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Introduction 

Missing data is a serious problem in cross-cultural survey research, especially for 
regression models employing data sets such as the Ethnographic Atlas (EA) or the 
Standard Cross-Cultural Sample (SCCS).1 In comparative survey research the most 
common procedure for handling missing data is listwise deletion, where one simply drops 
any observation containing a missing value for any of the model’s variables. Listwise 
deletion leads to the loss of all non-missing information in the dropped rows, frequently 
leading to statistical analysis being based on subsamples that are no longer representative 
of the full sample. Estimates based on such subsamples are valid only if certain 
assumptions are made about the mechanism(s) by which the data become missing. These 
assumptions are reviewed by Dow and Eff (2009b) who conclude that they will seldom 
hold for cross-cultural data sets.  

A superior alternative to listwise deletion that is rapidly gaining favor in the social 
sciences is multiple imputation. Here, values are imputed, or estimated, for the missing 
observations, using auxiliary data that covaries with the variable containing missing 
values. The qualifier multiple signifies that multiple data sets (typically 5 to 10) are 
imputed, within each of which missing values are replaced with imputed values drawn 
from a conditional distribution (conditional on the values of the auxiliary data). The 
imputed values will be different in each of the data sets: only slightly different when the 
variable with missing values is strongly conditioned by the auxiliary data; quite different 
when the variable is only weakly conditioned by the auxiliary data. Standard statistical 
estimation procedures are carried out on each of the m imputed data sets, leading to m 

estimates for parameters of interest which are subsequently combined to produce final 
estimates of model parameters.  

A few recent cross-cultural papers point out the advantages of multiple 
imputation. Dow and Eff (2009b) provide a review of the issues and literature. The 
methods have also been used in two recent empirical studies (Dow and Eff 2009a; Eff 
and Dow 2009).  

A second basic problem with cross-cultural data sets is that the sample cases are 
frequently not independent of one another due to various types of inter-societal network 
processes: copying, borrowing, contagion, conquest, trade, inheritance from ancestral 
populations, etc. This is the classic Galton’s Problem in anthropology, understood more 
generally as the problem of cultural trait transmission. Unless the relevant networks of 
inter-relations are somehow included in the standard statistical modeling procedures, 
inconsistent and biased estimates will be generated. A new approach to Galton’s Problem 
based on instrumental variables regression is outlined in Dow (2007, 2008), and 
empirical examples are reported in the Dow and Eff papers cited above. A second 
objective of the current paper, then, is to provide R programs that will also enable 

                                                 

1 The EA is described in Murdock (1967); the SCCS is described in Murdock and White (1969) 
and in White (2007). 



researchers to implement the new network autocorrelation effects regression approach to 
Galton’s Problem. 

The two programs presented here can be easily modified to build any OLS model 
utilizing SCCS data. It takes many hours of experience before one becomes proficient in 
writing R programs but the simplest way to begin is to copy and modify programs written 
by others. 

Creating Multiply Imputed Data 

Multiple imputation requires the following three steps. First, multiple (5 to 10) versions 
of the data are created using auxiliary data to estimate values where these are missing. 
Next, each of the imputed data sets is analyzed using whichever classical statistical 
procedure is required (typically a multivariate regression), and the estimated parameters 
stored. Finally, the multiple estimated results are combined using formulas first 
developed by Donald Rubin (1987). We will explain the mechanics of each of these steps 
in detail with respect to the SCCS data set. Figure 1 provides an overview of our 
procedure. 

 

Figure 1: The flowchart provides an overview of the procedures described in this primer. 



 Two widely used R packages will create MI data: mix (Schafer 2007) and mice 
(van Buuren and Groothuis-Oudshoorn 2009). In this primer, we will use mice (MI by 
Chained Equations.)  

Auxiliary data 

The mice procedure will estimate values for missing observations using auxiliary data 
provided by the user. The ideal auxiliary data for the SCCS are those SCCS variables 
with no missing values. Imputation is a regression-based procedure, where the variable to 
be imputed is the dependent variable, and the auxiliary data are the independent 
variables.2 This leads to several important constraints in choosing auxiliary variables. 
First, the procedure will succeed only if there are fewer auxiliary variables than the 
number of non-missing observations on the variable being imputed (so that the degrees of 
freedom are greater than one). Second, since most SCCS variables are scales with few 
discrete values, it is easy to make the mistake of choosing an auxiliary variable which—
over the set of non-missing observations—is perfectly collinear with some of the other 
auxiliary variables, causing the MI procedure to fail. Third, auxiliary variables which 
create an extremely good in-sample fit with the variable to be imputed (the “imputand”) 
might have a very poor out-of-sample fit, so that the imputed values are almost worthless. 
This last is the problem of over-fitting a model. 

One step that reduces the problem of over-fitting is to discard all potential 
auxiliary variables that could not have a plausible relationship with the imputand. These 
would include the many SCCS variables that describe characteristics of the ethnographic 
study (such as date of the fieldwork or sex of the ethnographer), or that represent 
reliability assessments of other variables. While these variables have no missing values 
and may provide a good fit to the non-missing values of the imputand, that fit is entirely 
spurious, and one has no reason to believe that the fit would also extend to the missing 
values of the imputand. 

Use of Principal Components as Auxiliary Variables for Imputation 

Another step that diminishes the risk of over-fitting is to use the same set of auxiliary 
variables for all imputations, rather than selecting a unique best-fitting set for each 
imputand. This requires that a small number of the highest quality variables be selected. 
A reasonable way to do this is to use principal components analysis over a large set of 
variables, and select the few largest principal components as auxiliary variables. A 
second advantage of principal components is that each observation typically has a unique 
numeric value, making perfect collinearity among the auxiliary variables all but 
impossible.  

Table 1 shows 105 SCCS variables that may be used to generate principal 
components. The column “category” shows the group with which each variable is 

                                                 

2 The three default estimation methods used in mice are: 1) for a numeric variable, predictive 
mean matching (a semi-parametric regression method); 2) for a binary variable, logistic 
regression; and 3) for a nominal variable, polytomous logistic regression. Six optional methods 
are also available (van Buuren and Groothuis-Oudshoorn 2009). 



classified when producing principal components; there are five groups. The column 
“nominal=1” shows whether a variable is a nominal variable (as opposed to ordinal); 
nominal variables are first converted to dummy variables (one for each discrete category) 
before calculating principal components. The variables are from the SCCS, with the 
exception of 20 climate variables (Hijmans et al 2005) and a variable for net primary 
production (Imhoff et al 2004). Values for these variables were assigned to each SCCS 
society using a Geographical Information System (GIS) to extract data for the location of 
each society. The utility of any of these categories and their associated principal 
components as auxiliary variables will vary with the nature of the substantive model and 
the variables to be imputed. 

