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EQUIVARIANT SCHRÖDINGER MAPS IN TWO SPATIAL

DIMENSIONS: THE H2 TARGET

I. BEJENARU, A. IONESCU, C. KENIG, AND D. TATARU

Abstract. We consider equivariant solutions for the Schrödinger map problem from R2+1

to H2 with finite energy and show that they are global in time and scatter.

1. Introduction

The Schrödinger map equation in R
2+1 with values into Sµ ⊂ R

3 is given by

(1.1) ut = u×µ ∆u, u(0) = u0

where µ = ±1, the connected Riemannian manifolds Sµ,

S1 = S
2 = {y = (y0, y1, y2) ∈ R

3 : y21 + y22 + y23 = 1};

S−1 = H
2 = {y = (y0, y1, y2) ∈ R

3 : −y21 − y22 + y23 = 1, y3 > 0},
(1.2)

with the Riemannian structures induced by the Euclidean metric g1 = dy20 + dy21 + dy22
on S1, respectively the Minkowski metric g−1 = −dy20 + dy21 + dy22 on S−1. Thus S1 is
the 2-dimensional sphere S2, while S−1 is the 2-dimensional hyperbolic space H2. With
ηµ = diag(1, 1, µ), the cross product ×µ is defined by v ×µ w := ηµ · (v × w).

This equation admits a conserved energy,

E(u) =
1

2

∫

R2

|∇u|2µdx

and is invariant with respect to the dimensionless scaling

u(t, x) → u(λ2t, λx).

The energy is invariant with respect to the above scaling, therefore the Schrödinger map
equation in R2+1 is energy critical.

The local theory for classical data was established in [25] and [21]. We recall

Theorem 1.1 (McGahagan). If u0 ∈ Ḣ1 ∩ Ḣ3 then there exists a time T > 0, such that

(1.1) has a unique solution in L∞
t (̇[0, T ] : Ḣ1 ∩ Ḣ3).

The local and global in time of the Schrödinger map problem with small data has been
intensely studied for the case µ = 1 corresponding to S2 as target, see [3], [4], [5], [6], [9],
[15], [16]. The state of the art result for the problem with small data was established by
the authors in [6] where they proved that classical solutions (and in fact rough solutions
too) with small energy are global in time. These results are expected to extend to the case
µ = −1, corresponding to H2 as a target.

I.B. was supported in part by NSF grant DMS-1001676. A. I. was partially supported by a Packard
Fellowship and NSF grant DMS-1065710. C.K. was supported in part by NSF grant DMS-0968742. D.T.
was supported in part by the Miller Foundation and by NSF grant DMS-0801261.
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To gain some intuition about the large data problem, one needs to describe the solitons for
(1.1). The solitons for this problem are the harmonic maps, which are solutions to u×∆u = 0.
Since H2 is negatively curved there are no finite energy nontrivial harmonic maps. In the
case of S2 there are finite energy harmonic maps, but they cannot have arbitrary energy.
The trivial solitons are points, i.e. u = Q for some Q ∈ S2 and their energy is 0. The next
energy level admissible for solitons is 4π; the corresponding soliton is, up to symmetries, the
stereographic projection. Based on this, it is natural to make the following

Conjecture 1.2. a) Global well-posedness and scattering for Schrödinger maps from R2×R

into H
2 holds for all finite energy data.

b) Global well-posedness and scattering for Schrödinger maps from R2 × R into S2 holds
for all data with energy below 4π.

In full generality this remains an open problem. Recently, some progress was made for
the problem with large data in the case of S2. Smith established in [24] a conditional result
for global existence of smooth Schrödinger maps with energy < 4π.

In this article we confine ourselves to a class of equivariant Schrödinger maps. These are
indexed by an integer m called the equivariance class, and consist of maps of the form

(1.3) u(r, θ) = emθRū(r)

Here R is the generator of horizontal rotations, which can be interpreted as a matrix or,
equivalently, as the operator below

R =





0 −1 0
1 0 0
0 0 0



 , Ru =
−→
k ×µ u.

Here and thereafter we denote by
−→
i ,

−→
j ,

−→
k the standard orthonormal basis in R3, i.e. the

vectors with coordinate representation (1, 0, 0), (0, 1, 0) respectively (0, 0, 1). The case m = 0
corresponds to radial symmetry.

The energy for equivariant maps takes the following form:

(1.4) E(u) = π

∫ ∞

0

(

|∂rū(r)|
2
µ +

m2

r2
(ū21(r) + ū22(r))

)

rdr

If m 6= 0, then E(u) < ∞ implies better information about the behavior of u versus the
radial case m = 0, in particular it implies that u1 and u2 have limit zero as r → 0 and
r → ∞.

The global regularity question in the case m = 0 and target S
2, corresponding to radial

symmetry, has been considered recently by Gustafson and Koo, see [14]. The global regularity
in the case m = 1 and target S2 was considered by the authors in [8] where they have shown
that the 1-equivariant solutions of (1.1) with energy < 4π are globally well-posed.

In this paper we consider the case when the target manifold is H2 and prove the following

Theorem 1.3. i) Let µ = −1, m 6= 0 and u0 ∈ Ḣ1 ∩ Ḣ3 be an m-equivariant function.

Then (1.1) has a unique global in time solution u ∈ L∞(R : Ḣ1 ∩ Ḣ3). In addition ∇u, in a
particular frame, scatters to the free solution of a particular linear Schrödinger equation.

ii) The above solution is Lipschitz continuous with respect to the initial data in Ḣ1. In
particular if u0 ∈ Ḣ1 is a m-equivariant function, m 6= 0 then (1.1) has a global solution

2



u(t) ∈ L∞Ḣ1 defined as the unique limit of smooth solutions in Ḣ1 ∩ Ḣ3. Scattering also
holds for this solution in a suitable frame.

The statement of the scattering cannot be made precise at this time. We need to introduce
a moving frame on H2, write the equation of the coordinates of ∇u in that frame and identify
there the linear part of the Schrödinger equation. This will be carried out in Section 2.

The result in Theorem 1.3 is natural since the failure of the well-posedness of (1.1) is
expected to be closely related to the existence of finite energy harmonic maps. In the case
of H2 there are no harmonic maps, so no obstacles are present. In the case of S2 (µ = 1)
the lowest energy nontrivial is 4π and it was shown in [23] that blow-up can occur for maps
with energy 4π+.

1.1. Definitions and notations. While at fixed time our maps into the sphere or the
hyperbolic space are functions defined on R

2, the equivariance condition allows us to reduce
our analysis to functions of a single variable |x| = r ∈ [0,∞). One such instance is exhibited
in (1.3) where to each equivariant map u we naturally associate its radial component ū.
Some other functions will turn out to be radial by definition, see, for instance, all the gauge
elements in Section 2. We agree to identify such radial functions with the corresponding one
dimensional functions of r. Some of these functions are complex valued, and this convention
allows us to use the bar notation with the standard meaning, i.e. the complex conjugate.

Even though we work mainly with functions of a single spatial variable r, they originate in
two dimensions. Therefore, it is natural to make the convention that for the one dimensional
functions all the Lebesgue integrals and spaces are with respect to the rdr measure, unless
otherwise specified.

Since equivariant functions are easily reduced to their one-dimensional companions via
(1.3), we introduce the one dimensional equivariant version of Ḣ1,

(1.5) ‖f‖2
Ḣ1

e
= ‖∂rf‖

2
L2(rdr) +m2‖r−1f‖2L2(rdr).

This is natural since for functions u : R2 → R2 with u(r, θ) = emθRū(r) (here Ru =
−→
k × u

or, as a matrix, it is the upper left 2× 2 block of the original matrix R) we have

‖u‖Ḣ1 = (2π)
1

2‖ū‖Ḣ1
e
.

It is important to note that functions in Ḣ1
e enjoy the following properties: they are contin-

uous and have limit 0 both at r = 0 and r = ∞, see [11] for a proof.
We introduce Ḣ−1

e as the dual space to Ḣ1
e with respect to the L2 pairing, i.e.

‖f‖Ḣ−1
e

= sup
‖φ‖

Ḣ1
e
=1

〈f, φ〉

The elements from Ḣ−1
e can be represented in the form f = ∂rf1 + r−1f2 with f1, f2 ∈ L2.

Three operators which are often used on radial functions are [∂r]
−1, [r−m∂̄r]

−1 and [r∂r]
−1

defined as

[∂r]
−1f(r) = −

∫ ∞

r

f(s)ds, [r−m∂̄r]
−1f(r) =

∫ r

0

f(s)smds

[r∂r]
−1f(r) = −

∫ ∞

r

1

s
f(s)ds

3



A direct argument shows that

‖[r∂r]
−1f‖Lp .p ‖f‖Lp, 1 ≤ p <∞,

‖r−m−1[r−m∂̄r]
−1f‖Lp .p ‖f‖Lp, 1 < p ≤ ∞,

‖[∂r]
−1f‖L2 . ‖f‖L1.

(1.6)

The equivariance properties of the functions involved in this paper requires that the two-
dimensional Fourier calculus is replaced by the Hankel calculus for one-dimensional functions
which we recall below.

For k ≥ 0 integer, let Jk be the Bessel function of the first kind,

Jk(r) =
1

π

∫ π

0

cos(nτ − r sin τ)dτ

If Hk = ∂2r +
1
r
∂r −

k2

r2
, then Jk solves HkJk = −Jk.

We recall some formulas involving Bessel functions

(1.7) ∂rJk =
1

2
(Jk−1 − Jk+1), (r−1∂r)

m

(

Jk
rk

)

= (−1)m
Jk+m
rk+m

,

where J−k = (−1)kJk.
For each k ≥ 0 integer one defines the Hankel transform Fk by

Fkf(ξ) =

∫ ∞

0

Jk(rξ)f(r)rdr

The inversion formula holds true

f(r) =

∫ ∞

0

Jk(rξ)Fkf(ξ)ξdξ

The Plancherel formula holds true, hence in particular, the Hankel transform is an isometry.
For a radial function f and for an integer k we define its two-dimensional extension

(1.8) Rk(r, θ) = eikθf(r)

If f ∈ L2 then Rkf ∈ L2; if Rkf has additional regularity, this is easily read in terms of Fkf .
Indeed for any s ≥ 0 integer the following holds true

(1.9) Rkf ∈ Ḣs ⇔ ξsFkf ∈ L2

For even values of s this is a consequence of ∆Rkf = RkHkf , while for odd values of s it
follows by interpolation.

By direct computation, we also have that for k 6= 0,

(1.10) Rkf ∈ Ḣ1 ⇔ f ∈ Ḣ1
e , R0f ∈ Ḣ1 ⇔ ∂rf ∈ L2.

We will use the following result

Lemma 1.4. i) If f ∈ L2 is such that Hkf ∈ L2, with k 6= 1, then the following holds true

‖∂2rf‖L2 + ‖
∂rf

r
‖L2 + k‖

f

r2
‖L2 . ‖Hkf‖L2

ii) If f ∈ L2 is such that H1f ∈ L2, then the following holds true

‖∂2rf‖L2 + ‖
∂rf

r
−
f

r2
‖L2 . ‖H1f‖L2

4



iii) If f ∈ L2 is such that ∂rH0f ∈ L2, then the following holds true

‖∂3rf‖L2 + ‖
∂2rf

r
−
∂rf

r2
‖L2 . ‖∂rH0f‖L2

iv) If f ∈ L2 is such that H1f ∈ Ḣ1
e , then the following holds true

‖∂3rf‖L2 + ‖
∂2rf

r
‖L2 + ‖

∂rf

r2
−
f

r3
‖L2 . ‖H1f‖Ḣ1

e

v) If f ∈ L2 is such that H2f ∈ Ḣ1
e , then the following holds true

‖∂3rf‖L2 + ‖
∂2rf

r
−
∂rf

r2
‖L2 + ‖

∂rf

r2
−

2f

r3
‖L2 . ‖H2f‖Ḣ1

e

vi) If f ∈ L2 is such that Hkf ∈ Ḣ1
e , with k ≥ 3, then the following holds true

‖∂3rf‖L2 + ‖
∂2rf

r
‖L2 + ‖

∂rf

r2
‖L2 + ‖

f

r3
‖L2 . ‖Hkf‖Ḣ1

e

vii) If f, ∂rf ∈ L2, then for any 2 ≤ p < +∞ the following holds true

‖f‖Lp .p ‖∂rf‖L2 + ‖f‖L2

viii) If f,Hkf ∈ L2, with k ≥ 0, then for any 2 ≤ p < +∞ the following holds true

‖∂rf‖Lp .p ‖Hkf‖L2 + ‖f‖L2

Proof. Part i) for k ∈ {0, 2} are established in Lemma 1.3 in [8], and the general result for
all k ≥ 3 follows along the same lines.

For part ii) we use the inversion formula for f and (1.7) to compute

∂2rf =

∫

(J3 − 3J1)(rξ)ξ
2F1f(ξ)ξdξ

and the first part of the estimate follows. The estimate for the second term follows from the
form of H1f .

For part iii) we proceed as above, i.e. use the inversion formula for f and (1.7) to write

∂3rf =

∫

(J3 − 3J1)(rξ)ξ
3F0f(ξ)ξdξ

and conclude with the estimate for ‖∂3rf‖L2, while the estimate for the second term follows
from the expression of ∂rH0.

