platform does
not require candidates to list a reason, 58% of them do. When providing a rejection reason,
candidates select from a list of options that includes reasons like “company culture”, “firm
size”, and “poor timing”, among others. We divide the list into two categories: personal
reasons that should correspond to a low draw of ξij and job-related reasons that should
correspond to a low value of Aqj. If the model provides a good fit to the data, then we
should find that candidates are more likely to reject highly-ranked firms for personal reasons
than job-related reasons relative to lower-ranked firms. Figure 1.5 plots the probability
that a firm was rejected for a job-related reason as a function of firms’ ordinal rankings
(where lower ranks are better) – we indeed find that workers are significantly less likely to
reject the most-preferred companies for job-related reasons than they are for lower-ranked
companies. Appendix Figure A.3 provides additional evidence of the quality of the fit of the
preferred 3-type model. For every bid, we compute the model-implied probability that the bid
17 Note that, in contrast with other studies, our model allows for kinked labor supply and therefore our

estimates of the parameter is 5.63 below the kink, i.e. when b < wi, and 4.05 above the kink.
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will be accepted. Appendix Figure A.3 plots the relationship between those model-implied
probabilities and the empirical acceptance probability – the model-implied probabilities are
extremely close to the actual probability of acceptance throughout the range of the data.

Characterizing the distribution of amenity values

Figure 1.6 illustrates the scale of vertical and horizontal differentiation of firms implied by
our preferred model estimates. To understand the relative importance of the amenity values
workers attach to firms, we compute a willingness-to-accept statistic (WTA) for every firm.
The statistic is equal to the fraction of a candidate’s ask salary that the model implies a firm
must offer to make that candidate indifferent between accepting or rejecting an interview
request, on average. Specifically, we compute WTAqj as the number that solves:(

4.05 + 1.58× 1
[
WTAqj < 1

])
× log

(
WTAqj

)
+ Âqj − Âq0 = 0.

where Aq0 is the q-th component of the vector of type-specific mean amenity values at the
outside option.

Panel (a) of Figure 1.6 plots the distribution of the mean WTA at each firm, averaging
over the population probabilities of each type: WTAj = ∑3

q=1 αq ×WTAqj. The average
mean WTA is 0.99, indicating that candidates are willing to accept roughly 1% less than
their ask at the average firm. The standard deviation of mean WTA across firms is 0.14,
which suggests a large range of variability in the amenity values candidates attach to firms.
Indeed, there are a nontrivial number of firms for which the average candidate would be
willing to accept less than 80% of their ask, and an even larger number of firms for which
candidates demand over 120% of their ask. Panel (b) illustrates the systematic component
of horizontal differentiation. Here, we plot the within-firm standard-deviation of WTAqj

across preference types. The mean within-firm SD of WTA is 0.14, suggesting that the
horizontal differentiation is about as important as vertical differentiation. The implication
of these estimates is that there is large scope for firms to exercise market power in the ways
we have specified: the significant horizontal differentiation suggests that firms may stand
to gain significantly from accurately predicting which candidates are in which preference
groups, while the significant vertical differentiation suggests that firms with high rankings
can afford to mark down wages significantly (assuming they act strategically). Given the
significant scope for wage markdown based on preference heterogeneity, assessing whether
firms are able to predict the types is crucial to the understanding of their ability to offer
type-specific marked down wages. Section 1.5 explores whether firms are type predictive.

What firm characteristics are associated with higher amenity values? To partially answer
this question, we report regressions of (standardized) estimates of Aqj on firm covariates
zj in the sample for which those covariates are available in Table 1.4. Here, larger values
of Aqj correspond to better rankings. These covariates represent only a small fraction of
the potential relevant characteristics candidates may consider when they choose among job
offers – importantly, the (“all-in”) amenity values we estimate do not depend upon exhaustive
knowledge of what candidates value. Even with the relatively coarse covariates available,
some clear patterns are evident. In particular, the basic evidence in Table 1.4 suggests
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a loose classification of groups as “baseline” (group 2), “risk-averse” (group 3), and “risk-
loving” (group 1). Relative to baseline, members of group 3 are more interested in working
at larger, established firms for which there may be less employment risk, while members of
group 1 are more interested in working at the smallest firms that may be more risky bets.

How do worker characteristics shift the probability of preference group membership? In
our preliminary goodness-of-fit exercise, we found that explicitly splitting candidates by
gender or experience only marginally improved our ability to explain choices – does that
result carry over to the more flexible group membership model we estimated? In order to
more concretely gauge the associate between covariates and preference types, we compute the
model-implied posterior probabilities of type membership for every candidate and correlate
those probabilities with candidate characteristics (our discussion of the EM algorithm in
Appendix A.4 covers the construction of these probabilities). We find that women are 7
percentage points more likely to be in the risk-averse group and 7 percentage points less
likely to be in the risk-loving group, while candidates with above-median experience are
10 percentage points less likely to be in the risk-averse group and 9 percentage points more
likely to be in the risk-loving group. While there is significant residual variation in preferences
conditional on covariates, our preferred model estimates suggest that covariates are indeed
predictive of preference type.

Decomposing group differences in welfare

Given our estimates of amenity values and labor supply parameters, we may fully charac-
terize the utility value candidates associate with the portfolios of bids they receive. Impor-
tantly, this allows us to ask whether observable differences in average bids between groups
are reflective of underlying differences in welfare. We decompose mean differences in welfare
using the Oaxaca-Blinder (OB) decomposition (Oaxaca 1973; Blinder 1973). The OB de-
composition posits that variable Yig corresponding to individual i in group g = 0, 1 can be
written:

Yig = X ′
igβg + ϵig,

where Xig are covariates measured for all individuals and E(ϵig) = 0. The average value of
Yig in group g is therefore given by Y g = X

′
gβg. We can decompose the difference in the

average value of Yig between groups g = 1 and g = 0 as:

Y 1 − Y 0 = X
′
1β1 −X

′
0β0 =

(
X1 −X0

)′
β0︸ ︷︷ ︸

endowments

+ X
′
0

(
β1 − β0

)
︸ ︷︷ ︸

coefficients/returns

+
(
X1 −X0

)′(
β1 − β0

)
︸ ︷︷ ︸

interactions

.

The classic OB decomposition apportions the difference in the mean of a variable between
two groups into components due to: 1) differences between those groups in endowments,
or the distribution of relevant covariates; 2) differences between those groups in coefficients
or returns associated with those covariates; and 3) the interactions between coefficient and
endowment differences.18 Roughly speaking, the greater the share of the mean difference the
18 Note that the OB decomposition is not unique – an equivalent “reverse” decomposition may be obtained

by replacing β0 with β1 in the first term, X0 with X1 in the second term, and flipping the sign of the
third term.
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OB decomposition apportions to endowments relative to returns, the more we can conclude
that a difference in means is driven by differences in characteristics between those groups,
and not how those groups are treated conditional on those characteristics values (differential
returns to characteristics). The OB decompositions we present should be interpreted as
purely descriptive (Guryan and Charles 2013). Importantly, we exclude the asked salary as
an explanatory variable in our OB decompositions of welfare, because candidates formulate
their asks as endogenous functions of all of their other characteristics (including gender).
The endogeneity of the ask greatly complicates the interpretation of decompositions that
include the asked salary: if asks themselves are functions of gender, then gender differences
in asks may not be appropriately interpreted as reflecting differing endowments.19

We report decompositions of welfare-relevant quantities in Table 1.5. The utility asso-
ciated with each portfolio of bids depends both upon the number of bids received and the
composition of those bids. In order to gauge the relative importance of quantity and quality,
we compute the total number of bids received by each candidate, as well as the mean values
of the components of utility associated with the bids each candidate received. We calculate
the monetary component of utility for each bid as:

u(bij, ai) =
(

4.05 + 1.58 · 1[bij < ai]
)
· log(bij/ai) + 4.05 ·

(
log(ai)− log(ai)

)
,

where we subtract the (grand) mean of the log of the ask salary (log(ai)) without loss of
generality, since the absolute level of utility is not identified. We also compute the mean
amenity values associated with each bid, which we decompose into two parts: a common
component of amenity valuations shared by all workers, and the worker-specific deviation
from that common component: Aij = Aj + ∆Aij. The common component is the average
candidates’ amenity valuation: Aj = ∑Q

q=1 αq · Âqj (where αq is the population share of
type q). The candidate-specific deviation is the difference between candidate i’s amenity
valuation and the average amenity valuation: ∆Aij = ∑Q

q=1

(
αq

(
xi | β̂

)
− αq

)
· Âqj.

To understand how these differences map into welfare, we compute the (expected) inclusive
value of every offer set:

Λ∗
i =

Q∑
q=1

αq

(
xi | β̂

)
· log

(∑
j∈Bi

exp(u(bij, ai) + Âqj)
)
.

We decompose (expected) inclusive values into a monetary component and an amenity com-
ponent. We compute the monetary component of the inclusive value by setting Âqj = 0 for
all q and j:

Λb
i = log

(∑
j∈Bi

exp(u(bij, ai))
)
.

19 Because we omit the ask salary from these decompositions, the effect of the ask salary will be apportioned
between the endowments and coefficients components. Any differential patterns in the relationship
between characteristics and asks will be reflected in the coefficients component, while mean differences
in asks are reflected in the endowments component.
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We compute the amenity component of the inclusive value by setting u(bij, ai) = 0 for all i
and j. We further decompose the amenity portion into a common component:

Λ̄A
i =

Q∑
q=1

αq · log
(∑

j∈Bi
exp(Âqj)

)
,

and a candidate-specific deviation:

∆ΛA
i =

Q∑
q=1

(
αq

(
xi | β̂

)
− αq

)
· log

(∑
j∈Bi

exp(Âqj)
)
.

Because the inclusive value is a nonlinear function, the relative contributions of each com-
ponent will not sum to one.

Panel A of Table 1.5 reports decompositions of mean gaps in these quantities by gender
(here, the reference group corresponds to women, so positive differences correspond to larger
values for men). Column 1 decomposes the gap in the number of bids received by men and
women: on average, women receive fewer bids than men. However, slightly more than 100%
of this raw gap is driven by differences in endowments: conditional on covariates, women
and men receive nearly the same number of bids. Column 2 reports the decomposition of
the mean gap in the monetary component of utility: the average monetary value of bids is
significantly lower for women than for men. This result is driven by the fact that women
ask for less (see Table 1.1), and therefore receive less, conditional on other characteristics—
but as discussed above, the ask is an endogenous function of gender. Our decomposition,
which excludes the ask as an explanatory variable, suggests that differences in characteristics
between men and women can only explain about 1/3 of the raw gap in monetary values,
with the rest explained by differential returns. Column 3 decomposes the mean difference
in the common component of amenity values. Unconditionally, the bids men receive are
from firms with better amenities than the bids women receive. Differences in the returns
to characteristics, representing differential selection of firms into bidding by gender, explain
1/3 of this gap. In other words, even conditional on covariates, women receive bids from
firms the average worker values relatively less than those that bid on men.

Column 4 decomposes differences in candidate-specific components of the amenity val-
uation. Here, we find a (small) reverse gap: women value the amenities associated with
the bids they receive relatively more than the average worker would, and do so to a greater
degree than men. What might be driving this pattern? Without knowing how firms behave,
we cannot discriminate between possible explanations. One possibility is that the pattern
is driven by differences in the degree of assortative matching of firms to male and female
candidates—that is, firms’ valuations over candidates might be more correlated with the
preference of female candidates than male candidates. Another possibility is that firms are
type-predictive and better at targeting offers to female candidates relative to male candi-
dates, all else equal.20 These qualitative patterns are reflected in the decompositions of
20 Evidence from Section 1.5 that firms are in fact not type-predictive suggests the former explanation is

more likely than the latter.
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components of inclusive values, reported in columns 5-8. Taken together, these results sug-
gest that the large observed gender gap in bids is reflective of a large gender gap in welfare.
Unconditionally, the gap in welfare between men and women is exacerbated by differences
in the amenity values of the bids they receive. However, differences in covariates between
men and women account for most of the unconditional gap.

Panel B of Table 1.5 reports decompositions of mean gaps in welfare by education level,
where the reference group is candidates without a graduate degree. Here, we find that
candidates with graduate degrees receive slightly fewer bids than those without graduate
degrees, but that the average quality of those bids is higher along all components. Again,
differences in the monetary component of utility are driven by the fact that candidates
with graduate degrees ask for more than those without on average (candidates without
graduate degrees ask for $10,800 less than those with graduate degrees). This differential is
reflected in the share of the gap explained by returns, which explain about 40% of the raw
gap. Unlike with gender, we find that differential returns do not explain differences in the
common component of amenity valuations between education levels, although we do find
that differences in returns explain nearly all the difference in candidate-specific components
of valuations. Again, the evidence we find in these decompositions is consistent with either
assortative matching between workers and firms (candidates with high productivity at firm
j also value the amenities of firm j), or the effective targeting of firms’ bids to the candidates
most likely to accept those bids.

Labor Demand

Testing between models

We next describe the results of implementing our estimation and testing framework for la-
bor demand. As a preliminary matter, Figure 1.7 plots the “first stage” relationship between
the model-implied inclusive values Λi and Λ−j

i and the instrumental variable tij, conditional
on firm and candidate covariates and two-week period dummies. Intuitively, the fewer can-
didates there are relative to firms (low tij), the more offers those candidates should receive,
and the larger the inclusive values associated with their offer sets should be. This intuition is
borne out in Figure 1.7: both full- and leave-one-out inclusive values are strongly negatively
related to labor market tightness. As described in the previous sections 1.4, 1.5, and 1.5, we
estimate the distribution of full- and leave-one-out inclusive values conditional on all firm
covariates, candidate covariates, and instruments, and use those estimated distributions to
construct approximations to firms’ beliefs under each combination of conduct assumptions.

Figure 1.8 plots the distributions of predicted markdowns in dollars under both the monop-
sonistic competition and oligopsony alternatives. We compute markdowns as the difference
between the model-implied firm valuation and the observed bid: εm

ij − bij. In cases where
the implied valuation is not point identified (the bid is equal to ask), we take the midpoint
of the model-implied range of valuations: (εm+

ij + εm−
ij )/2 − bij. The two alternatives pre-

dict markedly different distributions of markdowns. Under the monopsonisitc competition
alternative, the average predicted markdown is $30,503, with a standard deviation of $6,658.
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Further, the distribution of markdowns is relatively symmetric—the mean and median of
the distribution are separated by less than $300, and the skewness of the distribution of
markdowns is just 0.35. By contrast, the oligopsony model predicts uniformly larger mark-
downs than the monoposonistic competition alternative: the mean model-implied markdown
under oligopsony is $43,385. Further, the distribution of markdowns under oligopsony is sig-
nificantly more variable, with a standard deviation of $16,357. Finally, the distribution of
markdowns under oligopsony is highly skewed: the mean markdown is $4,000 larger than
the median markdown, and the skewness of the distribution is just over 2. The two sets
of markdowns are positively correlated, with a correlation coefficient of 0.42. The large
differences highlighted by Figure 1.8 illustrate the importance of understanding which form
of conduct best describes firm behavior—different assumptions about the presence or ab-
sence of strategic interactions lead to strikingly different conclusions about the size of wage
markdowns.

Table 1.6 reports the results of implementing our pairwise testing procedure on the five
models we estimated, using both the likelihood-based and moment-based versions of the
Vuong test. The test statistics we report suggest that we can resoundingly reject the null
hypothesis of model equivalence in most cases, and both versions of the test yield remark-
ably similar conclusions. The “Perfect Competition” model unambiguously performs the
worst of all the models we tested. Among the remaining alternatives, the two monopsonistic
competition models outperform the two oligopsony models, with the not-predictive monop-
sonostic competition alternative performing best. We visualize these results in Figure 1.9,
which plots generalized residuals for two alternative models against the excluded instrument.
Under proper specification, the generalized residuals should not be correlated with the in-
strument – the further a model’s generalized residuals are from the x-axis, the greater the
degree of mis-specification. In the figure, the generalized residuals for the monopsonsitic
competition alternative are closely aligned with the x-axis, while the generalized residuals
for the oligopsony alternative are strongly negatively related to tightness.

Our tests therefore suggest that models of firm behavior in which firms ignore strategic
interactions in wage setting are closer approximations to firms’ true bidding behavior on the
platform than are models in which firms act strategically. Additionally, while we cannot
reject the null hypothesis that the two monopsonistic competition models are equivalent in
the likelihood-based test, the moment-based version of the test strongly rejects the type-
predictive alternative relative to the not-predictive alternative. The weight of the evidence
therefore suggests that firms are not actively type-predictive: in the context of the monop-
sonistic competition model selected by our procedure, firms do not appear to target their
offers to the candidates who are most willing to accept those offers, conditional on productiv-
ity. In the following analysis, we adopt the not-predictive monopsonostic competition model
as our baseline.

Markdowns and valuations in the preferred model

Given the results of our testing procedure, we next characterize the distribution of valu-
ations implied by the preferred model. Table 1.7 reports a subset of the estimated matrix
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of coefficients Γ̂ that govern labor demand, γj(xi, νij) = exp(z′
jΓxi + νij). The full set of

coefficient estimates are reported in Appendix Table A.2. Each cell of Table 1.7 reports the
coefficient on the interaction of the variables specified in the corresponding row and column.
Column variables are candidate characteristics (xi), and row variables are firm characteris-
tics (zj). We normalize the log ask salary by subtracting the log of the unconditional mean
asked salary (equivalently, by taking the log of the ratio of ask to mean ask), such that the
constant term reflects productivity at the mean ask. The second, third, and fourth rows
correspond to dummies for firm size categories, such that the omitted category (subsumed
into the constant, the first row of the table) corresponds to the smallest firms (between one
and fifteen employees). The remaining three rows correspond to non-exclusive sector dum-
mies. The implied R2 of the observed determinants of productivity is 0.89, suggesting that
the bilinear form we adopted provides a close approximation to the data.

Column 1 of Table 1.7 reports the main effects of each firm characteristic. Interestingly,
there at first appears to be essentially no firm size-productivity gradient: small and large
firms tend to pay roughly equivalent salaries, all else equal. The apparent lack of a strong
relationship between firm size and productivity disappears, however, when we consider the
interaction of candidate ask salaries and firm characteristics in Column 2. As first suggested
by Roussille (2021), the ask salary is a powerful predictor of productivity: the elasticity of
valuations with respect to the asked salary is 0.795. This elasticity is strongly increasing
in firm size: workers that are more productive everywhere (on the basis of their ask) are
even more productive at larger firms. The next three Columns (3-5) report the main and
interaction effects of dummy variables recording gender (= 1 if female), current employment
(= 1 if currently employed), and education (= 1 if candidate has at least one graduate degree).
In Column 3, we find evidence of a small residual gender gap in firms’ valuations: the main
effect of the female dummy is a 0.8% reduction in valuations, with some heterogeneity by
firm size and industry. Importantly, this residual gender gap is conditional on the level of
the ask salary: Roussille (2021) previously documented a statistically- and economically-
meaningful gender gap in ask salaries. In Column 4, we find no evidence of any difference
in labor demand between employed and unemployed candidates, all else equal. This result
is somewhat surprising in light of Kroft, Lange, and Notowidigdo (2013) and Jarosch and
Pilossoph (2018), who find that employers screen out unemployed candidates. It may be
the case that in our setting, the rich profile information available to employers and the
information encoded in the ask salary provide more informative signals of quality than current
employment status. Finally, in Column 5, we report estimates of the main and interaction
effects of holding a graduate degree. While the main effect is positive, we find a reverse
firm size gradient: larger firms value graduate degrees relatively less, all else equal. To
assess model fit, in Appendix Figure A.4, we plot the relationship between observed bids
and the systematic component of valuations γj(xi). The two are very strongly and positively
correlated.

How much does variation in observable determinants of demand contribute to overall vari-
ation in bids? Given our labor demand parameter estimates and the estimated markdowns
for the preferred model, we can decompose variation in bids across firms and candidates to
gauge the relative contributions of markdowns, systematic components of valuations, and
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idiosyncratic components of valuations. We define markdowns here as the ratio of the ob-
served bid and the model-implied productivity level ε̂ij

21: log(µij) = log(bij)− log(ε̂ij) The
idiosyncratic component of the valuation is therefore given by ν̂ij = ε̂ij−zjΓ̂xi. We can then
write:

log(bij) = log(µij)︸ ︷︷ ︸
markdown

+ zjΓ̂xi︸ ︷︷ ︸
systematic comp.

+ ν̂ij︸ ︷︷ ︸
idiosyncratic comp.

.

We compute a simple decomposition of the variance of bids by taking the covariance of each
side of the above equation with the bid, yielding:

Var (bij) = Cov (log(bij), log(µij)) + Cov
(
log(bij), zjΓ̂xj

)
+ Cov (log(bij), ν̂ij) .

