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GROTHENDIECK POLYNOMIALS AND QUIVER FORMULAS

By ANDERS S. BUCH, ANDREW KRESCH,
HARRY TAMVAKIS, and ALEXANDER YONG

Abstract. Fulton’s universal Schubert polynomials give cohomology formulas for a class of degener-
acy loci, which generalize Schubert varieties. The K-theoretic quiver formula of Buch expresses the
structure sheaves of these loci as integral linear combinations of products of stable Grothendieck
polynomials. We prove an explicit combinatorial formula for the coefficients, which shows that
they have alternating signs. Our result is applied to obtain new expansions for the Grothendieck
polynomials of Lascoux and Schützenberger.

1. Introduction and main results. Let X be a smooth complex algebraic
variety and let

E1 → · · · → En−1 → En → Fn → Fn−1 → · · · → F1(1)

be a sequence of vector bundles and morphisms over X, such that rank (Fi) =
rank (Ei) = i for 1 ≤ i ≤ n. For any permutation w ∈ Sn+1, there is a degeneracy
locus

Ωw(E• → F•) = {x ∈ X | rank (Eq(x)→ Fp(x)) ≤ rw(p, q), ∀ 1 ≤ p, q ≤ n},(2)

where rw(p, q) is the number of i ≤ p such that w(i) ≤ q. We will assume that
the bundle maps are sufficiently general so that this degeneracy locus has the
expected codimension, equal to the length �(w). In this situation, Fulton [12]
gave a formula for the cohomology class of Ωw = Ωw(E• → F•) in H∗(X,Z)
as a universal Schubert polynomial in the Chern classes of the vector bundles
involved.

While the cohomology class of Ωw gives useful global information, there is
even more data hidden in its structure sheaf OΩw . The main result of this paper
gives an explicit combinatorial formula for the class [OΩw] of this structure sheaf
in the Grothendieck ring K(X) of algebraic vector bundles on X. To state it, we
need the degenerate Hecke algebra, which is the associative Z-algebra generated
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by si for i = 1, 2, . . . with relations

s2
i = si

sisj = sjsi for |i− j| > 1

sisi+1si = si+1sisi+1.

We also require the stable Grothendieck polynomials Gu(E − E′), where u is a
permutation and E, E′ are vector bundles over X (see Section 2 for the definition).

THEOREM 1. For w ∈ Sn+1 we have

[OΩw] =
∑

(− 1)�(u1···u2n−1w) Gu1 (E2 − E1) · · ·Gun(Fn − En) · · ·Gu2n−1 (F1 − F2)

in K(X), where the sum is over all factorizations w = u1 · · · u2n−1 in the degenerate
Hecke algebra such that ui ∈ Smin (i,2n−i)+1 for each i.

The above formula corresponds to computing the alternating sum of a locally
free resolution of OΩw in K(X), and thus includes a formula for the cohomology
class of Ωw as its leading term. Theorem 1 is therefore a generalization of [7,
Thm. 3].

The locus Ωw(E• → F•) is a special case of a quiver variety. In [3] a formula
for the class of the structure sheaf of a general quiver variety is proved, which
expresses this class as a linear combination of products of stable Grothendieck
polynomials for Grassmannian permutations. Furthermore, it is conjectured that
the quiver coefficients occurring in this formula have signs which alternate with
the codimension.

The quiver formula specializes to universal Grothendieck polynomials
Gw(F•; E•) in the exterior powers of the bundles (and the inverse of the top pow-
ers), which are K-theoretic analogues of universal Schubert polynomials. Given
any partition α, we let Gα = Gwα denote the stable Grothendieck polynomial for
the Grassmannian permutation wα corresponding to α. Then the quiver formula
has the form

[OΩw] = Gw(F•; E•) =
∑
λ

c(n)
w,λ Gλ1 (E2 − E1) · · ·Gλn(Fn − En) · · ·Gλ2n−1 (F1 − F2)

where the sum is over finitely many sequences of partitions λ = (λ1, . . . ,λ2n−1)
and the c(n)

w,λ are quiver coefficients. The precise definition of Gw(F•; E•) will be
given in Section 3.

Theorem 1 combined with a result of Lascoux [17] proves that these coef-
ficients do in fact have alternating signs. Define integers aw,β such that Gw =∑

aw,βGβ , the sum over all partitions β. Lascoux has shown that aw,β is equal to
(−1)|β|−�(w) times the number of paths from w to wβ in a graph of permutations.
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Given this result, Theorem 1 is equivalent to the following explicit combinatorial
formula for quiver coefficients:

c(n)
w,λ = (− 1)|λ|−�(w)

∑
u1···u2n−1=w

| au1,λ1 au2,λ2 · · · au2n−1,λ2n−1 |.

Our proof of Theorem 1 is based on a special case of this formula, proved
in [3], together with the following Cauchy identity, which provides a K-theoretic
generalization of [14, Cor. 2] (see also [12, Thm. 3.7]).

