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Infrared and collinear (IRC) safety has long been used a proxy for robustness when developing
new jet substructure observables. This guiding philosophy has been carried into the deep learning era,
where IRC-safe neural networks have been used for many jet studies. For graph-based neural
networks, the most straightforward way to achieve IRC safety is to weight particle inputs by their
energies. However, energy-weighting by itself does not guarantee that perturbative calculations of
machine-learned observables will enjoy small nonperturbative corrections. In this paper, we
demonstrate the sensitivity of IRC-safe networks to nonperturbative effects, by training an energy
flow network (EFN) to maximize its sensitivity to hadronization. We then show how to construct
Lipschitz energy flow networks (L-EFNs), which are both IRC safe and relatively insensitive to
nonperturbative corrections. We demonstrate the performance of L-EFNs on generated samples of
quark and gluon jets, and showcase fascinating differences between the learned latent representations
of EFNs and L-EFNs.

DOI: 10.1103/PhysRevD.110.014029

I. INTRODUCTION

Infrared and collinear (IRC) safety has played a
central role in perturbative quantum chromodynamics
(QCD) [1–10], in particularly for studying the pro-
perties of high-energy jets arising from the frag-
mentation of quarks and gluons. By being insensitive
to soft and collinear splittings within a parton shower,
an IRC-safe observable has a cross section that can be
well-described by a fixed-order perturbation series in
the strong coupling constant, αs. For this reason, IRC
safety has been used as a guiding principle in devel-
oping new jet substructure observables [11–18]. While
other classes of calculable observables exist—such
as Sudakov-safe observables [19,20] and track-based

observables [21,22]1—IRC safety has driven the selec-
tion of collider observables for both measurements and
searches involving jets.
Machine learning (ML) methods have significantly

extended the sensitivity of jet tagging, in part by leveraging
low-level information [15,25,26]. Such taggers are gener-
ally IRC unsafe, which means that they are reliant on the
nonperturbative models in the generators used to train
and test them. Since these nonperturbative models are
imperfectly constrained by experimental data, this has
motivated the development of ML observables that are
IRC (or Sudakov) safe [27–29]. One class of IRC-safe
architectures are energy flow networks (EFNs) [28], which
are built on the deep sets framework [30] and are able to
model any permutation-invariant IRC-safe observable.
EFNs, along with extensions that incorporate graph-like
structures [31–33], achieve IRC safety by linearly weight-
ing particle inputs by their energies.
In this paper, we emphasize that energy-weighting,

by itself, does not ensure trustworthy perturbative calcu-
lations for ML observables. While IRC safety does
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1More generally, there is a broader class of observables
that can be calculated after absorbing perturbative singulari-
ties into universal nonperturbative objects like fragmentation
functions [23,24].
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ensure the existence of a fixed-order perturbation series
in αs,

2 it does not guarantee that nonperturbative correc-
tions will be small. Using EFNs as a representative
example, we show how to train an IRC-safe neural
network to be maximally sensitive to nonperturbative
hadronization, thereby constructing an observable that is
“safe but incalculable.”3 As a step toward restoring
calculablity, we introduce Lipschitz energy flow networks
(L-EFNs), whose bounded gradients ensure bounded
sensitivity to nonperturbative corrections.
The fact that IRC-safe observables can have cross

sections with large nonperturbative corrections is not
new, even if it may not be widely appreciated. The standard
(but misleading) lore is that IRC-safe observables should
have nonperturbative corrections that are power-suppressed
as ðΛQCD=EÞn, where ΛQCD is the QCD confinement scale,
E is the energy scale of the process in consideration, and n
is some integer power (typically 1 or 2). Already, though, it
is known that jet angularities [34–37] with angular expo-
nent β ≲ 1 have nonperturbative corrections with n ¼ β
scaling [8,19,19,38], which turns into Oð1Þ effects as
β → 0. Because there is no general first-principles under-
standing of nonperturbative QCD effects, then the cross
section is essentially incalculable (or at least untrustable) if
these corrections grow large.
In the context of IRC-safe ML models, we are not