Dividing each side of the decomposition by Var (log(bij)) yields a simple representation of the
relative importance of each factor.22 Individual components of variance are reported in Table
1.8, for both the (preferred) monopsonistic competiton/not predictive model as well as the
(dispreferred) oligopsony/not predictive model. Under monopsonistic competition (Panel A)
markdowns are nearly constant across candidates, such that variation in components of firms’
valuations account for 100% of the variation in log bids. The intuition for this is simple: when
firms are monopsonosticially competitive, they view the structural labor supply elasticity
(goverened by θ0 and theta1) as the elasticity of labor supply to the firm, and so there is
no (perceived) variation in labor supply elasticities across firms. (Variation in elasticities
around the kink accounts for the small extent of variation in markdowns.) 91% of that
variation can be attributed to systematic components of valuations, while the remainder is
accounted for by idiosyncratic components. As an illustration of the implications of incorrect
assumptions about the form of firm conduct, Panel B reports the variance decomposition
under the oligopsony model. Under oligopsony, markdowns account for 10% of the variation
in log bids, while systematic components of valuations account for 78% and idiosyncratic
components account for 12%. Relative to monopsonistic competition, interpreting variation
in bids under the assumption that firms act strategically implies that firms mark down
wages much more steeply, and that valuations themselves are more variable (conditional on
candidate x’s).

How do our estimates relate to models of additive worker and firm effects (Abowd, Kra-
marz, and Margolis 1999)? Our model of productivity includes both firm-specific contribu-
tions (here captured by zj), worker-specific contributions (captured by xi), and the inter-
actions of firm- and worker-specific covariates. Tables 1.7 and A.2 provide evidence that
21 Again taking the midpoint of the implied interval of productivity levels when bid equals ask ε̂ij =

(ε̂+
ij + ε̂−

ij)/2)
22 A second decomposition may be computed by taking the variance of both sides:

Var (log(bij)) = Var (log(µij)) + Var
(

zjΓ̂xj

)
+ Var (ν̂ij)− 2 · Cov

(
log(bij), zjΓ̂xj

)
− 2 · Cov (log(bij), ν̂ij) + 2 · Cov

(
zjΓ̂xj , ν̂ij

)
.
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interactions of worker and firm factors are statistically meaningful determinants of pro-
ductivity. However, the interaction effects we estimate are generally small, which suggests
that additive models might well-approximate productivity. To explore this, we regress bids,
predicted εij, and the predicted systematic component of productivity exp(z′

jΓ̂xi) on all
candidate and firm characteristics, without including interactions. Consistent with Card,
Heining, and Kline (2013)’s informal assessment of the log-additivity of wages using mean
residuals from Abowd, Kramarz, and Margolis (1999) regressions, we find that the main
effects of worker and firm characteristics separately explain the vast majority of variation in
bids and productivity, as reflected in uniformly high (adjusted) R2 values: 0.924 for bids,
0.905 for εij, and 0.999 for exp(z′

jΓ̂xi). In the context of the near-constant markdowns our
preferred model implies, this further suggests that additive models of worker and firm effects
provide good approximations to log wages.

Finally, how do our estimates of productivity relate to amenities? To explore this ques-
tion, we compute regression-adjusted averages of amenities and productivity within firm
types defined by combinations of size and industry. We regress the model-implied amenity
and productivity values on the (log) ask salary, and an exhaustive set of fixed effects for
combinations of all other worker characteristics xi, and dummies for each firm type. Figure
1.10 plots the relationship between (average) firm amenity values and (average) components
of productivity, as measured by the estimated firm-type fixed effects. Like Lagos (2021), we
find that the highest-amenity firms also tend to be the highest-productivity firms. The story
is different for low-productivity firms, where there is a negative relationship between ameni-
ties and productivity. These patterns are broadly consistent with a model of endogenous
amenities in which firms do not invest in amenities before they reach a certain productivity
level. Because wage markdowns are a near-constant fraction of productivity in the pre-
ferred model, Figure 1.10 suggests that there may be compensating differentials between
low-amenity firms at the competitive fringe of the labor market for tech workers, but not
between high-amenity firms.

1.6 Counterfactual Simulations of Bidding Behavior

Scenarios of interest

To better understand the implications of imperfect competition for welfare, we use our
supply and demand estimates to simulate bidding outcomes under all four conduct scenarios:
{monopsonisitic competition, oligopsony}× {not predictive, type-predictive}. To gauge the
losses due to imperfect competition, we define a new form of conduct, which we term price
taking. Under the price taking conduct alternative, firms have no discretion over the wages
they offer. Instead, firms are constrained to offer a prevailing market wage, as if set by a
Walrasian auctioneer. In our price-taking alternative, we set the equilibrium wage equal to
the systematic component of firms’ valuations, bij = exp(z′

jΓxi). Given this set of wages, the
only decision firms have to make is whether to bid on each candidate. Because firms are price
takers in this scenario, we assume that they view themselves as atomistic, as in monopsonistic
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competition.23 In addition to these simulations, we also simulate the effects of a simple policy
meant to reduce gender disparities in wages: blinding employers to candidates’ gender. This
counterfactual entails replacing gender-specific estimates of labor demand with cross-gender
averages, and doing the same for estimates of labor supply.

Computing new equilibria

In order to compute counterfactuals, we randomly select 500 firms and 500 candidates from
the universe of firms and candidates in the analysis sample. For each firm-candidate pair,
we compute the model-implied systematic component of firm valuations using our preferred
estimates of labor demand parameters, exp(z′

jΓ̂xi). Under a particular conduct assumption,
equilibrium is determined by a set of beliefs over the distribution of the utility afforded by
the best option in each candidates’ offer set. The inclusive value is itself a sufficient statistic
for the distribution of the maximum utility option for each candidate. At an equilibrium,
firms’ beliefs about inclusive values must be consistent with the true distribution of inclusive
values generated by the bidding behavior of competing firms. We make the assumption that
those beliefs depend only upon the expected value of the inclusive value to simplify our
calculations here.

To compute new equilibria, we first conjecture an initial set of (expected) inclusive values
Λ1

i . We then iterate the following steps:

1. At iteration t, take iid draws from a normal distribution with mean zero and standard
deviation σ̂ν to produce a new set of idiosyncractic components of firms’ valuations,
νt

ij. Use these draws, plus the systematic components of valuations z′
jΓ̂xi, to compute

εt
ij.

2. Given εt
ij and Λt

i, compute bt
ij as firm j’s best response (under the assumed form of

conduct). If there is no number b such that Gm
ij (b)(εij − b) ≥ ĉj, then set Bt

ij = 0.
3. Given firms’ best responses bt

ij and Bt
ij, calculate the realized inclusive value for each

candidate, Λt∗
i = E[log(∑j:Bt

ij=1 exp(u(bt
ij, ai) + Aij)]. Compute the vector of expected

inclusive values at the next iteration by taking a step αt ∈ [0, 1] towards Λt∗
i :

Λt+1
i = αtΛt∗

i + (1− αt)Λt
i.

We iterate this procedure until the distribution of inclusive values converges. We then use
the equilibrium distribution of inclusive values to compute mean counterfactual outcomes
by constructing the average across 50 simulations of firm bidding decisions.

Simulation Results

Table 1.9 reports the results of our simulations. For each scenario, we compute the
average bid, ratio of bid to ask, markdown, and number of bids received per candidate. We
23 Because bids vary even conditional on our detailed controls, we automatically ruled out this form of

price taking as a potential mode of conduct to describe firms’ actual bidding behavior on the platform.
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also compute the averages of (scaled) components of utility associated with each candidates’
portfolio of bids. The absolute magnitudes of these components of utility do not have a
direct interpretation, but relative differences across scenarios are meaningful.

The unconditional means of each of these variables across simulation repetitions are re-
ported in Panel A of Table 1.9. We first consider scenarios in which firms are assumed to be
not predictive. Unsurprisingly, average bids are higher ($169k vs $145k), and markdowns are
lower (10% vs 18%), in the price taking model (column 1) relative the the preferred monop-
sonistic competition model (column 2). Additionally, candidates receive markedly fewer bids
(20 vs 43) under price taking than under monopsonistic competition, reflecting the increased
labor costs under price taking. Even though they receive fewer bids under price taking, the
increased monetary value of bids more than makes up for the substantial drop in the number
offers: the average candidates’ expected utility is higher under price taking than it is under
monopsonistic competition. On the other hand, candidates fare far worse when firms act
strategically (column 3): under oligopsony, candidates receive even fewer bids than when
firms are price-takers (13.5), and the monetary value of those bids is even lower than under
monopsonistic competition ($139k). As a result, candidates’ expected utilities are lowest
under oligopsony. Interestingly, switching to modes of conduct in which firms are assumed
to be type-predictive does little to change the unconditional means of each of the variables
we summarize here (columns 4-6).

The lack of a difference between the type-predictive and not-predictive alternatives in
unconditional mean outcomes obscures substantial differences in outcomes between men
and women when firms are type-predictive relative to when they are not predictive. We
report differences in mean outcomes across simulations between women and men in panel
B of Table 1.9. Across all conduct assumptions, women receive fewer bids than men (note,
however, that this difference is not conditional on other characteristics). In absolute terms,
the largest gender gaps in bids and welfare are predicted by the monopsonistic competition
model, although these differences are partly driven by the fact that firms unconditionally
make more bids under monopsonistic competition than they do under the other alternatives.
Relative to the unconditional average, women receive 8-10% fewer offers when firms are not
type predictive. The gap widens to 12-18% when firms are assumed to be type-predictive,
and the oligopsony model predicts the largest relative gaps. Female candidates’ expected
utility also drops, although to only a relatively small degree. The upshot of these simulations
is that firms have significant ability to exercise market power in ways that expand gender
gaps, as first posited by Robinson (1933).

Can a simple policy that blinds employers to the gender of the candidates they consider
narrow these gaps? Panel C reports differences between mean outcomes for men and women
across simulation draws in which firms are constrained to no longer observe the candidate
gender. The results from our simulations suggest that the efficacy of such a policy is relatively
limited. Across all conduct possibilities, the policy is predicted to marginally increase the
expected utility of female candidates relative to their male counterparts—across conduct
scenarios, blinding employers to gender lowers the gender gap in expected utilities by 6-9.5%.
Interestingly, while blinding not-predictive firms to gender modestly increases the number
of offers women receive relative to men, the opposite is true when firms are type-predictive.
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1.7 Conclusion

This paper provides direct evidence about the nature of firms’ wage-setting behavior by
developing a testing procedure to adjudicate between many non-nested models of conduct
in the labor market. In particular, we focus on two sets of alternatives relevant to ongoing
debates in the labor literature: first, whether firms compete strategically (Berger, Herkenhoff,
and Mongey 2017; Jarosch, Nimczik, and Sorkin 2021), and second, whether firms tailor
wage offers to workers’ outside options (Caldwell and Harmon 2019; Flinn and Mullins
2021). Applying our testing procedure, we find evidence against strategic interactions in
wage setting as well as against the tailoring of offers to workers of different types. Although
we study a specific labor market, these findings suggest that the relatively simple model of
wage determination posited by Card et al. (2018) provides a reasonable approximation to
firm wage-setting conduct in labor markets where many employers are competing for workers.
Importantly, we find that incorrect conduct assumptions can lead to substantial biases: in
our preferred model, wages are marked down by 18.2% on average, while an oligopsonistic
model predicts average markdowns of 25.8%.

Finally, we explore simulations of alternative conduct assumptions to quantify the impact
of imperfect competition on welfare. Relative to a price-taking baseline, we find that firms
make significantly more offers under the preferred model, but that the wages firms attach to
those offers are lower. Relative to the preferred model, however, the average value of bids,
the total number of bids, and welfare are significantly lower in simulated equilibria with
strategic interactions. We also find that the form of conduct has important implications
for gender gaps: relative to men, women receive significantly fewer bids when firms predict
horizontal preference variation than when they do not. Imperfect competition exacerbates
gender gaps relative to the price-taking baseline. Finally, we find that blinding employers to
the gender of candidates generates only modest reductions in gender gaps.
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Figures

Figure 1.1: Timeline of the Recruitment Process on Hired.com
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Note: This Figure shows the timeline of a recruitment on Hired.com. In red boxes are the different
salaries that are captured on the platform. The blue boxes describe all the steps of a recruitment
on the platform, from profile creation to hiring. The grey shading for the interview stage indicates
that we do not have meta data from companies about their interview process. In green are the
classification of the recruitment process between labor demand side (companies) and labor supply
side (candidates).



CHAPTER 1. BIDDING FOR TALENT 48

Figure 1.2: Distribution of Fraction of Interview Requests Accepted Across Firms

Note: This Figure shows the distribution of the share of accepted interview
requests for a given firm. Firms interview requests are frequently rejected by
candidates. On average, an interview request by a firm is only accepted 60.5%
(SD .206) of the time. For 10.2% of the firms the likelihood that their interview
is accepted is less than 40% , while 16.2% of the firms see more than 75% of
their interview requests accepted.
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Figure 1.3: Empirical Patterns in Bid and Ask Strategies

(a) Kink at Bid = Ask

(b) Bids often match Ask (c) Large range of bid salaries for same job

Note: This Figure illustrates several empirical patterns in the relationship between bid and ask
salaries. Panel (a) plots the average probability that a candidate accepts an interview request
by the company against the ratio of the bid to ask salary in the analysis sample. The slope of
the regression line for a bid ask ration of less than one is 1.304 (SE .022), while the slope of the
regression line for values greater or equal to 1 is 0.546 (SE .030). Panel (b) shows the relationship
between the probability that the bid is, respectively, less, the same or more than the ask, and the
level of the (log) ask salary. Panel (c) plots the relationship between the premium – the difference
between (log) bid and ask salary – and the within-job deviation of the (log) ask salary.
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Figure 1.4: Bids are Sticky in Expectation

Note: This Figure illustrates the relationship between the initial bid salary sent
by a company and the final offer of candidates that are hired for the subset of
the analysis sample. The correlation between log bid and log final salary is 0.86
(SE .458). 29% of all final offers in this subset are identical to the bid and 70%
of all final offers are within 10% of the initial bid salary.
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Figure 1.5: Interview Rejection Reasons as a Function of Firm Rankings

Note: This Figure plots the probability that a firm was rejected for a job-related
reason as a function of firms’ ordinal rankings (where lower ranks are better)
for the analysis sample. When a candidate receives a bid, she can decide to
reject it, that is she can refuse to interview with the company. For a sub-sample
(57%) of these rejections, candidates opted to provide a justification. They can
choose from justifications such as “company size”, “insufficient compensation”
or “company culture”. The latter is the justification we label as “bad com-
pany fit”. We plot the probability of rejection due to bad company fit against
estimated rankings from the single-type model.
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Figure 1.6: Differentiation between and within firms

(a) Vertical Differentiation

(b) Horizontal Differentiation

Note: This Figure illustrates the scale of vertical and horizontal differentiation of firms implied
by our preferred model estimates. Willingness to Accept (WTA) is equal to the fraction of a
candidate’s ask salary that the model implies a firm must offer to make that candidate indifferent
between accepting or rejecting an interview request, on average. Panel (a) plots the distribution of
the mean Willingness to Accept (WTA) at each firm, averaging over the population probabilities
of each type. Panel (b) illustrates the systematic component of horizontal differentiation, plotting
the distribution of the within-firm standard-deviation of (WTA) across preference types.
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Figure 1.7: First Stage

Note: This figure plots the “first stage” relationship between the model-implied
inclusive values Λi and Λ−j

i and the instrumental variable tij , conditional on
firm covariates zj and candidate covariates xi and two-week period dummies.
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Figure 1.8: Predicted Markdowns
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Note: This Figure plots the distribution of predicted markdowns under monop-
sonistic competition and oligopsony alternatives (in both cases, assuming firms
are not type-predictive). For observations with bid equal to ask, we take the
midpoint of the possible range of markdowns: (ε+

ij + ε−
ij)/2− ai.
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Figure 1.9: Visualizing the Vuong Test

Note: This Figure plots the relationship between generalized residuals and the
excluded instrument (labor market tightness) for the non-predictive monop-
sonistic competition and oligopsony models. Under proper specification, the
correlation of the generalized residuals and the excluded instrument should be
zero (the dashed line). The larger the deviation from zero, the greater the
degree of mis-specification of the model.
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Figure 1.10: Relationship between Productivity and Amenity Values

Note: This Figure plots regression-adjusted measures of the average firm com-
ponent of amenity values against the average firm component productivity for
16 categories of firms defined by combinations of firm size and industry. We
compute regression-adjusted firm-type averages as the coefficients on a set of
fixed effects in bid-level regressions of model-implied amenity and productivity
values on log(ask), an exhaustive set of fixed effects for combinations of other
worker characteristics xi, and dummies for firm type.
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Tables

Table 1.1: Summary Statistics for Candidate Characteristics

(1) (2) (3)
Variable (mean) All (n = 43630) Female (19%) Male (81%)
Salary
Ask/Expectation $137k $126k $140k
Education
Has a BA+ 0.872 0.913 0.862
Has an MA+ 0.403 0.437 0.395
Has a CS degree 0.629 0.558 0.645
Attended an IvyPlus 0.154 0.185 0.147
Work History
Years of experience 11.3 10.1 11.6
Software engineer 0.684 0.512 0.724
Worked at a FAANG 0.108 0.097 0.111
Employed 0.748 0.719 0.755

Note: This Table reports summary statistics for the subset of candidates
in the connected set, in particular, candidates’ posted ask salary, education
and previous work history. We report statistics both pooled and by gender.
Previous work history is reported in years, ask/expectation salary in dollars,
and all other statistics in percentages.
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Table 1.2: Summary Statistics: Job Search and Job Finding

(1) (2) (3)
Variable Full Sample Analysis Sample Connected Set
Company Side
Number of companies 7,877 2,121 1,649
Number of jobs 64,539 16,907 13,072
Number of interview requests sent 856,665 267,940 124,075
Average number of bids sent 13.3 15.8 9.5
Median number of bids sent 5.0 6.0 4.0

Candidate side
Number of candidates 224,499 44,321 14,344
Average number of bids received 3.5 4.1 4.8
Probability of accepting a bid (in %) 60.2 62.5 56.4

Note: This Table reports summary statistics for three increasingly restrictive samples of the
data. The full sample includes the universe of entries on the platform. The analysis sample
contains all candidates who had been contacted by a job that listed SF as the job location.
The connected set includes all companies that can be ranked. The average and median number
of bids sent statistics are calculated within job.
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Table 1.3: Candidate Preference Model Goodness-of-Fit

(1) (2) (3)
Split on Gender Split on Experience Model-Based Clusters

One Log. L -43,463 -45,184 -47,155
Ladder GOF 0.672 0.673 0.677

Two Log. L -42,962 -44,535 -45,558
Ladders GOF 0.680 0.684 0.744

p(2,1) 0.271 <0.001 <0.001
Three Log. L - - -44,594

Ladders GOF - - 0.779
p(3,2) - - <0.001

Four Log. L - - -43,857
Ladders GOF - - 0.808

p(4,3) - - >0.999

Number of Firms 975 1,128 1,649
Number of Candidates 13,658 13,830 14,344
Number of Comparisons 209,934 222,935 235,827

Note: This Table reports goodness-of-fit (GOF) measures and p-values to adjudicate between
labor supply models with different numbers of ladders (rows). Each column represents a different
way to split candidates into preference types. The GOF statistic is calculated as the fraction
of pairwise comparisons correctly predicted by the model, E

[(
Âqj > Âqk

)
×
(
j ≻i k

)]
, and p-

values are calculated via the likelihood ratio. Each column corresponds to a different sample
determined by (overlapping, if relevant) connected sets.
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Table 1.4: Which Firm Characteristics are Correlated with Amenity Values?