Parts iv)-vi) follow in a similar manner by using the Hankel transform and (1.7) to derive
the estimates. The details are left to the reader.

vii) and viii) are consequences of the standard Sobolev embeddings.
�

1.2. A few calculus rules. We recall that given µ = ±1 and two vectors v = t(v1, v2, v3)
and w = t(w1, w2, w3) in R3, their inner product is defined as

(1.11) v ·µ w = g−1(v, w) =
tv · ηµ · w = v1w1 + v2w2 +±v3w3,

where ηµ = diag(1, 1, µ). We define also the cross product

(1.12) v ×µ w := ηµ · (v × w),
5



where v × w denotes the usual vector product of vectors in R3. Simple computations show
that, for µ = ±1 and v, w ∈ R3

v ·µ (v ×µ w) = w ·µ (v ×µ w) = 0,

(v ×µ w) ·µ (v ×µ w) = µ(v ·µ v)(w ·µ w)− µ(v ·µ w)
2

(a×µ b) ·µ c = a ·µ (b×µ c)

(1.13)

1.3. Energy estimates. In this section we derive properties of u from the finiteness of its
energy E(u) in (1.4) in the case µ = −1 (in the case µ = 1 the corresponding estimates are
trivial as all terms come with + sign). We recall that

E(u) = π

∫ ∞

0

(

|∂rū1(r)|
2 + |∂rū2(r)|

2 − |∂rū3(r)|
2 +

m2

r2
(ū21(r) + ū22(r))

)

rdr

Since u1∂rū1 + u2∂rū2 = u3∂rū3 and ū23 = 1 + ū21 + ū22 it follows that

E(u) = π

∫ ∞

0

(

|∂rū1(r)|
2 + |∂rū2(r)|

2

ū23
+ (

ū2∂rū1 − ū2∂rū1
ū3

)2 +
m2

r2
(ū21(r) + ū22(r))

)

rdr

We also have that

ū21(r) + ū22(r)− ū21(1)− ū22(1) =

∫ r

1

∂r(ū
2
1 + ū22)ds

.

∫ r

1

(|ū1|+ |ū2|)(|∂rū1|+ |∂rū2|)ds

.

∫ r

1

(|ū1|+ |ū2|)
|ū1|+ |ū2|

s

|∂rū1|+ |∂rū2|

ū3
sds

. sup
s∈[1,r]

(|ū1(s)|+ |ū2(s)|)E(u)

from which we conclude that supr∈(0,∞) |u1(r)| + |u2(r)| . ū1(1) + ū2(1) + E(u). Therefore
supr∈(0,∞) |ū3(r)| . m + ū1(1) + ū2(1) + E(u), hence from the last expression of E(u) we

obtain that ū1, ū2 ∈ Ḣ1
e . In particular it follows that ū1(0) = ū2(0) = 0 (in the sense that

the limits exists and equal 0), hence rewriting the above argument on (0, r] instead gives
|ū1|L∞ + |ū2|L∞ . E(u), |ū3|L∞ . m+E(u). Recalling the last expression of E(u) we obtain

‖ū1‖Ḣ1
e
+ ‖ū2‖Ḣ1

e
. E(u)

1

2 (m+ E(u))

In addition we obtain ū3 − 1 ∈ Ḣ1
e with

‖ū3 − 1‖Ḣ1
e
. E(u)

1

2 (m+ E(u))

2. The Coulomb gauge representation of the equation

In this section we rewrite the Schrödinger map equation for equivariant solutions in a gauge
form. This approach originates in the work of Chang, Shatah, Uhlenbeck [9]. However, our
analysis is closer to the one in [5] and [7]. The computations in subsections 2.1 and 2.2 follow
exactly the same lines as the one used in [8]. Then we fix µ = −1 as the analysis becomes
more specific to this case.
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2.1. The Coulomb gauge. The computations below are at the formal level as we are not
yet concerned with the regularity of the terms involved in writing various identities and
equations. Implicitly we use only the information u ∈ Ḣ1. In subsection 2.4 we prove that
if u ∈ Ḣ3 then all the gauge elements, their compatibility relations and the equations they
obey are meaningful in the sense that they involve terms which are at least at the level of
L2.

We let the differentiation operators ∂0, ∂1, ∂2 stand for ∂t, ∂r, ∂θ respectively. Our strategy
will be to replace the equation for the Schrödinger map u with equations for its derivatives
∂1u, ∂2u expressed in an orthonormal frame v, w ∈ TuSµ. We choose v ∈ TuSµ such that
v ·µ v = 1 and define w = u×µ v ∈ TuSµ; to summarize

(2.1) v ·µ v = 1, v ·µ u = 0, w = u×µ v

From this, we obtain

(2.2) w ·µ v = 0, w ·µ w = 1, v ×µ w = µu, w ×µ u = v

Since u is m-equivariant it is natural to work with m-equivariant frames, i.e.

v = emθRv̄(r), w = emθRw̄(r).

where v̄, w̄ (as well as ū from (1.3)) are unit vectors in R3.
Given such a frame we introduce the differentiated fields ψk and the connection coefficients

Ak by

ψk = ∂ku ·µ v + i∂ku ·µ w, Ak = ∂kv · w.(2.3)

Due to the equivariance of (u, v, w) it follows that both ψk and Ak are spherically symmetric
(therefore subject to the conventions made in Section 1.1). Conversely, given ψk and Ak we
can return to the frame (u, v, w) via the ODE system:

(2.4)







∂ku = (ℜψk)v + (ℑψk)w
∂kv = −µ(ℜψk)u+ Akw
∂kw = −µ(ℑψk)u− Akv

If we introduce the covariant differentiation

Dk = ∂k + iAk, k ∈ {0, 1, 2}

it is a straightforward computation to check the compatibility conditions:

(2.5) Dlψk = Dkψl, l, k = 0, 1, 2.

The curvature of this connection is given by

(2.6) DlDk −DkDl = i(∂lAk − ∂kAl) = iµℑ(ψlψ̄k), l, k = 0, 1, 2.

An important geometric feature is that ψ2, A2 are closely related to the original map. Pre-
cisely, for A2 we have:

(2.7) A2 = m(
−→
k ×µ v) ·µ w = m

−→
k ·µ (v ×µ w) = m

−→
k ·µ (µu) = mu3

and, in a similar manner,

(2.8) ψ2 = mµ(w3 − iv3)
7



Since the (u, v, w) frame is orthonormal, it follows that |ψ2|
2 = m2(u21+u

2
2) and the following

important conservation law

(2.9) |ψ2|
2 + µA2

2 = µm2

Now we turn our attention to the choice of the (v̄, w̄) frame at θ = 0. Here we have
the freedom of an arbitrary rotation depending on t and r. In this article we will use the
Coulomb gauge, which for general maps u has the form div A = 0. In polar coordinates this
is written as ∂1A1 + r−2∂2A2 = 0. However, in the equivariant case A2 is radial, so we are
left with a simpler formulation A1 = 0, or equivalently

(2.10) ∂r v̄ ·µ w̄ = 0

which can be rearranged into a convenient ODE as follows

(2.11) ∂r v̄ = µ(v̄ ·µ ū)∂rū− µ(v̄ ·µ ∂rū)ū

The first term on the right vanishes and could be omitted, but it is convenient to add it so
that the above linear ODE is solved not only by v̄ and w̄, but also by ū. Then we can write
an equation for the matrix O = (v̄, w̄, ū):

(2.12) ∂rO =MηµO, M = ∂rū ∧ ū := ∂rū⊗ ū− ū⊗ ∂rū

with an antisymmetric matrix M .
An advantage of using the Coulomb gauge is that it makes the derivative terms in the

nonlinearity disappear. Unfortunately, this only happens in the equivariant case, which is
why in [6] we had to use a different gauge, namely the caloric gauge.

The ODE (2.11) needs to be initialized at some point. A change in the initialization leads
to a multiplication of all of the ψk by a unit sized complex number. This is irrelevant at fixed
time, but as the time varies we need to be careful and choose this initialization uniformly
with respect to t, in order to avoid introducing a constant time dependent potential into the
equations via A0. Since in our results we start with data which converges asymptotically to
~k as r → ∞, and the solutions continue to have this property, it is natural to fix the choice
of v̄ and w̄ at infinity,

(2.13) lim
r→∞

v̄(r, t) =~i, lim
r→∞

w̄(r, t) = −µ~j

The existence of a unique solution v̄ ∈ C((0,+∞) : R
3) of (2.11) satisfying (2.13) is

standard, we skip the details. Moreover the solution is continuous with respect to u in the
following sense

(2.14) ‖v̄ − ¯̃v‖L∞ . ‖u− ũ‖Ḣ1

2.2. Schrödinger maps in the Coulomb gauge. We are now prepared to write the
evolution equations for the differentiated fields ψ1 and ψ2 in (2.3) computed with respect to
the Coulomb gauge.

Writing the Laplacian in polar coordinates, a direct computation using the formulas (2.3)
shows that we can rewrite the Schrödinger Map equation (1.1) in the form

(2.15) ψ0 = i

(

D1ψ1 +
1

r
ψ1 +

1

r2
D2ψ2

)

8



Applying the operators D1 and D2 to both sides of this equation and using the relation (2.6)
for l, k = 1, 2 we obtain

D1ψ0 = i

(

D1(D1 +
1

r
)ψ1 +

1

r2
D2D1ψ2

)

−
µ

r2
ℑ(ψ1ψ̄2)ψ2

D2ψ0 = i

(

(D1 +
1

r
)D2ψ1 +

1

r2
D2D2ψ2

)

− µℑ(ψ2ψ̄1)ψ1

(2.16)

Using now (2.5) for (k, l) = (0, 1) respectively (k, l) = (0, 2) on the left and for (k, l) = (1, 2)
on the right we can derive the evolution equations for ψm, m = 1, 2:

D0ψ1 = i

(

D1(D1 +
1

r
) +

1

r2
D2D2

)

ψ1 −
µ

r2
ℑ(ψ1ψ̄2)ψ2

D0ψ2 = i

(

(D1 +
1

r
)D1 +

1

r2
D2D2

)

ψ2 − µℑ(ψ2ψ̄1)ψ1

(2.17)

In our set-up all functions are radial and we are using the the Coulomb gauge A1 = 0. Then
these equations take the simpler form

∂tψ1 + iA0ψ1 =i∆ψ1 − i
1

r2
A2

2ψ1 − i
1

r2
ψ1 +

2

r3
A2ψ2 −

µ

r2
ℑ(ψ1ψ̄2)ψ2

∂tψ2 + iA0ψ2 =i∆ψ2 − i
1

r2
A2

2ψ2 − µℑ(ψ2ψ̄1)ψ1

The two variables ψ1 and ψ2 are not independent. Indeed, the relations (2.5) and (2.6) for
(k, l) = (1, 2) give

(2.18) ∂rA2 = µℑ(ψ1ψ̄2), ∂rψ2 = iA2ψ1

which at the same time describe the relation between ψ1 and ψ2 and determine A2.
From the compatibility relations involving A0, we obtain

(2.19) ∂rA0 = −
µ

2r2
∂r(r

2|ψ1|
2 − |ψ2|

2)

from which we derive

(2.20) A0 = −
µ

2

(

|ψ1|
2 −

1

r2
|ψ2|

2

)

− µ[r∂r]
−1

(

|ψ1|
2 −

1

r2
|ψ2|

2

)

This is where the initialization of the Coulomb gauge at infinity is important. It guarantees
that A0 ∈ Lp, provided that |ψ1|

2 − r−2|ψ2|
2 ∈ Lp for 1 ≤ p < ∞. In particular, without

any additional regularity assumptions, we know that A0 ∈ L1. A direct computation using
integration by parts gives that

(2.21)

∫

A0(r)rdr = 0.

The system satisfied by ψ1 and
ψ2

r
(this being in fact the correct variable instead of ψ2) is

given by:

(i∂t +∆−
m2 + 1

r2
)ψ1 +

2µmi

r2
ψ2

r
=A0ψ1 +

A2
2 −m2

r2
ψ1 + 2i

A2 + µm

r3
ψ2 − iµℑ(ψ1

ψ̄2

r
)
ψ2

r

(i∂t +∆−
m2 + 1

r2
)
ψ2

r
−

2µmi

r2
ψ1 =A0

ψ2

r
+
A2

2 −m2

r2
ψ2

r
− 2i

A2 + µm

r2
ψ1 − iµℑ(

ψ2

r
ψ̄1)ψ1
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The problem with this system is that its linear part is not decoupled. This can be remedied
by a change of variables. Indeed consider

ψ− = ψ1 − i
ψ2

r
, ψ+ = ψ1 + i

ψ2

r

It turns out that ψ± satisfy a similar system (described below) whose linear part is decoupled.
The relevance of the variables ψ± comes also from the following reinterpretation. If W± is
defined as the vector

W± = ∂ru±
1

r
u× ∂θu ∈ Tu(Sµ)

then ψ± is the representation of W± with respect to the frame (v, w). On the other hand, a
direct computation leads to

E(u) = π

∫ ∞

0

(

|∂rū|
2 +

m2

r2
|ū×Rū|2

)

rdr

= π‖W̄±‖2L2 ∓ 2πm(ū3(∞)− ū3(0))

where we recall that u(r, θ) = emθRū(r) and ū3(∞) = limr→∞ ū3(r), ū3(0) = limr→0 ū3(r) are

well-defined since ū1, ū2 ∈ Ḣ1
e and if f ∈ Ḣ1

e then limr→0 f(r) = limr→0 f(r) = 0, see [11] or
[7]. From Section 1.3 it follows that, in the case µ = −1, ū3(∞) = ū3(0) = 1. In the case
µ = 1 one needs the energy restriction E(u) < 4π to obtain that ū3(∞) = ū3(0) = 1, see [8].
In both cases we obtain the following identity

(2.22) ‖ψ±‖2L2 = ‖W̄±‖2L2 =
E(u)

π
.

