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FAST POISSON SOLVERS ON . GENERAL TWO DIMENSIONAL.REGIONS
FOR THE DIRICHLET PROBLEM
A. S. L. Shieh
December 1977
ABSTRACT
‘It is showh that by using the simplest construction of discrete
dipoles, the dperation count for solving the Dirichlet problem of Poissonfs
equation by the capacitance matrix method dOES‘ﬁQt exceed constant times

n? log n, n = 1/h for certain first and second order sphemeé'éf iﬁterpolating

boundary conditions.



SIGNIFICANCE AND EXPLANATION

The Dirichlet problem for the Poiséon equation is the following: Given .a
function f and a function g , find a function u such that
u + u = f on @,
XX YY .
‘g on .BQ.

"
Here Q -ié a simply connected domain with bounaary an .

The problem has wide apbliCatioﬂs in electrostatics, elasticity, temper-
ature distributions and plasma physics. Its solution by finite différenCe or
finite elemenfs methods have receivéd considerable attention. it is
known that if . is a‘rectangle, then fast Fourier transform-methods are very

efficient in solving the linear system of equations arising from finite differ-

"ence or finite element discretizations.

There seems to be no such short cut to the solution of these equations

when ¢ .is a general region. 1In many conventional methods, the operation

count is usually proportibnal to N3/2 (N 1is the number of mesh points in

Q) while at least N computer storage is required. These methods are

therefore undesirable when N 1is very large. In this paper we describe an

algorithm and prove mathematically that the operation count of this algorithm
can be proportional to N log N. While some versions of our algorithm also
require at least N computer storage, there is one version that requires less

than N/3 computer storage.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report. '
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FAST POISSON SOLVERS ON GENERAL TWO DIMENSIONAL REGIONS
FOR THE DIRICHLET PROBLEM

A. §. L. Shieh

§1. Introduction.

Over the past ten years, very fast numerical methods have been developed to solve
Poisson's or Helmholtz's equation on certain simple regions with Dirichlet, Neumann or
periodic boundary conditions. See e.g. [2], [31, [8], [9], [12], [19] and [21]. These
methods can only be used for regions and boundary conditions that éllow for separatibn of
the variables. Typical examples are Poisson's or Helmholtz's equations in Cartesian co-
ordinateé on rectangular regions with boundary conditions that do not change type along any
of the sides of the rectangle. In these special cases,‘the operation count for solving the
discretg problem is almost proportional.tp the number of mesh points.

The purpose of‘this paper is to establish similar results for the Poisson equation
on general regions. 1In this work we are only concernea with finite difference schemes
of first and second order accuracy for the Dirichlet problem on simply connected bounded
domains witﬁ smooth boundaries. A formal discrete potential theory motivated by the clas-
sical potential theory is incorporated into the so-called capacitance matrix method. It is
shown ‘that by using the simplest construction of discreté dipoles in our Ansatz, it is
possible to have an algorithm the operation count of which is pfoportional to N2 log N,
where h = 1/n is the mesh size. Some numerical results are givén in section 9 and a

brief,sﬁrvey of past work in this direction is given in section 8.

sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the Energy
Research and Development Administration.



§2. Certain results from classical potential theory.

We give only a very brief review of a few results of classical potential theory. For a
detailed exposition see e.g. [10], [14],'i25] and [28]. We define‘the'potential V resulting
from a charge distribution ¢ on a smooth boundary curve 32 by

Vi{x) = (1/V)f p(&) logmw ds(g) .

a0 P ) ) - .
Hi = = AN = ¢ -E. - . 4 ! ti
ere x. (xl,xz), £ (51752) and T (xl El) + (*2 52) The_Green s function
(1/27) log T which we shall denote by G* satisfies

A(1l/2T) logr = dx) ,

where 5(*) is the delta function. Simiiarly the potential W¥ of a dipole density U on’
3N defined by

(2.1) Voo = a/mf ) det/dv, s .
a0 |

We adopt here the convention that the nofmal direction of 90 .- is towards the exterior of
the region f in which we wantlto solve oﬁr éroﬁlem. | |

The interior Diriéhlet problem can be reduced to‘aFredholm integral equation of the
second kind if we make the double layer Ansatz as follows. Let

u(x) = -(1/2m) [f £(£) logr @& + (/m) [ u(&) 3G*/3vp ds(E) = u (x) +W(x) ,
Q 1) o

for the solution of

~du = £f, xe¢ Q
(2.2)
u=g, xe€ R .
It can be shown that the dipole density u satisfy the following integral equation

R} ' N
(2.3) p o+ (1/m fu(BG-’/BQg)ds =g - usl = g.
9] R

This is a well posed problem of the form
: ) N
(2.4) , (I + K)u=g ,
where K is a compact operator defined by the integral above.
If we instead attémpt to use a single layer Ansatz for the Dirichlet problem we obtain a
Fredholm integral equation of the first kind. It has the form
V(x) =g = uslaﬂ , X ¢€ 90,
which is an ill posed problem.

To illustrate the distribution of the eigenvalues of the compact operator K

in equafion (2.4), we study the case when @ is an ellipse with

-2-
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vy = (a-b)/(a+b) Where a and b, are the half axes of the ellipse. It is known (see e.g.
p. 135 of [25]) that K = -KT and
(2.5) I S I Vet R S O SO

On tbe other hand( both the interior and exierior Neumann problemscénaISdbéreducedt°
F;edholm intégraleqﬁationé of tﬁé secqhd kind if Qe méke the single'laQe: Ansatz. The
charge deﬁﬁity. b. for the éxterio; Néﬁménh probiemisatisfies . |

(I + KT)o = g* ., | ”
for some suitably chosen function g* defined on 39 The existence and uniqueness problems
for the solution qf equation (2.3) can therefore be determined from that of equation (2.4)

and vice versa. Finally, we remark that the G in equations (2.1) and (2.3) can be re-

placed by the Green's function on a s.uf_ficiently large r'écta’ngle with zero Dirichlet bound-

ary conditions.

-3-



§3. 'The capacitance matrix method

In this section we develop a similar, formal poténtial.theory for the discrete
problems arisiﬁg from the Qriginél Dirichlet.problem (2.2). See also Sections 3 -and 4 of [29]
for a similar diségss;oh; We shall assume‘thatvunifdrm meéhuéizes in both coordinate directions
are used.

We replace the Laplace operator byvphe five;point fOrmula."The.fundamental.solu-
tion (1/2m) log(l/r), used in Section 2, wiil be replaced by its disctete.analogue, the dis-
crete Green's function on the entire plane, which we.shall denote by G. VProperﬁies and
efficient methods of generating G and its undivided éifferenﬁes will be studied in Section 4.

» An efficient method of computing Gv for arbitrary N‘X‘N‘ vectors v .is also given
in Section 4. We will denotg by B vthe.matrix fepresenting the five-point discrete Laplacian
hZAT? using uhdivided differences,'oﬁ the éntire‘plénéf' We then divide the set of mesh points

into three disjoint sets & ,90.  and (CQ)h. The set BQh contains all the irregular mesh

h h

points in §, i.e. mesh points that do not have all four neighboﬁrs within the open set Q.
Qh is the set of regular mesh points-insiae  and (CQ)h contains the remaining, the exte-
;ior mesh points. .

We then set up the matrix équation
‘(3.1) Au = v
that we are solving as follows. We use the same discretization formula for both A and B
on Qh U (cQ)h. For points in Bﬂh,-a linear combination of the discrete Laplacian and inter-
pqlation formulas of first or second order accuracy for the boundary conditions are used. The
values of the solution at the exterior mesh points are alwayé_eliminated from the discrete
Laplacian, centered at an irregﬁlaf mesh éoint. This guarantees that A is a redﬁcible matrix
with no couplings to the éxteiior mesh pointé from the irregular mesh points. If P is a

suitably chosen permutation matrix, then

A (@]

11
T
PAP =
Ba P
where Al1 _is the coefficient matrix for our discrete problem .on Q, U a0y, - It is easily

seen that the solution on Qh v swh will not be influenced by either the solution or the

data on (C )]
-4-
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) The'métfix A differs frpm' B by only m . rows Qhere ‘mis ﬁhe cafdinal number of
BQh. Wé can thérefore write

. A=B+UWT,
where the matrices U .and W have m columhé.'_The matrix U represénts an extensién
operatér. It maps any mesh function defined only on 895: into a function on all mesh poiﬁts.
Its transpose, UT, is a trace'operator.mappiﬁé.any mesh function defined for all mesh poiﬁts
into its restriction to BQh. We eaéily Qérify‘that. |

W' = uTia-B).

We now describe our method for solving the discrete problem (3.1). Guided by the contin-

uous énalog we make the Ansatz, -

(3.2) ) . usGv + GV,

The vector Gv satisfies BGv = v. The m-vector U is determined by solving a system of
mXm linear equations derived below. The mesh function VUM should vanish on Qh. Each
column of the matrix V represents a discrete dipole of unit strength. Let such a column
corresponding to P € BQh be'regarded as a mesh function, denoted by VT(P). We require that
(l/ha)VT(P) u = [du/3v]l(P) + O(h). Here“ha =Ah/cosa where o is the angle between the normal

through the irregular mesh point P and the closest coordinate axis. In particular, if

‘that the western and northwestern neighbours of P in (CQ)h, then

(3.3) . [Vul(®) = u(P) - (1 - tan @) u(w) - (tan o)u(NW).