(1) (2) (3)
Â1j Â2j Â3j

Year Founded 0.00521 0.00641 -0.00502
(0.00374) (0.00385) (0.00358)

15-50 Employees -0.0836 0.114 0.105
(0.0881) (0.0907) (0.0843)

50-500 Employees -0.0531 0.222∗∗ 0.337∗∗∗

(0.0829) (0.0853) (0.0793)
500+ Employees -0.00169 0.287∗∗ 0.640∗∗∗

(0.0993) (0.102) (0.0950)
Finance 0.0153 0.0474 -0.105

(0.0694) (0.0715) (0.0664)
Tech -0.0179 -0.0312 -0.0594

(0.0567) (0.0584) (0.0543)
Health 0.0174 0.117 -0.0778

(0.0911) (0.0938) (0.0872)

adj. R2 -0.004 0.009 0.085
N 913 913 913

Note: This Table reports regressions of standardized esti-
mates of firm amenity values, Âqj , on basic firm charac-
teristics zj . The omitted category for the number of em-
ployees is 0-15. Standard errors in parentheses, constant
not reported. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 1.5: Oaxaca-Blinder Decompositions of Components of Utility

(1) (2) (3) (4) (5) (6) (7) (8)
Quantity Composition Inclusive Value

# Bids u(bij, ai) Aj ∆Aij Λb
i ΛA

i ∆ΛA
i Λ∗

i

Panel A: Gender

Men 4.854∗∗∗ -0.265∗∗∗ 0.336∗∗∗ 0.006∗∗∗ 0.806∗∗∗ 1.434∗∗∗ 0.003∗∗∗ 1.199∗∗∗

(0.037) (0.006) (0.002) (0.001) (0.009) (0.006) (0.001) (0.010)
Women 4.348∗∗∗ -0.667∗∗∗ 0.315∗∗∗ 0.014∗∗∗ 0.332∗∗∗ 1.348∗∗∗ 0.017∗∗∗ 0.721∗∗∗

(0.069) (0.012) (0.003) (0.002) (0.018) (0.012) (0.002) (0.020)
Difference 0.507∗∗∗ 0.402∗∗∗ 0.021∗∗∗ -0.008∗∗∗ 0.474∗∗∗ 0.085∗∗∗ -0.013∗∗∗ 0.478∗∗∗

(0.078) (0.014) (0.003) (0.002) (0.021) (0.013) (0.002) (0.022)
Endowments 0.577∗∗∗ 0.151∗∗∗ 0.018∗∗∗ 0.025∗∗∗ 0.243∗∗∗ 0.111∗∗∗ 0.024∗∗∗ 0.287∗∗∗

(0.045) (0.009) (0.002) (0.002) (0.013) (0.008) (0.002) (0.015)
Coefficients -0.083 0.242∗∗∗ 0.007∗ -0.033∗∗∗ 0.215∗∗∗ -0.026∗ -0.037∗∗∗ 0.181∗∗∗

(0.074) (0.013) (0.004) (0.002) (0.020) (0.013) (0.002) (0.021)
Interaction 0.012 0.010 -0.005∗ -0.001 0.017 0.001 -0.000 0.010

(0.044) (0.008) (0.002) (0.001) (0.012) (0.008) (0.001) (0.012)

Panel B: Education

No Grad School 4.943∗∗∗ -0.478∗∗∗ 0.320∗∗∗ 0.000 0.596∗∗∗ 1.424∗∗∗ -0.004∗∗∗ 0.969∗∗∗

(0.045) (0.007) (0.002) (0.001) (0.011) (0.007) (0.001) (0.012)
Grad School 4.489∗∗∗ -0.140∗∗∗ 0.349∗∗∗ 0.017∗∗∗ 0.892∗∗∗ 1.408∗∗∗ 0.020∗∗∗ 1.312∗∗∗

(0.046) (0.007) (0.002) (0.001) (0.012) (0.008) (0.001) (0.013)
Difference 0.454∗∗∗ -0.338∗∗∗ -0.029∗∗∗ -0.017∗∗∗ -0.296∗∗∗ 0.016 -0.023∗∗∗ -0.343∗∗∗

(0.065) (0.010) (0.003) (0.002) (0.016) (0.011) (0.002) (0.017)
Endowments -0.039 -0.101∗∗∗ -0.017∗∗∗ 0.001 -0.132∗∗∗ -0.047∗∗∗ -0.001 -0.149∗∗∗

(0.041) (0.007) (0.002) (0.001) (0.011) (0.007) (0.001) (0.012)
Coefficients 0.554∗∗∗ -0.137∗∗∗ -0.001 -0.013∗∗∗ -0.057∗∗∗ 0.080∗∗∗ -0.017∗∗∗ -0.073∗∗∗

(0.071) (0.010) (0.003) (0.002) (0.017) (0.012) (0.002) (0.018)
Interaction -0.062 -0.100∗∗∗ -0.011∗∗∗ -0.005∗∗∗ -0.107∗∗∗ -0.016 -0.006∗∗∗ -0.121∗∗∗

(0.053) (0.008) (0.002) (0.001) (0.013) (0.009) (0.001) (0.014)

N 38,231 38,231 38,231 38,231 38,231 38,231 38,231 38,231

Note: This Table reports Oaxaca-Blinder decompositions of components of utility. Panel A reports de-
compositions by gender. Panel B reports decompositions by education. Column 1 decomposes the gap in
the number of bids. Column 2 decomposes the mean gap in the monetary component of utility. Column
3 decomposes the mean difference in the common component of amenity values. Column 4 decomposes
differences in candidate-specific components of the amenity valuation. Columns 5-8 decompose compo-
nents of the inclusive value. The Endowments, Coefficients, and Interaction rows sum to the Difference
row in every column. Robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 1.6: Non-Nested Model Comparison Tests

(1) (2) (3) (4)
Model Monopsonistic Oligopsony

Not Predictive Type Predictive Not Predictive Type Predictive

Panel A: Likelihood-Based Test (Vuong (1989))

Perfect Competition -237.57 -237.67 -156.16 -154.34
Monopsonistic, Not Predictive – 1.28 90.17 90.39
Monopsonistic, Type Predictive – 88.45 89.81
Oligopsony, Not Predictive – 6.88
Oligopsony, Type Predictive –

Panel B: Moment-Based Test (Rivers and Vuong (2002))

Perfect Competition -54.84 -54.40 -39.92 -39.91
Monopsonistic, Not Predictive – 7.83 3.98 2.69
Monopsonistic, Type Predictive – 2.77 1.54
Oligopsony, Not Predictive – -3.67
Oligopsony, Type Predictive –

Note: This Table reports test statistics from the Vuong (1989) non-nested model comparison proce-
dure. We implement the testing procedure for each pair of the five models we estimated, using both
the likelihood-based test (Panel A) and the moment-based test (Panel B). Positive values imply the
row model is preferred to the column model. Under the null of model equivalence, the test statistics
are asymptotically normal with mean zero and unit variance.
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Table 1.7: (Subset of) Labor Demand Parameters Γ: log(εij) = z′
jΓxi + νij

(1) (2) (3) (4) (5)
Constant log(Ask) Female Employed Grad School

Constant 11.9897∗∗∗ 0.7954∗∗∗ -0.0079∗∗∗ -0.0014 0.0094∗∗∗

(0.0523) (0.0046) (0.0025) (0.0040) (0.0021)
16-50 Employees 0.0305 0.0814∗∗∗ 0.0046 0.0006 -0.0022

(0.0448) (0.0039) (0.0027) (0.0044) (0.0023)
51-500 Employees 0.0503 0.0832∗∗∗ -0.0010 0.0037 -0.0069∗∗∗

(0.0510) (0.0045) (0.0025) (0.0041) (0.0022)
501+ Employees 0.0612 0.1073∗∗∗ -0.0009 0.0011 -0.0090∗∗∗

(0.0516) (0.0045) (0.0026) (0.0043) (0.0022)
Finance -0.0008 0.0156∗∗∗ 0.0055∗∗∗ 0.0024 0.0022

(0.0526) (0.0046) (0.0016) (0.0028) (0.0013)
Tech 0.0052 0.0166∗∗∗ 0.0043∗∗∗ -0.0028 -0.0001

(0.0314) (0.0027) (0.0013) (0.0023) (0.0011)
Health -0.0028 0.0011 0.0009 -0.0006 -0.0004

(0.0462) (0.0040) (0.0022) (0.0037) (0.0017)

Std. Dev. of νij (σ̂ν) 0.0743 (0.0001) N = 181,927, Implied R2 = 0.888

Note: This table reports a subset of maximum likelihood parameter estimates from our
preferred model. The parameters relate combinations of candidate and firm characteristics
to the distribution of firms’ valuations over each candidate (or, the ex-ante productivity
of that candidate at that firm). The log of productivity/valuations is modelled as nor-
mally distributed, with mean z′

jΓxi and variance σν . Each cell reports the coefficient on
the interaction of the variables specified in the corresponding row and column. Column
variables are candidate characteristics (xi), and row variables are firm characteristics (zj).
The second, third, and fourth rows correspond to dummies for firm size categories, such
that the omitted category (subsumed into the constant, the first row of the table) corre-
sponds to the smallest firms (between one and fifteen employees). The remaining three
rows correspond to non-exclusive sector dummies. Column 1 reports the main effects of
each firm characteristic. Column 2 reports the main effects and interactions for the log ask
salary, where the log ask salary has been de-meaned. Columns 3-5 report coefficients on
dummies recording whether the candidate is female, was employed, or has received at least
a master’s degree. Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 1.8: Variance Decomposition of Bids

(1) (2) (3) (4)
Bids Markdowns Valuations

log(bij) log(µij) z′
jΓxi νij

Panel A: Monopsonistic Competition

log(bij) 1.000 -0.001 0.910 0.091
log(µij) 0.03 0.007 -0.011
z′

jΓxi 0.897 0.006
νij 0.097

Panel B: Oligopsony

log(bij) 1.000 0.101 0.777 0.122
log(µij) 0.133 0.080 -0.113
z′

jΓxi 0.680 0.016
νij 0.219

Standard Deviation of log(bij) = 0.221.

Note: This Table describes the variance decomposition of
log bids. Each cell reports the covariance of the row and
column variables, standardized (divided) by the overall vari-
ance of log bids. Panel A is computed using estimates
from the preferred model, monopsonostic competition/not
predictive conduct. Panel B is computed using the dis-
preferred oligopsony/type-predictive conduct model
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Table 1.9: Counterfactual Simulations

(1) (2) (3) (4) (5) (6)
Panel A: Unconditional Means

Not Predictive Type-Predictive
PT MC OG PT MC OG

Bid, bij $169k $145k $139k $169k $145k $139k
Ratio of Bid/Ask, bij/ai 1.196 1.024 0.979 1.196 1.025 0.978
Markdown, 1− bij/εij 0.099 0.182 0.182 0.099 0.183 0.183
# Bids Received/Candidate 20.1 43.2 13.5 19.6 42.0 13.2
Inclusive Value, Λ∗

i 0.930 0.886 0.822 0.932 0.888 0.822
Monetary Component, Λb

i 0.033 0.015 0.000 0.033 0.016 0.000
Common Amenity Comp., Λ̄A

i 0.282 0.357 0.315 0.281 0.355 0.314
Type-Specific Amenity Comp., ∆ΛA

i 0.002 0.004 0.004 0.005 0.008 0.007

Panel B: Differences, Women - Men

Not Predictive Type-Predictive
PT MC OG PT MC OG

# Bids Received/Candidate -1.830 -3.793 -1.434 -2.411 -5.681 -2.529
Inclusive Value, Λ∗

i -0.053 -0.069 -0.019 -0.056 -0.070 -0.019
Monetary Component, Λb

i -0.026 -0.052 -0.016 -0.027 -0.051 -0.016
Common Amenity Comp., Λ̄A

i -0.003 -0.005 -0.003 -0.004 -0.007 -0.004
Type-Specific Amenity Comp., ∆ΛA

i 0.005 0.010 0.013 0.003 0.010 0.011

Panel C: Differences, Women - Men, Gender Blind Firms

Not Predictive Type-Predictive
PT MC OG PT MC OG

# Bids Received/Candidate -1.652 -3.749 -1.529 -2.776 -6.162 -2.549
Inclusive Value, Λ∗

i -0.050 -0.066 -0.018 -0.053 -0.068 -0.019
Monetary Component, Λb

i -0.025 -0.051 -0.016 -0.027 -0.050 -0.016
Common Amenity Comp., Λ̄A

i -0.003 -0.005 -0.003 -0.002 -0.006 -0.002
Type-Specific Amenity Comp., ∆ΛA

i 0.004 0.011 0.013 0.005 0.009 0.011

Note: This Table reports results of counterfactual simulations under various conduct assumptions.
Columns labelled PT refer to the price-taking model of conduct, columns labelled MC refer to
the monopsonistic competition model of conduct, and columns labelled OG refer to the oligopsony
model of conduct. Each cell reports the average of the statistic over 50 simulation draws. In each
simulation draw, we sample from the distribution of valuations for a set of 500 firms considering
500 workers (a single sample of workers and firms is used for all simulations). Panel A reports the
unconditional means of various statistics. Panel B reports differences in means between women
and men. Panel C reports differences in means between women and men for simulations in which
firms are constrained to be gender blind.
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Chapter 2

A Framework for Design-Based
Inference of Many Treatment Effects

2.1 Introduction

Social scientists are often interested in estimating the distribution of an unobserved, or
partially-observed, attribute among a population. In economics, latent attributes of interest
are commonly measures of productivity or preferences that are allowed to vary across units
(e.g. people, firms, institutions). Differences in productivity or preferences across units
implies variation in the counterfactual potential outcomes of individuals assigned to those
units, such that each unit is associated with a unique treatment effect. Analysis of unit-
specific treatment effects reflects the basic fact that treatments of interest to social scientists
are rarely delivered uniformly: for instance, economists cannot (yet) manufacture pills to
deliver uniform does of human capital to students in a randomized controlled trial. Instead,
human capital is “delivered” to students by individual teachers, each of whom may vary
in skill or teaching practices. When policymakers say they want to improve the quality of
education, for instance, they are necessarily referring to the productivity of the teachers
who actually do the work of educating students. In order to craft policies that improve the
quality of education, then, it is important to understand the extent to which teachers differ,
if at all, in their ability to they have on their students (see, e.g. Chetty, Friedman, and
Rockoff 2014). The same logic applies when considering policies to improve health outcomes
when patients are treated by individual doctors, or when considering policies to reduce bias
in legal outcomes when cases are handled by individual judges, among other examples.

There are (broadly) two alternative modes of analysis social scientists have adopted when
they wish to quantify variation in latent treatment effects across units. The first alternative is
what might be called a direct, structural, or supervised approach, in which researchers specify
a list of measurable characteristics of units and assume that latent attributes that determine
treatment effects are shared within groups of units that share those characteristics. The effect
of this assumption is to partially reveal those latent attributes, allowing for direct estimation
of treatment effects that compare individuals assigned to units in each group. For instance,
we might assume that teacher productivity is a function of teacher experience and education,
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such that all teachers with the same combinations of experience and education have the
same mean productivity. This approach is clearly attractive if appropriate assumptions can
be maintained, since it allows researchers to pool data across units to estimate treatment
effects precisely.

However, the direct approach has clear drawbacks if observable proxies for latent attributes
are incomplete, difficult to measure, or only weakly correlated with the latent attribute of
interest. In that case, the direct approach may at best deliver an uninformative lower
bound on the variance of treatment effects. At worst, the direct approach may deliver
parameter estimates polluted by omitted variables bias, since it is generally not possible
to know whether measurable characteristics of units are correlated meaningfully with other
unobserved characteristics, and how those characteristics combine to determine the outcome
of interest. Importantly, this is true even under pure random assignment of individuals
to units, since identification of the mechanisms that drive productivity requires random
assignment of attributes across units (e.g. random assignment of training to teachers, such
that training is independent of other teacher attributes). Further, it is often extremely
burdensome, if not impossible, to measure all of the possible characteristics that may be
relevant to the latent attribute.

The second alternative is an outcome-oriented, reduced-form, or unsupervised approach,
in which researchers specify a statistical model that relates the distribution of outcomes to
the latent attribute in which no structural relationship between the unobserved attribute
and measurable inputs is assumed – in other words, each unit is allowed to have a com-
pletely unique value of the latent attribute. The outcome-oriented approach circumvents
the problem of direct measurement of inputs by inferring variation in those inputs through
modeling the distribution of readily-measurable outputs. One could think of the this ap-
proach as measuring the variation in a sufficient statistic for the outcome that collapses all
possible latent factors of units. In some cases, this is a strength of the approach, since the
outcome that is measured is one that may have direct welfare implications (for instance, in
the analysis of variation in physician “productivity” as measured by patient mortality). In
other applications, the lack of a structural interpretation is a weakness. Because there are
typically many more units than there are measurable attributes of those units, moving from
the direct approach to the outcome-oriented approach is fundamentally about accepting in-
creased uncertainty around estimates of variation in attributes in exchange for a reduction
in the bias of those estimates.

This paper is concerned with the second approach to estimation of distributions of at-
tributes, which has grown increasingly popular among economists. The popularity of the
outcome-oriented approach is in part due to the fact that it requires placing fewer restric-
tions on the data generating process than the direct approach: both require the absence of
systematic sorting of individuals to units based on unobserved factors, but the direct ap-
proach additionally requires that measurable inputs are randomly assigned to units, or that
all relevant inputs can be measured. The assumption that there is no sorting of individuals
to units on the basis of unobserved factors is key for identification of unit-specific attributes,
and is typically formalized as an assumption of unconfoundedness: conditional on a set of
observable variables, the actual assignment of individuals to units is independent of indi-
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viduals’ vector of potential outcomes under counterfactual assignment to each unit. This
assumption is usually motivated by institutional knowledge of the assignment process.

In practice, however, researchers who adopt the outcome-oriented approach almost always
apply additional functional form and distributional assumptions which may not be motivated
by any particular knowledge of the data-generating process. For instance, it is common to
model student test scores as the sum of a linear combination of measured confounds, a
teacher effect, and an idiosyncratic individual effect, where the teacher and individual effects
are assumed to be drawn from normal distributions (this is the basic modeling assumption
of Chetty, Friedman, and Rockoff (2014), for instance). By specifying a complete model
of the data generating process, the inferences these studies make about the distribution
of treatment effects are in a sense model-based (Card 2012; Sterba 2009). Under correct
specification, model-based estimators of treatment effects can perform optimally (in the sense
of bias and variance) relative to alternative estimators. However, a mis-specified outcome
model may lead to severely biased estimates of treatment effects.

This paper draws upon the key insight that the modeling assumptions used in studies
that adopt the outcome-oriented approach are unnecessary when researchers have already
assumed that assignment of individuals to units is unconfounded, and the object of interest
is a distribution of average treatment effects across units. Indeed, if assignment to units is
unconfounded conditional on a set of measured variables X, all one needs to estimate the
average treatment effect of each unit is the probability of assignment to treatment given X –
the propensity score (Rosenbaum and Rubin 1983). Given a model of the propensity score,
there is no need to specify a parametric model for the outcome. Rather, taking averages of
each unit’s outcomes weighted by the inverse of the propensity score will deliver estimates
of the average treatment effects associated with each unit (e.g. Hirano, Imbens, and Ridder
2003). In contrast to the model-based approach to causal inference outlined above, this
is a fundamentally design-based approach to causal inference: the propensity score fully
summarizes the sampling design that gave rise to the observed data (Card 2012; Sterba
2009).

There are advantages to the design-based approach relative to the model-based approach
beyond eschewing potentially mis-specified functional form and distributional assumptions.
By specifying the sampling mechanism, the design-based approach formalizes both the notion
of which causal quantity is the target parameter of interest (Rubin, Stuart, and Zanutto 2004)
and the population of individuals who are actually at risk for assignment to each treatment.
In so doing, the design-based approach makes explicit researcher’s assumptions about the
extent to which units are reliably comparable without out-of-sample extrapolation, while
those assumptions remain implicit (and often unrecognized) in studies that adopt the model-
based approach to causal inference. Despite the advantages of design-based approaches
to causal inference about distributions of treatment effects over model-based approaches,
design-based approaches are rarely used in these settings (a notable recent exceptions is
Angrist et al. 2020).

This paper proposes a framework for design-based inference for many unit-specific treat-
ment effects and the distribution from which those treatment effects are drawn. Importantly,
for the purposes of this paper, “design-based inference” refers primarily to the method by
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which causal quantities are estimated, and not necessarily the mode of statistical inference
used to make probability statements about those casual quantities. In this sense, our use
of the terms “design-based” and “model-based” mirror their use in Card (2012) and Card
(2022): identification of the causal effect(s) of interest arises from manipulation of assign-
ments of individuals to treatments. While the design-based approach offers many potential
advantages over the model-based approach, implementing the design-based approach in a
setting with a large number of treatments presents unique econometric challenges. First,
the standard overlap assumptions that are maintained in settings where treatment is binary
are very likely to fail in settings where the number of treatments is large. Second, the di-
mensionality of the problem is greatly increased relative to the binary treatment case. In
order to grapple with the dual issues of limited overlap and high dimensionality, we develop
a regularized propensity score estimator that allows for structural failure in overlap. We
then use tools from the literature on matrix completion to analyze the properties of this
estimator. Given estimates of the assignment model, we then propose a novel sample trim-
ming routine that selects the largest subset of the sample for which a traditional notion of
overlap is likely to hold. Finally, we illustrate a method for estimating the distribution from
which treatment effects are drawn via an inverse propensity score weighted nonparametric
maximum likelihood routine.

2.2 Setup

Variables and Notation

Consider collecting data on a sample i = 1, . . . , N of the form:

Yi ∈ {0, 1}, Di =
(
Dij ∈ {0, 1}

)J

j=1
, Si =

(
Sir ∈ {0, 1}

)R

r=1
, X ′

i ∈ RK .

Here, we have assumed that Yi is a binary outcome of interest, although the analysis below
generalizes to other types of outcomes. Di is a J-dimensional vector that encodes the assign-
ment of individual i to unit (treatment arm) j. Si is an R-dimensional vector encoding the
assignment of individual i to “randomization stratum” r. The variable Si is an exhaustive
discretization of the full set of measured confounds that determine the probability of assign-
ment to treatment. Assuming Si takes on a finite number of values is typically without loss
of generality, since the variables that govern assignment probabilities in usual applications
are themselves discrete (e.g. age, location, etc.). Finally, Xi is a K-dimensional vector of
pre-determined characteristics of unit i. The ultimate quantity of interest is the set of treat-
ment effects associated with assignment of Di to levels j = 1, . . . , J on outcome Yi. The
observed variables Xi are a subset of all factors aside from Di and Si that affect the outcome
Yi. We denote all unobserved factors by Xu

i and denote the union of these sets of random
variables by Ui = {Xi, X

u
i }. Both Si and Ui are “pre-treatment” variables, in that they are

determined before treatment assignments are made, and cannot be affected by treatment
assignments.
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Potential Outcomes Model

We next specify a framework for defining causal treatment effects along the lines of (Rosen-
baum and Rubin 1983). Under the Stable Unit Treatment Value Assumption (SUTVA), we
may write the potential outcome of individual i assigned to unit j as:

Y ∗
ij = Y ∗

j (Si, Ui),

such that the observed outcome can be written:

Yi =
J∑

j=1
DijY

∗
ij .