From (2.14) it follows that the following continuity property holds true

(2.23) ‖ψ± − ψ̃±‖L2 . ‖u− ũ‖Ḣ1

A direct computation yields the following system for ψ±:

(i∂t +H−
m)ψ

− =

(

A0 − 2
A2 + µm

r2
+
A2

2 −m2

r2
−
µ

r
ℑ(ψ2ψ̄1)

)

ψ−

(i∂t +H+
m)ψ

+ =

(

A0 + 2
A2 + µm

r2
+
A2

2 −m2

r2
+
µ

r
ℑ(ψ2ψ̄1)

)

ψ+

where

H−
m = ∆−

(m+ µ)2

r2
, H+

m = ∆−
(m− µ)2

r2
.

Here and whenever ∆ acts on radial functions, it is known that ∆ = ∂2r +
1
r
∂r. By replacing

ψ1 = ψ±∓ ir−1ψ2 and using µA2
2+ |ψ2|

2 = µm2, we obtain the key evolution system we work
with in this paper,

(2.24)

{

(i∂t +H−
m)ψ

− = (A0 − 2A2+µm
r2

− µ

r
ℑ(ψ2ψ̄

−))ψ−

(i∂t +H+
m)ψ

+ = (A0 + 2A2+µm
r2

+ µ

r
ℑ(ψ2ψ̄

+))ψ+

We will use this system in order to obtain estimates for ψ±. The old variables ψ1 and
ψ2

r
are

recovered from

(2.25) ψ1 =
ψ+ + ψ−

2
,

ψ2

r
=
ψ+ − ψ−

2i
10



From the compatibility conditions (2.18) we derive the formula for A2

(2.26) A2(r) + µm = −µ

∫ r

0

|ψ+|2 − |ψ−|2

4
sds

From (2.20) A0 is given by

(2.27) A0 = −
µ

2
ℜ(ψ

+
ψ−) + µ[r∂r]

−1ℜ(ψ
+
ψ−)

The compatibility condition (2.18) reduces then to

(2.28) ∂r[r(ψ
+ − ψ−)] = −A2(ψ

+ + ψ−)

Next assume that ψ± ∈ L2 are given such that they satisfy the compatibility conditions
(2.28). We reconstruct A2, ψ2, ψ1 using the (2.25) and (2.26). From (2.26) and (2.28) it
follows that (2.18) hold true. From (2.26) it follows that A2 ∈ L∞ and it is continuous and
has limits both at 0 and ∞. From the definition of ψ2 we have ψ2

r
∈ L2 and from (2.28)

we derive ∂rψ2 ∈ L2, hence ψ2 ∈ Ḣ1
e . From this and (2.26) it follows that ∂rA2 ∈ L2,

while by invoking (1.6) we obtain A2+µm
r

∈ L2, therefore A2 + µm ∈ Ḣ1
e . In particular

A2(∞) = limr→∞A2(r) = −µm which implies that ‖ψ+‖L2 = ‖ψ−‖L2.
In fact one can keep track of a single variable, ψ− or ψ+ since it contains all the information

about the map, provided that the choice of gauge (2.13) was made. To be more precise, (2.18)
gives the following

(2.29) ∂rA2 = µℑ(ψ−ψ̄2) +
µ

r
|ψ2|

2, ∂rψ2 = iA2ψ
− −

1

r
A2ψ2

We will show that given ψ− ∈ L2, this system has a unique solution A2 + µm, ψ2 ∈ Ḣ1
e .

From this we can reconstruct ψ1, ψ
+, A0. Finally, given ψ−, A2 and ψ2, we can return to

the Schrödinger map u via the system (2.4) with the boundary condition at infinity given
by (2.13). Eventually we show that if ψ− satisfies its corresponding equation from (2.24),
then the u obtained is a Schrödinger map. A similar procedure can completely reconstruct
u from ψ+.

The reason to keep both variables ψ± (instead of just one) has to do with the nonlin-
ear analysis of the system (2.24). The reason we want to understand how to recover all
information from only one variable, say ψ−, has to do with the elliptic part of the profile
decomposition in Proposition 4.3.

2.3. Fix µ = −1. The theory with µ = 1 was developed in [8]. From this point on we
fix µ = −1 as the theory becomes more specific to this case. When comparing the results
obtained here and those in [8] the reader may notice a few differences. First, one sees that ψ±

come with operatorsHm∓µ and all the consequences associated, see for instance the regularity
below. This is a consequence of the way we chose the limits limr→0 ū3 = limr→∞ ū3 =
−µ. Second, the analytic theory of the system (2.29) with µ = −1, see Proposition 2.3, is
somehow different then its counterpart for µ = 1. The Cauchy theory in Section 3 and the
Concentration compactness argument in Section 4 are very similar. Finally, the arguments
in Section 5 are again specific to the case µ = −1, as in particular no restriction on the size
of the energy/mass is needed to rule out the possibility of blow-up.
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2.4. Regularity of the gauge elements. In this section we clarify the regularity of the
gauge elements. Our main claim is the following

Proposition 2.1. If u ∈ Ḣ3 then Rm±1ψ
± ∈ H2 and

(2.30) ‖u‖Ḣ1∩Ḣ3 ≈ ‖Rm+1ψ
+‖H2 + ‖Rm−1ψ

−‖H2

The proof of this result will be provided in the Appendix.
Therefore, in the context of u ∈ Ḣ1 ∩ Ḣ3, we have that Rm±1ψ

± ∈ H2 ⊂ L∞. The H2

regularity cannot be extended to (two-dimensional extensions of) ψ1 and
ψ2

r
since the ψ+ and

ψ− require different phases for regularity. However, all the Sobolev embeddings are inherited
by ψ1 and ψ2

r
, in particular ψ1,

ψ2

r
⊂ L∞. Since A2 = u3 it follows that A2 ∈ Ḣ1 ∩ Ḣ3 and

∂tA2 ∈ H1. Finally by differentiating with respect to t the system (2.11), one can show
that ∂tv̄ ∈ H1, hence A0 ∈ H1 which in turn gives ∂rA0 ∈ L2. With these in mind, all the
compatibility conditions in the previous two subsections are at least at the level of L2.

2.5. Recovering the map from ψ−. In this section we address the issue of re-constructing
the Schrödinger map u together with its gauge elements from only one of its reduced variable,
say ψ−. Reconstructing ψ2, A2 such that ψ2, A2 −m ∈ Ḣ1

e is a unique process; however, the
reconstruction of the actual map with its frame, i.e. of (u, v, w) is unique provided one

prescribes conditions at ∞. The map u satisfies u(∞) = ~k, while the gauge is subjected to
the choice (2.13).

The main result of this section is the following

Proposition 2.2. Given ψ− ∈ L2, there is a unique map u : R2 → S2 with the property
that ψ− is the representation of W− relative to a Coulomb gauge satisfying (2.13). This also
satisfies E(u) = π‖ψ−‖2

L2.

If ψ̃− ∈ L2 and ũ is the corresponding map as above, then the following holds true

(2.31) E(u− ũ) . ‖ψ− − ψ̃−‖2L2

Here ψ+ can be reconstructed from ψ−. Moreover the equations (2.29) which we use for
reconstruction force the compatibility condition (2.28) between ψ±. The result remains true
if we start from ψ+ just that we would start the reconstruction (described below) from the
analogue of the (2.29) written in terms of ψ+. The two problems are in effect equivalent via
an inversion. The uniqueness of the reconstruction guarantees that starting from either ψ+

or ψ− (which are assumed to be compatible) gives the same u.
The proof consists of several steps. The first one deals with recovering the two gauge

elements ψ2, A2 from ψ− by using the system (2.29).

Lemma 2.3. Given ψ− ∈ L2, the system (2.29) has a unique solution (A2, ψ2) satisfying
ψ2, A2 −m ∈ Ḣ1

e . This solution satisfies

(2.32) ‖ψ2‖Ḣ1
e
+ ‖A2 −m‖Ḣ1

e
+ ‖

A2 −m

r
‖L1(dr) . ‖ψ−‖L2(m+ ‖ψ−‖2L2)

In addition we have the following properties:
i) given ǫ > 0, and R such that ‖ψ−‖L2(R\[R−1,R]) ≤ ǫ, then the following holds true

(2.33) ‖ψ2‖Ḣ1
e (R\[R

−1,ǫ−1R]) + ‖A2 −m‖Ḣ1
e (R\[R

−1,ǫ−1R]) . ǫ‖ψ−‖L2

12



ii) if (Ã2, ψ̃2) is another solution (as above) to (2.29) with ψ̃−, then

(2.34) ‖ψ2 − ψ̃2‖Ḣ1
e
+ ‖A2 − Ã2‖Ḣ1

e
. ‖ψ− − ψ̃−‖L2

iii) if (Ã2, ψ̃2) satisfy ψ̃2, Ã2 −m ∈ Ḣ1
e and solve

∂rψ̃2 = iÃ2ψ̃
− −

1

r
Ã2ψ̃2 + E1

∂rÃ2 =− ℑ(ψ̃− ¯̃ψ2)−
1

r
(Ã2

2 −m2) + E2

(2.35)

where ‖|E1|+ |E2|‖L1(dr)+L2 . ǫ then

(2.36) ‖ψ2 − ψ̃2‖Ḣ1
e
+ ‖A2 − Ã2‖Ḣ1

e
. C(‖ψ−‖L2 , ‖ψ̃−‖L2)(‖ψ− − ψ̃−‖L2 + ǫ)

iv) if ψ− ∈ Lp with 1 ≤ p <∞ then ψ+, ψ2

r
, A2−m

r
∈ Lp and

(2.37) ‖ψ+‖Lp + ‖
ψ2

r
‖Lp + ‖

A2 −m

r
‖Lp . C(‖ψ−‖L2)‖ψ−‖Lp

v) if Rm−1ψ
− ∈ Hs then Rm+1ψ

+ ∈ Hs for any s ∈ {1, 2, 3}, and

(2.38) ‖Rm−1ψ
−‖Hs ≈ ‖Rm+1ψ

+‖Hs

with implicit constants depending on ‖ψ−‖L2.

The reason for having the second type of statement in (2.36) is of technical nature and

will be apparent in Section 4. The equation for Ã2 in (2.35) is more convenient in that form
when taking differences. For the original system (2.29) it does not matter how one writes
the equation for A2 thanks to the conservation law A2

2 − |ψ2|
2 = m2; however in the case

of (2.35) this conservation law does not hold true, hence we write the system in the more
convenient form (2.35).

Proof. Our strategy is to solve the ode system (2.29) from zero. Since ψ2, A2 −m ∈ Ḣ1
e , it

follows that limr→0 ψ2 = 0, limr→0A2 = m. These two conditions play the role of boundary
conditions at zero. Since ∂r(A

2
2 − |ψ2|

2) = 0, it follows from the conditions at ∞ that
A2

2 − |ψ2|
2 = m2 holds on all of R+.

To prove existence, we begin by solving the system in a neighborhood (0, R−1) of the
origin. By choosing R large enough we can assume without any restriction in generality that

(2.39) ‖ψ−‖L2(0,R−1) ≤ ǫ

and seek (ψ2, A2) with the property that

(2.40) ‖ψ2‖Ḣ1
e (0,R

−1) . ǫ

Since limr→∞A2 = m, A2
2 = m2 + |ψ2|

2 > 0 and A2 is continuous, it follows that A2 =
√

m2 + |ψ2|2. We substitute this in the ψ2 equation and discard the dependent A2 equation.
We rewrite the ψ2 equation as

(∂r +
m

r
)ψ2 = imψ− + i(A2 −m)ψ− −

(A2 −m)ψ2

r

or equivalently

r−m∂rr
mψ2 = imψ− + i(A2 −m)ψ− −

(A2 −m)ψ2

r
13



and further

ψ2 = imr−m[r−m∂r]
−1ψ− + r−m[r−m∂r]

−1(i(A2 −m)ψ− −
(A2 −m)ψ2

r
)

We know from (1.6) that r−m−1[r−m∂̄r]
−1 maps L2 to L2, which easily implies that

r−m[r−m∂̄r]
−1 : L2 → Ḣ1

e

Hence in order to obtain ψ2 via the contraction principle it suffices to show that for ψ as in
(2.39) and ψ2 as in (2.40) the map

ψ2 → i(A2 −m)ψ− −
(A2 −m)ψ2

r

is Lipschitz from Ḣ1
e → L2 with a small (O(ǫ) in this case) Lipschitz constant. But this is

straightforward due to the embedding Ḣ1
e ⊂ L∞. Thus the existence of ψ2 in (0, R−1] follows,

and the corresponding A2 is recovered via A2(r) =
√

m2 + |ψ2(r)|2. The same argument also
gives Lipschitz dependence of ψ2 on ψ− in (0, R−1].