We now .use our Ansatz and compute the residual vector,

(3.4) Au-v = (B + UW') (GF + GW) - Fv

o+ olann + wwleEy.

From the properties of U and Vv, it follows that the resiauals are zero for all 6 x ¢ Qh.'
To derive a linear system of equations‘fof the Qector *M we multiply equation (3.4) by UT.'
It is easy to verify .that UTU = Im and UTV = Iﬁ . Here"Im is the mXm identity matrix.
We thus obtain

(3.5) - (I + WU = -WGF .

This choice of Q make the residuals zero for all x ¢ Bth " Hence substitution of v in

equation (3.2) will provide us a solution on Qh U Bﬂh if éqUation (3.5) is solvable. Note

that the residuals will in géneral not be equal to zero for all x € (CQ)h . The matrix on

~5-



the left;hénd side of Equation (3.5) is the capacitance matrix C . We shall refer to
Equation (3.5) as the capacitance ratrix equation.

In the speéial‘case when v = U UTV, we can sSimply make the Ansatz u = Bplvu. It is

_easily seen that the residua]'_Au;v -_wili'égain'be zerc at X € Qh. The capacitance matrix

equation now Beqomes'
'(3.6). S : : | o = ol |
If Equétion (3.6) is‘solvable; then Au = v will also be zero on th.'vThe solvability of
Equations (3.5) and (3.6) will be discussed in Séction 6. »

We now describe our choices of differencé eqﬁatibns ét the irregular mesh points. We
appfoximate the boﬁndary conditions.by'interpolatiohvschemes of first or second order accuracy,
which we shall refer tq ;s schemes ia, Ib and 1II respectively.r

We starfvwith Scheme II. Le£ P e 39# and P* be its closest point on BQ. Let
W,E,N and S be the western, eastern, northern and southérn.neighbours of P‘ on the mesh
respectively. We assume that the local orientation of the boundary is such that either both

W and N are in (), or only W is in (CR), . Assume that both W and N are in (), .

h

Let d, denote h,/h where h is the distance, along a mesh line parallel with the x)-axis,

1
between the mesh point P and the boundary 9. Hence ‘dl e>(0,1]. The Dirichlet data at

2 and u, are similarly defined. We

iheﬁ'approximate u, and u, by (l/2)[(1+d1)u(w) + (l-dl)u(E)] and (1/2)[1+d2)u(N),+

this point on 32 is denoted by u . The values of 'd

(l-dz)u(sn' respectively. By combining the above with the'fiVe-pqint formula for the Laplacian
and eliminating u(W) and u(N) between them, we obtain
(3.6) 4ﬁ(P) - [2d1/(1+dl)]u(E) - [2 dz/(1+d2)] u(s)
= h%E@) + [2/(4d)) Ju + [2/(14d,)Tu
If énly W is in (CQ)h, then we obtain
(3.7)"_ 4qu(P) ; {2 dl/(1+d1)]u(E) - u(N) - u(s) -
= nPE(e) + [2/(143)) Juy
" We now describe the two variants of Scheme I, namely Scheme Ia and Ib. In Scheme Ib,
if both W and N are in (CQ)h('we obtain

(3.8) - 4u(P) - u(§) - u(E) = hE(P) + u, +u



If oniy W is in (cm)h, we obtain .
(3.9) : 2[4u(P)} - u(S) - u(E) - u(N)] = 2 [hzf(P) + )

_ The scaling factor 2  is largély artifical and is put in only for the convenience of
theoretical estimates in Sections 5 and 6. iﬁ Schemeé Ia, we seek to eliminate this scaling
factor while retéining the theoretical convehiénce: We require fhat Equation'(3.8) should be
u;ed regardless of whether both w .and Nv are in (CQ)h - or qniy' W -ié in (CQ)h.' The

" matrices A . . for all the above three schemés are of positive type. Hence, the results in

11

[4] or [13] apply and all these schemes are convergent.
There is an imbortant alternative to the above aPptqach. Instead of the discrete Green's
function of the entire plane, we may use thé discrete analog of the Green's function on a

sufficiently large square S with zero bpundary'conditions as our G 1in equations (3.2) and

(3.5). 1In this case G =B ;A= B_ +

5 5 UWT. Here B denotes the matrix representing the

discrete Laplacian thh on S and zero boundary values on the grid points of '¥S. The

: ’ T -1 , . :
residual Au-v will again be zero on Qh u BQh if ¢c=U A BD V . is nonsingular.

Finally we come to the central question as to whether the capacitance matrix equation
(3.5) is closely related to the Fredholm integral equation (2.2)? 1t is known (see e.g. [16])
that the conjugate gradient method converges superlinearly for Fredholm integral equations of
the second kind. 1In our experiments we normally fail to obsérve superlinear convergence. To
understand this fully, we split up the matrices C into two parts as follows.

= + .
C=B +K
The matrices B are defined by
B, (P,Q) = C(P,Q), if d(P,0) <
(3.10) .
=0, otherwise .
They are therefore the near diagonal parts of C ; and the matrices Kh are the remaining

parts, the off diagqnal parts of C .

It will be shown in'Section 6 that for Schemes La and Ib, and, after a suitable scaling,

for schemes II, the matrices Kh are closely related to the compact integral operator K . in

Equations (2.2) or (2.3). The matrices B,, however, will not in general be formal approxi-

mations to the identy operator. In fact, the algebraic row sums of Bh

need not always be

equal to one.

-7=



It is, however; shown in (16} that for operétor equations with symmetric positivevdefi-
nite 6perators of the form B + K with B symmefric'positive definite and K symmetric
compaét, the conjugate gradient method will converge iipearly with asymptotic ;ate of con-

‘Vergence goveknéd only by the spectral condition nﬁmber of B . We therefore proceed to
" study the‘special condition numbers of Bh in Sectiop'S agd thg distribution of,éingular
values of Kﬁ and C_ in Séction 6. We shall show in'section 7 that the asymptotic con-
.vérgence of the coﬁjugaté gradient method for solving ﬁhe capacitance'matriﬁ equétions will
depégd esseritially on thé spectral conditioﬁ number of Bh'

. We.now,diSéussﬂbriefly two differenf mgthods of implémenting'our algorithm and the

operation count involved. We use the conjugate éradient meéhod toﬂgolve ‘
| “cTep =-c,

where b denotes the right hand side of the capaciténce matrix equation. vThe solution u

is then computed from (3.2). ' In the first method, we geﬁerate the capacitance matrix
explicitly. Assume that thé G in equations (3.2) and (3.5) 'is the discrete Green's func-
tion on.the entire plane. Because of translational invariance it is‘only necessary to com-
pute G. with the second pa;éﬁeter fixed at the origin.. It is shown in section 4 that only
one call of fast Poisson solved on a sufficiently large rectangle is needed to generate G
and only two calls of a similar solver is needéd to compute the final solution and the right.
hana side b . The operation count of the algorithm is fheréfore.éohstant N2 log N

+ 2 Com2 + O(ﬁ), where CO is the number of iterations neédded to achieve a certain accuracy.
If the G 'in equatiqn (3.5)'ié Bgl , it is desirable to use the second method where

the solution | is computed by an iterative implicit method first appearing in [15]. The
operation count for computing yu is proportional to Co(m+ml)N B wﬁere mi is the number of
nonzero entries in the matrix V provided that a special fast solver is used in the process.
See section 4 of [31] for details. It will be shown in section 7 fhat C0 cannot exceed
constant logm if G = Bgl is used in (3.5) for all domains with sufficiently smooth bound-
aries and that C0 is ugiformly bounded in some special gaées if the discrete Ggeen's func~ -
tion on the entire plane is used in (3.5). The total operation count of .our algorithm there~
fore does not exceed,coﬁstaﬁt N2 log ﬁ ;

i

-8~
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84. 'Pfoperties and fast generation of G, the discrete Green's function on the entire plane,

.' _ ‘ a
and the éfficient computations of Gv, GVu and W Gv.

A discrete fundamental solution of the five-point Laplacian Ah with respect to the

origin is a mesh function Y that satisfies

R ¥ it w=o0,
(4.1 . Y{uh) = ’
: : Ahﬁ 0 . if n#o0,
where U - has integér components My and By o

Cleérly Y is unique up to an arbitrary linear function. - The constants involved will be
chosen so that we have a proper discrete analog of the logarithmic potential. The resulting
discrete fundamental solution will then be our discrete Green's function G.