THEOREM 2 (Cauchy formula). Let Ei, Fi, and Hi for i = 1, . . . , n be three col-
lections of vector bundles on X. Then for any w ∈ Sn+1, we have

Gw(F•; E•) =
∑

u·v=w

(− 1)�(uvw) Gu(H•; E•)Gv(F•; H•)

where the sum is over all permutations u, v such that the product of u and v is equal
to w in the degenerate Hecke algebra.

As a further consequence of our results, we obtain new formulas for the
double Grothendieck polynomials of Lascoux and Schützenberger [19], which
express these polynomials as linear combinations of stable Grothendieck polyno-
mials in disjoint intervals of variables. The coefficients in these expansions are
all quiver coefficients; in particular, this is true for the monomial coefficients of
Grothendieck polynomials.

After this paper was written, Buch [5] and Miller [21] independently proved
that general quiver coefficients have alternating signs, with approaches based on
Knutson, Miller, and Shimozono’s work [15]. We note that the results of [5]
also imply that general quiver coefficients can be realized as special cases of the
coefficients studied in the present paper (see [9]).

This paper is organized as follows. We review the facts about Grothendieck
polynomials that we require in Section 2. The quiver varieties and universal
Grothendieck polynomials are introduced in Section 3. We prove the Cauchy
formula in Section 4, while our main theorem is proved in the following section.
Finally in Section 6 we apply our results to obtain splitting formulas for double
Grothendieck polynomials.

Acknowledgments. The third author wishes to thank Marc Levine and the
Universität Essen for their hospitality and the Wolfgang Paul program of the
Humbolt Foundation for support during the later stages of work on this article.

2. Grothendieck polynomials. We begin by recalling the definition of
Lascoux and Schützenberger’s double Grothendieck polynomials [19]. Let X =
(x1, x2, . . .) and Y = (y1, y2, . . .) be two sequences of commuting independent
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variables and w ∈ Sn. If w = w0 is the longest permutation in Sn, then we set

Gw0 (X; Y) =
∏

i+j≤n

(xi + yj − xiyj).

If w �= w0, we can find a simple transposition si = (i, i + 1) ∈ Sn such that
�(wsi) = �(w) + 1. We then define

Gw = πi(Gwsi)

where πi is the isobaric divided difference operator given by

πi( f ) =
(1− xi+1)f (x1, . . . , xi, xi+1, . . . , xn)− (1− xi)f (x1, . . . , xi+1, xi, . . . , xn)

xi − xi+1
.

Given permutations u1, . . . , um, and w, we will write u1 · · · um = w if the
product of the ui is equal to w in the degenerate Hecke algebra. With this notation,
the Grothendieck polynomials satisfy the following Cauchy identity, which is due
to Fomin and Kirillov (see [11, Thm. 8.1] and [10]):

Gw(X; Y) =
∑

u·v=w

(− 1)�(uvw)
Gu(0; Y) Gv(X; 0).(3)

Next we recall the definition of stable Grothendieck polynomials. Given a
permutation w ∈ Sn, and a nonnegative integer m, let 1m × w ∈ Sm+n denote the
shifted permutation which is the identity on {1, 2, . . . , m} and which maps j to
w( j − m) + m for j > m. It is known [10, 11] that when m grows to infinity,
the coefficient of each fixed monomial in G1m×w eventually becomes stable. The
double stable Grothendieck polynomial Gw ∈ Z[[X; Y]] is the resulting power
series:

Gw = Gw(X; Y) = lim
m→∞

G1m×w(X; Y).

The power series Gw(X; Y) is symmetric in the X and Y variables separately, and

Gw(1− e−X; 1− eY ) = Gw(1− e−x1 , 1− e−x2 , . . . ; 1− ey1 , 1− ey2 , . . .)

is super-symmetric, that is, if one sets x1 = y1 in this expression, then the result
is independent of x1 and y1.

In particular, we will need stable Grothendieck polynomials for Grassmannian
permutations. If α = (α1 ≥ α2 ≥ α3 ≥ · · ·) is a partition and p ≥ �(α), i.e.,
αp+1 = 0, the Grassmannian permutation for α with descent in position p is the
permutation wα such that wα(i) = i + αp+1−i for 1 ≤ i ≤ p and wα(i) < wα(i + 1)
for i �= p. Now let Gα = Gwα ; this is independent of the choice of p. According
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to [4, Thm. 6.6] there are integers dαβγ (with alternating signs) such that

Gα(X; Y) =
∑

dαβγ Gβ(X; 0) Gγ(0; Y).(4)

Let Γ ⊆ Z[[X; Y]] be the linear span of all stable Grothendieck polynomials.
It is shown in [4] that Γ is closed under multiplication and that the elements Gα

form a Z-basis of Γ. In fact Γ is a commutative and cocommutative bialgebra
with the coproduct ∆: Γ→ Γ⊗ Γ given by ∆Gα =

∑
β,γ dαβγ Gβ ⊗ Gγ .

We will describe a formula of Lascoux for the expansion of a stable Grothen-
dieck polynomial Gw as a linear combination of these elements. Let r be the last
descent position of w, i.e. r is maximal such that w(r) > w(r + 1). Set w′ = wτrk

where k > r is maximal such that w(r) > w(k). We also set I(w) = {i < r |
�(w′τir) = �(w)}.