The solution obtained above on (0, R−1] can be extended locally via standard arguments
since L2(rdr) ⊂ L1

loc(dr). This extension is global provided we have an a-priori estimate
which guarantees that A2 and ψ2 stay in a bounded set. Indeed, integrating the equation of
A2 gives

A2(r)−m ≤ ‖ψ−‖L2(0,r]‖
ψ2

r
‖L2(0,r] − ‖

ψ2

r
‖2L2(0,r] = ‖

ψ2

r
‖L2(0,r)(‖ψ

−‖L2(0,r] − ‖
ψ2

r
‖L2(0,r])

and since A2(r) ≥ m it follows that ‖ψ2

r
‖L2(0,r) ≤ ‖ψ−‖L2(0,r] for any r ≥ 0, in particular we

obtain ‖ψ2

r
‖L2 ≤ ‖ψ−‖L2 . From above estimate we also obtain

(2.41) ‖A2‖L∞ ≤ m+ ‖ψ−‖2L2.

This in turn guarantees that the solution (A2, ψ2) extends globally up to r = ∞. Also, using
these estimates in (2.29) gives the (2.32).

For proving (2.33) we use an energy type argument. Denoting

F =
ψ2

A2 +m

its derivative satisfies
∣

∣

∣

∣

d

dr
|F |2 +

2m

r
|F |2

∣

∣

∣

∣

. |ψ−||F |

This further leads to
∣

∣

∣

∣

d

dr
(r2m|F |)

∣

∣

∣

∣

. r2m|ψ−|

Integrating from infinity we obtain

|F | . r−2m[r−2m∂̄r]
−1|ψ−|

Returning to ψ2 we get the pointwise bound

(2.42) |
ψ2

A2 +m
| . r−2m[r−2m∂̄r]

−1|ψ−|

Note that if | ψ2

A2+m
| ≤ 1

8m
then | ψ2

A2+m
| ≈ |ψ2|. The construction of the solution on (0, R−1)

gives the corresponding part of (2.33) since (2.42) holds on any such interval. Getting the
14



(0, ǫ−1R] part of (2.33) is slightly more delicate. It suffices to get the L2 bound for ψ2

r
. From

(2.42) we have

|ψ2| . r−2m[r−2m∂̄r]
−1(1(0,R]|ψ

−|) + r−2m[r−2m∂r]
−1(1[R,∞)|ψ

−|)

For the second term we use the smallness of ψ2 in the hypothesis. For the first one we instead
produce a pointwise bound using Cauchy-Schwarz:

r−2m[r−2m∂̄r]
−1(1(0,R]|ψ

−|) . r−2m

∫ R

0

s2m|ψ−(s)|ds . (r−1R)2m‖ψ−‖L2, r > R

This implies the desired L2 bound.
Next we turn our attention to (2.34) and (2.36). In fact, in the case of (2.34), in light of

the conservation law Ã2
2 − |ψ̃2|

2 = m2, (2.34) follows from (2.36) with E1 = E2 = 0. Hence
we focus our attention on (2.36). We denote

δψ = ψ̃ − ψ, δA2 = Ã2 −A2, δψ2 = ψ̃2 − ψ2

Without any restriction in generality we can make the assumption ‖δψ‖L2 ≪ 1 and the
bootstrap assumption

(2.43) ‖δψ2‖L∞ + ‖δA2‖L∞ + ‖
δψ2

r
‖L∞ + ‖

δA2

r
‖L∞ . ǫ

1

2 + ‖δψ‖
1

2

L2

Then we derive the equations for them modulo error terms. We have

∂rδψ2 = iδA2ψ̃
− + iA2δψ −

1

r
A2δψ2 −

1

r
δA2ψ̃2 + E1

∂rδA2 =− ℑ(ψ−δψ2)− ℑ(δψψ̃2)−
2

r
A2δA2 −

1

r
(δA2)

2 + E2

The following terms iA2δψ,ℑ(δψψ̃2) can be directly included into the error terms E1, E2,
while the quadratic term 1

r
(δA2)

2 can be included in the error term E2 based on (2.43). We
obtain the following linear system for (δψ2, δA2):

∂rδψ2 = −
m

r
δψ2 + iψ̃−δA2 −

1

r
(A2 −m)δψ2 −

1

r
δA2ψ̃2 + E1

∂rδA2 = −
2m

r
δA2 + ℑ(ψ−δψ2)−

2

r
(A2 −m)δA2 + E2

By considering the ℜδψ2,ℑδψ2 separately, this is a system of the form

∂rX = −
m

r
LX +BX + F, L =





1 0 0
0 1 0
0 0 2





where the matrices B,F satisfy B ∈ L2 and F ∈ L2 + L1(dr). This system needs to be
solved with zero Cauchy data at infinity. For this system we need to establish the bound

(2.44) ‖X‖L∞ + ‖
X

r
‖L2 . ‖F‖L2+L1(dr)

If B = 0 then

X =





r−m[r−m∂̄r]
−1 0 0

0 r−m[r−m∂̄r]
−1 0

0 0 r−2m[r−2m∂r]
−1



F
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and the conclusion easily follows from argument of type (1.6). If B is small in either L2(rdr)
or in r−1L∞ then we can treat the BX term perturbatively. If B is large then some more
work is needed. We decompose B = B1 + B2 where B1 ∈ L1(dr) and |B2| ≪ 1

r
. We

can construct the bounded matrix e
∫
B1 as a solution of ∂re

∫
B1 = e

∫
B1B1 which also has a

bounded inverse. Then we can eliminate B1 by conjugating with respect to e
∫
B1 , and then

treat the part with B2 perturbatively.
iv) From (2.42), (2.41) and (1.6) we obtain

‖
ψ2

r
‖Lp . ‖A2 +m‖L∞‖ψ−‖Lp . ‖ψ−‖Lp(m+ ‖ψ−‖2L2)

from which (2.37) follows since ψ+ = 2iψ2

r
+ ψ− and A2 −m = |ψ2|2

A2+m
.

v) Throughout this argument, the use of Sobolev embedding refers to the two-dimensional
standard Sobolev embeddings which apply to Rm±1ψ

±, which then can be read in terms of
ψ±.

If s = 1 then we use (2.28) to obtain

(2.45) (r∂r + (m+ 1))ψ+ = (r∂r − (m− 1))ψ− − (A2 −m)(ψ+ + ψ−)

from which

ψ+ = r−m−1[rm∂̄r]
−1
(

(r∂r − (m− 1))ψ− − (A2 −m)(ψ+ + ψ−)
)

From the Sobolev embedding and (2.37) we obtain

‖
(A2 −m)(ψ+ + ψ−)

r
‖L2 . ‖

A2 −m

r
‖L4‖ψ+ + ψ−‖L4 . ‖Rm−1ψ

−‖2H1

which combined with (1.6) gives ‖ψ
+

r
‖L2 . ‖Rm−1ψ

−‖H1. Plugging this back in (2.45) gives
‖∂rψ

+‖L2 . ‖Rm−1ψ
−‖H1 from which the statement follows for s = 1.

If s = 2 we differentiate (2.45) to obtain

Hm+1ψ
+ = (

1

r
∂r −

m+ 1

r2
)(r∂r + (m+ 1))ψ+

= (
1

r
∂r −

m+ 1

r2
)
[

(r∂r − (m− 1))ψ− − (A2 −m)(ψ+ + ψ−)
]

= Hm−1ψ
− + (−

2m

r
∂r +

2m2 − 2m

r2
)ψ− − (

1

r
∂r −

m+ 1

r2
)
[

(A2 −m)(ψ+ + ψ−)
]

From Lemma 1.4 it follows that ‖(−2m
r
∂r +

2m2−2m
r2

)ψ−‖L2 . ‖Hm−1ψ
−‖L2 . From part vii)

of Lemma 1.4 we have that ‖ψ−‖L6 . ‖Rm−1ψ
−‖H1 and by (2.37) ‖ψ2

r
‖L6 + ‖ψ+‖L6 .

‖Rm−1ψ
−‖H1, hence we estimate

‖
1

r
∂rA2(ψ

+ + ψ−)‖L2 . (‖ψ−‖L6 + ‖
ψ2

r
‖L6)‖

ψ2

r
‖L6(‖ψ−‖L6 + ‖ψ+‖L6) . ‖Rm−1ψ

−‖3H1

‖
A2 −m

r2
(ψ+ + ψ−)‖L2 . ‖

ψ2

r
‖2L6(‖ψ−‖L6 + ‖ψ+‖L6) . ‖Rm−1ψ

−‖3H1

Using Lemma 1.4 we estimate

‖
A2 −m

r
∂rψ

−‖L2 . ‖
A2 −m

r
‖L4‖∂rψ

−‖L4 . ‖Rm−1ψ
−‖3H2
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If s = 3 then from the above expression for Hm+1ψ
+ we obtain

1

r
Hm+1ψ

+ =
1

r
Hm−1ψ

− +
1

r
(−

2m

r
∂r +

2m2 − 2m

r2
)ψ− − (

1

r2
∂r −

m+ 1

r3
)
[

(A2 −m)(ψ+ + ψ−)
]

If m = 1 then the linear part becomes (∂
2
r

r
− ∂r

r2
)ψ− ∈ L2 by Lemma 1.4. If m = 2 then we

have 1
r
H1ψ

− ∈ L2, and from Lemma 1.4, it follows that 4(−∂r
r2
+ 1

r3
)ψ− ∈ L2. If m ≥ 3, then

all the linear terms belong to L2 in light of Lemma 1.4. As for the nonlinear terms, we have

(
1

r2
∂r−

2

r3
)
[

(A2 − 1)(ψ+ + ψ−)
]

= ∂r

[

A2 − 1

r2
(ψ+ + ψ−)

]

=
1

4
∂r

[

1

A2 + 1
|ψ+ + ψ−|2(ψ+ + ψ−)

]

which can be easily shown to belong to L2 by using vii) and viii) of Lemma 1.4.
Finally we apply ∂r to the expression giving Hm+1ψ

+ and show that ∂rHm+1ψ
+ ∈ L2 in a

similar manner. The details are left to the reader.
�

Proof of Proposition 2.2. With ψ2, A2 constructed above, we can reconstruct ψ1 = ψ−+ iψ2

r
.

Then we solve the system (2.4) at the level of (ū, v̄, w̄). We would like to solve this system

with condition at ∞, ū =
−→
k , v̄ =

−→
i , w̄ =

−→
j . But this cannot be done apriori. Indeed,

consider the coefficient matrix in (2.4)

M =





0 ℜψ1 ℑψ1

ℜψ1 0 0
ℑψ1 0 0





Since M /∈ L1(dr), it is not meaningful to initialize the problem (2.4) at ∞. However M has
another structure which is a consequence of (2.18) rewritten as ψ1 = (A2 + 1)ψ1 + i∂rψ2.
Therefore M = N + ∂rK and, by (2.32), N,K satisfy

‖N‖L1(dr) + ‖K‖Ḣ1
e
. ‖ψ−‖L2

This inequality localizes on intervals [r,∞) due to (2.33). This allows us to construct solu-
tions with data at r = ∞ by using the iteration scheme

X =
∑

i

Xi, X0 = X(∞), Xi(r) =

∫ ∞

r

M(s)Xi−1ds

We run the iteration scheme in the space C([r,∞]) of continuous functions on (r,∞) which
have limits at ∞. Under the assumption that Xi−1 ∈ C([r,∞]) we obtain

Xi(r) =

∫ ∞

r

(N(s) + ∂sK(s))Xi−1ds

=

∫ ∞

r

N(s)Xi−1ds−K(r)Xi−1(r)−

∫ ∞

r

K(s)∂sXi−1(s)ds

and further that

‖∂rXi‖L2([r,∞)) + ‖Xi‖C([r,∞]) . ‖ψ−‖L2([r,∞))(‖Xi−1‖L∞([r,∞]) + ‖∂rXi−1‖L2([r,∞)))

Therefore, inductively, we obtain

‖∂rXi‖L2([r,∞)) + ‖Xi‖C([r,∞]) . ‖ψ−‖iL2([r,∞))
17



By choosing R large such that ‖ψ‖L2([R,∞)) is small, we can rely on an iteration scheme to
construct the solution X on [R,∞).

The uniqueness of this solution is guaranteed by the conservation law |ū|, |v̄|, |w̄| = constant
which follows from the particular form of M .

This also guarantees that the orthonormality conditions imposed at∞ are preserved (recall

that ∞, ū =
−→
k , v̄ =

−→
i , w̄ =

−→
j ). The solution constructed above can be extended to (0,∞)

by running a similar argument on intervals where ‖ψ−‖L2(I) is small, where the last interval
is of the form (0, r].

