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Abstract: Pseudohyponatremia remains a problem for clinical laboratories. In this study, we analyzed
the mechanisms, diagnosis, clinical consequences, and conditions associated with pseudohypona-
tremia, and future developments for its elimination. The two methods involved assess the serum
sodium concentration ([Na]S) using sodium ion-specific electrodes: (a) a direct ion-specific electrode
(ISE), and (b) an indirect ISE. A direct ISE does not require dilution of a sample prior to its measure-
ment, whereas an indirect ISE needs pre-measurement sample dilution. [Na]S measurements using
an indirect ISE are influenced by abnormal concentrations of serum proteins or lipids. Pseudohy-
ponatremia occurs when the [Na]S is measured with an indirect ISE and the serum solid content
concentrations are elevated, resulting in reciprocal depressions in serum water and [Na]S values.
Pseudonormonatremia or pseudohypernatremia are encountered in hypoproteinemic patients who
have a decreased plasma solids content. Three mechanisms are responsible for pseudohyponatremia:
(a) a reduction in the [Na]S due to lower serum water and sodium concentrations, the electrolyte
exclusion effect; (b) an increase in the measured sample’s water concentration post-dilution to a
greater extent when compared to normal serum, lowering the [Na] in this sample; (c) when serum
hyperviscosity reduces serum delivery to the device that apportions serum and diluent. Patients with
pseudohyponatremia and a normal [Na]S do not develop water movement across cell membranes and
clinical manifestations of hypotonic hyponatremia. Pseudohyponatremia does not require treatment
to address the [Na]S, making any inadvertent correction treatment potentially detrimental.

Keywords: hyponatremia; pseudohyponatremia; pseudonormonatremia; pseudohypernatremia;
serum sodium concentration; serum water sodium concentration; serum solids content; serum
proteins; serum lipids; electrolyte exclusion effect; dilution effect; hyperviscosity

1. Introduction

Electrolyte measurements are the most frequently ordered blood tests in modern
clinical chemistry laboratories [1]. The normal serum sodium concentration ([Na]S) varies
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from 137 to 142 mmol/L [2]. Hyponatremia represents the most common electrolyte
disturbance seen in hospital practice [3]. Mild hyponatremia ([Na]S between 130 and
134 mmol/L) occurs in 15–30% of hospitalized patients, and in 18% of nursing home
individuals [4,5]. Multiple studies indicate significantly worse outcomes in patients with
hyponatremia who are admitted for sundry reasons [6–11].

Serum volume consists of serum water and serum solids. Normally, the serum solids
content (SSC) comprises 0.07 (or 7%) and the serum water content (SWC) comprises 0.93
(or 93%) of the volume of serum [12]. The SSC contains proteins and lipids, but no sodium.
Sodium is carried exclusively in the SWC. Therefore, the sodium concentration in serum
water ([Na]SW) is greater than the [Na]S. It is important to underline that the [Na]SW, not
the [Na]S, determines the biological actions of sodium, including its effect as an osmotic
agent in causing fluid shifts between the intracellular and extracellular compartments [13].
The relation between the [Na]SW and the [Na]S is expressed as [Na]SW = [Na]S/SWC.

Since sodium is present only in the SWC, true hyponatremia can best be defined as a
“clinical condition in which the [Na]SW is lower than normal”. Pseudohyponatremia, also
known as spurious or artifactual hyponatremia, can be referred to as “a situation in which
[Na]SW is normal, but the reported [Na]S is low”.

Pseudohyponatremia can cause therapeutic mishaps [14–19]. The early identification
of pseudohyponatremia can prevent initiating measures that are directed towards correcting
a falsely low [Na]S. This review aims to explain the underlying mechanisms, diagnosis
and conditions associated with pseudohyponatremia, plus future developments aiming to
eliminate it.

2. Methods for Measuring Serum Sodium Concentration

In clinical laboratories, the sodium concentration is measured with flame emission
spectrophotometry (FES) or ion specific electrodes (ISE). With the advent of FES in the
1940’s, [Na]S measurement became an important laboratory function [20]. Currently, most
clinical laboratories do not use FES. In the 1970s, with the introduction of ISE technology
and the autoanalyzer-centric automation of various chemistry tests, [Na]S measurement
has become easier.

The ISE methods can measure the sodium concentration via two approaches, directly
and indirectly. The direct ISE method estimates the [Na]S without requiring pre-dilution
of the sample. In contrast, the indirect ISE method requires pre-measurement dilution
of the sample for its estimation of the [Na]S. After their introduction in the 1970s, ISE
methods have become the most popular approaches to measure the [Na]S [2,21–25]. ISE
methods were used to measure the [Na]S by more than 99% of the laboratories that re-
ported proficiency data for this measurement to the College of American Pathologists in
2015 [26,27].