Table 1: Auxiliary variables used to create principal components 
SCCS 

variable 

category Description # discrete 

values 

nominal=1 

v61 Complexity Fixity of Settlement 6 1 
v62 Complexity Compactness of Settlement 4 1 
v65 Complexity Types of Dwelling 14 1 
v66 Complexity Large or Impressive Structures 6 1 
v73 Complexity Community Integration 7 1 
v74 Complexity Prominent Community Ceremonials 4 1 
v75 Complexity Ceremonial Elements 6 1 
v76 Complexity Community Leadership 8 1 
v149 Complexity Writing and Records 5 0 
v150 Complexity Fixity of Residence 5 0 
v151 Complexity Agriculture 5 0 
v152 Complexity Urbanization 5 0 
v153 Complexity Technological Specialization 5 0 
v154 Complexity Land Transport 5 0 
v155 Complexity Money 5 0 
v156 Complexity Density of Population 5 0 
v157 Complexity Political Integration 5 0 
v158 Complexity Social Stratification 5 0 
v234 Complexity Settlement Patterns 8 1 
v236 Complexity Jurisdictional Hierarchy of Local 

Community 
3 1 

v270 Complexity Class Stratification 5 1 
v271 Complexity Class Stratification, Secondary Feature 5 1 
v920 Complexity Large scale slaveholding systems: 

proportion of slaves 
6 0 

v1130 Complexity Population Density 6 0 
v158_1 Complexity Sum of Cultural Complexity (v149-158) 40 0 
v854 Ecology Niche Temperature (Approximate) 

Adapted from William Goode, World Atlas 
8 0 

v855 Ecology Niche Rainfall (Approximate) Adapted 
from William Goode, World Atlas 

7 0 

v856 Ecology Niches Adapted from William Goode, 
World Atlas 

15 0 

v857 Ecology Climate Type- Ordered in terms of Open 
Access to Rich Ecological Resources 

6 0 

v921 Ecology Agricultural Potential 1: Sum of Land 
Slope, Soils, Climate Scales 

18 0 



SCCS 

variable 

category Description # discrete 

values 

nominal=1 

v922 Ecology Land Slope 5 0 
v924 Ecology Suitability of Soil for Agriculture 8 0 
v926 Ecology Climate 7 0 
v928 Ecology Agricultural Potential 2: Lowest of Land 

Slopes, Soils, Climate Scales 
8 0 

v1253 Ecology Leishmanias 3 0 
v1254 Ecology Trypanosomes 3 0 
v1255 Ecology Malaria 3 0 
v1256 Ecology Schistosomes 3 0 
v1257 Ecology Filariae 3 0 
v1258 Ecology Spirochetes 3 0 
v1259 Ecology Leprosy 3 0 
v1260 Ecology Total Pathogen Stress 15 0 
v1696 Ecology Biome 5 1 
v1913 Ecology Mean yearly annual rainfall 185 0 
v1914 Ecology Coefficient of variation in mean annual 

rainfall 
185 0 

v1915 Ecology Lowest yearly rainfall in the n years 
sampled 

182 0 

v1916 Ecology Highest yearly rainfall in the n years 
sampled 

183 0 

v1917 Ecology Difference between maxrain and minrain 
rainfall 

183 0 

bio1 Ecology Annual Mean Temperature 186 0 
bio2 Ecology Mean Diurnal Range (Mean of monthly 

(max temp - min temp)) 
186 0 

bio3 Ecology Isothermality (P2/P7) (* 100) 186 0 
bio4 Ecology Temperature Seasonality (standard 

deviation *100) 
186 0 

bio5 Ecology Max Temperature of Warmest Month 186 0 
bio6 Ecology Min Temperature of Coldest Month 186 0 
bio7 Ecology Temperature Annual Range (P5-P6) 186 0 
bio8 Ecology Mean Temperature of Wettest Quarter 186 0 
bio9 Ecology Mean Temperature of Driest Quarter 186 0 
bio10 Ecology Mean Temperature of Warmest Quarter 186 0 
bio11 Ecology Mean Temperature of Coldest Quarter 186 0 
bio12 Ecology Annual Precipitation 186 0 
bio13 Ecology Precipitation of Wettest Month 186 0 
bio14 Ecology Precipitation of Driest Month 171 0 
bio15 Ecology Precipitation Seasonality (Coefficient of 

Variation) 
186 0 

bio16 Ecology Precipitation of Wettest Quarter 186 0 
bio17 Ecology Precipitation of Driest Quarter 179 0 
bio18 Ecology Precipitation of Warmest Quarter 184 0 
bio19 Ecology Precipitation of Coldest Quarter 184 0 
bio20 Ecology Altitude 186 0 
NPP Ecology Biomass: net primary production 186 0 
v67 Family&Kinship Household Form 8 1 
v68 Family&Kinship Form of Family 12 1 
v70 Family&Kinship Descent-Membership in Corporate Kinship 5 1 



SCCS 

variable 

category Description # discrete 

values 

nominal=1 

Groups 
v79 Family&Kinship Polygamy 4 1 
v80 Family&Kinship Family size 5 1 
v208 Family&Kinship Mode of Marriage 7 1 
v209 Family&Kinship Mode of Marriage (Alternate) 6 1 
v836 Family&Kinship Rule of Descent: Primary 8 1 
v1858 Region&Religion Region 10 1 
relig Region&Religion Religion 9 1 
v3 Subsistence Agriculture-Contribution to Local Food 

Supply 
6 0 

v5 Subsistence Animal Husbandry-Contribution to Food 
Supply 

6 0 

v19 Subsistence Preservation and Storage of Food 12 0 
v21 Subsistence Food Surplus Via Storage 3 0 
v22 Subsistence Food Supply (Ecological or Distribution 

Network) 
5 0 

v203 Subsistence Dependence on Gathering 8 0 
v204 Subsistence Dependence on Hunting 10 0 
v205 Subsistence Dependence on Fishing 10 0 
v206 Subsistence Dependence on Animal Husbandry 10 0 
v207 Subsistence Dependence on Agriculture 10 0 
v232 Subsistence Intensity of Cultivation 6 0 
v233 Subsistence Major Crop Type 4 1 
v243 Subsistence Animals and Plow Cultivation 3 1 
v244 Subsistence Predominant Type of Animal Husbandry 7 1 
v245 Subsistence Milking of Domestic Animals 2 0 
v246 Subsistence Subsistence Economy 7 1 
v814 Subsistence Importance of Agriculture 17 0 
v815 Subsistence Importance Domes. Anim 13 0 
v816 Subsistence Importance Fishing 15 0 
v817 Subsistence Importance Hunting 16 0 
v818 Subsistence Importance Gathering 13 0 
v819 Subsistence Importance Trade 8 0 
v820 Subsistence Principal Subsistence Category 8 1 
v833 Subsistence Subsistence Economy: Dominant Mode 8 1 
v834 Subsistence Subsistence Economy: Subsidiary Mode 7 1 
v858 Subsistence Subsistence Type- Ecological 

Classification 
11 1 

Notes: N=186 for all variables. All variables from the SCCS, except bio1-bio20 (GIS data from Hijmans et 
al 2005) and NPP (GIS data from Imhoff et al 2004). All variables numeric and ordinal, except those for 
which nominal=1. 

Figure 2 shows the percent of the total variation explained for each component in 
the five sets of principal components. In addition to charts for each of the five major 
variable groups, Figure 2 shows a chart of principal components extracted from a 
proximity matrix based on language phylogenetic relationships among the SCCS 
societies (Eff 2008). The dotted red line in each chart shows the cut-off between 
components retained and components discarded.  



 

Figure 2: The proportion of variation explained for principal components. The dotted red line 
marks the principal components retained for the auxiliary data. The principal components for 
region and religion were not used—instead, a collapsed set of dummy variables are used in the 
auxiliary data. 