Define a relation � on the set of all permutations as follows. If I(w) = ∅ we
write w � v if and only if v = 1 × w. Otherwise we write w � v if and only if
there exist elements i1 < · · · < ip of I(w), p ≥ 1, such that v = w′τi1r . . . τipr. The
following is an immediate consequence of [17, Thm. 4].

THEOREM 3 (Lascoux). For any permutation w we have

Gw =
∑
β

aw,β Gβ

where the sum is over all partitions β, and aw,β is equal to ( − 1)|β|−�(w) times
the number of sequences w = w1 � w2 � · · · � wm such that wm = wβ is a
Grassmannian permutation for β and wi is not Grassmannian for i < m.

Let w be any permutation and let F = L1⊕ . . .⊕Lf and E = M1⊕· · ·⊕Me be
vector bundles on X which are both direct sums of line bundles. Buch [4] defines

Gw(F − E) = Gw(1− L−1
1 , . . . , 1− L−1

f ; 1−M1, . . . , 1−Me) ∈ K(X).

Since Gw is symmetric, this definition extends to the case where E and F do not
split as direct sums. Alternatively, using the identity ∧i(F∨) = ( ∧f−i F)/( ∧f F),
we may write Gw(F − E) as a Laurent polynomial in the exterior powers of E
and F, where only the top power of F is inverted. As Gw(1 − e−X; 1 − eY ) is
super-symmetric we have Gw(F ⊕H − E⊕H) = Gw(F − E) for any third vector
bundle H on X. Finally, notice that

Gα(F − E) =
∑
β,γ

dαβγ Gβ(F − H) Gγ(H − E),(5)

which follows from (4) together with the super-symmetry property.
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3. Universal Grothendieck polynomials. Consider a sequence

B•: B1 → B2 → · · · → Bn

of vector bundles and bundle maps over a nonsingular variety X. Given rank
conditions r = {rij} for 1 ≤ i < j ≤ n there is a quiver variety given by

Ωr(B•) = {x ∈ X | rank (Bi(x)→ Bj(x)) ≤ rij ∀i < j}.

For convenience, we set rii = rank (Bi) for all i, and we demand that the
rank conditions satisfy rij ≥ max (ri−1,j, ri,j+1) and rij + ri−1,j+1 ≥ ri−1,j + ri,j+1

for all i ≤ j. In this case, the expected codimension of Ωr(B•) is the number
d(r) =

∑
i<j (ri,j−1 − rij)(ri+1,j − rij). The main result of [3] states that when the

quiver variety Ωr(B•) has this codimension, the class of its structure sheaf is
given by the formula

[OΩr(B•)] =
∑
λ

cλ(r) Gλ1 (B2 − B1) · · ·Gλn−1 (Bn − Bn−1).(6)

Here the sum is over finitely many sequences of partitions λ = (λ1, . . . ,λn−1)
such that |λ| =

∑ |λi| is greater than or equal to d(r). The coefficients cλ(r)
are integers called quiver coefficients; they can be computed by a combinatorial
algorithm which we will not reproduce here. These coefficients are uniquely
determined by the condition that (6) is true for all varieties X and sequences B•,
as well as the condition that cλ(r) = cλ(r′), where r′ = {r′ij} is the set of rank
conditions given by r′ij = rij + 1 for all i ≤ j. Buch has conjectured that the signs

of these coefficients alternate with codimension, that is, (− 1)|λ|−d(r)cλ(r) ≥ 0.
We need the following property of the quiver formula (6). Suppose the index

p is such that all rank conditions rank (Bi(x) → Bp(x)) ≤ rip and rank (Bp(x) →
Bj(x)) ≤ rpj may be deduced from other rank conditions. As in [6, §4], we will
then say that the bundle Bp is inessential. Omitting an inessential bundle Bp from
B• produces a sequence

B′•: B1 → · · · → Bp−1 → Bp+1 → · · · → Bn,

where the map from Bp−1 to Bp+1 is the composition Bp−1 → Bp → Bp+1. If
r′ denotes the restriction of the rank conditions to B′•, we have that Ωr′(B′•) =
Ωr(B•). We can use (5) to expand any factor Gα(Bp+1 − Bp−1) occurring in
the quiver formula for Ωr′(B′•) into a linear combination of products of the
form Gβ(Bp − Bp−1)Gγ(Bp+1 − Bp), and thus arrive at the quiver formula (6)
for Ωr(B•).
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The loci Ωw(E• → F•) of (2) are special cases of these quiver varieties.
Given w ∈ Sn+1 we define rank conditions r(n) = {r(n)

ij } for 1 ≤ i ≤ j ≤ 2n by

r(n)
ij =


rw(2n + 1− j, i) if i ≤ n < j
i if j ≤ n
2n + 1− j if i ≥ n + 1.

Then Ωw(E• → F•) is identical to the quiver variety Ωr(n) (E• → F•), and more-
over we have d(r) = �(w). We let c(n)

w,λ = cλ(r(n)) denote the quiver coefficients
corresponding to this locus.