An ISE apparatus measures the electrical potential across a sodium-selective mem-
brane immersed in the to-be-tested sodium sample. The electrical potential depends on the
sodium concentration in the sample. Both the direct and indirect ISE measure sodium elec-
trical activity in serum water (the direct method in undiluted serum water and the indirect
method in diluted serum water), not in undiluted or diluted serum, respectively [28,29].
The ISE devices are calibrated to express the activity as sodium concentration by comparing
with aqueous solutions that mimic the ratio of SWC/serum. As a result of this accounting,
the measuring devices report the [Na]S, not the measured [Na]SW. For both the direct and
indirect ISE methods, the algorithms that convert the [Na]SW to [Na]S use a SWC/serum
ratio of 0.93 for all samples measured, as this is the SWC ratio of the control solution used
for calibration. The direct ISE method estimates the [Na]S in serum or heparinized whole
blood [30]. In the case of whole blood, this method avoids the need to separate plasma
from cellular components using centrifugation.

The indirect ISE method continues to be the most popular method for measuring the
[Na]S. In 2006, more than two-thirds of clinical chemistry laboratories in the US used the
indirect ISE method for the estimation of [Na]S [27]. In 2011, Fortgens and Pillay found
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that most high-volume laboratories still used an indirect ISE method [1]. The authors of the
present report sampled the chemistry laboratories of 14 medical school-affiliated hospitals
and found that the auto-analyzers of 12 laboratories used the indirect ISE method. The
indirect test is still more popular, because it has been incorporated into the panel of multiple
routine tests carried out by an autoanalyzer. In the latter, a small sample of serum needs to
be diluted into a larger volume, in order to enable many tests to be performed.

3. Mechanisms of Pseudohyponatremia

The relation between the SSC and the SWC is traditionally expressed as SSC + SWC = 1,
indicating that the SWC changes in the opposite direction and by the same magnitude
when the SSC changes [31]. The actual SWC is slightly lower than the value of 1—SSC,
because the SWC value includes the molecular volumes of crystalloids dissolved in serum
water, in addition to the volume of water. These molecular volumes are too small to affect
the accuracy of calculations involving the SWC, amounting to about 0.9% of the expression
1—SSC [12].

The proposed mechanisms of pseudohyponatremia when the [Na]S is measured via
the indirect ISE or FES, which require pre-measurement dilution of the serum specimen,
include the following: (a) the electrolyte exclusion effect; (b) the dilution effect; and (c) the
hyperviscosity effect. None of these three mechanisms operates when the [Na]S is measured
using the direct ISE. In addition, pseudohyponatremia has been reported as a result of
mechanisms specific to certain medical conditions. These conditions are discussed in a later
section of this report.

3.1. Sodium Concentration Lowering by the Electrolyte Exclusion Effect

The electrolyte exclusion effect, also known as the volume displacement effect, can be
defined as a decrease in the concentrations of electrolytes in whole serum because these
electrolytes are contained only in the SWC [27,32]. Table 1 shows actual [Na]S values at
three different SWC values. The [Na]SW is the same (151 mmol/L) in all three examples
shown in this table. Any method that measures the sodium concentration in serum and not
in serum water, e.g., FES, will underestimate the [Na]SW, and the degree of underestimation
increases as the SSC increases and the SWC decreases.

Table 1. Electrolyte exclusion effect. Actual [Na]S values in sera with three different solid contents
and the same [Na]SW (151 mmol/L).

Serum Solids
Content

Serum Water
Content

[Na]S
(mmol/L)

0.07 0.93 0.93 × 151 = 140.4

0.14 0.86 0.86 × 151 = 129.9

0.21 0.79 0.79 × 151 = 119.3
[Na]S = sodium concentration in serum; [Na]SW = sodium concentration in serum water.

The indirect ISE method, which measures sodium concentration in the water fraction
of a diluted serum sample, is subject to the electrolyte dilution effect, as will be shown
in the next subsection. In contrast, the direct ISE approach, which measures sodium
concentration in the water fraction of undiluted serum, is not affected by the electrolyte
exclusion effect. The direct ISE values will be the same at all SWC values when the [Na]SW
is the same. For example, at a [Na]SW of 151 mmol/L, the direct ISE will report a [Na]S of
0.93 × 151 = 140.4 mmol/L at both an SWC = 0.93 and an SWC = 0.79. As shown in Table 1,
the actual [Na]S is 119.3 mmol/L at an SWC = 0.79. However, the [Na]S reported with the
direct ISE method eliminates pseudohyponatremia because it indirectly indicates the true
value of the [Na]SW.