The Region and Religion principal components of the combined 10 region and 9 
religion dummy variables show little decay in proportion of variation explained. It 
therefore seems better to use dummy variables for regions and religion, perhaps after 
collapsing categories as we do below, rather than principal components.  

Since Galton’s problem is of such overwhelming importance in cross-cultural 
studies, and is often reflected in spatial or linguistic clustering of variable values, the 
auxiliary variables should also contain measures that capture some of the ways in which 
societies are connected across space or through time. The principal components of the 
language matrix are included for this reason, and we also include latitude and longitude 
(converted to radians), their squares and their cross-products. 

Program 1: Multiply imputing the data set 

Before beginning, the user should create a directory in which to unzip the zip folder 
containing the data sets and programs.3 The first of the two programs in the appendix 
creates multiply imputed versions of a given dataset. The program contains comments 
(on the lines beginning with “#”), but each step will be briefly discussed here, as well.  

The program begins by defining the working directory, where the data sets and 
programs are kept. Next, all objects are removed from memory, followed by an option 
that the commands issued in the script file be echoed in the output file (if running in 
batch mode) or in the console (if using the MS Windows GUI). R consists of the “base” 
procedures plus nearly 2,000 “packages” contributed by users, containing specialized 
procedures. The packages are made available through the library command. Here we will 
use two packages: foreign, which allows us to read and write data in many different 
formats; and mice, which will create multiple imputed datasets. The package foreign is 
part of base R, but mice must be “installed” before it can be “loaded” into the program. 
Installing is most easily done using the menu bar at the top of the MS Windows GUI.  

Our imputation program calls in two external R-format datasets: vaux.Rdata
 and 

SCCS.Rdata.  The first of these contains the auxiliary data, and the second is an R version 
of the SPSS-format SCCS data found on Douglas White’s website4 as of March, 2009. As 
always, it’s a good idea to look at the data at hand before using them. Once an object is 

loaded, e.g., such as with load(“vaux.Rdata”.GlobalEnv), useful commands in R for 
looking at an object called vaux are: class(vaux) (tells what class of object vaux is—the 
datasets should be of class “dataframe”), names(vaux) (lists the variable names), 

summary(vaux) (quintiles and mean of each numeric variable; plus frequency of first six 
categories for character variables), head(vaux) (prints first six rows of vaux), and 

tail(vaux) (prints last six rows of vaux).  

                                                 

3 The zip folder is found at http://intersci.ss.uci.edu/wiki/spw/Eff&Dow_data&programs.zip and 
in supplementary files that accompany this article. 
 

4 Douglas White’s website: http://eclectic.anthrosciences.org/~drwhite/courses/index.html. 
Additional items related to the methods described here may be found on the InterSci wiki at: 
http://intersci.ss.uci.edu/wiki/index.php/Imputing_the_data  



The auxiliary data vaux contains the character variable socname (character 
variables are called “factors” in R; factors are interpreted as nominal variables, even 
when the characters are numbers). Factors can be used as auxiliary variables during the 
imputation process—they are converted into zero-one dummy variables, one for each 
discrete value, as for example, a zero-one variable for each society name. The number of 
discrete values should be few, however (to avoid the problem of perfect collinearity). The 
variable socname has 186 discrete values; it therefore must be removed from vaux, which 
is accomplished by the negative sign within the brackets (28 is socname’s column 
position in vaux). Before removing socname it is compared with the values of socname in 
the SCCS data set, to ensure that the rows are ordered identically in the two files. Two 
factors are retained in vaux: one for a collapsed set of Burton regions (v1858), and the 
other for world religions (v2002.) Both of these are described in the comments.  

A block of commands loops through each of the variables in vaux, checks if the 
variable is numeric, finds the number of missing values, finds the number of discrete 
values, and then lists the results for all variables in a table. This step is not really 
necessary, but it’s useful to know these facts about the auxiliary data.  

Variables from the SCCS are extracted into a new dataframe fx. In this step some 
variables are modified and most are given new names. Table 2 summarizes the variables 
selected for dataframe fx (see White et al. 2009 for the codebook). Note that zero-one 
dummy variables are created by creating a conditional statement (a statement that is 
either true or false) and then multiplying that statement by one, to make it numeric (true 
statements equal one, false statements equal zero).  

Table 2: Variables in imputed dataset 
Variable name SCCS name Nominal=1 # missing N # discrete  

socname SCCS$socname 1 0 186 186 
socID SCCS$"sccs#" 0 0 186 186 
valchild (SCCS$v473+SCCS$v474+ 

SCCS$v475+SCCS$v476) 
0 15 171 18 

cultints SCCS$v232 0 0 186 6 
roots (SCCS$v233==5)*1 0 0 186 2 
cereals (SCCS$v233==6)*1 0 0 186 2 
gath SCCS$v203 0 0 186 8 
hunt SCCS$v204 0 0 186 10 
fish SCCS$v205 0 0 186 10 
anim SCCS$v206 0 0 186 10 
femsubs SCCS$v890 0 1 185 9 
pigs (SCCS$v244==2)*1 0 0 186 2 
milk (SCCS$v245>1)*1 0 0 186 2 
plow (SCCS$v243>1)*1 0 0 186 2 
bovines (SCCS$v244==7)*1 0 0 186 2 
tree (SCCS$v233==4)*1 0 0 186 2 
foodtrade SCCS$v819 0 0 186 8 
foodscarc SCCS$v1685 0 42 144 5 
ecorich SCCS$v857 0 0 186 6 
popdens SCCS$v156 0 0 186 5 
pathstress SCCS$v1260 0 0 186 15 
CVrain SCCS$v1914/SCCS$v1913 0 0 186 185 



Variable name SCCS name Nominal=1 # missing N # discrete  

rain SCCS$v854 0 0 186 8 
temp SCCS$v855 0 0 186 7 
AP1 SCCS$v921 0 0 186 18 
AP2 SCCS$v928 0 0 186 8 
ndrymonth SCCS$v196 0 4 182 13 
exogamy SCCS$v72 0 1 185 5 
ncmallow SCCS$v227 0 12 174 8 
famsize SCCS$v80 0 0 186 5 
settype SCCS$v234 0 0 186 8 
localjh (SCCS$v236-1) 0 0 186 3 
superjh SCCS$v237 0 2 184 5 
moralgods SCCS$v238 0 18 168 4 
fempower SCCS$v663 0 53 133 7 
sexratio 1+(SCCS$v1689>85)+ 

(SCCS$v1689>115) 
0 127 59 3 

war SCCS$v1648 0 26 160 18 
himilexp (SCCS$v899==1)*1 0 19 167 2 
money SCCS$v155 0 0 186 5 
wagelabor SCCS$v1732) 0 97 89 3 
migr (SCCS$v677==2)*1 0 81 105 2 
brideprice (SCCS$v208==1)*1 0 0 186 2 
nuclearfam (SCCS$v210<=3)*1 0 1 185 2 
pctFemPolyg SCCS$v872 0 41 145 54 

Notes: All variables created from SCCS variables, as shown in Program 1, at the creation of 
dataframe fx. The SCCS code book (White et al. 2009) is found at:  
http://eclectic.ss.uci.edu/~drwhite/courses/SCCCodes.htm.  