It is ‘established in [27] that if g(r,s) denotes

(4.2) (Z/H)’fﬂ[i-cos(SA)'exp(¥|r|uf]/sinhu dax
0

where

(4.3) cosA + cosh | = 2

(4.4’ u/A »~1 as u ~+ 0,

then the function G defined by

(4.5) . G(rk.,sh) = (1/4) g(r,s) + (1/2m)1log h - (1/4T) (log 8 + 2y))

is the desired Green's function of the entire plane. Here Yy is the Euler's constant; r
and s integers and h is the mesh size.
It is shown in [27] that

(4.6) ' g{0,0)

=0, g(O,i) =1
(4.7) ’ g(r,s) =.g(s,r) = g(—s,r) = g(s,-r),
- (4.8) gfr,r) = (4/7) [1 +1/3 + ... + 1/(2r-1)1 ,
(4.9)  g(rs) = (I/Mlegls’+r?) + (/M (Log 8 + 2v)) + o(1/0),
(4.10) - glr,s) - glr,t) = (1/mlogl(r2+s)/(t2+r%)] + o(1/x).

We have found ip necessary to obtain sharper estimates for the remainder term in (4.10)
when t = s+l and a similar estimate for g(r+l,s) - g{(r,s).
Theorem 4.1. Let r,s and £ be nonnegative integers with r > 8; s ; tfl. Then
(4.112) G(rh,sh) - G(rh,th) = (1/4miogl(s2+r?)/(t2+r2)] + R (r,5) + R,(r,s) + Ry(z,s),

where



(1/2amy  [° 2o dsini(s + 1/2)2]
0

(4.11b) . Rj(r,s) =

(4.13¢) R,(r,s) = -(1/2m J {30024 (7/96) £2° +(1/288)r 28y e’rxsin[(zs+1)k/2]}dk,
' ‘ 1 -1.35:2/3 -7 :

(4.11d) IR, xo9)| < 0.21)r + (16N’ .

Proof. We have v

(n,’2) ig(x,s)-g(r,t)] = fn[cés(tk) - cos(rs)\)]e-ru[sinhu]-l ar ,
. 0 .
and it is known that

fm[cos(tk) - cos(sA)]le A dA = (1/2)log[(s +r )/(t +r )]
Y . .
Since

-xA Sl

(4.12) [Z|cos(th) - cos(sh)| e Alan < emete ™,

™ .

it suffices to estimate
[Micos(sh) = cos(eM1te™™ A7 = ™™ (sinmny t1ar.

0 o : ‘ 13

The integrand in the above expression will be denoted by J. Let ¢ = (1.5)r , ¥ > 8. We

have
€ € - -rh . -1
(4.13) J73dax= [ (cos(sh)-cos(tA)]e ""[2 sin(A/2)] "F(M)ax ,
-0 o 0 .
where
(4.14) F() = 2{sin(h/2)1A"2-2 sin(3/2) [sinhu) te AW -
By (4.3) and (4.4), we have
(4.1 sinhu = 2[51n(k/2)][1+s1n ov1t?
(4.16) e = 2 - cosh -2{sin(A/2)]1(1 + sin (A/Z)] 172
It is easily verified that for 0 < A <€,
(4.17) A Ly 120 35 + (1288008 4 cl(x);7,

with |c1(x)| < 0.035, 0 <A <1. Hence,
W o 1w 12+ %) + /2880828 4 ¢, (1)
7 2.8 3,9
Here |C2(r,A)| < (0.04)rX” + (0.01)r"A” + (0.001)r A" . Therefore,
FOO = /12 2-rA® - (/8020%] - 3ot - (1/288)r9° + c e,

Here [C,(r,0)] < (0.012% + (0.051)6)” + (0.0104)r%2% + (0.001)¢°A’

Hence,
€ _ . '
(4.18) of JaA = ?H[Rl(rds) + Ry(x,8)] + 2, (r,s)+ Z,(r,s),
‘where(4.19)
4.19) Jz e < [° e P na
v 1 5 3
< 1047 r-7

~10~-
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O U .0 % 5 0 U631
v Ly e.2/3
@200 |zye,9] < et e 15077
‘It remains to estimate 'I"J dal
€
Clearly,
m s .
4.2 I aar] < ™ e 4 e ™yan .
. € - € .
.It can be shown that e—u us a decreasing functionof A for 0 <A<,
[33]. It is also shown there thét )
(4.22) efg < eh0'76, . A= 0.8
< e;0.91; x= 1
< 7107 A= 1.2
< o i:31 A= w2,
By (4.17),
e = e (L+cC (M), [c ] <o0.1, 0<Ar<o0.8,
S0 that
e-rU ief0.9)\r ) 0 < X < 0.8.
Hence,
fn e-ru dax < (O.Z<i2)e_o'76r R
_ 0.8 .
and |
' 2/3
m, - - : -1 - -1 -
(4.23) [Me™™ + e ™Mar < 2aas)rle™350 7 | 7 o
£ C
By combining (4.12), (4.19), (4.20) and (4.22), we see that
: 2/3
(4.24) an [Ry(r,s)| < 2.3 e 4047 £

. Al .
The theorem then follows from (4.5), (4.13), (4.18)-(4.21) and (4.23-(4.24).

See e.g. p. 33 of

Theorem 4.2.. Let r,s and t be nonnegative integers with r > 8; t = r+l. Then

(4.25a) G(rh,sh) - G(th,sh) = (1/4Mlogl(r+s’)/(t%4s7)] + 5 (x,s) + 5,
Where
(4.25b)‘ Sl(r,s) = fm(1/24ﬂ)[Az—rk3+A2e-k/2]e-(r+l/2)xcos sA (sA)
0
" (4.25¢) s,0r,8) = = [7 (a/2m1/302% (7/06)00° + (1/288)r°2° + (1/12))
o . - (EH/2))
. 2/3
(4.25) Is,r.0)] < (.9rC + 200)r7 + (0.5)x7F &I

-11-
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4e-A/2]

cos sA{s})



Proof. We have

fn'[e_tk-e-rxlk-lcosfsl)dk + vfnJ*dX;'.

(1/2) [g(r,s)~g(t,s)] =

0 _ 0
where
J; E‘cos(sk)ie;tu(sinhu)-l'— e-tkk-l -'e‘rl;l(sinhl.l’)f1 + e—rAA_1]

It is known tha;' v

(@.26) I”Alé‘t“-efrkixf? cos(sNak = (l/2)1ogT(:ZfSZY/(t2+sz)]

Clearly, ° | | o

(4.27) f‘?°.,|e't_>‘- T la < amele™™
"It therefore zuffices to estimate fﬁ J*ax. Let

o - * » % 0

(4.28) 3 =3, +3,,

where .

.20 3z costen fe M e ™M sinti My (1-e ™Y,

(4.30) . .J; = cos(sAi[e;u—e_xje—?Ak_l .

Let g= (1.5);’1/3 . By {(4.16),

ez sinov21™ = csinOv2) + 11+ sinfOv21M2 <1l
"But . l
-sin(A/2) + [1 + sin.2()\/2)]1/2 = /%, 1:;10\))‘3 Y

:wﬁere .

| Ibl()\)li 1/12, 0<XA<e.

Hence, by (4.14)

g4.31)’ jz 3y = jz cos(shye™ (/2N L)' E (r,s) ,

where _ _

@32 . leeosd] < [0 a2’ rne™ ax < (5.80)r8 + 364r8 + 105710 .
"By (4.17), |

(4.33) ' 'fi 3, = fz [a/12) 0204 & (1/288)2° + cl(A)A61cos(sA)_eft)‘aA,'

with lCl(X)l < 0.035. It is easily seen (see also p. 38 of [30]) that

-1 e—(l.S)r 2/3 -le-1.35r 2/3 _ r-l e—rﬂ

(4.38) M e < x + (2.15)r
‘ 4 ey .

‘The thebrém easily follows from.(4.19), (4.20) and (4.26-(4.34).
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fheorems 4.1 and 4.2 proviée accurate estimates_for distant values of the undivided
diffgrences of G . One can use these estimates as Dirichlet rconditions for'a fast Poisson
soivér to gehefafe all»the valueS that are neéded ;o‘set up the capacitance matrix C . One
can also uée_integer arithmetic as in [27} _tb construct a table of values of G for 1,s < 7.
See. e.q. Tablé It on p. 292 of [27] or Table I on'p. 41 of_IBO]. By usiné the above tables
and Theorems 4.1 and 4.2, we obtain the fo;lowiﬁg. . . » v

Theorem 4.3, Let r and t = s+l bé-positive integers. Then

(4.35) G(sh,rh) - G(th,sh) = (1/4mMiogl(s+r?)/(t%+r?)] + R(a,r)
where
o ’ ’ . -3 -3
(4.36) |R(s,x)| < (0.34) min {s™7,r "}.
Moreover,
| 7 71
(4.37) © max{ } mex [R(s,r)|, ] ‘max‘|R(s,x)|, } max |R(s;r)]|} < 0.01.

r=2 s<r s=2 r<s s=r r<s
We next investigate the monotone behavior of the undivided differences of G in certain
directions. Let

G (i,3) = G((i+1)h,3h) - G(ih,3h)

Gy(i,j) = G(ih, (3#+1)h) - G(ih,3jh) .
By the five-point formula and symmet¥§; .
(4.38) Gxx(iil,jf'= ny(i,j—l) | %0 or §%0;
(4.39) 26,(0,3) = -G__(0,3-1) j=0 .
Theorem 4.4 Let «r ana s be nonnegative integers. Then Gx(s,r), Gy(s,r), -ny(s,r)
and ny(l.r) - ny(O,r) are always positivé; and Gxx(s—l,r) is always nonnegative for
r > s.

