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FAST POISSON SOLVERS ON GENEMI:. TWO DlMENSIONAt REGIONS 

.FOR THE DIRICHLET PROBLEM 

A. S. L. Shieh 

.. December 1977 

ABSTRACT 

It is shown that by using the simplest construction of discrete 

dipoles, the operation count for solving the Dirichlet problem of Poisson's 

equation by the capacitance matrix method does not exceed constant times 

2 
n log n, n = 1/h for certain first and. second order schemes of interpolating 

boundary conditions . 

. · 
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SIGNIFICANCE AND EXPLANATION 

The Dirichlet problem for the Poisson equation is the following: Given .. a 

function f and a function g , find a function u such that 

U + U = f On )l 1 
XX yy 

u = g on d n. 

Here n is a simply connected domain with boundary Cl n . 

The problem has wide applications in electrostatics, elasticity, temper-

ature distributions and plasma physics. Its solution by finite difference or 

finite elements methods have received considerable attention. It is 

known that if n is a rectangle, then fast Fourier transform methods are ve!y 

efficient in solving the linear system of equations arising from finite differ-

ence or finite element discretizations. 

There seems to be no such short cut to the solution of these equations 

when n .is a general region. In many conventional methods, the operation 

count is usually proportional to N312 (N is the number of mesh points in 

n ) while at least N computer storage is required. These methods are 

therefore undesirable when N is very large. In this paper we describe an 

algorithm and prove mathematically that the operation count of this algorithm 

can be proportional to N log N. While some versions of our algorithm also 

require at least N computer storage, there is one version that requires less 

than N/3 computer storage. 

The responsibility for the wording and views expressed in this descriptive 
summary lies with MRC, and not with the author of this report. 
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FAST POISSON SOLVERS ON GENERAL TWO DIMENSIONAL REGIONS 

FOR THE DIRICHLET PROBLEM 

A. S. L. Shieh 

§1. Introduction 

Over the past ten years, very fast numerical methods have been developed to solve 

Poisson's or Helmholtz's equation on certain simple regions with Dirichlet, Neumann or 

periodic boundary conditions. See e.g. [2], [3], [8], [9], [12], [19] and [21]. These 

methods can only be used for regions and boundary conditions that allow for separation of 

the variables. Typical examples are Poisson's or Helmholtz's equations in cartesian co-

ordinates on rectangular regions with boundary conditions that do not change type along any 

of the sides of the rectangle. In these special cases, the operation count for solving the 

discrete problem is almost proportional to the number of mesh points. 

The purpose of this paper is to establish similar results for the Poisson equation 

on general regions. In this work we are only concerned with finite difference schemes 

of first and second order accuracy for the Dirichlet problem on simply connected bounded 

domains with smooth boundaries. A formal discrete potential theory motivated by the clas-

sical potential theory is incorporated into the so-called capacitance matrix method. It is 

shown that by using the simplest construction of discrete dipoles in our Ansatz, it is 

possible to have an algorithm the operation count of which is proportional to 2 N log N, 

where h = 1/n is the mesh size. Some numerical results .are given in section 9 and a 

brief survey of past work in this direction is given in section 8 . 

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the Energy 
Research and Development Administration. 



§2. Certain results from classical potential theory. 

We give only a very brief revj2w of a few results of classical potential theory. For a 

detailed exposition see e.g. [10: 1 [14] 1 [25] and [28] .- We define the potential V resulting 

from a charge distribution p on a smooth boundary curve an by 

Here X = The Green's func.tion 

(l/21T) log 1T which we shall denote by G* satisfies 

6(1/21T) log r O(x) 

where O(x) is the delta function. Similarly the potential W of a dipole density ~on 

an defined by 

(2.1) 

We adopt here the convention that the normal direction of an is towards the exterior of 

the region n in which we want to solve our problem. 

The interior Dirichlet problem can be reduced to a Fredholm integral equation of the 

second kind if we make the doUble layer Ansatz as follows. Let 

u(x) = -(l/21T) JJ f(~) lOgr d~ + 
n 

for the solution of 

-6u f 1 x E n 
(2.2) 

u = gl x € an 

(1/nl f ~ <~> aG•;a\)1; ds <~> 
an 

us (x) + W (x) I 

It can be shown that the dipole density ~ satisfy the following integral equation 

(2. 3) ~ + (1/nl f JJ '<ac;*;anr:- > ds = g - u I 
an <, san 

'\. 
g . 

This is a well posed problem of the form 

'\. 
(2.4) (I+ K)~=g I 

where K is a compact operator defined by the integral above. 

If we instead attempt to use a single layer Ansatz for the Dirichlet problem we obtain a 

Fredholm integral equation of the first kind. It has the form 

which is an ill posed problem. 

To illustrate the distribution of the eigenvalues of the compact operator K 

in equation (2. 4) 1 we study the case when Sl is an ellipse with 

-2-
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y ., (a-b)/(a+b) where a and b are the half axes of the ellipse. It is known (see e.g. 

p. 135 of ~5]) that 

( 2. 5) 

T 
K "' K and 

A. (K+KT) 
l. 

i-1 
2y i-=1,2, .... 

On the other hand, both t;he interior and exterior Neumann problems can also be reduced to 

Fredholm integral equations of the second kind if we make the single layer Ansatz. The 

charge densH:y p for the exterior Neumann problem satisfies 

* g 

* for some suitably chosen function g defined on Cl n. The existence and uniqueness problems 

for the solution of equation (2.3) can therefore be determined from that of equation (2.4) 

* and vice versa. Finally, we remark that the G in equations (2.1) and (2.3) can be re-

placed by the Green's function on a sufficiently large rectangle with zero Dirichlet bound-

ary .conditions. 

-3-



§3. The capacitance matr~ met~~~ 

In this section we develop a similar, formal potential theory for the discrete 

problems arising from the original Dirichlet .problem (2. 2). See also Sections 3 and 4 of [29] 

for a similar discussion. We shall assume that uniform mesh sizes in both coordinate directions 

are used. 

We replace the Laplace operator by the five-point formula. The fundamental .solu-

tion (l/2TI) log(l/r), used in Section 2, will be replaced by its discrete analogue, the dis-

crete Green's function on the entire plane, which we shall denote by G. Properties and 

efficient methods of generating G and its undivided differences will be studied in Section 4. 

An efficient method of computing Gv for arbitrary N x N vectors v is also given 

in Section 4. We will denote by B the matrix representing the five-point discrete Laplacian 

2 
h ~h' using undivided differences, on the entire· plane. We then divide the set of mesh points 

into three disjoint sets Qh,anh and (CQ)h. The set anh contains all the irregular mesh 

points in n, i.e. mesh points that do not have all four neighbours within the open set n . 

Qh is the set of regular mesh points inside Q and (CQ)h contains the remaining, the exte-

rior mesh points. 

We then set up the matrix equation 

(3.1) Au = v 

that we are solving as follows. We use the same discretization formula for both A and B 

on Qh U (CQ)h. For points in 3~, a linear combination of the discrete Laplacian and inter-

polation formulas of first or second order accuracy for the boundary conditions are used. The 

values of the solution at the exterior mesh points are always eliminated from the discrete 

Laplacian, centered at an irregular mesh point. This guarantees that A is a reducible matrix 

with no couplings to the exterior mesh points from the irregular mesh points. If P is a 

suitably chosen permutation matrix, then 

where is the coefficient matrix for our discrete problem bn It is easily 

seen that the solution on. nh U 8\lh v1ill not be influenced by either the solution or the 

data on (cQ)h . 

-4-
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The matrix A differs from B by only ni rows where m is the cardinal number of 

3Qh. We can therefore write 

A = B + U WT 

where the matrices U and w have m columhs. The matrix U represents an extension 

operator. It maps any mesh function defined only on on ' into a function on all mesh points. 
h 

Its transpose, UT, is a trace operator mapping any mesh function defined for all mesh points 

into its restriction to 3Qh. We easily verify that 

WT = UT (A-B) • 

We now describe our method for solving the discrete problem (3.1). Guided by the contin-

uous analog we make the Ansatz, 

(3.2) u=Gv+GV]J. 

The vector Gv satisfies BGv = v. The m-vector ]J is determined by solving a system of 

mXm linear equations derived below. The mesh function VJJ should vanish on nh. Each 

column of the matrix V represents a discrete dipole of unit strength. Let such a column 

corresponding to P E onh be regarded as a mesh function, denoted by VT(P). We require that 

(1/ha)VT (P) u = [Cluj<lv] (P) + O(h). Here ha = h/cosa where a is the angle between the normal 

through the irregular mesh point P and the closest coqrdinate axis. In particular, if 

that the western and northwestern neighbours of P in (CQ) h, then 

(3. 3) u(P) - (1- tan a) u(w)- (tan a)u(NW}. 