Given vector bundles E1, . . . , En and F1, . . . , Fn on X we define

G(n)
w (F•; E•) =

∑
λ

c(n)
w,λ Gλ1 (E2 − E1) · · ·Gλn(Fn − En) · · ·Gλ2n−1 (F1 − F2).(7)

It follows that [OΩw] = G(n)
w (F•; E•) when the bundles are part of a sequence (1)

and the codimension of Ωw is equal to �(w).
By definition, G(n)

w (F•; E•) is a Laurent polynomial in the exterior powers
of the bundles Ei and Fi, where only the top powers are inverted. We will call
these polynomials universal Grothendieck polynomials, in analogy with the term
‘universal Schubert polynomials’ which Fulton [12] used for his cohomology
formula for Ωw. The next lemma shows that the polynomial G(n)

w (F•; E•) is in-
dependent of n. We will therefore drop this letter from the notation and write
simply Gw(F•; E•) = G(n)

w (F•; E•) when w ∈ Sn+1.

LEMMA 1. Let w ∈ Sn+1. The polynomial G(n+1)
w (F•; E•) is independent of En+1

and Fn+1 and agrees with G(n)
w (F•; E•).

Proof. Let X be a nonsingular variety with a bundle sequence

E1 → · · · → En+1 → Fn+1 → · · · → F1

such that the degeneracy locus Ωw determined by this sequence has the expected
codimension. Since the same degeneracy locus is obtained by using the sub-
sequence which skips the two middle bundles En+1 and Fn+1, it follows that
G(n+1)

w (F•; E•) = [Ωw] = G(n)
w (F•; E•), so the polynomials agree when evaluated in

the Grothendieck ring K(X).
To obtain the identity of polynomials, we need to construct a variety X such

that all Laurent monomials in exterior powers which occur in either polyno-
mial are linearly independent in K(X). Here we can use that on a Grassmannian
Gr (m, N), all monomials of total degree at most N/m− 1 in the exterior powers
of the tautological subbundle are linearly independent. Therefore we can take a
product of Grassmannians

Z = Gr (1, N)× · · · × Gr (n + 1, N)× Gr (n + 1, N)× · · · × Gr (1, N),
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and let X be the bundle Hom (E1, E2)⊕. . .⊕Hom (En+1, Fn+1)⊕. . .⊕Hom (F2, F1),
where the bundles Ei and Fi are the tautological subbundles on Z . When N is
sufficiently large, this variety X fits our purpose.

In the remainder of this paper we will use without comment that the universal
Grothendieck polynomial Gw(F•; E•) is determined by its values, as in the above
proof.

4. Proof of the Cauchy identity. In this section we prove the Cauchy
identity for universal Grothendieck polynomials (Theorem 2). We will assume
that X is a nonsingular variety equipped with vector bundles Ei and Fi for i ≥ 1,
with rank Ei = rank Fi = i.

PROPOSITION 1. Let π: Y = F� (En) → X be the bundle of flags in En, with
tautological flag 0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Un = π∗(En), and set

OZ =
∏

1≤i≤n−1

G(1i)(Ui+1/Ui − Ei) ∈ K(Y).

Then we have

π∗(Gw(F•; U•) · OZ) = Gw(F•; E•) ∈ K(X).

Proof. Set X̃ = Hom (E1, E2)⊕ . . .⊕Hom (En, Fn)⊕ . . .⊕Hom (F2, F1) and
Ỹ = Y ×X X̃. It is enough to prove the proposition for the projection ρ : Ỹ → X̃.
Notice that on Ỹ we have a universal bundle sequence E• → F•, as well as the
tautological flag U• ⊂ En.

Let Zn−1 = Z(En−1 → Un/Un−1) ⊂ Ỹ . On this locus the map En−1 → Un

factors through Un−1. We then set Zn−2 = Z(En−2 → Un−1/Un−2) ⊂ Zn−1

and inductively Zi = Z(Ei → Ui+1/Ui) for i = n − 1, . . . , 2, 1. Notice that the
structure sheaf of Z = Z1 is given by the expression of the proposition (see e.g.
[3, Thm. 2.3]). Now ρ maps the locus Ωw(U• → F•) ∩ Z ⊂ Ỹ birationally onto
Ωw(E• → F•) ⊂ X̃. In fact, the open subset of Z where each map Ei → Ui is
an isomorphism maps isomorphically to the open subset of X̃ where all maps
Ei−1 → Ei are bundle inclusions, and furthermore these subsets meet the given
(irreducible) degeneracy loci in Z and X̃. This implies the desired result, because
all involved degeneracy loci are Cohen-Macaulay with rational singularities [16]
and have their expected codimensions.

This proposition allows us to prove a special case of the Cauchy formula,
arguing as in [12, §3]. We let C• denote a sequence of trivial bundles. When
used in a polynomial, the exterior power ∧iCm equals the binomial
coefficient

(m
i

)
.
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COROLLARY 1. We have

Gw(F•; E•) =
∑

u·v=w

(− 1)�(uvw) Gu(C•; E•)Gv(F•;C
•).