.Proo.f. Except for the result on Gxx(s-l,r) , the proof' for all the other results are similar. We

first estimate the values of the expression for s = 0, r > 8 using Theorem 4.1 or 4.2. By
symmetry, the results hold for s > 8, r = 0 as well. We then verify with the aid of Table II
onvp. 292 of [27] that the same results hold for s =0, r <8 and s > 8, r = 0. Since the
five point formula is satisfied at all points rh and sh with r>0 and s > 0, an application
of discrete maximum princiﬁle immediately_yields the desired result.

The proof for Gxx(s-l,r) is as follows. By symmetry and (4.38), we note that

G (s,x) = 0 for s=1r .
XX .
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By‘symmetry,
G._(s-1,r) = 26_(0,r) for s =0 .
XX x
" An application of the discrete mayimum'principle therefore completes thelprbof of the theorem.
This concludes our discvssion for undivided differences of G . We now proceed to
obtain better estimates for the remainder terms in (4.8) and (4.9).
The following ;Héoreﬁ is an immediate consequehcéfdf (4.8) and some well known result of-
asymptotic series. = See also p. 325 of [Sv].

Theorem 4.5 Let r .be any positive integer. Tﬁen

(4.40) | G(rh,rh) = (1/4mlog(2r’h®) + (1/48Mr 2 + R , -
where : ,
(4.41) [R1] < (771920m) ¢4,

Theorem 4.6 Let r > s$; r and s are nonnegative integérs. Then

(4.42) © G(rh,sh) = (1/4M)1logl(s2+r2)n?] - 11/24n)(r2+52)’1 + (1/3n)r2s2(r2+s?)'3 + Lir,s)
where ‘ -

. 2/3
(4.43) - es)] < @siymet s aseme® + a/mieg x e
Proof. As in the proof of fheorem 4.1, we have _

[ 3 ax = [Creesish) - cos(th)le T2 sin(v2) 1 P a).

Here € = (1.5)3-1/3, t zay be any nonnegative integer. It can Se shown fhat

(2 sinOy2) 1 F ) = (1/12) OerA?) - 17140 00? - (4371240023 - (1/288) 2225 + L, (x,0).
Here L, (x| < (0.0022° + (0.06)rA° + (0.012)r%)7 + (0.0012)e2% . But

[ Poosxax = 11 [a-ib)™ + (a+ib)™ /276D ™ |

Hence, ° ‘
(4.44) [° e Peos(sh) (1/12) A=) = —/12) (24D + 2732 3D T = w2,
when r = s . °
We also have
(4.45) w72 f° il + @302 + a2 4 144]L1(r,>\)|]e"ﬂax < s5:7% 4 30878,

Since |sinhu|fl f_A-l for A £ 1, we have
| [Taar] < A le™ v e ™Mar.
€ € s

-u

-~0.9A
But e <e

0 < A < €. Hence,

-14-



' v . i ce i 2/3. g 2/3 Coem - )
(4.46) . "0 e ¢ 2 1.5¢ 4 onL-351° )[ £ L
' ' 2/3 2/3.

< (2/31og r [T 4 1T

By combining (4.40); (4.41), (4.44)-(4.46) and using the technique in the proof of Theorem 4.1 to

.estimate the rémaihihg remainder terms, we see that Theorem 4.6 holds.

Theb;em 4.6 also provides a means of génerating G(rh,sh) by means of a fast Poisson

solver on a rectangle ‘using thevfirst three terms on the right hand side of Equation (4.42) as

approximations. for .distant values of the Dirichlet data.

We now describe an efficient method developed in [24] ‘of computing Gv for aﬂy Vector

Let U, and U denote the

v defined on a square mesh S, > Qh ' with boundary mesh ash; s ye

h
exténsion 6perators from Sh and 8Sh " respectively to all mesh points that are defined the
same way.as_ U ; Wela;e actually éomputingi Ug G Uébv. We:first sélﬁe the system of equations
Ungs¢'= v dn s v
¢ =0 on S
for the potential ¢ . We then extend ¢ by zero to all mesh pOinés; We.represent ¢ as
(4.47). ' = GULV + GU, P

where [ is an unknown vector defined on the mesh points on 3$ to be determined. It is easy
to see that
T
p = UBSB¢ .
o , ien of
The vector US G UasD can easily be computed by one fast Poisson solver on - S with UBSGUQSQ

as the Dirichlet data on 9S. Because of the sparsity of the vector Uﬁs ; the Dirichlet data

"can-be computed at a cost of constant N?. UT G U.v is then computed from (4.47).

S S

We now describe a method of computing all threé of the vectors Gv, Gvy and WTGV using
only two calls of fast Poisson solvers. This may appear to bé impossible since WTGv, the
right hand side of the cabacitance matrix equgtion,'must be determined first and the computation
of Gv alone requires two calls of fast,Poisson solvers. We can, however, first compute and
store the vectors ¢ and p iﬁ equation (4.47). Clearly,
Wev = W - WTGUaSp.
But we need only to compute GUasD at those mesh points that WTGV is defined.. Hence, the

computation of WTGUaSD reqﬁires only constant n2 operations. On the other hand, GUBSp and

: . T
GUN  can be computed simultaneously with one call of fast Poisson solver with UB*G(UBSO+ Up) as
. 2
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the Dirichlet data on S . Hence our algorithm of'cohputing éll three of the vectors wTGv,
GUyp and Gv réquires 6nly calls of fast Poisson solvers plus constant times n2 operations.

In the methoés‘descyibed so far, aifast solver on 2N,X_2N mesh pointé is needed to
generate the discrete éreen's functionlor its undivided differences on a ﬁ x N‘ mesh Sh..
An alternative method is tq.firSt generate the undiVideé'differences Qf G on a N)2 X N/2
mesh using a fast solver on N x N mesh points. The values on the remaining mesh points of
Sh are computed by using (4.11) and (4;25). An éccuracy of eiqﬁt decimal.digits is guaranteed
by Theorems 4.1 and 4,2v if N > 60. A somewhat less accurate but'easier.té program method is
to generate the vglues of G on a N/2 X N/2 mesh ahd'compute the values on the rest of Sh
by using (4.42) and (4.43). An accuracy of five decimal digi;s is guaranteed by Thebfem 4.6
if N 3_60. . -

We shall assume in fhe next two sections thaf_the G used in ﬁhe capacitance métrix
equation ;s the discrete Greén's function on the entire plane. The main results in sections

5 and 6, however, will also hold if G = Bgl is used in equations (3.2) and (3.5). See

section 5 of [31] for a discussion in this respect.



- 5. Spécttal bounds of - B

-

We shall show in this section that Bh

is uniformly well conditioned in the spectral .

norm as h + 0. The following well known lemma is crucial to the proof of our main result.

Lemma 5.1. .Let the syﬁmetric-part of a métri* A éatisfy
| (A+AT)/2 kd 41, 8>0 .

vThen | v |

| a"a > §%1.

Theorem 5.1. (0.25) 1 :' B: Bh < (7.29)1 for scheme I.a
| (0.25) I < B: B, X (13_.?)1 for scheme I.b

(0.04) T < B, B, < (5571 for scheme '1‘1
for all sufficiently small h > O.

Proof. We shall first prove. that the following holds for scheme. Ib.

(5.1) I < B # B: .
Let B = Bh + B:. We shall show that
(5.2) min {B_(p,p) - g s e, )]} > 1
PeBQh QaBQh,Q#P
so that (5.1) holds because of a well known Gerschgorin theorem. The inequality
I i B: Bh

will then follow from Lemma 5.1.
Let P ¢ BQh . Assume that the local orientation of the boundary near P is such that
for any point P' ¢ BQh in that neighbourhood, either W' and N', the western and northern

neighbours of P', are both in (CQ)h or W' alone is in (éﬂ)h. Let o be the angle

P'
< w4 that the normal through P' makes with the X, axis in the east-west direction. By (3.5)
and (3.9), we have, for P # Q ,
. = H - ; NW) - W
(5.3) Bh(P,Q) 216w, wQ) G(wP N1 + 2 tancxP[G(wP Q) G(w, Q)]

if P has only one neighbour in (CQ)h. Here - Y_ denotes the immediate neighbour on the mesh

P

for any point P in the Y direction. Similar expressions to (5.3) are easily obtained when

N is also in (C)

P or when P = Q .

h If P = (3h,kh), Q = (mh,nh), then because of transla-

tional invariance, G(P;Q) = G(Ij-m|h,|k~n|h) .