We next state the first of two sets of assumptions necessary for identification of treatment
effects:

Assumption 2.1. (Unconfoundedness)

a) Conditional on Si, assignment to treatment is independent of Ui:

Ui ⊥ Di | Si.

b) Potential outcomes are iid Bernoulli conditional on Ui and Si:

Y ∗
j (Si, Ui) iid∼ Bernoulli

(
pj(Ui, Si)

)
.

Assumption 2.1a is sometimes called selection-on-observables: conditional on random-
ization stratum, assignments of individuals to treatments are orthogonal to the remaining
determinants of outcomes (Ui). Assumption 2.1b states that individuals in the same stratum
Si and with the same characteristics Ui face identical potential outcome distributions. To-
gether, these two assumptions imply that assignment to treatment is weakly unconfounded
(Imbens 2000):

Definition 2.1. (Weak Unconfoundedness) Assignment to treatment is weakly uncon-
founded, given randomization stratum Si, if:

Y ∗
ij ⊥ Di | Si.

What does assumption 2.1 imply? Denote the distribution of Ui conditional on Si by:

Ui | Si = er ∼ FU |S(· | er),

where er is the r-th standard basis vector. Next, define:

pj(er) =
∫
pj(u, er)dFU |S(u | er).
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Given this notation, we have:

Yi | Dij = 1, Sir = 1 d= Y ∗
ij | Dij = 1, Sir = 1

d= Y ∗
ij | Sir = 1

∼ Bernoulli
(
pj(er)

)
.

The first equality follows from the definition of the potential outcomes model, while the
second equality follows from assumption 2.1. Therefore, the quantities pj(er) are identified
from observable data. If each unit was observed many times in each stratum, the unit j -
stratum r cell mean would converge to pj(er). Finally, define:

pj =
R∑

r=1
pj(er) dFS(er),

where dFS(er) is the unconditional distribution of individuals across randomization strata.
The unconditional distribution of potential outcomes is therefore given by:

Y ∗
ij ∼ Bernoulli(pj).

The distribution of pj across the J treatment arms is the primary object of interest. Variation
in pj across units reflects differences in the average treatment effects of those units.

Next, we introduce the second set of assumptions necessary for identification of treatment
effects. While Assumption 2.1 is relatively standard, these assumptions are non-standard:

Assumption 2.2. (Overlap)

a) Conditional on a latent variable Zjr ∈ {0, 1} ⊥ Si:

0 <Pr(Dij = 1 | Sir = 1, Zjr = 1) < 1, and
Pr(Dij = 1 | Sir = 1, Zjr = 0) = 0.

b) Conditional on a latent variable Vi = ∑R
r=1 SirVr, where Vr ∈ RQ, with Q < min(J,R):

Pr(Dij = 1 | Sir = 1, Vi = v, Zjr = z) = Pr(Dij = 1 | Vi = v, Zjr = z)

Assumption 2.2a is a weakening of the typical overlap assumption, which requires Pr(Dij =
1 | Sir = 1) > 0 for all j and r. The latent variables Zjr encode whether individuals in
stratum r could have been assigned to treatment j. When Zjr = 0, then there is zero
probability of assignment to j in stratum r, and overlap fails. When Zjr = 1 then there is
a positive probability of assignment to j in stratum r. Assumption 2.2b implies that the
matrix of propensity scores (or an appropriate transformation of those propensity scores) is
of low rank. In particular, all R of the J-dimensional vectors of strata-specific assignment
probabilities are generated by taking combinations of a small number (Q) of baseline selection
regimes. Further, assumption 2.2b states that randomization strata which combine the
underlying selection regimes in the same way (Vr = Vr′) have identical vectors of propensity
scores.



CHAPTER 2. DESIGN-BASED INFERENCE OF MANY TREATMENT EFFECTS 72

2.3 Estimation with a Known Assignment Mechanism

Consistency of the Fixed Effects Estimator

To estimate the full set of treatment effects, consider the following weighted likelihood:

L(p) =
N∏

i=1

J∏
j=1

(
pYi

j (1− pj)1−Yi

)wijDij

,

where wij is a set of weights (to be specified). Importantly, the assumption that potential
outcomes are distributed according to a Bernoulli distribution is a trivial implication of the
assumption that the outcome Yi is binary, and so specifying a full likelihood for the data does
not impose any substantive restrictions. Maximizing the log-weighted-likelihood with respect
to the full parameter vector p = (p1, . . . , pJ)′ yields the following fixed-effects estimator for
each pj:

p̂fe
j =

1
N

∑N
i=1 wijDijYi

1
N

∑N
i=1 wijDij

.

In this section, we assume that the assignment mechanism is known, by which we mean
that Zjr, Vr, and Pr(Dij = 1 | Vi = v, Zij = 1) are known, where Zij = ∑R

r=1 SirZjr. When
the assignment mechanism is known, and given a particular choice of weighting function,
the p̂fe

j is a consistent estimator of the average treatment effect of unit j for the population
of individuals in strata for which Zjr = 1. Let O denote a set of unit and strata indices (j
and r) such that Zjr = 1 for all j, r ∈ O. Define the average treatment effect of unit j in
subsample O as:

pO
j =

∑
r∈O pj(er) dFS(er)∑

r∈O dFS(er)
.

Given these definitions, we now state the basic result:

Theorem 2.1. (Consistency of p̂fe
j , Known Assignment Mechanism) Assume the

conditions of assumptions 2.1 and 2.2 hold, and additionally assume that the assignment
mechanism is known (such that all Zjr, Vr, and Pr(Dij = 1 | Vi = v, Zij = 1) are observed).
Let O denote a set of unit (j) and randomization strata (r) indices such that Zjr = 1 for all
j, r ∈ O. Define the weighting function:

wij = wj(v) = 1[r(i) ∈ O]
Pr(Dij = 1 | Vi = v, Zi = 1) ,

where r(i) returns the index of the randomization stratum of individual i. Then:

p̂fe
j

p→ pO
j .

Proof. Without loss of generality, we assume Zjr = 1 for all j and r and suppress dependence
on the overlap set O (otherwise, we could select an overlap set and re-define all indices). We
also suppress i subscripts for brevity. As N tends to infinity, the numerator of p̂fe

j converges
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in probability to Pr(D = ej) × E[wj(V )Y | D = ej], and the denominator converges to
Pr(D = ej)× E[wj(V ) | D = ej] . We have:

E[wj(V ) Y | D = ej] =∫
v

R∑
r=1

E[wj(v) Y | V = v, S = er, D = ej]dFS|V,D(er | v, ej)dFV |D(v | ej).

By Bayes’ rule and Assumption 2, we may write:

dFS|V,D = dFD|V,SdFS|V

dFD|V
= dFD|V dFS|V

dFD|V
= dFS|V .

Additionally, we may write:

E[wj(v) Y | V = v, S = er, D = ej] = wj(v) E[Y ∗
j | V = v, S = er].

This implies:

E[wj(V ) Y | D = ej] =
∫

v
wj(v)

[
R∑

r=1
E[Y ∗

j | V = v, S = er]dFS|V (er | v)
]
dFV |D(v | ej)

=
∫

v
wj(v) E[Y ∗

j | V = v]dFV |D(v | ej)

=
∫

v
E[Y ∗

j | V = v]dFV |D(v | ej)
1

dFD|V (ej | v)
dFD|V (ej | v)dFV (v)

dFD(ej)

= Pr(D = ej)−1 ×
∫

v
E[Y ∗

j | V = v]dFV (v)

= Pr(D = ej)−1 × E[Y ∗
j ].

The numerator clearly converges in probability to E[Y ∗
j ] = pj. Similarly, the denominator

converges in probability to 1. And so, by Slutsky’s Theorem:

p̂fe
j

p→ pj.

Estimating the Distribution of Treatment Effects

Although the Maximum Likelihood fixed effects estimator of p is consistent, there are
several practical downsides -- namely, fixed effect estimates tend to have poor out-of-sample
predictive power. In order to address this concern, we next consider estimation of the
distribution of the pj, which is denoted by G(·). For the purposes of this section, we again
assume the weights wij and the Zi are known, and implicitly condition on Zi = 1 without
loss of generality.

We now formally assume:



CHAPTER 2. DESIGN-BASED INFERENCE OF MANY TREATMENT EFFECTS 74

Assumption 2.3. (Random Sampling)

pj
iid∼ G(·).

Under assumption 2.3, moments of up to order J are identified (as in Kline and Walters
2021). In particular, we may write:

E

 1
J

J∑
j=1

(
p̂fe

j

)m

 =
m∑

i=0
ωimµi,

where the ωim are known constants that are functions of the weights wij. In particular, the
identified moments of G(·) can be used to construct an unbiased estimate of the variance of
treatment effects across units:

V̂ar(pj) = 1
J − 1

J∑
j=1

p̂fe
j −

1
J

J∑
j=1

p̂fe
j

2

− 1
J

J∑
j=1

SE
(
p̂fe

j

)
,

where SE
(
p̂fe

j

)
is an unbiased estimate of the standard error of p̂fe

j . It can be shown that
V̂ar(pj) is a U-statistic, and therefore:

√
J
(

V̂ar(pj)− Var(pj)
)
⇝ N(0, Vσ/J).

We can construct an unbiased estimate of Vσ following the method of Wang and Lindsay
(2014), and use that estimate to test against the null hypothesis of no heterogeneity.

Beyond estimating individual moments of the distribution of G(·), we may be interested
in producing estimates of the entire distribution itself. To do so, re-arrange the weighted
likelihood:

L(p) =
J∏

j=1

∏
i:Dij=1

(
pYi

j (1− pj)1−Yi

)wij

.

Now, let
fj(p) = f

(
p | {Yi, Si}i:Dij=1

)
=

∏
i:Dij=1

(
pYi(1− p)1−Yi

)wij

for j = 1, . . . , J denote the weighted likelihood of the observed vector of outcomes for each
unit j. Define the integrated likelihood as:

L∗(G) =
∫
· · ·

∫ J∏
j=1

∏
i:Dij=1

(
pYi

j (1− pj)1−Yi

)wij

dG(p1, · · · , pJ)
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By Tonelli’s theorem, the integrated likelihood and its logarithm can be written:

L∗(G) =
J∏

j=1

∫ ∏
i:Dij=1

(
pYi

j (1− pj)1−Yi

)wij

dG(pj)

ℓ∗(G) =
J∑

j=1
log

(∫
fj(p | Yj, Zj) dG(p)

)
.

We may produce estimates of the distribution of treatment effects across units by maximizing
ℓ∗(G) with respect to G(·). Because G(·) is infinite dimensional, and the log-integrated
likelihood is nonconvex, this optimization problem poses a challenge. One way to simplify
the problem is to assume that G(·) is a member of a parametric family of distributions. A
natural choice here is a Beta(α, β) distribution. Estimation of α and β can be achieved via
the EM algorithm.

A second option, proposed by Koenker and Mizera (2014), is a nonparametric alternative
to the parametric method described above. We assume that G(·) takes on the form:

G(p) =
K∑

k=0
gk × 1[p ≤ k/K], with G(1) = 1, gk ≥ 0 ∀k,

for some K relatively large. This assumption restricts the support of G(·) to a fine grid of
points. Given this assumption, the likelihood becomes:

ℓ∗(θ) =
J∑

j=1
log

(
K∑

k=0
fj(pk | Yj, Zj) gk

)

=
J∑

j=1
log

(
K∑

k=0
fjk gk

)

=
J∑

j=1
log

(
F ′

jG
)
,

where fjk = fj(pk | Yj, Zj), Fj =
(
fjk

)K

k=1
, and G =

(
gk

)K

k=1
. Let F =

(
F1, . . . , FJ

)
.

Estimation of G proceeds via nonlinear convex programming:

min
G
−1′

J log(F ′G) s.t. 1′
KG = 1, G ≥ 1.

The distributions produced by this routine are “spiky,” with estimated gk > ϵ ≈ 0 for
approximately log(J) points only. Efron (2016) proposed an empirical bayes deconvolution
estimator that is essentially a smoothed version of Koneker and Mizera’s estimator that
imposes additional (exponential family) structure on the gk. Specifically, Efron sets:

gk = gk(α) = exp (Q′
kα− ϕ(α)) , with ϕ(α) = log

(
K∑

k=0
exp(Q′

kα)
)
.

Here, α is a p-dimensional parameter vector and Q = (Q0 . . . QK) is a known p × K + 1
design matrix. The full procedure specifies Q′α as a spline in pk and imposes a penalty
function on α.
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2.4 Modeling the Assignment Process

In most practical applications, wj(v) = 1[r(i) ∈ O]/Pr(Dij = 1 | Vi = v, Zi = 1) is
unknown and must be estimated. Estimation of the J × R matrix of propensity scores
is complicated by the fact that in many real-world applications, a large share of unit-by-
strata cells will contain exactly zero observations. This problem is exacerbated when the
assumption of unconfoundedness only holds conditional on a very large set of factors, such
that the dimension R grows large relative to the overall sample size. Traditionally, the
problem of limited overlap is overcome by trimming on the estimated propensity score:
excluding observations with estimated propensity scores above or below cutoff values (e.g
Crump et al. 2009). Because the data is sparse and treatment is high-dimensional rather than
binary, trimming on the estimated propensity score poses a fundamental problem: we need
to infer whether a unit/stratum cell contains zero observations because there was actually
no chance that an observation could have been assigned to that unit in that stratum, or
rather that the cell contained zero observations by chance.

For each unit j = {1, . . . , J}, and randomization strata r = {1, . . . , R} cell, we observe a
count njr which measures the number of times unit j was assigned to an individual in strata
r). Each randomization strata r is associated with a marginal count nr = ∑J

j=1 njr. We
form the J-row-by-R column matrix

N =
(
njr

)J,R

j=1,r=1
,

which encodes the cell counts. We model the cell counts as draws from a mixture distribution:

Assumption 2.4. (Zero-Inflated Poisson (ZIP) Model) njr, the number of times unit
j appears in stratum r, follows a mixture distribution:

njr ∼ Zjr ×Mjr,

where the terms of the mixture are independent and distributed:

Zjr ∼ Bernoulli(πjr), and
Mjr ∼ Poisson(λjr),

where πjr ∈ (0, 1) and λjr > 0 ∀ jr.

Let Λ =
(
λjr

)J,R

j=1,r=1
, Π =

(
πjr

)J,R

j=1,r=1
, and Z =

(
Zjr

)J,R

j=1,r=1
denote the J × R matrices

collecting the Poisson rate parameters, Bernoulli success probabilities, and latent overlap in-
dicators, respectively. The ZIP model specified by assumption 2.4 is standard for estimating
sparse count models. The model allows for over-dispersion (excess zeros) in the observed
counts njr when the sample is derived from a (potentially) sparse data generating process.
A key feature of this model is that the random variables Zjr, which determine overlap, are
actually partially observed. When njr > 0, we can infer that Zjr = 1. However, when
njr = 0, we can only imperfectly predict Zjr.
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Maximum Likelihood Estimation via the EM Algorithm

Denote the parameters of the full model by θ = {Π,Λ}. The complete-data log-likelihood
for the above model is:

L(θ | Z,N) =
J∑

j=1

R∑
r=1

log
(
(1− Zjr)(1− πjr)1[njr = 0] + Zjrπjrλ

njr

jr exp(−λjr)/(njr!)
)
.

We form the log integrated likelihood by replacing the expression inside the logarithm with
its expectation, conditional on the observed counts:

L∗(θ | N) =
J∑

j=1

R∑
r=1

log
(
(1− πjr)1[njr = 0] + πjrλ

njr

jr exp(−λjr)/(njr!)
)
.

The log integrated likelihood is highly nonconvex, rendering estimation by direct maximiza-
tion infeasible. We therefore maximize this function via the EM algorithm. The E-step
entails forming the function:

EN(θ | θt) =
J∑

j=1

R∑
r=1

[
(1− π̃t

jr) log ((1− πjr)1[njr = 0]) + π̃t
jr log

(
πjrλ

njr

jr exp(−λjr)/(njr!)
)]
,

where θt denotes the parameter values at the t-th iteration of the algorithm, and π̃t
jrdenotes

the posterior probability of the event Zjr = 1 conditional on the observed values of njr and
those parameters. Suppressing t superscripts, these probabilities are given by:

π̃jr = Pr(Zjr = 1 | njr;θ)

=


πjr exp(−λjr)

πjr exp(−λjr)+(1−πjr) if njr = 0, and
1 otherwise.

Let Π̃ denote a matrix collecting all J × R posterior probabilities π̃jr. Note that the event
njr > 0 implies π̃jr = 1. We adopt the information-theoretic convention that 0 log(0) =
limp↓0 p log(p) = 0, which implies that (1 − π̃t

jr) log ((1− πjr)1[njr = 0]) = 0 when njr > 0,
and more generally that the expression (1− π̃t

jr) log ((1− πjr)1[njr = 0]) is always equal to
(1− π̃t

jr) log (1− πjr). Importantly, the E(θ | θt,N) function is separable in its arguments:

EN(θ | θt) = E0
N(Π | θt) + E1

N(Λ | θt) + Ct, with

E0
N(Π | θt) =

J∑
j=1

R∑
r=1

[
(1− π̃t

jr) log (1− πjr) + π̃t
jr log (πjr)

]
, and

E1
N(Λ | θt) =

J∑
j=1

R∑
r=1

[
π̃t

jr (njr log(λjr)− λjr)
]
,

and where Ct is a constant. The M-step entails maximizing EN(θ | θt) with respect to the
elements of θ, which can be achieved by maximizing each part separately. In our implemen-
tations, both maximization sub-tasks involve approximating nonnegative J × R matrices
with nonnegative matrices of (much) lower rank. We consider two possible alternatives for
estimating the parameters of this model.
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Estimation under Exact Rank Constraints

The model we have specified is heavily overparameterized: every observed count njr is
assumed to be a draw from a two-parameter distribution, where each jr cell may have unique
values of those parameters. In order to identify the model, we impose constraints on the
structure of the parameter matrices Λ and Π. These constraints more explicitly formalize
2.2b. We first consider estimating the ZIP model of counts under exact constraints on the
rank of both Λ and Π:

Assumption 2.5. (Exact Rank Constraints)

rank(Λ) = Q < min(J,R) and rank(Π) = 1.

Under assumption 2.5, we may write Λ = UV′ with U a J ×Q matrix and V an R×Q
matrix, and Π = µν ′ with µ a J × 1 vector and ν an R× 1 vector. Note that the choice to
model Π as a rank-1 matrix is arbitrary, although there are some intuitive features of this
representation. Algorithms to optimize objectives like E0

N(Π | θt) or E1
N(Λ | θt) under exact

rank constraints have been called “Non-negative Matrix Factorization” (NMF) routines (Lee
and Seung 2000). NMF methods have existed under various names since at least the 1990s,
but gained popularity after they were successfully implemented in the Netflix Prize competi-
tion, which asked entrants to create an algorithm to predict which movies Netflix users would
rate highly given data on their ratings of prior movies. In the machine learning literature,
these models are often referred to as “recommender systems” or “collaborative filtering” al-
gorithms. NMF methods have been shown to be equivalent to several well-known statistical
modeling procedures when appropriate constraints are applied, including spectral clustering,
K-means clustering, and Probabilistic Latent Semantic Indexing (a popular method for text
analysis).

We parameterize the Poisson rate parameters as follows:

λjr = ∑Q
q=1 ujqvrq, such that ∑J

j=1 ujq = 1 ∀q, ujq ≥ τ > 0 ∀jq, and vrq ≥ 0 ∀rq.

We collect the ujq into Q separate J × 1 column vectors uq = (u1q, . . . , uJq)′ (factors), and
the vrq into R separate Q× 1 column vectors vr = (vr1, . . . , vrQ)′ (factor loadings). We may
then write:

U =
[
u1 u2 . . . uQ

]
∈ [τ, 1− τ(J − 1)]J×Q, and

V =
[
v1 v2 . . . vR

]′
∈ RR×Q

+ .

The requirement that the elements of each of the q factors sum to one is not a substantive
restriction on its own (dividing a column of U by a scalar is equivalent to multiplying the
corresponding column of V by that scalar). However, imposing this restriction ensures
identifiability and interpretability of the parameters. The restriction that the factors uq and
factor loadings vr are nonnegative is a substantive restriction. These restrictions ensure
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that the Poisson rate parameters are well-defined (these parameters cannot be negative).
Finally, the restriction that the factor values all be greater than τ serves two purposes.
First, this restriction helps ensure the model is identified. If the ujq were allowed to equal
zero identically, then some of the λjr could be set to zero identically. In such a case, there is
no meaningful distinction between the events Zjr = 1 and Zjr = 0. Second, this restriction in
combination with the summing-to-one restrictions motivates an interpretation of the model
as determining the subsample of the data for which overlap in the distributions of assignments
is most likely to be weak. The tuning parameter τ corresponds to the researcher’s prior about
level of overlap in the sample.