The above argument leads to an estimate of the form

‖X −X0‖C([0,∞]) + ‖∂rX‖L2 . ‖ψ−‖L2

where by C([0,∞]) we mean continuous functions on (0,∞) which have limits at 0 and ∞.
Additional information on ū, v̄, w̄ will be obtained in a different manner. Notice that ū3

and ζ = w̄3 − iv̄3 solve the system

∂rū3 = −ℑ(ψ1ζ̄), ∂rζ = iū3ψ1

which is the same as the one satisfied by A2, ψ2. Since the conditions at ∞ are proportional
with a constant m, we conclude that mū3 = A2,−mζ = ψ2. From this and the fact that
A2

2 − |ψ2|
2 = m2 it follows also that m2(|ū1|

2 + |ū2|
2) = |ψ2|

2.
Next, we extend the system of vectors to u, v, w using the equivariant setup, i.e. by multi-

plying them with emθR. Using the identification just described above and the orthonormality
conditions, it follows that (2.4) is satisfied for k = 2. Therefore we have just established
the existence of an equivariant map u whose vector field W− in the gauge (v, w) is ψ− and
whose gauge elements are ψ1, ψ2, A2. Moreover, we have that

E(u) = π‖ψ−‖L2

Given two fields ψ−, ψ̃− we reconstruct X and X̃ as above. Since the construction is
iterative it also follows that

‖X − X̃‖C[0,∞] + ‖∂r(X − X̃)‖L2 . ‖ψ − ψ̃‖L2

from which the derivative part in E(u−ũ) follows. Since u1 = v2w3−v3w2, ũ1 = ṽ2w̃3− ṽ3w̃2,

ψ2 = −m(w̄3 − iv̄3) and ψ̃2 = −m( ¯̃w3 − i¯̃v3) it follows that

‖
u1 − ũ1

r
‖L2 . ‖

ψ2 − ψ̃2

r
‖L2‖X‖L∞ + ‖X − X̃‖L∞‖

ψ̃2

r
‖L2 . ‖ψ− − ψ̃−‖L2

A similar argument shows that ‖u1−ũ1
r

‖L2 . ‖ψ− − ψ̃−‖L2 which completes the proof of
(2.31).

�

3. The Cauchy problem

In this section we are concerned with the nonlinear system of equations (2.24) which we
recall here

{

(i∂t +Hm−1)ψ
− = (A0 − 2A2−m

r2
+ 1

r
ℑ(ψ2ψ̄

−))ψ−

(i∂t +Hm+1)ψ
+ = (A0 + 2A2−m

r2
− 1

r
ℑ(ψ2ψ̄

+))ψ+

18



where ψ2, A2, A0 are given by (2.25), (2.26), respectively (2.27). The problem comes with
an initial data ψ±(t0) = ψ±

0 and we would like to understand its well-posedness on intervals
I ⊂ R with t0 ∈ I.

We will be mainly interested in solutions of this system which come from Schrödinger
maps, i.e. they satisfy the compatibility conditions (2.28).

For simplicity we denote the nonlinearities by

N±
m(ψ

±) = (A0 ± 2
A2 −m

r2
∓

1

r
ℑ(ψ2ψ̄

±))ψ±(3.1)

We define the mass of a function f by M(f) := ‖f‖2L2. The system (2.24) formally
conserves the mass, i.e. M(ψ−(t)) = M(ψ−(0)) and M(ψ+(t)) = M(ψ+(0)) for all t in the
interval of existence. Moreover, as discussed in subsection 2.2, a compatible pair also satisfies
‖ψ+(0)‖L2 = ‖ψ−(0)‖L2.

3.1. Strichartz estimates. We begin our analysis by understanding the linear equation

(3.2) (i∂t +Hk)u = f, u(0) = u0

where we recall Hk = ∂2r +
1
r
∂r −

k2

r2
.

Our first claim is that, for each k, u satisfies the standard Strichartz estimates

(3.3) ‖|∇|sRku‖Lp
tL

q
r
. ‖|∇|sRku0‖+ ‖|∇|sRkf‖Lp̃′

t L
q̃′

r

where |∇|s = (−∆)
s
2 (defined in the usual manner), (p, q), (p̃, q̃) are admissible pairs in two

dimensions (1
p
+ 1

q
= 1

2
, 2 < p ≤ ∞) and (p̃′, q̃′) is the dual pair of (p̃, q̃). Indeed, Rku satisfies

the following equation

(i∂t +∆)Rku = Rkf, Rku(0) = Rku0

Then the Strichartz estimates follow from the standard Strichartz in two dimensions. We
need to read the Strichartz estimates at the level of the radial functions. For even powers of
s we use the identity ∆Rkv = RkHkv, hence

(3.4) ‖Hkv‖Lp
tL

q
r
= ‖∆Rkv‖Lp

tL
q
x

and this can be extended to higher regularity but we will not need it.
For odd values of s we use that |∇|s = |∇|(−∆)

s−1

2 and that for k 6= 0

(3.5) ‖∂rv‖Lp
tL

q
r
+ ‖

v

r
‖Lp

tL
q
r
. ‖|∇|Rkv‖Lp

tL
q
x

while for k = 0

(3.6) ‖∂rv‖Lp
tL

q
r
. ‖|∇|Rkv‖Lp

tL
q
x

In the context of additional regularity, we need to make improved versions of the Strichartz
estimates. We recall the following result from [8].

Lemma 3.1. Assume that u satisfy (3.2) with initial data u0 and forcing f .
i) If u0 ∈ L2 is such that Hku0 ∈ L2, for k ≥ 2, then the following holds true

‖|∂2ru|+ |
∂ru

r
|+ |

u

r2
|‖L∞L2∩L4L4∩L3L6 . ‖Hku0‖L2 + ‖Hkf‖L1L2

19



ii) If u0 ∈ L2 is such that H1u0 ∈ L2 then the following holds true

‖∂2ru‖L∞L2∩L4L4∩L3L6 + ‖
1

r
(∂r −

1

r
)u‖L∞L2∩L4L4∩L3L6 . ‖H1u0‖L2 + ‖H1f‖L1L2

These are improved versions of Strichartz estimates from the following point of view. In i)

the inequality for (∂2r+
1
r
∂r−

k2

r2
)u = H2u is the Strichartz estimate forH2u which follows from

(3.3) and (3.4); our statement is stronger in saying that each term satisfies the Strichartz
estimate. A similar remark is in place for part i). Note the consistency with Lemma 1.4.

3.2. Setup and Cauchy theory. In order to make estimates shorter, we make the following
notation convention ‖f±‖ = ‖f+‖+ ‖f−‖ for various f ’s and ‖ · ‖ involved in the rest of the
paper.

Since our non-linear analysis relies mostly on the L4
t,r norm, we define the Strichartz norm

of f : I ×R2 → C by SI(f) := ‖f‖4
L4(I×R). If t0 ∈ I then we define SI,≤t0f = ‖1I∩(−∞,t0]f‖

4
L4

and SI,≥t0f = ‖1I∩[t0,∞)f‖
4
L4.

We say that a solution ψ± : I×R → C blows up forward in time if SI,≥tψ
± = +∞, ∀t ∈ I.

Similarly ψ± blows up backward in time if SI,≤tψ
± = +∞, ∀t ∈ I.

A possibility that may occur is that for some interval I, SI,≥t0ψ
+ = +∞ while SI,≥t0ψ

− <
∞, or any other combination. However from (3.9) it follows that solutions satisfying the com-
patibility condition (2.28) we have that SJ(ψ

+) ≈ SJ(ψ
−) on any time interval J . Therefore

for such solutions (which we will be mainly interested in) the above scenario is ruled out.
Let ψ±

+ ∈ L2. We say that the solution ψ± : I ×R → C scatters forward in time to ψ±
+ iff

sup I = +∞ and limt→∞M(ψ±(t)−eitHm±1ψ±
+) = 0. We say that the solution ψ± : I×R → C

scatters backward in time to ψ±
− iff inf I = −∞ and limt→−∞M(ψ±(t)− eitHm±1ψ±

−) = 0.
Our first theorem provides the general Cauchy theory for (2.24).

Theorem 3.2. Consider the problem (2.24) (with ψ2, A2, A0 given by (2.25), (2.26), (2.27))
with ψ±

0 ∈ L2. Then there exists a unique maximal-lifespan solution pair (ψ+, ψ−) : I × R2

with t0 ∈ I and ψ±(t0) = ψ±
0 with the additional properties:

i) I is open.
ii) (Forward scattering) If ψ± do not blow up forward in time, then I+ = [0,∞) and ψ±

scatters forward in time to eitHm±1ψ±
+ for some ψ±

+ ∈ L2.
Conversely, if ψ±

+ ∈ L2, then there exists a unique maximal-lifespan solution ψ± which
scatters forward in time to eitHm±1ψ±

+.
iii) (Backward scattering) A similar statement to ii) holds true for the backward in time

problem.
iv) (Small data scattering) There exist ǫ > 0 such that if M(ψ±

0 ) ≤ ǫ then SR(ψ
±) .

M(ψ±
0 )

2. In particular, the solution does not blow up and we have global existence and
scattering in both directions.

v) (Uniformly continuous dependence) For every A > 0 and ǫ > 0 there is δ > 0 such that

if ψ± is a solution satisfying SJ(ψ
±) ≤ A and t0 ∈ J , and such that M(ψ±

0 − ψ̃±
0 ) ≤ δ, then

there exists a solution such that S(ψ± − ψ̃±) ≤ ǫ and M(ψ(t)− ψ̃(t)) ≤ ǫ, ∀t ∈ J .
vi) (Stability result) For every A > 0 and ǫ > 0 there exists δ > 0 such that if SJ(ψ

±) ≤ A,
ψ±, approximate (2.24), in the sense

‖(i∂t +Hm±1)ψ
± −N±(ψ±)‖

L
4
3 (J×R)

≤ δ,
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t0 ∈ J, ψ̃±
0 ∈ L2 and SJ(e

i(t−t0)H±

(ψ±(t0)− ψ̃±
0 )) ≤ δ, then there exists a solution ψ̃± on I to

(2.24) with ψ̃±(t0) = ψ̃±
0 and SJ(ψ

± − ψ̃±) ≤ ǫ.
vii) (Additional regularity) Assume that, in addition, Rm±1ψ

±
0 ∈ Hs for s ∈ {1, 2, 3}. If

J is an interval such that SJ(ψ
±) ≤ A < +∞, then the solution ψ± satisfies

(3.7) ‖Rm±1ψ
±(t)‖Hs .A ‖Rm±1ψ

±
0 ‖Hs, ∀t ∈ J

and it also has Lipschitz dependence with respect to the initial data.

The above results are concerned with general solutions of (2.24). However, our interest
lies in solutions which correspond to geometric maps. The next result completes the Cauchy
theory for solutions of (2.24) which satisfy the compatibility condition (2.28). The system
(2.24) does not directly involve the variable ψ0 which is defined in this context by (2.15).

Theorem 3.3. i) If ψ±
0 ∈ L2 satisfying the compatibility condition (2.28), then ψ±(t) sat-

isfies the compatibility condition (2.28) for each t ∈ I. If, in addition, Rm±1ψ
±
0 ∈ H3 then

(2.5) and (2.6) are satisfied.
ii) If the solution satisfies the compatibility condition (2.28) and it does not blow up in

time then the two scattering states (described in ii)) are related by

(3.8) ∂rr(ψ
+
+ − ψ−

+) = −m(ψ+
+ + ψ−

+)

Conversely, if ψ±
+ ∈ L2 satisfy (3.8), then the unique maximal-lifespan solution ψ± which

scatters to eitH
±

ψ±
+ (constructed in part ii)) satisfy the compatibility condition (2.28). A

similar statement holds true for the backward in time scattering.
iii) If ψ± satisfy the compatibility conditions, then for every interval J ⊂ I (I being the

maximal-lifespan interval) the following holds true

(3.9) ‖ψ+‖L4(J) ≈ ‖ψ−‖L4(J)

where the constants involved in the use ≈ are independent of the interval J .

As a consequence of these theorems we are able to prove the following result

Proposition 3.4. If ψ±
0 ∈ L2 satisfies the compatibility conditions (2.28), Rm±1ψ

±
0 ∈ H2

and ψ±(t) is the solution of (2.24) on I then the map u(t) constructed in Proposition 2.2
(for each t) is a Schrödinger map.

Proof of Theorem 3.2. Parts i)-vi) are standard. Our particular setup is very similar to the
one in the Theorem 3.2 in [8], and the proof there can be easily adapted to our problem.

As discussed in [8], part vii) is usually standard, with the exception of one term in it. We
rewrite the nonlinear terms as follows

A0 ± 2
A2 −m

r2
∓

1

r
ℑ(ψ2ψ̄

−) =
|ψ−|2

2
− [r∂r]

−1ℜ(ψ̄+ψ−)±
1

2r2

∫ r

0

(|ψ+|2 − |ψ−|2)sds

Without the term [r∂r]
−1ℜ(ψ̄+ψ−), the analysis would be standard, see [8] for more com-

mentaries. We will provide a full analysis of the term

N±
1 = [r∂r]

−1ℜ(ψ̄+ψ−)ψ±

This analysis can be extended to the other two terms in N±(ψ±).
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The analysis in the case m = 1 is similar to the one in [8]. We now proceed with the cases
m ≥ 2. Since SI(ψ

±) ≤ A, the standard theory gives also that

‖ψ±‖L3L6(I×R) .A 1

Therefore it makes sense to define

B = ‖∂rψ
±‖L3L6 + ‖

ψ±

r
‖L3L6

C = ‖∂2rψ
±‖L3L6 + ‖

1

r
∂rψ

+‖L3L6 + ‖
ψ+

r2
‖L3L6 + ‖

1

r
(∂r −

1

r
)ψ−‖L3L6

D = ‖∂rH
±ψ±‖L3L6 + ‖

1

r
H±ψ±‖L3L6

We will prove the following estimates

‖∂rN
±
1 ‖L1L2 + ‖

1

r
N±

1 ‖L1L2 .A B

‖Hm±1N
±
1 ‖L1L2 .A C +B2

‖∂rHm±1N
±
1 ‖L1L2 + ‖

1

r
Hm±1N

−
1 ‖L1L2 .A D +BC

(3.10)

Similar estimates hold true for the other two terms in N±(ψ±). Based on these estimates,
the Strichartz estimates 3.3 and the result of Lemma 3.1, a standard argument establishes
the conclusion in (3.7).