Assume that O <‘aP < m/4 and that (th)loc' which denotes a subset of BQh that

contains a vh neighbourhood of P , can be partitioned into blocks as follows. Let
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I, ='{(0,h)....;(0,Mih)}
I, =3{(kh,Mkh+h),.;.,(kh,nk*lh)}, k‘; 1""’K1-' |
| I, = {(—kh,-M_(k_l)h;.f.f(-kh,-M_kh+h)}, k=1,...,K;5.
Then, . '
K, - ,

CUR PP xitxz g r Pelp
Noge that Mk - Mk—l gives the nu@ber of points in Ik—l' k =»1"f"K1 while th - M—(k-l)
gives the number of points in I k=1,...,K; M = 0.

* ' 2" o T , ,
Let Pj denote the point with xz—coordinate jh. From (5.3) and Theorem 4.3;.it is

easily verified that z lBé(P,Q)| will remain eésentially unchanged for sufficiently
Q7P ‘

smooth 92 if - tan aQ is replaced throughout by tanapt Let a Z tant . Let P = Pi and

P

G(i,j)} = G(ih,jh). We shall assume that: P # P unless otherwise stated. We easily verify
thgt f?r‘.Pj € IO’
(5.4) BS(P,p)'=‘3+a,
(5.5 B (p/By) = -4(lta) G (o, li-3h, 3 #L, FAM .,
(5.6) ] BS(P,PMI) = =2 (1+a) G*(O,Ml—l) + (1-a) ny(o'Ml—l)"
By (4.39), we see that for Pj €Iy,
T oy ' _ M) - .
(5.7) ) B, (P,P,) 2(1+§)[z G, (0,00 = G (0,M-i) - G (0,i-1)]

i) ' o
+ 2(1l+a) Gx(O'Ml-l)v+ (l—a)vax(O,Mlel).

For Pi é I, k= l""'Kl' we have

k
(5.8) BS(P'Pj) = 2(1+a) ny(k.j—i-l), IAM
(5.9) Bs(p,pj) = (1+a) ny(k,j—i—l) + (l-a) ny(k,jfi), j= Mk+; .
(5.1 = - L <i) - »o i) - —i-
(5.10) . {I BS(P,Pj) 2(l+a)[Gy(k1Mk i) Gy(k,Mk+l i) (1+a)ny(k,Mkfl i-1)
j Tk

+ (-a) 6 M -4) .

By Theorem 4.4, we see that each BS(P,Pj), J#Fi, 3 < 1, is negative. Hence

. 1
(5.11) B_(P,P.) . = 2(1+a)[C_{(1,M -i , i
1 kzl PZ L Be(rRy) = 20ka) 6 (Ly-i) 4 kzl Gy My 1 =50

Ik K K

) (x i) + (1+a) Zlc (k 1)

-(1-a) G ’ -i) + a . -i-
k=l yg Mk+1 k=1 vy Mk—l
< .
2(1+a) gy(l,ml i) ..
Similarly,
(5.12) I 1 e epy]| < 204a) G (1,i-1) + (1-a) G (0,i-1).
k=1 Biel -3 Yy b4
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BX combining (5.7), (5.11) and (5.12), we see that

(5.13) Y |B (p,P.)| < 4(1+a) G_(0,0) + (1-a) G_(0,i-1) < (5+3a G_(0,0) = 5/4 + 3/4a .
.. S j Y Yy Y
i#3 _

Here we have used (4.5), (4.6) and Theorem 4.4. Hence, by (5.4) and (5.13), we see that

(5.2) holds for P ¢ I_P # PM .

0
1
The proof for P = PM is quite similar and is sketched as follows.
: 1
(5.14) - B _(P,P) = 2+2(1l-a) G_ {0,0) .
S Xy
= - - + - - ' ;
(5.15) . 612 .#i[Bs(P,Pj)I (1+a) [G, (0,0) Gy(O,Ml D1 + (1-a)[6 (0,1) ~ G (0,M)]
37073 . '
(5.16) kzl P EI lBs(p,pj)[ = (1-a)[G,(0,0) + kzl {Gxx(k-l,Mk+l—M;) - ny(k,Mk+l—Ml)}]
ik
+ (1+a) [G_(1,0) + M =M) + MM ~1)}1;
.(_a)[y( ) kzl{cyxacum M)+ G (ko M) nh
(5.17) B_(P,P.)]| = (1+a)[G_(1,M)) + G, _(k,M_+ + G - (k,M M -1
_ kzlpfdls.Jl ) (6, (1,M, kzl{yx< M)+ G My 1) 1
3=k
+ - - - -
(1-a) (6, (1,M)) + kzl{Gxx(k’Ml+M'k) Gy (=1 #4_ 1 =11,
By (4.38) and Theorem 4.4, we see that
(5.18) DS [B_(,p)| < (1-a) G (0,0) + (1+a) G _(1,0).
k=1 P.eI I X b4
j k
Similarly, by using the identity (5.20), we have.
(5.19) B (P,P.)| < (1+a)G (1,M) + (l-a)[G (1,M.) - G_ (0,M -1)] .
kzl P EI I s j | - y 1 x(_ 1 yx 1
3T~k
(5.20) ny‘k'M1+“—k'l) = ny(k+l.Ml+M_k-l) + ny(k,M1+M_k-1) - ny(k,M1+M_k) .
Hence,
(5.21) I B (p,p.)! < 26.(0,0) + 2G6_(0,1) + aG_(1,M ) .
. s j — X X Y 1
_ k=1
By combining (5.14)vand (5.21), we have
(5.22) B (p,P) - ) |B (B,p.)| > 2+ 2(l1-a)G_ (0,0) - 26_(0,0) - 2G_(0,1) - aG_(1,M ).
. s s Jj - Xy X X y 1 ‘

i#j
Clearly, the right hand side of (5.22) attains its maximum at a = 0. Hence, (5.2) holds for

P = PM . The proof for other choices of P is similar and will not be repeated. We note
1

that we have assumed that BS(P,Q) # 0 for any Q e(SQh)loc. This assumption will not
affect our estimate (5.2) because each BS(P,Q) is either zero or negative for P # Q.

Finally we remark that the schemes Ia and Ib described in this work are essentially

dual to the schemes I.N.a and I.N.b described in [31] in the following sense. If we

maintain that a = tany . does not change its value for the entiré“row or column of B

p h
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corresponding to P, then Bh(P,Q) is the same for both schemes Ia and I.N.a. or for both

schemes Ib and I.N.b. Therefore we refer the reader to [31l] for the proof of Theorem 5.1
for scheme I.a. We now proceed to prove the following inequality for scheme II.

(5.23) Cwin by e - Y T o) - 0.4

P ° oFP

Let P € BQ}. We assume the same local configuration of irregular mesh points near P

.as before. By (3.5) and (3.7), we have for 4, >1, P # Q,

2 .
(5.24) Bh(P,Q) f —GX(WP;WQ) - el GX(EP;WQ) + a[Gy(WP;WQ) + el Gy(EP;WQ)]
where
(5.25) e = (l-dl)/(l+dl), a = tan aP .

Here Gx(';') and Gy(';°) denote the forward undivided differenées in the xl and xév direc-

tion with respect to the second variable of any mesh function G respectivély. A similar expres-

" wion ‘involving e which is siinilarly defined or a constant one should be added respectively to

2
the right hand side if d2 <1 or if P =Z Q. Let elj and e2j denote the corresvondina e,
and e, respectively. '
' - . T
" P = . bqs i ’ + P,P, .
Let P.. We first estimate ) {|Bh(P Pfl IBh( , J)[}

i-3(>3
* . .
Let Bh(P,Q) be defined by Equation (5.24) with G replaced by its continuous analog which we

* * . ’
shall denote by G . BT (P,Q)  is similarly defined. By (5.24) and (5.25), we have for 4, > 1

h 2
and P # Q
* i . x  * . * * & :
(5.26) B, (P,Q) = [2/(1fdl)l[—-G (W ;0) + (1-a)G (W ;WQ)7+ aG (W ;NWQ)J + R
R x *
= [2/l+d1)][6 (W ;W) -G (W;Q)] + RWE + RQ ‘
where
' - nl o g k k
(5.27) "R T [9/(1+d)) 1+ ( klz (h"/K1) (@, -1)7 + (d;+1)7]
» k * * . L o
°[(8/8x1) {-G (+;Q) + (1-a)G (';WQ) + aG (';NWQ)}I(W )1}
+ nth order‘remainder term.
. ) 2 . ' 2 * % ’ 2 k& »
-{5.28) RQ = [h a(l—s)/(1+d1)]{ a[(B/sz) G (W ;')](NWO) + (1—a)[(3/3x2) G (W ;')](NWl)}-

Here W* is the point were the Dirichlet data Uw is given. W' 1is a point on the mesh line

connecting WQ and NW and at a distance ah . from W_. NWO and NWl are respectively points

Q Q

that can be anywhere on the mesh lines between W' and WQ and between. W' and Nwo. We

shall assume that dzo,'the analoque of 4, for the point 0 ., is also greater than 1 . 1In
4 .
,

that case, we have a similar ekﬁ?ession for BE*(P,Q) as that in (5.26)
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We now proceed to estimate BE (P,Q) + Bh(P,Q) . It is easily verified that if

P,Q0 are two points on 90 with d(P,Q)_f_hY, 0 <Y <1 and' ta is the tangent at Q to of,
then

. ]

a(p,ta) < (K___ +o(1))n°.
— max
Here Kmax is the maximum absolute value of the curvatures of of. Hence, without loss of
: . * - %

generality, we may assume that W 1lies on the tangent to 92 through Q , the point where the

-'_ *
normal through @ intersects with 02 and vice versa. Let r denote d(W ,Q) and r' denote
R *
d(W ,W'). It is easily seen that .r' >r if d4(Q ,Q) < h(1+a2)/2. We separate our discussion

. . ‘
into four cases. The first case is when r' > r and d4(P,P ) < h(l+a2)/2.' The maximum of
' ' e e * . ,2 2 2.2

log (r'/r) then occurs when Q coincides with Q . In this case, r - r = (l4a")h”. Hence,
if PEPp,Q°% Py i # j, then

* % * & ' -2,
0<G (W;W') -G (W;Q) < (1/4m]3-i] .