Several studies have documented that the direct ISE method is not influenced by
electrolyte exclusion. The [Na]S measured by the direct ISE method was the same before
and after removal of excess lipids from a hyperlipemic serum in one study [33]. In a second
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study, [Na]S values measured with FES were substantially lower than the corresponding
values measured by a direct ISE in hyperlipemic sera, while after removal of the lipids, the
[Na]S values measured via FES rose substantially and became almost identical to the values
measured with a direct ISE [34]. In another study, progressively increasing the protein
concentration in aqueous solutions had minimal effects on the concentrations of sodium
and potassium measured by the direct ISE, but produced a progressive decrease in the
concentrations of both cations measured with FES [23].

3.2. Sodium Concentration Lowering by the Dilution Effect

Dilution of a serum sample with high SSC prior to measurement of its [Na]S combined
with the electrolyte exclusion effect results in pseudohyponatremia [32]. The dilution
factor for serum water (DFSW) is calculated as (volume of fluid added plus serum water
volume)/(serum water volume) [32]. This factor increases progressively at progressively
lower SWC values with use of the same volume of diluent [32].

Table 2 shows an example of the effect of dilution on the measurement of [Na]S
with an indirect ISE in a serum sample with normal SSC and two serum samples with
high SSC values. The [Na]SW was 151 mmol/L in all three samples. Note that the true
values of the [Na]S computed directly from the [Na]SW and the SWC (Table 1) differed only
slightly from the corresponding values of [Na]S computed after measurement of the sodium
concentration in the water of the diluted serum specimens when the [Na]SW and the [Na]S
were computed assuming an SWC of 0.93 (Table 2). Therefore, the effect of dilution consists
only in expressing the exclusion effect when the auto-analyzer algorithms for an indirect
ISE compute the [Na]S using an SWC of 0.93 and its corresponding DFSW.

Table 2. Dilution effect. Measured [Na]S after 1:31 (serum volume: diluent plus serum volume) pre-
measurement dilution in sera with three different solid contents and the same [Na]SW (151 mmol/L).

Component SSC = 0.07
SWC = 0.93

SSC = 0.14
SWC = 0.86

SSC = 0.21
SWC = 0.79

Diluent, L 0.3 0.3 0.3

Serum, L 0.01 0.01 0.01

Serum sample water, L 0.0093 0.0086 0.0079

Total sample
water, L

0.3093
(0.3 + 0.0093)

0.3086
(0.3 + 0.0086)

0.3079
(0.3 + 0.0079)

Dilution factor serum
water (38)

33.2581
(0.3093/0.0093)

35.8837
(0.3086/0.0086)

38.9747
(0.3079/0.0079)

Sodium content
of sample, mmoL

1.4043
(0.0093 × 151)

1.2986
(0.0086 × 151)

1.1929
(0.0079 × 151)

[Na]DSW, mmol/L 4.540
(1.4043/0.3093)

4.2080
(1.2986/0.3086)

3.8743
(1.1929/0.3079)

[Na]SW
1, mmol/L

151.0
(4.540 × 33.2581)

140.0
(4.2080 × 33.2581)

128.9
(3.8743 × 33.2581)

[Na]S
1, mmol/L

140.4
(151 × 0.93)

130.2
(140 × 0.93)

119.8
(128.9 × 0.93)

SSC = plasma solid content; SWC = plasma water content; [Na]DSW = sodium concentration in the water of the
diluted sample (the measured value); [Na]SW = sodium concentration in serum water calculated by combining
[Na]DSW by the dilution factor for serum water; [Na]S = sodium concentration in serum calculated by multiplying
[Na]SW by SWC; 1 all calculations of [Na]SW and [Na]S were carried out assuming an SWC of 0.93 (dilution factor
of serum water of 33.2581).

To recapitulate, in sera with the same [Na]SW values, the electrolyte exclusion effect
is responsible for the progressively lower [Na]S values reported via an indirect ISE at
progressively higher SSC values. Pre-measurement dilution allows expression of the
electrolyte exclusion effect.
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3.3. Sodium Concentration Lowering by the Hyperviscosity Effect

The hyperviscosity effect becomes apparent when highly viscous serum specimens are
diluted prior to measuring their sodium concentrations [35]. Pronounced hyperproteine-
mia, e.g., in multiple myeloma or Waldenstrom’s macroglobulinemia [36], causes serum
hyperviscosity. When using pumps, e.g., roller ones, in apportioning serum and diluent
to deliver the required volume of diluted serum to an automatic dilution device, hyper-
viscosity can cause a decrease in the delivered serum to the device that assays the sodium
activity while the delivery of the non-viscous diluent is unimpeded, thus augmenting the
electrolyte exclusion effect. A low temperature of a measured sample can increase this
hyperviscosity effect [37]. This device-related decrease in serum sample delivery (hence, in
sodium delivery) to a sodium analysis device causes pseudohyponatremia [38–40].