We now present an algorithm for estimating the model parameters. First, consider the
parameters µ and ν. Denote the Karush–Kuhn–Tucker (KKT) multipliers that encode the
constraints 1 − µj > 0 and 1 − νr > 0 by γj and γr, respectively (the positivity constraints
are trivially non-binding). The FOCs for these parameters can be written:

µj :
R∑

r=1
νr

(
π̃jr

µjνr

− 1− π̃jr

1− µjνr

)
− γj = 0, and

νr :
J∑

j=1
µj

(
π̃jr

µjνr

− 1− π̃jr

1− µjνr

)
− γr = 0.

Denote π̃jr

µjνr
by ψ1

jr and 1−π̃jr

1−µjνr
by ψ0

jr, which are collected in the corresponding J × R

matrices Ψ1 and Ψ0. Eliminating the KKT multipliers and re-arranging yields the following
multiplicative update rules, which guarantee at each step that the parameters satisfy the
constraints and that the objective function weakly increases:

µ← 1J − (1J − µ) ◦ Ψ
0 ν

Ψ1 ν
, and

ν ← 1R − (1R − ν) ◦ Ψ
0′
µ

Ψ1′µ
,

where 1J and 1R are conformable column vectors of ones, ◦ denotes the element-wise
(Hadamard) product of matrices, and division is also element-wise. Iterating over these
updates (which involves re-calculating the Ψ matrices after each step) is a gradient descent
procedure with a fixed step size. To avoid numerical issues, a small constant may be added
to both the numerator and denominator of each expression.

Next, consider the parameters U and V. Denote the KKT multipliers that encode the
constraints ujq − τ ≥ 0 and vrq ≥ 0 by γjq and γrq, respectively. In addition, denote the
Lagrange multipliers that encode the constraints ∑Q

q=1 ujq = 1 by γq. The FOCs for these
parameters are then:

ujq :
R∑

r=1
π̃jrvrq

(
njr

λjr

− 1
)

+ γjq − γq = 0, and

vrq :
J∑

j=1
π̃jrujq

(
njr

λjr

− 1
)

+ γrq = 0.
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Denote π̃jrnjr

λjr
by ωjr, which are collected in the corresponding J ×R matrix Ω. Eliminating

the KKT multipliers and summing the FOCs for ujq over j = 1, . . . , J gives:

γq =
(uq − τ)′

(
Ω− Π̃

)
vq

1− Jτ ,

where τ is a conformable matrix with every entry equal to the scalar τ , uq is the q-th factor
(column) of the factor matrix U and vq is the q-th column of the factor loading matrix V.
Let γπ̃ = diag

(
(U−τ)′Π̃V

)
/(1−Jτ) and γω = diag

(
(U−τ)′ΩV

)
/(1−Jτ), where diag(·) is

a function that returns the central diagonal of its argument as a column vector. Eliminating
the KKT multipliers and simplifying gives the following update rules:

U← τ + (U− τ) ◦ ΩV + γ ′
π̃

Π̃V + γ ′
ω

, and

V← V ◦ Ω′U
Π̃′V

.

Iterating over the full procedure (the E and M steps, with iterative maximization of each
term of E in the M step) yields estimates of the model parameters θ = {µ,ν,U,V}.

2.5 A Nuclear Norm Regularized Estimator of Propensity Scores

While the the rank-constrained EM algorithm presented in the prior section is relatively
simple to implement, it is highly nonconvex. So, while the algorithm might converge to a
local stationary point, there is no guarantee that that stationary point represents a global, or
even local, maximum of the (constrained) integrated likelihood. Recognizing this drawback,
it is common to replace the exact constraint on the rank of Λ with the convex relaxation of
that constraint. The rank of a matrix X can be written as:

rank(X) =
min(J,R)∑

i=1
1[σi(X) > 0],

where σi(X) is the i-th singular value of X. The Nuclear Norm of X is the convex relaxation
of the rank constraint:

||X||∗ =
min(J,R)∑

i=1
σi(X).

In this section, we propose an alternative estimator for the model parameters under a
relaxed version of the rank constraint. In particular, we assume:

Assumption 2.6. (Nuclear Norm Constraints)

||Λ||∗ ≤Mλ and ||Π||∗ ≤Mπ.
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In practice, we implement these constraints by regularizing the likelihood, since selecting
an appropriate choice of regularization parameters is equivalent to enforcing the constraints.
We form the regularized negative log-integrated likelihood as:

L∗
τ (θ | N) = −L∗(θ | N) + τ1||Π||∗ + τ2||Λ||∗︸ ︷︷ ︸

=Rτ (θ)

,

where τ1 and τ2 are regularization parameters. Estimation proceeds by minimizing this
function. For the remainder of this section, we will implicitly condition on the sample, such
that L∗

τ (θ), L∗(θ), and E(θ | θt) denote L∗
τ (θ | N), L∗(θ | N) and EN(θ | θt), respectively.

Estimation Algorithm and Computational Guarantees

We now outline an algorithm for estimating the model parameters. To maximize the reg-
ularized log integrated likelihood, we adapt the analysis of Lu, Freund, and Nesterov (2018)
to our setting. As a preliminary matter, we introduce the notion of Bregman Divergences,
which are a generalization of norms:

Definition 2.2. (Bregman Divergence) Let h(·) be a strictly convex and continuously
differentiable function defined on a closed convex set Ω. Then the h-Bregman divergence
between any two points x, y ∈ Ω is:

Dh(x, y) = h(x)− h(y)− ⟨∇h(y), x− y⟩.

When considering matrices or vectors, we write Dh(X,Y ) to denote the sum of the
Bregman divergences between all individual elements of X and Y : if X and Y are J × R
matrices, then Dh(X,Y ) = ∑J

j=1
∑R

r=1 Dh(xjr, yjr) (this is sometimes called the collective
Bregman divergence). Like norms, Bregman divergences Dh(x, y) are strictly positive when
x ̸= y, are equal to zero when x = y. Unlike norms, Bregman divergences are not symmetric
in general: Dh(x, y) need not be equal to Dh(y, x).

Typically, algorithms to minimize complicated functions rely on an assumption that ob-
jectives are smooth and strongly convex. Together, these assumptions require that, for
any given point x in the domain of the objective f(·), the difference between the value
of f(·) at any other point y (f(y)) and the Taylor series approximation to f(y) around x
(f(x)+⟨∇f(x), y−x⟩) can be upper- and lower-bounded (respectively) by scalar multiples of
the squared Euclidean distance between x and y. The objective L∗

τ (·) does not obey either of
these conditions, and so traditional results about the convergence of optimization algorithms
do not necessarily apply.

Lu, Freund, and Nesterov (2018) consider problems in which the objective does not obey
standard notions of smoothness and strong convexity, and provide computation guarantees
for an alternative optimization algorithm that accommodates such settings. To do so, they
define alternative notions of smoothness and strong convexity relative to an appropriately-
chosen Bregman divergence:
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Definition 2.3. (Relative Smoothness and Strong Convexity)
a) A function f(·) is L-smooth relative to h(·) on a set Ω if for any x, y ∈

∫
Ω, there is a

scalar L for which

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ LDh(y, x).

b) A function f(·) is µ-strongly convex relative to h(·) on a set Ω if for any x, y ∈
∫

Ω,
there is a scalar µ ≥ 0 for which

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ µDh(y, x).

Given this notation, we now state Theorem 3.1 of Lu, Freund, and Nesterov (2018),
which provides a computation guarantee for a primal gradient scheme to minimize a function
obeying relative smoothness and strong convexity conditions:

Theorem 2.2. (Computation Guarantee for Primal Gradient Scheme) Let f(·),
h(·), L, µ, and Ω satisfying Definition 2.3 be given. Let x1 ∈ Ω denote an initialization
point of our algorithm. At each iteration, perform an update that sets:

xt+1 = arg min
x∈Ω
{f(xt) + ⟨∇f(xt), x− xt⟩+ LDh(x, xt)}.

Then, for all t ≥ 1 and x ∈ Ω, the sequence {f(xt)} is monotonically decreasing, and the
following inequality holds:

f(xt+1)− f(x) ≤ µDh(x, x1)
(1 + µ

L−µ
)t − 1 ≤

L− µ
t

Dh(x, x1),

where, in the case when µ = 0, the middle expression is defined in the limit as µ → 0+,
which is equal to L/t.

We now prove the following proposition about the regularized log integrated likelihood:

Proposition 2.1. (Smoothness of L∗
τ ) Define m = maxjr njr. The regularized log inte-

grated likelihood function is 1-smooth relative to a function h(·):

L∗
τ (θ) ≤ L∗

τ (θt) + ⟨∇L∗
τ (θt),θ − θt⟩+Dh(θ,θt),

where the function h(·) is given by:

h(θ) = −
J∑

j=1

R∑
r=1

[
log(πjr) + log(1− πjr) +m log(λjr)

]
+Rτ (θ).



CHAPTER 2. DESIGN-BASED INFERENCE OF MANY TREATMENT EFFECTS 83

Proof. First, note that the log integrated likelihood can be written as the sum of the EM
proxy function and an entropy term (Dempster, Laird, and Rubin 1977):

L∗(θ) = E(θ | θt) +H(θ | θt),

where
H(θ | θt) = −

J∑
j=1

R∑
r=1

1∑
z=0

log
(

Pr(Zjr = z | njr,θ)
)

Pr(Zjr = z | njr,θ
t),

and H(θt | θt) ≥ H(θ | θt) for all θ. This implies that we may write:

L∗
τ (θ)− L∗

τ (θt) = −
[
E(θ | θt)− E(θt | θt)

]
−
[
H(θ | θt)−H(θt | θt)

]
+
[
Rτ (θ)−Rτ (θt)

]
.

The condition H(θ | θt) ≥ H(θt | θt) implies :

L∗
τ (θ)− L∗

τ (θt) ≤ −
[
E(θ | θt)− E(θt | θt)

]
+
[
Rτ (θ)−Rτ (θt)

]
.

Next, note that ∇L∗
τ (θt) = −∇L∗(θt) +∇Rτ (θ). Simple calculations show that:

∂L∗(θ)
∂πjr

= π̃jr

πjr

− 1− π̃jr

1− πjr

and ∂L∗(θ)
∂λjr

= π̃jr

(
njr

λjr

− 1
)
,

where π̃jr is the posterior probability that Zjr = 1 given njr and parameters θ (defined
above). Next, rearranging terms gives:

−
[
E(θ | θt)− E(θt | θt)

]
=

−
J∑

j=1

R∑
r=1

[
π̃t

jr log
(
πjr

πt
jr

)
+ (1− π̃t

jr) log
(1− πjr

1− πt
jr

)
+ π̃t

jr

(
njr log

(
λjr

λt
jr

)
− (λjr − λt

jr)
)]
.

To simplify this expression, we use the identity: log(x/y) = (x − y)/y −D− log(x, y), where
D− log(x, y) is the Bregman divergence associated with the convex function − log(·). Making
this substitution and collecting terms, we may write:

−
[
E(θ | θt)− E(θt | θt)

]
= ⟨−∇L∗(θt),θ − θt⟩

+
J∑

j=1

R∑
r=1

[
π̃t

jrD− log(πjr, π
t
jr) + (1− π̃t

jr)D− log(1− πjr, 1− πt
jr) + π̃t

jrnjrD− log(λjr, λ
t
jr)
]
.

Since D− log(x, y) is always positive, 0 ≤ π̃t
jr ≤ 1, and π̃t

jrnjr ≤ m, we have:

−
[
E(θ | θt)− E(θt | θt)

]
≤ ⟨−∇L∗(θt),θ − θt⟩

+
J∑

j=1

R∑
r=1

[
D− log(πjr, π

t
jr) +D− log(1− πjr, 1− πt

jr) +mD− log(λjr, λ
t
jr)
]

︸ ︷︷ ︸
=DBm (θ,θt)

.
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The function Bm(θ) = −∑J
j=1

∑R
r=1

[
log(πjr)+log(1−πjr)+m log(λjr)

]
is the first term of the

reference function: h(·) = Bm(·)+Rτ (·). Bm(·) and can be thought of as a “barrier” function
that enforces the constraints that πjr ∈ (0, 1) and λjr > 0. Since Bregman divergences are
linear, we have that:

Dh(θ,θt) = DBm(θ,θt) +DRτ (θ,θt).
To complete the proof, we substitute the above inequality into the prior inequality, and add
and subtract ⟨∇Rτ (θt),θ − θt⟩:

L∗
τ (θ)− L∗

τ (θt) ≤ ⟨−∇L∗(θt) +∇Rτ (θt),θ − θt⟩+DBm(θ,θt) +DRτ (θ,θt)
= ⟨∇L∗

τ (θt),θ − θt⟩+Dh(θ,θt).

For the remainder of this section we maintain the following assumption, variants of which
are standard the literature analyzing properties of EM algorithms:

Assumption 2.7. (0-Relative Strong Convexity) Define h(·) as in Proposition 2.1, let
θ∗ denote the minimum of L∗

τ (·), and let θ1 denote an initialization point of our algorithm.
The function L∗

τ (·) is 0-strongly convex relative to h(·) in a region containing θ∗, and all
initialization points θ1 are also contained in this region.

We are now prepared to describe our estimation algorithm, which is a modification of the
EM algorithm:

Modified EM Algorithm: Initialize the algorithm at point θ1. At iteration t+1, compute
∇L∗(θt), the gradient of the unregularized log-likelihood. Then update according to:

θt+1 = arg min
θ

{
L∗

τ (θt) + ⟨∇L∗
τ (θt),θ − θt⟩+Dh(θ,θt)

}
= arg min

θ

{
− ⟨∇L∗(θt),θ⟩+Rτ (θ) +DBm(θ,θt)

}
,

where the second line drops constants and rearranges terms. Optimization at each step can
be achieved efficiently using modern convex programming solvers. Given Proposition 2.1
and Assumption 2.7, the following Corollary is an immediate consequence of Theorem 2.2:

Corollary 2.1. (Convergence of the Modified EM Algorithm) Define h(·) as in
Proposition 2.1, and define θ∗ and θ1 as in Assumption 2.7. If updates are computed as:

θt+1 = arg min
θ

{
− ⟨∇L∗(θt),θ⟩+Rτ (θ) +DBm(θ,θt)

}
,

then the sequence {L∗
τ (θt)} is monotonically decreasing, and

L∗
τ (θT )− L∗

τ (θ∗) ≤ Dh(θ∗,θ1)
T + 1 .

While Corollary 2.1 establishes convergence of the modified EM algorithm, the rate of
convergence is sublinear. Exploring improved computation guarantees is an important topic
for further work.
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Statistical Guarantees

We now consider the calculation of finite-sample bounds on the discrepancy between our
estimates and the true parameters, θ0 = {Λ0,Π0}. For the purposes of this paper, we will
only consider the error associated with the Poisson rate parameters Λ. We reserve analysis
of finite-sample bounds on the discrepancy between Π∗ and Π0 for future work, although
similar arguments will apply in both cases.

For this analysis, we assume convergence of the modified EM algorithm to a station-
ary point θ∗. Remember that the EM proxy function E(θ | θt) can be written as the
sum of two components, such that each component depends only upon Λ or Π sepa-
rately. Additionally, note that at the stationary point, L∗

τ (θ∗) = −E(θ∗|θ∗) +Rτ (θ∗), and
θ∗ = arg minθ−E(θ|θ∗)+Rτ (θ). These facts allow us to analyze the finite sample error of Λ
separately from that of Π. Before proceeding, we introduce additional notation: we denote
the Frobenious norm of a matrix X by ||X||2 =

√
trace(X ′X), and the Spectral norm of X

by ||X||∞ = maxi≤min(J,R) σi, where the σi are the singular values of X.
In order to derive a bound on the finite-sample error, we need to verify two additional

conditions. The first condition is that a form of restricted strong convexity (RSC) holds with
high probability. For now, we adopt an RSC assumption without explicitly deriving the
probability that RSC holds, which we defer for future work:

Assumption 2.8. (Restricted Strong Convexity) Define the quantity:

DN(Λ∗,Λ0) =
J∑

j=1

R∑
r=1

njrD− log(λ∗
jr, λ

0
jr).

For a scalar α > 0, the following inequality holds with probability at least 1− ε0:

DN(Λ∗,Λ0) ≥ α||Λ∗ −Λ0||22.

Denote the set of parameter values where this inequality is satisfied (holding Λ0 fixed) by
Cα(Λ0), and let supΛ∈Cα(Λ0)

||Λ−Λ0||∗
||Λ−Λ0||2 = β ≤

√
min(J,R).

The remainder of this analysis conditions on the event Λ∗ ∈ Cα(Λ0). Assumption 2.8
allows us to place an upper bound on the difference between the EM proxy function E1(Λ |
Λt) evaluated at any point Λ ∈ Cα(Λ0) and evaluated at the true parameter values (where
E1(· | ·) is the Λ-specific component of the full EM proxy function). By rearranging terms
and adding and subtracting ⟨∇E1(Λ0 | Λ∗),Λ∗ −Λ0⟩, we have:

E1(Λ∗ | Λ∗)− E1(Λ0 | Λ∗) = ⟨∇E1(Λ0 | Λ∗),Λ∗ −Λ0⟩ −DN(Λ∗,Λ0)
≤ ⟨∇E1(Λ0 | Λ∗),Λ∗ −Λ0⟩ − α||Λ∗ −Λ0||22.

The second condition is that a bound on the statistical error of the model, as measured by
the spectral norm of the deviation of observed counts from their means. There is a large
literature on bounding the spectral norm of random matrices, although most papers focus
on matrices with Gaussian entries.
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McRae and Davenport (2020) derive the following bound (Lemma 2.4), which we partic-
ularize to our setting:

Lemma 2.1. (Tail Bound for Statistical Error) Let N be a random matrix where each
entry is independently distributed Poisson(λ0

jr), such that E[N] = Λ. Define the quantity:

AΛ0(ε1) = 2σ(Λ0) + 8ε1√
JR

+ C1 max
{

max
jr

λ0
jr, 4 log

(2JR
ε1

)}
×
√

log
(max J,R

ε1

)
,

where C1 is a universal constant and

σ(Λ0) = max
j

√√√√ R∑
r=1

λ0
jr + max

r

√√√√√ J∑
j=1

λ0
jr.

Then we have, for ε1 ∈ (0, 1/2):

Pr
(
||N−Λ0||∞ ≥ AΛ0(ε1)

)
≤ 2ε1.

We use Lemma 2.1 to construct a bound on the quantity ⟨∇E1(Λ0 | Λ∗),Λ∗ − Λ0⟩ =∑J
j=1

∑R
r=1

π̃∗
jr

λ0
jr

(njr − λ0
jr)(λ∗

jr − λ0
jr). Let λ0

min = minjr λ
0
jr. Applying the Cauchy-Schwartz

inequality and 2.1, we can bound this term by

⟨∇E1(Λ0 | Λ∗),Λ∗ −Λ0⟩ ≤ AΛ0(ε1)
λ0

min
||Λ∗ −Λ0||∗

with high probability. We additionally condition on this event for the remaining analysis.
With the RSC and statistical error bounds established, we may now calculate a bound on

the discrepancy between our estimates and the true model parameters.

Theorem 2.3. (Upper Error Bound for Λ) Adopt the assumptions and notation of this
section, and assume the regularization parameter τ associated with ||Λ||∗ is set such that
τ ≥ AΛ0 (ε1)

λ0
min

. Then with high probability, we have that:

||Λ∗ −Λ0||2 ≤ 2βτ
α
.

Proof: We have already established most of the components of the proof. Because Λ∗ =
arg maxΛ E1(Λ | θ∗)− τ ||Λ||∗, we may write:

τ(||Λ∗||∗ − ||Λ0||∗) ≤ E1(Λ∗ | θ∗)− E1(Λ0 | θ∗).

Substituting expressions established above on the righthandside of the inequality, and ap-
plying the triangle ineqaulity to the lefthand side, we may write:

−τ ||Λ∗ −Λ0||∗ ≤
AΛ0(ε1)
λ0

min
||Λ∗ −Λ0||∗ − α||Λ∗ −Λ0||22.
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Rearranging and applying the bound ||Λ∗ −Λ0||∗ < β||Λ∗ −Λ0||2 gives:

α||Λ∗ −Λ0||22 ≤ β
AΛ0(ε1)
λ0

min
||Λ∗ −Λ0||2 + βτ ||Λ∗ −Λ0||2.

Finally, applying the assumption that τ > AΛ0 (ε1)
λ0

min
and dividing both sides by ||Λ∗ − Λ0||2

yields the result.

It is likely that this error bound could be improved, and such improvements are ripe
ground for further work.

2.6 An Algorithm for Sample Selection

Finally, we present an algorithm that uses these parameter estimates from the zero-inflated
Poisson assignment model to restrict the data to an appropriate sample in which there is
sufficient overlap, and construct propensity scores in that overlap sample. It is well known
that if Xk

iid∼ Poisson(λk) for k = 1, . . . , K, then:

(
X1, . . . , XK

)∣∣∣∣ K∑
k=1

Xk = N ∼ Multinomial
(
ϱ1, . . . , ϱK ;N

)
, where ϱk = λk∑K

k′=1 λk′
.

If we knew Zjr = 1 for all j and r, we could immediately use this transformation to con-
struct propensity scores encoding the model-based probability that individual i in strata r
is assigned to unit j:

ϱfull sample
jr = λjr∑J

k=1 λkr

= Pr(Dij = 1 | Sir = 1).

