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Abstract

It is shown how the classical version of a pseudo-potential analysis can .
be used to obfainbclassicél models for the electronic degrees of freedom in
a molecular %ollision systemf This allows one to constrﬁct a comgleteiz
classical modelzfor.electronically non-adiabatic collision procesées,‘which
has the virtue that electronic and heavy particle degrees of fréedbﬁ afe
described dynamically consistently (i.e., by‘ciassicél trajec;ories). |
Application of this approach ;o fine-structure changing collisions of F by
collision with H% and Xe gives-encouraging.agréement with quantum meéh;ﬁicél
coupled-channel calculations, suggesting that thié model may in_general bé

of useful accuracy for describing~electrohically non-adiabatic processes,



- I. ' Introduction.

Semiclassigal theories of electronically non-adiabatic collision processes
usually describe the electronic (and perhaps.rotation and vibrational) degrees -
of freedom quantum méchanically, i.e., as quantum mechanical states, and tréat
the heav& particle‘degrees of freedom (perhaps only tramslation) by classical
mechanics, i.e., with coordinétes and momenta that follow trajectories. The |
‘many variants aﬁd extensions of the Landau-Zener model are in this general.
category. A particularly usefulvapproach of this type is the "surface hopping"
| model introdﬁced by‘Tully and Preston? it‘ﬁreats all the'heavy particle degrees
of freedom (translation, rotation and'Vibration)’classically, as classical
trajectories moving on a potential energy surface (i.e., in a specific Born~
Oppenheimer electronic state), allowing localized "hops" between potential
energy surfaces.

It has been recently pointed out? however, that such approaches can
sometimes miss iﬁportant dynamical features in non-adiabatic collision
‘processes because the electronic and the heavy particle degrées of freedom
are treated on different dynamical footings, i.e., by quantum and by classical
mechanics, respéctively. To avoid these shortcomings it has been argued4 that one
néedé to treat ail degrees bf freedom on the same dynaﬁical-footing, aﬁd this
means that one either treats them all quantum mechanically--which is usually
not feasible--or treats them all by classical mechanics, including the
electronic degrees of freedom. To pursue thié latter idea it is necessary
' to construct a classical médel for the relevant electronic states. One thus
replaces the several potential energy surfaces by one potential energy surfaée:
but for a system which has an additional coordinate and momentum, the electronic

degree of freedom, and then all the coordinates and momenta are assumed to



v.fbllow fréjectories depermiﬁed:by the élassicai equations of ﬁotion. A
>prévioﬁs paper,4 to be referred to hereafter as péper I, has shoWn'in several
specifig cases how such classical modeis.can bé constructed.

Thé purpoée of  this paper 1is tﬁofold. First, Section II shows anbther
‘way, someﬁhat more general gnd well-founded than'that of paper I,-of’deriving‘v
élassical models for the electronic degrees of freedom, namely.thé classical
_vefsion of a pseudo-potential approach. For thevspeéific examples:discussed‘
in paper I this pseudo-potential analysis actually leads to the same ;esults
as befofe,4 but it has the capability of being extendéa to more general
systems.

Second, Section III describes the first application of this approach -
which treats both electronic and heavy'partiéle degrees of freedoﬁvby
classical trajectories, the process being quenching of fhe excited fine

: _ » .
structure state of fluorine .atom by collision with H and with Xe,

(e ) +B »Fey ) 4B, @

with B = H+ or Xe. The results of thesé célculations are extremély encquréging,
‘being of the same level of accgraqy that quasiclassical trajectory calculations
give for rotationally and vibrationally inelastic collisions.s

In concluding this introduction it should be emphasized that the goal
of thisvclassical treatmenfﬁof electrqnic degrees_df freedom is not to find
alternative ways of computing Born;Oppenheimer electronié energies; it is
the desire to treat electronic degrees of freedom on the same dynamical
footing as the heavy particle degrees of freedom that necessifates the use
of élassiéal mechanics for bbth, It should be noted, too, that even though‘

this classical model for non-adiabatic processes treats curve crossing (or



more correctly, 1ocaiizea avoided crossing) situations correctly, LandaQ—Zener
and other "sﬁfface hqpping" models also do a good job in these cases and are
.simpler. Thg most useful aspect of classical models of the type discussed

in this paper is thus expected to.be the ability to treat more general
non-adiabatic processes that do not necessarily take place via isolated

’

curve crossings.



II. Classical Pseudo Potential Formalism.

In this éectidn we show how the idea of a classicél pseudo—potential

can be used to construct claSsical'ﬁodels for the relévant eieCtronic
~states in se;eral specific examples. |

~a. A(nj) + B

The first and simplest case is the collision of a "one electron” atom
A, with the.electron in an (nj) orbital (e.g.,‘n = 2, j-= i fof a Zp orbitai);
with a glosed shell lS atom B. Atom A is not literally a o6ne electron.étom,
i.e., hydrogen, but has one "active electron" oﬁtside a closed shell, and
we will model only the electronic states invélving this one electron. The
situation is also the same fbr atoms with one "hoié"; e.g;, the halogen atoms;

this includes the example

2 ot 2 P '
F( P1/2) + Xe,H -~ F( PB/Z) + Xe,H (2.1)

for which calculations are reported in Section III and for which the spin-orbit
interaction has also been included. For‘the-diséussionsrin this-seétidn,
howaver,vspin-ofbit interactions wi1l-not be ihcluded; fhey can be introduced
afterward when necessary. |

: The case of a péeudo«one—electron atom colliding with'a closed shell
atom is a three particlé system, the same as an atom*diéﬁom collision syéﬁem;

_ for example, for which the classical Hamiltonian has been derived previohsly:6

' v 2
H (P,R,p » T ,j,q’.',m, ) = + 5+ +.'—J—‘
J 7 e’ e j I S 2u 21JR2' 2n.1.e‘ Zmeri

+ v(re) +,V(R,re,y) 3 T - ‘- : ‘(2.2)



Figure.l depicts the coordinates for'the system. r, is the distance
between the electron and nucleus A (the "vibrational" coordinate of
"diatom" A-e), R the distance betﬁéen atoms A and B, and Y the angle
between ;e an& ﬁ; v(re) is the effective one-electron potential (the
"vibrational" potential_fpr the "diatom" A-e), and V(R,re,y) is the
interaction potential; j is the angular momentum of thé electron (the
"rotational" angular momentum of the "diatom" A-e), and m is its
projection onto i; Pe and P are the momenta conjugate to r, and R,
réspectively, and qj and 9 the'angle variables conjugate to j and m.
2 is the orbital angular momentum of A relative to B apd is given in

terms of the other variables by6

22 = [33)°
='J2—m2 + j2-m2 - 2 V{Jz-m2 Vgé;mz cosq v (2.3)

where J is the total angular momentum (which is conserved). The angle

Y is given in terms of the canonical variables by6
cosy = Vl—mzsz cosq, . . (2.4)

The Hamiltonian of Eq. (2.2) is in the "helicity representation" (m is
the helicity) which is most convenient for present purposes.

