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ABSTRACT 

Diffusion MRI is a technique that is capable of providing unique contrast that is sensitive to 

molecular displacement motion at cellular and sub-cellular length scales. By sensitizing MR 

signal to the random motion of water molecule protons at a microscopic level (of the order of 5–

20µm), it is able to probe tissue microstructures in the brain such as axons, dendrites, glial cells, 

and extra-cellular spaces, in a manner that may provide valuable insights into tumor physiology.  

Diffusion imaging is routinely acquired as part of the MR protocol for patients with brain 

tumors. However, the implications of the parameters being used are often not appreciated by the 

oncology community. This is especially true when applied to patients with high-grade glioma, 

where the lesion is highly heterogeneous and changes in diffusion parameters are due to a 

combination of treatment effects, edema and tumor infiltration. Although advanced diffusion 

models that aim to distinguish between different types of tissue have the potential for providing 

information that is complementary to conventional MR imaging, their application has been very 

limited due to their relatively long acquisition time.  

These challenges have become the motivation for this thesis. We first explored the value of 

standard diffusion imaging methods in characterizing tumor response to therapy. By applying 

different ways of evaluating changes in the apparent diffusion coefficient (ADC) and examining 

their association with patient outcomes in clinical trials, we hoped to gain a better understanding 

of the physiological process behind the patterns of changes that occur, and improve the 

interpretation of the data obtained. The next step was to bridge the gap between advanced 

diffusion models and their clinical applications by using fast diffusion imaging techniques. This 

was achieved by optimizing the protocol for acquiring multiband diffusion data at 7T and the 

post-processing pipeline for such data. The quality of the 7T multiband data was evaluated 

qualitatively and quantitatively in comparison with data obtained at 3T. The acquisition of 
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multiband two shell diffusion data allowed us to apply neurite orientation dispersion and density 

imaging (NODDI) to patients with glioma and to evaluate its performance in distinguishing 

between different types of tissue.  

The results of this dissertation suggest that diffusion imaging plays an important role in 

assessing gliomas. These are very important steps towards improving the assessment of residual 

disease and distinguishing between tumor and treatment effects for patients with brain tumors. 
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Chapter 1  
Background 

This chapter begins by providing an overview of the basic characteristics of primary brain 

tumors, with a special focus on glioblastoma. A brief review of fundamental MR physics and 

widely used MR imaging techniques is then presented. Diffusion imaging is introduced in greater 

detail, including its imaging principles, practical aspects of the basic sequence and major 

applications in brain tumors. 

1.1 Brain Tumor 

1.1.1 Structures in the Brain 

The major types of cells in the central nervous system (CSN) are: neurons, axons, and glial 

cells. An understanding of the basic functions of these cells is crucial for understanding the 

interaction between brain tumor physiology, treatments and changes in the appearance of the 

lesion on diffusion weighted images.  Figure 1-1 shows a schematic representation of the major 

structures in the cellular network. The neurons are key components for processing and 

transmitting information by electrical and chemical signaling. They comprise cell bodies, axons 

and dendrites. The axons are the primary transmission lines that connect different parts of the 

brain and conduct electrical impulses. Their diameters range from less than 0.2µm to up to 10µm. 

The majority of axons with diameters greater than 0.2µm are wrapped with an electrical 

insulating layer called a myelin sheath, which helps to increase the propagation speed of impulses 

along the axons 1. When myelin degrades, conduction of signals along the nerve can be impaired 

or lost. This is the case with certain neurodegenerative disorders such as multiple sclerosis. 

Glia cells surround and sheath neuronal cell bodies, axons and synapses throughout the CNS. 

They make up most of the cells in the brain and can further be separated into (i) Astrocytes, 
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which maintain homeostasis in the brain by providing neurons with energy and substrates for 

neurotransmission,  (ii) Oligodendrocytes, which form a myelin sheath around axons in the CNS; 

and (iii) Microglia, which act as the first and main form of active immune defense in the CNS 2. 

 

Figure 1-1. Schematic representation of the major cellular elements in the central nervous system (CNS), which 

include: neurons, axons, myelin sheath and glial cells (Oligodendrocytes, Astrocytes, Microglia). Adapted from 

Julia M. Edgar IRG 2009.3 

From a macrostructure view, the brain has three main components: grey matter, white matter 

and cerebrospinal fluid (CSF). The grey matter or cortex is distributed at the surface of the 

cerebral hemispheres as well as in the center of the cerebrum. It is composed of neurons, glial 

cells and capillaries. The white matter contains the majority of myelinated axons. The name 

‘white’ is used because it appears lighter in color due to the fatty myelin sheath. Within white 

matter tracts, the majority of axons lie parallel to each other (Morell, 1984).  CSF is a clear bodily 

fluid that occupies the ventricular system and surrounds the cortical surface of the brain. Figure 

1-2 shows a coronal T1-weighted MR image with these components labeled. 
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Figure 1-2. A MRI image of brain showing regions of white matter, grey matter, the Ventricles and the Corpus 

Callosum. The latter is the largest white matter structure in the brain and consists of 200-250 

million contralateral axonal projections. 

1.1.2 Histologic Features of Gliomas and Grading 

It is estimated that seventy percent of the 22,500 malignant primary tumors of the brain and 

spinal cord that are diagnosed in the United States each year are gliomas 4. These tumors 

originate from glial cells and are characterized by the World Health Organization (WHO) criteria 

on a four-tiered scale. Five histologic features form the basis for this definition: nuclear atypia, 

cellular density, mitotic activity, endothelial proliferation, and the presence of necrosis 5. Grade I 

gliomas are benign and slow-growing, with the best prognosis. They include piliocytic 

astrocytomas, which most commonly occur in children. Although they are hypercellular, they do 

not include any of the five features of malignancy. Grade II gliomas are relatively slow growing, 

but can transform to a higher grade at the time of recurrence. The major sub-types are diffuse 

astrocytomas, oligodendrogliomas, and oligoastrocytomas. They have moderately increased 
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cellular density and the presence of nuclear atypia, but lack mitotic activity, necrosis, and 

endothelial proliferation. Grade III gliomas are considered “high-grade” and have increased 

mitotic features. Grade IV gliomas are the most malignant subtype, with high cellular density, 

marked nuclear atypia, elevated mitotic activity, presence of necrosis, and/or endothelial 

proliferation. The most common sub-type of grade IV glioma are called glioblastoma (GBM). 

This dissertation is focused primarily on diffusion MR-imaging techniques that aid in the 

diagnosis and management of GBM. 

1.1.3 Treatment of GBM 

GBM are aggressively treated with surgery, adjuvant radiation therapy and chemotherapy. 

Despite advances in care, overall survival (OS) remains limited at approximately 15 months for 

patients with newly diagnosed lesions 6 and 30 weeks for patients with recurrent GBM 7. 

Surgery is the first line of treatment, with the goal of achieving the maximal safe resection of 

the lesion without causing excessive neurological damage. The extent of resection is typically 

categorized into gross total resection (GTR), subtotal resection (STR) or biopsy, based upon how 

much of the Gadolinium enhancing lesion on the T1-weighted images is present in the post-

operative scan.  

Radiation therapy may be given as a first line treatment, in conjunction with chemotherapy. It 

works by damaging the DNA of cells and thereby limits their potential for proliferation.  The 

target is typically defined by the anatomical abnormality observed in MR images, plus an 

additional 2-3cm margin of normal appearing tissue. The standard therapeutic dose for GBM is 

60Gy, which is administered in 30-40 fractions in an attempt to avoid neurotoxicity and limit 

damage to normal tissue. Radiation necrosis is often observed after therapy and makes it 

extremely difficult to differentiate tumor recurrence from the effect of the treatment itself. 

Chapter 4 of this thesis will expand on this problem and discuss how advanced MR techniques 
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(diffusion, perfusion, and spectroscopic imaging) may be able to aid in differentiating between 

these options. Adding radiotherapy to surgery was shown to increase median survival in patients 

with newly diagnosed GBM from 3-4 months to 7-12 months 8. 

Chemotherapy utilizes agents that have the ability to affect one or more pathways that the 

tumor utilizes to grow. Examples are the inhibition of protein kinase C activity, tumor 

angiogenesis, growth factors or tumor invasion. In 2005, it was shown that adding concomitant 

and adjuvant temozolomide, which is an oral alkylating agent, increased median survival from 

patients with GBM to 14.6 months compared to 12.1 months with radiotherapy alone 8. This has 

become the standard care for GBM. The highly degree of vascularized in GBM and the key role 

that angiogenesis plays in growth and progression makes disruption of the angiogenic pathway 

another attractive target for therapeutic intervention.  

A variety of intra- and extracellular strategies that disrupt and impede tumor angiogenesis are 

under investigation 9-11. These include sequestering circulating VEGF to reduce cell-surface 

VEGFR activation (bevacizumab, alfibercept), pan-VEGFR tyrosine kinase inhibitors (cediranib), 

broadspectrum tyrosine kinase inhibitors (sorafenib, sunitnib, XL-184), intracellular protein 

kinase inhibitors (enzastaurin), and many others. Bevacizumab was successful in receiving 

accelerated approval from the U.S. Food and Drug Administration (FDA) for use as a single-

agent in recurrent glioblastoma patients, based on early evidence of radiographic response 12,13. 