Overlack and coauthors reported that hyperviscosity accounted for the largest pro-
portion of pseudohyponatremia cases in patients with multiple myeloma and hyperpro-
teinemia [41]. Hyperviscosity contributed to pseudohyponatremia that was observed after
immunoglobulin infusion [42], and in the hypercholesterolemic plasma of a patient with
primary biliary cirrhosis [43]. In conclusion, the impaired delivery of serum with hyper-
viscosity to the sodium-measuring apparatus after pre-measurement dilution is purely a
mechanical problem, and is unrelated to the electrolyte exclusion effect. Hyperviscosity
does not influence the [Na]S measured by placing a drop of serum on a microslide in an
apparatus that uses a direct ISE [23].

4. Diagnosis of Pseudohyponatremia

One approach used to calculate the [Na]SW, and consequently to diagnose pseudohy-
ponatremia, consists of dividing the [Na]S reported by a method using pre-measurement
dilution by the SWC [44]. Waugh developed the following empirical formula expressing
SWC in 100 mL of serum [12]:

100 × SWC = 99.1 − 0.73 × [SP]− 1.03 × [SL] (1)

where 99.1 is the volume of water contained in 100 mL of a crystalloid solution having the
composition and concentrations of crystalloids in serum water; [SP] is the concentration of
proteins in g/dL of serum; and [SL] is the concentration of lipids in g/dL of serum. Various
other methods for estimating the SWC and [Na]SW have been proposed [45–52]. SSC values
lower than 0.07 may result in pseudonormonatremia in cases of hypotonic hyponatremia,
or in pseudohypernatremia in cases of true normonatremia. Formula (1) suggests that
a low plasma protein [PP] is the main cause of spurious hypernatremia or spurious nor-
monatremia, since the normal values of plasma lipid [PL] are around 0.3 g/100 mL and
the normal values of [PP] are around 8 g/100 mL. Several studies have confirmed this
suggestion [50,51,53,54].

Musso and Bargman proposed that the first step in evaluating hyponatremia in asymp-
tomatic patients on peritoneal dialysis consists of checking for pseudohyponatremia [55].
We suggest that pseudohyponatremia should be considered in all low [Na]S values mea-
sured using an indirect ISE. Pseudohyponatremia is diagnosed directly in this case by
measuring the [Na]S with a direct ISE [56]. However, detecting whether a low [Na]S value
was caused by hypotonic hyponatremia, hypertonic hyponatremia, or pseudohypona-
tremia [57], and particularly whether there are combinations of pseudohyponatremia with
other dysnatremic states when a low [Na]S value is reported via the indirect ISE method, is
based on measuring serum osmolality, and computing the osmol gap [58]. The osmol gap
represents the difference between the measured serum osmolality and serum osmolarity,
calculated as the sum 2 × [Na]S + serum urea + serum glucose, where both the serum
glucose and urea concentrations are in mmol/L [17,59].

Figure 1 shows a “based on the osmol gap” scheme for the diagnosis of pseudohy-
ponatremia and other dysnatremias potentially associated with it in cases of a low [Na]S
measured with the indirect ISE approach. Combinations of dysnatremias should be sus-
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pected in every case with an osmol gap that is larger than 10 mmol/L. Pseudohyponatremia
is confirmed when the [Na]S measured a direct ISE exceeds the corresponding indirect ISE
value. In all instances of pseudohyponatremia, the osmol gap should be recalculated using
the [Na]S measured with a direct ISE. If the new osmol gap is within the normal range,
pseudohyponatremia was the sole cause of the original gap. If the new osmol gap is less
than the original, but still above the normal range, this means that pseudohyponatremia is
combined with excesses of solutes other than sodium, glucose, or urea. Combinations of
pseudohyponatremia with other dysnatremias that can be detected by large osmol gaps are
encountered clinically.
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Figure 1. Diagnosis of pseudohyponatremia and accompanying dysnatremias. Osmol gaps that
are calculated using the direct instead of the indirect [Na]S value and are still enlarged indicate the
presence in serum of a solute other than sodium salts, glucose, or urea. [Na]S values < 135 mmol/L
reported by direct ISE result from either hypotonic or hypertonic hyponatremia. Hyperglycemic states
by far represent the most frequent cause of hypertonic hyponatremia. * Hypertonic hyponatremia
masked by a mechanism causing hypernatremia, e.g., osmotic diuresis caused by hyperglycemia.
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In addition to pseudohyponatremia, large osmol gaps are encountered in situations
where there is a gain of solutes other than sodium, glucose, and urea in the serum [60].
Examples of endogenous solute gains include advanced chronic kidney disease [61] and the
sick cell syndrome [62]. A large osmol gap from the gain in exogenous solutes distributed
in total body water, e.g., ethanol [63], may be associated with both hypotonic hyponatremia
and pseudohyponatremia (through hyperlipidemia). Gains in solutes with extracellular
distribution cause hypertonic hyponatremia. A gain in exogenous extracellular solutes, e.g.,
mannitol [64], will raise the osmol gap. If such a solute is endogenous, i.e., glucose, [65]
pseudohyponatremia (again through hyperlipidemia) with a large osmol gap may also
be present.