To proceed further we replace the variables-(re,pe) by the action-
angle variablés (n,qﬁ), as is done for the atom-diatom case;6 in Eq;'(2.2)
one thus has the replacements

' 2
P, j2 ‘ . , »
Tn_ + 5 + _V(re) + €(n,j) | (2.5a)

2m r
e e




re+re(n,qn) R | ' o | (2.5b)

where E(n;j).is the WKB eiggnvalue for the potential v(fe) expfesse&.in
terﬁs of the "vibrational" and "rOtational".quantum numbers n and j. For
the present, moreover, we are seeking the Hamiltonian which describes

‘ﬁhé interaction befween atom A(nj) and atom B, where:thé.eieéﬁron has
definite, fiked'values for n and j; e.g., the interaction between C+(2p)

énd He, for which n = 2 and j = 1. We thus seek a Hamiltbﬁiaﬁ for-which

n and j are constants of the motion, i.e., a Hamiltonian that is'indegend;ﬁt
Qg_gn ggg.gj, and the most straight-forward way of thainihg this is to |
average.the above Hamiltonian over_qn and qj. This correspOnds:physically
to the vibrational and rotational motiéﬂ being so- fast that n(t) and :
j(t) are constant in time. Thé desired reduced Hamiltonian is thus

'given by

-2 ' | .
(27T) qun j;dqj HJ(P,R,n,qn,J,qj,m,qm) _

2 » '  l ‘ :
- E + [J2—m2+j2-m2—2 VJZ—HF ij—mz'cosqm]/(ZuRz)

| ‘HJ(P,‘R,‘m,qm)

2y
+ V(R,m) . - : ' - (2.6)
where r, E'<re> is a constant (the time average of re) in.V(R,re;Y) and
has thus been omitted, and where the cpnétant term e(n;j) has been dropped

from the Hamiltonian; the interaction potentiél V(R,m) is defined by

'

. : 25 :
- V(R,m) (ZW)—lAE/quj'V(R,cosY)
Y0

-1 Wi
(2m) J/ndqj V(R, l—m%/j2 cOsqj) (2.7
Jo | - ,

A



‘The most interesting part of Eq. (2.6) is the interaction potential
V(R,m) of Eq. (2.7), and to develop it further we invoke the usual

Legendre expansion,

V(R,cosy) = 2 V_(R) P_(cosy) ; : (2.8)
n=0 o

this then gives (using Eq. (2.4))
V(R,m) = Z -Vn(R) (2'!7)—1 Z‘dqj ]E“n(\/l--m-zlj2 cosqj) . (2.9)
n=0

The integral over qj is evaluated in the Appendix, and one obtains

0 _1y A2 _
VR = Y v S & (2.10)
' 3=0,2,4 2 (%!).

Thg logic of our approach is_now to use the quantum mechanical Born-
Oppenheimer potential curves of the A-B system to determine the various
functiops VA(R) in Eq. (2.10). Fér j = 1, for example--i.e., a p electron--
there will be tﬁb Born Oppenheimef potential curves arising ffom the A-B
potential, a I and a Il potential. It is thus possible to determine the.

first two terms in Eq. (2.10) (the others being set to zero),
1 2 ' '
V(R,m) = VO(R) + % (1-3m )V2(R) . (2.11)

Since m = 0 corresponds to the I-potential and m = *1 the H-potential;

one equates



V®,m=0) = Vy(R) | (2.12a)

V(R,m=%1) .VH(R) -, : . ~ (2.12b)

and this determines VO(R) and VZ(R) in terms of the I and I potentials:
1, ' |
VO(R) = -3—[2VE(R) + VH(R)] - _ (2.13a)
V2(R) = 3[VZ(R) - VH(R)] - S | (2.13b)

Eq. (2.11) can be rewritten in terms of the X and‘vaotentials themselves

to give the interaction potehtial for a p~eiectron finally aé
2, 2. AR
V(R,m) = (1-m) VZ(R) + m VH(R) C - (2.14)

This is the’samé result obtained for thié case in papef I, where the
specific case discussed was F(ZP) + Xe.

For a d-electrom, j = 2, thefe.ariSe L, I and A potential curves, so -
that 3 terms can be determined in Eq. (2.10). The interaction potential,
expressed in terms of the X, II, and A potential curves, is given in this

. case by

VR,m) = F(@’-1) (m*-4) Vs (R)

+ -_{; n? (4-n2) vy (R)

+

f% mz(mz—l) VA(R) . (2.15).

For the general case, i.e., for an arbitrary value of j» the interaction' -
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potential V(R,m) is the (unique) polynomial in m2 of order j thét equals .
the (j+1) quantum mechanical potential curvés form = 0,1,2, ..., j. The
.m—dependent coefficients of the quantum potential curves, e.g., in Eq.‘(2.15),
arevthusléimply the Lagrange interpolation coefficients.