We now use our Ansatz and compute the residual vector, 

(3.4) Au-v (B + UWT) (GF + GV]J) - Fv 

+ 
T 

UW GFv. 

From the properties of u and v, it follows that the residuals are zero for all. x E nh. · 

T 
To derive a linear system of equations for the vector ll we multiply equation (3.4) by U . 

It is easy to verify that Here 

We thus obtain 

{3.5) 

I 
m 

is the identity matrix. 

This choice of 11 make the residuals zero for all x E anh. Hence substitution of ll in 

equation (3.2) will provide us a solution on nh U ()Qh if equation (3.5) is solvable. Note 

that the residuals will in gene.ral not be equal to zero for all x E (cQ)h • The matrix on 

,.5-



the left-hand side of Equation (3.5) is the capacitance matrix· c. We shall .refer to 

Equation (3.5) as the capacitance r,atrix equation. 

In the special case when T -1 
v = u U v, we can simply make the Ansatz u = B VU. It is 

easily seen that the residual Au-v will again be zero at x E nh. The capacitance matrix 

equation now becomes 

(3.6) T u v 

If Equation (3.6) is solvable, then Au= v w_ill also be zero on anh. The solvability of 

Equations (3.5) and (3.6) ~.-.·ill be discussed in Section 6. 

We now describe our choices of difference equations at the irregular mesh points. We 

approximate the boundary conditions by interpolation schemes of first or second order accuracy, 

which we shall refer to as schemes Ia, Ib and II respectively. 

We start with Scheme II.. Let P E anh and P* be its ciosest point on an. Let 

W,E,N and S be the western, eastern, northern and southern neighbours of P on the mesh 

respectively. We assume that the .local orientation of the boundary is such that either both 

W and N are in (Cn)h or only W is in (cn)h • Assume that both W and N are in (cn)h. 

Let d
1 

denote h
1
/h where h

1 
is the distance, along a mesh line parallel with the x1-axis, 

between the meSh point P and th~ boundary an. Hence dl E (0,1]. The Dirichlet data at 

this point on is denoted by u . w The values of and are similarly defined. We 

then approximate llw and ~ by (l/2)[(l+d
1

)u(W) + (l-d
1

)u(E)] and (1/2) [l+d2lu(N)_ + 

(l-d
2

)u(S)) respectively. By combining the above with the five-point formula for the Laplacian 

and eliminating u(W) and u(N) between them, we obtain 

(3.6) 4u(P) - [2d
1
/(l+d

1
)]u(E) - [2 d

2
/(l+d2)] u(S) 

= h
2
f(P) + [2/(l+dl)]UW + [2/(l+d2 )]UN 

If only W is in (Crl)h, then we obtain 

(3.7) 4u(P) - [2 d
1
/(l+d

1
)]u(E} - u(N) - u(S) 

2 
h f(P) + [2/(l+d1 lluw. 

We now describe the two variants of Scheme I, namely Scheme Ia and Ib. In Scheme Ib, 

if both w 

(3.8) 

and N are in (Cn} h, we obtain 

4u(P) - u(S). - u(E) ~2tCP) + uW + u 
N 

-6-
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If only W is in (C$~)h, we obtain 

(3.9) 
2 

2[4u(P)- u(S) - u(E)- u(N)) = 2 (h f(P) + uwl . 

The scaling factor 2 is largely artifical and is put in only for the convEnience of 

theon>tical i~stimates in Sections 5 and 6·. In Scheme Ia, we seek to eliminate this scaling 

factor while retaining the theoretical convenience, We require that Equation (3.8) should be 

used regardless of whether both W and N are in (Cnlh or only w is in (cn)h. The 

matrices A
11 

.for all the above three schemes are of positive type. Hence, the results in 

[4] or [13] apply and all these schemes are convergent. 

There is an important alternative to the above approach. Instead of the discrete Green's 

function of the entire plane, we may use the discrete analog of the Green's function on a 

sufficiently large square S with zero boundary conditions as our G in equations (3.2) and 

(3.5). In this case G B-l. A= B + UWT. Here B
0 

denotes the matrix representing the 
D ' D 

discrete Laplacian on s and zero boundary values on the grid points of aS. The 

residual Au-v will again be zero on nh U anh 
' T -1 

if C = U A B
0 

V is nonsingular. 

Finally we come to the central question as to whether the capacitance matrix equation 

(3.5) is closely related to the Fredholm integral equation (2.2)? It is known (see e.g. [1~) 

that the conjugate gradient ~ethod converges superlinearly for Fredholm integral equations of 

the second kind. In our experiments we normally fail to observe superlinear convergence. To 

understand this fully, we split up the matrices C into two parts as follows. 

C = Bh + Kh • 

The matrices Bk are defined by 

(3.10) 
Bh (P,Q) - C(P,Q), if d(P,Q) _2 Jh 

- 0 otherwise 

They are therefore the near diagonal parts of C and the matrices Kh are the remaining 

parts, the off diagonal parts of C . 

It wiil be shown in Section 6 that for Schemes La and Ib, and, after a suitable scaling, 

for sc:hemes II, the matrices Kh are closely related to the compact integral operator K in 

Equations (2.2) or (2.3). The matrices Bh, however, will not in general be formal approxi-

( 
mations to the identy operator. In fact, the algebraic row swns of Bh need not always he 

equal to one. 

-7-



it is, however, shown in [16] that for operator equations with symmetric positive defi-

nite operators of the form B + K with B symmetric positive definite and K symmetric 

compact, the conjugate gradient method will converge iinearly with asymptotic rate of con-

vergence governed only by the spectral condition number of B . We therefore proceed to 

study the special condition numbers of· Bh in Section 5 and the distribution of singular 

values of and 'C in Section 6. We shall show in Section 1 that the asymptotic con-

vergence of the conjugate gradient method for.solving the capacitance matrix equations will 

depend essentially on the spectral condition number of Bh. 

We now.discuss briefly two different methods of implementing our algorithm and the 

operation count involved. We use the conjugate gradient method to solve 

CTC11 = CTb, 

where b denotes the right hand side of the capacitance matrix equation. The solution u 

is then computed from (3.2). In the first method, we generate the capacitance matrix 

explicitly. Assume that the G in equations (3.2) and (3.5) is the discrete Green's func-

tion on.the entire plane. Because of translational invariance it is only necessary to com-

pute G with the second parameter fixed at the origin. It is shown in section 4 that only 

one call of fast Poisson solved on a sufficiently large rectangle is needed to generate G 

and only two calls of a similar solver is needed to compute the final solution and the right 

hand side b The operation count of the algorithm is therefore constant N2 log N 

2 
+ 2 c0m + O(m), where c

0 
is the number of iterations needed to achieve a certain accuracy. 

If the G in equation (3.5) is B~1 , it is desirable to use the second method wher~ 

the solution 11 is computed by an iterative implicit method first appearing in [15]. The 

operation count for computing 11 is proportional to c
0

(m+rn
1

)N , where m
1 

is the number of 

nonzero entries in the matrix V provided that a special fast solver is used in the process. 

See section 4 of [31] for details. It will be shown in section 7 that cannot exceed 

constant log m is used in (3.5) for all domains with sufficiently smoothbound-

aries and that is uniformly bounded in some special cases if the discrete Green's func-

tion on the entire plane is used in (3.5). The total operation count of our algorithm there­

fore does not exceed constant N
2 

log N • 

-8-, 
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§4. Properties and fast generation of G , the discrete Green's function on the entire plane, 

and the efficient computations of Gv, GV~ and WTGv. 

A discrete fundamental solution of the five-point Lapiacian llh with respect to the 

origin is a mesh function y that satisfies 

(4.1) 

where l1 

( 

h-02 
~ Y(lJh) = 

has integer components and 

if lJ = 0 I 

if l1 "I 0 , 

Clearly y is unique up to an arbitrary linear function. · The constants involved will be 

chosen so that we have a proper discrete analog of the logarithmic potential. .The resulting 

discrete fundamental solution will then be our discrete Green's function G. 

It is established in [27] that if g(r 1 s) denotes 

(4.2) (2/7T) j7T[l-cos(sA) exp(-lrllll]/sinhll dA 
0 .. 

where 

(4.3) cosA + cosh l1 = 2 

(4.4) lJ/A -+ 1 as lJ -+ 0, 

then the function G defined by 

(4.5) G(rk 1 sh) = (1/4) g(r,s) + (l/27T)log h - (l/47T) (log 8 + 2y
1

J 

is the desired Green's function of the entire plane. Here is the Euler's constant; 

and s integers and h is the mesh size. 