Proof. Let π: Y = F� (En) → X be the bundle of flags in En, with tau-
tological flag U• as in Proposition 1. Assume at first that the bundles F• form
a (descending) complete flag. Then by [3, Thm. 2.1] (which generalizes [13,
Thm. 3]), we have

Gw(F•; U•) = Gw(1− L−1
1 , . . . , 1− L−1

n ; 1−M1, . . . , 1−Mn)

in K(Y), where Li = ker (Fi → Fi−1) and Mi = Ui/Ui−1. The Cauchy identity for
double Grothendieck polynomials (3) therefore implies that

Gw(F•; U•) =
∑

u·v=w

(− 1)�(uvw) Gu(C•; U•) · Gv(F•;C
•).

By multiplying this identity by the class OZ of Proposition 1, and pushing the
result down to X, we get the identity of the theorem.

Now assume that the bundles Fi are arbitrary. By the case just proved we
have

Gw(F•; U•) = Gw−1 (U∨• ; F∨• )

=
∑

u·v=w

(− 1)�(uvw) Gv−1 (C•; F∨• ) · Gu−1 (U∨• ;C•)

=
∑

u·v=w

(− 1)�(uvw) Gu(C•; U•) · Gv(F•;C
•)

in K(Y). After multiplying with OZ , this identity pushes forward to give the
corollary in full generality.

For the general case of the Cauchy formula we need the following vanishing
theorem. We let H• denote a third collection of vector bundles on X, rank Hi = i.

PROPOSITION 2. Choose m ≥ 0 and substitute Hj for Fj and Ej in Gw(F•; E•)
for all j ≥ m + 1. We then have

Gw(F1, . . . , Fm, Hm+1, . . . ; E1, . . . , Em, Hm+1, . . .) =

{
Gw(F•; E•) if w ∈ Sm+1

0 otherwise.

Proof. If w ∈ Sm+1, then Gw(F•, E•) is independent of the bundles Fj and
Ej for j ≥ m + 1 by Lemma 1.

Assume that w ∈ Sn+1 � Sn where n > m. We claim Gw(F•, E•) vanishes
as soon as we set Fn = En. To see this, let X be a variety with bundles Fj for
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1 ≤ j ≤ n and Ej for 1 ≤ j ≤ n − 1 such that all monomials in the polynomial
Gw(F•; E1, . . . , En−1, Fn) are linearly independent.

If we set En = Fn then we have a sequence of bundles E• → F• for which the
map En → Fn is the identity and all other maps are zero. Since rw(n, n) = n− 1
it follows that the locus Ωw(E• → F•) is empty. Since Gw(F•; E•) represents the
class of the structure sheaf of this locus, it must be equal to zero.

For any commutative ring R, let R(S∞) denote the R-module of all functions
on S∞ =

⋃
n Sn with values in R. For f , g ∈ R(S∞) we define the product

( fg)(w) =
∑

u·v=w

(− 1)�(uvw)f (u)g(v)(8)

where (as always) the sum is over factorizations of w in the degenerate Hecke
algebra. It is straightforward to check that this multiplication is associative and
that the identity element is the characteristic function 1 of the identity permutation.
We will need the following variation of [20, (6.6)].

LEMMA 2. Let f , g, h ∈ R(S∞). Assume that for any permutation w ∈ S∞, the
sum

∑
u·w=w (− 1)�(u)f (u) is not a zero divisor in R.

(i) If fg = f then g = 1.

(ii) If fh = 1 then hf = 1.

Proof. Since f (1)g(1) = fg(1) = f (1) and f (1) =
∑

u·1=1 ( − 1)�(u)f (u) is a
nonzero divisor, it follows that g(1) = 1. Let w �= 1 ∈ S∞ be given and assume
inductively that g(v) = 0 for 0 < �(v) < �(w). Notice that if u · v = w in the
degenerate Hecke algebra then �(v) ≤ �(w), and this inequality is sharp if v �= w.
We therefore have f (w) = fg(w) = f (w) +

(∑
u·w=w (− 1)�(u)f (u)

)
g(w), which

implies that g(w) = 0. This proves (i), and (ii) follows by setting g = hf .

THEOREM 2 (Cauchy formula). Let Ei, Fi, and Hi for i = 1, . . . , n be three
collections of vector bundles on X. Then for any w ∈ Sn+1 we have

Gw(F•; E•) =
∑

u·v=w

(− 1)�(uvw) Gu(H•; E•)Gv(F•; H•).

Proof. Let G(F•; E•) denote the function from permutations to K(X) which
maps w to Gw(F•; E•). Using the product (8) we have by Corollary 1 that

G(F•; E•) = G(C•; E•)G(F•;C
•).

Proposition 2 implies that G(C•; H•)G(H•,C•) = 1, and since Gw(C•; H•) lies in
the augmentation ideal of K(X) for w �= 1, the function f = G(C•; H•) satisfies the
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requirement in Lemma 2. It follows that G(H•,C•)G(C•, H•) = 1. We conclude
that

G(F•; E•) = G(C•; E•)G(F•;C
•) = G(C•; E•)G(H•;C

•)G(C•; H•)G(F•;C
•),

and therefore G(F•; E•) = G(H•; E•)G(F•; H•), as required.