Because the direct approach is infeasible, we consider decision rules to determine an overlap
sample for which a notion of risk is minimized. In this setting, decision rules map evidence
– here the matrix of observed counts N – to a binary decision matrix ∆ = δµδν ′, where δµ

is a J × 1 vector of indicators and δν is an R× 1 vector of indicators taking the parameters
of the model θ as given. These indicators are set to one when the researcher includes unit
j or stratum r, respectively. Note that the decision rule ∆ is restricted in this way (the
outer product of two binary vectors) because the aim of this procedure is to determine the
maximal subset of units and randomization strata such that the probability of assignment
to each unit is likely to be nonzero in each included stratum (the minimal requirement for
overlap).

We frame the sample selection problem as the task of minimizing the risk associated with
a particular loss function. To begin, associate each jr cell with a (nonrandom) weight κjr

that reflects the importance the researcher places on cell jr (the matrix W collects all J×R
weights). The loss from including cell jr when Zjr = 0 (a false positive) is proportional to
the weight of the cell times a researcher-specified constant γ > 0, and the loss from omitting
cell jr when Zjr = 1 (a false negative) is proportional to one times the weight of the cell.
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The parameter γ measures the relative cost of false positives and false negatives. The total
loss associated with a particular decision rule is given by summing over all cells. We can
write the loss from a particular decision rule as:

Lγ

(
∆ |W,Z

)
=

J∑
j=1

R∑
r=1

κjr

[
(1− δµ

j δ
ν
r )Zjr + γδµ

j δ
ν
r (1− Zjr)

]

=
J∑

j=1

R∑
r=1

κjr

[
Zjr + δµ

j δ
ν
r (γ − (1 + γ)Zjr)

]

∝
J∑

j=1

R∑
r=1

δµ
j δ

ν
r

[
κjr

(
γ

γ+1 − Zjr

)]
= δµ′

(
W ◦

[
γ

γ+1 − Z
])

δν ,

where the final two lines omit a constant term that does not depend on ∆. We calculate
risk as expected loss conditional on the sample N and the parameter estimates θ, holding
the decision rule ∆ fixed:

Rγ

(
∆ | N,θ

)
= E

[
Lγ

(
∆ |W,Z

)
| N,θ

]
= δµ′

(
W ◦

[
γ

γ+1 − Π̃
])

δν ,

where Π̃ = E [Z | N,θ] = (π̃∗
jr)

J,R
j=1,r=1 is a matrix encoding the posterior expectations of the

Zjr variables. The choice of weights is up to the researcher. The simplest choice sets κjr = 1
for all cells. Alternately, setting κjr = λjr effectively maximizes the (virtual) number of
observations of the overlap sample.

Given a choice of weights, the sample selection procedure is Binary Quadratic Program-
ming (BQP) problem:(

δ̂µ, δ̂ν
)

= arg min
δµ,δν

[
δµ′ δν ′

] [0J×J W ◦
[

γ
1+γ
− Π̃

]
0R×J 0R×R

] [
δµ

δν

]
s.t. δµ

j , δ
ν
r ∈ {0, 1} ∀j, r.

Aside from the constraints that the elements of the decision rules are binary, the BQP is
unconstrained. The BQP can be solved using standard integer programming solvers. The
output of the BQP determines our estimate of the “largest” feasible overlap set O:

Ô = {jr s.t. δ̂µ
j = 1 and δ̂ν

r = 1}.

Given an estimate of the overlap sample, we form estimated propensity scores as:

ϱ̂jr =
λ∗

jr∑J
j=1 δ̂

µ
j λ

∗
jr

if δ̂µ
j = 1, δ̂ν

r = 1.

Similarly, we construct the estimated weights which enter into the likelihood as:

ŵjr = δ̂µ
j δ̂

ν
r ×

∑J
j=1 δ̂

µ
j λ

∗
jr

λ∗
jr

.
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2.7 Conclusion

This paper proposes a novel framework for estimating many individual treatment effects,
as well as the distribution of those treatment effects. In contrast to much of the literature
concerned with estimating treatment effects across many units, which impose both an as-
sumption that assignment of individuals to treatments is unconfounded and functional form
or distributional assumptions, the framework of this paper requires only unconfoundedness.
In other words, this paper advocates for a design-based approach to causal inference, as
opposed to a model-based approach. As such, estimates produced using the procedures out-
lined in this paper are robust to functional form mis-specification. The key challenge of this
approach is that it relies on obtaining either direct knowledge of, or consistent estimates
of, the statistical process that gave rise to the observed assignments of individuals to units.
When there are many units, this issue manifests as an explosion in the dimensionality of
the propensity score that must be estimated. Further, the high dimensionality of the assign-
ments suggests that typical notions of overlap are not likely to hold. In order to address these
issues, we specify a model of assignments that allows for systematic failures of overlap, and
suggest an estimator of the assignment probabilities. We then explore the computational and
statistical properties of our estimator before suggesting an algorithm for selecting the largest
subset of the sample (trimming the sample) such that overlap is likely to hold. The tools
developed here have direct application to estimation of many treatment effects (sometimes
known as value-added), but other applications are possible. For instance, this procedure can
be used in the “judge-IV” context to assess, for example, whether a sample of judges has
overlap in the distribution of individuals who may be assigned to their courtrooms. A second
possibility is that the procedure could be used to estimate firm- and worker-“effects” in data
on the labor market to produce decompositions of the variance in wages that are robust to
composition bias.
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Chapter 3

Spinning the Wheel: Heterogeneity
and Choice in the Provision of
Indigent Defense

3.1 Introduction

The United States Supreme Court’s landmark 1963 ruling in Gideon v. Wainright estab-
lished that the Constitution requires states and localities to provide attorneys for criminal
defendants too poor to afford legal representation at market rates. In the wake of Gideon,
the right not just to counsel, but to effective counsel, has become a cornerstone of Ameri-
can jurisprudence. In making its ruling, the Court created a constellation of means-tested
public assistance programs across federal, state, and local governments that has grown to
serve nearly 80% of criminal defendants (Mosteller 2011). Against the backdrop of increased
public concern over mass incarceration – the U.S. has the world’s highest incarceration rate,
at 0.716% (Wamsley 2013) – stark disparities in incarceration rates by race and income (Re-
havi and Starr 2014; Carson and Sabol 2012; Lofstrom and Raphael 2016), and a long line of
academic research establishing the negative collateral consequences of interaction with the
criminal legal system (Mueller-Smith 2015; Aizer and Doyle 2015; Raphael and Smith 2011;
Pager 2003, e.g.), some policy makers are considering changes to the administration of these
indigent defense systems as part of a larger effort to reform the criminal legal system.

At present, only a handful of academic studies gauge the efficacy of indigent defense pro-
vision. A notable exception is Shem-Tov (2020), who uses the plausibly-random assignment
of defendants in multiple-defendant cases to public defenders or court-appointed counsel
to estimate the relative efficacy of the two systems. He finds that defendants assigned to
public defenders are 22% less likely to receive an incarceration sentence relative to those
who are assigned to court-appointed counsel. In related research, Agan, Freedman, and
Owens (2021) find that controlling for differences in case characteristics eliminates differ-
ences in average outcomes between defendants assigned court-appointed counsel and those
who privately retain counsel.

This paper explores the extent to which differences in case outcomes across indigent



CHAPTER 3. SPINNING THE WHEEL 91

defendants are attributable to differences in unobserved attorney quality. In contrast to
prior studies, this paper does not contrast defendant outcomes between modes of defense;
instead, it analyzes the distribution of quality within a single mode of defense. Understanding
variability in the quality of indigent defense is of key importance, since such variability is at
odds with the normative goals we might wish the criminal punishment system to achieve.
Because most indigent defendants cannot choose their attorney, variation in attorney quality
may expose some defendants to substantially increased risks of adverse outcomes for reasons
entirely unrelated to the facts of their cases. Heterogeneity in attorney quality therefore
undermines both horizontal equity (defendants with identical cases should face equal odds
and/or expected severity of punishment) and vertical equity (defendants with more severe
cases should face higher odds and/or expected severity of punishment) in the criminal legal
system. In addition, heterogeneity also undermines the extent to which the criminal legal
system produces efficient outcomes, in the sense that the societal benefits of the punishments
defendants receive should be weakly greater than the social costs of those punishments.

As in the teacher value-added literature (e.g. Chetty, Friedman, and Rockoff 2014 and
Rothstein 2010), a key challenge to obtaining credible estimates of variation in attorney
quality is the statistical bias induced by non-random sorting of defendants and cases to
attorneys. To overcome this bias, we leverage institutional features of the process by which
attorneys are assigned to indigent defendants in Bexar county, Texas. Bexar county is a
large, diverse metropolitan county home to San Antonio. In our setting, individuals charged
with felonies are assigned quasi-randomly to court-appointed attorneys based on a “wheel”
system. After controlling for randomization factors that determine a defendant’s potential
pool of attorneys, we find no evidence of systematic sorting of defendants to attorneys of
differing quality.

In the first part of this paper, we apply the framework of Chapter 2 to estimate the distri-
bution of treatment effects across attorneys in Bexar county, focusing on both the strategic
decision to enter a guilty plea and the ultimate case outcomes (incarceration, probation, or
deferral). We find that treatment effects are highly variable across attorneys. For instance,
for defendants in felony cases, a one-standard-deviation decrease in attorney quality is asso-
ciated with a 5.6 percentage-point increase in the probability of incarceration. Variation in
treatment effects across attorneys is, in general, not correlated with the observable charac-
teristics of those attorneys. Using estimates of the distribution of attorney treatment effects,
we then simulate the effects of policies that either lay off low-predicted-quality attorneys
or retain high-predicted-quality attorneys. In both cases, simulations suggest that these
personnel policies can meaningfully shift the distribution of case outcomes.

In the second part of this paper, we apply our methodology to gauge the impacts of a
first-of-its-kind reform in Comal county, Texas – a suburban county that is part of the San
Antonio metropolitan area – that allowed indigent defendants their choice of representation.
A near-universal feature of US indigent defense systems is that defendants have little choice
over the attorney assigned to represent them. Simple theoretical models that have been
applied to the provision of other public services, such as housing and schooling, predict
that voucher systems should improve welfare relative to systems with no choice. Models
of the provision of indigent defense would suggest that clients, who are better informed
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about their potential needs and preferences, should realize increased welfare from a system
of client choice than a system of random assignment. If defendants are informed about the
quality of attorneys, the demand for attorney services under a client choice program should
depend on attorney effectiveness, creating an incentive for attorneys to provide better quality
services to clients. However, if clients are ill-informed about the quality of the attorneys they
are choosing between, a system of client choice could decrease welfare: in the educational
context, Abdulkadiroğlu, Pathak, and Walters (2018) find that school choice reduced student
achievement.

Our results suggest that at best, the introduction of client choice had zero impact on
the distribution of attorney quality. Rather, we find that clients choose attorneys based on
factors largely orthogonal to quality (by, for instance, heavily discriminating against black
attorneys). Our results suggest that while there is a role for policies aimed at improving
attorney quality, those policies must be carefully designed. Without providing better infor-
mation to defendants, client choice policies are not likely to produce improvements in the
quality of representation.

3.2 Institutional Background

The data used in this paper is drawn from two neighboring counties in Texas that form
part of the San Antonio metropolitan area. The first, Bexar county, is home to San Antonio
proper. As of 2010, the population of Bexar county was over 1.7 million. The second, Comal
county, is home to several suburbs of San Antonio, including New Braunfels. As of 2010,
the population of Comal county was slightly less than 110,000.

Indigent Defense in Bexar County

Because the administration of indigent defense is handled independently at the federal,
state, and local levels, its provision is relatively heterogeneous. Some jurisdictions maintain
public defenders’ offices, which employ full-time specialist attorneys who handle the bulk of
indigent criminal defense in a particular area. Other jurisdictions rely on “court-appointed
counsel” systems, in which judicial officers maintain a list of qualified private attorneys who
have agreed to represent indigent clients on a fixed fee schedule. In many cases, attorneys
are assigned to clients based on a conditionally-random “wheel” system. In such a system,
the court maintains an ordered list of attorneys qualified for particular types of cases and
assigns those attorneys to defendants by their position on that list, with the attorney who
was least recently assigned to a case assigned first. Bexar county relies almost entirely on
the latter system.

When a criminal defendant requests appointed counsel, a determination of indigence is
made by Bexar County Pre-Trial Services. According to a 2010 study of Bexar county’s
indigent defense system that examined cases from 2008-2009, defendants are presumed indi-
gent if their incomes fall below 125% of the federal poverty line, although defendants with
incomes higher than this threshold may still be found to be indigent. A defendant’s ability to
post bail is not considered in the determination of indigence, but counsel must be appointed



CHAPTER 3. SPINNING THE WHEEL 93

sooner if a defendant remains in custody. According to the study, roughly 85% of defendants
who apply for appointed counsel automatically qualify, and many of the remainder eventu-
ally qualify after a court determination of indigence (Texas Task Force on Indigent Defense
2010).

After the determination of indigence, an attorney is selected from one of five appointment
lists (“wheels”) maintained by the court. In order to remain on a felony appointment list, an
attorney must complete 10 hours of continuing legal education in criminal law every year.
In addition, minimum experience requirements for each of the five lists apply. Importantly,
attorneys must accept the cases assigned to them (except in special circumstances) in order
to remain on an appointment list. Finally, attorneys must be approved by a majority of
judges who preside over relevant cases. By state law, the default system for appointment
of counsel is rotational: unless the court makes a “finding of good cause” to deviate, courts
“shall appoint attorneys from among the next five names on the appointment list in the
order in which the attorney’s names appear[.]”1 The 2010 study found significant deviations
from this procedure for the assignment of counsel in misdemeanor cases, but adherence to
this method for felony cases. The report specifies that defendants in the 144th, 175th,
187th, 227th, 290th, 399th and 437th District Courts are always appointed counsel from
the applicable wheel, while defendants in the 186th, 187th, and 226th District Courts assign
defendants to attorneys who are present in the courtroom. Figure 3.1, which reproduces a
flow chart from the 2010 Report, illustrates the attorney assignment process for defendants
charged with felonies in Bexar county. Given this, we restrict our main analysis sample in
Bexar county to felony cases from 2008-2018 in District Courts that always assign counsel
from the wheel system. Attorneys appointed to represent defendants have the choice between
flat fee and hourly compensation; the 2010 study found that the “vast majority” of attorneys
chose flat fee compensation. Attorney compensation has been updated several times since
the beginning of our sample period.

Indigent Defense in Comal County & the Client Choice Program

Like Bexar county, Comal county maintained a rotational court-appointment system for
the assignment of counsel to indigent defendants until 2015. Judges in Comal county main-
tain three appointment lists of attorneys – one for serious felonies, one for less serious felonies,
and one for misdemeanors. While less information is readily available about the assignment
process in Comal county, a 2017 Justice Management Institute (JMI) report providing an ini-
tial evaluation of the Client Choice Program states that exceptions to the rotational system
were granted only in extenuating circumstances (Justice Management Institute 2017).

Beginning in the first week of February 2015, Comal county began a pilot of the Client
Choice Program. The Client Choice Program is essentially a voucher system for indigent
defendants, with some caveats. By Texas statue, indigent criminal defendants in Texas must
have counsel appointed by a judge or the designate of a judge (e.g. Pre-Trial Services),
and so defendants are not allowed to shop for counsel. Rather, defendants were asked by
1 Tex. Code Crim. Proc. art. 26.04(a)
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magistrate judges if they wished to choose counsel or have counsel appointed for them (using
the pre-existing rotational system). According to the JMI Report, in the year after the
initial implementation of client choice, 72% of defendants elected to choose their attorney,
rather than have an attorney assigned to them by a magistrate. Those who elect to choose
are granted leave – usually around fifteen minutes to half an hour – to review a binder
of “Lawyer Information Forms,” which contain basic information about each attorney on
the appointment list, including: attorney name, law firm, languages spoken, types of cases
handled, number of defendants represented in the past 12 months, and an explanation of any
disciplinary history. Defendants are not allowed to interview potential counsel. Defendants
then provide the magistrate with a ranked list of three choices, from whom an attorney is
appointed based on preference rank and availability. According to the JMI Report, the lead
magistrate expressed the opinion that the information provided was insufficient to support
an informed choice, and that defendants instead chose based on “word of mouth” at the
jail (Justice Management Institute 2017). The reform did not affect other aspects of the
attorney appointment process, including compensation.

3.3 Data and Summary Statistics

Data Sources

This paper makes use of three separate data sources: 1) administrative data on case
outcomes from Bexar county, 2) data complied from online case records in Comal county,
and 3) Texas state bar data on attorney characteristics. Bexar county publicizes detailed
administrative records for each case handled by county courts. These records include each
defendant’s name, race/ethnicity, gender, date of birth, unique state correctional identifica-
tion number, detailed information about the offense(s) the defendant was charged with, the
identity (name and bar number) of the attorney representing the defendant, whether the
attorney was appointed or retained, the courtroom to which the defendant was assigned,
detailed information about the disposition of the case, and ultimate sentence (if any). Sim-
ilar data were constructed for Comal county by accessing individual publicly-available case
description pages hosted by the county government. After collecting records on felony and
misdemeanor cases for the sample period, we extracted information including defendant
characteristics (race, age, gender), attorney identity (name and method of appointment),
charged offense(s), courtroom, judge, and final disposition and sentence. We merge our data
on criminal cases to records maintained by the Texas State Bar that measure attorney char-
acteristics. These data provide information on attorney gender, race, graduation year, and
the law school from which that attorney graduated. In order to provide a rough measure
of educational quality, we associate each law school observed in our sample with the most
recent US News and World Report ranking for that school.
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Summary Statistics

Table 3.1 reports descriptive statistics for our primary analysis samples in Bexar and
Comal counties. In our analysis, we focus on felony cases filed between 2008 and 2018. In
Bexar county, we drop cases assigned to to the 186th, 187th, and 226th District Courts due
to the documented deviations in the attorney assignment procedures in those courts from
the quasi-random “wheel” system. After applying these restrictions, our initial analysis
sample contains 41,574 cases in Bexar county and 3,805 cases in Comal county, respectively.
We then apply the propensity score estimation and sample selection procedure outline in
Chapter 2 on both the Bexar and Comal samples, with γ set to 0.95. The procedure results
in significant reductions in sample size in both counties: after trimming, 30,440 cases remain
in the Bexar analysis sample, while just 1,653 remain in the Comal sample. For each of
these samples, Table 3.1 reports the means and standard deviations (where informative) of
a basic set of defendant characteristics. Despite the decreases in sample size, the trimming
procedure leaves these summary statistics basically unchanged. In both counties, just over
75% of defendants are male. 30% of the defendants in Bexar county identify as white, while
18% identify as Black (about twice the share of the population in Bexar county that identifies
as Black, which was 8% as of 2010) and 51% identify as Latino (slightly lower than the share
of the population in Bexar county that identifies as Latino, which was 56% as of 2010).
Comal county’s court records do not differentiate defendants of Latino ethnicity. Just 7% of
defendants identify as Black in Comal county. The mean age of defendants in both counties
is roughly 33, with defendants in Bexar county slightly younger and defendants in Comal
county slightly older.

Table 3.2 provides averages of attorney characteristics in both counties, weighted at the
case level. There are 624 and 95 attorneys in the initial Bexar and Comal samples, respec-
tively, which trimming reduces to 404 and 49. Importantly, demographic data is available
for most but not all attorneys, and so the averages are taken over differing sub-samples of
the data depending on missing-ness. Like defendants, just over three quarters of attorneys
in both counties are male. Roughly 60% and 30% of attorneys in both counties are white
and Latino, respectively. Attorneys in Comal county graduated slightly earlier, and from
marginally better-ranked law schools, than their peers in Bexar county.

Finally, Table 3.3 provides a tabulation of case outcomes in both counties. A staggering
89% of defendants enter a plea of guilty in their cases in Bexar county, while just 63% of
defendants in Comal county enter guilty pleas (74% in the trimmed sample). Roughly similar
shares of defendants receive incarceration sentences in both counties: 51% of defendants
in Bexar county and 48% of defendants in Comal county. Defendants are more likely to
be sentenced to probation in Comal county (24%) than in Bexar county (14%), but are
far less likely to receive a deferred adjudication (5% in Comal, 27% in Bexar). In both
counties, the modal case disposition is a guilty plea followed by a period of incarceration.
Defendants in Comal county are more likely to be sentenced to long incarceration spells than
their counterparts in Bexar county: about one quarter of all defendants in Comal county
are sentenced to incarceration periods greater than four years, while 14% of defendants in
Comal county receive incarceration sentences greater than four years.
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3.4 Results

Variation in Treatment Effects Across Attorneys

We now turn to our first set of results: estimates variation in treatment effects across
attorneys. Following the framework of Chapter 2, we produce estimates p̂jy for each binary
outcome of interest y by taking inverse-propensity-score-weighted averages of case outcomes
for each attorney across randomization strata. In our setting, randomization strata Si cor-
respond to unique combinations of felony class, year, and courtroom. We adopt Assumption
2.3, which states that the true parameters are independent draws from a common distribu-
tion, such that for each outcome y,

pjy
iid∼ Gy(·).