It is shown in [27] that 

(4.6) g(O,O) 

(4. 7) g(r,s) 

(4.8) g(r,r) 

(4.9) g(r,s) 

(4.10) g(r,s) 

0, g(O,l) = 1 

g(s,r) = g(-s 1 r) = g(s~-rll 

(4/71) [1 + 1/3 + •.• + 1/ (2r-l)] 

2 2 (1/?r)log(s +r ) + (l/7T) (log 8 + 2y
1

J + o(l/r) 1 

2 2 2 2 - g(r,t) = (l/7T)log[(r +s )/(t +r )] + o(l/r). 

r 

We have found it necessary to obtain sharper estimates for the remainder term in (4.10) 

when t = s+l and a similar estimate for g(r+l 1 s) - g(r 1 s). 

Theorem 4.1. Let r,s and t be nonnegative integers with r ~ 8; s t-1. Then 

(4.1la) . 2 2 2 2 
G(rh,sh) - G(rh,th) = (l/47T)log[ (s +r )/(t +r ) ] + R

1 
(r,s) + R

2 
(r 1 s) + R3 (r,s), 

where 

-9-



(4.llb) 

(4.llc) 

(4.lld) 

Proof. 

Ri (r,s) 

R
2

(r,s) 

IR
3 

(r,s) I 
We have 

(1/247!) r <\ 2
-rA 3)sin[(s + l/2)A) 

0 

(7T,'2)Jg(r,sl-g(r,t)) [
71

fcos(tA) - cos(sA))e-r~[sinh~]-l dA , 
0 

and it is known that 

0 
Since 

(4.12) 
7T 

j -rA -1 
[cos(tA) - cos(sA))e A dA 2 2 2 2 

(l/2)log[(s +r )/(t +r )). 

-1 -rn (2j1r)r e , 

it suffices to estimate 

rrcos(sA)- cos(tA)][e-rAA-l- e-r]J(sinhl.l)-l]dA. 
0 

The integrand in the above expression will be denoted by J. Let c (1.5)r-113 , r > 8. We 

have 

(4.13) I E -rA -1 
[cos(sA)-cosltA)]e [2 sin(A/2)] F(A)dA, 

0 
where 

(4.14) F(A) 

By (4.3) and (4.4), we have 

(4.15) sinhp = 2[sin(A/2)][l+sin2 (A/2)] 11 2 , 

(4.16) e-~ = 2- cosA -2[sin(A/2)] [1 + sin
2

(A/2)]
1

/
2 

It is easily verified that for 0 ~ A ~ £, 

(4.17) 
(A-l.l) 3 5 6 7 e = 1 + (1/12) (A +A ) + (l/288)A + c

1 
(A) A , 

with lc1 (A) I ~ 0.035, 0 ~.A ~1. Hence, 

e(A-]J)r = 1 .+ (1/12) (rA 3 + rA5 ) + (l/288Jr2A6 + c
2

(r,A) . 

Here lc
2

(r,A) I < (0.04)rA
7 

+ (O.Ol)r
2

A
8 

+ (0.001)r
3

A
9 

• Therefore, 

F(A) = (1/12) [A
2
-rA

3
- (7/8)rA

5
]- (1/30)A

4
- (1/288Jr

2
A

6 
+ c

3
Cr,A). 

Here !c
3 

(r,A) I < 
6 7 2 8 3 9 

(O.Ol)A + (0.05l)rA + (0.0104)r) + (0.001)r A . 

Hence, 

(4.18) 

where(4.19) 

(4 .19) lz
1 

(r,s) I < foo -rA 
e c

3 
(r,AldA 

0 
< 1047 r-7 

-10-



i 

i 

,. 

0 0 

(4.20) 

It remains to estimate 

Clearly, 

(4.21) ' r JdA' 
£ 

It can be shown that e 

< (1)6lr-l e-l.Sr2/3. 

rrJ d>. 
F 

< r (e 
-rf. + e-rlJ)df. 

E 
-]J us a decreasing function of 

! 33 I. It is also shown there that 

(4 .22) e-r\ e 
-0.76 

A 0.8 

< -0.91 
A 1 e 

< -1.07 
A 1.2 e 

< -1.31 A 11/2. e 

By (4.17), 

>. for 

e-]J e-\1 + c*(>.)>.), lc*(>.JI < 0.1, o <A< 0.8, 

so that 

Hence, 

and 

(4.23) 

e-r]J < e-0.9Ar o < A < 0.8. 

f11 e-r]J d).< (0.32)e-0.76r ' 
0.8 

£ 

-1 -11r 
- r e 

By combining (4.12), (4.19), (4.20) and (4.22), we see that 
2/3 

(4.24) 211 jR
3

(r,sll < 2.3 r-le-1. 3Sr + 1047 r-7 

' 

0 < A< 11. 

The theorem then follows from (4.5), (4.13) ,· (4.18)-(4.21) and (4.23-(4.24). 

Theorem 4.2. 

See e.g. p. 33 of 

(4.25a) 

Let r,s and t be nonnegative integers with r ~ 8; t = r+l. Then 

2 2 2 2 G(rh,sh) - G(th,sh) = (l/411)log[(r +s )/(t +s )) + s
1 

(r,s) + s
2

(r,s) + s
3

(r,s), 

where 

(4.2Sb) sl (r,s) 

(4.25c) s
2

(r,s) 

(4.25d) 

~(1/2411) [>. 2-r>.3+A2e->.12Je-(r+l/2)Acos s>.(s>.) 
0 

0 
• e-(r+l/2)>. cos s>.(s!.) 

-6 -7 . -1 -1.3Sr213 
(1.9)r + (206)r + (O.S)r e 

-ll-



Proof. We have 

(11/2) [g(r,s)-g(t,s)] In -tA -rA -1 , 
[e -e ]A cos(SA)dA + 

0 

where 

It is known that 

(4.26) I"". -tA -rA .. -1 
[e -e ]A cos(sA)dA 

' 2 2 2 2 
(l/2llog[ (r +s )/ (t +s )] . 

0 
Clearly, 

(4.27) < 
· -1 -r'TT 

(1/TI)r e ~ 

'TT 

It therefore suffices to estimate Let 

(4.28) 

where 

(4. 29) 
* ·. -rA -1 -r11 -1 -11 

J
1 

_ cos (sA) [e A -e (sinh11l ] (1-e ) , 

(4.30) J~ _ cos(sA) [e-11-e-A]e-rAA-l 

Let £'= (l.S)r-l/3 . By (4.16), 

-sin(A/2) + [1 + sin
2

(A/2)]
1

/
2 ~ 1. 

But 

where 

o < A < t: 

Hence, by (4.14) 

(4. 31) 
£ I 

f
0 

cos(sA)e-(r+l/2 )A F(A) + E
1 

(r,s) 

where 

(4.32) I I foo 3 -r -6 -8 5 -10 
E

1 
(r,s) < 

0 
(l/12)A F(A)e dA < (5.84)r + 364r + 10 r • 

By (4.17), 

(4.33) I
£ 2 4 . 5 , , 6 , -tA , 

[ (1/12) (A +A ) + (1/288) A + c
1 

(A) A ] cos (sA) e dA, 
0 

with lc
1 

(A) I < 0.035. It is easily seen (see also p. 38 of [30]) that 

(4. 34) 
£ 

The theorem easily follows from (4.19), (4.20) and (4.26-(4.34). 
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Theorems 4.1 and 4.2 provide accurate estimates for distant values of the undivided 

differences of G • One can use these estimates as Dirichlet ~on~itions for a fast Poisson 

solver to generate all the values that are needed to set up thE. capacitance matrix C One 

ca~ also use integer arithmetic as in [27] to construct a table of values of G for r,s 2 7. 

See e.g. Table II on p • .292 of [27] or Table I on p. 41 of [30]. By using the above tables 

and Theorems 4.1 and 4.2, we obtain the following. 

Theorem 4.3. Let r and t = s+l be positive integers. Then 

(4. 35) . 2 2 2 2 
G(sh,rh) - G(th,sh) = Cl/47T)log[(s +r )/(t +r )] + R(a,r) 

where 

(4.36) IR<s,r>l < (0.34) min { -3 -3} s ,r . 

Moreover, 

7 7 7 
(4.37) max{ r max IRCs,r) I, L max IR(s,r) I, I max IR(s;r) I} < 0.01. 

r=2 s<r s=2 r<s s=r r<s 

We next investigate the monotone behavior of the undivided differences of G in certain 

directions. Let 

Gx(i,j) 

G (i,j) 
y 

G( (i+l)h,jh) 

G(ih, (j+l)h) 

By the five-point formula and symmetry, 

(4.38) G (i~l,j) 
XX 

G (i,j-1) 
yy 

(4. 39) 2Gx(O,j) -G (O,j-1) yy 

Theorem 4.4 Let r and s be nonnegative 

G(ih,jh) 

G(ih,jh) 

i~O or j~O; 

j~O 

integers. Then Gx(s,r), G (s,r), -G (s,r) 
y xy 

and G (l,r) - G (O,r) 
yy yy are always positive; and is always nonnegative for 

r > s. 