 

We next identify variables in dataframe fx that have missing values, and make a 
list of their names (zv1). We loop through these variables, at each iteration attaching a 
new variable with missing values to the auxiliary data, and saving the final data set in a 
temporary dataframe called zxx. The procedure mice makes imputed replications of this 
imputand; the non-missing values of the imputand will be the same in each replication, 
but the missing values will be replaced with imputed values that will differ somewhat 
across the 10 replications. These values are stored in another dataframe called impdat, 
which contains the imputed variables, as well as two new variables: .imp (an index for 
imputation, .imp=1,... 10); and .id (an index for society, .id=1,… 186). The dataframe 
now has one column for each imputed variable and 1,860 rows; it is sorted such that the 
186 societies for imputation one are stacked on top of the 186 societies for imputation 
two, which are stacked on top of the 186 societies for imputation three, and so on.  

Finally, those variables in the dataframe fx which have no missing values are 
attached to the dataframe impdat in their numeric locations for the SCCS sample (1 
through 186.) This requires that 10 replications of these variables be stacked on top of 
each other, to create 1,860 rows, and then attached to the imputed data. The dataframe 
impdat is then saved as a permanent R-format data file, for use later. 



Modifying Program 1: Imputing other survey data sets 

Modifying this program to generate imputed data for one’s own research would typically 
require changing only two sections. First, the setwd command at the top of the program 
must be changed to the directory where the two data files are stored. Second, variables 
and names in the command creating the dataframe fx should be changed to include the 
variables relevant for one’s own research. In addition, one might occasionally encounter a 
situation where mice execution fails due to perfect collinearity (the error message will 
report this as a problem of “singularity”). This problem can, in most cases, be fixed by 

dropping the two factors (brg and rlg) from the auxiliary data. Replace vaux<-vaux[,-
28] with vaux<-vaux[,c(-28,-29,-30)] to drop the two factors. 

Combining estimates generated from multiply imputed data sets 

Estimations are performed on each of the multiply imputed data sets, singly, and then the 
results are combined, using formulas presented in Rubin (1987: 76-77).5 The estimations 
can be of any kind: contingency tables, OLS regression coefficients, model diagnostics 
such as R2, logit marginal effects, discriminant analysis and so on. In Program 2, we 
present an example of an OLS regression model, in which we estimate a model with the 
dependent variable depvar— the degree to which a society values children, defined as a 
sum of values for early and late boys and girls.. This model has no serious theoretical 
basis for the independent variables; it is presented merely to illustrate how regression 
results are combined. This particular example is also useful to illustrate how the program 
corrects for Galton’s problem of non-independence of cases using instrumental variables 
regression.  

Program 2: Combining estimates from m imputed data sets  

As was the case with the previous program, one must change the working directory to 
that directory where one’s data and programs are saved. All of the packages loaded with 
the library command must first be installed, with the exception of foreign, which is part 
of base R.  

While opinions differ, some statisticians advise selecting only those observations 
for which the dependent variable of a regression model is non-missing when combining 
results from the imputed data sets (von Hipple 2007). We load the SCCS data, and find 
those observations for which depvar is non-missing, and pass those observation numbers 
to the object zdv. We will use zdv at several places in the program to limit the 
observations to be analyzed to this subset. 

The dataframe impdat, containing 10 imputed data sets is read. The command 
summary() is used to take a cursory look at the variables, and the command hist() allows 
one to see how the dependent variable is distributed.  

                                                 

5 The formulas are also given in Dow and Eff (2009a: 140-141) and Eff and Dow (2008: 10-12).  



Galton’s problem and Instrumental Variable Regression 

Galton’s problem must always be considered in cross-cultural research. For our example 
in this paper we introduce two weight matrices (W), each of which will be used for three 
purposes: 1) to create network-lagged dependent variables; 2) to create instrumental 
variables for the network-lagged dependent variables; and 3) to test for any additional 
network autocorrelation in the residuals after the network-lagged instrumental variable 
has been included in the regression estimation. The first weight matrix represents 
proximity between cultures based on language phylogeny (Eff 2008) and the second 
matrix represents proximity between cultures based on great circle distance.6 The 
diagonal of each matrix is set to zero, and only those rows and columns corresponding to 
societies for which the dependent variable is missing are retained (using zdv). Each cell is 
then divided by the row sum, so that each row sums to one. The objects dd and ll are 
matrices. We also create wmatdd and wmatll, which are weight matrix objects, for use in 
procedures that will conduct autocorrelation tests.  

The list indpv contains the names of all potential independent variables derived 
from impdat. We will use this list when we create network-lagged dependent variables, 
along with the matrices dd and ll.  

Program 2 executes a loop 10 times, each time selecting a different imputed 
dataset from impdat. Using those data, a two-stage OLS regression is run, coefficients 
and their variances are collected, and some model diagnostics are estimated and 
collected. The results are collected by appending them to the four NULL objects (VIF, ss, 
beta, dng) listed immediately before the loop. At the completion of the loop, each object 
will have 10 rows, one corresponding to each imputed dataset. 

Within the loop, the first step selects a particular imputed dataset, and then retains 
only those observations for which the dependent variable is non-missing. These 
observations are the rows of a dataframe called m9. The first stage of the two-stage OLS 
regression consists of computing instrumental variables, the second of using the IV 
variables in the final regression (Wooldridge 2006: Chapter 15). 

Network-lagged variables as instrumental variables (IVs) 

Next, network-lagged dependent variables are created for use in the instrumental 
variables regression. The object cyd is the dependent variable (y) pre-multiplied by the 
weight matrix for distance dd (i.e., Wy). Since the weight matrix is row standardized to 
unity and all diagonal entries are set to zero, each observation in cyd will be a weighted 
mean of the dependent variable values in neighboring societies, with the closest societies 
having the highest weights. But since cyd is endogenous when entered as an independent 
variable in a regression model - that is, it is correlated with the error term in the 
regression equation, since it is a function of y - it must be replaced by an appropriate 
“instrument”. If not, the regression coefficient estimates for all variables in the regression 

                                                 

6 Only the 25 nearest neighbors for each society have a non-zero weight. This weight matrix is 
described in Dow and Eff (2008: 152). 



model will be biased. We proceed by regressing cyd on the matrix of network-lagged 
independent variables WX, and then using as instrument the fitted value of cyd from the 
regression (fydd), following the procedures described in Dow (2007). 7  

Additional endogenous network variables can be added to a model, subject to 
limitations of sample size and possible collinearity problems. The most general network 
autocorrelation effects regression model is thus (Dow 2007:347): 

y = ρ1W1y + ρ2W2y + … + ρtWty + Xβ + ε 

where the usual assumptions on the error term apply. Clearly, since y is a function of ε, 
each of the Wiy variables is also a function of ε, is thus endogenous and must be replaced 
by an instrumental variable. In the program we create two instrumental variables for 
network-lagged dependent variables: one using the language matrix (fyll); the other using 
the distance matrix (fydd).  

Since W is nxn, and y is nx1, Wy is nx1. One thus regresses Wy on a nxj matrix of 
exogenous variables Z:  

( ) i

j

jiji
zy µαα ∑ ++= 0W  

which gives estimated coefficients jα̂ that can be used to create a fitted value for 

Wy:  

( ) ∑+=
j

jiji
zy αα ˆˆ

0

^

W  

It is this fitted value that is our instrumental variable. We collect not only the 
fitted value, but also the R2 of these regressions, in order to get a sense of how well our 
instrument fits the original network-lagged dependent variable. 