-(1/8m|i-317 SRySO0: M AE 3>

~a/em|i-j-1] 7% < R, 5_[a(l-a2>//5(1+dl)n]<1+a2>’3/2 l3-i-1173 ;  if i > 5.
Similarly, by (5.27), | | o

: -4

a+a) R < /m |3-i| 7"

Hence, for lj-i] > 3, . .
: * . . L =2 .. -3 . —4 ce s o s

(5.29) (+d ) B () | < (/2m]3-1]77 + a/sml3-i-1| T 4 @/mis-i] T, if i

/2m|3-il"2 + /m5-117Y if 51 .

I A

* *
Since d(P,P ) < h(1+a2)/2, the estimate for B: {P,Q) is the same as that given in

(5.29). Hence, _
(5.30) }B:*(P,QH + |B:(P.Q)| < a/mli-i72 4 @mli-il™t e assm -]

* - . 2 *
The second case is when r < r' and d(P,P ) < h(l+a Y/2. Let de denote 4(Q ,Q)/h.

Then de > 1/2. Hence by (5.29),
T

h*(P,Q)I < (/3m | 5-1]72 + (2/15m) |§-i-1]7> + a/3m |5-i] 7%, if § >4

|B

I A

a2 . 1-4 s s
(1/3ﬂ)|3—1| + (4/3m) | 5-i] , if 1> 73
On the other hand, the maximum of log r/r' occurs when ¢ coincides with w2. In this

.2

2 : )
case, Y -r = (1—a2)h2. Hence,

* % * %
G (W ;W) - G (W ;Q)

in

(1/4m [(1-ad)/+ad)1)3-1] 72, if 3> 1

| A

(1/4m) [(-a%)/(14a®) 1] 5-i-a] 2, if i § ;
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and

.30 I @] < tazm e asnilz-ilt e emls-i™ s 3
' < a2 4.1+ azem 5-ie1]2 e @ml5-il7Y ie 4> 5.
Therefore, »
‘ ‘ T o - - o T B 'y
(5.32) e o]+ 0B 0] < tazam o+ azem +a/em]3-1]70 + (a/3m1]5-1]
I s easmli-ialT, 0 aE 5 i

< tazem + @/amli-il7? + azem|i-i-1] 7
v + Tway3m + (2/m1]3-i| 7%, ifE i3> § .
The third case is when r < r' and d(P,P*) 2_h(l+a2)/2. The estimate‘for'|B;(P,Q)| +
+|B:*(P,Q)| is.the‘samevas-that for fhe.SéCond case.
Thg fourth case is when r > ;' and d(PfP*). 2_h(1+a2)/2. ﬁoth dl and de are not
less than 1/2. Therefore by (5.31)-ahd the above obserQétién, ‘ : o
(5.33) I o]+ IB;<§,Q)I < 2/ li-il 72 . (/12m |3-i] 2

 1am|i-i] 72+ (e/3m ]5-i] 7Y
By comparing (5.30), (5.32) and (5.33), we see that

max ,B:*(p,Q)' + IB;(P,Q| 5_(1/n)|j-i|'2 + (4/1r)[j-i|'4 + (1/5n)|j—i-1]'3 if § > i

< a/mli-i]72 4 asem |51 72+ @sm3-i-1] 7 4 @/m]i-i] T
» if 4> 3.
Hence, if d2, d2Q > 1, then »
LN [3;(p,p.)| <wm ¥ 2+ et 4 257 + 1/8k?)
l3-i[>3 J 3 _ k=3
< 0.328 .
Similarly, it can be shown that if both d2 »aﬁd sz are not greater than 1, then
x| . *
(5.34) Y Is. (e,p.)| +7|B _(P,P,)| < 0.677.
P bl

By Theorems 4.1-4.3 and Table I on p. 41 of [30],

* T
)= LR B_ (p,p.)|} < 0.04 .
|i-.JZ_|<3 {lBh(P'PJ) By (P '.J)I + | LS 1<

Hence

(5.35) I Us )] + |s; (2,20 [} < 0.727 .
' |3-i]>3 J J

It remains to estimate B_(P,P) - les(p,pj)l, |i-j| < 2, i # j-. without loss of generality,

we may assume that both d

1 and 4 are less than. 1. We shall assume that P = P, = PM with

2 i M

My > 3 and M2 > 5. 'The case when 1i # Ml ~can be treated in a similar manner. We have’
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QU U455 0U6F7

(5.36) B (P,P) =2+ 2(1-a) ny(0,0) + g5(a)

where

qo(a) 2 el[Gx(l,O) + Gy(2,0)] + 2 e2[Gx(O,l) + a Gy(l,l)].

For any P. I j 3
any 3 € N J.# Ml' we have

BS(P,Pj) = gl(a,j) + gz(a,J) ,

"where
gl(a,q) = ny(O,i-j) + a GyY(O,ifj—l{ - a Gy(l,i-j) - Gx(O,i'j) ’
9,(a,3) = ellcx(l,i—j) - a Gy(2,i-j-l)] +'eij[Gx(1'i'j) +a Gy(2,i-j)l
+ e2[Gx(0,i—j—1) - a Gy(l,i-j—Z)] .
For any Pi € Il,' we have
BS(P,Pj) = g93(a,3) + g,(a,3) ,
where ,
93(a,j) = —Gx(O,j-i—l) + a ny(l,j—i—l) + a Gy(O,j-i-l)
9,(a,3) = e, [6,(0,3-i) + a Gy(l,j-i)] + e,[=6x(0,3-i+1) + a Gy(o,j—i+1)]

+ iy L o .
eij[Gx(2,J i) a Gy(3,] i-1)1
By Theorem 4.4, gl(a,j) is negative. It is easily wverified that gz(a,j) is nonnega-
tive for 0 < i-j < 2; 93(a,j) is negative for a < 1/2; and 94(a,j) is positive. Moreover,

for a < 1/2,

2 2 '
(5.37) ! leg@i) +g @il + ) la,@i) +g (@il
. TR | 2 ! 3 4
i-j=1 j-i=1
2 2
< go@ + [lg@nl+ |l @l
oo 1 . 3
i-j=1 j-i=1
Hence, for a < 1/3, Ml >3, M2 > 5, we have from (5.37) that the following holds.
(5.38) B (P,P) - Z{las(p,pj)[ . oi#3, li-3] < 2}
: 2 2
> 242(-a)G, (0,00 + ] g (ad) + ] gylai)
i-j=1 j-i=1

| v

2+2(1l-a)G_ (0,0) -~ ¢ _(0,0) - 3G (0,1) - G_(0,2) + G (0,3)
Xy X X X x

1.17.

By considering all possible configurations of Pj’ i-j <2, a>1/3, it can be shown
that the constant 1.17 is always.majorized by the left hand side of (5.38). It is easy to see

that (5.38) alsc holds when Pi # PM . Hence by (5.35), we see that (5.23) holds.
. I .
This established the lower spectral bounds of Bh' for all schemes. To complete the
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prOof of the ﬁheorem, we'nofé thaﬁ'the spec;ral norm of B:Bh is majorized by (]'./2)(”13‘1};“0n +
H Bh|L»)2. It therefore suffices to provevthe following two inequalities

(5.39) I E§H°>7+ i Bhan f; 7.4 if scheme I.b'vis_used

(5.40) E l|Bi|L§ + || BhHa, < a2 if écheme II_i$ used.

We first prove that (5.39)-holds._ withéut loss of generélity we may assume that
P e BQh has only 6ne'ﬁeste;h neighbour W in (CQ)h. Let_vP = (0,0) and Pj = (x,y), be in:

8, . Then x =ay +b, [b|l <(lvoNn if d(p;pl) < vh. and

B;(P,Pj)  - (1/2m logl (x+h) 24y?] + (a/2m) log x>+ (y+h) 2] + [(1-a)/2T)1og(x +y°)

(1/2M) [2h(x-3y) + (a-1)h°]/r> + R,

where r = d(P,p,) and |R| < (1/2m) [(2x+h) 2 + (2y+#h)21h%/2r?. 1t is easily verified that

. . :
(5.41) L IB (2P| < 1.25 if |yl > on
pFp, . 3 v : '

3 _ ,

By Theorems 4.1-4.3 and the Table I on p..41 of [30],

(5.42) B (p,P) = 2 - (1/2) (1-a) ;

(5.43) } IB (]| < 0.28 + 0.55a/2 ;

: ly|<2h 3 : _

Z | . . * |‘<

(5.44) Bh(P,Pj) - Bh(P,Pj) 0.06 .