·Proof. Except for the result on Gxx (s-1 ,r), the proof for all the other results are similar. We 

first estimate the values of the expression for s = 0, r > 8 using Theorem 4.1 or 4.2. By 

symmetry, the results hold for s ~ 8, r = 0 as well. We then verify with the aid of Table II 

on p. 292 of [271 that the same results hold for s = 0, r < 9 and s ~ 8, r = 0. Since the 

five point formula is satisfied at all points rh and sh with r>O and s > 0, an application 

of discrete maximum principle immediately yields the desired result. 

The proof for G (s-l,r) 
XX 

is as follows. By symmetry and (4.38), we note that 

G (s,r) 
XX 

0 for s = r . 
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By symmetry, 

G (s-l,r) = 2G (O,r) for s = 0 • 
XX X 

Ah application of the discrete maYimum'principle therefore completes the ·proof of the theorem. 

This concludes our discvasion for undivided differences of. G We now proceed to 

obtain better estimates for the remainder terms in (4.8) and (4.9). 

The following theorem is an immediate consequence of (4.S) and some well known result of 

asymptotic series. See also p. 325 of [ 5 ) • 

Theorem 4.5 Let r be any positive integer. Then 

(4.40) 2 2 -2 7 G(rh,rh) = (l/47T)log(2r.h ) + (l/487T)r + R 

where 

(4.41) IR•I < (7/19207T)r-4 • 

Theorem 4.6 Let r > s; r and s are nonnegative integers. Then 

(4 .42) 2 2 i 2 2 -1 2 2 2 2 -3 
G(rh,sh) = (l/41T)log[(s +r )h 1 - (l/247T) (r +s ) + (l/37T)r s (r +s) + L(r,s) 

where 

(4.43) IL(r,s) I < 
4 6 -1.35r2/ 3 

(2.51/7T)r- + (154/7T)r- + (l/7T)log r e 

Proof. As in the proof of Theorem 4 .1, we have 

Here 

Hence, 

(4. 44) 

r J dA 
0 

(1. 5) r -l/3 , 

I E: -rA. -1 [c6s {sA) - cos (tAl) e [2 sin (A/2) 1 F (A) ciA. 
0 

t may be any nonnegative integer. It can be shown that 

~e-ax xncos(bx)dx = rl [(a-ib)n+l + (a+ib)n+l)/2(a2+b2 ln+l • 
0 

t"' -rA 2 J e cos (sA) (1/12) (A-rA ) 
2 2 -1 . 2 2 2 2 -3 

- (1/12) (r +s ) + (2/3) r s (r +s ) 
0 

when r = s • 

We also have 

-2 (1/24) r , 

(4.45) t"' 4 3 2 5 J I -'rA -4 -6 (1/72) J [llrA + (43/10) A + (1/2) r A + 144 L
1 

(r, A) J.e · dA .::_ 5r + 308r . 

Since lsinh~l-1 < A-1 for A.::_ 1, we have 

I rJdAI .::. r A-1 ce""rA + e-r~)dA. 
£ £ 

But 
-~ -0.9A e < e , 0 < A < £~ Herice, 
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0 0.·. ... !'j u 

(4.46) I Jrr .:r dA I < 
. 2/3 2/3 I Jn 

2 (8 -l.Sr + 8 -1.35r ) A-1 dAI 
. . E: 

t: 

< 
-1Sr

213 
-1.3Sr

213 J • 
(2/3)log r [e + e 

By combining (4.40), (4.41), (4.44)-(4.46) and using the technique in the proof of l'heorem 4.1 to 

estimate the remaining remainder terms, we see that Theorem 4.6 holds. 

Theorem 4. 6 also provides a means of generating G (rh, sh) by means of a fast Poisson 

solver on a rectangle using the first three terms on the right hand side of Equation (4.42) as 

approximations for distant values of the Dirichlet data. 

We now describe an efficient method developed in [24] of computing Gv for any vector 

v defined on a square mesh sh => rlh , with boundary mesh ash~ Let and denote the 

extension operators from sh and ash respectively to all mesh points that are defined the 

same way as u . We are actually computing 

T 

We·first solve the system of equations 

USBUS~ - v on S 

~ 0 on S 

for the pot~ntial ~ • We then extend ~ by zero to all mesh points. We represent ~ as 

(4.47) 

where P is an unknown vector defined on the mesh points on as to be determined. It is easy 

to see that 

p = 

The vector can easily be computed by one fast Poisson solver on s with 

as the Dirichlet data on as. Because of the sparsity of the vector U()s ; the Dirichlet data 

can be computed at a cost of constant is then computed from (4.47). 

We now describe a method of computing all three of the vectors Gv, Gvv and WTGv using 

only two calls of fast Poisson solvers. This may appear to be impossible since WTGv, the 

right hand side of the capacitance matrix equation,. must be determined first and the computation 

of Gv alone requires two calls of fast Poisson solvers. We can, however, first compute and 

store the vectors <(J and p in equation (4.47). Clearly, 

T 
W Gv WT~ T 

- W GUasP· 

But we need only to compute GUa 5 P at those mesh points that WTGv is defined. Hence, the 

computation of WTGU P 
as requires only constant 2 

n operations. On the other hand, 

GU).l can be computed simultaneously with one call of fast Poisson solver with 

-15-
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the Dirichlet data on S . Hence our algorithm of computing all three of the vectors WTGv, 

GUll and Gv requires only calls of fast Poisson solvers plus constant times 2 n operations. 

In the methods described so far, a fast solver on 2N x 2N mesh points is needed to 

generate the discrete Green's function or its undivided differences on a N x N mesh Sh 

An alternative inethod is to .first generate the undivided differences of G on a N/2 x N/2 

mesh using a fast solver on N x N mesh points. The. values on the remaining mesh points of 

sh are computed by using (4.11) and (4.25). An accuracy of eight decimal digits is guaranteed 

by Theorems 4.1 and 4.2 if N > 60. A somewhat less accurate but easier to program method is 

to generate the values of G on a N/2 x N/2 mesh and compute the values on the rest of sh 

by using (4.42) and (4.43). An accuracy of five decimal digits is guaranteed by Theorem 4.6 

if N > 60. 

We shall assume in the next two sections that the G used in the capacitance matrix 

equation is the discrete Green's function on the entire plane. The main results in sections 

5 and 6, however, will also hold if is tised in equations (3.2) and (3.5). See 

section 5 of [31) for a discussion in this respect. 
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0 0 

5, Spectral bounds of Bh . 

We shall show in this section that Bh is uniformly well conditioned in the spectral 

norm as h + 0. The following well known lemma is crucial to the proof of our main result. 

Lenuna 5.1. Let the symmetric part of a matrix A satisfy 

(A+AT)/2 > oi, o.> 0 

Then 

ATA > o2I. 

Theorem 5.1. (0.25)' I < BT 
Bh < (7.29)I for scheme I. a 

h 

(0.25) I < T 
Bh Bh < (13.7)! for scheme I.b 

(0.04) I < T 
Bh Bh < (5.57)I for scheme II 

for all sufficiently small h > 0. 

Proof. We shall first prove that the following holds for scheme Ib. 

(5.1) I < 

Let Bs - Bh + B~. 

(5.2) min {B (P,P) 
PE:anh s 

T 
Bh .+ Bh • 

We shall show that 

- L Ia (P,Qlll > 1 s 
QE:anh,Q#P 

so that (5.1) holds because of a well known Gerschgorin theorem. The inequality 

I < 

will then follow from Lemma 5.1. 

Let p E anh Assume that the local orientation of the boundary near p 

for any point P' E anh in that neighbourhood, either W' and N', the western 

is such that 

and northern 

neighbours of P'' are both in ccmh or W' alone is in (c\l)h. Let ap, be the angle 

~ ~/4 that the normal through P' makes with the x
1 

axis in the east-west direction. By (3.5) 

and (3.9), we have, for P ~ Q, 

(5.3) Bh(P,Q) = 2[G(Wp;WQ) - G(Wp;Q)] + 2 tanap[G(Wp;NWQ) - G(Wp;WQ)] 

if P has only one neighbour in (CQ)h. Here XP denotes the immediate neighbour on the mesh 

for any point P. in the Y direction. Similar expressions to (5.3) are easily obtained when 

NP is also in (cQ)h or when P = Q. If P _ (jh,kh), Q = (mh,nh), then because of transla­

tional invariance, G(P;Q) = G (I j-mlh, I k-nl h) 

Assume that 0 < Clp < TI/4 and that (()Qh)loc' which denotes a Subset of ()Qh that 

contains a lh neighbourhood of P , can be partitioned into blocks as follows. Let 
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Then, 

r
0 

{ <o,hl, ••. ~ (O,M
1
hl} 

Ik {(kh,~h+h),.;.,(kh,~+lh)}, k = l, ••. ,Kl I 

Ik {(-kh,-M_(k-l)h; ..• ,(-kh,-M_kh+h)}, k = l, ..• ,K:i. 

