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Microbial communities play a crucial role in human health. The study of these host resident 

microbial communities is limited by the current inability to efficiently cultivate each member. 

Therefore, high throughput sequencing has been widely adopted to describe which microbial 

strains are present and in some cases their activity, directly from the sampled environment. The 

central aim of many microbiome studies is to understand how these communities form, 

perpetuate, and can be altered across time for the benefit of the host. However, several technical 

limitations in the analysis of these data have left many of these questions only partially revealed. 



 xvii 

First, in Chapter 1 of this thesis, we review the current understanding of the human 

microbiome across age, from birth until death. We also highlight many of the open gaps in our 

knowledge of how human microbiomes are formed and sustained, in addition to the current 

methodologies for exploring these questions. Chapter 2, introduces the current microbiome-

based dimensionality reductions, which take high-dimensional microbiome data and reduces it 

into a few human interpretable dimensions. In this chapter we describe the limitations of these 

methods in microbiome data including sparsity, nonnormality, and compositionality. We address 

these problems with a novel method for dimensionality reduction which uniquely handles the 

inherent challenges of this data type. However, microbiomes are also highly individualized with 

each person containing a unique set of microbial communities. To overcome this, longitudinal 

studies of the microbiome are growing in popularity. In chapter 3, we describe the challenges to 

analyze these valid study designs, in addition to the lack of methods existing to properly account 

for the structure. In the chapter we address these challenges through tensor-based factorization, 

which accounts for the structure of the study. Through this method we are able to better 

understand microbial community development in infants, in particular those altered through C-

section rather than vaginal birth. Finally, in chapter 4, we utilize these methods to explore a 

method for naturalizing C-section birth through seeding of the infant with the mother’s 

vaginal microbiome at birth. From this we found that engraftment of the mother’s vaginal 

microbiota at birth successfully naturalizes the microbiome development.
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Chapter 1. Healthy microbiota succession throughout life from 

cradle to the grave 

Abstract 

Associations between age and the human microbiome are robust and reproducible. The 

microbial composition at several body sites can even be used to reveal human chronological age 

accurately. Although it is largely unknown why specific microbes are more abundant at certain 

ages, human microbiome research has elucidated a series of microbial community 

transformations that take place between birth and death. In this review, we explore microbial 

succession in the healthy human microbiome from the cradle to the grave. We discuss the stages 

from primary succession at birth, to disruptions by disease or antibiotic use, to microbial 

expansion at death. We address how these successions differ by body site and by domain 

(bacteria, fungi, or virus). We also review experimental and analytical tools that microbiome 

researchers use to conduct this work. Finally, we discuss future directions for studying the 

microbiome’s relationship with age, including integrated experimental design across studies, 

more robust statistical analyses, and improved characterization of non-bacterial microbes. 

  

Themes: the microbiota genera (bacteria, fungi, and virus) succession across life 

 

1.1. Introduction 

Human-associated microbiota are communities of bacteria, fungi, and viruses (often 

referred to as the bacteriome, mycobiome, and virome respectively) that live on and/or inside the 

human body. The amount of information known about how the community structure of bacteria 

changes across age groups far outweighs that about the fungi and viruses, but does not 
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necessarily translate to bacteria being of disproportionate importance. Microbial communities 

exist on every mucosal surface in the human body, and each body site within a person contains 

a unique ecology 1–3. Each individual’s human-associated microbial community is unique 

compared to that of all other humans 4. Human-resident microbes encode an estimated 2 to 20 

million genes, while the human genome encodes an estimated 20 to 25 thousand; therefore, 

microbiota represent 99.9% of the genetic capacity in the human body 5. During each stage of life 

from birth to death and decomposition, microbial communities act as a dynamic organ of the body, 

and have revolutionized our understanding of human biology. However, these natural and induced 

changes in our microbiota still harbor many mysteries waiting to be discovered and fully 

understood. 

  

Microbial succession is defined as a change in the presence, relative abundance, or 

absolute abundance of one or more organisms within a microbial community. Microbial 

succession processes can be deterministic or stochastic. Factors that drive deterministic 

succession fall into three categories: abiotic (e.g. pH/redox potential 6), biotic (e.g. cross-feeding 

7, diet 8, travel 9), and host factors (e.g. innate and adaptive immunity (reviewed in 10)). Stochastic 

succession is defined as microbial community changes that are not the consequence of 

environmentally determined fitness (also called ecological drift) 11,12. Whether microbial 

succession is more deterministic or stochastic is driven by several factors in the formation of the 

community, including birth mode, diet (i.e. human breast milk), and antibiotics 13–15. There are 

three main stages of microbial succession that naturally occur across human life during normal 

or healthy aging. 

  

The first stage, Primary succession, begins at birth when pioneer species first establish 

the community and is followed by rapid changes in the microbial community. These changes 

decrease in their rate of change from birth until childhood, and many intermediate species exist 
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between birth and late childhood 13–15 (Figure 1.1A). Primary succession ends at the formation of 

a climax community, thought to be achieved by adolescence and sustained through adulthood; 

this community is characterized by its relative stability 16,17 (Figure 1.1B). Although the 

microbiome is more stable in adulthood than childhood, there is still variability, fueling the debate 

over the existence of a climax community in the human microbiome 18. Natural variation in the 

adult microbiota exists on the time scale of hours (circadian rhythms 19) to years (aging), but 

microbiota are generally stable except in the presence of a disturbance such as change in diet or 

medications. The next stage, Secondary succession, occurs when some or all of a pre-existing 

stable community is altered or removed, followed by regeneration of the community to either the 

same or a different state. This can be done either deliberately, through medical treatments such 

as antibiotics 20,21 or spontaneously, through diseases such as Vibrio cholerae infection 22. 

Secondary succession in humans is characterized by at least some period of stochastic process 

dominance. In induced conditions, such as a single course of antibiotics, the community follows 

a process similar to primary succession, where parts of the existing microbial community act as 

“microbial memory” and help guide back to a similar community that existed before. This process 

is thought to be driven by keystone community members 23,24, rather than the pioneer microbes 

that drive primary succession (Figure 1.1C). Third, Final succession is part of the natural host 

senescence and death. During old age, the microbial community again succeeds to a community 

composed of fewer total members, dominated by Proteobacteria 25, and the rate of change 

increases, almost in an inverse relationship to primary succession 26 (Figure 1.1D). 
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Figure 1.1. The succession of the human microbiota from conception to death. Bacteria, fungi, 
and viral diversity across human life stages (black dotted line). The analog clock represents the 
relative time of host age at which each microbial community stage develops. Immune imprinting 
begins before birth through the mother’s microbiota and its metabolites (first column). Initial 
colonization of pioneer species begins at birth and body site-specific microbial communities 
emerge (second column). These communities continue to increase in complexity until they reach 
a stable community structure (third and fourth columns). Secondary successions of these 
microbial communities can occur from internal and external perturbations (fifth column). 
Intermediate species of microbes re-establish the initial community and reach a steady-state 
again (sixth and seventh columns). At late age, the community goes through a final succession 
and changes as the host nears natural death (eighth column). The last stage of microbial 
succession occurs at putrefaction and decomposition. During this stage diversity further declines 
and during the first 24-48 hours many of the human microbiome structures are conserved, but 
then quickly begin to erode (final column). The relative strength of adaptive (green line) and innate 
(blue blue) across different stages of life and microbial succession (bottom). Created with 
BioRender.com. 
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Unlike the human genome which is encoded at birth, and cannot be altered during life (at 

least with current technology), each of these unique microbiome changes can be deliberately 

modified across time. Within a host species and a body site, age has the strongest relationship 

with the healthy microbiome of any physiological or demographic variable measured to date 16. 

Age drives both alpha and beta diversity in human microbiomes (Figure 1.2; see Box 1 for a 

description of methods for exploring microbial communities). Studying each stage of 

succession allows researchers to try to understand how human-associated microbial communities 

are formed and maintained. By understanding these processes, we may better understand how 

to manage microbiota as we age and in relation to human health. Although methodology to 

measure and describe microbial communities is an area of active development, standard 

practices do exist and are useful for integrating results across cohorts.  
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Figure 1.2. Measurements of bacterial diversity across age. The bacterial diversity and 
phylogenetic history of the human fecal (A), oral (B), and skin (C) microbiomes from birth to old 
age measured in the American Gut Project dataset, citizen science project containing 21,919 
fecal, 1,920 oral, and 998 skin microbiome samples with 16S gene amplicon sequencing 56. Alpha 
diversity, a quantitative measure of the number of different types of microbes in a sample, 
measured through Faith’s PD alpha diversity metric across age (first column). The UniFrac beta 
diversity PCoA, a method for comparing the similarity of microbial communities where spatially 
close dots are similar samples and spatially distant dots represent dissimilar samples, colored by 
age (second column). The different microbes found at each stage of life represented by a 
phylogeny of their predicted evolutionary history, produced through SEPP insertion 201 of the 
Greengenes phylogeny 202 (third to last columns).  
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Primary succession (pre-life and early life) 

The first factors that shape a human microbiome come from the mother during fetal 

development. The fetus is exposed to metabolites produced by the mother's microbial community 

through the placenta, which imprint its immune system and can affect both the normal microbiome 

and also various aspects of pathology later in life 27. The composition and transfer of these 

metabolites to the fetus can be impacted by the mother's health, diet, and use of antibiotics during 

pregnancy 28–34. The mothers microbiota play a role in shaping the fetal immune system which 

plays a role in disease susceptibility later in life.  Dietary fiber is fermented by the mothers gut 

microbiota resulting in short-chain fatty acids (SCFAs) such as acetate which have been observed 

to be transferred across the placenta. Acetate in the fetal tissue has been observed to impact the 

epigenetic imprinting linked to the generation of T cells (Tregs) in adults, which is associated with 

protection from the development of asthma later in life 28. In addition to microbial metabolites, Aryl 

hydrocarbon receptor (Ahr) a ligand produced by E. coli boosts the number and activity of myeloid 

cells, as well as of type 3 innate lymphoid cells (ILC3) which helps to shape the neonatal microbial 

and immune development 29,35–37. During pregnancy, antibiotic use and gastrointestinal-related 

diseases such as Inflammatory Bowel Disease (IBD) are also thought to increase the risk of 

pathology in offspring later in life by imprinting of the fetal immune system 38–41. However, these 

links have only been conducted in non-human experiments, such as in Torres et al, where germ-

free mice were colonized with pregnant patients of IBD and infant microbiome demonstrated both 

aberrant microbiota and immune development indicative of IBD 40. The mother's microbiome and 

immune system are also altered during pregnancy 42,43. The mothers vaginal microbiome 

becomes pluripotent, containing many microbes conventionally found at other body sites 44. While 

the immune system during pregnancy forms cooperative interactions with the fetus, forming the 

fetal immune system with transplacental IgG antibodies (reviewed in 45 and 46) (Figure 1.3A). 
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The beginning of the human microbial community and the start of primary succession 

occur at birth with the seeding of the infant from the mother's microbiota. There is some debate 

as to whether the microbiota obtained at birth originate from both vaginal and fecal sources, 

through mixing, or if the vaginal microbiome itself is pluripotent at birth and is the sole source of 

microbial pioneers (i.e. the first species to colonize, setting the stage for other species later in 

succession) 44,47–49. Regardless of the exact maternal source, this stage is characterized by 

pioneer bacterial taxa such as Lactobacillus, Enterobacter, Bacteroides, Parabacteroides, and 

Prevotella, which then colonize their conventional body sites: the gut, mouth, and skin 15,16,50,51. 

At first, each body site of an infant is relatively undifferentiated, but pioneer microbes quickly begin 

a cascade of body site-dependent microbial diversity, and at least the bacteria at each site can 

be easily distinguished by the 4 - 6th week of life 1,13 (Figure 1.3B). 
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Figure 1.3. Primary succession (pre-life and early life). The future of the yet-to-be colonized fetus 
is set on an initial community assembly trajectory through the priming of each body site by the 
mothers imprinting on the immune system. Metabolites such as short chain fatty acids (e.g. 
Acetate) and other microbial compounds such as the bacterial ligand aryl hydrocarbon receptor 
can be transferred to the fetus through the placenta and influence immune development. These 
metabolites are also influenced by the mothers diet and health (A). Upon birth, the microbial 
community quickly differentiates by body site (B). During this initial colonization, the pioneer 
species and the community development of the next four years can be impacted by birth mode 
and gestation time. The following intermediate community is shaped by diets such as the 
consumption of breast milk or formula and the environment (C). Finally, the stable climax 
community is again shaped by diet and environment (D). Created with BioRender.com. 
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The development of the bacterial community in the human gut has been well studied 

(reviewed in 52). Bifidobacterium spp. alone are dominant in the first month, but give way to a 

combination of Bifidobacterium, Clostridium, and Bacteroides spp. By the end of year one, this is 

followed by a greater increase in Bacteroides, a more diverse set of genera within the phylum 

Firmicutes (e.g. Clostridium, Faecalibacterium, Ruminococcus, Veillonella), and a relative 

decrease in pioneer species such as Bifidobacterium 14,15,47. Bifidobacterium spp. catabolize 

Human Milk Oligosaccharides (HMOs) from the mother's breast milk, which is believed to begin 

imprinting the immune systems for life 53–56. Most recently, Henrick et al. demonstrated that 

functional links exist between bacteria such as Bifidobacterium spp. containing genes required 

for catabolism of HMOs and the infant immune development. In particular, fecal waters from 

Bifidobacterium infantis EVC001 supplemented infants polarized naive T cells differently to those 

without, in a manner associated with decreased intestinal inflammation 53. By about the third year 

of life, the gut bacterial community converges to the climax community sustained through 

adulthood. This community of microbes is one of the densest and most diverse ecologies known 

57,58. However, only two bacterial phyla are dominant in an average healthy person during this 

time: Firmicutes and Bacteroidetes 59. 

The virome and mycobiome are far less explored than the bacteriome during the course 

of human gut development. The fungal community in the first few days of life is dominated by 

Rhodotorula and Debaryomyces spp., followed in the next month by Candida, Cryptococcus, and 

Saccharomyces spp. 2,60. By adulthood, the dominant fungal genera are Aspergillus, Candida, 

and Saccharomyces 61–63. The viral phage community is thought to be highly populated in the first 

week of life 64. Phage families including Siphoviridae, Podoviridae, and Myoviridae are prevalent 

immediately after birth, primarily in lysogenic form (integrated into the bacterial genome) 65,66. By 

the fourth month of life, the Caudovirales family of phages grow in abundance and are more often 

lytic (infectious phage particles or actively replicating phage) 67–69. In adults, Caudovirales and 

Microviridae dominate the gut phage community but the phage gut virome is highly host-specific, 
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and much is still unknown about their succession (reviewed in 70). Unlike phages, the gut virome 

of eukaryote-infecting viruses is mostly associated with pathology both in children (e.g. 

gastroenteritis reviewed in 71) and in adults (reviewed in 72). Recently, some eukaryote-infecting 

viruses have also been observed in low abundance both in children and adults, but their timing 

and prevalence are unknown 65,66,73 (Figure 1.3B-D gut columns). 