This was a key step for integrating antiangiogenic therapy strategies into the clinical care of 

patients with malignant glioma and raised important clinical questions about how to evaluate 

response to therapy. In this dissertation, we will discuss a clinical trial that evaluated 

bevacizumab in patients with newly diagnosed GBM and that demonstrates the potential of using 

MR diffusion imaging to predict response for these patients.  
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1.2 Basics of Magnetic Resonance Imaging 

The high soft-tissue contrast of MRI is the major diagnostic modality in the evaluation of 

brain tumors. A brief introduction to the basic principles of MRI is presented here, followed by a 

description of how it is used routinely in the diagnosis and evaluation of brain tumors.  

1.2.1 Spins 

The property of Nuclear Magnetic Resonance (NMR) was first described by Rabi in 1938. 

Purcell and Bloch showed how it could be applied to fluids in 1946 and received the Nobel Prize 

in Physics for their work in 1952. Since then, NMR has become a powerful tool for chemical and 

structural analysis of different molecules. In 1973, Lauterbur and Mansfield used the principles of 

NMR to produce non-invasive images of the body and were awarded the Nobel Prize in Medicine 

and Physiology in 2003. Over the past 40 years, MRI has become a widely available technology 

and been applied to address many biomedical, chemical and engineering problems. 

The atom is the smallest unit of matter and is composed of a cloud of electrons and a nucleus 

that is made up of protons and neutrons. An individual unpaired elementary particle (e.g. proton, 

electron, or neutron) processes an angular momentum or spin of ½ that can be either positive or 

negative. Nuclei with an odd number of protons and/or neutrons has a non-zero spin and are 

therefore NMR active. The abundance of the hydrogen atoms (1H) within water protons in the 

human body has made it the dominant nucleus that is utilized for MRI. 

1.2.2 Resonance 

In natural environments, a non-zero spin rotates around its own axis creating a microscopic 

magnetic field, which is called a nuclear magnetic dipole moment and that is randomly oriented. 

When placed in an external magnetic field 𝐵!, two things happen. The first is that the spins will 
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process about 𝐵! with a frequency 𝜔! determined by its physical property named gyromagnetic 

ratio (𝛾) and the field strength 𝐵!  

 𝜔! = 𝛾𝐵! Eq 1-1 
   

The procession angular frequency 𝜔!, also called the “Larmor Frequency”, which provides the 

key for creating localization in MRI.  

The second thing that happens when the spins are placed in an external magnetic field 𝐵! is that 

they will align themselves with the external field 𝐵! in two possible orientations, parallel (lower 

energy) or anti-parallel (higher energy). According to the laws of thermodynamics, the number of 

spins in the lower energy state slightly outnumbers the number of spins in the higher energy state. 

This small but significant difference is given by Boltzmann statistics by the ratio in Eq 1-2, where 

𝑁! and 𝑁! are the number of spins in the higher and lower energy states respectively, 𝑘 =

1.38×10!!"𝐽𝐾!! is Boltzmann’s constant and T is the temperature in degrees Kelvin.  

 𝑁!
𝑁!

= 𝑒𝑥𝑝
!!!!

!"  
Eq 1-2 

   
   
At thermal equilibrium, the small population excess of spins in the lower energy state gives rise 

to the equilibrium magnetization, 𝑀! given by Eq 1-3, where ℏ is the Planck’s quantum constant 

and N is the number of excess spins.  

 
𝑀! ≈ 𝑁

𝛾!ℏ!𝐵!
4𝑘𝑇

 
Eq 1-3 

   
 

1.2.3 Excitation and Relaxation 

Once the sample of interest is placed in the MR scanner, the spins align (parallel or anti-

parallel) in the direction of the main 𝐵! field (z-direction) and the equilibrium magnetization (𝑀!) 
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is produced in the same direction. For a receiver to sensitize the signal to 𝑀!, a radiofrequency 

(RF) pulse gradient 𝐵! is applied perpendicular to the z-axis to rotate the  𝑀! from z-axis to the 

transverse plane (x-y plane). This process is called excitation. The application of the RF pulse 

causes the particles to absorb the energy required to move from the lower energy state to the 

higher energy state. The angle between the 𝐵! field and rotated 𝑀! is called the flip angle 𝛼, 

which is proportional to 𝐵! and the time 𝜏 that the rf pulse is applied (Eq 1-4) (Figure 1-3).  

 𝛼 = 𝛾𝐵!𝜏 Eq 1-4 
   

 

 

Figure 1-3. After excitation, M is tipped away from the B0 axis through angle 𝜶 and precesses about B0 with 

Mxy(t) and Mz(t). 

After the rf pulse is applied, the magnetization vector M precesses about the z-axis at the 

Larmor frequency ω. There are two methods by which M returns to its initial state (M!). These 

are longitudinal and transverse relaxation. 

Longitudinal relaxation is the process by which spins release energy into the surrounding 

lattice environment allowing the corresponding magnetization (M!) to recover to equilibrium M!. 

The growth of M! is defined by Eq 1-5, where T! is the rate constant that describes this process 

and is defined by the time it takes for M! to recover to 63.2% of M!. 

 
𝑀! 𝑡 = 𝑀!(1 − 𝑒

! !
!!) 

Eq 1-5 
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Transverse relaxation is the process by which spins lose their coherence through spin-spin 

interactions and the correpsonding magnetization (M!") recovers to zero. This is most frequently 

due to slowly fluctuating or static field variations within tissue, which cause individual spins to 

experience a slightly different magnetic field. This means that the spins resonate at slightly 

different frequencies, resulting in a temporary gain or loss of phase with respect to the other 

spins. The resulting loss of coherence or “dephasing” reduces the net transverse magnetization, 

M!", and is governed by Eq 1-6, where T! is the rate constant that describes this process and is 

the time it takes for M!" to decay to 36.8% of original M!" component. 

 
𝑀!" 𝑡 = 𝑀!𝑒

! !
!! 

Eq 1-6 

   
In practice, magnetic field inhomogeneity and susceptibility effects also cause spin 

dephasing, which more rapidly decreases M!". 𝑇!∗ is the time constant that describes the loss of 

coherence due to external field inhomogeneities (T!" ) as well as intrinsic, non-reversible T! 

dephasing. T! is described by Eq 1-7. 

 𝑇!∗ =
1
𝑇!
+

1
𝑇!!

 
Eq 1-7 

   
Differences in 𝑇! and 𝑇! values between tissues are key to generating contrast in MR images. 

Table 1-1 shows 𝑇! and 𝑇! for major regions of the brain. In general, 𝑇! values are much less 

dependent on 𝐵! compared to 𝑇!. Both of them are strongly influenced by the water content of 

tissue and vary significantly in abnormal tissue. This is one of the reasons why MRI is a highly 

sensitive tool for imaging the brain.  

Table 1-1. Typical T1 and T2 values for grey and white matter at 1.5T and 3T 

Brain Tissue T1 T2 
 1.5T 3 T 1.5T 3T 

White Matter 884 ms 1100 ms 72 ms 60 ms 
Gray Matter 1124 ms 1800 ms 95 ms 70 ms 
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MR signal (S) is dependent on the 𝑇𝑅, 𝑇𝐸, 𝑇! 𝑇!, and the spin population (𝜌) as described in 

Eq 1-8.  

 
𝑆 = 𝜌(1 − 𝑒!

!"
!! )  𝑒!

!"
!!  

Eq 1-8 

   
As can be seen, contrast from 𝑇! and 𝑇! can be accentuated or alleviated by using different TR 

and TE. Table 1-2 demonstrates how altering TR and TE can change the 𝑇! and 𝑇! weighting of 

image contrast.  

Table 1-2. Relationship between TE, TR and various image-weighting. 

Image-Weighting TE TR 
T1 weighted Short Short 
T2 weighted Long Long 
Proton Density-weighted Short Long 
 

1.3 MRI of Brain Tumor 

1.3.1 Anatomical Imaging 

The phase “anatomical imaging” in MRI refers to T1 and T2-weighted images, which have 

been standard sequences in routine clinical use in many years. Despite rapidly developing MR 

imaging techniques, T1 and T2-weighted images are still critical tools for the diagnosis of brain 

tumors.    

Regions where the blood brain barrier (BBB) has broken down are generally thought to be the 

most aggressive portion of the brain tumor. Gadolinium-based contrast agents leak out of the 

vasculature in such regions and cause a shortening in T!. In normal brain, where the BBB is in 

intact, these agents remain in the vasculature and will not be seen in brain tissue. Gadolinium 

contrast agents are very useful for identifying regions of BBB disruption and have been used as 

surrogate markers of tumor presence in GBM. However, Contrast enhancement cannot visualize 
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the full extent of glioma due to its infiltrating feature. The region that tumor cells blend with the 

normal brain parenchyma where the blood brain barrier is still intact is not seen in T1 images. 