aware of any previous studies of the general impact of
nonperturbative effects. Here, to identify ML observables
with maximal nonperturbative sensitivity, we train an
IRC-safe classifier to distinguish parton-level from
hadron-level events. Classifiers whose cross sections have
controlled nonperturbative corrections should be unable
to distinguish between these samples. Instead, we find
that EFNs are highly effective at parton-level versus
hadron-level classification, implying large nonperturba-
tive sensitivity. Our new L-EFN architecture reduces this
sensitivity by imposing spectral normalization [39,40],
which is equivalent to bounding the Lipschitz norm of
the network (see related work in Refs. [41,42]). This
approach is motivated by the Kantorovich-Rubinstein
duality theorem [43] and the energy mover’s distance
(EMD) [44], which provides a robust way to estimate the
size of nonperturbative effects.
The remainder of this paper is organized as follows. In

Sec. II method, we introduce L-EFNs and explain how the
Lipschitz constraint enforces an EMD bound on non-
perturbative corrections. We then perform a case study
in Sec. III to compare the hadronization sensitivity of EFNs

and L-EFNs. We investigate the learned latent representa-
tions of (L-)EFNs in Sec. IV and conclude in Sec. V. For
completeness, we perform a quark/gluon discrimination
study in the Appendix.

II. METHODOLOGIES

A. Lipschitz energy flow networks

The L-EFN architecture we propose in this work is built
on top of a standard EFN, which provides a generic
framework for learning IRC-safe observables. Given a
jet with constituent momenta p1; p2;…; pM, an EFN
computes a function of the form:

EFNðfp1;…; pMgÞ ¼ F

�XM
i¼1

ziΦðp̂iÞ
�
; ð1Þ

where zi ¼ pT;i=pT;jet is the constituent momentum or
energy fraction and p̂i is the particle’s angular position
relative to the jet axis. The function Φ∶R2 → Rl maps
individual particles to a latent space of dimension l. The
function F∶Rl → Rdout maps the latent representation to
the final output. In a standard EFN, the functions Φ and F
are unconstrained and typically implemented as neural
networks. The additive and energy-weighted structure of an
EFN guarantees a naturally permutation-invariant and IRC
safe output; see Ref. [28] for further discussion.
An L-EFN extends the EFN setup by constrainingΦ and

F to be L-Lipschitz, meaning that

kΦðp̂1Þ −Φðp̂2Þk ≤ Lkp̂1 − p̂2k;
kFðx1Þ − Fðx2Þk ≤ Lkx1 − x2k:

This is effectively a bound on the gradients of these
functions, though the Lipschitz constraint does not require
Φ and F to be everywhere differentiable. In principle, one
could choose different L values for Φ and F, but we keep
them the same for simplicity of discussion.
If Φ and F are neural networks with L-Lipschitz

activations,4 this amounts to a constraint on the spectral
norm of their weight matrices Wi [39]:

σðWiÞ ≔ max
h≠0

kWihk2
khk2

≤ L: ð2Þ

This can be enforced during training by scaling the weight
matrices as Wi → LWi=σðWiÞ using a computationally
efficient estimation of σðWiÞ [39]. We focus on the L ¼ 1
case throughout this paper, and L-EFN should be hence-
forth understood as L ¼ 1.

2Strictly speaking, this statement depends on the precise
definition one uses for “IRC safety.” In the language of Ref. [10],
we really mean Hölder continuous.

3The opposite case of “unsafe but calculable” observables can
arise in resummed perturbation theory, where there is no order-
by-order αs expansion but nevertheless nonperturbative correc-
tions are suppressed [19,20].