For later use, we notice that for all integers r ≥ 0 we have

Gw(F•; E•)

=
∑

u·v=w

(− 1)�(uvw)Gu(C1, . . . ,Cr, Fr+1, Fr+2, . . . ; E•)Gv(F1, . . . , Fr;C
•)

=
∑

u·v=w

(− 1)�(uvw)Gu(C•; E1, . . . , Er)Gv(F•;C
1, . . . ,Cr, Er+1, Er+2, . . .).(9)

The first equality is obtained by setting H• = (C1, . . . ,Cr, Fr+1, Fr+2, . . .) in Theo-
rem 2 and reducing the terms Gv(F•; H•) using Proposition 2. The second equality
follows from a symmetric argument.

5. Proof of Theorem 1. In this section we derive Theorem 1 from the
Cauchy identity by using a K-theoretic version of the arguments found in [7].
In what follows, it will be convenient to work with the element P(n)

w ∈ Γ⊗2n−1

defined by

P(n)
w =

∑
λ

c(n)
w,λ Gλ1 ⊗ . . .⊗ Gλ2n−1 .

With this notation, we can restate Theorem 1 as follows:

THEOREM 1′. For any permutation w ∈ Sn+1 we have

P(n)
w =

∑
u1···u2n−1=w

(− 1)�(u1···u2n−1w) Gu1 ⊗ . . .⊗ Gu2n−1

in Γ⊗2n−1, where the sum is over all factorizations w = u1 · · · u2n−1 in the degenerate
Hecke algebra such that ui ∈ Smin (i,2n−i)+1 for each i.

Proof. Since rw(p, q) + m = r1m×w(p + m, q + m) for m ≥ 0, it follows that
the coefficients c(n)

w,λ are uniquely defined by the condition that

G1m×w(F•; E•) =
∑
λ

c(n)
w,λ Gλ1 (E2+m − E1+m)(10)

· · ·Gλn(Fn+m − En+m) · · ·Gλ2n−1 (F1+m − F2+m)
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for all m ≥ 0 (see [2] and also the discussion after the proof of Theorem 4.1
in [3]).

Given any two integers p ≤ q we let P(n)
w [p, q] denote the sum of the terms

of P(n)
w for which λi is empty when i < p or i > q:

P(n)
w [p, q] =

∑
λ:λi=∅ for i�∈[p,q]

c(n)
w,λ Gλ1 ⊗ . . .⊗ Gλ2n−1 .

LEMMA 3. For any 1 < i ≤ 2n− 1 we have

P(n)
w =

∑
u·v=w

(− 1)�(uvw)P(n)
u [1, i− 1] · P(n)

v [i, 2n− 1].

Proof. We will do the case i ≤ n; the other one is similar. For any element
f =

∑
cλ Gλ1 ⊗ . . .⊗ Gλ2N−1 ∈ Γ⊗2N−1, we set

f (F•; E•) =
∑

cλ Gλ1 (E2 − E1) · · ·GλN (FN − EN) · · ·Gλ2N−1 (F1 − F2).

Equation (10) implies that P(n)
w ∈ Γ⊗2n−1 is the unique element satisfying that

(1⊗m ⊗ P(n)
w ⊗ 1⊗m)(F•; E•) = G1m×w(F•; E•) in K(X) for all m. This uniqueness

is preserved even if we make Ei+m trivial. The right-hand side of the identity of
the lemma satisfies this by equation (9) applied to 1m × w.

LEMMA 4. For 1 ≤ i ≤ 2n− 1 we have

P(n)
w [i, i] =

{
1⊗i−1 ⊗ Gw ⊗ 1⊗2n−1−i if w ∈ Sm+1, m = min (i, 2n− i),
0 otherwise.

Proof. For simplicity we will assume that m = i. If w �∈ Sm+1 then it
follows from Proposition 2 or the algorithm for quiver coefficients of [3, §4] that
P(n)

w [1, m] = 0, which proves the lemma. Assume now that w ∈ Sm+1. It is proved
in [3, (5.2)] that P(m)

w [m, m] = 1⊗m−1 ⊗ Gw ⊗ 1⊗m−1. Let Φ: Γ⊗2m−1 → Γ⊗2n−1

be the linear map given by

Φ(Gλ1⊗ . . .⊗Gλ2m−1 ) = Gλ1⊗ . . .⊗Gλm−1⊗∆2n−2m(Gλm)⊗Gλm+1⊗ . . .⊗Gλ2m−1

where ∆2n−2m: Γ→ Γ⊗2n−2m+1 denotes the (2n− 2m)-fold coproduct, that is,

∆2n−2m(Gλm) =
∑

τ1,...,τ2n−2m+1

dλ
m

τ1,...,τ2n−2m+1
Gτ1 ⊗ . . .⊗ Gτ2n−2m+1

(see [4, Corollary 6.10]). In the definition of the locus Ωw(E• → F•), the bundles
Fi and Ei for i ≥ m + 1 are inessential in the sense of Section 3, which implies
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that Φ(P(m)
w ) = P(n)

w . Now the result follows from the identity P(n)
w [m, 2n − m] =

Φ(P(m)
w [m, m]) = 1⊗m−1 ⊗ ∆2n−2m(Gw)⊗ 1⊗m−1.