And T2 weighted images were often used to define the extent of tumor region.  

T2 values vary between abnormal and normal tissue. The abnormality usually causes the T2 

values to increase and even small variations cause a significant visual difference in T2-weighted 

images. Typical T2-weighted images include fluid-attenuated inversion recovery (FLAIR) and 

fast spin-echo (FSE) sequence. The FSE can sometimes be difficult to interpret especially given 

the cases of tumors that occur very close to the CSF and both regions would show hyperintensity. 

In contrast, FLAIR gives better contrast between abnormal regions and normal brain tissue as the 

sequence would null the signal coming from CSF before excitation by playing an inversion 

recovery pulse. Both FLAIR and FSE are acceptable images for assessing changes in tumor 

volume, although FLAIR is currently more dominant.  

Patients who present with headaches or seizure are referred for an MRI exam of the brain. 

This typically includes T1-weighted images, with and without contrast, and T2-weighted images. 

Radiologists review the images to identify suspicious features such as presence of an enhancing 

mass, volume effect, and T2 hyperintensity. Figure 1-4 shows an example of a patient with de 

novo, treatment-naïve GBM which is depicted by a region of T2 hyperintensity on a FLAIR (A) 

and FSE (B), collapsing of the patient’s left ventricle due to obvious mass effect (C), and a region 

of contrast enhancement seen by T1-weighted post-contrast hyperintensity (D).  

If the imaging exam shows evidence of such features, the patient will undergo biopsy and/or 

surgical resection. Histologic analysis of the tissue samples that are acquired during these 

procedures are examined to identify the most malignant features and define the grade of the 

tumor. As discussed in section 1.1.3, standard therapy also includes combined radiation therapy 

and temozolomide. 
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Figure 1-4. T2-weighted FLAIR (A) and FSE (B), T1-weighted pre-contrast (C), and T1-weighted postcontrast 

(D) MR images at 3 Tesla of a patient with newly diagnosed GBM. 

1.3.2 Perfusion Imaging 

Advanced imaging methods that can be used to monitor physiologic and metabolic changes in 

the brain have been proposed as tools that can provide a more accurate diagnosis and assessment 

of response to therapy for GBM. Perfusion has been used to assess vascular function by tracking 

the relaxation effects of a bolus of gadolinium that has been injected intravenously as it circulates 

through the brain. The most widely used perfusion imaging technique in clinical setting is 

dynamic susceptibility contrast imaging (DSC). This highlights the time-course of changes in 

image contrast due to alterations in relaxation times and can be used to describe functional 

characteristics of the underlying vasculature.  

DSC-MRI focuses on capturing the first-pass of the bolus of contrast agent. It utilizes the 

decrease and subsequent recovery in signal observed on T2 or T2* weighted images as the agent 

passes through the vasculature. The reduction in signal is due to spin-spin dephasing due to the 

susceptibility gradient, which is induced by the intravascular compartmentalized gadolinium. The 

signal intensity over time curve can be converted to a change in T2* relaxivity (∆𝑅!∗) curve which 

has a nearly linear relationship with contrast agent concentration 14, thus providing information 

about the hemodynamics of the tissue. 
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Multiple parameters can be derived from DSC curves. The parameter most widely reported is 

the cerebral blood volume (CBV). This relates the area under the curve during the bolus to the 

concentration of the agent. Other parameters include the height of the peak (PH) in the ∆𝑅!∗ curve 

and the percent recovery to baseline (RECOV), which reflects the leakiness of the tumor induced 

vessels. Figure 1-5 shows the generation of a ∆𝑅!∗  curve and the quantification of PH and 

RECOV.  

 

Figure 1-5 a) T2 and contrast enhancing contours overlaid on a GRE EPI and corresponding resampled 

T2* signal intensity time curves. b) Plot of T2* signal intensity time curve, S(t), for one voxel with red solid 

arrow denoting the time of contrast agent injection. c) Relative concentration curve (∆𝑹𝟐∗ ) obtained. Peak height 

(PH) is the distance from 1 to 2, while percent recovery represents how much the post-bolus signal 3 has 

recovered from the peak 2. (Courtesy of Janine Lupo) 

DSC-MRI has been found great potential in evaluating malignancy of gliomas in many 

studies. In particular, it’s been shown to improve the characterization of the degree of 

angiogenesis 15 and was found to correlate with the vascular histopathology 16.  It has also been 

used to assess response to antiangiogenic therapy 17,18 and as well as a potential biomarker for 

prognosis following standard treatment 19,20. The use of DSC-MRI for differentiating true 

progression from pseudoprogression has also been an area of interest for investigation 21-23. 
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1.3.3 Spectroscopic Imaging 

Another technique that is becoming more widely used is that of spatially localized in vivo H-

1 Magnetic Resonance Spectroscopic Imaging (MRSI). This is able to simultaneously measure 

the levels of different cellular metabolites from multiple voxels and is based upon the observation 

that protons in different regions of a molecule resonate at the different frequencies due to 

variations in chemical shift and J-coupling.  

Chemical shifts reflect differences in frequency that are observed when the electron clouds 

surrounding protons create small magnetic fields that oppose the main 𝐵! field. This effect is 

known as shielding and it affects the resonant frequency as described by Eq 1-9, where σ is the 

chemical shielding factor for chemical i.  

 𝜔! = 𝛾𝐵!(1 − 𝜎!) Eq 1-9 
   
The chemical shift expressed is typically expressed in a frequency scale independent of the 

magnetic field strength and is called parts per million or ppm. The ppm value for a proton 

resonating at a frequency 𝜔!  is defined by Eq 1-10, where reference frequency, 𝜔!" , of 

tetramethylsilane (TMS) is defined to be 0 ppm. The ppm value is used to display MR spectra, 

with positive ppm values to the left. 

 𝑝𝑝𝑚! =
𝜔! − 𝜔!"
𝜔!"

×10! Eq 1-10 

   
J-coupling also affects the resonance of a proton in a molecule and is independent of magnetic 

field. In this case, interaction between the proton and neighboring electronegative groups 

translates to each peak splitting into a complex peak (e.g. doublet, triplet), this is referred to as 

spin-spin splitting. A proton having n neighboring protons will generally break down to n+1 

peaks due to these interactions. 
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In vivo MRSI data that are acquired from healthy brain tissue with a long TE (~144 ms) are 

characterized by three major metabolite peaks: choline (Cho), creatine (Cre), and N-acetyl 

aspartate (NAA). Abnormal processes in the brain, including inflammation, tumor, treatment 

effects, etc., affect the heights of the peaks corresponding to these metabolites and may also 

reveal resonances such as lactate (Lac) and lipid (Lip). Figure 1-6 illustrates spectra from normal 

and abnormal regions of the brain. 

 

Figure 1-6 MRSI from a tumor region with the spectra from normal tissue on the side. In a GBM, Choline is 

increased and NAA is decreased comparing to normal tissue, and elevated Lipid level indicates necrotic tissue. 

The choline peak resonates as a singlet at 3.22 ppm. It comprises free choline, acetylcholine, 

phosphocholine (PC), and glycerophosphocholine (GPC). Choline is required for the synthesis of 

the neurotransmitter acetylcholine and phosphatidylcholine is a major constituent of the cell 

membrane. An increase in the levels of choline provides a marker for excessive cell growth, 

increased cell density or cell membrane turnover, which are associated with increased tumor 

growth and/or treatment effects.  

Cho$

Cre$ NAA$

Lip$

Normal T1-gad
 
 

FLAIR 
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N-acetyl aspartate (NAA) appears as a singlet at 2.02 ppm. NAA is an amino acid that is 

synthesized in neurons and is a marker of neuronal viability. Decreases in NAA are observed in 

pathology with a loss of neurons or reduction in their function, as is seen in brain tumors.  

Creatine appears as two singlets at 3.04 and 3.9 ppm. The creatine peak is composed of 

creatine (Cre) and phosphocreatine (PCr). These metabolites are involved with ATP metabolism 

and are therefore thought to represent the energetic status of the cell. Creatine levels are relatively 

unaffected in many diseases but however patients with GBM often do show a reduction of 

creatine in comparison to normal brain 24. 

Lipids may appear in the spectra due to folding in from the skull or in regions of necrotic 

tumor, with a chemical shift of 1.3 and 0.9 ppm.  Lipids in the cell membrane do not significantly 

contribute to the observed signals due to their very short T2 relaxation. The resonances that can 

be observed are thought to be correlated with mobile lipids, such as adipose or cytoplasmic 

droplets, and to be associated with phospholipids that are released during cell breakdown. The 

presence of lipid peaks is typically associated regions of necrosis that are observed in high-grade 

gliomas 25. 

Lactate appears as a doublet at 1.33 ppm and is a byproduct of anaerobic glucose metabolism. 