The oral bacteriome is dominated by members of the genera Streptococcus, Gemella, 

Granulicatella, and Veillonella at birth 74. In the following months, the genera Lactobacillus and 

Fusobacterium also become prevalent. Staphylococcus peaks around 3 months of life then 

steadily decreases, giving way to Gemella, Granulicatella, Haemophilus, and Rothia spp. 75. After 

the formation of teeth, the oral microbiome shifts again, being dominated by the phyla 

Fusobacteriota, Synergistetes, Tenericutes, TM7, and SR1 into adulthood 76–79. The oral 

mycobiome is believed to harbor less fungal diversity than the skin and gut 2. Candida spp. are 

the first fungal colonizers of the oral cavity, on the first day of life 80,81. Very little is known of the 

intermediate oral fungal community, but by adulthood it is known that Candida, Cladosporium, 

Aureobasidium, Aspergillus, Fusarium, and Cryptococcus spp. are in high prevalence 82. To the 

authors' knowledge, not much is currently known about the colonization of the oral virome in 

human infants. In adults, similar to the gut, the most common phage group is Caudovirales 4,83,84. 

The eukaryotic oral viral community is generally viewed as pathological in nature (e.g. Coxsackie 

A virus, Morbillivirus, Rubulavirus, and human papillomavirus), and there are no longitudinal 

studies of viral community composition 85. However, many eukaryotic viral taxa have also been 

observed in asymptomatic and otherwise healthy adult subjects 86 (Figure 1.3B-D oral columns). 

The skin bacterial community is dominated by the mother's vaginal Lactobacillus at birth 

13,44. By week 4-5 the infant skin microbiota resembles the adult skin microbiota, but continues to 

become more site-specific into adolescence, with dominant genera such as Staphylococcus and 

Corynebacterium across sites and Pseudomonas, Enterobacter, Enterococcus, Proteus, and 

Klebsiella at specific sites (e.g. armpit vs. forearm) 1,87. In the skin mycobiome in the first 30 days 
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of life, it has been observed that species of the Malassezia, Candida, and Saccharomyces genera 

are most prevalent 2,88,89. Little is known about the exact compositions of the intermediate 

community, but the adult mycobiome is dominated by Malassezia species, with estimates ranging 

from 75-90 % of the total fungal community composition 2,90. Unlike the gut and oral cavity, the 

healthy skin microbiome harbors relatively little-known viral diversity and little study has been 

devoted to it, likely due to the technical limitations associated with low biomass samples 91. 

However, it is known that there is some naturally residing viral population on the skin 92 (Figure 

1.3B-D skin columns). 

Several factors shape and differentiate microbial community development in the first few 

years of life. First, birth mode and antibiotic use are among the best-studied and clearest factors 

that influence the human microbial community. The process of natural microbial community 

establishment can be disrupted, in all body sites, through cesarean section and perinatal and 

neonatal antibiotic exposure 13–15,93–95.  Two of the best-sampled infant development studies, 

commonly abbreviated as DIABIMMUNE 14 and ECAM 15 followed infants for the first 2 and 3 years 

of life respectively, and focused on the impacts of antibiotic usage or birth mode. In both 

DIABIMMUNE and ECAM there were observed diseases in abundance of Bacteroides spp. in the 

development of those infants born by c-section compared to vaginal birth. The lack of natural 

pioneer microbiota to establish the microbial community results in a more variable community 

composition thought to be driven more by a stochastic than deterministic process, with the effects 

of birth mode on microbial community composition still observable until the fourth year of life 96,97. 

This alteration in the natural development of the infant microbiome is associated with increased 

risks of infections, immune diseases, obesity, and neuroendocrine abnormalities 93,98–108. Second, 

breastfeeding has been shown to have a large effect on microbiota development compared to 

other factors 94. Similar to the impacts of cesarean section, the use of formula compared to 

breastfeeding leads to a higher diversity and less deterministic microbial community109. For 

example, given the natural dominance of Bifidobacteriaceae in the gut at birth, the lack of HMOs 
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as a primary nutrient source can lead to instability in the initial colonization 53. However, much of 

the multi-omics integration of the microbiome, milk metabolome, and immune systems 

development is an area of active and rapidly advancing research 110. As previously mentioned, 

one of the primary constituents of breast milk that affect the developing microbiota is a class of 

glycans referred to as HMOs, which are fermented by beneficial pioneer microbiota such as 

Bifidobacterium spp. and reduce pathogens through competitive binding to bacterial receptors 

over the gut mucosa in addition to the immune influences previously described 111–117. In addition 

to HMOs, breast milk also contains immune-modulatory compounds such as lipopolysaccharide 

(LPS), secretory IgA (sIgA), innate immune factors, antimicrobial peptides, and prebiotic factors 

29,118–121. Finally, all of these factors impact human immune development. Microorganism-

associated molecular pattern (MAMP)-based pattern recognition receptors (PRR) (e.g. Toll-like 

receptors (TLR) 122 & NOD-like receptors (NLR)123) interact with microbiota-derived molecular 

(e.g., LPS) and metabolites (e.g. SCFA, which interact with GPR43/GPR41/GPR109 28, and 

secondary bile acids, which interact with FXR 124) impacting immune development directly 

(reviewed in 125). Some microbiota also rely on the immune system for colonization, such as B. 

fragilis, which depends on immunoglobulin A (IgA) 126. Together, many of these factors contribute 

to the development of a unique, relatively stable microbial community of bacteria, fungi, and 

viruses that persists for a large part of the human lifespan. 

 
Secondary succession in adolescence and adult life 

Although the adult microbial community is largely stable compared to the large changes 

that occur during primary succession in infancy, the community can be perturbed away from the 

climax community state. The understanding of the microbiome during health and disease is a 

deepening and disease-specific research field (review in gut 127, skin 89, and oral microbiota 128). 

There are also natural short-term changes that occur in the adult microbiome at timescales of a 

day to months or years. One of the best characterized examples of short-term changes is the 
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circadian rhythm in microbial community composition. Human gene expression and immune 

activation are known to be linked to the circadian rhythm129, and the abundance and composition 

of bacteria within the microbiome also follow this pattern19. Bacterial families known to show a 

diurnal cycle in mice include Ruminococcaceae, Lachnospiraceae, S24-7, and 

Verrucomicrobiaceae, but little is known about equivalent cycles in humans because they produce 

feces less frequently than do mice130. A well-studied example of changes that occur on the scale 

of weeks to years is diet-driven alteration of the gut microbiome. Diet is known to have a large 

effect on microbial communities and can include natural and reversible changes in the community 

(reviewed in 131). For example, the Hadza tribe of Tanzania, who eat a diet rich in meat and tubers 

in the dry season but a diet rich in honey and berries during the wet season, exhibit large seasonal 

fluctuations in genera such as Bacteroides that break down carbohydrates in meat 8,131,132 (Figure 

1.4A). The large influence of diet in shaping the microbiome may also play a role in human health 

(reviewed in 133), and much work is being dedicated to understanding how specific dietary 

components, and how dietary patterns overall, influence the microbiome and the impact in health. 

For example, western diets high levels of Red meat consumption have been linked to all-cause 

mortality 134. The gut microbiota can act in a deleterious manner to convert L-carnitine, which is 

rich in red meat, to trimethylamine (TMA) and the liver converts TMA into trimethylamine N-oxide 

(TMAO) which is known to lead to atherosclerosis 135. The gut microbiota can also act in a 

protective manner, for example by cleaving carcinogenic molecules from red meat before they 

are absorbed in the gut, acting as a protection from inflammation 132. Besides diet many other 

factors help to shape the adult microbiome including genetics, geography, host factors such as 

metabolic disease or medicine (reviewed in 136).  
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Figure 1.4. Secondary succession (adolescence and adult life).Compared to microbial community 
assembly in primary succession and human development, the microbial community in adulthood 
is relatively stable. There are natural dynamics and changes to this community such as microbial 
oscillations that correlate with host circadian rhythms by day/night and changes during diets or 
seasons (A). Secondary succession occurs when there is a disturbance, of which there are many 
possible avenues of impact, with antibiotics being one of the clearest examples. This disruption 
can cause microbial community members to be lost or fall below the level of detection and large 
changes in microbial dynamics such as the amplitude or periodicity. During this stage keystone 
species, similar to pioneer species, are thought to play a key role in preventing the overgrowth of 
opportunistic pathogens. Soon after the intermediate community forms dominated by the return 
of aerotolerant and facultative anaerobes. Finally, the community resembles the initial community 
with the return of obligate anaerobes (B). Created with BioRender.com.  
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Secondary successions that occur due to a disruption in the microbial community have 

been studied and reviewed extensively. Of the many factors that disrupt the microbiome, 

antibiotics are among the strongest, often with slow and subject-specific recovery after treatment 

20,21. The ability of the microbial community to rebound after antibiotic treatment is thought to 

depend on specific community members such as Bacteroides thetaiotaomicron and 

Bifidobacterium adolescentis 23. Many species associated with post-antibiotic microbiome 

recovery are known keystone species 24. Disease itself can also disrupt the microbiome, whether 

the change is initiated within the microbial community (overgrowth of a pathogen), from the host, 

or some combination of factors (reviewed in 10). In some cases, such as cystic fibrosis (CF), the 

community experiences a series of secondary successions, which often can be overcome only 

through extreme measures such as surgery (reviewed in 137) (Figure 1.4B). Many other diseases 

such as IBD disrupt the microbial community but are not observed to reach a new stable 

community composition, but rather continue to be chronically unstable in the absence of 

intervention (reviewed in 138). 

Challenges in microbial community recovery after a disturbance have led many 

researchers to explore the possibility of interventions for targeted restoration of the microbiota. 

Microbial community restoration involves directed reseeding or enrichment/depletion of certain 

species, with the intent to induce recovery to a microbial community close to that from before the 

disturbance. This can be attempted through probiotics, prebiotics, antibiotics or other drugs, 

transplantation of the complete microbial community from a healthy subject, or a combination of 

these. Although these therapies can be highly effective for restoring a healthy microbial 

community 139,140 they are often limited by lack of mechanistic knowledge of their interaction with 

the existing community 141, or by their ability to engraft only transiently 142. To address the 

mechanisms, researchers have focused on two areas. The first area involves gaining a better 

understanding of how communities are assembled. The study of human development helps 

identify modifiable factors later in life; naturalizing microbial successions through seeding infants 



 17 

with the mother’s vaginal community at birth may prevent the need for intervention later in life 

13,44,47. Second, new methods for determining mechanism by exploring microbial community 

interactions both computationally 143 and experimentally, including high-throughput co-culturing 

144 and genome editing of microbial communities, are being developed 145. To address transience, 

two main approaches have been applied. First, the transient and individualized impact of microbial 

community therapeutics is driven by the individual nature of each person's microbiome 146. 

Therefore, precision medicine, where community alteration is targeted to each person’s unique 

microbiome, holds great promise. For example, personalized nutrition based on microbial 

community compositions effectively modified postprandial blood glucose in a blinded randomized 

controlled intervention 147. Second, going beyond the bacteriome to explore the virome and 

mycobiome, and their inter-kingdom interactions, holds great promise. For example, phage 

therapy has already been employed in severe cases of drug-resistant bacterial infection 148, and 

is highly specific to the target bacterial strains 149. 

 

Late succession (approaching the end of life) 

Aging due to both biological programming and accumulation of damage throughout life 

impacts every aspect of cellular function, and the microbiome is no exception 150. With advanced 

age, the gut microbiota alpha diversity decreases and the beta diversity (variation between 

individuals) increases 17,26,63,151,152. Much is still unknown about the microbiota in old age, and the 

literature has been somewhat contradictory (e.g., Claesson et al. 153 reports increased 

Bacteroides in older adults, contradicting other studies), and most research has focused on gut 

bacteria. Generally, the community succession observed in the gut is bacteria is a decrease in 

genera dominant and prevalent in younger adults, such as Bifidobacteria, Bacteroides, and 

Lactobacillus, with a characteristic decrease in the ability to fend off blooms of opportunistic 

bacteria such as Enterobacteriacaea and Clostridium spp. 59,153,154. Skin bacteria of the genus 

Cutibacterium (formerly, Propionibacterium) and Staphylococcus decrease in older age with a 
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greater abundance of Corynebacterium being observed 155. In the oral body site, Rothia and 

Streptococcus spp. have been reported as dominating the core oral bacterial community, with 

consistent decreases in Porphyromonas, Treponema, and Faecalibacterium 156,157. The gut 

mycobiome in old age is characterized by an increased dominance of Penicillium, Candida, 

Aspergillus, and Saccharomyces 61,63,158. In the skin and oral body sites, very few studies exist, 

but old age is characterized by a decreased abundance of Malassezia in the skin and Candida in 

the oral cavity 159. In phages, Siphoviridae dominance in adulthood gives way to Microviridae, 

Podoviridae, and crAssphages in old age 17. Contrary to gut bacteria, fungi, and bacteriophage 

populations, eukaryotic viral diversity stays constant after childhood throughout the rest of life 17 

(Figure 1.5A) 
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Figure 1.5. Late succession (approaching end of life). The final transition from the adult table 
microbial community to the final community in old age (A). Healthy aging is generally associated 
with a delayed transition to the final community (B, top). The final community characteristics are 
lower alpha diversity and increase uniqueness compared across different people of the same age 
(B, bottom). Created with BioRender.com. 
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Due to the high variability between individuals, the focus of research into microbial 

succession in old age has primarily been in the comparison of healthy and unhealthy aging. It 

remains unclear if the microbiome plays a mechanistic role in healthy aging or is just a strong 

indicator being influenced by the host (reviewed in Nagpal et al. 160). However, in those who live 

longer and healthily, commonalities can be observed in sustained retention of those taxa highly 

prevalent in healthy adults such as Bacteroides 161. This has led to defining a “microbiome age” 

which is based on the average microbial composition at a given host age 162. The difference 

between the microbiome age and the true age has been an effective measure for human 

development 50 and similar approaches are being utilized in the microbiome in old age (Figure 

1.5B). However, centenarians exhibit a wholly unique microbiome with increased alpha and beta 

diversity, complicating many of these comparisons 26,151,152. Although promising, this area of 

research is still underpowered and an exciting area of current research. 

  

The microbiome after death 

Microbial succession does not end with the death of an individual, and in fact host death 

can be primarily viewed as an ecological disturbance to the microbiome. Immediately following 

cessation of the heart, tissues begin to break down due to the lack of oxygen 163,164. Cellular 

functions continue until all the remaining oxygen is depleted and carbon dioxide is no longer able 

to be transported from the tissue 163,164. The intracellular build-up of carbon dioxide creates a 

hypoxic, acidic environment leading to cell rupture 164,165. Cellular components, such as enzymes 

(e.g., lipases), leak into the surrounding where they further facilitate tissue breakdown in a 

process called autolysis 165. Autolysis triggers a cascade of microbial processes responsible for 

tissue breakdown (i.e., putrefaction) by eliminating the immune system, loosening cellular 

junctions, and providing nutrients to the microbiota 164–166. During the first few days to weeks of 

decomposition, putrefaction is dominated by bacteria, but fungi have an increased role as 
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decomposition progresses 167–170 (Figure 1.6A). However, little is known about the virome 

succession and functional role during this process. 

The human microbiome is relatively stable during the first 24-48 hours after death with 

distinct body site microbial ecologies 170, alpha diversity patterns by age 170, and identifiable 

personalized skin microbiome signatures 171. Afterwards, the cascade of environmental changes 

facilitates a microbial succession that alters the human body and microbiome in a way that no 

longer resembles a living individual (unless the body is cooled or frozen). Microorganisms, 

released from the environmental constraints during host life, allow for both rapid changes in the 

relative abundance of microbes 168,170,172 as well as movement across body sites 166,173,174. 