Theorem 1′ follows immediately from Lemma 3 and Lemma 4.

COROLLARY 2. Let w ∈ Sn+1 and let λ = (λ1,λ2, . . . ,λ2n−1) be a sequence of
partitions. Then we have

c(n)
w,λ = (−1)|λ|−�(w)

∑
u1···u2n−1=w

| au1,λ1 au2,λ2 · · · au2n−1,λ2n−1 |

where |λ| =
∑ |λi|, aui,λi is the coefficient of Gλi in Gui ∈ Γ, and the sum is over

all factorizations of w in the degenerate Hecke algebra such that ui ∈ Smin (i,2n−i)+1

for each i.

Since Lascoux’s formula (Theorem 3) implies that aui,λi =(−1)|λ
i|−�(ui) |aui,λi |,

Corollary 2 follows immediately from Theorem 1. This verifies the alternation of
signs for the quiver coefficients c(n)

w,λ, which was conjectured in [3]. In addition,
by combining the above corollary with Lascoux’s formula we obtain an explicit
combinatorial formula for these coefficients.

We note that [7, Thm. 1] gives a different combinatorial formula, in terms
of sequences of semistandard Young tableaux, for the coefficients c(n)

w,λ for which
|λ| = �(w). A K-theory analogue of this formula will be discussed in [8].

6. Splitting Grothendieck polynomials. In this section we specialize uni-
versal Grothendieck polynomials to the double Grothendieck polynomials of Las-
coux and Schützenberger. This leads to new expressions for double Grothendieck
polynomials in terms of quiver coefficients, which are analogous to the formulas
for Schubert polynomials obtained in [7]. Recall that a permutation w has a de-
scent at position i if w(i) > w(i + 1). We say that a sequence {ak} : a1 < · · · < ap

of integers is compatible with w if all descent positions of w are contained
in {ak}.

THEOREM 4. Let w ∈ Sn+1 and let 1 ≤ a1 < · · · < ap ≤ n and 1 ≤ b1 <
· · · < bq ≤ n be two sequences compatible with w and w−1, respectively, and set
Xi = {xai−1+1, . . . , xai} and Yi = {ybi−1+1, . . . , ybi}. Then we have

Gw(X; Y) =
∑
µ

c̃w,µ Gµ1 (Xp; 0) · · ·Gµp(X1; Y1) · · ·Gµp+q−1 (0; Yq),(11)

where the sum is over sequences of partitions µ = (µ1, . . . ,µp+q−1), and c̃w,µ is
the quiver coefficient c(n)

w0w−1w0,λ, where w0 ∈ Sn+1 is the longest permutation and
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λ = (λ1, . . . ,λ2n−1) is given by

λi =


µk if i = ak+1 − 1
µp if i = n
µp+q−k if i = 2n− bk+1 + 1
∅ otherwise.

Proof. Let V be a vector bundle of rank n + 1 and let

E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ V � Fn � · · ·� F2 � F1

be a complete flag followed by a dual complete flag of V . By [3, Thm. 2.1], the
class of the structure sheaf of Ωw(E• → F•) is given by Gw(X; Y), where we set
xi = 1− [ ker (Fi → Fi−1)]−1 and yi = 1− [Ei/Ei−1] in K(X).

Set E′i = V/Ei and F′i = ker (V � Fi). This yields the sequence

F′n ⊂ · · · ⊂ F′1 ⊂ V � E′1 � · · ·� E′n

and it is easy to check that Ωw(E• → F•) = Ωw0w−1w0
(F′• → E′•) as subschemes

of X, where w0 is the longest permutation in Sn+1.
Define a third bundle sequence Ẽ′• → F̃′• as follows. For ak−1 < i ≤ ak we

set F̃′i = F′ak
⊕ Cak−i and for bk−1 < i ≤ bk we set Ẽ′i = E′bk

⊕ Cbk−i. The maps

of the sequence Ẽ′• → F̃′• can be chosen arbitrarily so that the subsequence

F̃′ap → · · · → F̃′a1
→ Ẽ′b1

→ · · · → Ẽ′bq

agrees with the corresponding subsequence of F′• → E′•, the map F̃′i+1 → F̃′i is an
inclusion of vector bundles for i �∈ {ak}, and Ẽ′i → Ẽ′i+1 is surjective for i �∈ {bk}.
Now [7, Lemma 3] implies that Ωw0w−1w0

(F′• → E′•) = Ωw0w−1w0
(F̃′• → Ẽ′•).

These identities of schemes show that

Gw(X; Y) = Gw0w−1w0
(Ẽ′•; F̃′•).

Equation (11) now follows from equation (7). In fact, Gα(F̃′i − F̃′i+1) is nonzero
only if α is empty or i = ak for some k, and when i = ak we have Gα(F̃′i− F̃′i+1) =
Gα(Xk+1). Similarly, Gα(Ẽ′i+1 − Ẽ′i) is zero unless α is empty or i = bk for some
k, and for i = bk we have Gα(Ẽ′i+1 − Ẽ′i) = Gα(0; Yk+1). Finally Gα(Ẽ′n − F̃′n) =
Gα(X1; Y1).