Although it is not usually seen in normal spectra, it is more likely to be present in areas of tumor 

due to the presence of poor oxygenation and hypoxia. It can also be observed in ischemic regions 

of tumor regions 26,27, which is typically observed immediately post surgery. It is a potential 

physiologic marker for tumor malignancy 28. 

There is a growing body of evidence in the literature that MRSI can contribute to diagnosis 

and treatment monitoring for patients with glioma 29-34. 
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1.4 Diffusion Imaging 

Diffusion MRI is a technique that is capable of providing in vivo images with a contrast 

uniquely sensitive to molecular displacement at cellular and sub-cellular length scales. The 

average diffusion coefficient for water in the CNS is about 1 mm2/ms and the typical MR 

diffusion experiment employs a diffusion time of 20–80 ms. This means that the average water 

molecule probes a length scale on the order of 5–20um and makes diffusion MR sensitive to a 

wide range of tissue microstructures, including axons, dendrites, glial cells, et cl. Diffusion 

imaging has become a valuable tool in assisting diagnosis of many brain diseases, including acute 

stroke 35, epilepsy 36, multiple sclerosis 37 and brain tumors 38.  

Although it is possible to acquire diffusion data on most MR scanners and it is routinely 

included in many clinical protocols for evaluating patents with brain tumors, the implications of 

the parameters being used are often not appreciated by the oncology community. This is 

especially true when it is applied to patients with gliomas, where tissue is highly heterogeneous, 

changes in diffusion parameters are usually not specific to tumor. Advanced diffusion models that 

aim to disentangle differences in tissue composition have great potential in providing 

complementary information to routine MR imaging. At the current time, the applications of such 

advanced models in clinical studies has been very limited due to the long acquisition times that 

are typically required. These factors have provided motivations for this thesis in that we will 

explore the value of current routine diffusion imaging in several clinical trials to better understand 

their implications. We will also strive to bring advanced diffusion models into routine clinical 

application using state of the art fast imaging techniques.  

In the following section, we will introduce the basic principles of diffusion weighted imaging 

and summarize its current applications in the assessment of patients with GBM.  
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1.4.1 Diffusion Measurements Using MRI 

The diffusion that we are interested in is called intra-voxel incoherent motion, random 

motion, or Brownian motion (Figure 1-7a). If we drop ink in such a system, its shape become 

bigger as time elapses but its center remains at the same position. Along any arbitrary axis, the 

probability of going in all directions is the same. Assuming there is no barrier, the ink will spread 

out according to a “Gaussian” distribution. 

 

Figure 1-7 Schematic representation of random walk of a water molecule that has a displacement of x (red 

arrow) (a). The distribution of its displacement s after time t is shown in (b). 

As introduced in 1.2 and 1.3, signal intensity in MRI is dominated by the number of water 

molecules present (proton density), and by relaxation times such as T1 and T2. The task of 

measuring diffusion is to sensitize the signal intensity to the amount of the motion of the water 

molecules. To achieve this, a gradient field is applied so that molecules at different locations will 

experience different field strengths and hence be dephased by varying amounts.  

When a pair of dephasing and rephasing gradients are applied, the signal is sensitized to 

molecular motions and the signal becomes “diffusion-weighted”. i.e., the gradient “diffusion -

weights” the signal. This is because perfect refocusing happens only when water molecules do 

not change their locations between the application of the dephase-rephase gradients. Figure 1-8 

illustrates the basic sequence used in diffusion and shows how the phase evolves in the absence of 
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diffusion. Figure 1-9 illustrates how the application of diffusing gradients can tag the diffusing 

water molecules and ‘weights’ the signal.  

 

Figure 1-8 Illustration of phase evolution of spins at different stages of the image acquisition: (a) excitation (t = 

0); (b) dephasing; (c) refocusing (t = TE/2); (d) rephasing and (e) echo (t = TE). TE is the echo time. 

 The dephasing gradient “tags” locations of water molecules based upon their phase. If water 

moves, it results in disruption of the phase gradient across the sample and after the rephasing 

gradient, molecules that have moved can be detected because they have different phases from 

stationary molecules at the same location. MRI cannot measure the phase of individual water 

molecules, but it can detect imperfect rephasing based upon the loss of signal intensity. 
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Figure 1-9 Illustrations of spin phase evolution. Shown in red is the added diffusion gradients compared to 

Figure 1-8 

1.4.1.1 Mathematics of Diffusion Measurement 

The amount of phase difference introduced by a gradient pulse with strength 𝐺 and a duration 

of 𝛿 with respect to an arbitrarily defined reference point (x=0) is: 

 𝜙 𝑥 = 𝑒!"#$% Eq 1-11 
   

where 𝛾 is the gyromagnetic ratio (2.765×10!  𝑇/𝑠  ) and 𝑥 is the distance from the reference 

point along the x-axis. If we assume that there is free or unhindered diffusion, the distribution of 

water molecules can be described by a Gaussian distribution (Figure 1-7b). In general, the 

Gaussian function is described as: 

 1
𝜎 2𝜋

𝑒!! !!! 
Eq 1-12 

   
where 1 𝜎 2𝜋 is the scaling actor to normalize the area under the curve to 1. This gives us the 

population of water molecules at location 𝑥. The parameter 𝜎 controls the width of the curve, or 

how far water molecules travel on average. We can use Einstein’s equation, 2𝐷𝑡, to estimate the 

average distance water travels. So by substituting 𝜎 with 2𝐷𝑡, we can obtain: 
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 𝑃 𝑥, 𝑡 =
1
4𝜋𝐷𝑡

𝑒!!! !!" 
Eq 1-13 

   
where 𝑃 𝑥, 𝑡  tells population of water at location 𝑥 at time point 𝑡. The longer the 𝑡(= ∆), the 

wider the distribution becomes. For the fixed length of ∆, higher diffusion constants (𝐷) lead to a 

wider distribution.  

The total MR signal can be calculated by summing up the product of population and signal 

phase at location 𝑥: 

 
𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑃 𝑥, 𝑡 𝜙 𝑥 𝑑𝑥 =

1
4𝜋𝐷∆

𝑒!!! !!∆

!!
𝑒!"#$%𝑑𝑥 

Eq 1-14 

   
Eq 1-14 can be calculated as follows: 

 1
4𝜋𝐷∆

𝑒!!! !!∆

!
𝑒!"#$%𝑑𝑥 

=
1
4𝜋𝐷∆

𝑒!!! !!∆

!
cos 𝛾𝐺𝛿𝑥 𝑑𝑥 − 𝑖 𝑒!!! !!∆

!
sin(𝛾𝐺𝛿𝑥)𝑑𝑥  

Eq 1-15 

   
   
The second term is 0 because it is an asymmetric function. The integration of the real term is: 

 𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑒!!!!!!!!∆ Eq 1-16 
   

This signal intensity is normalized, so that its maximum value is 1 when 𝐺 = 0 (no diffusion 

weighting). If we assign 𝑆! and 𝑆 for the signal intensity without and with diffusion weighting, 

Eq 1-16 becomes: 

 𝑆 = 𝑆!𝑒!!
!!!!!!∆ Eq 1-17 

   
In a practical situation, the gradient length 𝛿 is usually long (5-30ms), and we cannot neglect 

the molecule motion during the gradient pulse. So the phase gradation introduced is now a 

function of both location 𝑥 and time 𝑡: 

 𝜙 𝑥, 𝑡 = 𝑒!"#(!)!" Eq 1-18 
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To calculate signal intensity, we need to integrate not only location 𝑥 but also time 𝑡. The 

derivation is omitted here and the general solution in the practical situation would be: 

 𝑆 = 𝑆!𝑒
!!!!!!!!(∆!!!!) Eq 1-19 

   
The parameters 𝐺, 𝛿, 𝑎𝑛𝑑 ∆ can be controlled by the scanner. These parameters are often 

abbreviated to one parameter, 𝑏 = 𝛾!𝐺!𝛿!(∆ − !
!
𝛿) and the preceding equations simplified to: 

 𝑆 = 𝑆!𝑒!!" Eq 1-20 
   
It can be seen from Eq 1-20 that from two measurements - with (𝑆) and without (𝑆!) diffusion 

weighting, we can estimate a diffusion constant along the direction that the gradient (𝐺) is applied. 

1.4.2 Principle of Diffusion Tensor Imaging (DTI) 

When diffusion occurs preferentially in a given direction it is described as being 

“anisotropic”. This is of great interest because it carries information about the underlying 

anatomical architecture of living tissues. Whenever there is ordered structures such as axonal 

tracts in the brain or protein filaments in muscle, the water tends to diffuse along them (Figure 

1-10). Due to collisions with the fibers, water molecules would travel less distance perpendicular 

to the fiber direction than along the fiber. It can be modeled as an ellipsoid with preferred 

direction pointing toward the fiber direction. If we can determine the shape of ellipsoid, we can 

obtain structural information about the object. This is exactly what we try to accomplish using 

diffusion tensor imaging (DTI). 
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Figure 1-10 Water diffusion in an environment contains densely packed long fibers. Due to collisions with the 

fibers, water molecules would travel less distance perpendicular to the fiber direction than along the fiber. It can 

be modeled as an ellipsoid with preferred direction pointing toward the fiber direction. 