4Many standard activation functions are 1-Lipschitz, such as
ReLU, LeakyReLU, and Sigmoid.
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For the studies in Sec. III B results we use the base
architectures from the EnergyFlow package [27,28], imple-
mented and trained using TensorFlow [45], Keras [46], and
Adam [47]. To enforce the 1-Lipschitz constraint when
training L-EFNs, we replace all linear Dense layers in
the networks with SpectralDense layers from the
DEEL-LIP package [48]. Unless otherwise specified, the Φ
(F) networks of all (L-)EFNs are implemented as three-
layer fully-connected neural networks with a width of 60
(80) and 0% (10%) dropout [49]. We use ReLU activations
for internal nodes and Sigmoid for the 1D output node, both
of which have a Lipschitz constant of 1. The networks are
trained to learn 0=1 class labels based on the binary cross-
entropy loss function.
As a reference, we also show results for a particle flow

network (PFN), which is IRC unsafe by construction:

PFNðfp1;…; pMgÞ ¼ F

�XM
i¼1

ΦðpiÞ
�
: ð3Þ

This differs from the EFN in Eq. (1) by the lack of zi
weighting and the use of the unnormalized particle
momentum pi instead of just the particle direction p̂i.
We also consider a Lipschitz PFN (L-PFN) which imposes
a spectral norm constraint on F and Φ.

B. Bounds on the energy mover’s distance

With the simple addition of a Lipschitz constraint, we
can now make precise statements about the sensitivity of an
L-EFN to nonperturbative effects. Here, we leverage a
recent geometric language for analyzing collision events
based on the EMD [44], which measures the “work”
required to transform one jet into another. The EMD is a
variant of the Earth Mover’s Distance from computer vision
[50–54] and is equivalent to the 1-Wasserstein metric
[55,56] in certain limits. The EMD provides a pairwise
metric distance for IRC-safe energy flows, which can be
used to triangulate the space of jets and define various
geometric quantities.
Consider an additive IRC-safe observable f acting on a

jet J :

fðJ Þ ¼
X
i∈J

EiΦðp̂iÞ; ð4Þ

where Φ has Lipschitz constant L. Given a pair of jets J 1,
J 2, a key result from Ref. [44] places a bound on the
difference between fðJ 1Þ and fðJ 2Þ based on the EMD
between J 1 and J 2:

1

RL
jfðJ 1Þ − fðJ 2Þj ≤ EMDðJ 1;J 2Þ; ð5Þ

where R is the jet radius. The composition of two Lipschitz
functions with constants LA and LB is also Lipschitz, with

constant LALB. Thus, for an L-EFN, we have:

1

RL2
jL-EFNðJ 1Þ − L-EFNðJ 2Þj ≤ EMDðJ 1;J 2Þ: ð6Þ

This bound holds for any J 1 and J 2, and we again
emphasize that we focus on L ¼ 1 in this paper.
Now, consider J 1 and J 2 to be the same jet at parton-

and hadron-level, respectively. Of course, parton-level
information cannot be accessed at a real collider, but it
can be done in the context of a parton shower event
generator. Then, Eq. (6) gives an upper bound on mod-
ifications of the L-EFN observable due to hadroniza-
tion. This prevents an L-EFN from becoming overly
sensitive to nonperturbative physics, and makes it naturally
robust to any unphysical mismodeling artifacts present in
Monte Carlo simulations.
By contrast, a plain EFN does not have this constraint,

which explain why it can be arbitrarily sensitive to non-
perturbative effects, as we will see in the following case
study. Note that this sensitive potentially affects all past
studies based on EFNs. In the Appendix, we show that
quark/gluon discrimination power degrades substantially
after imposing a Lipschitz constraint, implying that some of
the discrimination power seen in previous EFN studies [28]
can be attributed to nonperturbative effects.