With the interaction potential V(R,m) determined in this manner, the
Speéificationvof the Hamiltonian by Eq. (2.6) is complete. For the
applications deséribed in Section III, F(ZP) + H+,Xe spin—orbit coupling

in F is also introduced, as in paper I.

b. A(nj) + BC

The next exaﬁple we consider is the collision of a pseudb one-electron
afom A(nj), as in the previous section, with a closed shell lZ diatomic
molecule BC, where again we wish to consider only those electronic states
which correspond to the one electron retaining fixed values for the
electronic quantum numbers n and j. The specific example we have in miﬁd

is F(ZP) + H, in order to study the process

2

F(2P1/2) + Hz > F(2P3/2). + H2 . '(2.16) |

but there are other interesting éxamples, such as Na(3p) + NZ' In this
latter case one would want to construct a Hamiltonian that does allow n

and j to change so that one could describe the quenching process

Na*(3p) + N2 + Na(3s) + N2 . ' (2.17)

From the discussion in the previous section it is clear that the pseudo-.

potential approach models the present collision system as the interaction

of two diatomic molecules, A-e and B?C, so that the classical Hamiltonian
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| is given in the helicity representation as

HJ(}’,R,-pe,re,p.r,j,qj,mj,qmj ,N,qN,mN,qu.),

2

V(1) + vpe(n) + VR, T,00000) (2.18)

where the coordinates are depicted in Figure 2. (pe,re), (j,qj), and
'(mj,qm ) are the variables of the "diatom" A-e for the "vibrational,

J o ‘ S
"rotational" angular momentum, and projection of rotational angular

{
. ‘ > .
momentum onto quantization axis R; (p,r), (N,qN)! and (mN,qu) are the’
analogous variables for the diatom BC. (ee,¢e) are the spherical angles
> . S > -
of r, with respect to the axis R, and (Y,¢) are the analogous angles for
-

r. ve(fe) and v(r) are the potentials for the two diatomic molecules, v

is the interaction potential, and the orbital angular momentum of relative

translation £ is given in terms of the canonical variables by4
2 2
2° = |3-3-N|

2.2 2. 2 2
TN 4 oom “—om . “~om .
B S s

]

- 2/1?~(mN+mj)T Vﬁz-mNZ édsqu

B} z/Jz—(mij)Z' /jz-'mjz cosq_
' y

+ 2Vﬁzme2'v§2-m;2‘cos(q V—qm ) . —. k2.19)
| N I

The. spherical angles (ee,¢e) and (Y,@) are given in terms of the canonical

variables by7
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] ‘
sinee coscbe sinqj cosqmj +-.jmcosqj sinqmj
S . - _ o
r, = 81n6e sinq)e sinqj sinqm. + E cosqj coqumj (2.20a)
cosee 1—mj 3 cosqj
sinY cos¢ éinq cosq. +-T§ cosq éin
N my N N qu
r = siny sind = —sinqN sin + 2? cosqy cosqu : (2.20b)
cosy l—mNZ/N cosqﬁ

As in the previous section, we now replace (pe,re) by the éction—angle
variables (n,qn) and then average the Hamiltonian over qn and qj so as to

obtain the Hamiltonian for which n and j are constants of the motion; this

gives
P2 22
H (P,R,P,r,N,q s > PRUS] ) = o —
| J ‘ _ N°™N qu J nﬁ 2u ZuRz
2, ¥
+on Tt e + Vg () + V(R,r,Y,cb,mijmj) P (2.21)

where again r, has been replaced by its average value and thus suppressed.

The interaction term V(R,r,Y,d),mj,qm ), which is the interesting part of

J
the Hamiltonian, is defined by

V(R,_r,Y,Cb,mj,qm_)

-1 o :
J (2m) /jdqj V(R,1,Y,0,:050,) ,  (2.22)

where the qj dependence of the integrand comes from the dependence of ee

and ¢e on q, through Eq. (2.20a). The function V(R,r,Y,ee,¢,¢e) can be

3

expanded in the generalized Legendre expansion
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&2 min(A,A") I " Cou '
| V(R,r,Y,Gé,¢,¢e) %-X igio j&;% Ylkr (R,r)»PA, (cosy) PA_(COSee)

x (-1)" coslu(e-0,)] | (2.23)
) §
but here it is simpler for present purposes to leave the y-dependence

unexpanded:

0 A .
V(R,1,Y,0,50:0,) = EOV u§=jo v, " ®,r,v) P,V (cos8,) (-1)cos[u(s-0,)]

R ST
= Re 3 VH@®R,1,7) PyH(cosd ) (DM TP e (2.23b)
AU ' , . i

With the dependence of ee and ¢e given by Eq. (2.20a), it is shown in the

Appendix that

| iug
(21r)_l Jindq, Pku(cose Ye €
o ¢

A ki
Ny Cip(-q_ )
a2
ST 2 °¢
A LA
2 CE!)

m
] W, g '
PX (j ) s : (2.24)

for A even (the integral.is zero for odd A), so that with Eq., (2.23b) the

interaction potential defined in Eq. (2.22) becomes

' @ A
V(R,r,Y,0,m.,q ) = 2 v M @®,r,Y)
. J qu >\=0:2"4‘ u=0 A .
A
,"(—l)2 At U, /; - T
b:4 —)\——;\——2- P}\ (mJ J) cos [U(¢+qmj +—2‘)] e | (2.25)

2 (E!) -
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For the case of a p-electron, j = 1, for example, we retain only the
lowest order terms (A = 0,2) in Eq. (2.25), and the interaction potential
is

_ 0 _]: _ 2 0
V(R’r’Y’q)’mj’qmj) = VO + 4(1 3mj )VZ

O A | 1.3, 2 2
+ E-mj l—mj 81n(¢+qmj) V2 +-E(1—mj ) cos(2¢+2qmj)V2 , (?.26)

where qu = VAU(R,r,Y). We ndtg that this e#pression is of essentially

the same form as that obtained for the F(2P) + H2 system in paper I. (The
only différence is that the earlier result4 had the factor m.j2 rather than
l—mj2 in the last term of Eq. (2.26), but it was emphasized that the approach
used there was somewhat ambiguous in determining the mﬁ—dependence of the
Qarious terms in the Hamiltonian.) Comparing‘with this earlier result

leads to the following identification of the potential functions VAU(R):

0 1 2 _ _ |

V0 = 6(Hxi+Hyy) + 3 sz : | (2.27a)

00 by ey |  (2.27p)
2 3Yzz 2 : . ‘ , -27b)
1 4 ' ‘ ‘ .

V2 =-3 Hyz _ (2.27¢)
2 1 ' ,

AT (CHE PR . (2.27d)

where H , H , H ,'and H are the'quantum mechanical diabatic potential
xx’ yy’ zz z :

energy surfaces (functions of R,r,Yy) discussed by Lester and Rebentrost.8
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0 1

'Thé.four functiohs Vbo, V2 , and sz'are thus determined by the four

‘quantum mechanlcgl fgnctions’Hxx, Hyy’ sz and Hyz. Expressed in terms of

the quantum mechanical diabatic potential energy surfaces, the interaction

b V2

potential is given in this case by

£l

V(R,’r,'Y,¢,mj,qm.)