5. Clinical Conditions Associated with Pseudohyponatremia

Table 3 lists clinical states in which pseudohyponatremia has been reported, including
conditions associated with hyperproteinemia [41,66–80], hypertriglyceridemia [19,68,81–97]
and hypercholesterolemia [98–114].

Table 3. Reported cases of pseudohyponatremia.

High Serum Solids
Component Clinical Condition References

Hyperproteinemia

Multiple myeloma [39,62–69]
Monoclonal gammopathies [70]
Waldenström’s macroglobulinemia [71]
HIV disease (hypergammaglobulinemia) [72,73]
Immunoglobulin infusion [40,74–76]

Hypertriglyceridemia

Pancreatitis [18,77–80]
Acute or chronic alcoholism [64]
Asparaginase treatment [81–84]
Diabetic ketoacidosis [85–91]
Type 2 diabetes poorly controlled [92]
Genetic defects (lipoprotein lipase) [93]
Lipoproteinemia, types I and V [31]

Hypercholesterolemia

Obstructive/cholestatic jaundice [94–96]
Pancreatic cancer with biliary obstruction [97,98]
Primary biliary cirrhosis [41,99–101]
Drug-induced cholestatic hepatitis [102,103]
Graft-versus-host liver disease [104–108]
Hepatitis [109]
Genetic defects (Alagille syndrome) [110]

5.1. Hyperproteinemia

Hyperproteinemic diseases may produce multiple mechanisms for hyponatremia. In
multiple myeloma, hyperproteinemia is the usual cause of pseudohyponatremia. Serum
cholesterol levels are routinely low in patients with multiple myeloma because of increased
low-density lipoprotein (LDL) clearance and the uptake of cholesterol by tumor cells [115].
However, pseudohyponatremia results from a combination of hyperproteinemia and hyper-
cholesterolemia in patients with multiple myeloma who exhibit hypercholesterolemia [116].
Low [Na]S values in multiple myeloma patients may represent combinations of pseudohy-
ponatremia with other dysnatremias. Combinations of pseudohyponatremia and hypotonic
hyponatremia are encountered when there are manifestations of myeloma that cause a
relative excess of body water, e.g., the syndrome of inappropriate antidiuretic hormone
secretion [117–119]. Hyponatremia is also encountered when paraproteins in sera have
positive charges [120].

Monoclonal gammopathies may cause hyperproteinemia and hyperviscosity [121].
An infusion of immunoglobulins may cause pure pseudohyponatremia or a combination
of pseudohyponatremia and hypertonic hyponatremia. Immunoglobulin preparations for
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intravenous infusion frequently contain 10% maltose solutions [122]. Maltose is metab-
olized by maltase contained in the brush border of renal proximal tubular cells [123]. In
patients with renal dysfunction, the infusion of immunoglobulin solutions has been found
to cause combinations of pseudohyponatremia due to hyperproteinemia and hypertonic
hyponatremia that is secondary to maltose accumulation in the extracellular compart-
ment [124,125]. Maltose present in the serum increases the osmol gap. Combinations of
pseudohyponatremia and hypertonic hyponatremia have also been reported after infusions
of sucrose-containing immunoglobulin preparations [126].

5.2. Hyperlipidemia

Severe hypertriglyceridemia may cause both pancreatitis and pseudohyponatremia [81–84].
The lipoprotein lipase, an enzyme of endothelial cells, catabolizes triglyceride-containing
compounds including chylomicrons and very-low-density lipoprotein (VLDL). Asparag-
inase, a drug used for the treatment of hematologic malignancies and other malignant
diseases, inhibits lipoprotein lipase activities [127]. The concentration of triglycerides in
serum becomes elevated transiently after asparaginase administration [128]. In some in-
stances, both serum cholesterol and serum triglyceride levels are elevated after asparaginase
treatment [87].