III. CASE STUDY WITH QUARK/GLUON JETS

A. Generated dataset

To demonstrate the impact of nonperturbative physics on
ML algorithms, we perform a case study involving quark
and gluon jets. Following Ref. [57], we generate samples of
eþe− → H → qq̄ (quark jets) and gg (gluon jets) using
PYTHIA 8.307. We take a center-of-mass collision energy offfiffiffi
s

p ¼ mH ¼ 1 TeV, and we fix q ¼ u (i.e. up quarks only)
and mu ¼ 0 for simplicity.
In each event, we independently cluster the partons

(postshower) and final-state hadrons into anti-kT jets with
R ¼ 1.0 [58,59] and the winner-take-all (WTA) axis. We
match the leading (highest pT) hadron-level jet to the
nearest parton-level jet within ΔR < 0.1,5 and save the
constituent kinematic information for both jets. We gen-
erate a total of 200,000 eþe → qq̄ and 200,000 eþe− → gg
events. Each dataset is split into training, validation, and
test sets with fractions 50%, 25%, and 25%, respectively.
In Fig. 1, we show the spectrum of three jet substructure

observables: the jet mass, the number of jet constituents,
and pD

T [60]. The latter observable is the sum of the squares
of the momentum fractions of constituents within the jet. Of
these observables, only the jet mass is IRC safe. Not
surprisingly, the jet mass is the observable with the smallest

5If no parton-level jet is found within this ΔR cone, the event is
skipped.
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difference between the parton-level and hadron-level dis-
tributions. For the number of constituents and pD

T , non-
perturbative corrections are an Oð1Þ effect. Nevertheless,
these two observables are highly effective for quark versus
gluon jet tagging [61], which is why one has to be careful
about nonperturbative sensitivity in the ML context.

B. Classification results

To investigate the impact of Lipschitz constraints on
nonperturbative sensitivity, we train EFNs and L-EFNs to
distinguish hadron-level from parton-level jets. For this
analysis, we treat the quark and gluon datasets separately.
This allows us to focus solely on an (L-)EFN’s sensitivity
to parton-level versus hadron-level differences rather than

any of the features distinguishing quark and gluon jets.
Specifically, gluon jets tend to be less collimated and
have larger constituent multiplicities due to the larger
color factors for gluons (CA ¼ 3) compared to quarks
(CF ¼ 4=3), but hadronization also tends to broaden jets
and increase their number of constituents. (See the
Appendix for a quark/gluon discrimination study.)
To verify the stability of our trainings and estimate

uncertainties on performance metrics, we train ten versions
of each model with a different random initializations. In
testing, we found that L-EFNs train more stably with a
significantly larger batch size than EFNs (10,000 vs 128)
and a smaller learning rate (10−4 vs 10−3). This is likely due
to the spectral normalization of the weight matrices at each

FIG. 1. The spectrum of (a) jet mass, (b) jet constituent multiplicity, and (c) pD
T . Shown are the normalized distributions for quarks

(blue) and gluons (orange) at parton-level (filled) versus hadron-level (solid).

FIG. 2. Score distributions for the (a) EFN and (b) L-EFN architectures, when trained to distinguish parton-level from hadron-level
jets. The color scheme is the same as Fig. 1. Despite being IRC safe, the EFN achieves excellent parton/hadron separation power. After
imposing the Lipschitz constraint, the L-EFN exhibits the desired insensitivity to nonperturbative effects.
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step, and the inherent difficulty of distinguishing parton-
level from hadron-level jets given the constraint of Eq. (6).
With these modifications, however, all L-EFN trainings
converged easily.
Distributions of the learned EFN and L-EFN scores are

shown in Fig. 2, considering all four combinations of quark
versus gluon and parton-level versus hadron-level jets.
Despite being IRC safe, the EFN is highly effective at
distinguishing parton-level from hadron-level jets. This
implies that the nonperturbative corrections to the EFN
observable are large. Assuming that the EFN architecture
and training procedure are sufficiently flexible,6 then this is
an example of an IRC-safe observable with maximal
nonperturbative sensitivity. By contrast, the L-EFN is
not very effective at distinguishing parton-level from
hadron-level jet, so according to the hadronization model
in PYTHIA, the nonperturbative corrections are small.
To better assess the learned separation power, we plot

receiver operating characteristic (ROC) curves in Fig. 3,
obtained by placing a sliding cut over the distributions
in Fig. 2. We also indicate their area under the curve
(AUC) scores in the legend. The ROC curves underscore
and quantify the trends observed in Fig. 2. The EFN is
an extremely efficient parton-versus-hadron classifier,
whereas the L-EFN performs barely better than random
chance. We therefore conclude that the 1-Lipschitz modi-
fication is effective at suppressing the L-EFN’s sensitivity
to nonperturbative effects.