This proves (11) in the Grothendieck ring K(X), in which there are relations
between the variables xi and yi (including e.g., the relations ej(x1, . . . , xn+1) =
ej(y1, . . . , yn+1) for 1 ≤ j ≤ n + 1). We claim, however, that (11) holds as an
identity of polynomials in independent variables. For this, one checks that the
definition of c̃w,µ is independent of n, i.e., the coefficient c(n)

w0w−1w0,λ does not
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change when n is replaced with n + 1 and w0 with the longest element in Sn+2.
If we choose n sufficiently large, we can construct a variety X on which (11)
is true, and where all relevant monomials in the variables xi and yi are linearly
independent. This establishes the claim.

It follows from Theorem 4 that the monomial coefficients of Grothendieck
polynomials are special cases of the K-theoretic quiver coefficients c(n)

w,λ. Explicit
formulas for the monomial coefficients in terms of resolved braid configurations
(which are equivalent to ‘non-reduced RC-graphs’) are one of the many conse-
quences of Fomin and Kirillov’s work [10, 11] (see in particular the introduction
of [10] and Figure 10 in [11].) We will finish this paper by proving a different
formula which generalizes [1, Thm. 1.1] and [7, Cor. 4].

LEMMA 5. Let w be a permutation and p ≥ 0 an integer. Then the coefficient
aw,(p) of Theorem 3 is given by

aw,(p) =

{
1 if w = si1 · · · sip for integers i1 > · · · > ip,
0 otherwise.

Proof. Let x be a variable and consider the degenerate Hecke algebra ten-
sored with Z[x]. It follows from [10, Thm. 2.3] that the Grothendieck polynomial
Gw(x) = Gw(x, 0, . . . ; 0, 0, . . .) is equal to the coefficient of w in the expansion of
the product

(1 + xsn)(1 + xsn−1) · · · (1 + xs1)

in this algebra. In other words, Gw(x) is nonzero exactly when w has a decreasing
reduced word, in which case we have Gw(x) = x�(w). The same is therefore true
for the stable polynomial Gw(x). The lemma follows from this because Gβ(x) = 0
for any partition β of length at least two, while G(p)(x) = xp.

Using Fomin’s identity Gw(X; Y) = Gw0ww0 (Y; X) (see [4, Lemma 3.4]) we
similarly obtain that aw,(1p) = aw0ww0,(p) is equal to one if w has an increasing
reduced word of length p, and aw,(1p) = 0 otherwise.

COROLLARY 3. Let w ∈ Sn, let xuyv = xu1
1 · · · x

un−1
n−1 yv1

1 · · · y
vn−1
n−1 be a monomial,

and set gi =
∑n−1

k=n−i vk, fi = gn−1 +
∑i

k=1 uk, and r = fn−1 = |u| + |v|. Then the
coefficient of xuyv in the double Grothendieck polynomial Gw(X; Y) is equal to
( − 1)r−�(w) times the number of factorizations w = se1 · · · ser in the degenerate
Hecke algebra such that n− i ≤ egi−1+1 < · · · < egi and efi−1+1 > · · · > efi ≥ i for
all 1 ≤ i ≤ n− 1.

Proof. We apply Theorem 4 to σ = 1 × w with p = q = n and ai = bi = i,
and use that Gw(X; Y) = Gσ(0, x1, . . . , xn−1; 0, y1, . . . , yn−1). The coefficient of
xu1

2 · · · x
un−1
n yv1

2 · · · y
vn−1
n in Gσ(X; Y) is equal to c̃σ,λ = cw0σ−1w0,λ where λ =
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((un−1), . . . , (u1), ∅, (1v1 ), . . . , (1vn−1 )). By Corollary 2 and Lemma 5 this coeffi-
cient is equal to± the number of factorizations w0σ

−1w0 =τ1 · · · τn−1τn+1 · · · τ2n−1

such that each τi is in Smin (i,2n−i)+1 and has a decreasing reduced word of
length ui for i < n and an increasing reduced word of length v2n−i for i > n.
The sequences (e1, . . . , er) of the corollary are the corresponding factorizations
of w.

Example 1. The double Grothendieck polynomials for the elements si of
length one in Sn are given by the formula

Gsi(X; Y) =
∑
δ

(− 1)|δ|−1(xy)δ =
∑
δ

(− 1)|δ|−1xδ1
1 · · · x

δn−1
n−1 yδn

1 · · · y
δ2n−2
n−1

where the sum is over the 4n−1 − 1 strings δ = (δ1, . . . , δ2n−2) with δi ∈ {0, 1}
for each i and |δ| = ∑ δi > 0. For instance, Gs1 (X; Y) = x1 + y1 − x1y1 and

Gs2 (X; Y) = x1 + x2 + y1 + y2 − x1x2 − x1y1 − x1y2 − x2y1 − x2y2 − y1y2

+ x1x2y1 + x1x2y2 + x1y1y2 + x2y1y2 − x1x2y1y2.

This follows from Corollary 3 since the factorizations of si in the degenerate
Hecke algebra are exactly the nonzero powers of si.
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