We now turn to the proof of (3.10). We compute

∂rN
±
1 = ∂r

(

[r∂r]
−1ℜ(ψ̄+ψ−)

)

ψ± + [r∂r]
−1ℜ(ψ̄+ψ−)∂rψ

±

and estimate

‖∂rN
±
1 ‖L1L2 . ‖ψ+‖L3L6‖

ψ−

r
‖L3L6‖ψ±‖L3L6 + ‖ψ±‖2L3L6‖∂rψ

±‖L3L6

from which half of the first estimate in (3.10) follows; the second half follows in a similar
manner.

We continue with

Hm±1N
±
1 =∆

(

[r∂r]
−1ℜ(ψ̄+ψ−)

)

ψ± + 2∂r
(

[r∂r]
−1ℜ(ψ̄+ψ−)

)

∂rψ
±

+
(

[r∂r]
−1ℜ(ψ̄+ψ−)

)

Hm±1ψ
±

The last term is estimated by .A C, the second one is estimated by .A B
2, while the first

one equals

(∂r +
1

r
)
ℜ(ψ̄+ψ−)

r
· ψ± =

ℜ(∂rψ̄
+ · ψ−) + ℜ(ψ̄+ · ∂rψ

−)

r
· ψ±

and its L1L2 norm is estimated by

. (‖∂rψ
+‖L3L6‖

ψ−

r
‖L3L6 + ‖

ψ+

r
‖L3L6‖∂rψ

−‖L3L6)‖ψ±‖L3L6

from which the second estimate in (3.10) follows.
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For the third estimate we start with

∂rHm±1N
±
1 = ∂r∆

(

[r∂r]
−1ℜ(ψ̄+ψ−)

)

ψ± +∆
(

[r∂r]
−1ℜ(ψ̄+ψ−)

)

∂rψ
±

+ 2∂2r
(

[r∂r]
−1ℜ(ψ̄+ψ−)

)

∂rψ
± + 2∂r

(

[r∂r]
−1ℜ(ψ̄+ψ−)

)

∂2rψ
±

+ ∂r
(

[r∂r]
−1ℜ(ψ̄+ψ−)

)

Hm±1ψ
± +

(

[r∂r]
−1ℜ(ψ̄+ψ−)

)

∂rHm±1ψ
±

The L1L2 norm of the sixth terms above is bounded by .A D. Using the previous arguments,
the L1L2 norm of the second, fourth and fifth term is bounded by .A BC. Since

∂2r
(

[r∂r]
−1ℜ(ψ̄+ψ−)

)

=
ℜ(∂rψ̄

+ · ψ−)

r
+ ℜ(

ψ̄+

r
(∂r −

1

r
)ψ−)

it follows that the L1L2 norm of the third term above is bounded by .A BC.
The first terms is further expanded

∂r∆
(

[r∂r]
−1ℜ(ψ̄+ψ−)

)

= ∂r

(

ℜ(∂rψ̄
+ · ψ−) + ℜ(ψ̄+ · ∂rψ

−)

r

)

=
ℜ(∂2r ψ̄

+ · ψ−) + 2ℜ(∂rψ̄
+ · ∂rψ

−)

r
+ ℜ(

ψ̄+

r
(∂r −

1

r
)∂rψ

−)

and estimated by BC. The estimate for 1
r
Hm±1N

±
1 is obtained along the same lines, though

the argument is much easier. The details are left to the reader. This finishes the argument
for (3.10). �

Proof of Theorem 3.3. i) The proof follows exactly the same steps as in [8], with the only
adjustments coming from the value of µ = −1 and that we work with a general m.

It is useful to rephrase this in terms of ψ1, ψ2, which are recovered linearly from ψ±.
Reverting the algebraic computation from Sections 2.1 and 2.2, ψ1, ψ2 solve the system
(2.17). Then we seek to show that the relation D1ψ2 = D2ψ1 is preserved along the flow.
For this we will derive an equation for the quantity

F = D2ψ1 −D1ψ2

Following the lines of the argument in [8] we derive the following equation for F :

iD0F = (
A2

2

r2
− ∂1(∂1 +

1

r
))F + ℜ(Fψ̄1)ψ1 −

1

r2
ℜ(Fψ̄2)ψ2

It is more convenient to recast this as an equation for

F

r
= −(∂r +

1

r
)
ψ2

r
+
iA2

r
ψ1

which is exactly the quantity in (2.28). We obtain

(3.11) (i∂t +Hm)
F

r
= (A0 +

A2
2 −m2

r2
)F + ℜ(

F

r
ψ̄1)ψ1 −

1

r2
ℜ(
F

r
ψ̄2)ψ2

In view of the L4 Strichartz bounds for ψ1 and ψ2 and the derived L2 bounds for A0 and
A2

2
−m2

r2
, standard arguments show that this linear equation is well-posed in L2. Hence the

conclusion follows provided that F
r
has sufficient regularity. Indeed, we have

F

r
=
i

2

(

∂rψ
+ +

1 + A2

r
ψ+ − ∂rψ

− −
1− A2

r
ψ−

)

It is obvious that if Rm±1ψ
± ∈ H1 then F

r
∈ L2.
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If Rm±1ψ
± ∈ H2 then by using the results in Lemma 1.4 and Sobolev embeddings one

easily shows that F
r
∈ Ḣ1

e .

We will show in detail that if Rm±1ψ
± ∈ H3, then Hm

F
r
∈ L2. Indeed,

−2iHm

F

r
= (∂r +

1 + A2

r
)Hm+1ψ

+ + 2(m+ 1)
A2 −m

r3
ψ+ + 2

m− A2

r2
∂rψ

+

+
(∂r −

1
r
)∂rA2

r
ψ+ + 2

∂rA2

r
∂rψ

+ − (∂r +
1− A2

r
)Hm−1ψ

−

+ 2
m−A2

r2
∂rψ

− + 2(m− 1)
m− A2

r3
ψ− +

(∂r −
1
r
)∂rA2

r
ψ− + 2

∂rA2

r
∂rψ

−

The above expression is easily shown to belong to L2 based on that Rm±1ψ
± ∈ H3, by using

that Rm±1Hm±1ψ
± ∈ H1, the Sobolev embeddings ψ±, ∂rψ

± ∈ L6 and (2.26).
Hence we can conclude that Hm

F
r
∈ L2. This allows us to run a standard energy argument

by pairing the equation, with F̄ , to conclude that

∂t‖
F

r
‖2L2 . (‖ψ1‖

2
L∞ + ‖

ψ2

r
‖2L∞)‖

F

r
‖2L2

which by using the Gronwall inequality and the fact that F (0) = 0 leads to F (t) = 0 for all
t ∈ I.

In order to run the energy argument it suffices to have F
r
∈ Ḣ1

e and use the pairing of Ḣ−1
e

and Ḣ1
e . This is useful in the proof of Proposition 3.4 where we assume only Rm±1ψ

± ∈ H2.
In the general case when ψ±

0 ∈ L2 only we regularize them as follows. We produce
Rm−1ψ

−
n,0 ∈ H3 so that ‖ψ−

0 −ψ−
n,0‖L2 ≤ 1

n
. By using Lemma (2.3), and particularly part v),

we obtain that the compatible pair Rm+1ψ
+
n,0 ∈ H3 and ‖ψ+

0 − ψ+
n,0‖L2 . 1

n
. We also recast

the compatibility condition to

ψ+ − ψ− = −[r∂r]
−1
(

ψ+ − ψ− + A2(ψ
+ + ψ−)

)

so that all terms involved belong to L2. Using the conservation of the compatibility condition
for ψ±

n (t) under the flow (2.24) and part v) of the Theorem, we obtain the desired result.
ii) The key observation is that the equation for ψ2 in (2.29) becomes linear in the following

sense:

(3.12) lim
t→∞

‖∂rψ2 − imψ− +m
ψ2

r
‖L2 = 0

under the hypothesis that limt→∞ ‖ψ−(t)− eitHm−1ψ−
+‖L2 = 0. This is easily shown to follow

from the following estimate

(3.13) lim
t→∞

sup
r∈(0,∞)

|r−m
∫ r

0

eitHm−1f(s)smds| = 0

which holds true for f ∈ L2. The proof of (3.13) is similar to the corresponding statement
in the Appendix of [8]. Based on this, it follows that limt→∞ ‖ψ2(t)‖L∞ = 0, and that

lim
t→∞

‖i(A2 −m)ψ− −
1

r
(A2 −m)ψ2‖L2 = 0

which justifies (3.12).
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With the notation (essentially the linearized version of F
r
above)

f(t) = ∂r(e
itHm+1ψ+

+ − eitHm−1ψ−
+)− 2

eitHm−1ψ−
+

r
,

the scattering relation (3.8) can be rewritten as limt→∞ ‖f(t)‖Ḣ−1
e

= 0. A direct computation
gives that f obeys the equation

(i∂t +Hm)f = 0

Since limt→∞ ‖f(t)‖Ḣ−1
e

= 0 it follows from the conservation of the Ḣ−1
e norm that f(0) = 0

which is (3.8). Alternatively, one could carry out this argument as we did in viii).
Assume now that given ψ±

+ satisfying (3.8) we construct (as in ii)) solutions ψ±(t) to
(2.24) on some [T,+∞) which scatter forward to eitHm±1ψ±

+ . Following the argument in
part i) we construct F which satisfies (3.11). Assuming additional regularity on the states
ψ±
+ , Rm±1ψ

±
+ ∈ H3, we have by part vii) of Theorem 3.2 that Rm±1ψ

±(t) ∈ H3, hence by
the argument in i) Hm

F
r
∈ L2 and the right-hand side of (3.11) belongs to L2. Then the

Duhamel formula applies to (3.11) and in turn the Strichartz estimate

‖
F

r
‖L4([T,∞)×R) . ‖ψ±‖2L4([T,∞)×R)‖

F

r
‖L4([T,∞)×R)

where we have used that limt→∞ ‖F (t)
r
‖L2 = 0 (this follows as above because of (3.13)). Next,

by taking T large enough, we obtain that F (t) ≡ 0 for t ≥ T and the conclusion follows by
invoking part i).

For general states ψ±
+ ∈ L2 satisfying (3.8) we proceed as above. We approximate them

by sequences ψ±
n,+ with Rm±1ψ

±
n,+ ∈ H3; this can be done by regularizing Rm−1ψ

−
+ first and

then showing that the corresponding Rm+1ψ
+
+ has the same regularity as we did in Lemma

2.3 part v) - in fact this argument involves only the linear part of the argument there. Then
we write (3.8) at the level of L2

ψ+
+ − ψ−

+ = −[r∂r]
−1((m+ 1)ψ+

+ + (m− 1)ψ−
+),

use the above argument and a limiting argument.
iii) One side of (3.9) follows from the fixed time bound (2.37). The other side is similar,

and it consists and replicating the result of Lemma 2.3 starting from ψ+ instead.
�

Proof of Proposition 3.4. With the given ψ±
0 we reconstruct u0 ∈ Ḣ1 ∩ Ḣ3 as in Proposition

2.2. The additional regularity Rm±1ψ
±
0 ∈ H2 implies, by (2.30), that u0 ∈ Ḣ1 ∩ Ḣ3. For

the classical Schrödinger Map u(t) with data u0 we construct its Coulomb gauge, its field
components and write the system (2.24) whose initial data is ψ±

0 . Invoking the uniqueness
part of Theorem 3.2, it follows that ψ±(t) are the gauge representation of W±(t), hence the
reconstruction in Proposition 2.2 gives the Schrödinger Map u(t) for each t.

�

We can now identify the critical threshold for global well-posedness and scattering. For
any m ≥ 0, we define A(m) by

A(m) := sup{SImax
(ψ−) :M(ψ−) ≤ m where ψ± is a solution to (2.24) satisfying(2.28)}

where ψ± is assumed to be a solution of (2.24), satisfying the compatibility condition (2.28)
and Imax is its maximal interval of existence.
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Obviously A is a monotone increasing functions, it is bounded for small m by part iv)
and it is left-continuous by part v) of Theorem 3.2. Therefore there exists a critical mass
0 < m0 ≤ +∞ such that A(m) is finite for all m < m0 and it is infinite m ≥ m0. Also any
solution ψ with M(ψ) < m0 is globally defined and scatters.

Note that from (3.9) and the fact that M(ψ+) = M(ψ−) (due to the compatibility rela-
tion), it follows that we could have used SImax

(ψ+),M(ψ+) in the definition of A(m) and
arrive to the same conclusion as above with the same critical mass m0.

4. Concentration compactness

The main goal of this section is to prove that if the above critical mass m0 is finite, then
there exists a critical element ψ± with mass m0 which blows up, see Theorem 4.1. Moreover
we can be more precise about the behavior of ”scale” of the critical element, see Theorem
4.2. The information provided by the two results aforementioned will be crucial in the next
section where we rule out the possibility that m0 is finite.