As a point of comparison, Fig. 3 also shows ROCs and
AUCs for multiplicity, PFNs and L-PFNs—all explicitly
IRC-unsafe observables. Unsurprisingly, the PFN is able to
nearly perfectly distinguish parton from hadron jets, and
the L-PFN performs only slightly worse. This indicates that
the 1-Lipschitz constraint does not severely limit the
expressiveness of the model, and that the large gap between
the EFN and L-EFN is a genuine result of nonperturbative
effects.

C. Confirming the EMD bound

As a cross-check of our analysis, we verify that the
learned L-EFN satisfies the EMD bound in Eq. (6). The
plots in Fig. 4 compares the difference between observables
at parton level versus hadron level to the EMD between
parton- and hadron-level events.
The top row of Fig. 4 reproduces Fig. 2 of Ref. [44] for

the β ¼ 1 angularity:

λð1Þ ¼
X
i∈ jet

ziΔRi;jet; ð7Þ

where zi ¼ pT;i=pT;jet and ΔR2
i;jet ¼ Δη2i;jet þ Δϕ2

i;jet. This
function is 1-Lipschitz and the bound is respected and
nearly saturated.
The middle column of Fig. 4 shows the nonperturbative

modification to the EFN score, which clearly violates the
theoretical bound. This is expected, since the EFN is not
required to be a Lipschitz function. Indeed, there is no finite
slope (i.e. Lipschitz constant) that would bound the EFN
score relative to the EMD.

FIG. 3. ROC curves for parton- vs hadron-level discrimination for (a) quark and (b) gluon jets using an EFN/PFN (solid) and
an L-EFN=L-PFN (dashed). The bands represents the spread from starting with 10 different random initializations of the neural
networks. The results for constituent multiplicity is shown for reference. Only the L-EFN shows the desired lack of sensitivity to
nonperturbative effects.

6We did not perform an extensive hyperparameter scan, but we
found little gains from small variations on our setup.
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By contrast, the bottom row of Fig. 4 demonstrates that
the L-EFN does respect the EMD bound. For illustrative
purposes, we show the L-EFN logits (i.e. pre-activations on
the final layer), since the actual output scores all lie along
the bottom of the plot. Even after performing the logit
transformation, the L-EFN does not appear to saturate the
bound, unlike what was seen for the IRC-safe angularities.

IV. VISUALIZING NONPERTURBATIVE EFFECTS

The above case study demonstrates that IRC safety is
insufficient to protect against large nonperturbative modifica-
tions, but it gives no immediate insight intowhich observables
are most susceptible. In this section, we take a step toward
answering this question by training EFNs with a minimal
latent dimension size of l ¼ 1. This corresponds to a single
learned filter Φðη;ϕÞ which can be easily visualized, and a
simple one-dimensional classification function F.
As in Sec. III B, we train l ¼ 1 EFNs and L-EFNs to

discriminate parton- and hadron-level jets, treating the
quark and gluon samples separately. Perhaps surprisingly,
the l ¼ 1 EFNs are still able to achieve AUCs of 0.90

(quarks) and 0.91 (gluons), compared to 0.96 for the full
l ¼ 60 models in Sec. III B. The l ¼ 1 L-EFNs perform
similarly well, with AUCs of 0.54 and 0.53, compared to
0.55 and 0.54 previously. We therefore conclude that an
l ¼ 1 analysis is sufficient to capture the leading sources of
nonperturbative sensitivity.
In Fig. 5, we plot the filter profiles Φðη;ϕÞ for the l ¼ 1