Two sets of second-stage OLS regressions are performed. The first is an 
unrestricted model, and the second is a restricted model, containing only those 
independent variables coefficients that are significant (p-values ≤ .05). The results of the 
restricted model are collected: the variance inflation factors (VIF); the diagonal of the 
variance-covariance matrix for the estimated coefficients; and the estimated coefficient 
values. Since these regressions are each the second stage of a two-stage least-squares (the 
regressions creating instruments are the first), the variance-covariance matrix and R2 
must be corrected (Dow 2007:348); the corrections are performed in the block of 
commands headed with the comment “corrected sigma2 and R2 for 2SLS”. When 
heteroskedasticity is present, White’s robust variance-covariance matrix should be used 
(Wooldridge 2006:274), as shown in the program comments.  

The list dropt contains the names of independent variables dropped from the 
unrestricted model to generate the restricted model. This list is used to perform a Wald 

                                                 

7 Wooldridge (2006), chapter 15, provides a general background to instrumental variables and 
two-stage least squares. 



test (Davidson and MacKinnon 2004:330) on the restrictions (H0: that the true values of 
these coefficients equal zero). Other diagnostics collected here are: the model R2; the 
Ramsey RESET test for omitted non-linear transformations of the independent variables 
(Wooldridge 2006:308-309); a Lagrange multiplier test for heteroskedasticity 
(Wooldridge 2006:279-281); the Shapiro-Wilk test for normality (Shapiro and Wilk 
1965), applied to model residuals; and a Lagrange multiplier to test for additional 
network dependence (network lag) in the residuals using the two weight matrices 
(language, distance) separately (Anselin et al. 1996). Other diagnostics could easily be 
added. Note that—with the exception of R2—all are statistics with a distribution, and the 
only figure collected is the value of the chi-squared statistic. When the original statistic is 
distributed in some way other than chi-squared, the p-value is used to find the appropriate 
chi-square statistic with one degree of freedom.  

When the loop terminates, each of the four objects has 10 rows, one 
corresponding to each set of estimates. The first block of commands uses Rubin’s 
formulas to combine the regression coefficients and their variances. The final value of 
each coefficient is simply its mean; the final value of each variance is a function both of 
the mean of the 10 variance values and of the variance of the 10 estimated coefficient 
values. The degrees of freedom are a function of the number of imputations and of the 
variation among the estimates, but not a function of the degrees of freedom in the original 
10 estimated models. 

Statistics without hypothesis tests, such as the VIFs and the three R2 measures, are 
simply averaged to find the final value, just as the regression coefficients were. The chi-
square diagnostics collected during estimation are combined in the next block of 
commands, using Rubin’s (1987) formulas appropriate for these statistics. All final 
results are now contained in three objects: bbb (coefficients with p-values and VIFs); ccc 
(diagnostics with p-values); and r2 (the R2 for the final model and each of the models 
creating the instrumental variables). The last block of commands writes these three 
objects to a file called OLSresults.csv. With modifications, OLSresults.csv can be turned 
into a publication quality table. 

Modifying Program 2 

Users modifying this file for their own work would need to change the working directory, 
and then change the variable names to those appropriate for their model. The program 
would typically be run several times, as one develops the final model. Figure 3 below 
gives an overview of the model development process.  



 

Figure 3. The model development process. 

One starts by using theory to select likely determinants of the dependent variable 
from the data, entering all of these as independent variables in the unrestricted model 
(xUR). For the first run, also enter all of these as independent variables in the restricted 
model (xR), and make sure that at least a few of these variable names are entered in the 
dropt list. This will give you the output for the unrestricted model. When opened with a 
spreadsheet, OLSresults.csv for the unrestricted model looks as follows:  

 



 
 x     

1 2SLS model for child value    

 coef Fstat ddf pvalue VIF 

(Intercept) -5.888 0.117 3272.225 0.732 NA 

fyll 2.05 5.192 11062.306 0.023 4.264 

fydd -0.682 1.403 4955.606 0.236 3.55 

cultints 1.077 3.773 31606.989 0.052 5.121 

roots -4.957 4.295 4817.677 0.038 5.031 

cereals -1.685 0.518 5070.077 0.472 7.395 

gath -0.449 0.779 5176.734 0.378 3.172 

plow -2.189 1.199 25455.972 0.274 3.188 

hunt -0.131 0.054 4352.544 0.817 5.32 

fish 0.317 0.575 4315.73 0.448 3.285 

anim -0.076 0.023 2600.041 0.879 5.963 

pigs 0.52 0.079 8353.731 0.779 2.257 

milk -1.662 0.801 7536.368 0.371 4.012 

bovines 1.81 0.97 18457.642 0.325 4.321 

tree -5.252 3.007 6696.942 0.083 3.251 

foodtrade 0.086 2.789 37736.944 0.095 1.619 

foodscarc -0.326 0.67 289.909 0.414 1.262 

ecorich -0.192 0.174 15054.621 0.676 1.85 

popdens -0.322 0.365 28611.076 0.546 3.929 

pathstress -0.084 0.195 7219.325 0.659 2.833 

exogamy -0.937 4.569 104175.349 0.033 1.478 

ncmallow -0.107 0.257 71531.545 0.612 1.672 

famsize 0.305 0.352 3689.09 0.553 2.185 

settype -0.486 1.783 6408.978 0.182 4.254 

localjh -0.491 0.247 7483.425 0.619 1.874 

superjh -0.079 0.019 4393.974 0.89 2.706 

moralgods 0.149 0.072 1771.716 0.788 2.266 

fempower 0.33 1.127 134.268 0.29 1.392 

femsubs 0.951 5.949 25262.043 0.015 1.874 

sexratio -0.127 0.02 150.467 0.887 1.361 

war -0.11 2.184 2843.41 0.14 1.405 

himilexp 1.086 0.769 138.47 0.382 1.618 

money 0.347 0.623 95356.347 0.43 2.364 

wagelabor -0.601 0.874 322.64 0.351 1.515 

migr 0.534 0.204 179.704 0.652 1.558 

brideprice -1.094 0.762 11901.747 0.383 2.058 

nuclearfam -0.623 0.197 34959.144 0.657 2.333 

pctFemPolyg 0.008 0.128 971.26 0.721 1.837 

 x     

R2:final model 0.264412524     

R2:IV(distance) 0.923914964     

R2:IV(language) 0.966727849     

 Fstat df pvalue   

RESET 3.782 334.3 0.053   

Wald on restrs. 0.279 3881.84 0.597   

NCV 0.057 29790.518 0.812   

SWnormal 0.729 1082.343 0.393   

Lagll 2.954 1694507.959 0.086   

Lagdd 4.285 1716406.863 0.038   

 

Examining the p-values for each estimated coefficient gives an indication of 
which independent variables can be dropped from the unrestricted model. One should 
then select all variables with a p-value above a cutoff (because of multicollinearity, the 



cutoff should be reasonably high, 0.10 or higher) and exclude them from the restricted 

model. The names of the variables excluded (and only these) should be entered into the 
dropt list. Then run the program again. If the Wald test on the restrictions rejects the null 
hypothesis that the excluded variables have coefficients equal to zero, then the user 
should then reintroduce to the restricted model the excluded variable with the lowest p-
value in the unrestricted model (and remove that variable name from the dropt list). This 
might be repeated several times, until eventually the Wald test on the restrictions (“Wald 

on restrs.”, in the ccc object) has a high p-value, such as  > 0.05, and the appropriate 
model is found.  