5.3. Diabetic Ketoacidosis

As in immunoglobulin infusion, diabetic ketoacidosis (DKA) with elevated serum
lipid levels may cause combined pseudohyponatremia and hypertonic hyponatremia. In
addition, osmotic diuresis in combination with thirst and fluid intake may cause combina-
tions of pseudohyponatremia, hypertonic hyponatremia and hypernatremia or hypotonic
hyponatremia in hyperglycemic emergencies [65,129]. The presence and degree of dysna-
tremias masked by combined pseudohyponatremia and hypertonic hyponatremia can be
detected by measuring the [Na]S with a direct ISE and computing the [Na]S that results
from correcting the hyperglycemia [65]; monitoring the [Na]S during treatment remains
imperative [65].

Pseudohyponatremia in DKA may be encountered in the absence of an elevated
SSC [96]. In this case, a low blood pH or other unknown conditions are thought to affect
[Na]S measurement with an indirect ISE [94]. The effect of very high glucose concentrations
on the measurement of sodium concentration with ISE methods need further studies. In
samples with extremely high glucose concentrations, one study reported finding spuriously
high sodium concentrations when the [Na]S was measured using a direct ISE, but not for
an indirect ISE [130], while a second study reported spuriously high sodium concentrations
measured with an indirect ISE, but not with a direct ISE [131].

5.4. Enzyme Mutations Causing Hypertriglyceridemia

Enzyme mutations, mainly of the lipoprotein lipase, may cause profound hypertriglyc-
eridemia, and consequently pseudohyponatremia [132]. Several enzyme mutations causing
hypertriglyceridemia have been reported [133–139].

5.5. Hypercholesterolemia Caused by Cholestasis

Liver diseases that are associated with cholestasis have been linked to pseudohy-
ponatremia associated with hypercholesterolemia (Table 3). Cholesterol is transported in
the blood by VLDL and lipoprotein X. The blood levels of lipoprotein X are elevated in
cases of hypercholesterolemia, due to cholestasis [140,141]. Pseudohyponatremia that is
secondary to severe hypercholesterolemia associated with use of certain drugs has also
been reported [106,107]. Hepatitis with cholestasis has been observed as a complication
of these medications, which include the antipsychotic quetiapine [142], trimethoprim-
sulfamethoxazole [143], and the antiviral agent valacyclovir [144]. Alagille syndrome, an
autosomal dominant disorder caused by mutations in genes JaG1 or NOTCH2 of the Notch
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signaling pathway, causes cholestasis and severe clinical manifestations from other organ
systems [145].

5.6. Pseudohyponatremia in the Absence of Elevated Serum Solids Content

In addition to DKA, other conditions can cause pseudohyponatremia in the absence of
an elevated SSC. Pseudohyponatremia associated with pseudohyperkalemia has been re-
ported in heparinized plasma samples from patients with non-Hodgkin’s lymphoma [146]
and acute lymphoblastic leukemia [147]. Some of the proposed mechanisms affecting the
collected blood sample include the following: (a) lysis of white blood cells in heparinized
blood samples with the release of potassium and ATP into the plasma, causing sodium
influx into lymphocytes and pseudohyponatremia [147]; and (b) a defect in the cell mem-
branes of red blood cells causing potassium to exit from red cells and sodium to enter these
cells [148].

The combination of pseudohyperkalemia and pseudohyponatremia has also been
observed in serum samples that were separated with some delay after blood sample
collection in a patient with hereditary stomatocytosis; this is an autosomal dominant
condition in which a defect in the red cell membrane leads to increased sodium influx
into the red cells, which is counteracted in vivo by a large increase in sodium/potassium
ATPase activity of the red cell membrane. After blood collection, the activity of the ATPase
is diminished as a consequence of a decrease in the blood sample temperature and the
reduced supply of ATP due to a decrease in glucose concentration of the serum sample,
leading to the development of pseudohyperkalemia and pseudohyponatremia [149].

5.7. Differences in [Na]S Values Measured by Different Direct ISE Apparatuses

When the degree of pseudohyponatremia is considered, differences between [Na]S
values measured with a direct ISE in a “point-of-care” (POC) setting in an intensive care
unit using the blood gas apparatus and in the main hospital laboratory should be consid-
ered. The frequencies of discrepancies found in paired measurements between the two
direct ISE apparatuses reported by Weld and co-investigators were 4.1% for a ≥4 mmol/L
disagreement, 13.4% for a ≥3 mmol/L disagreement, and 36.2% for a ≥2 mmol/L disagree-
ment; these authors identified the level of serum proteins as one source of disagreement,
with measurements in the central laboratory being lower than the corresponding POC
measurements at low serum protein levels, and higher than the POC measurements at high
serum protein levels; the authors concluded that these disagreements were sufficient to
affect conditions in which an accurate measurement of the [Na]S is required, e.g., in the
treatment of hyponatremia [150].