Migrating bacterial groups become pioneer species that translocate from the intestinal tract to 

extraintestinal sites taking part in either primary or secondary succession depending on the body 

site 174,175. As the post-mortem interval of the host increases, alpha diversity of communities 

generally decreases (as is expected with nutrient pulses) and community composition (beta 

diversity) becomes more similar across body sites 168,176,177. The gut and the skin are the two most 

well-studied human post-mortem microbial ecologies. Interestingly, the post-mortem community 

succession in the gut follows trends also detected in host’s old age, with decreases in relative 

abundance of Bacteroides and Lactobacillus and an increase in relative abundance of Clostridium 

and taxa in the family Enterococcaceae 169,172,176,178. The post-mortem composition and 

succession of skin microbial communities depends on the external environment. For example, if 

exposed to soil, most post-mortem microbes, including eukaryotes such as nematodes, appear 

to assemble from soil communities 168. 
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Figure 1.6. The microbiome after death. After death the microbiome is relatively stable in the first 
24-48 hours, the tissue then begins to break down during autolysis leading to bloom in the 
gastrointestinal (GI) microbiota and a decrease in alpha diversity and a decrease in beta diversity 
between body sites. During putrefaction, the role of eukaryotic microorganisms increases, and 
the host body and the surrounding environment become more similar (A). The post-mortem 
microbiome is unique to each host body and is distinct between bodies based on time since death, 
cause of death, environment, location, age at death, and, in the beginning, between body sites 
(B). Created with BioRender.com. 
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The microbiome of death has garnered increased attention due to its implications for 

forensic investigations. The consistent temporal patterns of succession associated with multiple 

individuals and body sites are evidence that the post-mortem microbiome may serve as a 

bioindicator of the post-mortem interval (PMI) 168,172,176,177,179. Post-mortem interval estimations 

appear more accurate during the earlier stages of decomposition (e.g. the first 2-3 weeks post-

mortem) when microbial succession includes rapid turnover of community members 176,180, but 

are still useful in later stages of decomposition (e.g. in bone) when few lines of evidence exist for 

estimating PMI 181,182. Connections with cause of death and microbial presence have also been 

demonstrated 170. For example, increased detection of Rothia was found in the oral microbiome 

of individuals who died of heart disease and may be an indicator of host dysbiosis 170. Moreover, 

skin microbiome shedding may contribute to trace evidence by being able to connect individuals 

with items they have interacted with such as cell phones 171,183; however, the time this unique 

signature can be accurately matched to an individual varies on the object’s material and usage 

171 (Figure 1.6B). 

  

1.2. Conclusions and outlook 

In this review, we describe the current understanding of human resident microbial 

community composition across ages and different body sites. The many connections between 

human health and our microbial community composition are bringing an increasing interest in 

interventions. Interventions that focus on the whole microbial community, rather than the 

enrichment or elimination of a single species, require an understanding of how these communities 

are formed and maintained. Through studying microbial communities across the human lifespan, 

we may better understand these complex interactions and how to effectively push the community 

to a desired composition for the host. Moreover, as discussed here, these insights are being 

applied in several other areas such as in the field of forensics. 
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Although this Review has focused on the microbiome and its role in healthy aging, many 

conditions have been associated with accelerated aging, and are just beginning to be studied in 

a microbiome context, a key example being schizophrenia 184. “Social determinants of health” 

have a major impact on health, aging, and longevity, both in the context of healthy and 

pathological aging. These factors include education, poverty, occupation, discrimination, social 

connections, etc. 185. Since many of these factors have also been linked to the microbiome, 

understanding the role of these social determinants and how to modify their effects to promote 

healthy aging will be an important topic for future research linking the microbiome and aging. 

Despite the enormous effort and resources being put into characterizing the microbiome, 

we have just scratched the surface. There are large disparities in our understanding of microbial 

kingdom, mainly due to technical difficulties in characterizing taxa other than bacteria 186. The 

gaps in understanding virome and mycobiome community structure and cross-kingdom 

interactions are an area of exciting research driven by technical advances that improve accuracy 

and decrease the cost of DNA sequencing. However, contradictions in the field are abundant, 

especially in those observations driven purely by sequencing data, and more robust analyses are 

key to consolidating knowledge in the field (e.g., log-ratios) (Box 1) 187. Measuring species beyond 

relative taxonomic compositions through high-throughput cultivation, metagenomics, 

transcriptomics, and metabolomics are rapidly expanding areas of research that are key to filling 

in gaps in our understanding 143. 

 

1.3. Methods 

Box 1: Sampling and quantifying microbial communities 

  

Study design and sample collection 
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The human microbiome is dynamic 188. With this in mind, it is important to design a 

sampling strategy that can capture the temporal and spatial variability of the microbiome, 

particularly when these fluctuations are relevant to the scientific questions asked. When a single 

sample is collected from each individual, the study is called cross-sectional, while sampling 

performed at multiple time points or at multiple body sites is referred to as repeated measures 

study. With time, the frequency of sampling should be tuned to the phenomenon researchers are 

attempting to observe. For example, circadian rhythm studies typically sample every 2-4 hours 189 

while in IBD, it has been shown that sampling patients between 3-5 times over a period of weeks 

can improve disease classification 190. In other applications, such as studying the effect of 

particular treatments on an individual microbiome, it may be relevant to perform an n of one study 

in which the same participant is repeatedly probed for resultant changes in their microbiome; 

samples collected before treatment are regarded as individual-level controls 191. 

In addition to considering the frequency and location of sampling, it is important to consider 

how the geography and ethnicity of the sampled population impact the results of a study. For 

example, one of the microbes most highly associated with aging in Chinese cohorts is not 

detected in American cohorts 162. Similarly, environmental factors associated with urbanized 

societies (i.e. the “built environment”) such as decreased exposure to environmental microbes 

and increased use of household antimicrobials, significantly shift the human microbiome 192. On 

the whole, conclusions from a given study may not generalize well to other societies and cultures. 

This is particularly relevant for the microbiome field given that a large majority of public human 

microbiome data comes from North American and European populations, with nearly half coming 

from the United States alone 193. 

  

Data generation 

The main categories of sequencing data that are generated from human microbiome 

studies are amplicon sequencing data and shotgun sequencing data. In amplicon sequencing, 
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the PCR products (amplicons) of established hypervariable regions are deeply sequenced, 

allowing identification and measurement of community members by matching to their individual 

“barcodes”. There are two choices to be made here - the gene to amplify and which portion of 

that gene to amplify. Commonly amplified genes are the 16S ribosomal rRNA (rRNA) gene for 

bacteria, 18S rRNA for eukaryotic microbes, and internal transcribed spacer (ITS) for fungi. The 

choice of the hypervariable region within each specific gene to amplify depends on the particular 

microbes to capture, but broad, commonly used ones include the V4 from the Earth Microbiome 

Project 194. In shotgun sequencing, all microbial DNA is sequenced instead of only PCR products, 

enabling a more specific taxonomic classification of microbes. Because it does not rely on any 

marker genes, shotgun sequencing is less biased than amplicon sequencing is towards certain 

sets of microbes. 

  

Pairing sequencing data with other analyses 

Pairing sequencing data with other analyses, including other -omics techniques can enrich 

the data collected. We summarize techniques commonly performed in tandem with microbiome 

sequencing in the table below. 
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 Table 1.1 Methods for sampling and quantifying microbial communities. 
Technique Enhancement to amplicon or metagenomic 

sequencing 

Citation 

qPCR, FACS Anchors relative abundance metrics to an absolute 

abundance 

195,196 

Host immune ELISA, Single-cell sequencing 197 

Culturomics Obtain culture conditions for previously unculturable 

microbes 

198 

Metabolomics Identify microbially produced metabolites; chemical 

effectors of microbiome function 

199 

Proteomics Identify microbially produced proteins; another biological 

effector of the microbiome 

  

Host genomics / 

transcriptomics 

Variant calling for how host genetics may be different; 

host gene expression 
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Metadata 

Finally, it is paramount to collect data from the subjects surveyed. Some important 

categories of metadata for general microbiome studies include demographics, clinical (i.e. other 

conditions, antibiotic use), and dietary information, however the exact metadata used will vary by 

study. Practices for producing standardized metadata should be adopted so that results are 

reusable and reproducible 200. 
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Chapter 2. Robust Aitchison PCA reveals microbiome 

perturbations 

Abstract 

The central aims of many host or environmental microbiome studies is to elucidate factors 

associated with microbial community compositions, and to relate microbial features to outcomes. 

However, these aims are often complicated by difficulties stemming from high-dimensionality, 

non-normality, sparsity, and the compositional nature of microbiome datasets. A key tool in 

microbiome analysis is beta diversity, underpinned by definitions of the distance between two 

samples and resulting in a sample-by-sample distance matrix. Many different distance metrics 

have been proposed, all with varying discriminatory power on data with differing 

characteristics.  Here, we propose a compositional beta diversity metric rooted in a center log-

ratio transformation and matrix completion called Robust Aitchison PCA. We demonstrate the 

benefits of compositional transformations upstream of beta diversity calculations through 

simulations. We then demonstrate consistently improved effect size and classification accuracy 

over the current state of the art on several decreased samples subsets of real microbiome 

datasets. Finally, we highlight the ability of this new beta diversity metric to retain the feature 

loadings linked to sample ordinations revealing salient inter-community niche feature importance. 

 

Importance 

By accounting for the sparse compositional nature of microbiome datasets, Robust 

Aitchison PCA can yield high discriminatory power and salient feature ranking between microbial 

niches. The software to perform this analysis is available under an open-source license and can 

be obtained at https://github.com/cameronmartino/DEICODE, additionally a QIIME 2 plugin is 

provided to perform this analysis. 
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2.1. Introduction 

Beta diversity is an ecological concept that describes differentiation in taxonomic or 

phylogenetic composition between communities. Beta diversity methods are a major component 

of many microbiome statistical analysis pipelines. These analyses enable an overview of complex 

microbial communities, identifying environmental factors differentiating microbial communities. 

However, there are dozens of distance metrics available to microbial ecologists to analyze their 

data, with each distance metric tailored to capture specific data characteristics. Beta diversity 

plots can therefore look dramatically different depending on the distance metric chosen, 

contributing to differences in interpretation of raw data (1).  

One major confounding factor in beta diversity analysis is that microbiome datasets are 

sparse (i.e. most microorganisms are not found in most datasets), which has been shown to give 

rise to spike and horseshoe patterns in ordination plots (2, 3), complicating analysis. Furthermore, 

principal component analysis (PCA) has common assumptions of normally distributed and linearly 

related variables, often violated by biological data (4–7). As a result, classical distance metrics 

that only take into account the presence/absence of taxa, such as the Jaccard index, or metrics 

that explicitly account for relative abundances, such as Bray-Curtis symmetrized distance, are 

commonly used. Microbial beta diversity estimation was greatly improved with the incorporation 

of phylogenetic information, as was shown with UniFrac (8), which can be used as either a 

presence/absence (unweighted) or relative abundance (weighted) metric. However, 

presence/absence methods often yield substantial differences between communities that are 

obscured by abundance-based methods. This might seem paradoxical, because abundance-

based methods are integrating more information about the community - it is counter-intuitive that 

such methods would reduce the signal compared to their presence/absence-based counterparts. 

However, if the key players are rare rather than abundant species, or if abundant species display 
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large fluctuations unrelated to function, abundance information may obscure rather than clarify 

the result, even with phylogenetic metrics (9). 

This phenomenon can arise from mathematical problems rather than from real biology. 

Failure to reveal associations between phenotype and the microbiome overall may also be 

symptoms of methods that do not properly account for the relative changes of microbial taxa 

abundances. To demonstrate this principle, consider the scenario in Figure 2.1A, where three 

taxa are simulated over time. In this scenario, Taxon 1 has a much lower abundance than the 

other two taxa, but it is growing exponentially over time. Taxon 2 has a high abundance and is 

stable over time. Taxon 3 also has a high abundance but fluctuates randomly. The Euclidean 

distance between the first community and the other two time points is extremely variable, and 

does not capture the change induced by the exponential growth of Taxon 2. This variability in the 

Euclidean distance is largely driven by the random fluctuations in the high-abundance taxa. 
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Figure 2.1. Benchmarking the rclr preprocessing step. Toy example with simple 3-taxa community 
sampled over time (A). Distance calculated between the t=1 community and subsequent 
communities demonstrates the robustness of Aitchison distance compared to Euclidean distance 
(B).   



 47 

In contrast to Euclidean distance, compositional distance metrics, such as the Aitchison 

distance (Equation 2), can properly account for such relative changes (10). Here, the Aitchison 

distance only factors in the log fold change, reflecting the fact that deviations in the high 

abundance taxa are large on an absolute scale but small on a relative scale. The difference 

between 100 counts and 120 counts is 20 counts, which is large compared to the abundance of 

the first taxon, but is only a 20% increase. In contrast, the first taxon increased around 2,000%, 

and as a result, the Aitchison distance is driven by the large changes in the low-abundance 

species. 

Aitchison distance is sensitive to relative changes between samples.  As a result, 

microbes that display large fold change across samples will be weighted more heavily in the 

calculation of the Aitchison distance. However, this distance metric cannot handle zeros, and is 

thus challenging to apply to the sparse datasets that characterize microbiome studies. Here we 

propose a novel, compositional distance metric that can also explicitly handle sparse data through 

the use of matrix completion. 

Matrix completion was originally developed in the context of recommender systems to 

predict user-item ratings (11) as a natural solution for handling sparse data.  For example, the 

Netflix database contains a matrix detailing all customers by all movies where the entries are the 

movie ratings. However, each user only rates a small portion of the possible movies available on 

Netflix, so that only about 1% of the database contains non-zero values. As a result, when trying 

to recommend specific movies to specific customers, models need to be trained on the available 

ratings that customers have provided. Matrix completion tasks have become one of the state-of-

the-art methods for performing these sorts of tasks.   

Here, using simulation benchmarks and two case studies, we demonstrate the utility of 

preprocessing sparse microbiome datasets with matrix completion to allow compositional 

ordination and to preserve information about the features driving differences among samples. 
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2.2. Results 

Description of Robust Aitchison PCA 

Matrix completion can be interpreted as a robust dimensionality reduction technique, 

where PCA is performed accounting only for the observed entries (i.e. ignoring the zeros). Matrix 

completion relies on two major assumptions. First, it assumes that data are missing at random, 

meaning that the missing entries in the matrix are uniformly distributed. Second, because matrix 

completion is a robust form of PCA, it assumes that the data are normally distributed and centered 

around zero (12). To meet this assumption, a commonly applied approach is to subtract the row 

and column means (13, 14). However, because microbiome sequencing data are represented as 

counts (15), the data are strictly positive and skewed towards zero, which confounds PCA. A 

workaround is to first log transform the nonzero values before centering the data - we will refer to 

this preprocessing procedure as the robust center log ratio (rclr) due to its links to the clr transform 

commonly used in compositional data analysis (10) (Fig. 2.2A-B). A similar procedure using 

interquartiles was suggested previously (16). 