2, . 21 | : .
3 (l_mj ) Hz'z(Rsr’Y) +m_'] E[HXX(R””Y) + Hyy(R)r’Y)]

sin(dtq, ) 2 Vl-n 2 B (R,r,v)
i

+ (1,-ij )‘ Cos(2¢+2qmj) fZ"[H}:;y(R,f,Y) - HXX(R,r,y)].

(2.26")

In general, for an eiectrdh with orbital aﬁgﬁlafvﬁomentUm s éne‘woﬁid retain
terms in Eq. (2.25) up to X =-2j; | |

| In summary; the classicaL_psepdo—potential'Hamiltonian forvthe A(nj) +

.BC collisioﬁ system is giveﬂ byiEq..(Z;le wi#h 22, Y}génd ¢ defined inltefms
'f,of.the canonical variablés‘by'Eés, (2:19)vand (2.20b),vaﬁd with the interaétion
botential giﬁen by Eq. (2.25). The moéf difficulé andfleast.precise step is
déterﬁining the potential fungtions VAU(R,r,Y)Viﬁ Eé; (2.25). The expressions
obtained above, Eq. (2.27), ﬁade use of the/results of paper I. The ciassical
electr&nic Hamiltbniaﬁ»isthUS detérmined by a cdmbinatioh of inpuéét the
'pseudepotential approach fixes the form of thé:ﬁaﬁiltoﬁian‘function, éﬂd

-Ché Semicléssidal aﬁéiysis_Of paﬁer.I is useful in'detéfﬁining the pgrameters
(i.e.;nfhe_functions qu) in the Hamiltonian.__Anther useful input is Ehe
"gigenVaiué test" described in paper I, ;.é;,:to require that the semicléséiéaliy

. computed Born-Oppenheimer electronic eigenﬁalues agree with the quantum mechanical'
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ones.. Thus with R,r,¢, and ¢ fixed, the Born-Oppenheimer electronic eigen-
values ate determined semiclassically by the Bohr-Sommerfeld quantum

condition,

S’;dqmj mj(qmj,E) = 27 X(integer) ," ~ (2.28a)

where the function mj(qm ,E) is defined implicitly by

E = V(R,r,y,-cb,mj,qmj) . (2.28b)

with R,r,y,¢ fixed. The procedure in this case is to adjust the quantities

00, V20, Vzl, sz in Eq. (2.26), for example, so that the semiclassical

eigenvalues determined by Eq. (2.28) agree with the quantuh mechanical Born-

v

Oppeﬁheimer eigenvalues (fof all values of R,r,Y,$). (The eigenvalues are
actually independent of ¢.) 1In geheral, of course, this "eigenvalue criterion"
will determine a different interaction potential, e.g., the relations between

u

Vl and Hxx’ H _, etc., may be different than those in Eq. (2.27). 1If this

yy
is the case, then one must test the different classical models in applications

to see which is more realistic.

c. Almp?)

We now consider‘two examples to show how the class;cal pseuao-potential
approach can be extended to model electronic states afising from.sySCems
with two active electrons. Rather than treating the most general‘gase,vwg
spécialize,;o a npz'configuration and consider first thevisolated atém A(nﬁz) :
itself to show that the three elecfronic states arising from this configuration--
S,P, and D--are described qualitatively correctly by the model. The simplest
example is the carbon atom, C(sz); and the case of tw§ holes, e.g., 0(2p4)>is

also the same.



-(nl,qn ) and (nz,qn
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With two active electrons, the system is that of a 3—particle system

- -(with one particle infinitely heavy);_for which the classical Hamiltonian

is given in-the "orbital angular momentum representation” by

P 2 b 2 p 2 h| 2
: . . NS § T, 2 42
HJ‘(pl’r’l’pZ’rZ’Jl’qj ststz) = zme + om + 2m + o
1 - - émry e mer2
+ v(rl) + v(r2) + V(rl’rZ’Y) g | o : (2.29)

where the coordinates are depicted in Figufév3; jlvand jo are the angular
momenta of the two electrons, and the angle Yy is given in'terms of the

canonical variables by

cosy = cosqy cosqj2 +.—~§—3—————-

— sinq. sing, .o (2.30)
1 S R0 SR R :

2

v(r) is the one electron pseudo-potential, and V is the interaction potential.

As before, we replace (pl,ri) and}(pz,rz) by the action-arngle variaBleé

) which.are déﬁined with respect to the one-electron
1 2 . ' ' B
potential v, and to obtain a Hamiltonian - that gonsetves nl,gz,jl;‘and j2

(é.g., with ny=n,=2, j1=j2=l) we average the Hamiltonian in Eq. (2.29) over

9> 9n» qy  and qjé,'giving

1 2 1
_HJ = constant + (2T) - f dq, f.dq. v(y) , - (2.31)
R - o J1Jo 2 - -

“with vy giveﬁ by_Eq.‘(2530). Rt and rz.;ake‘on,their average values and are .

t

_not denoted. Also as before, the interactidhgpqtgntial-v is expanded in a
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Legendre expansion, keeping only terms thru PZ:

V(y) = V0 + VlPl(cosy) + V2P2(cosy) s (2.32) -

and it is easy to show that. Eqs. (2.30) and (2.32) then give

1 3 iy 3 2
HJ = constant + V0 +-§ V2 [3(——5—3~3———9 - 1] , (2.33)
172
(_)r
H.SE.=a- bJ%+ cJ* , o (2.34)

where a,b, aﬁd c are positive coﬁstants. Eq. (2.34) shows that the classical
mddel giﬁeS the correct qualitative dependence of the atomic energy levels
on J, i.e., an upward parabola as a function of Jz; cf. the ordering of
levels in a 2p2 atom, i.e;, P(J=1) < D(J=2) < §(J=0). It is actually
poésible to obtain the ggggg'(i.e., experimental) spacing between the three
energy levels by adding a small fraction to the integer values of jl = j2 =

1, J =0,1, or 2, in Eq. (2.33).