We start by exhibiting the symmetries of the system (2.24). The system is invariant under
the time reversal transformation ψ±(r, t) → ψ±(r,−t). This allows us to focus our attention
on positive times, i.e. t ≥ 0. Next, the system is invariant under two other transformations:
scaling, ψλ = λ−1ψ(λ−1r, λ−2t) with λ ∈ R, and phase multiplication, ψα(r, t) = eiαψ(r, t)
with α ∈ R/2πZ. The phase multiplication can be ignored as the group generated is compact.
This way we generate the first (non-compact) group G of transformations gλ defined by

gλf(r) = λ−1f(λ−1r)

From (2.25), (2.26) and (2.27), the effect of the action gλ on ψ± is translated in the action
of g1λ on ψ2, A2 and g2λ on A0 where

g1λf(r) = f(λ−1r), g2λf(r) = λ−2f(λ−1r)

The action of g is extended to space-time functions by

Tgλf(r, t) = λ−1f(λ−1r, λ−2t)

The equations in (2.24) are also time translation invariant and this suggests enlarging the
group G to G− as follows. Given λ > 0 and t ∈ R, we define

g−λ,tf = λ−1[eitHm−1f ](λ−1r)

We denote by G′ the group generated by these transformations. Given two sequences gn, g̃n ∈
G−, ∀n ∈ N, we say that they are asymptotically orthogonal iff

(4.1)
λn

λ̃n
+
λ̃n
λn

+ |tnλ
2
n − t̃nλ̃

2
n| = ∞

We are now ready to state the two main results of this section.

Theorem 4.1. Assume that the critical mass m0 is finite. Then there exists a critical
element, i.e. a maximal-lifespan solution ψ± to (2.24) and satisfying (2.28), with mass m0

which blows up forward in time. In addition this solution has the following compactness
property: there exists a continuous function λ(t) : I+ = [0, T+) → R+ such that the sets

K± :=

{

1

λ(t)
ψ±(

r

λ(t)
, t), t ∈ I+

}
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are precompact in L2.

Remark. As a consequence of the compactness property it follows that there exists a function
C : R+ → R

+ such that the above critical element satisfies

(4.2)

∫

r≥C(η)λ(t)−1

|ψ±(t, r)|2rdr ≤ η, ∀t ∈ I+.

One can construct critical elements whose function λ(t) has more explicit behavior.

Theorem 4.2. Assume that the critical mass m0 is finite. Then we can construct a critical
element as in Theorem 4.1 such that one of the two scenarios holds true:

i) T+ = ∞ and λ(t) ≥ c > 0, ∀t ≥ 0.
ii) T+ <∞ and limt→T+ λ(t) = ∞.

The proofs of the Theorems 4.1 and 4.2 follow the same steps as their counterparts in [8],
which in turn were inspired by the seminal work of Kenig and Merle, see [17]. We will not
reproduce the proofs here due to their lengthy repetitive argument. Instead we state the
intermediate Propositions which then lead to the proof of Theorem 4.1.

It is standard, see for instance [17] and [26] that the result in Theorem 4.1 follows from
the following

Proposition 4.3. Assume m0 < +∞. Let ψ±
n : In+ = [0, Tn+) × R → C, n ∈ N be a

sequence of solutions to (2.24), satisfying (2.28) and such that limn→∞M(ψ±
n ) = m0 and

limn→∞ SIn+
(ψ±

n ) = ∞. Then there are group elements gn ∈ G such that the sequence
gnψ

±
n (tn) has a subsequence which converges in L2.

One of the main ingredients in the proof of Proposition 4.3 is the classical linear profile
decomposition result. These type of results originate in the work of Bahouri and Gerard [1],
for the case of nonlinear wave equation and independently, in the work of Merle and Vega
[22], for the case of the nonlinear Schrödinger equation. For the case of nonlinear Schrödinger
equations see also [2], [18], [26].

Proposition 4.4. Let ψn0 , n ∈ N be a bounded sequence in L2. Then (after passing to a
subsequence if necessary) there exists a sequence φj, j ∈ N of functions in L2 and gn,j ∈
G−, n, j ∈ N such that we have the decomposition

(4.3) ψn0 =
l
∑

j=1

gn,jφj + wn,l, ∀l ∈ N

where wn,l satisfies

(4.4) lim
l→∞

lim
n→∞

S(eitHm−1wn,l) = 0

Moreover gn,j and gn,j
′

are asymptotically orthogonal for any j 6= j′ and we have the following
orthogonality condition

weak lim
n→∞

(gn,j)−1wn,l = 0, ∀1 ≤ j ≤ l(4.5)

As a consequence the mass decoupling property holds

(4.6) lim
n→∞

(M(un)−
l
∑

j=1

M(φj)−M(wn,l)) = 0
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A similar statement holds true also for the operator Hm+1. We explained in [8] how this
result follows as an equivariant counterpart of the result in Theorem 7.3 in [26].

Based on Proposition 4.4 and the results in the previous sections, one proves Proposition
4.3 by following the same steps as in [8]. The details are left as an exercise.

5. Momentum and localized momentum.

In this section we rule out the possible scenarios exhibited in Theorem 4.2. With the
language used in Section 4, we claim the following

Theorem 5.1. Critical elements do not exist.

This will be based on virial type identities. Virial identities for the Schrödinger Map
problem originate in the work of Grillakis and Stefanopoulos via a Lagrangian approach,
see [10]. In their work the formulation of these identities is at the level of the conformal
coordinate, obtained by using the stereographic projection. Our approach is different in the
sense that we derive the virial identities at the level of the gauge components. However our
results can be derived from [10].

5.1. Virial type identities. This section is concerned with identities involving solutions of
(2.24) which satisfy the compatibility condition (2.28).

Given a : R+ → R a smooth function, i.e. |(r∂r)
αa| .α 1, and which decays at infinity we

claim that

(5.1)
d

dt

∫

a(r)(A2 −m)rdr =

∫

r∂ra(r)ℜ(ψ1
ψ̄2

r
)rdr

By using part i) of Theorem 3.3, the proof of (5.1) goes as follows

d

dt

∫

a(r)(A2 −m)rdr =

∫

a(r)∂tA2rdr = −

∫

a(r)ℑ(ψ0ψ̄2)rdr

= −

∫

a(r)ℑ(i(∂rψ1 +
1

r
ψ1 +

iA2

r2
ψ2)ψ̄2)rdr

= −

∫

a(r)
(

ℑ(i∂r(rψ1ψ̄2))− ℑ(irψ1∂rψ̄2)
)

dr

=

∫

∂ra(r)ℑ(iψ1ψ̄2)rdr =

∫

r∂ra(r)ℜ(ψ1
ψ̄2

r
)rdr

This computation is valid in a classical sense provided that Rm±1ψ
± ∈ H2. For general

functions ψ± this is done by using a regularization argument as we did in the proof of part
i) of Theorem 3.2. Note that the quantities involved on both sides of (5.1) are meaningful

in light of the fact that ψ0 ∈ Ḣ−1
e and aψ2 ∈ Ḣ1

e .
We now introduce the two momenta, the radial and the temporal one, as follows

M1 =
ℜ(ψ1ψ̄2)

A2 +m
, M0 =

ℜ(ψ0ψ̄2)

A2 +m
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Using the covariant calculus, the time momentum can be further written as follows

(A2 +m)M0 = ℜ(ψ0ψ̄2)

= ℜ

(

i(D1ψ1 +
1

r
ψ1 +

1

r2
D2ψ2)ψ̄2

)

= −ℑ(∂rψ1ψ̄2)−
1

r
ℑ(ψ1ψ̄2)−

A2

r2
|ψ2|

2

= −∂rℑ(ψ1ψ̄2)− ℑ(ψ1∂rψ̄2) +
1

r
∂rA2 −

A2

r2
|ψ2|

2

= ∂2rA2 +
1

r
∂rA2 − A2(|ψ1|

2 +
|ψ2|

2

r2
)

which leads to

(5.2) M0 = ∆ ln(A2 +m) +

(

∂rA2

A2 +m

)2

−
A2

A2 +m
(|ψ1|

2 +
|ψ2|

2

r2
)

The following identity plays a fundamental role in our analysis

(5.3) ∂tM1 − ∂rM0 = −∂rA0

This is established by using the covariant rules of calculus,

∂tM1 =
ℜ(D0ψ1ψ̄2)

A2 +m
+

ℜ(ψ1D0ψ2)

A2 +m
−

ℜ(ψ1ψ̄2)

(A2 +m)2
∂tA2

=
ℜ(D1ψ0ψ̄2)

A2 +m
+

ℜ(ψ1D2ψ0)

A2 +m
+

ℜ(ψ1ψ̄2)

(A2 +m)2
ℑ(ψ0ψ̄2)

= ∂rM0 −
ℜ(ψ0∂rψ̄2)

A2 +m
+

ℜ(ψ0ψ̄2)

(A2 +m)2
∂rA2 +

ℜ(ψ1D2ψ0)

A2 +m
+

ℜ(ψ1ψ̄2)

(A2 +m)2
ℑ(ψ0ψ̄2)

= ∂rM0 −
A2ℑ(ψ0ψ̄1)

A2 +m
−

ℜ(ψ0ψ̄2)

(A2 +m)2
ℑ(ψ1ψ̄2) +

A2ℑ(ψ1ψ0)

A2 +m
+

ℜ(ψ1ψ̄2)

(A2 +m)2
ℑ(ψ0ψ̄2)

= ∂rM0 − 2
A2ℑ(ψ0ψ̄1)

A2 +m
+

|ψ2|
2ℑ(ψ0ψ̄1)

(A2 +m)2

= ∂rM0 − ℑ(ψ0ψ̄1)

= ∂rM0 − ∂rA0

The above computation is meaningful provided that Rm±1ψ
± ∈ H3.

Next we derive a localized version of (5.3) which has also the advantage that it makes
sense for ψ± ∈ L2 only. We take a : R+ → R to be a smooth function which decays at
infinity and satisfies also |1

r
∂ra| . 1 and |∂2ra| . 1. As a consequence we have that if f ∈ Ḣ1

e

then 1
r
f∂ra ∈ Ḣ1

e .
We multiply (5.3) by a and integrate by parts as follows

(5.4)

∫

a(r)M1(r)dr
∣

∣

T
0 +

∫ T

0

∫

∂ra(r)M0dr =

∫ T

0

∫

∂ra(r)A0dr

This identity is now meaningful for ψ± ∈ L2. Indeed each term is well-defined for the
following reasons:
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- the first since a is bounded and 1
r
M1 ∈ L2,

- the second since ψ0 ∈ Ḣ−1
e and 1

r
∂ra · ψ2 ∈ Ḣ1

e ,

- the third since 1
r
∂ra is bounded and A0 ∈ L1.

The justification of (5.4) for general ψ± ∈ L2 is done by regularizing ψ± as above.
It will be useful to rewrite the second term on the left-hand side as follows
∫

∂ra(r)M0dr =

∫

1

r
∂ra(r)

(

∆ ln(A2 +m) +

(

∂rA2

A2 +m

)2

−
A2

A2 +m
(|ψ1|

2 +
|ψ2|

2

r2
)

)

rdr

= −

∫

∂r(
1

r
∂ra(r))∂r ln(A2 +m)rdr −

∫

1

r
∂ra(r)G(r)dr

where

G(r) = −

(

∂rA2

A2 +m

)2

+
A2

A2 +m
(|ψ1|

2 +
|ψ2|

2

r2
)

Using (2.29) one can easily see that G is positive definite,

(5.5) G ≥ |ψ1|
2(

A2

A2 +m
−

|ψ2|
2

(A2 +m)2
) +

A2

A2 +m

|ψ2|
2

r2
≥

m

m+m0
|ψ1|

2 +
1

2

|ψ2|
2

r2

where m+m0 is an upper bound for A2, obtained from (2.26).

5.2. Proof of Theorem 5.1. The argument is in the spirit of the corresponding one in [17].
Based on a localized version of (5.1) and (5.4) we rule out the possibilities exhibited in

parts i) and ii) of Theorem 4.2.
By using (2.25) and (2.33), the concentration property (4.2) implies that all of the differ-

entiated variables ψ1, ψ2 and A2 are concentrated in a compact set,

(5.6)

∫

r&C(η)c−1η−1

(|ψ1(r)|
2 +

|ψ2(r)|
2

r2
+

(A2(r)−m)2

r2
)rdr . η, ∀t ∈ I+.

We start by ruling out the existence of a critical element from part i) of Theorem 4.2, i.e.
the global element with λ(t) ≥ c > 0, ∀t > 0. In (5.4), we take a(r) = r2φ( r

R
) where φ is

smooth and equals 1 for r ≤ 1 and 0 for r ≤ 2, and obtain
∫

a(r)M1(r)dr

∣

∣

∣

∣

T

0

=

∫ T

0

∫

∂r(
1

r
∂ra(r))∂r ln(A2 +m)rdrdt−

∫ T

0

∫

1

r
∂ra(r)G(r)rdrdt

+

∫ T

0

∫

∂ra(r)A0drdt

(5.7)

In this identity there are two main terms which we compare against each other: the one the
left-hand side and the second on the right-hand side. All the other terms are controlled by
one of the two main terms just mentioned.

We choose η ≪ 1 small enough (the exact choice is derived from the inequalities on the
error terms below) and R = C(η)c−1η−1 ≫ c−1; we estimate the main terms in the above
expression by

∣

∣

∣

∣

∫

a(r)M1dr

∣

∣

∣

∣

.