This procedure produces a transformed table with missing values that can be used as 

input for matrix completion, or robust principal components analysis (RPCA), which provides the 

sample and feature loadings. These sample and feature loadings contain the ordination 

information directly used in beta diversity plotting and feature biclustering (Fig. 2.2C-E). Because 

PCA preserves feature information, we can use the feature loadings to determine which taxa drive 

the differences among sample types (Fig. 2.2F). 

 
Simulations 

To benchmark the effectiveness of the rclr preprocessing step we generated simulations 

from a study comparing microbial communities on keyboards and human fingertips (keyboard 

dataset) (17) (see Methods for detail). Simulated data was chosen as an initial proof-of-concept 
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benchmark due to the ease of changing dataset characteristics across which to interrogate, here 

the primarily focus was on sequencing depth.  

The simulated data was generated with two clusters over varying sequencing depths from 

1,000 to 10,000 reads per sample. At each sequencing depth, the output of the RPCA with and 

without the rclr transformation was compared by Kullback-Leibler divergence (KL) (18) to the 

simulation ground truth between rclr preprocessed and raw count data. Additionally, ordination 

output was compared by Permutational multivariate analysis of variance (PERMANOVA) F-

statistic and supervised k-nearest neighbor (KNN) classification cross-validation (40:60) split.  

When rclr preprocessing was applied, we saw a decrease in mean KL, demonstrating a 

more closely matched probability distribution when using the rclr (Fig 2.3A). Furthermore, when 

the rclr was applied, the F-statistic demonstrated a 4-fold increase (Fig 2.3B) and KNN 

classification accuracy (Fig 2.3C) increased by between 30-40%. All of the metrics, when applied 

to rclr RPCA, improved as the sequencing depth improved, following the logic that a good fit 

should increase performance as sequencing depth increases. A negative-control simulation with 

no group discrimination revealed no biclustering, RPCA clustering (Fig. 2.3E), low KNN 

classification accuracy, and PERMANOVA significance compared to a positive control (Fig. 2.3D) 

with two distinct groups (see Table AA.1.S1 in the supplemental material). This demonstrates a 

proof of concept that rclr is less affected by outliers, and is reliably reproducible at low and high 

sequencing depths.  

 
Case Studies 

Next, we demonstrated the utility of RPCA compared to the current state of the art. To do 

this we used two 16S rRNA gene amplicon sequencing datasets. The first dataset is a subset of 

the Sponge Microbiome Project (sponges) (19), and we compared sponge microbial communities 

classified by health status (i.e. stressed or healthy). The second dataset derives from a sleep 

apnea study; it consists of mouse fecal samples and focuses on comparing the gut microbiome 
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of animals exposed to intermittent hypoxia and hypercapnia (IHH; as a model of obstructive sleep 

apnea) to controls exposed to room air (air) (20). 

Many different metrics exist for beta diversity distance comparison. We compared RPCA 

to two of the most commonly employed abundance based methods, Bray-Curtis and Weighted 

UniFrac, over 10-fold random subsamples of the data. The distances between the highlighted 

metadata categories for the two datasets were compared over subsamples with PERMANOVA 

(Fig. 2.4A,C). The Principal coordinates analysis (PCoA) was compared by supervised KNN 

classification cross-validation (40:60 split) accuracy for both datasets over subsamples (Fig. 

2.4B,D).  In all subsample comparisons  the  Robust Aitchison (distance metric derived from 

RPCA) outperformed Bray-Curtis and Weighted UniFrac. The results are qualitatively 

demonstrated in the PCoA clustering between metadata categories for low and high subsample 

depths (Fig. 2.4E,F). 

 

A key benefit of RPCA over metrics, such as Weighted UniFrac and Bray-Curtis, is direct 

access to the feature loadings. With Euclidean distance it is also possible to obtain feature 

loadings, but due to multiple undesirable properties of Euclidean distance, such as artifacts in 

clustering patterns (2) and weak discrimination in high dimensional sparse data (2, 6, 7, 21, 22), 

these values are not reliable. Feature loadings allow us to rank the taxa in the data in relation to 

the samples and the metadata. When sorted, often referred to as biclustering, this method results 

in a table that reveals which taxa are driving the clustering seen in the ordinations.  

In this case, we have a two-block table represented by clr-transformed heatmaps for the 

sponges (Fig. 2.5A) and sleep apnea (Fig. 2.5B) datasets. It is evident from the heatmap and 

ordination plots that there are some taxonomic abundance changes between the categories that 

are dividing the clusters. In order to compare two taxa directly we applied log ratios on highly 

weighted features. The highest loaded features (positive and negative maximums) correspond to 

the most influential taxa driving the clustering. To visualize these changes, the log ratios of highly 
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and lowly ranked microbes were compared between the sample loading (PC1) clusters of the 

sponge (Fig. 2.5C) and sleep apnea (Fig. 2.5D) datasets. The highly and lowly ranked log ratios 

revealed a strong (R2 = 0.97 and 0.93) and weak (R2 = 0.26 and 0.36) Pearson correlation to the 

sample PC1, respectively.  

The highly weighted log ratios in the sponge case study indicate that two sOTUs can 

explain a great deal of variation between healthy and thermally stressed sponges. The sOTUs 

most strongly associated with healthy and stressed sponges, respectively, were classified at the 

lowest assignment level to Candidatus Synechococcus spongiarum (species, numerator) and 

Nitrosopumilus (genus, denominator). Both of these groups are known sponge symbionts (23, 

24). Nitrosopumilus are ammonia-oxidizing archaea, which nitrify ammonia to nitrate and 

nitrification by sponge-associated microbiota is thought to remove ammonia waste produced by 

the host sponge (23, 25). It has been proposed that ammonium, urea, and creatine leaking from 

host sponge tissue could promote growth of Nitrosopumilus (26), and this leakage may be more 

active in stressed hosts. Candidatus Synechococcus spongiarum have been found in numerous 

sponge species around the globe (24) and their photosynthetic products may contribute to host 

nutrition (27). From this analysis, this sOTU and several other sOTUs of Candidatus 

Synechococcus spongiarum (28) appear to be strongly associated with healthy sponges relative 

to stressed sponges. 

In the sleep apnea dataset, the highly weighted log ratios revealed a strong clustering of 

air vs. IHH. These sOTUs were classified as Coriobacteriaceae (family) and Clostridium (genus). 

This trend was also observed by Tripathi et al. (20) where it was corroborated by the perturbations 

in the small molecular products attributed to members of these taxonomic classes. For example, 

changes in Clostridium were reflected in downstream changes in intestinal bile acids as members 

of this genera are known to transform bile acids (29). Previous studies (30, 31) have also reported 

changes in these taxonomic classes in cardio-metabolic comorbidities of sleep apnea, which 

suggests that our method potentially guides biologically relevant observations.  
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2.3. Discussion 

Here we demonstrated the ability of rclr preprocessing and RPCA to reveal salient, beta 

diversity ordination and factor loading. We demonstrated through simulations that rclr 

preprocessing dramatically improved RPCA. In two case studies (sponge and sleep apnea), 

RPCA presented higher PERMANOVA F-statistics and KNN classifier accuracy in small 

subsamples of the data. In addition, RPCA revealed qualitatively increased the discriminative 

ability of clusters obtained from the ordination than beta diversity techniques widely used in the 

field, both at low and high levels of subsampling.  

We have shown that Aitchison distance has numerous other desirable properties, such as 

scale invariance, negating the need to perform rarefaction. This feature is critical when one lacks 

access to absolute microbial abundance, because scale invariant distances ensure equivalence 

between distances computed from absolute and relative abundance measurements (See 

Methods for equation).  Aitchison distance is also known to be subcompositionally coherent 

(32).  This guarantees that distances will never decrease if additional taxa are observed (e.g. by 

using PCR primers with broader specificity), which has important implications for reproducibility 

across distance-based analyses, especially across studies that use different molecular methods.  

The increased cluster separation at smaller subsamples of the dataset highlight the 

compositionaly coherent properties of the method. Significant partitioning of sample categories 

on smaller sample cohorts is particularly important in a clinical setting, due to the difficulty of large 

volume sample collection. In addition, rapid resolutions of taxa driving ordination is of principal 

importance in translational results. 

Importantly, because RPCA provides linked sample and feature information, one can 

directly identify which taxa are likely driving sample clustering (which are typically separate 

workflows in canonical amplicon analysis). However, RPCA does not currently take into account 
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phylogenetic relationships among features. Adding this component to the current workflow could 

potentially improve the resulting ordinations. 

  



 54 

Figure 2.2. A general overview of the workflow. (A) A sparse, raw sequencing count table with 
samples on the y-axis and features (i.e. OTUs, Genes) on the x-axis. (B) The data is preprocessed 
by a robust centered log ratio transform (rclr) on only the known (non-zero) values. (C) Matrix 
completion with a robust principal component analysis (RPCA) that operates on only the observed 
values in the table resolves a loading by samples and by features. These loadings can be directly 
used for ordination (D), biclustering (E), and the identification of important taxa driving clustering 
in both the previous plots (F). 
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Additionally, much work remains to better understand matrix completion methods, 

particularly in the context of compositional data analysis.  Previous methods have been developed 

to handle zeros in compositional datasets. In particular, zCompositions (33)  contains several 

methods that could potentially be adapted to microbiome datasets. However, these algorithms 

are not currently appropriate for microbiome datasets, because the number of microbial features 

typically vastly outnumber the number of samples within an experiment. With matrix completion 

techniques, it may be possible to extend existing compositional methods to handle missing data. 

Furthermore, overfitting is still a topic that must be addressed with these methods. Given 

the high dimensional nature of microbial datasets, the number of parameters required to fit robust 

principal components can grow very quickly. As a result, it is still possible to overfit these methods, 

making them potentially sensitive to outliers and reducing their predictive power (34), although 

we did not notice these effects in our simulations. We therefore recommend starting fitting RPCA 

models with a low rank of either two or three.  

A low rank constraint can possibly cause misleading results in the case of high rank 

datasets. High rank datasets may occur in microbiome datasets as a gradient between samples 

and features. To give intuition of what types of data may contain high rank structure we provide 

two published examples. The first example is a study of soil microbiomes representing different 

pH environments (35)(see Methods for detail). The second example is a case study of the gut 

colonization of an infant over time (36) (see Methods for detail). In both cases, a gradient forms 

because very few samples contain similar microbes (see Fig. 2.S1 in the supplemental material). 

For example, in the infant development study very few microbes are shared between subsequent 

samples over time. Although the rclr transform eases the problem, it can still lead to 

misinterpretation in ordination (see Fig. 2.S2 in the supplemental material). There are many 

possible future directions for incorporating regularization or Bayesian priors to better fit these 

models.   
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In light of the current limitations, we have shown that matrix completion resolves numerous 

outstanding problems in beta diversity analysis including sparsity, compositional effects, and 

uneven sequencing depths, all while giving information about the taxa driving microbial 

perturbations. This method can also be applied to or combined with other omics paradigms (e.g. 

metabolomics, metatranscriptomics, and metagenomics), and provides the opportunity to initiate 

standardization of beta diversity analyses in the microbiome field. 

 

2.4. Methods 

Preprocessing with rclr 

Prior to running matrix completion, the data needs to be centered around zero and 

approximately normally distributed. Centered log ratio (clr) transformation is commonly applied in 

compositional data analysis before applying PCA. This log transforms each value then centers 

them around zero. This is particularly useful when one assumes that the data is lognormally 

distributed as proposed in (37), since log transformed lognormal distributed data is normally 

distributed.  The clr transform is given below. 

 
𝑐𝑙𝑟(𝑥⃗) 	= 	 [𝑙𝑜𝑔 ./

0(.⃗)
, . . . ,𝑙𝑜𝑔 .3

0(.⃗)
] =𝑙𝑜𝑔 𝑥⃗ −𝑙𝑜𝑔 𝑥⃗		6 (1) 

 
 

Where 𝑔(𝑥⃗) is the geometric mean of all of the taxa.  The Aitchison distance can be directly 

calculated from the Euclidean distance of the clr transformed data.  This is given as follows 

 

𝑑8(𝑥, 𝑦) 	= 	:∑ 	<
=>? (𝑐𝑙𝑟(𝑥)= − 𝑐𝑙𝑟(𝑦)=)@	 = :∑ 	<

=>? (𝑙𝑜𝑔 .A
.B
−𝑙𝑜𝑔 CA

CB
)@	(2) 

 

One can show that this transformation is scale variant as follows 
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𝑑8(𝑥, 𝑦) = :∑ 	<
=>? (𝑙𝑜𝑔 .A

.B
−𝑙𝑜𝑔 CA
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)@ = :∑ 	<

=>? (𝑙𝑜𝑔
DEFA
DEFB

−𝑙𝑜𝑔
DEGA
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)@ =

:∑ 	<
=>? (𝑙𝑜𝑔

EFA
EFB

−𝑙𝑜𝑔
EGA
EGB
)@ = 𝑑8H𝑝., 𝑝CJ		(3) 

 

The Aitchison distance between the absolute abundances is equivalent to the Aitchison 

distance on the proportions. 

In order to center the samples around zero, the average clr transformed sample needs to 

be calculated, then subtracted from the remaining samples.  Thus, the clr transformed results will 

be as follows: 

 
𝑦=K	 =	𝑙𝑜𝑔 𝑥=K 	−𝑙𝑜𝑔 𝑥L.MMMM⃗6 −𝑙𝑜𝑔 𝑥.NMMMM⃗6    (4) 

 
This centering procedure is commonly used prior to performing PCA and eliminates the 

need to explicitly compute bias constants (38). 

 

The issue with applying the clr transform directly to sparse count data is that the log of 

zero is undefined.  This motivated the construction of an approximate clr transform only defined 

on non-zero counts.  The robust clr transform is given as follows: 

 
𝑟𝑐𝑙𝑟(𝑥⃗) = 	 O𝑙𝑜𝑔 ./

0P(.⃗)
, . . . ,𝑙𝑜𝑔 .3

0P(.⃗)
Q		(5) 

 
𝑔R(𝑥⃗) 	= (∏ 		

=∈UF	 𝑥=)
?/|UF|   (6) 

 
Where 𝑥=	is the abundance of taxa i, 𝛺. is the set of observed taxa in sample 𝑥 and 𝑔R(𝑥) 

is the geometric mean only defined on observed taxa.  The rationale behind this procedure is that 

due to the high dimensionality of these datasets, the robust geometric mean (the geometric mean 

of the log-transformed non-zero data) can serve as an approximation to the true geometric mean.  

We know from the Central Limit Theorem that as we collect more independent measurements we 

approach the true geometric mean: 
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?

|UF|
∑ 		
=∈UF 𝑥= 	→ 		𝐸[𝑙𝑜𝑔 𝑥⃗]  as |𝛺.| 	→ 	 |𝑥⃗|  (7) 

 
From this we can redefine the transformed result as follows:  

 
𝑦=K	 =	𝑙𝑜𝑔 𝑥=K 	−

?
|UFA.|

∑ 		
[∈UFA.

𝑥[ 	− 	
?

|UF.B|
∑ 		
=∈UF.B

𝑥[ (8) 

 
Where 𝑦=K	is only defined when 𝑥=K > 0.  The matrix completion methods can then be 

directly applied to this transformed result. 