~ Jyl>2n

By (5.41)-(5.44),
) |Bh(P,Pj)l < 3.7.

T

is replaced by Bhi

It is easily seen that the above inequality also holds when' B

We h
h ave

therefore completed the proof of (5.39)..
Let P = P.. By (5.36),
Y- < - ' .
(5.45) |B (e.2)]| < 24201 a)G, (0,0) + g (a)
By (5.37) and (5.45),

_ . _ ’
(5.46) ) ]Bh(p,pj)|+|ah(p,pj)| < 2+2q,(a) + 2G,(0,0) + 6G_(0,1)

li-3|<2
< 4,

By (5.35) and (5.46), we see that (5.40) holds.
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6. Singular values of Kh andg C .

We shall show that all éxcept a few singular values ¢f C 1lie in the interval

[d1 - €, d2 + €], € >0, where d and d2 .are the spectral bounds of B,

h*

1 This is accomplished

by first proving that the sinqular values of Kh cluster around th;tvof a compact operator K .
Our main result then follows as an immediate consequence of a well known result in matrix theory
wh;ch will be stated below as Lemma 6.8. We first need some definitions from modern analysis.
Let X denote a Banach space throughout this éectioﬁ.
Definition. A subset 5§ C X is sequentially compact. if ény sequenée in $§ contains a convergent
subsequence with limit in X .
Definition. A family of operators Kn on X is collectively compact if the set {Kmf:Hf||< 1,
fe¢X, m=1,2,...} is sequentially compact in X .

We shall first assume that either scheme I.a 6r scheme I.b is used. We start by con-
structing a family of operators ’{Km} from '{Kh} in the same way that is done in Section 5 of
[32].. For completeness, we briefly sketch this constru;tion in the following. Define

K : €lo,1] » c[0,1] by

0 ,
(6.1) © IR E(E) = jZlk(t,tj)f(tj), t, € [0,11; £ € Cl0,1],

where '

(6.2) k(t,tg) = K (B Po) + [le-t)/(, ~t) K (B 1 P — Ky (B, POT, b, ) S €<k, o

C[0,1) is the Banach space of continuous functions on {0,1]. The ti' i=1,...,n
are defined as follows. Letv ¢, be a smooth parametrization of 9. Then (¢(ti),w(ti)) is the

closest point on 3 to Pi € BQh which is on the normal through Pi' When t is very close to

.

0 or 1, the k(t,tj) in (6.2) should be adjusted slightly. See [32] for the details. We can

construct by the same procedure a family of operators '{KA] from '{Ks }. et Ky KK .

. T T, . . . .
Lemma 6.1. - The nonzero eigenvalues of Kh' Kh+Kh and KhKh_ coincides with that pf Km’
K +K* and K _  respectively.
m m s

Proof: See e.g. Lemma 5.2 in [32].

B

. . * *
Lerma 6.2. Let P and Q be two points in BQh with d4(p,Q) = h", B<1l/2. Let P and Q

the closest points on 30 to P and Q xespectively. Then

](p*;g*)hsech +om228y

K (2,0) = 2[3G*/an*

Proof: Essentiaily the same as that of Lemma 5.4 in [31].
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Lemma 6.3. The families of.operators'{Km},{KA} and,A{Ks} are collectively compact'on'C[O,l]f
Proof: Essentially the same as that cf Lemma 5.5 in [32j.

T . ’ . . ) -
Lemma 6.4. Kmf > Kf, Kéf > K'f ana st *-KTKf for each f ¢ c[0,1] where K is the compact

integral operator defined by

. . | ,
(Kf) (t =2 3 3 ;
) (t) / (36 /3y 1 (P;0) £ ds,

1Y)
where P = (§(t,), V(L)

Proof: Essentially the same as that of Lemma 5.6 in [32] .
In order for the above theorems to apply in the case when scheme II is .used, we scale
the matrix K in that case as follows. The rows of | Kh' that correspond to iiregular mesh.

points that ‘have one or two neighbours in (CR) are multiplied with (1+d1) or

h

(l+d1)(l+<12)(14'-’dl+d2)_1 respecfively. It is easily verified that Lemmas 6.3 and 6.4 hold for

scheme II if . Km is constructed from the.scaledv Kh."It will be shown after thedrem 6.1 that
such a scaling is not e-sential and our main results will hold evén without it.
Lemma 6.5. Let {Kﬁ} be collectively compact on X ; an.+ Kf for each f € X. Given € > O,

let ui, with algebraic multiplicities mi, i=1,...,N be the eigenvalues of K with absolute

. ) . * * .
values greater than or equal to € > 0. Then there exist positive numbers N and e <¢g¢

such that for all n :_N* each e*” neighbourhood of uy contains eXactly m, eigenvalues of
Kn while all thevother eigenvaiues of K# lie in an e—neighbourhood'of zero.

Proof: This is an immediate consequence of Theorem 4.8 on p. 65 of [1]. See glso Chapte; 4 of
[30]. By combining Lemmas 6.1; 6.3, 6.4 and 6.5, we easily have the following. |

Theorem 6.1 Given €'>'O, there exists a positive intﬁger N such fhat for all ‘h > 0, éil
except’ N singular values of Kh ‘lie in [0,€1.

Lemma 6.6. Let C = AB, where. A, B and C are arbitrary matrices with_singula; values.

> > >
>0 Bm 20 andy; 2Y, 2.2

m.z 0. respectively, then

a _>_CX.

1 _>_...>‘a _>_OIB

= m

>
2 1 —'B

2
< - cus . .
Yi+j+l —-ai+16j+l ’ i,j positive integers

25925; See e.g;-Exercise 28 on p. 89 of [23] . An immediate consequence of Lemma 6.6 is that
Theoreﬁ 6.1 holds in the case when scheme II ié used even if the'matrices C or kh .arg not -
scaled by the scaling described just béfqre Lemma 6.5. '

Lemma 6.7. If D = A+B, where A and VB are as in Lemma 6.6, apd 51vz_6211. ..5%6.>0 are

the singular values of D , then

8 + B,

j+1 ' ‘1,] . posltlve 1nt§gers;v

<
iti+l = % _
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Proof: See e.g. Exercise 30 on p. 89 of {23}.

Theorem 6.2 Let d; and 4d be the spectral bounds of B

2 Then given € > 0, there exists

he

a positive integer N independent of h such that all except N singular values of C lie in
- +c7.

[dl €.d, €]

Proof: An immediate consequence of Lemma 6.7 and Theorem 6.1. See also Theorem 5.3 in [32]. 1In

the following, H H shall denote either the spectral norm of a matrix or the Euclidean normof a vector.

i .
Lemma 6.8 Let U Dbe the extension operator from Qh v o ot .all mesh points that is defined

h

. : *
the same way as U . Suppose that U T G VU # 0 for any nonzero m-vector Y defined on BQh.

*
Then C is nonsingular. Moreover, if || U G vull > Cl” ull 7/Ila ||  for any m-vector u
. b S
-1 . ) Co :
then || ™| E'K(Ali)/cl' where K_(All) is the spectral condition number of A with respect to
the norm H ”
Proof: Let Au=v = UUTV ‘with UTV in the range of C be the eduation we are solving.

From Section 3, we see that u = GVU is a solution of Au = v if u satisfies Equation (3.6).

Suppose C 1is singular so that there exist two distince solutions p and u2 of Equation (3.6).

1
. ’ *T
Let Mo = My Hy - Then AGVu0 = 0. Because of the reducible structure of A , Allu Gvu0 = 0.
. * . .
This contradicts the assumptions that A11 is nonsingular and U GVll0 # 0. Moreover, if

*T
o™l > el ull Zll agll . tnen
-1 T *T
FaZ i o™l > lo™Tewll > e llull Zllag
The lemma easily follows.
Definition. A scheme of interpclating boundary conditions is said to be admissible if its cor-

responding coefficient matrix A of the discrete problem is nonsingular and K(All) <

11
2

constant h <.
* * Y : . .
Lemma 6.9 Let C and A denote respectively the capacitance matrix and the coefficient
matrix of the discrete problem for a certain scheme of interpolating boundary conditions. Suppose
* * . . 1) .
that both C and A are nonsingular. Then C is nonsingular for any admissible scheme of

- k3
interpolating boundary conditions. Moreover, if H c*'ll! f_cz and !lA ” ﬁ_c3” Allu v

-1
then || ¢ | Seye k@)
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* %
Proof: Te first cliaim that if both C and A ~a&are nonsingular, then there exists no U # 0

* . *
such that U TGVp = 0 . Suppose this is not so, then there exists a u # 0 such that
* B * »

T T * * % T . . . *p ok
Uu'v where C Ul =Uwv . Since C is nonsingular, - U v # 0. But

*
)

* *
GVML = 0. Let v

U*TV* = U*TAGVU* = A*U*TGVU* =0 .7 -
This proves our claim. By Lemma 6.8, C is nonsingulaf. Suppose now that || C*—lll < <, and ’
I A*“'_i 03” A11” . Let Au=v = UU'v. Clearly, | :

Bl < 0™ ool < ™M A"l Il o™ ol -
Hence, '

o™ ool > 1 ull e,e,ll 2y, I

The lemma easily follows from Lemma 6.8.
Definition £ is said to be in ¥ (B) if the associated integral operator K defined by

Bquations (2.2)~(2.3) is such that K + K® > -BI.