The final restricted model should pass all of the ccc diagnostics with each p-value 
> 0.05.  All coefficients should have p-values ≤ 0.05. It occasionally happens that some 
coefficients in this restricted model do not have a p-value ≤ 0.05. Try dropping those 
independent variables from the restricted model (and adding those variable names to the 
dropt list). If the p-value on the Wald test remains above 0.05, then it was appropriate to 
drop those independent variables in the restricted model. 

Below is the final restricted model from Program 2, which passes all of the 
hurdles: 

 
 x     

1 2SLS model for child value   

    

 coef Fstat Ddf pvalue VIF 

(Intercept) -9.853 0.773 997444.536 0.379 NA 

fyll 1.392 7.967 1002205.226 0.005 1.32 

cultints 0.796 5.702 172080609.9 0.017 1.896 

roots -2.294 4.005 4194107710 0.045 1.209 

fish 0.579 5.327 1498437914 0.021 1.239 

exogamy -0.973 6.543 77725706.93 0.011 1.132 

settype -0.45 4.015 1464374798 0.045 1.685 

femsubs 0.633 4.076 464824801.4 0.044 1.241 

 x     

R2:final model 0.106950602     

R2:IV(distance) 0.923914964     

R2:IV(language) 0.966727849     

 Fstat df Pvalue   

RESET 0.693 1662864.887 0.405   

Wald on restrs. 0.279 3881.84 0.597   

NCV 1.104 11172006.82 0.293   

SWnormal 0.492 3652353.829 0.483   

Lagll 1.646 2134051.995 0.2   

Lagdd 3.371 23105279.77 0.066   

 

Multicollinearity is indicated by the values of the Variance Inflation Factors 
(VIF). A common rule of thumb is that a VIF above 10 signals that one should be 
concerned about multicollinearity. 



The statistics at the bottom are: 1) RESET: Ramsey’s Regression Equation 
Specification Error Test (H0: model is of the correct functional form); 2) Wald on restrs.: 
Wald test for appropriateness of restricted model (H0: dropped variables have coefficients 
equal to zero); 3) NCV: LaGrange Multiplier test for heteroskedasticity (H0: 
homoskedastic residuals); 4) SWnormal: Shapiro-Wilk test for normality of residuals (H0: 
normal residuals); 5) lagll: LaGrange Multiplier test for language network dependence in 
residuals (H0: no autocorrelation); 6) lagdd: LaGrange Multiplier test for distance 
network dependence in residuals (H0: no autocorrelation).  

Summary 

Recent papers (Dow and Eff 2009a, 2009b) have shown that missing data are a serious 
problem in cross-cultural survey research. The preferred method to handle the missing 
data problem is through multiple imputation. In this method, auxiliary data are used to 
impute missing values, creating five to ten separate datasets, each with slightly different 
imputed values. Statistical models are estimated using each of the imputed datasets, and 
the resulting parameter estimates combined using a well-known set of rules. If the 
original data set has a small N, creating additional imputed data sets may help improve 
the quality of results. 

In this paper we first create a set of auxiliary data for the Standard Cross-Cultural 
Sample. Two R programs are then introduced. The first uses the auxiliary data to create 
imputed datasets containing variables selected from the SCCS. The second program uses 
these data to estimate a two-stage least-squares model, containing two or more spatial lag 
variables to control for Galton’s problem, as described in Dow (2007). It also produces 
Lagrange multiplier tests for any further network autocorrelation in the residuals. 
Estimates are produced from each of the imputed datasets and then combined. Users 
should be able to use these R programs, with relatively small modifications, to estimate 
their own models on any cross-cultural or other survey data set.  



Acknowledgements: The authors would like to thank Douglas White and two 
anonymous referees for their insightful and helpful comments.  

 

Malcolm M. Dow is Professor Emeritus of anthropology and mathematical methods in 
the social sciences at Northwestern University. He received a BA (mathematics) and PhD 
(mathematical social science) from University of California, Irvine. Currently, he is 
engaged in a cross-cultural study (with E. Anthon Eff) testing different theories of the 
causes for the historical shift from polygyny to monogamy. 

E. Anthon Eff is an associate professor of economics at Middle Tennessee State 
University. He has a BA in anthropology from the University of Louisville and a PhD in 
economics from the University of Texas at Austin (1989). His interests include urban and 
regional economics, economic anthropology, and the history of economic thought. 



Program 1 
#MI--make the imputed datasets 

#--change the following path to the directory with your data and program-- 

setwd("c:/My Documents/MI") 

rm(list=ls(all=TRUE)) 

options(echo=TRUE) 

#--you need the following two packages--you must install them first-- 

library(foreign) 

library(mice) 

 

#--To find the citation for a package, use this function:--- 

citation("mice") 

 

#----------------------------- 

#--Read in data, rearrange---- 

#----------------------------- 

 

#--Read in auxiliary variables--- 

load("vaux.Rdata",.GlobalEnv) 

row.names(vaux)<-NULL 

#--Read in the SCCS dataset--- 

load("SCCS.Rdata",.GlobalEnv) 

 

#--look at first 6 rows of vaux-- 

head(vaux) 

#--look at field names of vaux-- 

names(vaux) 

#--check to see that rows are properly aligned in the two datasets-- 

#--sum should equal 186--- 

sum((SCCS$socname==vaux$socname)*1) 

#--remove the society name field-- 

vaux<-vaux[,-28] 

names(vaux) 

 

#--Two nominal variables: brg and rlg---- 

#--brg: consolidated Burton  Regions----- 

#0 = (rest of world) circumpolar, South and Meso-America, west North America 

#1 = Subsaharan Africa 

#2 = Middle Old World 

#3 = Southeast Asia, Insular Pacific, Sahul 

#4 = Eastern Americas 

#--rlg: Religion--- 

#'0 (no world religion)'   

#'1 (Christianity)'   

#'2 (Islam)'   

#'3 (Hindu/Buddhist)'   

 

#--check to see number of missing values in vaux,  

#--whether variables are numeric, 

#--and number of discrete values for each variable--- 

vvn<-names(vaux) 

pp<-NULL 

for (i in 1:length(vvn)){ 

nmiss<-length(which(is.na(vaux[,vvn[i]]))) 

numeric<-is.numeric(vaux[,vvn[i]]) 

numDiscrVals<-length(table(vaux[,vvn[i]])) 

pp<-rbind(pp,cbind(data.frame(numeric),nmiss,numDiscrVals)) 

} 



row.names(pp)<-vvn 

pp 

 