 
Matrix completion 

OptSpace is a matrix completion algorithm based on a singular value decomposition 

(SVD) optimized on a local manifold. It has been shown to be quite robust to noise in low-rank 

datasets (39).  The objective function that it optimizes over is given by: 

 
𝑚𝑖𝑛a,b|𝛬(𝑌 − 𝑈𝑆𝑉h)|@

@	    (9) 
 

where 𝑈 and 𝑉 are the matrices that are trying to be estimated and 𝑆 is analogous to a 

matrix of eigenvalues. Y is the observed values and 𝛬 is a function such that the errors between 

Y and USV are only computed on the nonzero entries. 

 
Simulations 

Simulations were designed to replicate real datasets with low-rank clusters as a proof of 

concept testing of OptSpace with and without the rclr preprocessing step. The keyboard dataset 

was chosen as a representative dataset to fit the simulation parameters due to the three distinct 

microbial community clusters observed in the study (M2, M3, and M9). Simulations were built by 

drawing blocks of 𝑁sequences with the microbial proportions given as follows (40).  

𝑥=K =
?

√@klm
𝑒𝑥𝑝 oHpAq0BJ	

m

@lm
r		(10) 
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𝑝=K =
.AB

st.tB
	  (11) 

 

The resulting simulation was induced by multiple noise sources.  The was normally 

distributed error that was applied to the entire matrix.  There was also normally distributed errors 

that were randomly applied to a subset of the entries in the matrix.  In addition, there were 

subsampling errors that were simulated from the Poisson-log normal (PLN) distribution with an 

overdispersion parameter 𝜙  (41) where the final subsampled simulation 𝑦=K is represented by: 

 
𝜆=K = 𝑛	𝑝=K	 (12) 

 
𝑦=K ∼ 𝑃𝐿𝑁(𝜆=K, 𝜙) (13) 

 

The resulting optimized parameters are optimized rank (number of clusters), the intensity 

of noise, sequencing depth, the distribution parameters(𝜇 and𝜎), and overlap of features between 

clusters (i.e. effect size). To resolve the most realistic simulation possible these parameters were 

optimized to minimize the KL-divergence between the real data and the simulation with a 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization. The resolved parameters were used 

to run the simulation at a rank of 2 over sequencing depths ranging from 100 to 10,000 

reads/sample. At each depth, before the introduction of noise and subsampling, the sampled data 

was stored as a base truth to be compared to the reconstruction. Furthermore, the same noisy 

and subsampled simulation was run with OptSpace with or without rclr preprocessing. The 

resulting matrix𝑈𝑆𝑉hwas compared by KL-Divergence to the base truth. The rclr preprocessed 

data was inverse transformed by taking the exponential of 𝑈𝑆𝑉hbefore comparison to the base 

truth. In addition, the simulation, base truth, sample orientation 𝑈 and feature loadings 𝑉 were 

saved at each iteration and compared visually.  
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Figure 2.3.  The robust centered log-ratio improves imputation and dimensionality reduction. (A) 
Comparison of KL-Divergence (y-axis) between simulated base truth data between RPCA output 
from raw count data and rclr preprocessed data. Comparison between RPCA ordination by 
PERMANOVA F-statistic (B) and KNN classifier accuracy (C). All at varying sequencing depths 
from 1000 to 10,000 reads per sample. (D and E) Comparison of positive- (D) and negative-
control (E) simulation by biclustering (top) and RPCA ordination (bottom). 
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The simulation results of improved clustering at uneven sequencing depths was also 

compared in the real keyboard dataset (see case studies for data processing). The data was 

compared between two subjects at 500 and 100 reads/sample. Ordination and PERMANOVA 

results were compared for jaccard, bray-curtis and RPCA with rclr preprocessing.  RPCA with rclr 

preprocessing alleviated the clustering by sequencing depth in the real dataset. This was seen 

both qualitatively (see Fig. 2.S2 in the supplemental material) and through the PERMANOVA F-

statistic by subject id (see Table AA.1.S1 in the supplemental material). 

 

Case studies 

Case studies on real-world datasets were used to compare robust Aitchison PCA to the 

current state of the art in beta diversity comparison. The sponge,sleep apnea, infant, keyboard, 

and 88 soils datasets were acquired on 9/20/2018 from Qiita (42) with IDs of 10793,10422, 101, 

232, and 103 respectively. Each dataset was run through Qiita with default trimming and Deblur 

(v. 1.1.0) sOTU (43) picking approach, using QIIME 2 (v. 2018.6.0) (44).  The resulting biom (45) 

tables were then filtered for samples greater than 1000 reads per sample. Phylogeny was built 

using the most up to date GreenGenes using SEPP (46) and taxonomy was assigned through 

scikit-learn with default QIIME 2 parameters.  

The sponge dataset was filtered using the metadata so that it only contained samples with 

either the label healthy or stressed. This resulted in a comparison with 248 remaining samples. 

Similarly, the sleep apnea study was filtered for IHH and air control samples, with a treatment 

duration of 6 weeks resulting in 184 remaining samples. The Infant gut colonization case study 

was filtered for samples over 500 reads/samples and for a single sample form the mother with 

the title 101.Mother. The 88 soils dataset was filtered for samples over 500 reads/samples.  The 

keyboard dataset was filtered for samples over 500 reads/samples and 15 reads/sOTU. 

Additionally, only subject ids corresponding to M3, M2 and M9 were retained, giving 67 samples.  
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Figure 2.4. A case study of RPCA on real datasets; sponge (left panel, A,B,E) and sleep apnea 
(right panel C,D,F). PERMANOVA F test statistic (y-axis) (A,C) or KNN classifier accuracy (B,D) 
by subsamples of the datasets. Ordination plots between 70 samples total (left) and maximum 
number of samples (right) compared between RPCA (top) Generalized Weighted UniFrac 
(alpha=1) (middle) and Bray-Curtis (bottom) (E,F). Sponge dataset plotted between healthy (blue) 
and stressed (red) (E) along with sleep apnea dataset plotted between air (blue) and IHH (red).  
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Both datasets were then preprocessed with the robust centered log ratio (rclr) transform 

and RPCA was run with a rank of 2 because there were two metadata categories of interest in 

each comparison. Weighted UniFrac distances was calculated using Generalized UniFrac with 

an alpha of one (47). Bray-Curtis distances were calculated through QIIME 2 (44). Both Weighted 

UniFrac and Bray-Curtis distances were calculated on tables rarefied to 1000 reads per sample. 

PCoA and PERMANOVA analysis for the Bray-Curtis, RPCA distance matrix, and Weighted 

UniFrac were calculated through scikit-bio. The resulting PCoA and PCA axis were plotted 

through matplotlib (48) with PC1 and PC2 in the x and y-axis respectively.  
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Figure 2.5. A case study of RPCA feature loadings on real datasets; sponge (left panel, A,C) and 
sleep apnea (right panel B,D). Heatmaps of clr transformed sOTU tables with samples sorted by 
metadata and features sorted by RPCA feature loadings (A,B). Absolute highest (middle) and 
lowest (bottom) feature loading sOTUs (top) plotted as log ratios (x-axis) by sample loading PC1 
(y-axis).  



 65 

The original unprocessed (raw count) tables were sorted by features loadings from RPCA. 

Features with a count sum of less than 10 across all samples were filtered out. The resulting table 

was then clr transformed with a pseudo-count of one and plotted as a heat map. Each sOTU was 

given the lowest classification for the sleep apnea and sponge datasets, respectively.  

The features in the PC1 axis of the feature loadings from RPCA were selected to represent 

a manageable number of taxa to compare between sub-groups. Those selected features (sOTUs) 

from the feature loadings were used for log ratios. Log ratios were calculated from the table used 

to calculate them. The samples that contained zeros in either the numerator or denominator were 

removed before calculating the ratios. The correlations between the log ratio and PC1 axis were 

performed by pearson correlation via Scipy (49). 
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Chapter 3. Context-aware dimensionality reduction 

deconvolutes gut microbial community dynamics 

3.1. Introduction 

The translational power of human microbiome studies is limited by high inter-individual 

variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), 

that incorporates information from the same host, across multiple samples, to reveal patterns 

driving differences in microbial composition across phenotypes. CTF identifies robust patterns in 

sparse, compositional datasets, allowing for the detection of microbial changes associated with 

specific phenotypes that are reproducible across datasets. 

 

3.2. Discussion 

Host-associated microbiomes are often host-specific, with the subject driving the majority 

of the variation. This host-specific variation can obscure microbial changes that are broadly 

associated with a given phenotype. Collecting multiple samples from the same participant, either 

longitudinally or from different body sites (i.e., “repeated measures”), is a valid experimental 

approach to control for inter-individual variation. However, there are multiple challenges to 

leveraging this type of experimental design due to the nature of microbiome sequencing datasets.  

One common way to explore microbiome sequencing data is by performing dimensionality 

reduction on a distance matrix (e.g. principal coordinates analysis (PCoA)), which describes the 

relationship among samples, allowing global differences across a dataset to be observed. 

Nonetheless, when applied to repeated measures, this approach does not account for the 

inherent temporal or spatial correlation structure. An alternative to analyze repeated measures 

microbiome data is by using supervised methods, which are focused on generative models 
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inferring the dynamics of these communities (e.g., generalized Lotka Volterra)1–4. Although these 

methods account for the correlation structure induced by repeated measures, as well as for 

sparsity and compositionality, their output does not directly allow clustering of phenotypes by 

microbial community dynamics.  

To address these challenges simultaneously, we developed compositional tensor 

factorization (CTF), which allows an unsupervised dimensionality reduction for repeated 

measures data, producing both a traditional beta-diversity analysis as well as a differential feature 

abundance assessment. In the first step, a two-dimensional matrix is transformed using the 

robust, centered-log-ratio technique5 to account for the inherent sparse and compositional nature 

of next-generation sequencing datasets6 (Fig. 3.1a). Next, this transformed matrix is restructured 

into a three-dimensional tensor, which relates microbial sequences, sampled host (or subject), 

and time or space (Fig. 3.1b). Decomposition (i.e., factorization) of this tensor provides distinct 

vectors for subjects (“U”), microbial features (“V”), and timepoints (“W”) (Fig. 3.1c). Analogous to 

the concept of reference frames7, these vectors are unit-scaled and therefore can be ordered, 

where their ranking indicates their association to the underlying phenotypic groups. From here on 

we will refer to the ordering of these vectors as ‘rankings’ (i.e., “feature rankings”). Notably, CTF 

assumes the data harbors an underlying low-rank structure, where only a few phenotypic factors 

explain the majority of the variance5 (Fig. 3.1d-g). 
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Figure 3.1. Overview of the CTF algorithm. (a) CTF utilizes feature abundance matrices for 
subjects over time. For each subject with a phenotype of interest, the data is represented as 
relative abundances of features (abundance gradient represented in grayscale) over time. (b) The 
matrices are concatenated, robust-centered log-ratio transformed (R-CLR) and structured into a 
tensor format with modes corresponding to subjects, features and time. (c) The resulting tensor 
is then factored based only on observed data into loading vectors for each dimension (i.e. subject, 
timepoint, and feature). (d) Simulated count data is plotted on the y-axis for three taxa with the 
mean counts in bold and missing values absent from the bold line. Standard deviation of 
distributions are shaded behind. Two phenotypes are compared; a control unchanging in time 
(left) and a dynamic phenotype with a perturbation at time point 2 (right). Taxon 1 (blue) is highly 
abundant and noisy, taxon 2 (red) is lowly abundant but growing exponentially in phenotype 2, 
and taxon 3 (orange) is oscillatory with increasing amplitude in phenotype 2. The first two principal 
component axes (i.e. loadings) from CTF (PC1 (top) and PC2 (bottom)) are plotted on the y-axis 
with the corresponding sample (e), time (f), and feature loadings (g). In PC1, phenotype 2 is linked 
to the unstable oscillatory waveform of highly loaded taxon 3 (orange, top). Similarly, in PC2, 
phenotype 2 is linked to the sigmoidal waveform of highly loaded taxon 2 (red, bottom).   
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To demonstrate the utility of CTF, we applied it to a simulated longitudinal dataset with 

two phenotypic groups. Simulations were generated based on distributions in real longitudinal 

16S data from Halfvarson et al.8 while varying the sequencing depth and temporal sampling 

densities as described by Äijö et al.3 This dataset was chosen because there were strong 

differences in microbial composition and beta diversity between subjects with and without Crohn’s 

disease8.We compared CTF to state-of-the-art beta-diversity metrics through PCoA including 

Jaccard9, Bray Curtis10, Aitchison11, unweighted UniFrac12, and weighted UniFrac13. K-nearest 

neighbor (KNN) classification by disease state in each of our simulations revealed that CTF 

exhibited higher accuracy than existing methods regardless of sequencing depth or the number 

of longitudinally collected samples (Fig. 2.2, Table AA.1.S1). CTF also exhibited higher 

discriminatory power by PERMANOVA F-statistic across all levels of sequencing depth and at 

higher sampling densities (≥ 3	time points; Fig. 2.2).  
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Figure 3.2. CTF outperforms popular distance metrics in longitudinal in silico data-driven 
simulations. Increasing sequencing depth (500 - 10,000; rows) over differing temporal sampling 
densities (x-axis) evaluated for PERMANOVA F-statistic as a measure of discriminatory power 
(left column), in addition to KNN-classification cross-validation by AUC (n=100; middle column), 
and APR (n=100; right column). Compared among CTF (green) and popular distance metrics 
Aitchison (blue), Bray-Curtis (orange), Jaccard (grey), unweighted (purple), and weighted (red) 
UniFrac. Error bars represent standard error of the mean. 
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We next applied CTF to two published datasets that tracked infant gut development over 

time. The datasets abbreviated as ECAM (n-subjects=43)14 and DIABIMMUNE (n-subjects=39)15 

followed infants for the first 2 and 3 years of life, respectively. Both datasets observed that birth 

mode (i.e., vaginal delivery or caesarean section) differentiated microbial community composition. 

Similar to our results from the simulated data, CTF is 10-fold better at discriminating vaginally 

from caesarean born infants compared to state-of-the-art beta-diversity metrics (Fig. 3.S2a&b, 

Fig. 3.S3a&b, Table AB.2.S2). 

We sought to examine CTF's ability to reproducibly identify differentially abundant 

microbes in an unsupervised manner. To this end, we compared the feature rankings between 

the ECAM and DIABIMMUNE datasets along the first axis of variation and found they were 

significantly correlated (Pearson correlation; R2=0.974, P<10-10) (Fig. 3.S2). While these 2 

datasets had <50% overlap at the sOTU level (Fig. 3.S2d), highly ranked sOTUs grouped at the 

genus level were similar across both datasets (Fig. 3.S2e). We note that although these datasets 

were collected and processed using distinct protocols and by different labs, CTF identified the 

same taxa driving gut microbiome differentiation by birth mode, suggesting a robust microbial 

structure across infants. 

We constructed a birth-mode log-ratio of vaginally to cesarean features using the sOTUs 

most associated with vaginal and cesarean birth in each dataset (Fig. 3.S4; Methods). Samples 

were significantly separated by birth-mode in both datasets along time (Fig. 3.S5, Table AB.2.S3). 

We note that these birth-mode microbial signatures are not confounded by established 

differentiators such as antibiotics usage or feeding mode (Fig. 3.S5). Nonetheless, we cannot rule 

out the possibility of unmeasured confounders. We next combined those sOTUs common to both 

ECAM and DIABIMMUNE birth-mode ratios to create a ‘microbial birth-mode signature’.  