2
d. A(np ) + B
As the final example we consider the collision of a 2p2 atom with a
1 :
closed shell S atom; e.g., C(2p2) + He. The system is pictured in Figure

4, and the classical Hamiltonian is

HJ(PaRgplarlsP29r2’Jl’qj ’ml’qﬁ‘l sjzsqj 9m2’qm )
1 -1 2 2
2 L2 2 L2
_P L, n i P 3y
= — t o+ 7+ = + 5 + v(rl)_+ v(rz) + V(R,rl{r2,61,62,¢l,¢2)

2uR e Zmerl e Zmer2 ‘

. (2.35)




~19-

where the variables have the same meaning as before. 22 is given in terms

of the canonical variables by

2 > > -r'lz

13-3,-4,

R

2, .2, .2 2 2 |
J° + jl + i, —»2ml - ?me - 2mlm2

- 2w -(mrhmz) le -m, "~ cosq_

1

;IZVGZ—(ml+m2)2 ngzlméz ;psqm2
+z\/jIZ_ml?ij?-mzz,cos<qm2_qml) @3

‘and the spherical angles (61,¢1) of ;l and (62,¢2) of ;2 are given in terms

of the canonical variables by

m

B 1 .
sind. cos¢, sinq, cosq ~+ -— cosq, sing
1 1 . 31 . m1 Jl i ml
r. = | sinf, sing = [--sinq, sinq + —— cosq, cosq © (2.37a)
1 1 1 \ i1 my i; iy my
cosel : \/l—ml /J1 C°qu1
sinb, cos¢, sinq, cosq '+ —= cosq, sing
2 - 2 » _Jz mz J2 3, mz
A . ‘ m, B :
?2,= .$1n92 31n¢2. = —glnqu s1nqm2 + f}; cosqj cosqm2 . (2.37b)

-2

: co_se2 S Vl-m2 /.j2 v c_osqj

2
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The variébles_(pl,rl) and (pz,rz) are replaced by the action-angle

variables (nl,q.n ) and (nz,qn ), and averaging over a5 9 > qj , and

‘ 1 2 1 2 1
: qj gives the Hamiltonian for the A(2p2) + B system as
2 .
2 2
P 2
H_(P,R,m_, s, ,q ) =5 + —
J 1%, "2 %) T 2 2R2
+V@Rm,myq 59 ), (2.38)
-1 2 : :
where ry an_d'r2 take on the average values and have not been denoted, and

where the interaction potential is given by

2 21 »
_ -2 .
V@Rmy,my,q, 5q ) = 20 é da; .4: day V(R01,05,0,,0))

(2.39)

The potential V is expanded in the Legendre expansion

© o min(A,A') MWW H y
: 3 (R) PA (cosel) PA.(cosez)(—l)

V('R’61’62’¢1’¢2) = Z Z V)\)\v

A=0 A'=0° =0

cos[u(6,~0,)1

ipd

' ' : ~ué
=Re 2, VAAB(R) qu(cosel)g 2

(-1)u PxP(cosQ2)e s
(2.40)

1
AsAT,u

and the averages over qj and qj involve integrals of the type evaluated in
'1 2 :

the Appendix. Carrying them out one obtains



L

=21~

| | 5 VZ mih_(z)\,)\')
V(R,m,,m,,q_, ) = a . » (R)
B Ty \'=072,6 10 o
| A+A' | - |
C (=D 2 any u 0 u L ol
X ¥ ( Ly p ( 2y (-1 cos[u(q_=-q_ )] s  (2.41)
X+A _A_ A ) . 31 A" J2 : m, ‘my .

and if we specialize to j1 =]y = 1 and retain only the loWest terms

A,A' = 0,2, this becomes

VR ) - Wo® - Le @) v20<R> 2 Py(my) Vo (R)

+ % Py(m;) Py(my) ng'(R) —'%:fé](nil) Plzl"(mz) CQS(qmz-qml_) V;Z(‘R)
+5 2, m) Péz(?z) -cés(z%z;zqml) ng(?‘).
= V80<R) + % .(1—3m12) Vgo(g)v#%-(l.—ﬁ‘ﬁlzz) ,ng(R)v
6 (1- 3m, )(l—3m ) v 2(RS Vl—m VE:;_71cos(qm qm )V Z(R)‘
+% (1-m12)(15m22) cos(2qm'2—2qm1) V§2(R) R (2.42) .'
For the symmetrical case; e.g., 2p2, we note'tﬁat.symmetry requires
dm-vzm) | | |

One can proceed further by noting that since the interactlon potentlal

in Eq. (2. 42) depends on qm and q only as the1r difference q ~9 » the
) b

quantlty my + m, is conserved by thls term in the Hamiltonian. (There are,

~of course, other_terms in the Hamiltonian, e.g.,.coriolls-coupling, that
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involve q and q_ individually and thus'prevent m, + m, from being
; ml mz o o 1 2
conserved by the total Hamiltonian.) This fact can be exploited by

making a canonical transformation to replace the actlon—angle variables
» (ml,q ) and (m qm ) by the new action angle variables (M,qM) and (L,qL),

™
where M and L are deflned in terms of the old variables by

=
]
=
+
B

1 2
1 - Gl + J?zl.z - J']_z-ml2 + ] 24 2\/ J—T‘_ﬁCOS(q l) s
(2.43a)
or since j1 = j2 =1, | .
L2 - (1—m12) + (l-mzz).+.2'\/1—m1‘2\/1—m2:2 cos(qmz-qél) . (2.43b)

This‘tfansformation is the classical analog of the Clebsch~Gordon transformation
of quantum mechanics, i.e., the transformation from the uncoupled yériables
jl,’jz,ml,m2 to the coupled variables jl’jZ’L’M’ and it has been discuseed

in detail previously.9 As noted, the new momentum M is conserved by the
electronic interaction V, so that it ie independent of the angle variabie qM;v

It is not hard to show that the old variables are expressed in terms of the

new variables by

M \/4-L2 LZ—'MZ
7 7t 2L

m, = cosqy : . (2.44e)
oM _Ve-LVLSM” cosq (2.44b)
2 2 2L L :

2

[ 7} 3 L / —M 4-L '
1-—m1 \/'l--m22.cos(qm2'qm ) =5 - 1- -7r + (L )é ) cos qL . (2.440)