Kl 
u rk , P E r

0 K=-K
2 

Note that ~- ~-l gi•1es the number of points in Ik-l' k l, ... ,K1 while M'-k- M-(k-l) 

gives the number of points in I -k , k = 1,_ ••• ,K
2

; M
0 

::: 0. 

Let Pj denote the point with x
2
-coordinate jh. From (5.3) and Theorem 4.3, it is 

easily verified that L I B (P ,Q) I 
QiiP s 

will remain essentially unchanged for sufficiently 

smooth an if tan aQ is replaced throughout by tanap. Let a ::: tanap. Let P ::: P. 
~ 

and 

G(i,j)::: G(ih,jh). We shall assume that P t- P unless otherwise stated. We easily verify 
. ~ 

that for Pj E ! 0 , 

(5.4) Bs(P,P) = 3+a, 

(5. 5) Bs(p,Pjl = -4(l+al Gx(O,Ii-jll, j t- i, j t- ~ I 

(5.6) B (P,PM) = -2(l+a) G (O,M
1
-il + (1-a) G (O,M

1
-i). 

s 1 . x yx 

By (4.39), we see that for P. E r
0 

, . J 

(5.7) L B (P,P.l = -2(l+al [2 G (O,Ol - G (O,M -il - G (O,i-1)] 
i't-j s . J y y 1 y 

+ 2(l+a) Gx(O,M
1
-i) + (1-a) Gyx(O,M1...,i). 

For Pj E Ik, k = l, •.. ,K1 , we have 

(5.8) 

(5. 9) 

(5 .10) 

By Theore111 

(5.11) 

Similarly, 

(5.12) 

B(P,P.) 
s J 

B (P,P.) 
s J 

2(l+a) GYY(k,j-i-1), j t- ~+l 

(l+a) G (k,j-i-1) + (1-a) G (k,j-i), j = ~+l • yy yx k 

P{Ik 
B (P ,P .) = -2 (l+a) [G (kl~ -i) - G (k,M,_ -ill - (l+a) G (k,~ 

1
-i-1) 

s J y k y ~+1 yy k+ . 

+ (1-a) G (k,~ 
1
-il yx -lt+ 

4.4, we see that each B (P,P.), j 't-i, 
s J 

j < 1, is negative. Hence 
-Kl Kl 

L L B (P,P .) 
k=l P. Ik 

s J 
J 

K 

L
1 

L Is <P,P.>I 
k s J =1 P ,El k. 

J -

2(l+a) [Gy(l,M
1
-i) + L G (k,~+l-i)] 

k=l yx 
Kl 

;:-,(1-al L G (k,~ 
1
-il + 

k=l yx k+ 

Kl 
(l+a) L G (k,~_1-i-l) k=l yy 

< 

< 2(l+a) G (1,i-l) + (1-a) G (O,i-1). y y 
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0 0 /1 t~1 5 u u " 3 
,-.jla 

;,.:; • 0 0 

B'{: combining (5. 7), (5.11) and (5.12), we lOee that 

(5.13) I Is (P,P.) I < 4(l+a) G (0,0) + (1-a) G (O,i-1) < (5+3a G (0,0) = 5/4 + 3/4a 
i;o!j s J y y y 

Here we have used (4.5), (4.6) and Theorem 4.4. Hence, by (5.4) and (5.13), we see that 

(5.2) holds for P E r 0 P t P 
Ml 

The proof for P 

(5.14) 

(5.15) 

(5.16) 

B (P,P) 
s 

- p 
Ml 

is quite similar and is sketched as follows. 

2+2 (1-a) G (0,0) • xy 

+ (l+a) [G (1,0) +! {G (k,~ 
1

-M
1

) + G (k,~ 
1

-M -1)}]; 
. Y k=l yx k+ yy k+ 1 

(5 .17) I L !s (P,P.l/ = (l+a) [G (l,M1l + L {G (k,M1+~) + G (k,M
1

+M k-1) }J 
k=l P.EI 5 J Y k=l yx YY -

J -k 

By (4.38) and Theorem 4.4, we see that 

(5.18) L I IBs(P,Pjl/ < (1-a) Gx(O,O) + (l+a) GY(l,O). 
k=l P{Ik 

Similarly, by using the identity (5.20), we have. 

(5.19) 

(5.20) 

Hence, 

(5.21) 

L L /B (P,P.) I 
s J k=l P.EI k 

J -
G (k,M1+M k-1) -yy -

I 
k=l 

IB (P,P.) I 
s J 

< 

< 

G (k+l,M
1

+M k-1) + G (k,M
1

+M k-1) 
yy - yx -

By combining (5.14) and (5.21), we have 

G (k,M1+M k) • yx -

(5.22) > B (P,P) - L /B (P,P.ll 
s i;o!j s J 

2 + 2(1-a)G (0,0) - 2G (0,0)- 2G (0,1) - aG (l,M
1
). 

XY X X y 

Clearly, the right hand side of (5.22) attains its maximum at a = 0. Hence, (5.2) holds for 

P = P The proof for other choices of P 
Ml 

is similar and will not be repeated. We note 

that we have assumed that Bs(P,Q) t 0 for any This assumption will not 

affect our estimate (5.2) because each Bs(P,Q) is either zero or negative for P ;o! Q. 

Finally we remark that the schemes Ia and Ib described in this work are essentially 

dual to the schemes I. N. a and I. N. b described in [31 J in the following sense. If we 

maintain that a = tana.P 
"v• 

does not change its value for the entire row or column of Bh 

-19-
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0 

corresponding to P, then Bh(P,Q) is the same for both schemes Ia and I.N.a. or for both 

schemes Ib and I.N.b. Therefore we refer the reader to [31] for the proof of Theorem 5.1 

for scheme I. a. We now proceed to pr:ove tbc following inequality for scheme II. 

(~i.23) 

Let 

lllill 

p 
In (P,I'l 

s 
): 0.4.1 . 

QIP 

P E as-~ . 
h 

We assume the same local configuration of irregular mesh points near 

as before. By (3.5) and (3.7), we have for d
2 

_::_ l, PI Q, 

(5.24) 

where 

(5.25) 

p 

Here G ( •; •) 
X 

and G ( •. •) y • denote the forward undivided differences in the and direc-

tion with respect to the second variable of any mesh function G respectively. A similar expres-

wion involving e
2 

which is similarly defined or a constant one should be added respectively to 

the right hand side if or if p = Q. 

and 

* 

respectively. 

Let P = P. . We first estimate 
1. 

Let denote the corresoondino 

Let Bh(P,Q) be defined by Equation (5.24) with G replaced by its continuous analog which we 

* T* 
shall denote by G. Bh (P,Q) is similarly defined. By (5.24) and (5.25), we have for d

2 
> l 

and P I Q 

(5.26) 

where 

(5.27) 

(5.28) 

* * * * * * * Bh (P,Q) [2/(l+d
1

)J [-G (W ;Q) + (1-a)G (W ;WQ) +a G (W ;NWQ)] + \re 

* * * * [2/l+d
1

lJ [G (W ;W') G (W ;Q)] + \re + RQ , 

n-1 
- [d/(l+dl)]--[ y (hk/k!)[(dl-l)k + (dl+l)k] 

k=2 
"k * * * * 

•[(()/Clx
1

l {-G (•;Q) + (l-a)G (•;WQ) + aG (•;NWQ)}](W )]} 

+ nth order remainder term. 