To examine the robustness of this microbial birth-mode signature, we tested its 

discriminatory ability in data from the American Gut Project (AGP, n=8,099), a large cross-

sectional dataset16. We found that this signature significantly differentiated participants under the 
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age of four by birth mode (t-test; p-value=0.042; Fig. 3.S6), consistent with our previous findings. 

The robustness of this microbial signature, across multiple datasets, highlights the ability of CTF 

to identify differentially abundant features reproducibly associated with a phenotype.  

In both the ECAM and DIABIMMUNE datasets we observed that throughout infant 

development samples from vaginally versus cesarean born infants became less distinct (Fig. 

3.S2a&b). Similarly, the microbial birth-mode signature no longer differentiated participants by 

birth mode in samples from participants above the age of four in the AGP dataset (Fig. 3.S6). 

CTF is the only unsupervised method that allows full utilization of repeated measures while 

accounting for the inherent properties of microbiome sequencing datasets, namely high-

dimensionality, sparsity, and compositionality. In both simulated and real datasets, CTF 

outperformed the current state-of-the-art beta-diversity metrics. Although CTF can reveal robust 

microbial signatures, several considerations are necessary when applying this tool. First, CTF 

relies on an assumption that the underlying data is of low rank. This assumption can be violated, 

making CTF inappropriate to use, such as when the data are driven by a gradient rather than 

discrete groupings (for example the 88 Soils dataset17). Our implementation of CTF estimates the 

underlying rank and informs the user if the data does not meet this requirement18. Second, CTF, 

like other beta-diversity metrics, does not directly account for the presence of confounders that 

may affect downstream clustering, requiring additional validations similar to the one presented in 

Fig. 3.S5. Finally, although CTF leverages repeated measures to account for inter-individual 

variation and is optimal in the case of a synchronization event (e.g., treatment, diet), it is 

permutation invariant and does not take into account the ordering of longitudinal data.  

In addition to longitudinal datasets as benchmarked here, CTF could also be used for 

spatially repeated measurements. This includes studies where samples are collected 

contemporaneously, for example where multiple body sites are measured (e.g., skin and saliva) 

or sites with different phenotypes (e.g., lesioned versus adjacent non-lesioned skin). Furthermore, 

CTF could be used to analyze other types of datasets that contain a high amount of inter-individual 
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variation, such as metabolomics or proteomics. In summary, CTF leverages the power of 

repeated measures study design to elucidate biological changes while accounting for inter-

individual variability. We propose the use of this tool both for the re-analysis of existing datasets 

and for future microbial community research. 

 

3.3 Methods 

Preprocessing with robust-clr 

Prior to running tensor factorization, we use the robust centered log-ratio transformation 

(robust-clr) to center the data around zero and approximate a normal distribution5 

𝑟𝑐𝑙𝑟(𝑥) = 	 ~log
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where 𝑥=	is the abundance of microbe i, Ω.	is the set of observed microbes in sample x and 

𝑔R(𝑥)	is the geometric mean only defined on microbes with abundance > 0. Unlike the traditional 

clr transformation, the robust-clr handles the high level of sparsity found in microbial datasets 

without requiring imputation. Furthermore, this transformation has shift invariant properties that 

allow the restructuring of the matrix into tensor form. 

 

Tensor factorization via alternating least squares minimization 

Here we follow the tensor notations of Lim24  and Anandkumar et al.25 , for a full notation 

see the supplemental methods. To perform tensor factorization on sparse data we followed a 

procedure introduced by Jain and Oh26. Due to the high level of sparsity in microbiome datasets 
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we would like to find the minimum rank representation of T that best explains only observed values 

defined as	Ω. We use the projection 𝑃�(𝑇)=K� 

	𝑃�(𝑇)=K� = 	𝑓(𝑥) = �𝑇=K, 𝑖𝑓(𝑖, 𝑗, 𝑡) ∈ Ω
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

			(3) 

The objective function being optimized through alternating least squares minimization 

(ALS) is given by 

min
{lA,�A,�A,�A}A∈[P]
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R
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where a, b, and c are unstructured, orthogonal, and have a Euclidean norm of 1. The low rank 

representations a, b, and c correspond to loadings for the first, second and third tensor modes 

respectively. It is important to note that this factorization is permutation invariant, meaning the 

order of time or space is not a factor in the subsequent loadings of c. 

 
Factorization trajectories 

Here, we focus on the interpretation of tensor factorization for biological data. We are 

primarily concerned with 3rd-order tensors from studies following multiple subjects over several 

timepoints. In this tensor the first mode is the subjects or environments sampled. The second 

mode is biological features such as microbes, metabolites, or genes. The third mode is timepoints 

where subjects/environments were sampled repeatedly. Of utmost interest is the relation between 

subject or features and the third mode of time. To obtain easily interpretable loadings we introduce 

trajectories given by 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 = 𝑎 ⊙ 𝑐 = [𝑎? ⊗ 𝑐?, … , 𝑎R ⊗ 𝑐R] ∈ ℝ§m×R	 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 = 𝑏 ⊙ 𝑐 = [𝑏? ⊗ 𝑐?, … , 𝑏R ⊗ 𝑐R] ∈ ℝ§
m×R	 
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where ⊙ represents the Khatri-Rao product. These trajectories are of the shape (subjects	×	time, 

rank) or (features ×	time, rank) where each rank-1 column has an accompanying singular value 

𝜎R. 

 

Log-ratio feature selection 

In order to explore how feature rankings in b or b ⊙ c partitioned subjects we used log-

ratios between highly (positive) and lowly (negative) ranked features along the first axis of 

variation. To avoid the use of pseudo-counts we explore the sum of the minimum number of highly 

and lowly ranked features summed across all samples, such that no log-ratio contains a zero 

value. For ECAM 1400 and DIABIMMUNE 750 total features were used and split between 

numerator and denominator evenly such that no samples were dropped due to zero values (Fig 

3.S5). We then used a Linear Mixed Effects (LME) model via statsmodels (v. 0.11.0) to test the if 

the log-ratio changed over time and in response to birth mode for ECAM and DIABIMMUNE 

separately. The LME model produced residual 𝑅@ values of 0.976 and 0.986 for DIABIMMUNE 

and ECAM respectively. The resulting p-values from the LME were significant (P < .05) by birth 

mode, time in days, and the interaction of the two (Table S4). To produce the microbial birth-mode 

signature, we used only sequences shared among ECAM, DIABIMMUNE, and the American Gut 

Project (1,064 features total). We used the ranking structure inferred from ECAM and 

DIABIMMUNE to evenly divide these shared features into vaginal or cesarean-associated taxa 

(532 each in the numerator and denominator, respectively). A t-test via SciPy (v. 1.4.1) was used 

on the microbial birth-mode signature (i.e., log-ratio) to test for significance between birth modes 

stratified by age or time point for both data sets, respectively. 

 

Data driven simulation benchmarks  
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Data driven simulations were designed to benchmark different characteristics of data 

without making assumptions about microbial dynamics. The IBD dataset was chosen due to its 

high temporal resolution and two-group (low-rank) comparison. Simulations were generated using 

a procedure from Äijö et al.3 modified to use a Poisson-lognormal distribution (PLN)27 as opposed 

to a Poisson-Multinomial distribution. This simulation was repeated for different levels of 

dispersion, subsampling (i.e. sparsity), sampling density (i.e. number of timepoints) and 

percentage of randomly missing samples. 

 

Case Study Sequence Processing  

Raw sequences were quality controlled, trimmed at 100 nucleotides, and clustered as 

amplicon sequence variants (sOTUs) using QIIME 2 release 2019.7 and Deblur (v. 1.1.0) 28,29. 

The phylogenetic tree was created using SEPP sequence insertion with the Greengenes tree 13.8 

release as the reference tree30,31. Taxonomy assignments were made using a Naive Bayes 

classifier as implemented in QIIME2 (v. 2019.7). All data preprocessing was conducted on Qiita32 

where all the data used here is freely available. All other visualizations were plotted through 

Matplotlib. 

 

Quantitative comparison of metrics  

All comparisons were made between Jaccard, Bray-Curtis, Weighted UniFrac, 

Unweighted UniFrac, Aitchison, and CTF distances. All distance metrics were calculated through 

QIIME2 (v. 2019.7). PERMANOVA on distances between subject groupings (i.e. vaginal vs. 

caesarean birth mode) was performed through scikit-bio (v. 0.5.5). Dimensionality reduction on 

distances was performed through PCoA via scikit-bio (v. 0.5.5). The first three components of 

each dimensionality reduction were evaluated through k-nearest neighbors (KNN) classification 

via scikit-learn (v. 0.21.2). To assess the classification accuracy, KNN classification was 
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performed with 100-fold 40:60 cross-validation evaluating AUC and APR prediction accuracy at 

each fold-iteration via scikit-learn (v. 0.21.2). 

 

Basis for simulations 

Halfvarson et al. The IBD cohort used as the introduction example is a previously 

published dataset by Halfvarson et al. (Qiita ID 1629)8. The dataset consists, after filtering as 

described below, of 23 subjects (14 Crohn’s disease (CD), 9 Control) each with one to eight 

samples for a total of 134 samples. Samples were filtered from the original data for only CD and 

Control. For the data-driven simulations, only the first 6 time points were retained to reduce the 

missing time points across subjects. The resulting data was then run through the data-driven 

simulation protocol described above for a sequencing depth of 500, 1000, and 10000 mean reads 

per sample. CTF was performed on each simulated data set through gemelli (v. 0.0.5) with a set 

rank of 2. 

 

Case study: ECAM 

The ECAM dataset published by Bokulich et al. followed 43 infants (19 c-section, 24 

vaginally delivered) from birth over the first year of life with monthly fecal sampling (Qiita ID 

10249)14. Three months (month 6, 15, and 19) were removed for a lack of subjects represented 

and CTF analysis was run with a set rank of 2. Features with < 5 total counts across samples 

were filtered. Samples with < 2000 reads per sample were removed. 

 

Case study: DIABIMMUNE 

The DIABIMMUNE dataset, published by Yassour et al., followed 39 infants (4 c-section, 

35 vaginally delivered) from the 2nd month after birth over the first three years of life with monthly 

fecal sampling (Qiita ID 11884)15. Two months (month 28 and 30) were removed for a lack of 
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subjects represented and CTF analysis was run with a set rank of 4. Features with < 5 total counts 

across samples were filtered. Samples with < 2000 reads per sample were removed. 

 

Case study: American Gut 

The American Gut Project data and metadata tables were acquired from 

ftp://ftp.microbio.me/AmericanGut/manuscript-package/ which was provided in McDonald et al.16. 

From this data the combined ECAM and DIABIMMUNE log-ratio feature set was used on the 

subset of the data with age and birth-mode labels provided (8,436 total samples). 

 

Data availability 

The sequences and biom tables for the IBD, ECAM, DIABIMMUNE, and AGP datasets 

can be found on Qiita (http://qiita.microbio.me) under study IDs 1629, 10249, 11884, and 10317 

and at EBI or BioProject under ERP020401, ERP016173, PRJNA290381, and ERP012803. 

 

Code availability 

The CTF codebase named Gemelli is a fully unit tested open-source python package, and 

is installable through pip or conda. Additionally, CTF is wrapped in a QIIME2 plugin: 

https://github.com/biocore/gemelli;  All the code and analyses are available in the ‘Code Ocean’ 

capsule: https://dx.doi.org/10.24433/CO.5938114.v1. 
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Chapter 4. Naturalization of the microbiota developmental 

trajectory of Cesarean-born neonates after vaginal seeding  

Summary 

Background 

Early microbiota perturbations are associated with disorders that involve immunological 

underpinnings. Cesarean section (CS)-born babies show altered microbiota development in 

relation to babies born vaginally. Here we present the first statistically powered longitudinal study 

to determine the effect of restoring exposure to maternal vaginal fluids after CS birth.  

 

Methods 

Using 16S rRNA gene sequencing, we followed the microbial trajectories of multiple body 

sites in 177 babies over the first year of life; 98 were born vaginally and 79 were born by CS, of 

which 30 were swabbed with a maternal vaginal gauze right after birth.  

 
Findings 

Compositional tensor factorization analysis confirmed that microbiota trajectories of 

exposed CS-born babies aligned closer to that of vaginally born babies. Interestingly, the majority 

of amplicon sequence variants from maternal vaginal microbiomes on the day of birth were shared 

with other maternal sites, in contrast to non-pregnant women from the HMP study.  

 
Conclusions 

The results of this observational study prompt the urgent need of randomized clinical trials 

to test whether microbial restoration reduces the increased disease risk associated with CS birth, 

and the underlying mechanisms. Also, it provides evidence for the pluripotential nature of 

maternal vaginal fluids to provide pioneer bacterial colonizers for the body newborn body sites. 
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This is the first study showing long term naturalization of the microbiota of CS-born infants by 

restoring microbial exposure at birth.  
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4.1. Introduction 

Over the past few decades, we have learned a great deal about the multitude of ways that 

microbiota affect the development of their hosts. Studies on model organisms show that fetal 

development can be modulated by microbial products from the pregnant mother’s microbiota, and 

early colonization is critical for immune system development (Gensollen et al., 2016); (Al Nabhani 

and Eberl, 2020).  

Natural transmission and colonization of maternal microbes is impaired by delivery via 

cesarean section (CS) (Bokulich et al., 2016; Dominguez-Bello et al., 2010; Shao et al., 2019; 

Stewart et al., 2018; Yassour et al., 2016). Furthermore, CS birth is associated with reduced levels 

of various cytokines and their receptors (Malamitsi-Puchner et al., 2005), increased risk of 

opportunistic neonatal infections (Shao et al., 2019), immune diseases (Stokholm et al., 2018) 

(Andersen et al., 2020) and obesity (Ardic et al., 2020; Blustein et al., 2013). These associations 

have been shown to be causal in mouse models for conditions such as obesity (Cox et al., 2014; 

Martinez et al., 2017), and immune disorders (Livanos et al., 2016; Olszak et al., 2012). 

Neuroendocrine abnormalities including cognitive and behavioral disorders have also been 

associated with early microbiome perturbations (Braniste et al., 2014; Moya-Perez et al., 2017). 

Understanding the contribution of microbionts to healthy development remains a crucial challenge 

to address the current epidemic of immune and metabolic diseases in urban societies. 
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Although used without medical indication in many countries, CS delivery is often medically 

necessary and a life-saving procedure, and thus, restoration may be one solution to help reduce 

the risk of associated disorders related to the microbiome. Two proof of concept studies have 

demonstrated the principle of engraftment of maternal bacteria on CS born babies after deliberate 

microbial exposure: the first one by Dominguez-Bello et al. using maternal vaginal gauze as a 

source (Dominguez-Bello et al., 2016), and the second recent pilot study by Korpela et al. using 

maternal feces (Korpela et al., 2020). Here we present the first large observational study of the 

long-term effect of maternal vaginal seeding after CS delivery to restore microbial development 

during the first year of life.  

 

4.2. Results 

Vaginal seeding of CS born infants 

A total of 177 infants born to 174 mothers were studied (Figure 4.S1a), of which 101 were 

born in USA, 50 in Chile, 6 in Bolivia, and 20 in Spain (Table 4.1). 98 infants were born vaginally 

and 79 were delivered by CS, of which 30, who complied with inclusion criteria (see Star 

Methods), were swabbed with a maternal vaginal gauze at birth (vaginal seeding (Dominguez-

Bello et al., 2016)). The microbiota development was followed during the first year of life. A total 

of 8,104 samples from stool, mouth, and skin of infants and their mothers were obtained, with 

additional nasal and vaginal samples from mothers (Figure 4.S1a-c). None of the seeded infants 

had any complications, and all children developed normally during the 12 months of the study.  