Six parameters are needed to uniquely define an ellipsoid. We need three lengths for the 

longest, shortest, and middle axes that are perpendicular to each other. These three lengths are 

usually called 𝜆!, 𝜆!, 𝜆!, or “eigenvalues”. To define the orientation of the principal axes we need 

three unit vectors (three degrees of freedom). These vectors are called 𝑣!, 𝑣!, 𝑣! , or 

“eigenvectors”, as shown in Figure 1-10. DTI then characterizes the diffusion ellipsoid from 

multiple diffusion constant measurements along different directions. Intuitively we can see that if 

the directions are well chosen, we need at least six measurements to determine the six parameters 

(𝜆!, 𝜆!, 𝜆!, 𝑣!, 𝑣!, 𝑣!). 

Strictly speaking, the equations to measure diffusion constants (Eq 1-20) hold only when 

molecules are diffusing freely and when the process can be described by a Gaussian distribution. 

If there are obstacles and boundaries present (restricted diffusion), the basic assumptions does not 

hold. While the diffusion constant of the parenchyma could truly be slower than that of CSF 

because of higher viscosity, the majority of the reduction in translational motion observed is most 

likely due to the presence of obstacles. It is for that reason that the diffusion constant calculated 

from Eq 1-20 is typically called the “apparent” diffusion constant (ADC). 
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1.4.2.1 Mathematics of Diffusion Tensor Imaging 

In order to keep track of the six parameters 𝜆!, 𝜆!, 𝜆!, 𝑣!, 𝑣!, 𝑣!, we use a 3×3 tensor, called a 

diffusion tensor, 𝐷, which is related to the six parameters by diagonalization.  

 
𝑫 =

𝐷!! 𝐷!" 𝐷!"
𝐷!" 𝐷!! 𝐷!"
𝐷!" 𝐷!" 𝐷!!

!"#$%&#'"(#)"%&
𝜆!, 𝜆!, 𝜆!, 𝑣!, 𝑣!, 𝑣! 

Eq 1-21 

   
Rewriting Eq 10 in a more complete expression for anisotropic media, we have: 

 ln
𝑆
𝑆!

= 𝑒! !𝑫 !
!
 

Eq 1-22 

   
where 𝑏 = 𝛾𝐺𝛿 (∆ − 𝛿 3), Here 𝐺 and 𝑏 are vectors because they contain information about 

the orientation.  

Next, expanding 𝑏𝑫 𝑏
!

 we have: 

 

𝑏𝐷 𝑏
!
= 𝑏! 𝑏! 𝑏!

𝐷!! 𝐷!" 𝐷!"
𝐷!" 𝐷!! 𝐷!"
𝐷!" 𝐷!" 𝐷!!

𝑏!

𝑏!

𝑏!

 

Eq 1-23 

   
where 𝑫 and 𝒃 are defined as: 

 𝑫 = 𝐷!! 𝐷!! 𝐷!!      2𝐷!" 2𝐷!" 2𝐷!"

𝒃 = [𝑏! 𝑏! 𝑏!         𝑏!𝑏! 𝑏!𝑏! 𝑏!𝑏!]
 

Eq 1-24 

   
Eq 1-22 can be written as: 

 𝑙𝑛 𝑆 = ln 𝑆! − 𝑫𝒃 Eq 1-25 
   
Eq 1-25 can be solved by linear least-square fitting. E.g. If we take 6 measurements by 

applying gradients at six directions, then we will have: 
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 𝑆!
𝑆!
𝑆!
𝑆!
𝑆!
𝑆!

=ln(𝑆!)-  𝑫

𝑏!
𝑏!
𝑏!
𝑏!
𝑏!
𝑏!

 

Eq 1-26 

   
where 𝑏 = 𝛾!𝐺!,!,!! 𝛿!𝐷(∆ − 𝛿 3). 

Parameters commonly extracted to present the tensor and are calculated as follows: 

 
ADC = λ1 +λ2 +λ3

3
 

FA = 1
2

λ1 −λ2( )2 + λ2 −λ3( )2 + λ3 −λ1( )2

λ1
2 +λ2

2 +λ3
2

 

ev1= λ1,ev2 = λ2,ev3= λ3  

Eq 1-27 

   
The two most commonly used parameters are the apparent diffusion constant (ADC) and 

fractional anisotropy (FA). The range of FA is 0-1 with 0 for a sphere (𝜆! =   𝜆! = 𝜆!) and 

becomes larger as the ellipsoid deviates from a sphere and is more anisotropic. Eigen values (Ev) 

are also widely applied as they are insensitive to the orientation of the fibers. Figure 1-11 

demonstrates the image contrast on these maps.  



26 
 

 

Figure 1-11 Various image contrasts obtained from DTI. ADC describes the mean axis of the tensor and FA 

describes the anisotropy of the tensor. Ev1, Ev2, Ev3 are insensitive to the orientation of the tensor.  

1.4.3 Practical Aspects of Diffusion Tensor Imaging 

In this section, we will discuss the rationale behind the acquisition parameters being used in 

the diffusion sequence. We will also talk about the image artifacts associated with it and how to 

correct for them. Then we conclude with the diffusion protocol we are currently using and its 

post-processing pipelines.  

1.4.3.1 Use of Echo-Planar Imaging (EPI) and its Limitations 

Motion is a challenge in diffusion imaging. Coherent motions lead to a phase shift of the 

signal and if k-space is recorded line-by-line as in a gradient echo sequence. For instance, a 

128×128 matrix, which is the most commonly used matrix size in diffusion imaging, requires 

128 independent scans, with each scan corresponding to one line. A non-reproducible phase shift 

is introduced at each scan, this leads to mis-registration of proton signals after the Fourier 

FLAIR 

Ev1       

ADC  FA 

Ev2
 

Ev3 
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transform (FT), which appears as “ghosting”. The phase errors caused by subject motion also 

exist in conventional MRI but the magnitude is larger in DWI because of the application of the 

large diffusion-weighting gradients. 

The most common way for solving this problem is to use techniques such as single-shot echo-

planar imaging (SS-EPI). In SS-EPI, even if the diffusion weighting and bulk motions cause 

phase shifts, the entire k-space has the same amount of phase error, which in theory doesn’t have 

any effect in the image space after the Fourier Transform (FT). Unless there is severe motion, the 

SS-EPI can address most of the motion-related ghosting issues. On the other hand, SS-EPI has its 

own problems that must be overcome.  

(1) Imaging resolution is limited. The length of the echo train can usually only goes up to 128 

because there is not much signal left. A longer echo train doesn’t lead to real resolution 

enhancement, but longer effective TE and lower signal to noise (SNR).  

(2) Image distortion. The long readout time in the phase-encoding direction means that the 

bandwidth is very small in this direction. Such small bandwidth would exaggerate the effect of 

B0 field distortion, where protons located in the distorted field location with a small frequency 

shift would be matched a few voxels a way in the small bandwidth direction in the resulting 

image after the FT. Figure 1-16 shows a case acquired at 7T, where the distortion is more severe 

compared to lower field strength.  
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Figure 1-12 EPI distortion (sagittal view) in comparison to un-distorted T1 weighted image acquired on 7T. 

Susceptibility artifact is the main cause for the stretched frontal lobe and compressed parietal lobe. Image was 

acquired axially with phase-encoding direction in the anterior-posterior direction.  

1.4.3.2 Ways to Reduce Echo Time 

In order to maximize the efficiency of diffusion weighting, the entire echo time is usually 

filled with diffusion-weighting gradients. This means the gradient length 𝛿 is set close to the 

gradient separation Δ. If we set Δ = 𝛿 + 5𝑚𝑠 to accommodate a 180° RF pulse, and assume the 

gradient can be driven up to 40mT/m, then to achieve 𝑏 = 1000𝑚𝑚!/𝑠, we need 𝛿 of ~21ms. 

The length of echo time (TE) must then be at least ~50ms to accommodate the diffusion-

weighting gradient. In practice, the length of the echo train is typically 30ms. By combining the 

time required for diffusion weighting and the echo train, the echo time needs to be ~80ms.  

To shorten this long echo time, it is common to use an asymmetrical echo train. For example, 

by using 25% truncation (75% k-space sampling) as shown in Figure 1-13, the echo time can be 

shortened by half of the echo train length (15ms). Asymmetric k-space coverage can efficiently 

shorten the echo time, and it is commonly used in routine DTI acquisitions. The most efficient 

and widely used partial k-space reconstruction is projection onto convex sets (POCS) and 

homodyne methods, which are well discussed in Bernstein MA et al, 200439. 

T1 image EPI 
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Figure 1-13 Partial k-space sampling scheme and FOVs. The k-space, FOV and resolution are indicated by 

frequency × phase encoding steps. For echo time and distortion, -, + indicate the extent of improvement, while – 

indicates the same as full coverage.  