Here W* is the point were the Dirichlet data UW is given. W' is a point on the mesh line 

connecting and and at a distance ah from and are respectively points 

that can be anywhere on the mesh lines between w• and and between W' and We 

shall assume that d
20

, the analoque of for the POint 0 , is also qreater than 1 In 

~~ 
that case. we have a similar expression for T* ( ) Bh P,Q as that in (5.26). 
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·, 

\ 

0 0 ' ~) o<J 

' 5 u ~) 6 ~~ 

~ 6 

We now proceed to estimate T* 
Bh (P,Q) + It is easily verified that if 

P Q t · t an w1.'th d(P,Ql < hY, , _ are wo pol.n s on 0 < Y 2 1 and ta is the tangent at Q to 

then 

d(P,ta) < (K +'o(l))hay. 
max 

Here K is the maximum absolute value of the curvatures of an. Hence, without loss of max 

* * generality, .we may assume that w lies on the tangent to an through Q . the point where the 

* normal through Q intersects with an and vice versa. Let r denote d(W ,Q) and r' deriote 

* d(W ,W'). It is easily seen that r' > r if * 2 d(Q ,Q) < h(l+a )/2. We separate our discussion 

into four cases. The first case is when r' > r and * . 2 d(P,P ) < h(l+a )/2. The maximum of 

log (r'/r) then occurs when Q coincides with Q*. In this case, r• 2 - r 2 = (l+a2Jh2 . Hence, 

if P = P., Q = P., i ~ j, then 
l. J 

* * * * 2 0 < G (W ;W't - G (W ;Qt < (l/4TI) lj-i~- • 

By (5.28), 

Similarly, by (5.27), 

(l+dl) l\m;l < (2/TI) lj-il-
4 ~ 

Hence, for lj-il ~ 3, 

(5.29) (l+d1 l ls:(P,Ql I < (l/2TI) lj-il-
2 

+ (l/5n) lj-i-ll-
3 

+ (2/TI) lj-il-
4

, 

<. !1/2'11) I j-i 1-2 
+ (2/TI) h-i 1-4 • if j>i . 

if i > j. 

ifi>j; 

Since d(P,P*) < h(l+a2)/2, the estimate for T* 
Bh (P,Q) is the same as that given in 

(5.29). Hence, 

(5.30) 

The second case is when r < r' and 
* . 2 

d(P,P ) < h(l+a )/2. Let denote * d(Q ,Q)/h. 

Then dlQ > 1/2. Hence by (5.29), 

ls~*(P,Q) I < (l/3TI) lj-il-2 + (2/15nllj-i-ll- 3 + (4/3TI) lj-il-
4 

if j > i 

if i > j . 

* On the other hand, the maximum of log r/r' occurs when Q coincides with w
2

• In this 

case, Hence, 

** ** 2 2 2 G (W ;W') - G (W ;Q) < (l/4n) [(1-a )/(l+a )Jij-i~- , if j > i 

2 2 2 
< !1/4'11)[(1-a )/(l+a lllj-i-al, if i > j 
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and 

(5.31) lai;(P,Q)I < ((l/2TI) + (l/8TI)] ~~-i~- 2 + (2/iT) lj-i,-4 
if j > i 

if i > j 

'i'herefore, 

(5.32) I a~* (P ,Q) I + I a~ (P ,Q) I < t (l/3Til + (l/2'Ti) + (l/8TT) 1 b-i 1-2 
+ (4/3TI)] I j-i 1-4 

+ (2/151i) lj-i-ll-
3

• if j>i; 

< [ (1/21!) + (l/3TT)] I j-i 1-2 + (1/8TI) I j-i-ll-
2 

if i > j . 

The third case is when .c < r' and d(P,P*) .::_h(l+a2)/2. The estimate for lai;(P,Qll + 

+la~*(P,Qll is the same as that for the second case. 

The fourth case is when r > r' * and d(P,P ) 

less than 1/2. Therefore by (5.31) and the above observation, 

(5. 33) la~*(P,Qll + lah(P,Q>I ~ (2/3TI)Ij-il-
2 

+ (l/12TT) lj-il-
2 

+ (l/12Tillj-il-2 + (8/3TT) lj-il-4 

By comparing .<5.30), (5.32) and (5.33), we see that 

are not 

max la~*(p,Q>I + lah(P,QI < (1/Tillj-il-2 + (4/Tillj-il-4 + (l/5TTllj-i-ll-
3 

.if j > i 

< (1/TI) I j-i 1-2 + (1/81!) I j-i l-2 
+ (l/51T) I j-i-ll-

3 
+ (4/TI) I j-i 1-4 

if i > j • 

Hence, if d
2

, d
2

Q > 1, then 

I laTh*<P,P.I + lah*<P,PJ.>I < <1/TT) L {2/k
2 

+ 8/k
4 

+ 2/5k
3 

+ l/8k
2

} 
lj-il>3 J k=3 

< 0.328 

Similarly, it can be shown that if both d
2 

and d2Q are not greater than 1, then 

(5.34) I laT*(P,P.>I +'lah*<P,P.>I < 0.677. 
h-i I >3 n J J 

By Theorems 4.1-4.3 and Table I on p. 41 of [30], 

L {lah(P,P.) - ah*(p,P.>I.+ lahT(P,P.>Il < o.o4 
I I 

J J J -i...,j 2_3 

Hence 

(5.35) L {lah(P,P.>I + la~(P,P.lll < 0.717. 
lj-il~3 J J -

It remains to estimate B (P,P) - 'Ia (P,P.) I, li-jl _< 2, i "I 
s · L s J . 

Without loss of generality, 

we may assume that both d1 and d2 are less than 1. We shall assume that P = P. = PM with 
~ 1 

M1 .::. 3 and M2 .::_ 5. The case when i t M1 can be treated in a similar manner. We have 
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(5.36) 

where 

where 

where 

0 ' Q ;, ~· 

B (P,P) 
s 

u (~ !;;) 0 u 6 J· 7 

2 + 2(1-a) G (0,0) + g (a) , 
xy 0 

For any Pj e 1
0

, j F M
1

, we have 

Bs\P,Pj) = g
1

(a,j) + g
2

(a,j) , 

gl (a,j) G (O,i-j) + a G (O,i-j-1) - a Gy(l,i-j) - Gx(O,i-j) , 
xy yy 

a G (2,i-j-l) l + e .. [G (l,i-j) + a G (2,i-j)] 
y l) X y 

+ e
2

[G (O,i-j-1) -a G (l,i-j-2)] 
X y 

For any Pj e 1
1

, we have 

g3(a,j) 

g4 (a,j) 

-Gx(O,j-i-1) +a G (l,j-i-1) +a G (O,j-i-1) 
YY Y 

e 1 [Gx(O,j-i) +a Gy(l,j-i)] + e 2 [~Gx(O,j-i+l) +a Gy(O,j-i+l)] 

+e .. [G (2,j-i)- a G (3,j-i-l)]. 
l) X y 

By Theorem 4.4, g
1 

(a,j) is negative. It is easily .verified that g
2

(a,j) is nonnega-

tive for 0 ~ i-j ~ 2; g
3

(a,j) is negative for a~ 1/2; and g
4

(a,j) is positive. Moreover, 

for a < 1/2, 
2 2 

(5. 37) L lg
1 

(a,j) + g
2

(a,j) I + L lg
3

(a,j) + g
4

(a,j) I 
i-j=l j-i=l 

2 2 
g

0
(a) + L lg

1
Ca,jll + L lg

3
Ca,jJJ. 

i-j=l j-i=l 
< 

Hence, for a< l/3, M
1 
~ 3, M

2 
~ 5, we have from (5.37) that the following holds. 

(5. 38) Bs(P,P)- LfiB (P,P.JI 
s J 

> 2+2 (1-a)G (0,0) + 
xy 

2 2 

L gl (a,j) + L g3(a,j) 
i-j=l j-i=l 

> 2+2(1-a)G (0,0) - G (0,0) - 3G (0,1) - G (0,2) + G (0,3) 
Xy X X X X 

> 1.17. 

By considering all possible configurations of P., i-j ~ 2 , a~ 1/3, it can be shown 
J 

that the constant 1.17 is always majorized by the left hand side of (5.38). It is easy to see 

that(5.38) also holds when P. f P . Hence by (5.35), we see that (5.23) holds. 
J. Ml . 

This established the lower spectral bounds of Bh for all schemes. To complete the 
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proof of the theorem, we note that the spectral norm of B~Bh is majorized by (l/2) <l~~iloo + 

2 
II Bh 1100) • It therefore suffices to prove the following two inequalities 

(5.39) II B~~~oo + II Bhlloo < 7.4 if scheme I.b is used 

(5.40) II B~~~oo + II Bh I lao < 4.72 if scheme II is used. 

We first prove that (5.39) holds. Without loss of generality we may assume that 

P E ()f2h has only one western neighbour W in (Cn)h. Let P '= (0,0) 

anh. Then X = ay + b, lbl .::. (l+o(l) )h if d(P,Pl) < lh. And 

and P. = (x,y), be in 
J 

* 22 2 2 . 22 
Bh(P,P/ -(l/21T)log[(x+h) +y 1 + (a/27T)log[x +(y+h) 1 + [(l-a)/21T)log(x +y) 

. . 2 2 
(l/27T) [2h(x-ay) + (a-l)h 1/r + R, 

where I I 2 2 2 4 d(P,P.) and R 2_ (l/21T) [(2x+h) + (2y+h) 1h /2r . 
J 

r = It is easily verified that 

I IS: (P,Pj) I .::. 1.25 if IYI > 2h 
PiP. ·. 