 
Vaginal seeding partly normalizes microbiome trajectories in C-section-delivered infants 

Across the different body sites, the samples yielded good overall sequencing depth (mean 

depth of 63,035 paired-end reads per sample), with a low probability of sample contamination as 

indicated by a survey of negative controls (Figure 4.S1d). Analysis of the vaginal gauzes stored 

in the vagina for an hour before the CS procedure with which the neonates were swabbed showed 
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that ~76% of bacterial amplicon sequence variants (ASVs, see Star Methods) contained in 

maternal vaginal swabs were also present in the gauzes (Figure 4.S2a). 

Some studies have reported decreased alpha diversity in CS born versus vaginally-born 

infants (Jakobsson et al., 2014). Yet, others have reported no differences by birth mode (Bokulich 

et al., 2016; Yassour et al., 2016). Using a linear mixed-effects model, we found inconsistent 

results depending on the body site and alpha-diversity metric (Supplementary Methods 4.S1). 

One possibility for this inconsistency is that the dynamic nature of the developing microbiome can 

be highly non-linear, and often times, data collected longitudinally vary in frequency and timing 

across individuals. To account for these potential irregularities we applied a novel method called 

Bayesian Sparse Functional Principal Components Analysis (SFPCA; Jiang et al. (2020) to 

estimate individual trajectories (see STAR Methods). Using SFPCA, we found that alpha diversity 

trajectories did not differ among birth modes when measured as Shannon diversity (Figure 4.S3), 

or when accounting for phylogenetic relatedness (SFPCA on Faith’s PD, data not shown). 

However, significant birth group differences were found in beta diversity when using an 

unsupervised dimensionality reduction method called Compositional Tensor Factorization (CTF) 

(Martino et al., 2020). CTF accounts for the repeated measurements allowing comparisons of 

beta-diversity over time (‘trajectory’) while accounting for the sparse, compositional nature of next-

generation microbiome sequencing data (Gloor et al., 2017; Morton et al., 2019). The trajectory 

of gut microbiota development in CS born infants diverged from that of vaginally born infants 

through the entire first year of life (Fig. 4.1). These results are consistent with findings from 

previous studies that used more traditional analysis approaches (Bokulich et al., 2016; Yassour 

et al., 2016). CTF also detected measurable differences in the microbial development of the 

mouth (Fig. 4.2) and skin (Fig. 4.3), underscoring the importance of birth mode in affecting multiple 

microbial niches during human development.  
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Figure 4.1. Fecal microbiota development during the first year of life in babies discordant to birth 
mode/exposure. (a) Compositional Tensor Factorization (CTF) first principal component (Y-axis) 
of infant samples over age in days (X-axis). (b) Convex hull volume (Y-axis) on the first three 
Principal Coordinates (unweighted UniFrac distances) in mothers (purple) and infants by birth 
mode or exposure (X-axis). Infants show highest volumes in Cesarean born and lowest in 
Vaginally born, with Cesarean-seeded babies showing intermediate volumes; all pairwise 
comparisons are significant using Mann-Whitney test with Bonferroni corrections at 0.05 level 
(Table AC.2.S3). (c-e) Songbird differentials shown for day 2, 30, and 180 after birth; ternary plots 
of the inverse additive log-ratio transform (inverse-ALR) of Songbird differentials give the 
estimated probability of a microbe being observed in Cesarean (left-axes; red), Vaginal (bottom-
axes; blue), or Cesarean-seeded (right-axes; green). The color of the dots depicts the seeding 
effectiveness, with yellow color indicating effectively seeded/suppressed and black indicating not 
effectively seeded. Below each triangle, bar plots of top and bottom 20% Songbird differentials 
summarized at genus-level taxa between Cesarean-seeded and Cesarean born babies; a positive 
value indicates higher association with the Cesarean-seeded group, a negative value indicates 
higher with Cesarean. Bars are colored by the ASVs’ seeding effectiveness. The majority of taxa 
discordant overrepresented in the Cesarean-seeded group over the Cesarean group are yellow-
orange, indicating ASVs effectively seeded in the Cesarean seeded group, and these are 
observed at all ages. See also Figure 4.S4, Supplementary Methods 4.S2-S7. 
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Figure 4.2. Oral microbiota development during the first year of life in babies discordant to birth 
mode/exposure. (a) Compositional Tensor Factorization (CTF) first principal component (Y-axis) 
of infant samples over age in days (X-axis). (b) Convex hull volume (Y-axis) on the first three 
Principal Coordinates (unweighted UniFrac distances) in mothers (purple) and infants by birth 
mode or exposure (X-axis). Infants show highest volumes in Cesarean born and lowest in 
Vaginally born, with Cesarean-seeded babies showing intermediate volumes; all pairwise 
comparisons are significant using Mann-Whitney test with Bonferroni corrections at 0.05 level 
(Table AC.2.S3). (c-e) Songbird differentials shown for day 2, 30, and 180 after birth; ternary plots 
of the inverse additive log-ratio transform (inverse-ALR) of Songbird differentials give the 
estimated probability of a microbe being observed in Cesarean (left-axes; red), Vaginal (bottom-
axes; blue), or Cesarean-seeded (right-axes; green). The color of the dots depicts the seeding 
effectiveness, with yellow color indicating effectively seeded/suppressed and black indicating not 
effectively seeded. Below each triangle, bar plots of top and bottom 20% Songbird differentials 
summarized at genus-level taxa between Cesarean-seeded and Cesarean born babies; a positive 
value indicates higher association with the Cesarean-seeded group, a negative value indicates 
higher with Cesarean. Bars are colored by the ASVs’ seeding effectiveness. The majority of taxa 
discordant overrepresented in the Cesarean-seeded group over the Cesarean group are yellow–
orange, indicating ASVs effectively seeded in the Cesarean seeded group, and these are 
observed at all ages. See also Figure 4.S4, Supplementary Methods 4.S2-S7. 



 92 

 
Figure 4.3. Skin microbiota development during the first year of life in babies discordant to birth 
mode/exposure. (a) Compositional Tensor Factorization (CTF) first principal component (Y-axis) 
of infant samples over age in days (X-axis). (b) Convex hull volume (Y-axis) on the first three 
Principal Coordinates (unweighted UniFrac distances) in mothers (purple) and infants by birth 
mode or exposure (X-axis). Infants show highest volumes in Cesarean born and lowest in 
Vaginally born, with Cesarean-seeded babies showing intermediate volumes; all but one pairwise 
comparison are significant using Mann-Whitney test with Bonferroni corrections at 0.05 level 
(Table .4.S3). (c-e) Songbird differentials shown for day 2, 30, and 180 after birth; ternary plots of 
the inverse additive log-ratio transform (inverse-ALR) of Songbird differentials give the estimated 
probability of a microbe being observed in Cesarean (left-axes; red), Vaginal (bottom-axes; blue), 
or Cesarean-seeded (right-axes; green). The color of the dots depicts the seeding effectiveness, 
with yellow color indicating effectively seeded/suppressed and black indicating not effectively 
seeded. Below each triangle, bar plots of top and bottom 20% Songbird differentials summarized 
at genus-level taxa between Cesarean-seeded and Cesarean born babies; a positive value 
indicates higher association with the Cesarean-seeded group, a negative value indicates higher 
with Cesarean. Bars are colored by the ASVs’ seeding effectiveness. The majority of taxa 
discordant overrepresented in the Cesarean-seeded group over the Cesarean group are yellow–
orange, indicating ASVs effectively seeded in the Cesarean seeded group, and these are 
observed at all ages. See also Figure 4.S4, Supplementary Methods S2-S7. 
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Seeding CS-born infants led to a developmental trajectory that more closely resembled 

that of vaginally-born infants most prominently in feces (Fig. 4.1, 4.S4a,b) and skin (Fig. 4.3, 

4.S4a,b); this trend held when considering only the 101 babies born in the US (Fig. 4.S4c), while 

other countries lacked sufficient sample size for individual analysis. Furthermore, a stepwise 

redundancy analysis based on the first three principal components of CTF ordination (Falony et 

al., 2016) confirmed that birth mode significantly contributed to differences in microbial community 

structures in the gut and on skin, but not in the mouth, with effect sizes of 0.17 (R2) in fecal 

samples and 0.09 in skin samples (Supplementary Methods 4.S2). Analyzing these data using 

more conventional tools for comparing beta diversity that do not account for interindividual 

variation in repeated measure studies (Supplementary Methods 4.S3-S4), evaluated through 

PERMANOVA (on unweighted Unifrac distance) or RDA (on PCoA PCs), expectedly reveals 

individuals as the primary driver of variation (PERMANOVA F-statistic = 5.45, P-value <= 0.001; 

RDA adjusted R2 = 0.113, Supplementary Methods 4.S5). High interindividual variation obscured 

the ability to detect differences due to more muted factors such as birth mode using these 

methods. Together, these findings reveal that birth mode affects the development of microbial 

communities, and that this effect may be undetected upon analyses with traditional bioinformatic 

tools. 

Differences in microbial composition stability have been used to differentiate phenotypes 

in longitudinal studies (Halfvarson et al., 2017; Zaneveld et al., 2017). Accordingly, we next 

compared variability across samples over time within a given individual. To leverage the dense 

sampling design, we calculated the volume of the shape determined by an individual’s samples 

in the first 3 principal coordinates of unweighted UniFrac space using a convex hull analysis (see 

STAR Methods). As expected, the average variability of the microbiome over an infant’s first year 

of life was much greater than the variability in the mother’s microbiome (Fig. 4.1b, 4.2b, 4.3b). CS 

born infants had significantly greater microbial variability than vaginally born infants, and the 

variability of seeded infants was intermediate (Fig. 4.1b, 4.2b, 4.3b, Supplementary Methods 
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4.S6). This finding held true for fecal, oral and skin samples, suggesting that vaginal seeding may 

also help stabilize microbiome development. This trend can also be observed using data within 

the first 6 months (Supplementary Methods 4.S7). Possible confounders such as antibiotic 

consumption (which was similar between baby groups; Table 4.1) were discarded; in the CS born 

and restored babies, stepwise RDA did not recognize antibiotic consumption as a factor altering 

seeding efficiency. In summary, these results indicate that vaginal seeding resulted in partial 

recovery of the microbiome in CS-delivered infants. 

 
Bacterial taxa associated with effective seeding 

To determine whether specific microbial taxonomies were being seeded well or the overall 

seeding across all microbes was partial, we first identified which taxa were most associated with 

a vaginal birth compared to a CS birth using Songbird (Morton et al., 2019), and then calculated 

a seeding-effectiveness score for those taxa (see STAR Methods; zero indicates poor seeding 

and one indicates effective seeding or effectively suppressed). Effectively seeded microbes are 

those shared by vaginal and CS-seeded infants. Effectively suppressed microbes are those highly 

associated only with unseeded CS infants, indicating that seeding excludes that microbe. Many 

taxa highly associated with CS-seeded infants had a seeding effectiveness score greater than 

0.8, indicating that the vaginal seeding method was able to establish microbes missing in CS born 

babies (Fig. 4.1, 4.2, 4.3, c-e). Notably, in the infant gut, ASVs from common gut-associated 

genera such as Bacteroides, Streptococcus, and Clostridium were identified to be enriched in CS-

seeded infants and have high seeding effectiveness scores in early time points (Fig. 4.1 c-e, 

Supplementary Methods 4.S8-S9). Especially of note, Bacteroides was consistently identified as 

being associated with vaginal seeding (Supplementary Methods  4.S10) using other algorithms 

such as ANCOM (Supplementary Methods 4.S11), MaAsLin2 (Supplementary Methods 4.S12) 

and LEfSe (Supplementary Methods 4.S13). In the mouth, bacteria with high seeding 

effectiveness scores included ASVs from Gemellaceae, Haemophilus, and Streptococcus (Fig. 
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4.2 c-e). In the skin, taxa included ASVs from Streptococcus, Neisseria, Thermus, and 

Neisseriaceae (Fig. 4.3 c-e). However, across all three body sites, most of the taxa associated 

with CS had a moderate to low seeding effectiveness score, indicating that this method was not 

effective at attenuating the presence of microbes typically depleted in vaginally born babies.  

 
Maternal sites contribute to the infant microbiota 

In order to determine which body sites from the mother were most likely to have the highest 

contributions towards shaping the infant microbiome, we also used the source-tracking tool 

FEAST (Shenhav et al., 2019). The first 2 days of life showed a prominent maternal vaginal source 

in the oral and skin sites of infants exposed to vaginal fluids; however, within the first few days, a 

large proportion of the microbiota colonizing the infants’ sites was shared with the corresponding 

maternal site, regardless of birth mode or seeding status (Fig. 4.4). Selection by the specific body 

site was evidenced by the lack of overrepresentation of Lactobacillus, a dominant member of the 

mother’s vagina, among infants born vaginally or exposed to the vaginal gauze when compared 

to CS-born babies. Unsurprisingly, we found that the infant oral microbiota most resembled that 

of the mother’s mouth and areola (Fig. 4.4 h, k), and that the infant skin microbiota resembled 

that of the mother’s skin (Fig. 4.4 o), consistent with exposure patterns and differential selection 

exerted by different body sites in the baby.  
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Figure 4.4. Microbial source tracking of the neonate microbiome (first month) through fast 
expectation-maximization microbial source tracking (FEAST). Contributions (y-axes) of various 
maternal sources (rows) to the infant microbial community (columns) are estimated across age in 
days (x-axes) for the first month of life, in 15 mother-baby pairs. Error bars show 95% confidence 
interval of the mean calculated by bootstrapping; Dunn test based on Kruskal-Wallis were 
performed on each time points by each maternal source for each baby sink, significant differences 
are marked by different letters in each panel. The vaginal source -prominent in day “0” for oral 
and skin in babies exposed to vaginal fluids (vaginal and CS-seeded; panel e, f)- as not prominent 
later in any baby site. Baby site specific communities resemble the corresponding maternal site 
(panels a, h, o), consistent with specific site selection of bacteria. The maternal right areola 
appears as a source for baby oral bacteria (panel k), which likely means that baby oral bacteria 
is transmitted to the mother’s areola during lactation. 
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Interestingly, we observed a notable taxonomic overlap between the maternal vagina and 

other maternal body sites, especially feces, on the day of giving birth: nearly 30% of the bacterial 

ASVs in vaginal samples were shared with feces (5.5% with feces alone, and 24.5% with feces 

and some other body sites), and 22.3% with more distant body sites such as arm skin, mouth, 

and nose (Fig. 4.5 a, Supplementary Methods 4.S14). These trends showing the pluripotent 

nature of the perinatal vaginal microbiome held true when examining the mothers in different 

countries from this study, despite variations in specific proportions (Fig. 4.S2b,c, Supplementary 

Methods 4.S15). In contrast, women who are not pregnant -from the HMP study- shared less than 

20% of vaginal ASVs with other body sites, predominantly with skin, and none with fecal samples 

(Fig. 4.5 b). Together, these results point to the importance of maternal sources of microbes on 

the developing infant consortium. 
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Figure 4.5. Proportions of bacterial vaginal ASVs shared with other body sites in the mothers of 
the current study, at the day of delivery (a) and in non-pregnant women (b). (a) V4 sequences 
from vaginal swabs and gauzes obtained from 97 parturient mothers form this study at the day of 
birth. Current study data were sequenced by Illumina HiSeq and processed by QIIME2 using the 
same pipeline as for the HMP data. (b) HMP V4 data from vaginal swabs obtained from 105 non-
pregnant women; ASVs included in the analyses were present in at least 10% of the samples in 
the respective body site. Roche 454 V3V5 sequences were trimmed to obtain the V4 region.  
See also Figure S2 b-c, Supplementary Methods S13-S14. 
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4.3. Discussion 

This intervention study expands the findings of previous smaller studies, further 

demonstrating that microbial differences associated with delivery mode can be reduced by 

exposure to a vaginal microbial source at birth. The study only included scheduled C-sections on 

healthy mothers (mostly due to multiple previous C-sections and to malposition presentations), 

since infants born by emergency C-section after rupture of the chorioamniotic membrane are likely 

exposed the maternal microbes, given enough time before the C-section procedure (Azad et al., 

2013). 