1 - 4L"
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-Using Eqs. (2.44) we éan express the electronic interaction of Eq. (2.42)

in terms of M;L,qL:

- V(R,my,my,q 0,9 ) > V(R,M,L,q;) . - (2.45)
_ 1. "2 - :

4
a

M ié the A-quantum number éf-diatoﬁié'molecule spectroscopy, the projeCtion._
of the ;Qtai électroﬁiclbrbital aﬁgqlar momehtum onto the atom—atoﬁ.aXis;
M= 0,1,2 corresponds to Z,lI, and A electronic‘states, respectively.:q

The six functions VK,X'(R) inlEq. (2f43) can be deferminéd by-réquiring
that the seﬁiclassical electronic eigenvaiﬁes be the same és the'qﬁantum
mechanical ones. For the A(sz)—B system’thére é;é.tﬁree Z-béténtial-curves,
two II potentials, and one A pﬁtentiél. With R and M (= 0,1, or 2) fixed

in Eq. (2.45), the semiclassical eigenvalues afe'deﬁermined by

Sﬁhd; L(qL,#)'= 2m X(;ntegér? e | .. : b'(2.46a),.
 where L(qL,E) is thg fuﬁctionvdefiﬁed_(fér‘fiX§d R‘and M) By
.V(R;M,L,qL) ;.E N » (2.46b)

If EL(R,M) are these semiclassical eigenvalues (with L > IM|, then one

equates the semiclassical and quantum mechanical eigenvalues:

E,(R,2) ;va(R)l o o f (2.47a):'
El(R,l)‘f V“l(k) - R §2.47b)
?é(R,i) % Yﬂé(R?T S »,'. O (2.470)
Ey®,0) N N Y

0
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El(g,O). =V (R) 5 (2.47e)

i
<
7~~~
o
S’

E2(R,0) = (2.47f)

where VA(R),-VII (R), etc., are the quantum mechanical potential curves.
1 . :

Since EL(R,M)'is a function of the functions VAA'U(R)’ as determined by
the semiclassical eigenvalue relation, Eq. (2.47) determines a relation

between the six quantum mechanical potential curves and the six functions

VAA'U(R)' Eq. (2.47a) is particularly simple, for example, and is

0 . 1 .0, 0 1.0
VA(R) = VOO(R) -5 [VZO(R) + VOZ(R)] +-Z V22(R) . (2.48)
The other equations for M = (0,1 are more complicated than this but can,
at least in principle, be used to determine the functions VAA'U(R) in

terms of the quantum mechanical potential curves.
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‘III. Application to Fine Structure Transition in Fluorine

a. The Specific Model

As a first application of the.classical'modeis developed above and in
paper I, we have considered collisional quenching of the excitéd.fine4structurg

v:state of the fluorine atom by.H+ and by Xe,
2 + 2 o+ - |
F( P1/2) + H or Xe > F( P3/2) +H or Xe . (3.1)

These are interesting test cases since quantum mechanical coupled channel

calculationslo’11

have been carried out fbr theée,éystems and thué‘providz
the standards for comparison. . | h

The ground state F atom hés.eleCCronic cbnf;éuration‘2p5,>s§ the
classical electroniC’Haﬁiltonian'is thét of Sécéioﬁ iIé,‘with the.ad&ifion
of spin—orbit coupling in fhe f étom; The éomﬁléte Haﬁiltonian is de;iQédv
-in paper I and is | | |
’VPZJ 22 , N

H (P,R,j,Q-"m.-sq ) = By + —— + Bj
J U mj 2u 2]JR2

A ® el ® ,  (3.2)

where here L =1ands =‘-%'aire.t:‘he.rvnagnitudes of the ofbital and spin

‘aﬁgular momentum oflthé-Zé electron héle, and j is thg total electronic

angular mdmentumf L is,the brbital‘angularbmomentum of'rélative motion Of thek
tﬁo atoms;'QL ié'the pfojectiop of Z énfo'thg aﬁom;ame axis,_and:they:éré

given in terms of the canonical Variablesby4
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2 - Jz—mjz + jzemjz - Zth-ijij—mjz cosq_ (3.3a)
_ 3T y
avg --mj cosqj + mj(j2+L2—Sz)

) ‘ . (3.3b)

r_?

23

where

a = J+s) -V w-s)? (3.3¢)

J is the (conserved) total angular momentum. VZ(R) and Vﬂ(R) in Eq. (3.2)

| are the I and Il potential curveé for the F(ZP) + H+ or Xe system (computed
ignoring spin-orbit coupling). The constant B in Eq. (3.2)--the "rotation
constant" of the fluorine atom--is chosen‘so that this term in the Hamiltonian
reproduﬁes the 404 cm_l fine~-structure splitting of the isolated F atom;

i.e., with the Langer modification j - j +-l, B is chosen so that
1,12 _,3,12_ -1
B(_f + 2) - B(i + -2—') = 404 cm N

or
B==-13.7 cu’ s .
The classical Hamiltonian in Eq. (3.2) is the precise classical analog
o + )
of the Hamiltonian operator used by MieslO for his F + H coupled-channel -
calculations (and which was also used for the similar F + Xe calculationsll),
and in order to assess the merit of the classical model we have used the

same L and Il potentials as in these quantum scattering calculations.

b. Computational Aspects

The calculations were carried out within the framework of the standard
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v o . 7 . 1
quasiclassical trajectory model.12 The Langer modification 3 was also

-ﬁade,.i.e., "%“ was'added.fo the magnitudes of all angular momenta (but

not to the projection mj); i.e., wherever L,S,j; and J appear in Eqs. (3.2)

“and (3.3) one makes the replacements

L+ L+

S»>S8 +

[Ny

‘ 1
; A
173 2

J+J+

N

The cross section for the jl > jz‘trahsition, summed over mj and_averaéed

_ _ d2
over “ﬁ , is given by .
1
© : - . ’
0. s =—%5 o (271) P, . (I ., O (3.4)
199, k2 $=20 RPN | '

1

where we actually evaluated the sum over J as an integral,

- ) } :
Z - [.dJ Doy
J=0 - /2 .
which has no effect on the accurécy of the result. .The quasiclassical,

or classical histogram approximétion to the average transition probability
iS14 '
(J) = 23,+)7t > (2m)” qu qu x[3,@ q; -4, J-3,]
J 1 & 2. 19 J ‘3 J ’ . 2
(3.5)
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where X(x) is the "histogram function"