Because brains are relatively oval in shape for axial slices, it is a good idea, in theory, to use a 

rectangular FOV. However, there are several complications. The first option is to set the 

frequency encoding along the right-left (RL) orientation and phase encoding along anterior-

posterior (AP) (phase encoding for the long axis). The second option is to set the frequency 

encoding along the AP and phase encoding is RL (phase encoding for short axis). This is a 

feasible option for getting shorter echo times and less distortion. However, the way the image 

distorts with respect to anatomy is an issue. In SS-EPI, the susceptibility distortion occurs mostly 

along the phase encoding orientation. Distortion is more benign when it occurs along the AP axis 

because it does not affect the intrinsic RL symmetry of the brain geometry. This is important for 

radiological diagnosis, in which the symmetry is often important information. A secondary 

complication is the Peripheral Nerve Stimulation (PNS). It’s been shown that PNS is more likely 

to happen when phase-encoding is along RL and causes discomfort in patients.  Considering all 
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these factors, square FOV with the phase encoding steps along the AP direction is still used for 

the majority of studies.  

Another common approach to achieve shorter TE and less distortion is the use of parallel 

imaging. There are several implementations of parallel imaging techniques, that are known by 

different acronyms, such as SENSE, GRAPPA, SMASH, and ASSET, by different scanner 

manufacturers. These implementations have differences in technical details, yet they all achieve 

the same effect – namely to shorten the length of the echo train. This can effectively reduce the 

amount of distortion and shorten the effective echo time. Multi-channel surface coils are a 

prerequisite for such acquisitions and are available for most state of the art scanners.  The trade 

off in using parallel imaging is that SNR and signal homogeneity degrades as higher acceleration 

factors are used. Acceleration factor of 2-3 are typically used for current applications.  

With the development of multiband excitation techniques 40-42 and the implementation of 32-

channel (or higher number of) surface coils, higher acceleration factors can be achieved by also 

applying acceleration in the slice direction. Although it is not yet in clinical use, multiband EPI 

has become the major technique utilized in the Human Connectome Project protocol 42-44. The 

multiband DTI technique will be further discussed in Chapter 5. 

Shorter TE can further be achieved by using stronger gradient with higher-gradient slew 

rates. The new scanner that was built at the MGH Martinos Center for human connectome project 

is 4 to 8 times as powerful as conventional systems. The scanner has a maximum gradient 

strength of 300 mT/m and a slew rate of 200 T/m/s, which significantly shortens TE and have b-

values tested up to 20,000 42. 
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1.4.3.3 Eddy Current Distortion and its Correction 

Image distortion due to 𝐵! inhomogeneity has been discussed but the diffusion weighting 

gradient is another major source of distortion. To achieve sufficient diffusion weighting (enough 

b-value) within the shortest amount of time, maximum gradient strength available is applied. 

Rapid switches in gradients can cause eddy currents that linger after the diffusion-weighting 

gradients are turned off. If this lingering gradient overlaps with signal detection, unwanted image 

distortion occurs.  

Eddy current and 𝐵! inhomogeneity have very different consequences on image distortions. 

The 𝐵! inhomogeneity affects the b=0 and DW images in the same way. The eddy current affects 

each DW image in different ways. This means that pixels in different images are not co-registered, 

and the tensor calculation is no longer accurate. This causes erroneously high diffusion anisotropy 

for pixels at tissue boundaries such as brain parenchyma and CSF. In most cases, the eddy-current 

induced distortions are mostly linear and global, which can be corrected in post-processing. 

Currently, the most time-efficient way of correcting eddy current distortion is to apply a 12-

degree of freedom (DOF) linear registration between diffusion and the b=0 (or b0) image.  

Another way to reduce the effect of eddy currents is through the choice of pulse sequence. 

One of the most widely used approaches is the so-called dual echo sequence 45, which is shown in  

Figure 1-14. The lingering gradient can be canceled out by the consecutive applications of 

positive and negative gradients. The trade-off of this method is the prolonged TE and slightly 

reduced SNR. The dual echo sequence is widely used in most GE clinical scanners and can be 

easily turned on or off in the prescription interface.   
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 Figure 1-14 Illustration of diffusion-weighting sequence with dual spin-echo. 

1.4.3.4 Our Current DTI Protocol  

The standard DTI protocol on our 3T scanner employs a dual spin-echo sequence with EPI 

readout to minimize the eddy current effect with phase encoding direction in the AP direction. 

The k-space coverage is 75% and a parallel imaging method is employed (SENSE, or ASSET at 

GE scanner) with an acceleration factor of 2 to reduce the echo train length and to shorten TE. 

Matrix size is 128×128 and voxel size is 2×2×2mm with whole brain coverage. Such set up 

results in a TE ≈ 100 ms and TR = 8-10s.  

Total acquisition time varies according to the number of directions being acquired. In theory 

1 b0 (or T2 weighted) and 6 DW images are minimally required to calculate diffusion tensor 

parameters (including ADC, FA, EV1, EV2, EV3). In practice, more b0 images are needed as b0 

is the denominator in calculating the diffusion constant D in Eq 1-20 and by acquiring more b0 

and then averaging, higher SNR could be achieved to improve the final calculation. Also, the 

more images that are acquired, the more robust the calculation of the tensor. It has also been 

suggested by the FSL community that number of b0 being 1 4 - 1 6 the number of DW images 

for an optimal tensor calculation. Therefore in practice, our DTI protocol is set to acquire 4 b0 

and 24 DW images to achieve a tradeoff between SNR and total acquisition time, with a scan 

time of ~4min.  
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Eddy current distortions are reduced in post-processing through an affine registration (12 

DOF), and the tensor calculation is done with a weighted lease squares fitting. All the post-

processing is done within FSL (FMRIB, Oxford, UK) 

1.4.4 Diffusion Imaging in Gliomas 

MR diffusion weighted imaging has become a widely accepted method to probe for the 

presence of fluid pools and molecular tissue water mobility. It has become one of the routine MR 

acquisitions in brain tumor secondary to T1 and T2 weighted images, and it has demonstrated 

significant value both in clinical diagnosis and in research studies of patients with glioma.  

1.4.4.1 Diffusion Imaging For Resection of Gliomas 

Minimizing damage to the eloquent cortex and white matter tracts, while maximizing surgical 

resection of brain tumors remains a challenge, especially when the white matter tracts are 

displaced or infiltrated by tumor. Diffusion tractography is a diffusion technology that resolves 

crossing fibers, providing a precise and thorough visualization of fibers tracts. A tract can be 

depicted as unchanged (when its course is not modified by the tumor or edema), dislocated, or 

infiltrated and/or interrupted (when the tract is in strict relationship with the mass or interrupted 

by it). Tractography can provide information about the relationship of these tracts to the tumor 

mass, and is particularly useful in helping the surgeon in surgical planning and providing 

intraoperative guidance as well. Successful uses have been reported by many studies 46,47. Figure 

1-15 showed a comparison between DTI and tractography derived with the technique called High 

angular resolution diffusion imaging (HARDI) 48. 
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Figure 1-15  (A) Tractography used for presurgical mapping to characterize the brain microstructure in a 

patient with glioma in order to visualize fibers surrounding tumor mass. (B) ADC maps of the lesion from three 

views. 

1.4.4.2 Diffusion Tensor Imaging for Differentiating Post-Resection Ischemia  

While diffusion imaging is well established and widely used for the detection of early 

ischemic stroke 49,50, it is also a critical tool in differentiating post-surgical ischemic regions from 

recurrent tumor 51. An abnormality related to diffusion-weighted sequences on postoperative MR 

imaging can occur after resection of gliomas. Such abnormality typically resolves and is replaced 

by contrast enhancement on follow-up imaging, ultimately demonstrating encephalomalacia on 

long-term follow up. Findings on neuroimaging during the period of enhancement could be 

confused with recurrent tumor and interpreted as early treatment failure. Therefore the inclusion 

of diffusion-weighted sequences in postoperative MR imaging is essential and is routinely used to 

distinguish such lesion from tumor recurrence. New enhancement observed after glioma surgery 
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should be interpreted in the context of the diffusion-weighted image obtained immediately 

postoperatively to exclude the possibility of surgery induced ischemia. 

1.4.4.3 Diffusion Tensor Imaging for Monitoring Treatment Response  

The values from DTI that are most widely reported in the assessment of post-treatment 

gliomas are ADCs. Lower ADC values reflect lower (more restricted) diffusion. Several 

physiologic properties of the tumor may influence ADC values. Water molecules are generally 

more restricted in their movement within cells and less restricted in the extracellular space. 

Because necrosis involves degradation of cellular integrity, it is thought that necrosis increases 

ADC. In a similar way, edema increases interstitial fluid, thereby increasing ADC. Conversely, 

increased cellular density lowers ADC by restricting diffusion. Because of these relationships, 

DTI has been studied as a means of evaluating the effects of therapy on malignant gliomas. ADC 

values within enhancement or FLAIR lesions are analyzed with a number of different 

quantification methods. Figure 1-16 illustrates the major methods applied for evaluating changes 

in ADC with treatment. These include ADC percentiles, parameters extracted from 2-mixture 

normal distribution fitting, or functional diffusion maps (fDM) that looks at voxel-wise changes 

between two time points. These methods will be explained and compared in Chapter 2. 