(L-)EFNs (left and middle columns) alongside their angle-
averaged radial profiles (right column). All filters exhibit
cylindrical symmetry, as expected since the generated
samples are for unpolarized jets with no preferred angular
orientation. Interestingly, the EFN filters appears to be
maximally sensitive to highly collinear radiation. Despite
the jet radius being R ¼ 1.0, the EFN filters peak within a
radius of ∼0.02, with a plateau going out to larger scales.
The EFN filters also vanish at the origin, reflecting the
consistent presence of a particle at R ¼ 0 aligned with the
WTA jet axis.7

FIG. 4. Two dimensional distributions of the parton-hadron EMD versus the difference in observables at parton- and hadron-
level. Shown are results for (a, d) the β ¼ 1 angularity λð1Þ, (b, e) an EFN, (c, f) an L-EFN, separately for (a–c) quark jets and (d–f)
gluon jets. The EMD is computed using momentum fractions zi in keeping with the λð1Þ=EFN=L-EFN calculations, and is thus
dimensionless.

7If angles are instead measured with respect to the standard
jet momentum axis, then the l ¼ 1 EFN filters often exhibit
anisotropic features.
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The L-EFN filters, on the other hand, cannot vary so
rapidly near the origin due to the 1-Lipschitz constraint.
Thus, theL-EFN cannot be as sensitive to collinear radiation,
while simultaneously ignoring the central particle.
This differing behavior of EFNs and L-EFN is consistent

with theoretical expectations about the nonperturbative
sensitivity of the angularities:

λðβÞ ¼
X
i∈ jet

ziΔR
β
i;jet; ð8Þ

which has Lipschitz constant L ¼ β. When β ≳ 1, non-
perturbative corrections are suppressed by ΛQCD=Ejet, so
they are relatively small and independent of β for high
energy jets, in agreement with the L-EFN behavior.
For β ≲ 1, though, nonperturbative corrections scale as

ðΛQCD=EjetÞβ. This is unsuppressed as β → 0, which yields
large differences between parton-level and hadron-level
distributions. Note that in the β → 0 limit, the angularities
are dominated by collinear emissions. This explains why

FIG. 5. Angular filters Φðη;ϕÞ for parton-level versus hadron-level discrimination with a latent space of dimension l ¼ 1. The EFN
filters are shown for (a) quark and (c) gluon jets, and similarly for the L-EFN filters for (b) quark and (d) gluon jets. The radial profiles
ΦðR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ϕ2

p
Þ are shown in (e), demonstrating the EFN sensitivity to highly collinear emissions (R≲ 0.02). While the jet radius is

R ¼ 1.0, we have zoomed in to show the collinear structure of the filters.

FIG. 6. Parton versus hadron discriminating power for the angularities λðβÞ from Eq. (8) as a function β. Shown are (a) ROC curves and
(b) AUC scores. We also show ROC curves for the l ¼ 1 EFNs and L-EFNs, which agree well with the β ≪ 1 and β ≈ 1 limits. For
simplicity, in (a) we only show quark ROC curves for the β scan, though the gluon results are qualitatively similar.
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the IRC-safe EFN with no Lipschitz constraint can have
large nonperturbative sensitivity coming from small-angle
physics.
In Fig. 6, we quantify the parton versus hadron dis-

crimination power of the angularities as a function of β.
ROC curves are shown for the EFN and L-EFNs for
comparison, and we see a rough interpolation where
β → 0 maps to the EFN, while β ≈ 1 maps to the L-EFN.
The AUCs monotonically increase as β decreases, peaking
around β ¼ 0.02 before losing sensitivity as β → 0.