No| =

X(x) = 1; if'lxl <

1
'o, if |x| >3

The function j,(j,.m. , 9. » q_. ) in Eq. (3.5) is the final value of the
21 1 4 mjl '

variable j that results from a classical trajectory computed from the

Hamiltonian of Eq. (3.2) (using Hamilton's equations of motion) with

initial conditions

R(tl) = Rmax (an.arbitrarlly 1arge valug) ' | (3.6a)
P(t)) = foue; ~ (3.6b)
j(tl) = jl (initial quantum number) . (3.6¢)
mj(tl) = mj (initial quantum number) . (3.6d)
1 .
. t = R ) . . " 3.6e
qJ( 7 qu | ( )
qm'(tl) = Q- , (3.6f)
J Jl
where El is the initial translational energy,
| h2k_ 2
E. = 1
1l 2u

The function X in the integrand of Eq. (3.5) is 1 if the final quantum

number j,(j,,m., ,q9., ,q ) is within a "box" of unit width ‘centered about
U217 Ty . _ .
the value j2, and is zero otherwise. The two integrals in Eq. (3.5) are
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. usually evaluated,”along with that over J, by Monte Carlo methods, although

this is of éoursé not necessary.

Since we'haye computed cross sections for the éase‘jl = %3vj2 =-%,_
‘the suﬁ overvm;lvig.Eq. (3.S)ICOntains only the two'terms mji =‘+-% gnd
. n31 =-3. _However since the averggé probability_iﬁvolves a. sum over mjz
(which is manifésted classically as the integ;al over qmj ),_the'sum@and
| and is thus the same_f%r mj '='% and
= —%‘—, sa}lr, s0 that

of Eq. (3.5) depends only on lmj
. v , 1 |
m, =-—lu One thus needs to calculate it only for m, -
iy 2 , . hEY }
in this particular case Eq. (3.5) becomes (noting also that 2 jl +1=2

27 27

5 -2 11 : ,2. :
P§+_l(J) = (2m) -/O.dqjl' ~/0‘dqm. | X[Jz(z’z’qjl’qm,- )-.2]‘ . (3.7) .
c. F+ H+

As noted above, the L and II potential curves used in the classical
 Hami1tonian of Eq. (3.2) were'theAsame-Ohes'employéd‘by MieslO in his
quantumn mecﬁanical coupled4channel-calculation.‘ Figure 5 shows the
"reéults of the present quasi-classical calculations (based on Eqs.L(B.é)—

.(3.7))for'

VFY(2P1/2):+ U ~F(2p3/2) +d L | (3.8)

N

Mies' results are also shown in Figure 5 , and one sees that the classical
- model is in remarkably good agreement with_thé quantum mechanical results,
much better than one might expect for a pfoceés involving such small quantum

-vnumbers (i.e., j = L %)’ not to mention the fact that the model involves-a
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classical description of certain aspects of the electronic degrees of
freedom. There are, however, other exam,ples5 of inelastic collisidns

involving small quantum numbers, e.g.,

A+ Hz(j?O) > A+ H2(j=2) ’

with A = He and Li+;.for which the quasiclassical model has been found
to be reasonably accurate, and since thé present ﬁrocess is a "classically
allowed" one, it should perhaps not be too‘surprising that the quasiclassical
model works well.

A few variations of the computational methodology describéd in Sectioh
IIIb were investigated to test tﬁe sensitivity of the classical results
to the partiéular details of the quasiclassical procedure. First, the sum

over integer values of mj in Eq. (3.5) was replaced by an integral,
1

1
)

j :
R f‘ :

g ol+%)‘

e
[

= ntq

and this had an insignificant effect on the results. Not making the Langer

modification, however, leads to quite poor results, an order of magnitude

too small. Also, the "energy transfer" model--i.e., in which
Py 4 of Eq. (3.7) is approximated by -
73
2 1.2
- <j2 >'C—)
P31 > 33 19 ’
3¢ -3

where
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. VAl S 2T : :

2. - -2 . 11 2
<j > = (ZTT) qu. qu : ] (—’ FYEL P qm )
2 o Jo dr Jomy, TRE R T

--was tried, but it gave results more than a factor of 2 too large. (This

.was" without the Langer modificatioh;'with it, the.results are worse. )"

Finally, the quenching cross section was obtained by first éomputing the
quasiclassical cross section in the endoergic direction, 3 +-§,_and then-

obtéining the_éxoergic quenching cross section by microreversibility,

o

O3 .17 2Eyp/E1 000 5 (3.9)
2 2 27 .

where Ej is the translational enefgy for channel j ¥_%-and'%§ this gaVé»

a result over a factor of 2 too large. All of these results reinforce .

the conventional wisdom that if interference effects are unimportant,

~ then the most generally reliable way to utilize purely. classical tfajectories

(i.e., with no semiclassical considerations) is via the standard quasiclassical-

model (used in the exoergic direction).
d. F+ Xe

Similar calculations have been carried out for quenching of F( P1/2)

by Xe,

F(ZPl/Z) + Xe + F(2P3/2) tXe .

. ' o o+ » B
Since neutral Xe interacts with F much more weakly than does H , the cross

sectibn for Quenching by Xe is much.smalier‘and thus provides a more severe

 test of the quasiclassical model.

Figure 6 shows the quasiclassical cross section as a function'of-initial'

translational énergy, compared with the quantum mechanical coupled-channel

“calculations of Bécker.ll':Becéuse of the wedker interaction, the cross

section does not becdﬁe'appréciabie until higher collision energies than
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with H+; i.e., there is a substantial classically forbidden, or tunneling
region at low energies. |

Oﬁe sees again that the classical model for the électronic degrees
of freedom, along with the standard quasiclassical pfocedure, does a
reasonably good job of describing this electronically non-adiabatic
collision process, although agreement with the quantum results is ndt
as quantitative as for the F + H+ example. For this example, however,

microreversibility is more closely satisfied than for F + H+; thus the

1 - :
-% <5 quenching cross section obtained by first computing the quasiclassical

cross section for‘% +-%, and then using Eq. (3.9), is within v 13% of

‘ . : 1 : '
the quasiclassical cross section computed for 5+ « . To the extent

2

that quasiclassical cross sections are observed to obey microreversibility

N w

ones confidence in the results is increased.
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IV. Concluding Remarks.