#MODIFY THESE STATEMENTS FOR A NEW PROJECT 

#--extract variables to be used from SCCS, put in dataframe fx-- 

fx<-data.frame( 

socname=SCCS$socname,socID=SCCS$"sccs#", 

valchild=(SCCS$v473+SCCS$v474+SCCS$v475+SCCS$v476), 

cultints=SCCS$v232,roots=(SCCS$v233==5)*1, 

cereals=(SCCS$v233==6)*1,gath=SCCS$v203,hunt=SCCS$v204, 

fish=SCCS$v205,anim=SCCS$v206,femsubs=SCCS$v890, 

pigs=(SCCS$v244==2)*1,milk=(SCCS$v245>1)*1,plow=(SCCS$v243>1)*1, 

bovines=(SCCS$v244==7)*1,tree=(SCCS$v233==4)*1, 

foodtrade=SCCS$v819,foodscarc=SCCS$v1685, 

ecorich=SCCS$v857,popdens=SCCS$v156,pathstress=SCCS$v1260, 

CVrain=SCCS$v1914/SCCS$v1913,rain=SCCS$v854,temp=SCCS$v855, 

AP1=SCCS$v921,AP2=SCCS$v928,ndrymonth=SCCS$v196, 

exogamy=SCCS$v72,ncmallow=SCCS$v227,famsize=SCCS$v80, 

settype=SCCS$v234,localjh=(SCCS$v236-1),superjh=SCCS$v237, 

moralgods=SCCS$v238,fempower=SCCS$v663, 

sexratio=1+(SCCS$v1689>85)+(SCCS$v1689>115), 

war=SCCS$v1648,himilexp=(SCCS$v899==1)*1, 

money=SCCS$v155,wagelabor=SCCS$v1732, 

migr=(SCCS$v677==2)*1,brideprice=(SCCS$v208==1)*1, 

nuclearfam=(SCCS$v210<=3)*1,pctFemPolyg=SCCS$v872 

) 

 

#--look at first 6 rows of fx-- 

head(fx) 

 

#--check to see number of missing values-- 

#--also check whether numeric-- 

vvn<-names(fx) 

pp<-NULL 

for (i in 1:length(vvn)){ 

nmiss<-length(which(is.na(fx[,vvn[i]]))) 

numeric<-is.numeric(fx[,vvn[i]]) 

pp<-rbind(pp,cbind(nmiss,data.frame(numeric))) 

} 

row.names(pp)<-vvn 

pp 

 

#--identify variables with missing values-- 

z<-which(pp[,1]>0) 

zv1<-vvn[z] 

zv1 

#--identify variables with non-missing values-- 

z<-which(pp[,1]==0) 

zv2<-vvn[z] 

zv2 

 

#----------------------------- 

#----Multiple imputation------ 

#----------------------------- 

 

#--number of imputed data sets to create-- 

nimp<-10 

#--one at a time, loop through those variables with missing values-- 

for (i in 1:length(zv1)){ 

#--attach the imputand to the auxiliary data-- 



zxx<-data.frame(cbind(vaux,fx[,zv1[i]])) 

#--in the following line, the imputation is done-- 

aqq<-complete(mice(zxx,maxit=100,m=nimp),action="long") 

#--during first iteration of the loop, create dataframe impdat-- 

if (i==1){ 

impdat<-data.frame(aqq[,c(".id",".imp")]) 

} 

#--the imputand is placed as a field in impdat and named-- 

impdat<-cbind(impdat,data.frame(aqq[,NCOL(zxx)])) 

names(impdat)[NCOL(impdat)]<-zv1[i] 

} 

 

#--now the non-missing variables are attached to impdat-- 

gg<-NULL 

for (i in 1:nimp){ 

gg<-rbind(gg,data.frame(fx[,zv2])) 

} 

impdat<-cbind(impdat,gg) 

 

#--take a look at the top 6 and bottom 6 rows of impdat-- 

head(impdat) 

tail(impdat) 

 

#--impdat is saved as an R-format data file-- 

save(impdat,file="impdat.Rdata") 

 

 



Program 2 
#MI--estimate model with network-lagged dependent variables, combine results 

rm(list=ls(all=TRUE)) 

#--Set path to your directory with data and program-- 

setwd("c:/My Documents/MI") 

options(echo=TRUE) 

 

#--need these packages for estimation and diagnostics-- 

library(foreign) 

library(spdep) 

library(car) 

library(lmtest) 

library(sandwich) 

 

#----------------------------- 

#--Read in data, rearrange---- 

#----------------------------- 

 

#--Read in original SCCS data--- 

load("SCCS.Rdata",.GlobalEnv) 

#--Read in two weight matrices-- 

ll<-as.matrix(read.dta("langwm.dta")[,-1]) 

dd<-as.matrix(read.dta("dist25wm.dta")[,c(-1,-2,-189)]) 

#--Read in the imputed dataset--- 

load("impdat.Rdata",.GlobalEnv) 

 

#HERE YOU CHANGE HOW THE DEPENDENT VARIABLE IS COMPUTED FOR A NEW PROJECT 

#--create dep.varb. you wish to use from SCCS data-- 

#--Here we sum variables measuring how much a society values children-- 

#--can replace "sum" with "max" 

depvar<-apply(SCCS[,c("v473","v474","v475","v476")],1,sum)  

#--find obs. for which dep. varb. is non-missing-- 

zdv<-which(!is.na(depvar)) 

depvar<-depvar[zdv] 

#HERE GIVE THE "NAME" OF THE DEPENDENT VARIABLE THAT IS COMPUTED 

depvarname<-"child value" 

#--can add additional SCCS variable, but only if it has no missing values--- 

dateobs<-SCCS$v838 

dateobs<-dateobs[zdv] 

 

#--look at frequencies and quartiles for the dep. varb.-- 

summary(depvar) 

table(depvar) 

 

#--modify weight matrices--- 

#--set diagonal equal to zeros-- 

diag(ll)<-0 

diag(dd)<-0 

#--use only obs. where dep. varb. non-missing-- 

ll<-ll[zdv,zdv] 

dd<-dd[zdv,zdv] 

#--row standardize (rows sum to one) 

ll<-ll/rowSums(ll) 

dd<-dd/rowSums(dd) 

#--make weight matrix object for later autocorrelation test-- 

wmatll<-mat2listw(as.matrix(ll)) 

wmatdd<-mat2listw(as.matrix(dd)) 

 



#MODIFY THESE STATEMENTS FOR A NEW PROJECT 

indpv<-c("femsubs","foodscarc","exogamy","ncmallow","superjh","moralgods", 

"fempower","sexratio","war","himilexp","wagelabor","famsize","settype", 

"localjh","money","cultints","roots","cereals","gath","hunt","fish", 

"anim","pigs","milk","plow","bovines","tree","foodtrade", 

"ndrymonth","ecorich","popdens","pathstress","CVrain","rain", 

"temp","AP1","AP2","migr","brideprice","nuclearfam","pctFemPolyg") 

 

#----------------------------------------------------- 

#---Estimate model on each imputed dataset------------ 

#----------------------------------------------------- 

 

#--number of imputed datasets-- 

nimp<-10 

 

#--will append values to these empty objects-- 

vif<-NULL 

ss<-NULL 

beta<-NULL 

dng<-NULL 

 

#--loop through the imputed datasets-- 

for (i in 1:nimp){ 

 

#--select the ith imputed dataset-- 

m9<-impdat[which(impdat$.imp==i),] 

#--retain only obs. for which dep. varb. is nonmissing-- 

m9<-m9[zdv,] 

 