Other potential sources of discrepancies between the two direct ISE methods include
differences in bicarbonate and glucose concentrations between the blood sample measured
in the blood gas POC apparatus and the serum sample measured in the apparatus of the
main hospital laboratory, and a high level of blood hemoglobin resulting in a spurious
decrease in the [Na]S measured in whole blood with the direct ISE [151]. Finally, influences
of hypernatremia and blood pH values on the measurement of [Na]S by different ISE
technologies have been reported [152].

5.8. Clinical Conditions Associated with Elevated Serum Solids Content

Using an indirect ISE will report a spuriously low sodium value on every serum
sample with a high SSC. Pseudohyponatremia, whether it has been reported or not, has
the same frequency as high SSC values in these conditions. A list of such conditions is
provided in Table 4, which was composed from material contained in the reviews by Liamis
and co-authors [153], and Koumpis and collaborators [154]. The Supplementary Material
Section provides further information about these conditions.
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Table 4. Clinical conditions causing increased serum solids.

High Serum Solids
Component Clinical Condition

Hypergammaglobulinemia

Cirrhosis, Autoimmune hepatitis
Alcoholic liver disease, Hepatitis C
Interferon infusion
POEMS syndrome
Castleman’s disease
Post-transplant monoclonal gammopathies
Chronic lymphocytic leukemia
Cryoglobulinemia, Cold agglutinin disease
Gaucher’s disease

Hypertriglyceridemia

Alcoholism
Interferon infusion
Diabetes mellitus, Obesity
All-trans-retinoic acid (ATRA)

Hypercholesterolemia
Diabetes mellitus
Stem cell transplantation
Non-Hodgkin’s lymphoma

Mixed hyperlipidemia

Diabetes mellitus
Nephrotic syndrome from various causes
Hemophagocytic lymphohistiocytosis
Intravenous lipid emulsions
Parenteral nutrition in COVID-19

POEMS = polyneuropathy, organomegaly, endocrinopathy, monoclonal protein, skin changes; COVID-19 = coronavirus
disease of 2019.

6. Frequency of Spurious Serum Sodium Measurements

Tables 3 and 4 show conditions in which pseudohyponatremia is probably frequent.
A small number of reports studied the frequencies of pseudohyponatremia, pseudonor-
monatremia and pseudohypernatremia. Overlack and co-authors reported a frequency of
46.7% for asymptomatic low [Na]S values, and a highly significant statistical association
between low [Na]S values and high blood viscosity values in 15 patients with multiple
myeloma [41]. Lang and co-investigators reported equal frequencies of (1.3%) for hyper-
proteinemia and hypoproteinemia (serum proteins > 80 g/dL and <50 g/L respectively) in
serum samples that were submitted for the measurement of urea and electrolytes. In both
the hyperproteinemic and hypoproteinemic samples, the [Na]S values were measured using
both indirect and direct ISE approaches. In the hyperpoteinemic samples, the frequency of
clinically significant pseudohyponatremia, defined as a [Na]S value by direct ISE exceeding
the value by indirect ISE by ≥4 mmol/L, was 16.1%. In the hypoproteinemic samples, the
frequencies of both pseudonormonatremia and pseudohypernatremia were 1%.

Chow and co-investigators reported an 85% frequency of hypoproteinemia in the sera
from critically ill patients. In these sera, the [Na]S values from direct ISE (140 ± 5.0 mmol/L)
were significantly higher than the corresponding values via indirect ISE (136.5 ± 5.2 mmol/L),
while pseudonormonatremia was noted in 19% and pseudohypernatremia in 8% of the
serum samples [155]. Lava and co-authors estimated that [Na]S values measured via direct
ISE exceeded by ≥4 mmol/L the corresponding values measured via indirect ISE in 25%
of the serum samples obtained from critically ill patients [156]. Katrangi and coinves-
tigators reported an inversely proportional difference between [Na]S values measured
with indirect and direct ISE, with 69% of the samples differing by ≥4.0 mmol/L [157].
Liamis and co-authors reported that 27.3% of the low [Na]S values obtained on hospi-
tal admission for various alcohol-related conditions were cases of pseudohyponatremia.
Their diagnosis of pseudohyponatremia was based on normal serum osmolality, severe
hypertriglyceridemia, and increased [Na]S values as the plasma levels of triglycerides
decreased [158]. In 98 plasma samples collected from critically ill patients, Langelaan and
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collaborators reported that one of the six samples (16.7%) in which hyponatremia was
reported via indirect ISE measurement was shown to be pseudohyponatremia with the
direct ISE measurement [159].