 

Figure 1-16 Illustration of methods for analyzing ADC: (A) percentile values extracted from the histogram of 

ADC values in the lesion. (B) 2-mixture normal distribution fitting on ADC histograms in CEL. (C) fDMs within 
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the CEL overlaid on a T1 post-contrast image at 2 months with scatter plot of the distribution of ADC changes 

for the entire CEL. (D) fDMs within the T2L overlaid on a FLAIR image at 2months with scatter plot of the 

distribution of ADC changes for the entire T2L. 

Successful radiation plus cytotoxic chemotherapy treatment has been shown to increase ADC 

percentile values within the contrast enhancement 52,53, consistent with the radiation causing 

increased disruption of tissue architecture and a decrease in cellularity that is associated with 

treatment-induced necrosis. The functional diffusion map (fDM) was developed to take advantage 

of the relationship between ADC and cell density by examining voxel-wise changes in ADC 

measured in the same patient over time and are supposed to provide improved sensitivity of 

detecting subtle changes in tumor cell density (Figure 1-16C,D). This technique has primarily 

been applied as a tool to predict response to cyctotoxic chemotherapy and radiotherapy within the 

contrast-enhancing lesion and has demonstrated great success 54-56. Specifically, they have 

demonstrated that patients with a larger region showing decreased ADC had shorter survival 

compared with patients with a smaller region. Recent studies have also demonstrated its utility 

outside regions of contrast enhancement 57 and as a tool for studying the effects of anti-VEGF 

therapy 58,59. Our recent study of anti-VEGF therapy evaluated the association of different ADC 

metrics with survival and highlighted the value of parameters from the T2L at the post-RT 

examination in predicting outcome 60. 

While ADC analysis is valuable in evaluating response to various therapies during early 

follow-ups, it has also been found a biomarker for survival for anti-VEGF therapy. At the pre-

treatment stage, a histogram analysis of ADC within the enhancing tumor was found to be 

predictive of survival (Figure 1-16B). In this study, the authors hypothesized that ADC values can 

potentially be used as a noninvasive surrogate for VEGF expression and thus susceptibility to 

bevaciuzmab, and tumors with low ADC values prior to initiation of bevaciuzmab were more 

likely to progress compared to those with high ADC values 61-63.  At later time points into 
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treatment, bevacizumab has been noted to produce persistent diffusion restriction. Several groups 

found that such region with decreased ADC values were consistent with chronic hypoxia and 

were reflective of successful anti-VEGF effect, therefore associating with a longer survival 64,65. 

The integration of diffusion imaging methods to the clinical MRI exam for patients with 

GBM has the potential to improve the diagnosis of disease, tailor adjuvant treatment strategies to 

an individual patient, and to provide an alternative early biomarker of response. Perfusion and 

MR spectroscopic imaging have also demonstrated great values in these aspects, as well as in 

distinguishing recurrence from treatment effect. The potential benefit of these complementary 

imaging parameters rests on developing reliable methods and analysis metrics that can be 

translated to the clinical environment. The research presented in this dissertation was aimed at 

addressing the engineering challenges and clinical translation of incorporating these advanced 

imaging metrics to the treatment management of patients with GBM, with a special focus on 

diffusion imaging.  
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Chapter 2  
Comparison of ADC metrics and their association with 

outcome in patients treated with a combined therapy that 

includes bevacizumab 

In this chapter, different metrics of describing changes in apparent diffusion coefficient 

(ADC) are introduced. These metrics are then used to examine their association with clinical 

outcome for patients with newly diagnosed GBM who were participating in a Phase II clinical 

trial of treatment with radiation (RT), temozolomide, erlatonib and bevacizumab. Treatment 

related changes in ADC are observed and a potential biomarker is identified.  

2.1 Introduction 

Bevacizumab is a humanized monoclonal VEGF-blocking antibody that has been shown to 

normalize vascular permeability and regulate angiogenesis in patients with glioblastoma (GBM). 

Although it has been shown to reduce the volume of the contrast enhancing lesion (CEL) on post-

Gadolinium T1-weighted MR images and to provide improved time to progression in patients 

with recurrent disease [1-3], recent Phase II and Phase III clinical trials indicated that it is 

ineffective at extending overall survival for patients with newly diagnosed GBM [4-7]. With a 

growing number of studies providing evidence for increased tumor invasiveness following 

treatment failure in patients receiving bevacizumab [8], it is important to identify at an early stage 

which patients are benefiting from anti-angiogenic therapies, as opposed to treating all patients in 

the same manner. Monitoring the effectiveness of bevacizumab is challenging using conventional 

measures of response to therapy because reductions in the CEL may be due to an anti-

permeability effect rather than a reduction in bulk tumor [9], which is commonly referred to as 

“pseudoresponse” [10,11]. Differentiation of non-enhancing tumor within the T2L from edema or 
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gliosis is important for effectively monitoring response to bevacizumab and similar anti-

angiogenic agents.  

The apparent diffusion coefficient (ADC) is a metric that characterizes the random motion of 

water molecule protons in the extracellular space and may provide valuable insights to tumor 

physiology. Decreases in ADC have been proposed as a non-invasive measure of tumor 

cellularity and increases in ADC to reflect a breakdown of tissue architecture [12-16]. A number 

of different strategies have been proposed to define metrics in predicting clinical outcome and 

monitoring response to therapy following treatment with bevacizumab. These include parameters 

derived from the histogram of ADC values within the anatomic lesion at a single time point [17-

19], and from functional diffusion maps (fDMs) that evaluate serial changes in ADC on a pixel 

by pixel basis [20-26]. For patients with recurrent GBM being treated with bevacizumab, low 

values in the pretreatment ADC histogram from the CEL that were fit to a two normal distribution 

mixture curve were found to be associated with poor outcome [17,18], but in the up-front setting 

low ADC was found to be associated with significantly longer PFS [19]. When fDM analysis was 

used in patients with recurrent GBM [25,26], prior studies showed that the volumes of tissue 

within the CEL and T2L that had reduced ADC values between baseline and early post-treatment 

scans were associated with PFS and OS.  

Although these initial results indicate that ADC metrics may be helpful in predicting 

treatment effectiveness for patients with recurrent GBM, their utility has not yet been fully 

explored for combination treatments that are being applied in an upfront setting. Obtaining a 

detailed understanding of how to interpret early changes in these parameters and integrate them 

into criteria used for assessing treatment response could have a significant impact on patient care. 

The purpose of this study was to evaluate the association of ADC metrics with clinical outcomes 

for patients with newly diagnosed GBM who were participating in a Phase II clinical trial that 

included bevacizumab.  
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2.2 Materials and Methods 

2.2.1 Patient Population 

A total of 151 MR scans that include diffusion weighted imaging (DWI) were obtained from 

36 patients with newly diagnosed GBM who were participating in a Phase II clinical trial during 

the period between January 9, 2009 and April 3, 2012 (29 scans at baseline, 25 patients had 

complete serial scans from baseline until progression). All patients had pathologically confirmed 

GBM, a Karnofsky Performance Score (KPS) of at least 60 and had undergone prior biopsy (5 

patients) or surgical resection (10 gross-total and 21 sub-total) but no other prior therapy. Patient 

age ranged from 21 to 76 years, with a median of 52 years. Treatment included external beam 

radiation therapy to an average dose of 60 Gy and was delivered to the tumor site in 2-Gy 

fractions over a 6-week period. The protocol called for temozolomide to be given at a daily dose 

of 75mg/m2, during radiation therapy and at 200mg/ m2 for 5 days every 28 days afterwards, for 

erlotinib to be given daily both during and after radiation, and for bevacizumab to be given at a 

dose of 10mg/kg IV every 2 weeks, starting at approximately 2 weeks into radiation therapy [5]. 

All patients participating in this study gave informed consent according to the guidelines of our 

institutional review board. Progression was determined based on the recently defined RANO 

criteria [10].  

2.2.2 MR Imaging and Post-processing   

All scans were obtained using a 3T GE MR scanner. Time points selected for study were at 

baseline (post-surgical resection and prior to therapy), 1 month (mid-RT), 2 months (post-RT) 

and every 2 months thereafter until presumed tumor progression (up to a maximum of 14 

months). Standard anatomical MR imaging included axial T2-weighted fluid attenuated inversion 

recovery (FLAIR) images and pre- and post-contrast T1-weighted spoiled gradient echo (SPGR). 

DWI were acquired with b=1000 (dir=6, NEX=4) and ADC maps were calculated using in-house 
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developed software. CEL regions were manually defined on the coregistered post-contrast T1 

SPGR images at each available time point. Any hyperintense signal that was also present on the 

pre-contrast T1 images was assumed to be indicative of acute blood products and was excluded. 