∫

r2|ψ1||
ψ2

r
|rdr . R2‖ψ1‖L2‖

ψ2

r
‖L2 . R2m0
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which is valid both at t = 0 and t = T , and, by (5.5) and (5.6)
∫ T

0

∫

1

r
∂ra(r)G(r)rdrdt & T

By choosing T ≫ R2m0 we obtain a contradiction, provided that we establish that all the
other terms involved in (5.7) are of error type.

The first term on the left-hand side of (5.7) is bounded as follows
∣

∣

∣

∣

∫ T

0

∫

∂r(
1

r
∂ra(r))∂r ln(A2 +m)rdrdt

∣

∣

∣

∣

.

∫ T

0

∫

r≈R

|∂rA2|drdt . Tη ≪ T

For the third term on the right-hand side of (5.7) we use (2.21) and write
∣

∣

∣

∣

∫ T

0

∫

∂ra(r)A0drdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T

0

∫

(−2 +
1

r
∂ra(r))A0rdrdt

∣

∣

∣

∣

which is then bounded by

.

∫ T

0

‖ψ1‖L2[R,∞)‖
ψ2

r
‖L2[R,∞)dt . Tη ≪ T

We have just shown that the other two terms in (5.7) are of error type and this finishes the
contradiction argument. With this we conclude ruling out the possibility exhibited in part
i) of Theorem 4.2.

Next we rule out the critical element of type exhibited in part ii). In this case the assump-
tion is that we have a critical element with T+ <∞, limt→T+ λ(t) = +∞.

For fixed R we claim that

(5.8) lim
t→T+

∫

φ(
r

R
)(A2 −m)rdr = 0

Indeed, for given ǫ > 0, pick η such that η
1

2R2 < ǫ. Using (2.33) we obtain

‖φ(
r

R
)(A2 −m)‖L1

.(C(η)λ(t)−1η−1)2‖
A2 −m

r
‖L2[0,C(η)λ−1(t)η−1 ] +R2‖

A2 −m

r
‖L2[C(η)λ−1(t)η−1 ,R]

.(C(η)η−1λ(t)−1)2m
1

2

0 + η
1

2R2

By choosing t close enough to T+, we obtain (C(η)η−1λ(t)−1)2m
1

2

0 < ǫ, and this establishes
(5.8).

Next we choose a(r) = φ( r
R
), fix η > 0, integrate (5.1) on [t, T+) and use (5.8) to obtain

∫

φ(
x

R
)(A2(r, t)−m)rdr . (T+ − t)‖ψ1(t)‖L2(|x|≈R)‖

ψ2(t)

r
‖L2(|x|≈R) . (T+ − t)η

provided that R & C(η)η−1λ(t)−1. By fixing t and taking η → 0 (which also forces R → ∞),
it follows that

∫

(A2(r, t)−m)rdr = 0

which implies A2(t) ≡ m hence, by (2.9) and then by (2.18) it follows that ψ2(t) ≡ 0 and
ψ1(t) ≡ 0. Finally this implies by (2.25) that ψ±(t) ≡ 0 which contradicts the blow-up
hypothesis at time T+ (since the solution is globally in time ≡ 0).
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6. Proof of the main result

This section is dedicated to the proof of Theorem 1.3. Given an initial data u0 ∈ Ḣ1∩ Ḣ3,
by using Theorem 1.1 it follows that it has a unique local solution on [0, T ] for some T > 0.
On this interval we use sections 2.1 and 2.2 to construct the associated compatible fields ψ±

obeying the system (2.24). By using Theorem 5.1 (and the previous reduction from Section
4) it follows that the solution ψ± is globally defined on [0,+∞) and with ‖ψ±‖L4(R+×R+) <
+∞. By part vii) of Theorem 3.2 the H2 regularity of Rm±1ψ

±
0 is propagated at all times

t ≥ 0. Invoking Proposition 2.1 this implies that u(t) ∈ Ḣ1 ∩ Ḣ3 with bounds depending on
‖ψ±‖L4(R+×R+), ‖Rm±1ψ

±
0 ‖H2 and t. Using again Theorem 1.1, this means that the solution

u(t) can be continued past time T and in fact for all times t ≥ 0 with u(t) ∈ L∞
t (R+ :

Ḣ1 ∩ Ḣ3). The scattering statement refers to the scattering for ψ±(t), which follows from
the Cauchy theory for the system (2.24), see Theorem 3.2.

Part ii) of the Theorem 1.3 is standard (see [8] for details) and it follows from (2.23), the
Cauchy theory for the system (2.24) and (2.31).

7. Appendix

Proof of Proposition 2.1. We write the arguments below in a qualitative fashion in order
to have a concise argument. However one easily sees that the argument below provides
quantitative bounds which lead to (2.30).

We first read the information u ∈ Ḣ2. Using the equivariance property of u, we obtain

(7.1) Hmu1, Hmu2 ∈ L2, H0u3 ∈ L2.

Since u23 = 1 + u21 + u22 it follows that

u1∂ru1 + u2∂ru2
r

=
u3∂ru3
r

∈ L2

and by invoking 1
r
(∂r −

m
r
)(u1, u2) ∈ L2, we obtain

u2
1
+u2

2

r2
∈ L2.

Since Dr(v + iw) = 0 it follows that

∂rψ
± = ∂r

(

W± · (v + iw)
)

= (∂rW
±) · (v + iw)

where we recall that

W± = ∂ru±
1

r
u× ∂θu ∈ Tu(S

2)

From this we compute

1

r
W± =

1

r

(

(∂r ∓
m

r
)u1, (∂r ∓

m

r
)u2, ∂ru3

)

±m(
(u3 − 1)u1

r2
,
(u3 − 1)u2

r2
,−

u21 + u22
r2

)

From (7.1), Lemma 1.4 and the fact that
u2
1
+u2

2

r2
∈ L2, it follows that W±

r
∈ L2 if m ≥ 2 and

W+

r
∈ L2 if m = 1. This implies the corresponding result for ψ±

r
.
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A direct computation gives

∂rW
± = ∂2ru±m∂r(

u× Ru

r
)

= ∂2ru∓m
∂ru3 · u+ u3 · ∂ru

r
∓m

−→
k − u3 · u

r2

= (∂2r ∓
m

r
∂r ±

m

r2
)u∓m

u3 − 1

r
∂ru∓m

−→
k

r2
+ f±u

where

f± = ∓m
∂ru3
r

±m
u3 − 1

r2

We then continue with

∂rψ
± =

(

(∂2r ∓
m

r
∂r ±

m

r2
)u1, (∂

2
r ∓

m

r
∂r ±

m

r2
)u2, (∂

2
r ∓

m

r
∂r)u3

)

· (v + iw)

∓m
u3 − 1

r
ψ1 ± i

u3 − 1

r2
ψ2

= F± ∓m
u3 − 1

r

(m− 1)ψ+ + (m+ 1)ψ−

2

where F± ∈ L2 from (7.1). From the expression of W± and the Sobolev embeddings it

follows that ‖ψ±‖L4 . ‖u‖Ḣ1∩Ḣ2, hence ‖ψ2

r
‖L4 . ‖u‖Ḣ1∩Ḣ2 . Therefore u3−1

r
= 1

u3+1

u21+u
2
2

r
=

1
u3+1

|ψ2|2

m2r
∈ L4, which implies that u3−1

r

(m−1)ψ++(m+1)ψ−

2
∈ L2 and we conclude with ∂rψ

± ∈

L2.
Hence we have just established that Rm±1ψ

± ∈ H1. The procedure can be easily reversed,
i.e. if Rm±1ψ

± ∈ H1 then u ∈ Ḣ2, the details are left to the reader.
Next we transfer third derivatives of u to second derivatives for ψ± and vice-versa. From

∆u ∈ Ḣ1, using the equivariance properties of u, it follows

(7.2) Hmu1, Hmu2 ∈ Ḣ1
e , ∂rH0u3 ∈ L2

Using the above computation for ∂rψ
+, we have

Hm±1ψ
± = (∂r +

1

r
)F± ∓

u3 − 1

r

(m− 1)∂rψ
+ + (m+ 1)∂rψ

−

2
∓
∂rA2

r

(m− 1)ψ+ + (m+ 1)ψ−

2m

−
(m± 1)2

r2
ψ±

The derivative in ∂rF
±, can fall on either term in the expression of F±. From (7.2) and

Lemma 1.4 it follows that in all cases ∂r(∂
2
r∓

m
r
∂r±

m
r2
)u1, ∂r(∂

2
r∓

m
r
∂r±

m
r2
)u2, ∂r(∂

2
r∓

m
r
∂r)u3 ∈

L2. Using Lemma 1.4, it follows that if m 6= 1, then ∂ru1, ∂ru2, ∂ru3 ∈ Ḣ1
e ⊂ L∞, hence by

(2.11) implies that ∂rv ∈ L∞, and similarly ∂rw ∈ L∞. If m = 1 then by the same Lemma

1.4, (∂2r ∓
m
r
∂r±

m
r2
)u1, (∂

2
r ∓

m
r
∂r±

m
r2
)u2, (∂

2
r ∓

m
r
∂r)u3 ∈ Ḣ1

e ⊂ L∞ and since ∂ru ∈ L2, then
by (2.11) ∂rv, ∂rw ∈ L2. Hence we have completed the proof of the fact that ∂rF

± ∈ L2.
Next, if m = 1, then from (7.2) and Lemma 1.4 it follows that 1

r
F± ∈ L2. The other linear

term left is 4ψ
+

r2
(in the expression of H2ψ

+), which is estimated from

ψ+

r2
=

1

r2

(

(∂r −
m

r
)u1, (∂r −

m

r
)u2, ∂ru3

)

· (v + iw)−
u21 + u22 − u3(u3 − 1)

r3
(v3 + iw3)
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Indeed, from Lemma 1.4 it follows that (∂r − m
r
)u1, (∂r − m

r
)u2, ∂ru3 ∈ L2, and from

|
u2
1
+u2

2
−u3(u3−1)

r3
(v3 + iw3)| .

|ψ2|3

r3
and the Sobolev embedding ψ2

r
∈ L6 it follows that all

the linear terms in Hm±1ψ
± ∈ L2.

If m = 2, then 1
r
F+ ∈ L2 on behalf of Lemma 1.4 and ψ+

r2
∈ L2 is shown as above. On the

other hand,

1

r
F− −

1

r2
ψ− =

1

r

(

(∂2r +
1

r
∂r −

4

r2
)u1, (∂

2
r +

1

r
∂r −

4

r2
)u2, (∂

2
r −

1

r
∂r)u3

)

· (v + iw)

belongs to L2 on behalf of Lemma 1.4.
If m ≥ 3, then it is a simple exercise to show that all the linear terms belong to L2.
Moving on to the nonlinear terms in the expression ofHm±1ψ

±, we notice that ψ± ∈ L4∩L6

by using the Sobolev embeddings. Using (2.18), it then follows that ∂rA2

r

(m−1)ψ++(m+1)ψ−

2m
∈

L2 by using the L6 estimate for all terms involved.

For the last term we claim that ∂rψ
± ∈ L3, from which u3−1

r

(m−1)∂rψ++(m+1)∂rψ−

2
∈ L2

follows by using the L6 estimate for ψ2

r
. The claim follows from the formula above for ∂rψ

±,
the L6 estimate for ψ± and the Sobolev embedding (∂2r∓

m
r
∂r±

m
r2
)u1, (∂

2
r∓

m
r
∂r±

m
r2
)u2, (∂

2
r∓

m
r
∂r)u3 ∈ L3 (which can be derived using the Hankel calculus along the lines of the arguments

in Lemma 1.4).
�
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[23] F. Merle, P. Raphaël, I. Rodnianski, Blow up dynamics for smooth equivariant solutions to the energy

critical Schrödinger map, preprint.
[24] P. Smith, Conditional global regularity of Schrödinger maps: sub-threshold dispersed energy, preprint.
[25] P. L. Sulem, C. Sulem, and C. Bardos, On the continuous limit for a system of classical spins, Comm.

Math. Phys., 107 (1986), 431–454.
[26] T. Tao, M. Visan, X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS. Forum Math. 20

(2008), no. 5, 881919.

Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La

Jolla, CA 92093-0112

E-mail address : ibejenaru@ucsd.edu

Department of Mathematics, Princeton University, Washington Rd., Princeton, NJ 08540

E-mail address : aionescu@math.princeton.edu

Department of Mathematics, University of Chicago, 5734 S. University Ave, Chicago, IL

60637

E-mail address : cek@math.uchicago.edu

Department of Mathematics, The University of California at Berkeley, Evans Hall,

Berkeley, CA 94720, U.S.A.

E-mail address : tataru@math.berkeley.edu

35


	1. Introduction
	1.1. Definitions and notations.
	1.2. A few calculus rules
	1.3. Energy estimates

	2. The Coulomb gauge representation of the equation
	2.1. The Coulomb gauge
	2.2.  Schrödinger maps in the Coulomb gauge
	2.3. Fix =-1
	2.4. Regularity of the gauge elements
	2.5. Recovering the map from -.

	3. The Cauchy problem
	3.1. Strichartz estimates
	3.2. Setup and Cauchy theory

	4. Concentration compactness
	5. Momentum and localized momentum.
	5.1. Virial type identities.
	5.2. Proof of Theorem ??.

	6. Proof of the main result
	7. Appendix
	References