7. Management of Pseudohyponatremia—Future Developments

Encountering pseudohyponatremia is inevitable, because most clinical laboratories
still measure the [Na]S using the indirect ISE method. The risk of iatrogenic complications
accompanies pseudohyponatremia if this is not diagnosed promptly and is mismanaged.
Both restriction of fluid intake [98] and saline infusion [19,92,108,160] have been inadver-
tently used to treat misdiagnosed pseudohyponatremia. Severe neurological manifesta-
tions [19] and deaths [91,160] have been reported following hypertonic saline infusion,
leading to a rapid rise in the [Na]SW to extreme levels in patients with pseudohyponatremia.
The magnitude of the spurious measurement and the subsequent risk of inappropriate
treatment increase in parallel with the magnitude of the difference in serum solids from
normal values (Tables 1 and 2).

Clinicians should be aware of their laboratory’s method for measuring the [Na]S. If
the laboratory uses a direct ISE, then a clinician can accept the [Na]S result at face value.
However, if the laboratory uses an indirect ISE, then a [Na]S lower than 137 mmol/L
requires further examination to determine whether this value represents true hypona-
tremia or pseudohyponatremia. When an indirect ISE or FES is used, the levels of serum
proteins and lipids should be measured, along with the [Na]S, in order to calculate the
SSC from one of the available formulas, and the [Na]SW [12]. The method for measuring
the [Na]S has not been addressed properly in the literature. Only 17% of the published
studies in hyponatremia that were analyzed in the systematic review by Malandrini and
coinvestigators provided information about the method for measuring the [Na]S [25]. The
recognition of simple pseudohyponatremia should change the focus of the management
from hyponatremia to the condition which caused the high SSC. The management of pseu-
dohyponatremia combined with other dysnatremias should address both the condition
causing the pseudohyponatremia, and the condition causing the additional dysnatremias.

Future developments in the prevention of pseudohyponatremia must address the real-
ity that the [Na]SW and not the [Na]S represents the important parameter that determines
the biological functions of sodium. It was shown earlier that (a) the indirect ISE approach
reports [Na]S values that are close to the true values at all SWC values, but the [Na]SW
values that are computed using these [Na]S values are accurate only when the SWC is
0.93 (Tables 1 and 2); and (b) the direct ISE method reports [Na]S values which indirectly
indicate the true [Na]SW values throughout the range of the SWC values, but these [Na]S
values are computed assuming an SWC of 0.93 only; therefore, they are only accurate at an
SWC of 0.93. These findings suggest the following two measures:

The obvious first action to prevent pseudohyponatremia consists of using direct ISE
devices for all measurements of the sodium concentration. Using this measure, pseudo-
hyponatremia will be eliminated, with rare exceptions. The second action that should be
pursued following the use of direct ISEs consists of changing the reported sodium con-
centration from the [Na]S to the [Na]SW [12]. This will require a recalibration of the direct
ISE’s instruments, changing the normal range of sodium concentration, and reevaluating
the target values of correcting the [Na]SW in hyponatremia. The calculation of the volume
of non-isotonic saline that is infused to change the [Na]SW by a specific value, computed
by any of the published formulas [161,162], requires accounting for differences between
the sodium concentration in serum water and in the interstitial fluid compartments. The
proteins in serum are polyanions that attract sodium, while interstitial fluids have low
protein concentrations and a lower sodium concentration in their water compartment
than in serum water. The differences in sodium concentration between serum water and
water in interstitial fluids are quantified using the equations expressing the Gibbs–Donnan
equilibrium [163].
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Introducing new methods for measuring the [Na]SW into clinical practice constitutes
another potential future development. Two methods, field mass spectrometry and enzy-
matic determination, are worth exploring: field mass spectrometry is a promising recent
technology for measuring electrolyte concentrations in biological fluids [164,165]; its mea-
surement of the sodium concentration based on specific enzyme (β-galactosidase) activation
by sodium ions has been applied in certain clinical conditions, e.g., isolation laboratories for
emerging infectious diseases [26,166,167]. The Supplementary Material Section S1 provides
further information about conditions causing hyperlipidemia [153,154,168–197].

8. Conclusions and Future Directions

Measurement of the [Na]S with laboratory methods that require dilution of the serum
sample carries the risk of pseudohyponatremia when the SSC is higher than the normal
value of 0.07 (7% of serum volume), with adverse outcomes if a spuriously low [Na]S
value is treated. The possibility of pseudohyponatremia should be investigated when
low [Na]S values are reported via a method that requires pre-measurement dilution of
the serum samples from patients with clinical conditions that cause increases in the SSC
(hyperproteinemia, hyperlipidemia). Measurement of the [Na]S with methods that do not
require serum dilution will eliminate almost all cases of pseudohyponatremia.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm12124076/s1, Section S1-Clinical conditions causing increased
serum solid content [168–197].
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