Under this assumption moments of Gy(·) of up to order J are identified. The identified
moments of G(·) can be used to construct an unbiased estimate of the variance of treatment
effects across units:

V̂ar(pjy) = 1
J − 1

J∑
j=1

p̂jy −
1
J

J∑
j=1

p̂jy

2

− 1
J

J∑
j=1

SE (p̂jy) ,

where SE (p̂jy) is an unbiased estimate of the standard error of p̂jy. It can be shown that
V̂ar(pjy) is a U-statistic, and therefore:

√
J
(

V̂ar(pjy)− Var(pjy)
)
⇝ N(0, Vσ/J).

We construct an unbiased estimate of Vσ following the method of Wang and Lindsay (2014),
and use that estimate to test against the null hypothesis of no heterogeneity.

In order to provide baseline evidence for the validity of the research design, Table 3.4
reports tests for heterogeneous treatment effects of attorneys on pre-treatment variables.
Under the hypothesis that assignment of cases to attorneys is as good as random conditional
on strata Si, the variance of attorney “effects” on these pre-treatment variables should be
zero. To find otherwise would suggest that there is systematic sorting of cases to attorneys
on the basis of these characteristics. We discretize each of the pre-treatment controls, and
then estimate variance components and conduct tests against the null hypothesis of no
heterogeneity using the methods described above. For each pre-treatment control, Table
3.4 reports the estimated variance and standard deviation of attorney effects, the standard
error of the estimate of the variance, and a p-value for the test of no-heterogeneity. We
find no evidence of systematic sorting of cases to attorneys: each of the estimated variance
components is statistically insignificant at the 5% level, and a test of joint significance
comfortably fails to reject the null hypothesis that all variance components are identically
zero (p = 0.26). These results suggest that the observed variation in defendant characteristics
across attorneys is not large enough to rule out that that variation is driven by sampling
uncertainty alone.
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We now turn to estimates of the variation in attorney treatment effects on case outcomes
of interest, which are reported in Table 3.5 and were produced using identical methods. In
contrast to Table 3.4, nearly all estimates reported in Table 3.5 are highly significant: the
p-values associated with tests of no heterogeneity are significant at the 2% level for all but
two outcomes. A joint test of significance resoundingly rejects the null hypothesis that all
variance components are zero (p = 0.001). These results suggest that the observed variation
in case outcomes is almost certainly too large to be driven by sampling variation alone.

What do the results suggest about the scale of variation in attorney quality? Across
outcomes, the answer is that attorney treatment effects vary substantially. One standard
deviation in attorney effects on the probability of entering a guilty plea is 3.4 percentage
points. This variation could reflect strategic decisions on the part of defense counsel, or it
could reflect varying levels of effort on behalf of defendants. Anecdotal evidence suggests that
differences in effort between attorneys plays at least some part. Perhaps most shockingly
one standard deviation in attorney effects on the probability of receiving an incarceration
sentence is 5.6 percentage points. Variation in attorney effects on the length of incarceration
is even larger: one standard deviation in attorney effects on the probability of receiving
incarceration sentences of greater than one year, greater than two years, and greater than
four years are 7.6, 7.0, and 6.1 percentage points, respectively. Taken on face value, these
results suggest that “winning the attorney lottery” can indeed make a huge difference in
determining the outcome of one’s case. This necessarily imply that a significant component
of the variation in punishments people receive when they interact with the criminal justice
system are the product of luck, and not necessarily “deservingness.” The results also suggest
that there is significant scope for improving defendants’ outcomes by implementing personnel
policies that aim to shift the distribution of attorney quality.

Is estimated attorney quality correlated with observable characteristics of attorneys? Ta-
ble 3.6 reports regressions of estimated attorney effects on the probabilities of entering a
guilty plea, incarceration, probation, and deferred adjudication on a vector of attorney char-
acteristics gathered from the Texas Bar. While there are some significant associations, the
overarching story is that attorney quality is difficult to predict on the basis of observables
alone. Perhaps counterintuitively, younger (or less experienced) attorneys seem to produce
better outcomes for their clients than do older (or more experienced) attorneys. This pattern
may be suggestive of a form of dynamic negative selection into indigent defense work: high
quality young attorneys who enter into indigent defense work may eventually graduate out
of the court-appointed system into better-paying roles, while lower quality attorneys may
not receive similar opportunities.

The Full Distribution of Attorney Treatment Effects and Policy Simulations

Next, we consider estimation of the underlying distribution of attorney effects, Gy(·), and
again following the framework of Chapter 2. The log integrated likelihood can be written:

ℓ∗
y(G) =

J∑
j=1

log
(∫

fjy(p | Yjy) dG(p)
)
.
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where fjy(p | Yjy) is the (weighted) likelihood of observing attorney j’s vector of case out-
comes Yjy for outcome variable y. We produce estimates of the distribution of treatment
effects across units by maximizing ℓ∗

y(·) with respect to Gy(·), following the methods pro-
posed by Koenker and Mizera (2014) and Efron (2016). Specifically, assume that Gy(·) takes
the form:

Gy(p) =
K∑

k=0
gky × 1[p ≤ k/K], with Gy(1) = 1, gky ≥ 0 ∀k,

for some K relatively large. This assumption restricts the support of Gy(·) to a fine grid of
points. Given this assumption, the likelihood becomes:

ℓ∗(G) =
J∑

j=1
log

(
F ′

jG
)
,

where Fj =
(
fjy(pk | Yjy)

)K

k=1
and G =

(
gk

)K

k=1
. Let F =

(
F1, . . . , FJ

)
. Estimation of G

proceeds via nonlinear convex programming:

min
G
−1′

J log(F ′G) s.t. 1′
KG = 1, G ≥ 1.

The distributions produced by this routine are “spiky,” with estimated gk > ϵ ≈ 0 for
approximately log(J) points only. Efron (2016) proposed an empirical bayes deconvolution
estimator that is essentially a smoothed version of Koneker and Mizera’s estimator that
imposes additional (exponential family) structure on the gk. Specifically, Efron sets:

gk = gk(α) = exp (Q′
kα− ϕ(α)) , with ϕ(α) = log

(
K∑

k=0
exp(Q′

kα)
)
.

Here, α is a p-dimensional parameter vector and Q = (Q0 . . . QK) is a known p × K + 1
design matrix. The full procedure specifies Q′α as a spline in pk and imposes a penalty
function on α.

These methods allow for greatly increased flexibility over standard parametric methods.
Gilraine, Gu, and McMillan (2020) show that in the context of teacher value added, making
parametric assumptions can lead to overstated predictions of gains from personnel policies.
We produce estimates of Gy(·) for each outcome y three ways: 1) without restrictions, 2)
imposing exponential family structure, and 3) imposing an approximate restriction that the
log-odds of attorney effects are normally distributed (a standard random effects logit).

Figure 3.2 plots the estimated distribution of attorney effects on the probability of entering
a guilty plea, while Figure 3.3 plots the estimated distribution of attorney effects on the
probability of incarceration. The shape of estimated distributions of treatment effects on
guilty pleas vary somewhat by estimation strategy, while there is little variation across
estimators in the shape of the estimated distribution of attorney effects on incarceration.
Table 3.7 compares the moments of these estimated distributions.

With estimates of the full distribution of attorney effects in hand, we next simulate the
effects of two policies aimed at shifting the distribution of attorney quality in the hopes of
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improving outcomes for defendants: layoff policies and retention policies. In each of these
simulations, we assume that attorneys can be readily replaced with fresh draws from a stable
G(·). Given this assumption, the expected reduction in the incarceration rate from laying
off attorneys at or above the q-th quantile of G(·) is:

E
[
(pj − E[pj])× 1[pj ≥ G−1(q)]

]
,

while the expected reduction in the incarceration rate from retaining attorneys at or below
the q-th quantile of G(·) is:

E
[
(pj − E[pj])× 1[pj < G−1(q)]

]
.

Since the pj are not known, we instead simulate 10,000 random draws from the estimated
G(·) distributions:

◦ For each draw pb
j, take 10 draws from a Bernoulli(pb

j) (simulated outcomes).
◦ Construct empirical bayes posterior predictions p̂EB

j given the simulated outcomes.
◦ Compute averages of true pj above or below quantiles of p̂EB

j .

We plot the results of our simulations of layoff policies in Figure 3.4 and our simulations
of retention policies in Figure 3.5. In each of these figures, the x-axis represents the fraction
of attorneys either laid off or retained, and the y-axis represents the expected reduction in
the incarceration rate from implementing the policy. We simulate the policy using each of
the three estimated distributions (unrestricted, exponential family, logit-normal), and find
similar results under all three scenarios. Both policies can reduce the incarceration rate,
although the layoff policy achieves the same expected reductions in the incarceration rate.
The simulations suggest that a policy in which the bottom 5% of attorneys (ranked by EB
posteriors) would lead to a nearly 0.7 percentage point reduction in the overall incarceration
rate. In Bexar county, over the period of this study, that would amount to laying off the 20
lowest-performing attorneys, and reducing the number of incarceration spells by roughly 200
(0.7% of ∼ 30,000 cases). These simulations do not account for effects on any of the other
outcomes.

Evaluating the Client Choice Program

We now turn to the final part of our analysis, an evaluation of the Client Choice Program.
To evaluate the program, we estimate the distribution of attorney quality in both Bexar
and Comal counties using the methods outlined above, but restricting to years prior to 2015
(before the program was first piloted). We then construct empirical bayes posterior estimates
of attorney quality for each attorney in the sample. If clients made informed choices about
their attorneys, then it should be the case that better attorneys are chosen more often in
Comal county after the instatement of the Client Choice Program, such that the distribution
of attorney quality (as proxied here by EB posterior means) should shift deferentially between
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Comal county, where defendants were given the ability to choose, and Bexar county, where
they were not. We investigate this hypothesis by fitting a basic event study regressions.

Before presenting the event study results, we first explore whether the onset of the Client
Choice Program was associated with any changes in the composition of attorneys representing
clients in Comal county. As a summary measure of composition, we compute the Herfindahl-
Hirschman Index (HHI) of individual attorney’s shares of overall representation in both
Comal and Bexar counties. Figure 3.6 plots the time series of representation HHI by county,
normalizing values by their 2014 levels. While the HHI of attorney representation is near
constant in Bexar county throughout the sample period, the HHI of attorney representation
sharply and discontinuously increased in Comal county after the onset of the Client Choice
Program. This sharp increase suggests that the program indeed changed the composition
of attorney representation, in particular that a small number of attorneys were retained by
many clients after those clients were given the ability tho choose counsel.

Despite the clear change in the distribution of cases to attorneys, there is little evidence
that the Client Choice Program actually shifted the distribution of attorney quality. Figure
3.7 and Figure 3.8 plot event study estimates of the effects of the program on the distri-
bution of attorney effects for pleas and incarceration, respectively (controlling for all case
characteristics and a linear trend). In neither case is there any evidence of a differential shift
in mean predicted attorney quality between Comal and Bexar counties.

The event study evidence suggests that either clients were unaware of differences in quality
between attorneys, or did not value those differences in quality. What characteristics of
attorneys, if any, are associated with a greater probability of selection after the introduction
of choice? In order to gauge how defendants value various attributes, including attorney
quality, we conduct a simple discrete choice analysis. We assume clients make their choice
of attorney by maximizing the utility of that choice. Specifically, let dij denote an indicator
equal to 1 if client i chooses attorney j. Assume client i assigns utility vj + ϵij to choice
j, where vj measures the common component of utility across clients for attorney j and
ϵij

iid∼ EV1 measures the idiosyncratic client-specific component of utility for attorney j.
Given this formulation, the probability of any choice can be written:

Pr(dij = 1) = exp(vj)∑J
ℓ=1 exp(vℓ)

.

We proxy the probability of selection, Pr(dij = 1), by the empirical fraction of cases repre-
sented by, or market share of, each attorney in Comal county after the introduction of client
choice. Denote the market share for attorney j by Sj. We can then write:

log(Sj/Sℓ) = vj − vℓ

for any pair of attorneys j and ℓ. We further assume that the common component of utility
is a linear index of attorney characteristics: vj = Z ′

jγ + ξj, where Zj includes observable
characteristics, and the ξj includes all other factors that affect choice (but that we do not
observe - such as word of mouth). Fix a reference attorney, ℓ = ref. Our assumptions imply:

log(Sj/Sref) = Żjγ + ξ̇j,
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where Żj = Zj − Zref and ξ̇j = ξj − ξref.
Table 8 reports the results from estimating γ by OLS in the sample of attorneys selected

by clients in Comal county after the introduction of choice. Because the number of ob-
servations is limited, we first estimate coefficients on each characteristic in isolation, then
estimate the equation including all characteristics. The results suggest that, to some ex-
tent, client choices are explained by attorney characteristics. In particular, clients seem to
1) weakly prefer Latino attorneys, 2) strongly dis-prefer Black attorneys, and 3) dis-prefer
younger attorneys (later graduation years). Of these characteristics, experience was found
to negatively correlate with predicted attorney quality, while race was not associated with
differences in quality. Finally, predicted quality emph is positively associated with the prob-
ability of choice, but the coefficients are highly insignificant. While the estimates of γ are
extremely noisy, the results are suggestive evidence that clients are not well informed about
attorney quality, and therefore resort to choosing attorneys on the basis of characteristics
that are either uncorrelated with quality, or worse, negatively correlated with quality.

Taken together, the evidence suggests that the Client Choice Program likely did not
meaningfully shift the distribution of attorney quality in Comal county. At best, the program
may have simply re-shuffled the distribution of cases to attorneys, while keeping average
quality constant. At worst, the program may have actually reduced overall attorney quality,
since clients appear to make uninformed choices over attorneys.

3.5 Conclusion

This paper investigated the distribution of attorney quality in the context of indigent
defense. We estimate the distribution of attorney quality using tools developed in Chapter
2 and leveraging known institutional features of the assignment process for assigned coun-
sel. We find that there is substantial heterogeneity in treatment effects of attorneys: some
attorneys systematically produce better outcomes for clients than others. For instance, a
one standard deviation decrease in attorney quality is associated with a 5.6 percentage point
increase in the probability that a defendant will be sentenced to a period of incarceration.
In simulations, we show that layoff and retention policies can improve outcomes even when
decisionmakers are acting on relatively little information.

In future work, it will be crucial to explore whether policies that attempt to align attorney
and client incentives, like altering fee structures for compensating attorneys who take on
indigent defense work, ultimately produces better outcomes for clients. We test the effects
of one such policy: the introduction of client choice in Comal county, Texas. We find that the
introduction of choice at best had zero impacts on the distribution of attorney quality, and
at worst reduced attorney quality. We found that allowing clients to choose their attorneys
had at best zero effect on the distribution of attorney quality. When given the choice, clients
discriminate against black attorneys and discriminate in favor of older attorneys. Policies
that rely on defendants to ascertain which attorneys are best without providing reliable
information on attorney quality are unlikely to produce better outcomes.
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Figures

Figure 3.1: Flowchart of Case Assignment Process in Bexar County

Note: This Figure reproduces a flowchart from the the 2010 Task Force Report illustrating the
process by which defendants in felony cases are assigned to attorneys. Because cases in courtrooms
186, 226, and 379 do not assign counsel via the wheel system, we drop those cases from the sample.
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Figure 3.2: Maximum Likelihood Estimates of Distribution of Attorney Effects for Pleas

Note: This Figure plots three maximum likelihood estimates of the distribution of attorney effects
on the probability that clients enter a guilty plea. The distribution plotted in blue is the unrestricted
nonparametric maximum likelihood estimate. The distribution plotted with a solid orange line is
exponential family spline estimate. The distribution plotted with a dashed orange line is the logit-
normal estimate.
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Figure 3.3: Maximum Likelihood Estimates of Distribution of Attorney Effects for Incar-
ceration

Note: This Figure plots three maximum likelihood estimates of the distribution of attorney effects
on the probability that clients receive a sentence of incarceration. The distribution plotted in blue
is the unrestricted nonparametric maximum likelihood estimate. The distribution plotted with a
solid orange line is exponential family spline estimate. The distribution plotted with a dashed
orange line is the logit-normal estimate.
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Figure 3.4: Simulated Reduction in Incarceration Rate from a Layoff Policy

Note: This Figure plots the results of simulating layoff policies assuming that true attorney quality
is distributed according to each of the three maximum likelihood estimates of G(·). The plotted
functions represent the expected decrease in the incarceration rate from laying off the bottom
x-percent of attorneys, as ranked by posterior EB means.
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Figure 3.5: Simulated Reduction in Incarceration Rate from a Retention Policy

Note: This Figure plots the results of simulating retention policies assuming that true attorney
quality is distributed according to each of the three maximum likelihood estimates of G(·). The
plotted functions represent the expected decrease in the incarceration rate from retaining only the
top x-percent of attorneys, as ranked by posterior EB means.
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Figure 3.6: Time series of HHI of Attorney Representation

Note: This Figure plots the time series of the Herfindahl-Hirschman Index of attorney representa-
tion in Comal and Bexar counties.
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Figure 3.7: Event Study: Effect on Distribution of Attorney Effects on Probability to Plea

Note: This Figure plots event study coefficients quantifying the differential change in average
posterior predictions of attorney effects on the probability to enter a guilty plea between Comal
and Bexar counties.
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Figure 3.8: Event Study: Effect on Distribution of Attorney Effects on Probability of
Incarceration

Note: This Figure plots event study coefficients quantifying the differential change in average
posterior predictions of attorney effects on the probability of incarceration between Comal and
Bexar counties.
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Tables

Table 3.1: Defendant Summary Statistics

Bexar - Full Bexar - Trimmed
Mean Std. Dev. Mean Std. Dev

Male 0.77 0.78
White 0.30 0.31
Black 0.18 0.18
Latino 0.51 0.51
Prior Felony 0.46 0.46
Prior Misdemeanor 0.61 0.61
Age 33.07 10.85 33.01 10.88
Prior Cases 8.41 17.98 8.40 18.18
N 41,574 30,440

Comal - Full Comal - Trimmed
Mean Std. Dev. Mean Std. Dev.

Male 0.76 0.77
White 0.92 0.91
Black 0.07 0.07
Latino - -
Prior Felony 0.31 0.34
Prior Misdemeanor 0.37 0.36
Age 33.76 11.17 33.32 11.31
Prior Cases 3.44 3.65 3.47 3.45
N 3,805 1,653

Note: This Table reports summary statistics for defendant characteristics in
Bexar and Comal counties. “Full” refers to the initial analysis sample, while
“Trimmed” refers to the final analysis sample after conducting the sample selec-
tion procedure described in Chapter 2. Data on identification as Latino is not
available for defendants in Comal county.
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Table 3.2: Attorney Summary Statistics

Bexar - Full Bexar - Trimmed
Mean Std. Dev. Mean Std. Dev

Male 0.74 0.75
White 0.57 0.58
Latino 0.33 0.33
Black 0.05 0.05
Solo Practitioner 0.73 0.80
Disciplinary Hist. 0.06 0.07
Graduation Year 1996 11.41 1993 10.76
Law School Rank 137 54.34 56 55.55
Experience 16.21 10.73 18.79 10.23
Prior Cases 67 50.36 88 48.01
N 624 404

Comal - Full Comal - Trimmed
Mean Std. Dev. Mean Std. Dev.

Male 0.72 0.74
White 0.63 0.59
Latino 0.29 0.34
Black 0.06 0.02
Solo Practitioner 0.69 0.83
Disciplinary Hist. 0.07 0.13
Graduation Year 1995 11.12 1994 10.88
Law School Rank 118 60.39 120 61.65
Experience 16.87 10.94 17.67 10.52
Prior Cases 96 73.84 138 73.89
N 95 49

Note: This Table reports summary statistics for attorney characteristics in
Bexar and Comal counties. “Full” refers to the initial analysis sample, while
“Trimmed” refers to the final analysis sample after conducting the sample se-
lection procedure described in Chapter 2.
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Table 3.3: Case Summary Statistics

Bexar Comal
Full Trimmed Full Trimmed

Plea Guilty 0.89 0.89 0.63 0.74
Incarceration 0.52 0.51 0.43 0.48
Probation 0.13 0.14 0.19 0.24
Deferred Adj. 0.27 0.27 0.03 0.05
Plea & Incarcerate 0.51 0.51 0.41 0.46
Incar. > 6m 0.38 0.39 0.41 0.45
Incar. > 1y 0.28 0.31 0.36 0.39
Incar. > 2y 0.19 0.22 0.28 0.30
Incar. > 4y 0.12 0.14 0.24 0.24
N 41,574 30,440 3,805 1,653

Note: This Table reports summary statistics for final case dis-
positions in Bexar and Comal counties. “Full” refers to the
initial analysis sample, while “Trimmed” refers to the final anal-
ysis sample after conducting the sample selection procedure de-
scribed in Chapter 2.
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Table 3.4: Validation Exercise

Var(pj) SD(pj) SE(Var(pj)) p-Value

Male 0.072 0.027 0.037 0.05
White 0.064 0.025 0.043 0.14
Black 0.040 0.020 0.031 0.19
Latino 0.073 0.027 0.062 0.24
Age: 1st Quartile 0.025 0.016 0.041 0.54
Age: 2nd Quartile -0.021 . 0.034 0.54
Age: 3rd Quartile 0.006 0.008 0.039 0.87
Age: 4th Quartile -0.029 . 0.034 0.40
Any Prior Cases 0.014 0.012 0.041 0.74
Prior Felony 0.032 0.018 0.018 0.08
Multiple Charges 0.069 0.026 0.052 0.18
Prior Misdemeanor 0.058 0.024 0.072 0.42

Test of Joint Significance: p = 0.26

Note: This Table reports estimates of the variance of attorney ef-
fects for pre-treatment variables that are assumed orthogonal to the
assignment mechanism. Variances have been multiplied by 100 for
readability.
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Table 3.5: Estimated Attorney Effect Variances

Var(pj) SD(pj) SE(Var(pj)) p-Value

Plea Guilty 0.116 0.034 0.059 0.05
Incarceration 0.314 0.056 0.129 0.02
Probation 0.029 0.017 0.027 0.28
Deferred Adj. 0.188 0.043 0.063 0.01
Plea & Incarcerate 0.289 0.054 0.125 0.02
Incar. > 6m 0.435 0.066 0.153 0.01
Incar. > 1y 0.580 0.076 0.181 0.01
Incar. > 2y 0.496 0.070 0.131 0.01
Incar. > 4y 0.370 0.061 0.111 0.01

Test of Joint Significance: p = 0.001

Note: This Table reports estimates of the variance of attorney ef-
fects for case outcome variables. Variances have been multiplied by
100 for readability.
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Table 3.6: Correlation Between Estimated Effects p̂j and Attorney Characteristics

(1) (2) (3) (4)
Plea Incarceration Probation Deferred Adj.