Section III has shown how a classical pseudo-potential formalism can

. provide a more systematic way of deriving classical models for the electronic

degrees of freedom. For the examples treated previously‘4 this analysis

iéads to the Sage'classical electronic Hamiltonian, but it”shows-how to
proéeed in more general situations.

| The calculations repofted in Se¢;ibn III are the firstJapplicatién 6f
this approach, and while not of great practical significance in themselQes--
because it is easy eﬁough to carry out fully quantum mechaﬁical caiculations
for non-adiabatic processes in atom-atom cqllisions——the agreement with

the correct quantum mecﬁanical results is quite encouraging. The full'
advantéges of this approach are in tréating moleéulat collisions, é.g},

A + BC, where the presence:.of rotational and vibrational'degrees'of freedom

“usually prohibits completely quantum mechanical:calculations.

The results presented in Sectién II1 are also reassuring'in_another
sense. While the present:model ﬁés thebvirtue of treating eiéctronic'and
nuclear degrees of freedom dynémically cqnsistently, i£<is nevertheless.
true that a classical descfiptibn df thé eleétronic_motion is cruder than
the conventional "classical path" seﬁiclassical approach that describes
e;ectrons-quantum mechanically and nuclei classicaily.  The encoufagingb_
results obtainedvfdr thevquenchihg of exciﬁed F atoms indicate that_hot téo
much.violence has been done to the elecﬁronic degreeé,by.invoking thié.

classical model for them,
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AEEendix
Here we show how the integral in Eq. (2.24) is evaluated. Using

Eq. (2.20a), it is not hard to show that

i¢ -

e
e

cos¢é + i sin¢e' ‘(sinee cos¢e:+ i sin6e sin¢e)/sin6é

-iqm m 2 mz ' ;2'4‘.
e (sinq + i 3-cosq)/ sin"q + =5 cos'q

.2
J : .

-1 . -1 m
e exp[i tan (E cotq)] s

or

- 1w L B
¢e:— ~q, + tan = (3 cotq) . .:‘A,l):

where the subscript "j" has been dropped from qj, mj, and qﬁ_. ‘The
» v 5.
integral -in Eq. (2.24) is thus

-1 2 Cing
2m) 1 ~/Irdq P}\u (cosee) e ©.
0

[}
i

-iug 4 2 ' . _ _ -
e T (2m) 1 Jlndq PAH( 1-m /jz cosq) exp{iptan 16? cotq)]
0 ) N . - .

(A.2)
- Defining (92’¢2) by
‘vcose2 = cosee =V 1-m“/ji" cosq (A.3a)

-1 m : :
¢2 = tan 6? cotq) > ' (A.3b)
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Eq.‘(A.Z) then reads

L o-ug 2 g |
I=c¢e T (2m) 1 qu P)\u(cosez) e 2 .
. 0 : |
]
. OTs
-1uq _ 27 -
_ - L=l
I=e 7 c, (2m /()'d:; Y, 6,0 (A.4)

where YAu(62’¢2) is the usual spherical harmonic and-CA u is a normalization
. s .
constant relating qu eiu¢ tonAu. We consider (62,¢2) as the spherical

angles relating a unit vector r. to a space-fixed axis, and (61,¢1) as

2
. the corresponding angles relating the vector 21 to the same space fixed
axis. The angles (8,¢) are the sphericél angles which relate gé to a

new axis system which has its z-axis along 21' These various angles are

related by15
cose2 = cose1 cosd + sinel éine,cosq (A.5a)
N sind sind . :
sin(¢, 61) = ‘sinez . (A.5b)
If we choose
i 4/
m . ‘
8 = 5 | (A.6a) y
$ = q ‘ (A.6b) -
. 1 o
-_91 = cos ~(m/3) (A.6¢)

(A.6d)

S

H
|

IV
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then by using Eqs. (A.5) it is easy. to show that Eqs. (A.3) are satisfied.

A standard relation for angular momentum theory,l6

Yo ®20¢7) =21;:. Duu

' can now be used so that with Eqs. (A.6) the integral I of Eq. (A.2)

becomes
~tuqy, -1 m * -1 3 m
I =e }\u z; uul(za (JT)’ 0) (2'”) ‘/(;dq Y)\uv(—z‘,Q) ’
(A.8)
Since
-1 2 i ' T :
(ZW) [dq Y)\uv i ('f, Q) = Y)\U' ('fa 0) 611' ,0 ,

Eq. (A.8) becomes

-iug AT i
I=e D20, Du 0(2’ co ( ), 0 Y0200

-1 -1
e 1“qm CMJ YMJ (cos (I—;-), 12[) P)\(O)

1u( qm)

_ IJ ~ . , v
= e J) P)\(O) R | (A.9)

and using the fact that

|>

(l)
A ¢ !)2

A even

hﬂ>‘ N

P, (0) = | |
0 , A odd , (A.10)
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Eq. (2.24) follows.
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Figure Captions

'Codrdinates for the interaction of the pseudo one;eleétroh atom A
(e is the electron) and theFCIOSed‘shell atom B. |

Codrdipates.fof_the interaction of’fhe pseudo 6né—electr6n‘atoﬁ A
with the diatomic molecule BC. | |

" and e, being the

Coordinates for the pseudo two-electron atom A, e,

two electrons.

" Coordinates for the interaction of the pseudo two-electron atom A

and the closed shell-aﬁom 3.

Cross section for éuéﬂchiﬁg‘pf‘F(zPl/Z) to'theméroﬁﬁd state F(2P3/é)
by collision ﬁiﬁh ﬁ+;vés a function of iniﬁial translational.energy.
The full curve is the quantum mechanical result of referencé 10, ‘and
the points (with_statistical uncertainty,from the»Monte Carlo
integration) the preseﬁt quasiciassiéal résulté.

Same‘as Figure 5, except the collisioh‘partner is Xe, and the quantum
calculations are from referehce 11. Thé,lowef pointvat E = 1 eV_is
obtained computing the‘quasiclassicalvcross éection in,fhe éxcitation
&irection, §-+'%, and then using microscopic reversibility to.obtain‘

the de-excitation cross sectioﬁ.
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