J 

(5.41) 

By Theorems 4.1-4.3 and the Table I on p .. 4i of [30]; 

(5.42) Bh (p,P) = 2 - (1/2) (1-a) 

I IBh(P,P.) I < 0.28 + 0.55a/2 
IYI <2h J -

(5.43) 

I IBh(P,P.)- B~(P,Pj>l <0.06. 
IYI~2h J 

(5.44) 

By (5.41)-(5.44) I 

It.is easily seen that the above inequality also holds when Bh is replaced by We have 

therefore completed the proof of (5.39) 

Let P =Pi. By (5.36), 

(5.45) IB (P,Pll < 2+2(l.:.a)G (0,0) + g
0

(a) • 
s - xy 

By (5.37) and (5.45), 

(5.46) I IBh(P,P.li+IBhT(P,P.ll < 2+2g
0

(a) + 2GCO,O) + 6G (0,1) 
I i-j I <2 J J X X 

< 4. 

By (5.35) and (5.46), we see that (5.40) holds. 
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6. Singular values of ~ and c ; 

We shall show that all except a few singular values of C lie in the interval 

[d
1

- £, d
2 

+ £], £ > 0, where d
1 

and d
2 

are the spectral bounds of Bh. This is accomplished 

by first proving that the singular values of ~ cluster around that of a compact operator K . 

Our main result then follows as an immediate consequence of a well known result in matrix theory 

which will be stated below as Lemma 6.8. We first need some definitions from modern analysis. 

Let X denote a Banach space throughout this section. 

Definition. A subset S C X is sequentially compact if any sequence in S contains a convergent 

subsequence with limit in X 

Definition. A family of operators K on X 
n 

is collectively compact if the set {K f: lit II < 1, 
m 

f EX, m = 1,2, .•• } is sequentially compact in X 

We shall first assume that either scheme I.a or scheme I.b is used. We start by con-

structing a family of operators · {K } 
m 

from·{~} in the same way that is done in Section 5 of 

[32]. For completeness, we briefly sketch this construction in the following. Define 

Km: C[O,l] + C[O,l] by 

(6.1) 

where 

m 
L k<t,t.>t<t.>, 

j=l J J 
t. E {0,1); f E C(O,l), 

J 

(6.2) k(t,t.) = K (P.,P.) + [(t-t.)/(t. 
1
-t.)][K (P. 

1
,P.)- K (P.,P.)], t. l < t < t. 

J h 1 J 1 1- 1 h 1- J n 1 J 1- - - 1 

C[O,l] is the Banach space of continuous functions on [0,1]. The ti, i = l, ••. ,m 

are defined as follows. Let <f>,ljJ be a smooth parametrization of 3!1. Then (<f>(ti) ,ljJ(ti)) is the 

closest point on ()!l to Pi e ()!lh which is on the normal through 

0 or 1 , the k(t,t.) 
J 

in (6.2) should be adjusted slightly. 

P .• 
1 

When t is very close to 

See [32] for the details. We can 

construct by the same procedure a family of operators · {K~} from {~ }. Let K :: K'K 
s m m 

Lemma 6.1. The nonzero eigenvalues of ~· ~+~ and ~~ coincides with that of Km' 

Km+K~ and Ks respectively. 

Proof: See e.g. Lemma 5.2 in [32]. 

Lemma 6.2. Let P and Q be two points in ()!lh with d(P,Q) 

the closest points on a~ to p and Q respectively. Then 

* * * 2-28 
~(P,Q) = 2(3G ;avQ*l (P ;Q )hseco:Q + O(h ) • 

Proof: Essentially the same as that of Lemma 5.4 in [31]. 
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Lemma 6.3. The families of. operators {K },{K'} and. {K} are collectively compact on C[O,l]. 
m m s 

Proof: Essentially the same as that rf Lemma 5.5 in [32]. 

Lemma 6.4. K f + Kf, K'f + KTf and 
m m for each f € C[O,l] where K is the compact 

integral operator defined by 

* . 
(Kfl <tpl = 2 3~ raG ;avQJ (P;Ql f dsQ 

where P- (¢(tp),~(tp). 

Proof: Essentially the same as that of Lemma 5.6 in [32] • 

In order for the above theorems to apply in the case when scheme II is,used, we scale 

the matrix in that case as follows. The rows of that correspond to irregular mesh 

points that have one or two neighbours in (cQ)h are multiplied with (l+d
1

) or 

(l+d
1

l (l+d
2

l (l+d
1

+d
2
l-l respectively. It is easily verified that Lemmas 6.3 and 6.4 hold for 

scheme II if. Km is constructed from the scaled ~· It will be shown after theorem 6.1 that 

such a scaling is not e-sential and our main results will hold even without it. 

Lemma 6.5. Let {K } 
n 

be collectively compact on X ; K f + Kf ·for each 
n 

f E X. Given e: > 0, 

let lli' with algebraic multiplicities mi, i = l, .•• ,N be the eigenvalues of K with absolute 

* * values greater than or equal to e: >· 0. Then there exist. positive numbers N and e: < e: 

such that for all * n > N each * .. e: neighbourhood of 

Kn while all the other eigenvalues of K 
n 

lie in an 

contains exactly m. 
~ 

£-neighbourhood of zero. 

eigenvalues of 

Proof: This is an immediate consequence of Theorem 4.8 on p. 65 of '[1]. See also Chapter 4 of 

[30]. By combining Lemmas 6.1, 6.3, 6.4 and 6.5, we easily have· the following. 

Theorem 6.1 Given e:· > 0, there exists a positive integer N such that for all h > o·, all . 
except N singular values of ~ lie in [0,£]. 

Lemma 6.6. Let C AB, where A, Band c are arbitrary matrices with singular values. 

yi+j+l ~ ai+lsj+l i,j positive integers. 

Proof: See e.g. Exercise 28 on p. 89 of [23] An immediate consequence of Lemma 6.6 is that 

Theorem 6.1 holds in the case when scheme. II is used even if the. matrices C or ~ are not 

scaled by the scaling described just before Lemma 6.5. 

Lemma 6.7. If D = A+B, where A and B are as in Lemma 6.6, and o
1 
~ o

2 
> • 

the singular values of D , then 

i,j positive integers. 

• > ·o > o are 
- m-
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Proof: See e.g. Exercise 30 on p. 89 of [23]. 

Theorem 6.2 Let d 1 and d
2 

be the spectral bounds of Bh. Then given £ > 0, there exists 

a positive integer N independent of h such that all except N singular values of C lie in 

Proof: An immediate consequence of Lemma 6.7 and Theorem 6.1. See also Theorem 5.3 in [32]. In 

the following, II II shall denote either the spectral norm of a matrix or the Euclidean norm of a vector. 

* Lemma 6.8 Let U be the extension operator from nh U onh ot all mesh points that is defined 

the same way as U *T 
Suppose that U G ~ ~ 0 for any nonzero m-vector ~ defined on onh. 

* Then c is nonsingular. Moreover, if II U G VIlli > c
1

11 \l !I !II A II 
11 

for any m-vector 

then II C -lll .::_ K (All) /C1 , where K (A 
11

> is the spectral condition number of All with respect to 

the norm II II 
Proof: Let Au = v = UUTv with T u v in the range of C be the equation we are solving. 

From Section 3, we see that u = ~ is a solution of Au= v if \l satisfies Equation (3.6). 

Suppose C is singular so that there exist two distince solutions 11
1 

and \12 of Equation (3.6). 

Let 11
0 

= 11
1

-11
2 

• Then AGV\1
0 

= 0. Because of the reducible structure of A 

This contradicts the assumptions that A
11 

is nonsingular and 

II u *TGVllll > c1 11 1111 !II All II , then 

II A~~ II II uTvll > llu*TGV\lll ~ c1 11 1111 !II All II· 

The lemma easily follows. 

*T 
All u GV\lo 

Moreover, if 

0. 

Definition. A scheme of interpolating boundary conditions is said to be admissible if its cor-

responding coefficient matrix All of the discrete problem is nonsingular and K(A11 l .::_ 

constant h-2 . 

Lemma 6.9 * * Let c and A denote respectively the capacitance matrix and the coefficient 

matrix of the discrete problem for a certain scheme of interpolating boundary conditions. Suppose 

* * that both c and A are nonsingular. Then C is nonsingular for any admissible s~heme of 

interpolating boundary conditions. Moreover, if 

-27-
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* * Proof: t:e first. claim that if both C and A are nonsingular, then there exists no u t- 0 

u*TGYJJ * 
such that = 0 Suppose this is not so, then there exists a 11 t- (J such that 

*T * * UUTv* * * T * * *T 1r 
U GVI1 0. Let v where c 11 u v Since c is nonsingular, u v t- 0. But 

*T * *T * * *T * 
u v U AGVI1 = A U GVI1 0 

Suppose now that II C*-1 II _< c2 a·nd· This proves our claim. By Lemma 6.8, C is nonsingular. 