Male 0.0084 0.0270∗ -0.0078 -0.0140
(0.0077) (0.0123) (0.0071) (0.0099)

Latino 0.0024 0.0188 -0.0036 -0.0118
(0.0060) (0.0102) (0.0063) (0.0087)

Black 0.0101 0.0323 -0.00462 -0.0233
(0.0130) (0.0197) (0.0154) (0.0132)

Grad. Year/100 -0.0483 -0.1080∗ -0.0205 0.0624
(0.0296) (0.0499) (0.0335) (0.0438)

US News Rank/100 -0.0024 -0.0100 0.00727 0.0041
(0.0050) (-0.008) (0.0052) (0.0069)

Solo Practitioner 0.0199∗ 0.0037 -0.0101 0.0162
(0.0094) (0.0130) (0.0078) (0.0124)

Disciplinary History 0.0078 0.0099 0.00297 0.0012
(0.0087) (0.0174) (0.0096) (0.0121)

N 327 327 327 327
Adj. R2 0.0536 0.0674 0.0188 0.0284
F-statistic 2.408 3.123 0.873 1.801
Joint p-value 0.0205 0.00334 0.528 0.0864

Note: This Table reports regressions of estimated attorney effects on attorney
characteristics. A constant is included, but not reported. Standard errors in
parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 3.7: Comparison of Moments of Estimated G(·)s

Panel A: Unrestricted G

Plea Guilty Incarceration Deferred Adj.
Std. Dev. 0.052 0.083 0.070
Skewness -0.946 0.099 0.023
Kurtosis 4.454 3.762 3.723

Panel B: Exponential Family (Spline) G

Plea Guilty Incarceration Deferred Adj.
Std. Dev. 0.058 0.084 0.075
Skewness -3.360 0.041 1.276
Kurtosis 36.926 4.218 12.115

Panel C: Logit-Normal G

Plea Guilty Incarceration Deferred Adj.
Std. Dev. 0.053 0.083 0.072
Skewness -1.154 -0.007 0.443
Kurtosis 5.020 2.803 3.136

Note: This Table reports moments of the estimated distribu-
tion of attorney effects for all three estimators (unrestricted,
exponential family, and logit-normal).
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Table 3.8: Estimates of Defendant Preferences over Attorney Characteristics

log(Sj/Sref)

Female 0.003 -0.517
(0.53) (0.93)

Latino 0.896∗ -0.199
(0.45) (0.73)

Black -1.905∗∗∗ -2.509∗∗

(0.38) (0.72)
Grad. Year -3.876∗ 0.34

(1.90) (3.07)
US News Ranking -0.210 (0.48)

(0.36) (0.55)
EB Mean, Plea Guilty -0.801 1.796

(2.20) (3.81)
EB Mean, Incarceration -4.802 -6.422

(4.33) (4.49)

R2 0.00 0.05 0.07 0.07 0.01 0.00 0.03 0.14
N 60 56 56 60 60 36 36 32

Note: This Table reports estimates of a simple multinomial model of defendant preferences
over attorney characteristics. A constant is included, but not reported. Robust standard errors
in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Appendix A

Appendix to Chapter 1

A.1 Additional Figures

Figure A.1: Mandatory features of a candidate profile, at the time of the study
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Figure A.2: Typical interview request message sent by a company to a candidate, at the
time of the study
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Figure A.3: Model Fit: Labor Supply

Note: This Figure plots the relationship between the empirical acceptance prob-
ability of a bid and the model-implied probabilities that the bid will be accepted.
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Figure A.4: Relationship between bids and systematic component of valuations, γj(xi)

Note: This Figure plots the relationship between observed bids and the system-
atic component of valuations exp(z′

jΓxi) in the preferred model, controlling for
the asked salary. Unconditionally, the slope of the relationship between bids
and the observed component of valuations is 0.83.
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Figure A.5: Summary Statistics of Benefits listed by Firms

(a) Distribution of Number of listed Benefits

(b) Share of listed Benefits

Note: This Figure displays the distribution of benefits listed by firms in the subset of ranked
firms. Panel (a) plots the density of the number of listed benefits per firm. The bar “20+”
includes numbers of listed benefits greater than 20 up to a maximum of 53. The mean number
of benefits is 10.71 (SD 9.45), while the median lies at 7. Panel (b) illustrates the relationship
between firm ranking and the number of listed benefits. On average an additional benefit increases
the firm’s ranking by 10.41.
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A.2 Additional Tables

Table A.1: Comparison of data sources

Observe... Admin Surveys Experiments This Paper

full choice sets? No Depends Yes Yes
multiple choices per worker? No Depends Depends Yes
info on indiv. characteristics? Depends Yes Yes Yes
high stakes choices? Yes Depends No Yes
exogenous choice sets? No No Yes No
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Table A.2: Match productivity estimates: γj(xi) = z′
jΓxi

(1) (2) (3) (4) (5) (6) (7) (8)
Soft-Eng Experience (Experience)2 Unemployed Ivy Plus CS Degree FAANG Previous Jobs

Constant 0.0326∗∗∗ 0.0005 0.00002 0.0009 -0.0060∗ 0.0042 -0.0012 -0.0003
(0.0029) (0.0006) (0.00002) (0.0010) (0.0023) (0.0022) (0.0028) (0.0005)

16-50 Employees -0.0046 0.0007 -0.0000111 0.0003 -0.0035 -0.0028 -0.0017 -0.0008
(0.0031) (0.0006) (0.00002) (0.0010) (0.0025) (0.0024) (0.0030) (0.0005)

51-500 Employees -0.0144∗∗∗ 0.0020∗∗∗ -0.00005∗∗ 0.0002 0.0049∗ -0.0031 -0.0020 -0.0011
(0.0029) (0.0006) (0.0000176) (0.0010) (0.0024) (0.0022) (0.0028) (0.0005)

501+ Employees -0.0167∗∗∗ 0.0016∗∗ -0.00005∗∗ -0.0006 0.0073∗∗ -0.0020 0.0001 -0.0002
(0.0030) (0.0006) (0.00002) (0.0010) (0.0025) (0.0023) (0.0029) (0.0005)

Finance 0.0084∗∗∗ -0.0006 0.00001 0.0006 -0.0077∗∗∗ -0.0052∗∗∗ -0.0047∗∗ 0.0003
(0.0017) (0.0004) (0.00001) (0.0006) (0.0015) (0.0013) (0.0017) (0.0003)

Tech 0.0068∗∗∗ -0.0005 0.00001 -0.0008 -0.0010 0.0016 -0.0022 -0.0003
(0.0014) (0.0003) (0.00001) (0.0005) (0.0013) (0.0011) (0.0014) (0.0003)

Health 0.0074∗∗∗ -0.0004 0.00001 -0.0007 -0.0027 -0.0049∗∗ -0.0031 0.0004
(0.0022) (0.0005) (0.00001) (0.0008) (0.0021) (0.0018) (0.0024) (0.0004)

(9) (10) (11) (12) (13) (14) (15)
Fulltime Sponsorship Remote Java Python SQL C

Constant -0.0035 -0.0019 0.0029 -0.0002 0.0009 -0.0030 0.0077∗∗

(0.0022) (0.0028) (0.0020) (0.0021) (0.0020) (0.0023) (0.0026)
16-50 Employees 0.0011 0.0150∗∗ 0.0032 -0.0006 -0.0004 0.0065∗ -0.0136∗∗∗

(0.0024) (0.0030) (0.0022) (0.0023) (0.0022) (0.0025) (0.0029)
51-500 Employees 0.0039 0.0058∗ -0.0012 0.0042 -0.0018 0.0039 -0.0076∗∗

(0.0022) (0.0028) (0.0021) (0.0022) (0.0020) (0.0023) (0.0027)
501+ Employees 0.0034 0.0057∗ -0.0020 0.0064∗∗ -0.0029 0.0032 -0.0087∗∗

(0.0023) (0.0028) (0.0021) (0.0022) (0.0021) (0.0024) (0.0027)
Finance -0.0023 0.0025 0.0003 -0.0063∗∗∗ 0.0011 0.0008 0.0012

(0.0014) (0.0016) (0.0013) (0.0013) (0.0013) (0.0014) (0.0016)
Tech -0.0028∗ 0.0004 0.0001 -0.0058∗∗∗ 0.0024∗ 0.0024 0.0021

(0.0012) (0.0013) (0.0011) (0.0011) (0.0011) (0.0012) (0.0013)
Health 0.0025 -0.0031 0.0027 0.0004 -0.0032 -0.0003 0.0013

(0.0019) (0.0021) (0.0017) (0.0018) (0.0017) (0.0019) (0.0023)

Note: This Table presents the remaining set of coefficients corresponding to Table 1.7. The omitted
category for the number of employees is “1-15 Employees”. Every cell reports the coefficient on the
interaction of the variables specified in the corresponding row and column. Column variables are
candidate characteristics (xi), and row variables are firm characteristics (zj). Standard errors in
parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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A.3 Illustration of conceptual framework

The following simple model, adapted from Bhaskar, Manning, and To (2002), can be used
to illustrate the logic of our conduct testing procedure. In particular, the model to illustrates
the role of worker preference heterogeneity, the implications of conduct assumptions, and the
basic logic of our estimation and testing framework. The basic message is that combinations
of assumptions on competition and wage-setting flexibility deliver different wage equations,
which can then be used to infer conduct. Our simple model consists of:

◦ Firms j = −1,+1, which are located on either end of a mile-long road;

MRPLj = ARPLj = γj.

◦ Workers distributed along road with location ξ, which is private information:

ξ ∼ Unif[0, 1].

◦ Workers live on either side of the road, given by the variable v, which is public infor-
mation:

v ⊥⊥ ξ, v = {−1,+1} w.p. 1/2.

◦ Firms post wages (which may vary by v), and worker utilities are given by:

uv
−1(ξ) = wv

−1 − β
(
ξ + αv

)
; uv

+1(ξ) = wv
+1 − β

(
1− (ξ + αv)

)
.

Under these assumptions, type-v’s labor supply to firm j is:

Sv
j (wv

j ;wv
−j) = 1

2 +
wv

j − wv
−j

2β + α v j.

Labor demand is determined by profit maximization:

πj(w) = 1
2

+1∑
v=−1

(γj − wv)× Sv
j (wv; ŵv

−j),

where the random variable ŵv
−j encodes j’s knowledge of the competitive environment. Wages

are determined by firms’ first-order conditions and a market clearing constraint:

wv
j = 1

2(ŵv
−j + γj − β)− αβ v j, Sv

j (wv
j ; ŵv

−j) + Sv
−j(wv

−j; ŵv
j ) = 1.

We next define what we mean by firm conduct: in this setting, we define conduct as
assumptions about the content of ŵv

−j and firms’ use of v in wage setting. Applying each
conduct assumption, we find that each conduct assumption implies a distinct markdown:
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Conduct use v? Firm’s ŵv
−j Equilibrium Wage(s) wv

j

Perfect Comp. No — γj

Monopsonistic No w 3
4γj + 1

4γ−j − β

Monopsonistic Yes wv 3
4γj + 1

4γ−j − β
(
1 + αv j

)
Oligopsony No w−j

2
3γj + 1

3γ−j − β

Oligopsony Yes wv
−j

2
3γj + 1

3γ−j − β
(
1 + 2

3αv j
)

Next, we consider estimation and model selection. Each model, which we index by m,
yields a wage equation of the form:

wv
j = cm

own · γj + cm
other · γ−j − cvm

j

. A traditional approach in labor economics is to estimate ĉ. To do so, one might first
construct proxies for firm productivity γj and identify instruments that shift γj (and/or
competitive environment). Then, one would regress wv

j on γj, γ−j, and concentration mea-
sures. To conduct inference, we might perform a simple Wald test on the parameter cj, for
instance: H0 : cj ≥ 1, Ha : cj < 1. Our approach (which follows the New Empirical
Industrial Organization tradition) is to estimate γ̂, rather than ĉ. A particular conduct
assumption m, in combination with labor supply parameters estimated in a prior step, de-
termines the coefficients cm. Rather than searching for instruments for productivity, find
instruments for markdowns that are excluded from productivity. Then, regress wv

j + cvm
j on

cm
own and cm

other to recover γ̂m
j ; for example, when firms do not use v in wage setting, we have:
[
γ̂m

−1
γ̂m

+1

]
=
[
cm

own cm
other

cm
other cm

own

]−1 [
w−1 + cm

−1
w+1 + cm

+1

]

Finally, in order to adjudicate between different forms of conduct, we use the Vuong (1989)
and Rivers and Vuong (2002) tests, which compare model lack of fit between alternatives.

A.4 Details of EM algorithm

We estimate the parameters of the the preference model via the EM algorithm. Specifi-
cally, we use a first-order (or “Generalized”) EM (GEM) algorithm, in which we replace full
maximization of the surrogate function in the M step with a single gradient ascent update.
Our algorithm proceeds as follows:

◦ Initialization: provide an initial guess of parameter values (β(0),ρ(0)).
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◦ E Step: at iteration t, approximate the average log integrated likelihood at β(t),ρ(t)

with the function:

E(β,ρ | β(t),ρ(t)) = 1
N

N∑
i=1

Q∑
q=1

α
(t)
iq log

(
αq(xi | β)× P

(
B1

i ≻ B0
i | ρq

))
,

where the weights α(t)
iq are given by:

α
(t)
iq =

αq(xi | β(t))× P
(
B1

i ≻ B0
i | ρ(t)

q

)
∑Q

r=1 αq(xi | β(t))× P
(
B1

i ≻ B0
i | ρ

(t)
q

) .
◦ M Step: Find β(t+1),ρ(t+1) by computing a single gradient ascent update (hence “first-

order”).

We initialize our algorithm at 50 random starting values, and report the estimate that yields
the highest likelihood.

A.5 Properties of bidding strategies

For clarity, we suppress dependence on m. Under each model m, we may generally write
Gij(b) =

∫
G̃ij(b, λ)dH(λ), where either G̃ij(b, λ) = exp(u(b, ai))/(exp(u(b, ai)) + exp(λ))

under oligopsony or G̃ij(b, λ) = exp(u(b, ai) − λ) under monopsonistic competition. In the
latter case, log concavity of Gij(b) follows directly from the fact that u(b, ai) is concave (by
assumption), since Gij(b) = exp(u(b, ai)) ×

∫
exp(−λ)dH(λ). Log concavity in the former

case can also be shown via differentiation of log(Gij(b)).
Let the function G+

ij(b) (with derivative g+
ij(b)) denote the right-hand side of the Gij(b)

function, which replaces θ0 + θ1 · 1[b < wi] with θ0. We similarly let G−
ij(b) denote the

left-hand side function, which replaces θ0 + θ1 · 1[b < wi] with θ0 + θ1. Clearly, Gij(b) =
1[b ≥ wi] · G+

ij(b) + 1[b < wi] · G−
ij(b). Under the assumption that both G+

ij(b) and G−
ij(b)

are log-concave, we have that the functions g+
ij(b)/G+

ij(b) and g−
ij(b)/G−

ij(b) are both strictly
decreasing functions of b. This implies that both the left-hand and right-hand inverse bidding
functions, ε−

ij(b) = b + G−
ij(b)/g−

ij(b) and ε+
ij(b) = b + G+

ij(b)/g+
ij(b) are monotone increasing

functions of the bid. This in turn implies that the left- and right-hand bidding functions,
which we denote by b−

ij(εij) and b+
ij(εij) are also strictly increasing functions of εij. We

may also define the left- and right-hand indirect expected profit functions as π∗s
ij (εij) =

Gs
ij(bs

ij(εij))2/gs
ij(bs

ij(εij)) for s ∈ {−,+}, which are both strictly increasing functions of εij.
These results establish the monotonicity of firm strategies and payoffs in their unobserved
valuations when firms bid on either side of the kink.

A necessary, but not sufficient, condition that the firm bids at the kink is that the deriva-
tive of the left-hand expected profit function is positive at the asked wage:

g−
ij(wi)(εij − wi)−G−

ij(wi) < 0.
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We assume that εij > wi, since otherwise the firm would never choose to bid at ask. We
additionally assume that both θ0 and θ1 are positive. Given these assumptions, we have that

g−
ij(wi)(εij − wi)−G−

ij(wi) < 0 =⇒ g+
ij(wi)(εij − wi)−G+

ij(wi) < 0,

since by construction g+
ij(wi) < g−

ij(wi) and G+
ij(wi) = G−

ij(wi). By the same logic, we can
show:

g+
ij(wi)(εij − wi)−G+

ij(wi) > 0 =⇒ g−
ij(wi)(εij − wi)−G−

ij(wi) > 0.

These conditions guarantee that the firm’s optimal choice of bid is unique, even incorporating
the kink. Given these definitions, we can write the condition that firms bid at the kink as:

ε−
ij(wi) ≤ εij ≤ ε+

ij(wi)

Therefore, we may write the firm’s optimal bidding function as:

bij(εij) =


b−

ij(εij) if ε−
ij(wi) ≥ εij

wi if ε−
ij(wi) ≤ εij ≤ ε+

ij(wi)
b+

ij(εij) if εij ≥ ε+
ij(wi).

We have therefore shown that the firm’s optimal strategy is a strictly increasing function of
its valuation outside of the interval [ε−

ij(wi), ε+
ij(wi)], and is flat within that region.

Next, we consider firms’ participation decisions. The results established above imply
that the firm’s indirect expected profit function is a strictly increasing function of the firm’s
valuation:

π∗
ij(εij) =


π∗−

ij (εij) if ε−
ij(wi) ≥ εij

Gij(wi)(εij − wi) if ε−
ij(wi) ≤ εij ≤ ε+

ij(wi)
π∗+

ij (εij) if εij ≥ ε+
ij(wi).

Firms participation decisions are therefore given by the condition:

Bij = 1
[
π∗

ij(εij) > cj

]
.

Since π∗
ij(εij) is a strictly increasing function of the firm’s valuation, an inverse indirect

expected profit function exists and is also strictly increasing. Therefore, we may re-write the
above equation as:

Bij = 1
[
νij > π∗−1

ij (cj)− γj(xi)
]
.

A.6 Proof of the consistency of ĉm
j

Our proof of the consistency of ĉm
j for each firm j (and model m) closely follows the

proof of Lemma 1 (ii) of Donald and Paarsch (2002). For clarity, we omit j and m indices.
Let n denote the total number of bids, with n → ∞. A sufficient condition for establishing
consistency is the existence of a vector of candidate characteristics x ∈ X (including ask
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salary a) occurring with positive probability such that there is a positive probability the
firm optimally bids below ask for candidates with those characteristics: ∃x ∈ X such that
Pr(a > bi > 0 ∩ xi = x) > 0. The vast majority of firms (92%) bid below ask at least
once, which suggests that this assumption is reasonable. The vector x need not be the same
for all firms. This assumption implies that the distribution of model-implied option value
upper bounds π̂i is bounded below by c when xi = x, and that Pr(π̂i ∈ [c, c + δ] | xi =
x) > 0 for arbitrary δ > 0. Let nx denote the number of bids made to candidates with
characteristics x and let ĉn

x denote the minimum implied π̂ among those bids (such that
ĉn = minx′∈X ĉ

n
x′). Our sampling assumptions imply nx

a.s.→ ∞. For an arbitrary ϵ > 0, note
that Pr(|π̂i − c| > ϵ | xi = x) = Pr(π̂i > c + ϵ | xi = x) = 1 − Fπ(c + ϵ | xi = x) < 1.
Let F π|x(a) = 1 − Fπ(a | xi = x). We then have that

(
F π|x(c + ϵ)

)nx a.s.→ 0, and therefore
Pr(|ĉn

x − c| > ϵ) = Pr(ĉn
x > c + ϵ) = E

[(
F π|x(c + ϵ)

)nx
]
. Since ϵ is arbitrary, ĉn

x

p→ c, and
since ĉn

x ≥ ĉn ≥ c, ĉn p→ c. Further, supm>n |ĉm− c| = |ĉn− c| p→ 0 since ĉn is non-increasing
in n, and so ĉn a.s.→ c.
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