#MODIFY THESE STATEMENTS FOR A NEW PROJECT 

#--create spatially lagged dep. varbs. in stage 1 OLS-- 

y<-as.matrix(depvar) 

xx<-as.matrix(m9[,indpv]) 

#--for instruments we use the spatial lag of our indep. varbs.-- 

#--First, the spatially lagged varb. for distance-- 

xdy<-dd%*%xx 

cyd<-dd%*%y 

o<-lm(cyd~xdy) 

#--the fitted value is our instrumental variable-- 

fydd<-fitted(o) 

#--keep R2 from this regression-- 

dr2<-summary(o)$r.squared 

#--Then, the spatially lagged varb. for language-- 

xly<-ll%*%xx    

cyl<-ll%*%y 

o<-lm(cyl~xly) 

#--the fitted value is our instrumental variable-- 

fyll<-fitted(o) 

#--keep R2 from this regression-- 

lr2<-summary(o)$r.squared 

m9<-cbind(m9,fydd,fyll) 

 

#MODIFY THESE STATEMENTS FOR A NEW PROJECT 

#--Stage 2 OLS estimate of unrestricted model-- 

xUR<-lm(depvar~fyll+fydd+dateobs+ 

cultints+roots+cereals+gath+plow+ 

hunt+fish+anim+pigs+milk+bovines+tree+foodtrade+foodscarc+ 

+ecorich+popdens+pathstress+exogamy+ncmallow+famsize+ 

settype+localjh+superjh+moralgods+fempower+femsubs+ 

sexratio+war+himilexp+money+wagelabor+ 



migr+brideprice+nuclearfam+pctFemPolyg 

,data=m9) 

 

#MODIFY THESE STATEMENTS FOR A NEW PROJECT 

#--Stage 2 OLS estimate of restricted model-- 

xR<-lm(depvar ~ fyll + cultints + roots + fish +  

    exogamy + settype + femsubs, data = m9) 

 

#--corrected sigma2 and R2 for 2SLS-- 

qxx<-m9 

qxx[,"fydd"]<-cyd 

qxx[,"fyll"]<-cyl 

b<-coef(xR) 

incpt<-matrix(1,NROW(qxx),1) 

x<-as.matrix(cbind(incpt,qxx[,names(b)[-1]])) 

e<-y-x%*%as.matrix(b) 

cs2<-as.numeric(t(e)%*%e/(NROW(x)-NCOL(x))) 

cr2<-as.numeric(1-t(e)%*%e/sum((y-mean(y))^2)) 

 

#--collect coefficients and their variances-- 

ov<-summary(xR) 

vif<-rbind(vif,vif(xR)) 

ss<-rbind(ss,diag(ov$cov*cs2)) 

#--collect robust coef. variances when there is heteroskedasticity-- 

#eb<-e^2 

#x<-as.matrix(cbind(incpt,m9[,names(b)[-1]])) 

#hcm<-inv(t(x)%*%x)%*%t(x)%*%diag(eb[1:length(eb)])%*%x%*%inv(t(x)%*%x) 

#ss<-rbind(ss,diag(hcm)) 

beta<-rbind(beta,coef(xR)) 

 

#MODIFY THESE STATEMENTS FOR A NEW PROJECT 

#--collect some model diagnostics-- 

dropt<-c("cereals","gath","plow","hunt","anim","dateobs", 

"pigs","milk","bovines","foodscarc","ecorich", 

"popdens","pathstress","ncmallow","famsize","localjh", 

"superjh","moralgods","fempower","sexratio","money", 

"fydd","wagelabor","war","himilexp","tree","foodtrade") 

 

 

#--Ramsey RESET test-- 

p1<-qchisq(resettest(xR,type="fitted")$"p.value",1,lower.tail=FALSE) 

#--Wald test (H0: dropped variables have coefficient equal zero)-- 

o<-linear.hypothesis(xUR,dropt,test="Chisq")$"Pr(>Chisq)"[2] 

p2<-qchisq(o,1,lower.tail=FALSE) #find Chisq with 1 d.f. and same pvalue 

#--Heteroskedasticity test (H0: homoskedastic residuals)-- 

p3<-ncv.test(xR)$ChiSquare 

#--Shapiro-Wilke normality test (H0: residuals normal) 

p4<-qchisq(shapiro.test(e)$p.value,1,lower.tail=FALSE) 

#--LaGrange Multiplier test for spatial autocorrelation: language-- 

o<-lm.LMtests(xR, wmatll, test=c("LMlag")) 

p5<-as.numeric(o$LMlag$statistic) 

#--LaGrange Multiplier test for spatial autocorrelation: distance-- 

o<-lm.LMtests(xR, wmatdd, test=c("LMlag")) 

p6<-as.numeric(o$LMlag$statistic) 

#--model R2-- 

p7<-cr2 

dng<-rbind(dng,cbind(p1,p2,p3,p4,p5,p6,p7,dr2,lr2)) 

 

} 

 



#-------------------------------------------- 

#--Rubin's formulas for combining estimates-- 

#-------------------------------------------- 

 

#--first find final regr. coefs. and p-values-- 

mnb<-apply(beta,2,mean) 

vrb<-colSums((beta-t(matrix(mnb,length(mnb),10)))^2)/(nimp-1) 

mnv<-apply(ss,2,mean) 

vrT<-mnv+vrb*(1-nimp^(-1)) 

fst<-mnb^2/vrT 

r<-(1+nimp^(-1))*vrb/mnv 

v<-(nimp-1)*(1+r^(-1))^2 

pval<-pf(fst,1,v,lower.tail=FALSE) 

bbb<-data.frame(round(cbind(mnb,fst,v,pval),3)) 

bbb$VIF[2:NROW(bbb)]<-round(apply(vif,2,mean),3) 

names(bbb)<-c("coef","Fstat","ddf","pvalue","VIF") 

 

#--Then combine the diagnostics we collected-- 

dng<-data.frame(dng) 

names(dng)<-c("RESET","Wald on restrs.","NCV","SWnormal","lagll","lagdd", 

"R2:final model","R2:IV(distance)","R2:IV(language)") 

r2<-apply(dng[,7:9],2,mean) 

adng<-dng[,1:6] 

mdm<-apply(adng,2,mean) 

vrd<-colSums((adng-t(matrix(mdm,length(mdm),nimp)))^2)/(nimp-1) 

aa<-4*mdm^2-2*vrd 

aa[which(aa<0)]<-0 

rd<-(1+nimp^(-1))*vrd/(2*mdm+aa^.5) 

vd<-(nimp-1)*(1+rd^(-1))^2 

Dm<-(mdm-(nimp-1)/(nimp+1)*rd)/(1+rd) 

#-All chi-sq we collected have df=1------- 

pvald<-pf(Dm,1,vd,lower.tail=FALSE) 

ccc<-data.frame(round(cbind(Dm,vd,pvald),3)) 

names(ccc)<-c("Fstat","df","pvalue") 

 

bbb 

r2 

ccc 

 

#--write results to csv file for perusal in spreadsheet-- 

write.csv(paste("2SLS model for ",depvarname,sep=""),file="OLSresults.csv", 

append=FALSE) 

write.csv(bbb,file="OLSresults.csv",append=TRUE) 

write.csv(r2,file="OLSresults.csv",append=TRUE) 

write.csv(ccc,file="OLSresults.csv",append=TRUE) 
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