IIA*II .:::_c
3

IIA
11

11 Let Au=v=UUTv. Clearly, 

II JJII ..:::_ II c*-lll II uTvll ..:::_ II c*~lll II A*ll II u*TGVUII 

Hence, 

The lemma easily follows from Lemma 6.8. 

Definition n is said to be in 3' ( S) if the associated integral operator K defined by 

Equations (2.2)-(2.3) is such that K + KT > -SI. 

Lemma 6.10. All ellipses with thickness b/a > 1/3 are in 3'(1). Here a and b are re-

spectively the major and minor axes of the ellipses. 

Proof: An immediate consequence of (2.5). 

Theorem 6.3 Let be the discrete Green's function used in equations (3.2) and (3.5). 

Then the capacitance matr·ix c is nonsingular and II c-
1

11 ::_constant h-q for some positive 

integer q independent of h 

* * Proof: It suffices to find a pair <c ,A > that satisfies the hypothesis of lemma 6.9. Assume 

that the difference equations are already preordered in such a way so that 

B 

0 

) 
where the first, second and last rows of B in block form correspond to the coefficient matrices 

of the difference equations on n ,() nh and 
h . 

(Cn)h respectively. 

Suppose that in forming A we use a zero order interpolation of Dirichlet data on an 

at to obtain the equations on () ~ih. Partition v ,A and G in the same way as B. We obtain 

(6.3) V=CJ and A 

so that the capacitance matrix which we now denote by CD satisfies 
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(6.4) 

Let 

It is easily seen that AlN is the coefficient matrix of a discrete exterior Neumann problem, 

with the normal derivative approximated by the first order scheme described on p. 203 of [13]. 

Hence AN is nonsingular since both B
11 

and AlN are nonsingular and AN is reducible. 

Clearly, 

(6.5) 

Let be the solution of 

(6.6) 

where fN is any mesh function that vanishes outside a 11h. Suppose we make the Ansatz that 

(6. 7) 
-1 

B Up 

where p satisfies 

(6. 8) 
T -1 T 

U AN B Up = U fN 

By (6.5), (6. 7) and (6.8), it is easily seen that (6.6) is satisfied. 

is clear that CN is nonsingular. By (6.4) and (6.5), we have 

C~ = DD 

Let It 

so that CD is nonsingular. Moreover, usin,g an argument similar to the proof of lemma 6.8, we 

have 

for some positive integer q independent of h The Theorem easily follows. 

Theorem 6.4 Let Q E J{l). Assume that the G in equation (3.5) is the discrete Green's func­

tion of the entire plane. Then II c-1 11 < constant h-
2 

as h-+ 0 for any admissible scheme 

of interpolating boundary conditions. Moreover, II c-1 11 < constant as h-+ 0 if either scheme 

I.a or scheme I.b is used or if scheme II is used and 11 E ~(0.4). 

Proof: Let 11 E J(l). Assume that either scheme I.a or sc~eme I.b is Used for interpolating 

the boundary conditions. By (5.1), Bh + B~ ~I. By assumption, there exists an E > 0 such 

that K + KT > -I + € • By lemmas 5.1 and 6.3-6.5, we see that for sufficiently small h , 
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Kh + KT > -I 
h-

+ £/2. Hence, C + CT > £/2 and II c-1
11 < constant as h + 0 Similarly, it 

can be shown that II c -111 < constant if scheme II is used and Q E J(0,4). By lemma 6.9, 

II c - 1
11 < constant . h..:.2 for any admissible scheme of interpolating boundary conditions. 

, .. 
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§7. Convergence of conjugate gradient iteration. 

Let b denote the right hand side of the capacitance matrix equation multiplied by CT. 

Let Q denote 
T c c. We are concerned with solving Q = b p 

by the conjugate gradit'nt method. 

Detailed exposition of the method can be found e.g. in [11), [16), [17), [18] and [26). A brief 

description of the method plus a simple extension of the known results in the above references 

can be found in Section 6 of [32). It will be assumed that the readers are familiar with the 

results in [32). 

Let pk denote the vectors approximating the solution p generated by the conjugate 

gradient process. Let R denote the set of real numbers and L denote the set of m vectors. 
m 

Let Z = R2 ~ R and E : Lm ~ R be defined respectively by 

Z(a,b) b 
{ (1 - Ia> I <l + Ia>} ; 

It is shown in [32) that the following holds. 

Theorem 7.1 Let K and be the spectral condition numbers of 

* 

Q and respectively. 

Let d and d' denote the smallest and largest eigenvalues of resepctively. Then given 

E > 0, there exists a positive integer independent of k and h such that 

< min{4Z(K,2k), 4Z(K
1

-2£/d',2k-2N)X(A)} 

Here X(A) = max 
d*<A<d' 

E ( pk) /E (p
0

) 

1111-A/A.I I i = 1, ... ,N, where A., i = l, ••• ,N are the 
~ 

N eigenvalues of 
~ 

- * Q that lie outside of [d -£,d'+£] • 

Corollary 7.1 Let G = B~1 be used in equation (3.5). The number of iterations 

needed_to reduce E(Pk)/E(p
0

) to a given accuracy can grow no faster than constant·log m as 

h -+ 0 • 

Proof. I I -kN 
By Theorem 6.3, X(A) ~ h , where k is a constant independent of h. The corollary 

is therefore an easy consequence of Theorem 7.1. 

* Corollary 7. 2 Let n € J (8), S = 1 if either scheme I.a or I.b is used; S = 0.4 if sheme 

II is used. Then the number of iterations needed to reduce E(Pk)/E(p
0

) to a given accuracy 

stays constant as h ~ 0 if the G in (3.5) is the discrete Green's function on the entire plane. 

Proof. By Theorem 5.1 and Theorem 6.4, C is uniformly well conditioned in the 

spectral norm. The corollary is therefore an immediate consequence of _Theorem 7.1. 
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§8 Survey of previous work on caoacitance matrix methods. 

R. W. Hockney in [20] and [21] described a method of this type which can be used for the 

solution of the interior Dirichlet problem for Laplace's equation. His capacitance matrices are 

always positive definite symmetric. His method thus corresponds to.a single layer Ansatz for 

the Dirichlet problem. Buzbee, Dorr, George and Golub used a similar method in [8]. They made 

the Ansatz 

u 

when B is nonsingular. Here W is a m x m nonsingular metrix. The choice W I gives the 

Woodbury formula. 

Proskurowski and Widlund introduced the double layer Ansatz in [29]. The algorithm used 

in their work differs from the one used here only in the discrete Green's function G and the 

WT matrix. No theoretical analysis was presented in [29]. In [2]j the author analyzed the 

method for the Neumann problem. The algorithm used in [321. is similar to the one used by 

George in [15] which corresponds to solving the single layer Ansatz of the Dirichlet problem 

in an iterative imbedding fashion. 
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§9 Numerical experiments 

The results in this s<'=ction were obtained on the CDC 7600 at Lawrence Berkelev Laboratorv. 

The model problem is the Laplace equation on ellipses withy= (a-b)/(a+b), where a,b are the· 

half axes. E(u) llu-u *IL, * where u is the true solution of -l.u = 0 on st , u = 1 on :111 

The mesh size h 1/32. The number of iterations of the conjugate gr.•ldient method is denoted 

by n N(R) denotes the normalized norm of the residuals which is the L
2 

norm of the residual 

divided by the square root of points in st. The numbers given for E{u) are acturally upper 

bounds that describe the number of accurate digits only. The capacitance matrix is generated 

explicitly and the discrete Green's function on the plane is used in (3.5). 

TABLE I 

Scheme I. a Scheme I.b Scheme II 

n y N(R) E(u) N(R) E(u) N(R) E(u) 

4 0.2 -- - - - 3.9-04 1.0-03 

5 0,2 -- ·- - - 2.1-04 1.0-03 
! 

4 1 1.5-04 1.0-03 8.7-03 1.0-02 3.5-04 1.0-03 

5 1 1. 0-04 1.0-03 4.2-03 1.0-02 1.6-04 1.0-03 

In Table I we see that typically it takes four iterations to achieve three digits accuracy. 

The operation count of the conjugate gradient routine is therefore approximately 64n
2

. The total 

operation count (not counting that of setting up the matrix c) is therefore approximately 

5n
2
logn + 80n

2 
for the Laplace's equation and 10n

2
log n + 120n

2 
for the Poisson equation. 
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