V. CONCLUSIONS AND OUTLOOK

In this paper, we demonstrated the susceptibility of
IRC-safe neural networks to large, incalculable nonpertur-
bative corrections. We showed how to make the network
maximally sensitive to these corrections by training it to
distinguish between parton-level and hadron-level jets. In
general, there is nothing constraining this effect in a typical
application. Although IRC safety guarantees that the net-
work’s output is perturbatively calculable in principle, this
is insufficient for robustness to large and potentially
mismodeled nonperturbative corrections.
To mitigate this issue, we introduced a new neural

network architecture, the L-EFN, which has significantly
reduced sensitivity to nonperturbative physics. We achieve
this by constraining the networks to be L-Lipschitz
functions, which bounds potential nonperturbative mod-
ifications according to the EMD between parton- and
hadron-level jets. Using PYTHIA’s hadronization model as
a proxy for nonperturbative effects, we demonstrated that
an L-EFN is barely able to distinguish between the same jet
at parton- and hadron-level. In the future, it would be
interesting to explore different hadronization models and
other nonperturbative effects like multiparton interactions
(i.e. underlying event). It would also be interesting to study
the robustness of L-EFNs to perturbative uncertainties in
parton showers.
The ideas behind L-EFNs could be extended to other

architectures, such as graph neural networks and transform-
ers, though it may be more complicated to derive theoretical
bounds similar to Eq. (6). It would also be interesting to
benchmark L-EFNs and L-EFN-inspired architectures on
standard jet tagging tasks and assess the tradeoff between
performance and robustness to hadronization. In the case of
L-EFNs, the Lipschitz constant provides an easily tunable
network constraint that balances these considerations. The
non-Lipschitz networks trained to distinguish parton and
hadron jets may also be useful to explore the impact of
hadronization where it is predicted to be the largest. For non-
IRC-safe networks, our studies did not reveal dramatic

differences between PFNs and L-PFNs, but the flexibility
to adjust L may be beneficial for ablation studies.
With a growing trend to build robust and interpretable

neural networks that are structured with particle physics in
mind, it is important to be guided by both formal and
practical considerations. Finding a balance between neat
theoretical constraints and performance demands is inevi-
tably delicate, but L-EFNs present a concrete step toward
uniting the power of deep learning with a reasoned caution
against learning spurious or unphysical details of a sim-
ulation. We look forward to continued investigation and
development in future work, and hope to see the ongoing
development of new machine learning tools alongside
theoretical tools to better understand them.

ACKNOWLEDGMENTS

We thank Rikab Gambhir for feedback on the manuscript
and discussions of the β → 0 limit of angularities. We thank
Eric Metodiev and Andrew Larkoski for additional helpful
comments. S. B. T. is supported by the National Science
Foundation under Award No. PHY-2209443. B. N. is sup-
ported by the U.S. Department of Energy (DOE), Office of
Science under Contract DE-AC02-05CH11231. J. T. is sup-
ported by the DOE Office of High Energy Physics under
Grant Contract No. DE-SC0012567, by the National Science
FoundationunderCooperativeAgreementNo.PHY-2019786
(The NSF AI Institute for Artificial Intelligence and
Fundamental Interactions, [62]), and by the Simons
Foundation through Investigator Grant No. 929241. This
research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231 using NERSC award HEP-ERCAP0021099.

APPENDIX: QUARK VS GLUON JET
DISCRIMINATION WITH L-EFNS

In Secs. III and IV, we contrasted EFNs and L-EFNs for
the relatively contrived scenario of distinguishing parton-
from hadron-level jets. While this demonstrated our point
about the large potential impact of nonperturbative physics
on EFN observables, it does not reflect a realistic use case
of (L-)EFNs. In this appendix, we compare EFNs and
L-EFNs on a canonical collider physics task: discriminat-
ing quark and gluon jets.
Using the datasets described in Sec. III A,we train different

(L-)EFNs and (L-)PFNs to discriminate quark jets fromgluon
jets. We perform separate trainings on hadron-level and
parton-level inputs, but always evaluate the performance on
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hadron-level jets. In Fig. 7, we show ROC curves for quark/
gluon jet discrimination using these (L)-EFNs/PFNs. As
expected, the default L-EFN with L ¼ 1 performs exactly
as well as the angularity λð1Þ, both of which underperform

relative to theunconstrainedEFNandbothPFNs.Notably, the
L-EFNperformance is nearly identicalwhether it is trainedon
hadron- or parton-level inputs, highlighting the expected
robustness to nonperturbative effects.
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