Using advanced and longitudinally-aware methods, we found that birth mode significantly 

differentiated infant gut and skin microbiome development, and that seeding worked to adjust the 

trajectory of CS-delivered infants through partial restoration of microbiome features associated 

with a vaginal delivery. For example, differential abundance analyses confirmed previous findings 

that in the gut, Bacteroides and Parabacteroides-- both common gut-associated taxa--are highly 

associated with vaginally born infants. Our study further shows that seeding works to effectively 

restore these and other taxa associated with a vaginal birth. However, there are several other 

taxa that do not appear to establish well in the seeded infants (e.g. Bilophila). Also of interest, 

while we observed a significant association of Enterococcus with CS-born infants (which in 

previous studies has been noted as a potential opportunistic pathogen), we did not see a 

weakened association of this taxon, or most other CS-associated taxa, with seeded babies. 

Further research is needed to determine why certain gut taxa may show a higher effectiveness 

for seeding while other taxa may exhibit more resilience after a seeding procedure, and what roles 

these microbes may play in the developing infant microbiome. 

An interesting facet of our study is the finding that vaginal seeding led to converging 

microbial compositions in the infant gut, despite the exposure coming from a vaginal source. The 

same pattern was observed in the skin environment. Our results clearly indicate that from very 
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early timepoints, the microbiota of an infant largely resembles the same maternal site, supporting 

the idea of strong site selection occurring from very early ages (i.e. that different body sites will 

select for specific microbes out of a diverse population). This is further supported by the finding 

that Lactobacillaceae, the most dominant member of the mother’s vagina, was not identified as 

one of the most differentially abundant taxa among infants at any of the three body sites observed. 

Site selection is also consistent with the recent evidence of successful engraftment after fecal 

microbiota transplant from the mother to CS neonates (Korpela et al., 2018), and with previous 

evidence of fecal bacteria in the infant gut (Ferretti et al., 2018; Helve et al., 2019). Indeed, 

bacterial transfer from homologous sites from the mother and other family members surely occur 

after birth. However, this may only be a part of the story. Our results show that unlike in non-

pregnant women, more ASVs from the vaginal microbiome from parturient women overlap with 

those in other body sites, mostly the proximal rectum (which in mammals is next to the 

reproductive canal), but also more distant sites. This strongly suggests a pluripotent capacity of 

vaginal fluids to seed different sites of the baby’s body. Transmission and colonization by these 

pioneer species may then modulate the succession that proceeds, influencing engraftment of later 

colonizers to each body site (Martinez et al., 2018). Major changes in the vaginal microbiota during 

pregnancy have been described (Stout et al., 2017), although the changes in the last semester 

have not been deeply characterized. This begs the question of whether the vaginal microbiome 

becomes specifically primed during pregnancy to deliver key pioneer colonizers tailored towards 

multiple body sites of the infant. This hypothesis is supported by previous work demonstrating the 

by-phasic dynamics in gestational changes in which after decreasing diversity in the first two thirds 

of gestation, in the last gestational trimester diversity increases at the expense of Lactobacillus 

from week 24 of pregnancy until birth (Rasmussen et al., 2020); increase in vaginal diversity 

continues in the postpartum vaginal tract for up to 1 year following birth (DiGiulio et al., 2015). 

This study provides solid evidence that deliberate, early microbial seeding can help 

naturalize the microbiome developmental trajectory of CS born infants. While overall trajectories 
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do appear to head towards convergence over time, studies show that early perturbations during 

the crucial developmental window of very early life seem to have irreversible consequences (Huh 

et al., 2012; Pistiner et al., 2008; Sevelsted et al., 2015; Thavagnanam et al., 2008). Restoring 

natural exposures at birth may thus be one way to reduce the risk of CS-associated diseases 

such as obesity, asthma, allergies, and immune disfunctions. However, randomized clinical trials 

on large cohorts are needed to gain conclusive evidence for microbial restoration at birth 

improving health outcomes (Mueller et al., 2019). Moreover, in light of recent research showing 

that oral administration of maternal fecal microbes is also effective in restoring the microbiome in 

CS-delivered infants (Korpela et al., 2020), future research investigating the effects of exposure 

to both sources explicitly compared to either single source will help determine the best routes to 

restoring the neonate microbiome. In this study we exposed infants to freshly collected maternal 

vaginal/perineal microbes, but it is unknown how storage would alter the microbiota composition. 

More research is needed to determine whether it is optimum that they receive their own mother’s 

microbiome or achieve defined universal cocktails that can be used to restore neonates. 

 
Limitations of study 

This study is limited by the cohort size, particularly in countries outside of the United 

States, the follow up time of the first year of life, since any longer-term consequences of seeding 

were not assessed, and by the 16S rDNA amplicon sequencing, which excludes functional 

characterizations as well as fungi and viruses. Future studies capturing longer timeframes, larger 

and broader cultural and geographic representations, and additional data types are needed to 

gain a more understanding of how seeding affects the microbiome and ultimately the health of 

CS-delivered infants. 
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Appendix A. Supplemental Information for Robust Aitchison 

PCA reveals microbiome perturbations 

AA.1. Supplemental Figures 
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Figure AA.1.S2. Comparison of methods RPCA without rclr (A), RPCA with rclr (B), and Bray-
Curtis (C) in high-rank infant development dataset at varying number of samples of 30, 40, and 
50 from left to right.  
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AA.2. Supplemental Tables 

Table AA.2.S1. Comparison of PERMANOVA and KNN classifier accuracy between positive- and 
negative-control simulations. 
 

 
Negative Control  Positive Control 

F-statistic p-value Accuracy  F-statistic p-value Accuracy 

0.650725 0.512 0.65  158.543171 <0.001 1 

PERMANOVA PERMANOVA 
KNN-

Classifier  PERMANOVA PERMANOVA 
KNN-

Classifier 
 
 
 
Table AA.2.S2. Comparison of PERMANOVA F-statistic and p-value between between subject id 
clusters in the keyboard dataset with uneven sequencing of 500 and 100 reads/sample. 
 

 Subject ID 

 F-statistic p-value 

RPCA (with rclr)  75.5 <.001 

Bray-Curtis 54.6 <.001 

Jaccard 6.26 <.001 
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Appendix B. Supplemental Information for Context-Aware 

Dimensionality Reduction Deconvolutes Dynamics of Gut 

Microbial Community Development 

AB.1 Supplemental Figures 
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Figure AB.1.S2. Feature rankings distinguishing birth-modes across the ECAM and 
DIABIMMUNE datasets are tightly correlated.  
(a & b) PERMANOVA F-statistic (y-axis) separating vaginal vs cesarean birth-mode colored by 
distance metric for ECAM (top) and DIABIMMUNE (bottom). (c) Regression plot between sOTUs 
ranked in ECAM and DIABIMMUNE datasets; Pearson correlation shown. (d) Venn diagram of 
the number of disjoint and shared sOTUs between datasets. (e) The top and bottom 10% ranked 
sOTUs averaged by genus in ECAM and DIABIMMUNE colored by vaginal (blue) and cesarean 
(orange) birth modes (N sOTUs in each genus annotated on plot). Error bars represent standard 
error of the mean. 
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Figure AB.1.S3. CTF outperforms traditional distance metrics in distinguishing samples by birth-
mode over time. (a & b) Comparison between the ECAM (top) and DIABIMMUNE (bottom) infant 
development studies with the first principal component (y-axes) of various distance metrics over 
time (x-axes) colored by vaginal (blue) and cesarean (orange) birth-modes. The relative percent 
explained variance is the fraction of the first component divided by the top 3 components to 
normalize eigenvalues among methods. Error bars represent standard error of the mean. 
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Figure AB.1.S5. Birth-mode ratios designed from CTF feature rankings distinguish samples by 
birth-mode over time. The log-ratios for the ECAM (1400 sOTUs) and DIABIMMUNE (750 studies 
are plotted on the y-axis over time (x-axis) showing separation by birth-mode using these ratios. 
This grouping of subjects is not confounded by antibiotics exposure (yes/no) or by diet. Error bars 
represent standard error of the mean. 
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AB.2. Supplemental Tables  

Table AB.2.S1. CTF shows improvement over traditional distance metrics in simulations across 
different sequencing depth.  
Fold increase in PERMANOVA f-statistic (left) or percent increase in K-Nearest Neighbor 
classification (right) by CTF over other distance metrics in simulated dataset.  
AUC and AUPR percent increase mean ± s.d. across all time points for mean 100-fold cross-
validation at each time point. PERMANOVA F-statistic fold-increase mean ± s.d. across all time 

points. 
 

 
 
 

  CTF Fold-Increase CTF Percent-Increase 

Sequencing 
Depth 

(seq/sample)  
Comparison  

Method F-stat Fold Increase AUPR AUC 

500 Aitchison 3.90 ± 1.93 23.04 ± 6.86 33.48 ± 8.92 

 Bray-Curtis 4.78 ± 2.42 24.49 ± 6.66 42.61 ± 8.32 

 Jaccard 4.69 ± 2.36 18.55 ± 7.24 26.74 ± 12.31 

 UniFrac 3.01 ± 1.48 18.99 ± 4.94 28.48 ± 5.89 

 W-UniFrac 5.55 ± 3.08 18.91 ± 7.63 38.70 ± 15.35 

1000 Aitchison 3.20 ± 1.28 23.62 ± 6.50 33.48 ± 10.28 

 Bray-Curtis 4.23 ± 1.80 33.04 ± 7.58 51.09 ± 12.69 

 Jaccard 3.66 ± 1.61 23.77 ± 7.24 33.48 ± 10.14 

 UniFrac 2.23 ± 0.85 17.39 ± 1.73 24.57 ± 2.63 

 W-UniFrac 5.69 ± 2.12 26.01 ± 4.76 46.74 ± 8.80 

10000 Aitchison 3.67 ± 1.94 22.97 ± 2.90 30.22 ± 3.60 

 Bray-Curtis 6.80 ± 4.11 24.49 ± 7.02 42.17 ± 12.89 

 Jaccard 3.54 ± 1.97 14.64 ± 3.66 19.57 ± 5.79 

 UniFrac 1.91 ± 1.02 11.59 ± 4.54 18.48 ± 2.48 

 W-UniFrac 9.94 ± 6.33 12.90 ± 5.55 20.00 ± 10.35 
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Table AB.2.S2. CTF improves over existing methods across all time and increases the number of 
significant time points.  
Comparison of KNN-classification and PERMANOVA quantitative benchmarking between CTF 
and existing methods for DIABIMMUNE and ECAM datasets. AUPR mean ± s.d. across all time 
points for mean 100-fold cross-validation at each time point. PERMANOVA F-statistic fold-
increase mean ± s.e. across all time points. 
 

 AUPR PERMANOVA F-statistic CTF Fold-
Increase  

Comparison  
Method DIABIMMUNE ECAM DIABIMMUNE ECAM 

CTF 
0.983 ± 0.001 0.768 ± 0.007 

1.0 ± 0.0 1.0 ± 0.0 

Aitchison 
0.885 ± 0.003 0.552 ± 0.004 6.13 ± 0.39 

8.11 ± 1.17 

Bray-Curtis 
0.87 ± 0.002 0.589 ± 0.006 5.00 ± 0.24 

8.88 ± 2.53 

Jaccard 
0.88 ± 0.002 0.592 ± 0.006 6.40 ± 0.48 

8.66 ± 1.05 

UniFrac 
0.874 ± 0.001 0.552 ± 0.005 5.32 ± 0.22 

7.79 ± 1.09 

W-UniFrac 
0.864 ± 0.003 0.582 ± 0.007 3.94 ± 0.45 

10.41 ± 4.94 
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Table AB.2.S3. Linear mixed-effects model results on birth mode associated log-ratios is 
significant by birth mode for both ECAM and DIABIMMUNE. 
 

  Intercept birth-mode month birth-mode:month Group Var 

DIABIMMUNE 

Coef. -2.491 6.362 0.306 -0.204 1.791 

Std.Err. 0.785 0.832 0.023 0.025 0.215 

z -3.173 7.644 13.306 -8.259 - 

P>|z| 0.002 <.001 <.001 <.001 - 

[0.025 -4.03 4.731 0.261 -0.252 - 

0.975] -0.952 7.993 0.351 -0.156 - 

ECAM 

Coef. -4.362 2.097 0.16 0.067 3.279 

Std.Err. 0.483 0.641 0.025 0.032 0.335 

z -9.037 3.272 6.395 2.131 - 

P>|z| 0 0.001 0 0.033 - 

[0.025 -5.308 0.841 0.111 0.005 - 

0.975] -3.416 3.353 0.209 0.129 - 
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Appendix C. Supplemental Information for Naturalization of 

the microbiota developmental trajectory of Cesarean-born 

neonates after vaginal seeding  

AC.1. Supplementary Methods  

Supplemental Methods 4.S1-S16 can be found at 

http://dx.doi.org/10.1016/j.medj.2021.05.003  

AC.2. Supplemental Figures  
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Figure AC.2.S1. Longitudinal sampling of mother-infant pairs. (a) Number of families, infants and 
samples from the current study. (b) Longitudinal sampling of infant samples by birth modes and 
body sites. Sampling with sterile swabs in different body sites took place within the first hours 
after birth in all babies (including the vaginal gauze exposed CS group, who were sampled after 
the gauze swabbing procedure), then at day 1-3, weekly for the first month and monthly up to the 
first year. Each row along y-axis is an individual baby. Each point represent a sample for a baby. 
The points are colored by birth modes, vaginal (blue), cesarean-seeded (green), and cesarean 
(red). On average, each baby contributed 18, 17, and 21 samples (across three body sites and 
multiple time points for the first year) for vaginal, cesarean, and cesarean-seed groups. (c) 
Longitudinal sampling of maternal samples by body sites within the first month after delivery. Each 
row along y-axis is an individual mom. On average each mom contributed 17 samples (across six 
body sites and multiple time points for the first month). (d) Distribution of number of reads per 
sample by different body sites in moms or babies Reagent blanks (blue), and field blanks (green) 
presentation were overplayed on each panel, and show much lower depth than the samples, 
indicating good overall quality of the sequences and lack of contamination. Dashed line marked 
the 5000 reads per sample position. 
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