Lemma 6;10. All elliéses with thickness b/a > 1/3 are.iﬁ F1). .Here a and b are re-
spectively thé major and minér axes of the ellipées.

Proof: An immediate consequence of (2.55.

Theorem 6.3 Let G = Bgl be the disérete Green's fuﬁction used in equations (3.2) and (3.5).
Then tﬁe capacitance matrix‘ c i§ nonsingular and H C—lH :;éonstant h"? for some pogitive
integer g independent of h . ‘

N * * . . :
Proof: It suffices to find a pair <C ,A > that satisfies the hypothesis of lemma 6.9. Assume

that the difference equations are already preordered in such a way so that

Bip By O ,
B = By Baa By ‘
° By, By

where the first, second and last rows of B in block form correspond to the coefficient matrices
of the difference eguations on Qh,BQh and (CQ)h respectively.
Suppose that in forming A we use a zero order interpolation of Dirichlet data on 3Q

at agh to obtain the equations on DQ}. Partition v,A and G inthesamewayasli We obtain
. y . we:

0 B, B, O , -t
(6.3) ' v=1{ v, and a=1{ o I -0 o
v, 0 . By, By /- o

so that the capacitance matrix which we now denote by CD satisfies
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(6.4) . CD_ = 622 V2- + G23 V3 -
Let
Bll B12 0 Vg Vg
T T _
AN = 0 V2 V3 ¥ AlN = .
B B
0 B B 32 33
32 33

It is easily seen that A is the coefficient matrix of a discrete exterior Neumann problem,

1IN

with the normal derivative approximated by the first order scheme described on p. 203 of [13].

Hence AN is nonsingular since both Bll and AlN are nonsingular and AN is reducible.
Clearly,
(6.5) A =B+ U -w's .

Let Yy be the solution of

(6.6) ‘ ANuN = fN ’

where fN is any mesh function that vanishes outside BQh. Suppose we make the Ansatz that

6.7 =
( ) uy B Up
where p satisfies
’ b -1 T
.8 = .
(6.8) u AN B Up U fN
By (6.5), (6.7) and (6.8), it is easily seen that (6.6) is satisfied. Let C = ot A, sty 1t

is clear that CN is nonsingular. By (6.4) and (6.5), we have
T
C =
8~ P _
so that CD is nonsingular. Moreover, using an argument similar to the proof of lemma 6.8, we
have
-1 -1 -q
o) = <
Tt = Nieghlh < n
for some positive integer g independent of h . The Theorem easily follows.
Theorem 6.4 Let Q ¢ F(l). Assume that the G in equation (3.5) is the discrete Green's func-
tion of the entire plane. Then H C—l“ < constant h_2 as 'h + 0 for any admissible scheme

. . s -1 : .
of interpolating boundary conditions. Moreover, H c “ < constant as h > 0 if either scheme

I.a or scheme I.b is used or if scheme II is used and ¢ F(0.4).

Proof: . Let § ¢ F(1). Assume that either scheme I.a or scheme I.b is used for interpolating

the boundary conditions. By (5.1), Bh + B: > I. . By assumption, there exists an € >0 such

that K + KT > -1+ €. By lemmas 5.1 and 6.3-6.5, we see that for sufficiently small h ,
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Kh + K: > -I + €/2. Hence, C + CT 3_5/2 and _[!C

can be shown that

||c-l|| < constant - h—l2

Il e

-1 < constant as h + 0 . Similarly, it

_lll < constant if scheme II is used and f ¢ F(0,4). By lemma 6.9,

for any admissiblé scheme of interpolating boundary conditions.
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§7. Converdgence of conjugate gradient iteration.

Let b denote the right hand side of the capacitance matrix equation multiplied by CT.
Leﬁ Q dgnote CTC. We are concerned with solving Qp = b by the conjugate gradient method.
Detailed exposition of the method can be found e.qg. in [11], [16], [17], (18] and [26]). A brief
Aescription of the method plus a simple extension of the known results in the ébobe references
can be found in Section 6 of [32]. It will be assumedvthat the readers are familiar with the
results in [321.

Let ok denote the vectors approximating the solution (@ generated by the ;onjugate
gradient process. Let R denote the set of real numbers and Lm denote the set of ‘m vectors.
Let 2 = R2 - R and E.: Lm + R be defiﬁed respectively by ‘

2(a,p) = {@ - A/ + VA1,
E(n) = (1/2) (o - »Talp, - 0) .
It is shown in [32] that the following holds.

Theorem 7.1 Let K and Kl be the spectral condition numbers of Q and BT respectively.

hBh

* . : . )
Let 4 and d' denote the smallest and largest eigenvalues of BT resepctively. Then given

h®h
€ > 0, there exists a positive integer independent of k and h such that
E(p)/E(Py) < min{4z(k,2K), 4Z(Kl-2€/d',2k—2N))(()\)} .
Here X(X) = max HIl—A/A.I, i=1,...,N, where A,, i =1,...,N are the N eigenvalues of
ar<i<d’ . .
O that lie outside of [d -€,d'+€] .
Corollary 7.1 ‘Let @ = Bgl be used in equation (3.5). The number of iterations
needed .to reduce E(Dk)/E(pO) to a given accuracy can grow no faster than constant+log m as
h ~0 .

Proof. By Theorem 6.3, |X(X)| < h_kN, where k is a constant independent of h. The corollary

is therefore an easy. consequence of Theorem 7.1.

- * -
© Corollary 7.2 Let §2 € ¥ (B), B =1 Aif either scheme I.a or I.b is used; B = 0.4 if sheme

I1 is used. Then the number of iterations needed to reduce E(pk)/E(po) to a given accuracy

stays constant as h >0 if the G in (3.5) is the discrete Green's function on the entire plane.

Proof. By Theorem 5.1 and Theorem 6.4, C is uniformly well conditioned in the

spectral norm. The corollary is therefore an immediate consequence of Theorem 7.1.
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§8 Survey of previous work on cavacitance matrix methods.

R. W. Hockney in [20] and [21] described a méthod éf this type_which can be gsed for the
solution of the interior Dirichlet problem for Laplace's.equéticn. His capacitance matriées are
always positive definite symmetric. His method thus corresponds to a single layer Ansatﬁ for
éhe Dirichlet problem. Buzbee, Dorr, George and golub used'a simi}ar method in [8]. They made
the Ansatz ' ’ . ' ‘ - I

u=8tv+stuw, |
when B is nonsingular. Here W is a mXm nonsinguiar metrix. The choice W = 1I gives the
Woodbury formula.
Proskurowski and Widlund introduced the double layer Ansatz in [29]. The algorithm used

. in their work differs from the one uged here only in the discrete Green's function G and the

WT matrix. No theoretical anélysis was presented in [2§]. In [Zj] the author analyzed the
method for the Neumann problem. The algorithm used in'[32]_is similar to the one usgd by

George in [15] which corresponds to solving the single layer Ansatz of the Dirichlet problgm

in an iterative imbedding fashion.

[

2
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§9 Numerical experiments

The results in this section were obtained on the CDC 7600 at Lawrence Berkelev Laboratory
The model problem is the Laplace equation on ellipses with y = (a-b)/(a+b), where a,b are the

half axes. E(u)

il

'lu-u*{h ‘where u is the true solution of -fu =0 onf , u=1 on &
The mesh size h = 1/32. The number of iterations of the conjugate gradient method is denoted

by n N(R) denotes the normalized norm of the residualsbwhich is the L2 norm of the residual
divided by the square root of points.in f. The numbers given for E{u) are acturally upper
bounds that describe the number of accurate digits only. The capacitance matrix is generated

explicitiy and the discrete Green's function on the plane is used in (3.5).

TABLE I
Scheme I.a Scheme I.b Scheme II
n ¥ NGR)  E(w) N(R)  E(w N(R) E (u)
4 0.2 - — —_ . 3.9-04  1.0-03
. 5 0,2 — e —_—, e | 2.1-04 -1.0-03
4 1 l 1.5-04 1.0-03 8.7-03 1.0-02 3.5-04 1.0-03
5 1 1.0-04 1.0-03 4.2-03 '1.0_02 1.6-04 1.0-03

In Table I we see that typically it takes four iterations to achieve three digits accuracy.
The operation count of the conjugate gradient routine is thérefore approximately 64n . The total
operation count (not counting that of setting up the matrix c) is therefore approximately

Snzlogn + 80n2 for the Laplace's equation and 10nzlog n + 120n2 for the Poisson equation.
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