The T2L regions were segmented based on the hyper-intensity region of FLAIR images using a 

semi-automatic region-growing segmentation tool [27]. The resection cavity was excluded from 

all ROIs.   

 

Figure 2-1 Illustration of methods for analyzing ADC: (a) percentile values extracted from the histogram of 

ADC values in the T2L. (b) 2-mixture normal distribution fitting on ADC histograms in CEL. (c) Traditional 

fDMs within the CEL overlaid on a T1 post-contrast image at 2 months with scatter plot of the distribution of 

ADC changes for the entire CEL. (d) Graded fDMs within the T2L overlaid on a FLAIR image at 2months with 

scatter plot of the distribution of ADC changes for the entire T2L. 

2.2.2.1 Histogram Analysis within the T2L And CEL 

In regions of interest corresponding to T2Ls at time points up to 8 months after the start of 

treatment, ADC histograms followed an approximately normal distribution and were 

characterized using percentile values (Figure 2-1a). In this case the 10th and 50th percentiles were 

chosen for subsequent analysis to represent regions with more aggressive tumor. At baseline, 

histograms of the ADC within the CEL were also fit with a 2-mixture normal distribution (Figure 
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2-1b).  Mean values for the lower peak (ADCL) and the lower curve proportion (LCP) were 

calculated in the manner proposed by Pope et al. [17].  

2.2.2.2 Functional Diffusion Map 

For fDM analysis, ADC maps at baseline and 2 months were co-registered using an affine 

registration with 12 degrees of freedom to ensure adequate alignment 

(http://www.fmrib.ox.ac.uk/fsl/). Voxel-wise subtraction was performed between 2 months and 

baseline ADC maps. Both traditional fDMs (Figure 2-1c) [20] and graded fDMs (Figure 2-1d) 

[25] were generated. Due to the fact that our data were acquired at a field strength of 3T than 

1.5T as was used for these earlier studies, a set of new thresholds were generated in the same way 

as described in the literature [21,24,25]. For each patient, the volume of tissue showing decreased 

ADC (VolΔADC), as well as the normalized volume showing decreased ADC within the CEL and 

T2L (%VolΔADC, which was normalized against the overlapping lesion volume), were calculated. 

2.2.3 Statistical Analysis  

Both univariate and multivariate Cox Proportional Hazards (CoxPH) model with covariates 

of baseline KPS, age, and extent of resection (0-biopsy, 1-subtotal, 2-grosstotal) were employed 

to evaluate the relationship of the fitted parameters to progression-free survival (PFS) and overall 

survival (OS), landmarked from the scan date of the diffusion parameters. In the case of no 

progression or death, the event time was censored at the date of last contact. Classification and 

regression tree (CART) analysis was utilized to determine the cut-off for dichotomizing the fitted 

parameters [28]. Kaplan-Meier survival curves for each subgroup determined by the CART split 

points were compared using a log-rank test.  Owing to the exploratory nature of the study, no 

formal adjustment of type I error was undertaken. In all cases, p<0.05 was considered statistically 

significant (Matlab 2012a).  
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2.3 Results 

2.3.1 Clinical  

Median OS was 86.1 weeks with 9 patients censored and median PFS was 56.1 weeks with 4 

patients censored for the 36 patients considered in this analysis, which is consistent with our 

recent report on a larger population study [5]. At the time of progression, 23 patients had 

enhancing progressive disease, 11 patients had non-enhancing progressive disease with only 

enlarged FLAIR lesion volume, and 2 patients died before imaging follow-up. Of the baseline 

clinical factors (KPS, age, gender and extent of resection), only the extent of resection was 

significantly associated with OS (Univariate, p < 0.002, HR=0.285, 95%CI=0.134-0.608) and 

PFS (Univariate, p < 0.006, HR=0.366, 95%CI=0.179-0.748).  

2.3.2 Volumes of Anatomic Lesions 

Table 2-1 lists the median and range of T2L and CEL volumes at different time points. There 

was a noticeable reduction at 1month and 2months in the volumes of both CEL and T2L. When 

considered as single variable, the volumes of the CEL at 1 month and 2 months were associated 

with OS (p < 0.003, HR=1.22 at 1 month; p < 0.03, HR=1.37 at 2 months) and PFS (p < 0.03, 

HR=1.11 at 1 month; p < 0.02, HR=1.38 at 2 months). When adjusted for clinical factors these 

associations were no longer significant. The volumes of the T2L were not associated with OS or 

PFS. 

Table 2-1 Volume for Anatomic Lesions [median (min-max) in cc].  

 Baseline 1mon 2mon 4mon 6mon 8mon 

T2L 30.07 
(1.71-142.60) 

23.52 
(1.51-140.42) 

9.55 
(0.05-41.64) 

10.64 
(0.28-43.55) 

13.72 
(0.37-46.35) 

14.93 
(0.12-44.17) 

CEL 3.12 
(0.19-21.94) 

1.22 
(0-17.65) 

1.08 
(0-7.2) 

0.08 
(0-3.13) 

0.12 
(0-1.93) 

0.03 
(0-4.02) 
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2.3.3 Histogram Analysis 

Within the T2L, the CoxPH model coefficients showed a significant association for values of 

ADC10% and ADC50% with OS and PFS (Table 2-2). A lower ADC percentile value within the 

T2L indicated a poorer prognosis. The ADC10% at 2months (post-RT) was associated with PFS 

(univariate CoxPH, p<0.03, HR=0.52, 95%CI=0.29-0.93) and OS (univariate CoxPH, p < 0.01, 

HR=0.37, 95%CI=0.18-0.79). Adjusting for baseline KPS, age, extent of resection, Cox 

regression analysis confirmed that lower ADC10% within T2L at 2 months is still a risk factor for 

OS (multivariate CoxPH, p < 0.001, HR=0.11, 95%CI=0.03-0.41) and PFS (multivariate CoxPH, 

p < 0.007, HR=0.31, 95%CI=0.13-0.72). Serial ADC percentile changes of two age-matched 

patients who both had large T2L at baseline are shown in Figure 2-2. One patient progressed 

early and the other was stable and completed therapy after being on treatment for 12 months. T2L 

and ADC were significantly reduced in both cases immediately following onset of therapy 

(Figure 2-2a). At post-RT, T2L volumes were comparable for both patients, but ADC percentage 

values were much lower in the patient who progressed early than the patient who was stable 

(Figure 2-2b). Figure 2-2c shows profiles of ADC histograms within T2L and CEL over time. 
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Table 2-2 Summary of multivariate CoxPH results with adjustment for KPS, age and extent of resection. 

Type Parameters 
considered 

Time 
Point 

OS  PFS  
p-val HR p-val HR 

Lesion size 
VolCEL (cc) BL 0.315 0.95 [0.87 1.05] 0.900 0.99 [0.92 1.08] 

2mos 0.301 1.23 [0.83 1.81] 0.201 1.26 [0.89 1.79] 

VolT2L (cc) BL 0.431 0.99 [0.98 1.01] 0.837 1.00 [0.99 1.15] 
2mos 0.326 1.03 [0.97 1.10] 0.421 1.02 [0.97 1.07] 

Histogram –  
2-mixture 

normal fitting 
ADCL BL 0.91 1.01 [0.80 1.29] 0.75 0.95 [0.79 1.18] 

Histogram – 
Percentiles in 

the 
T2L 

ADC10% 
  

(µm2/s /100) 

BL    
0.116 0.77 [0.55 1.07] 0.032＊  0.69 [0.50 0.97] 

1mos 0.188 0.54 [0.21 1.36] 0.014＊  0.39 [0.18 0.83] 
2mos 0.001＊  0.11 [0.03 0.41] 0.007＊  0.31 [0.13 0.72] 
4mos 0.005＊  0.43 [0.23 0.78] 0.024＊  0.54 [0.32 0.92] 

ADC50% 4mos 0.011＊  0.61 [0.42 0.89] 0.045＊  0.73 [0.54 0.99] 
Traditional 
fDM in T2L  

 

VolΔADC<-250 
(cc) 

BL-1mos 0.927 0.99 [0.82 1.20] 0.963  1.00 [0.84 1.20] 

BL-2mos 0.552 1.13 [0.75 1.70] 0.603 1.09 [0.78 1.54] 

Graded fDM 
In T2L  

 

Vol250<ΔADC<-

180 
BL-1mos 0.489 0.486 [0.06 3.76] 0.577 0.63 [0.13 3.16] 

BL-2mos 0.347 2.36 [0.39 14.19] 0.481 1.65 [0.41 6.71] 
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Figure 2-2 Comparison of serial displays for two patients (left – progressed early, right – completed therapy 

without signs of progression) who both had large T2L at baseline. T2L and ADC were significantly reduced in 

both patients immediately following onset of therapy. At post-RT, residual T2Ls were comparable for both 

patients, but ADC percentage values were much lower in the patient who progressed early than the patient who 

was stable. (a) ADC and FLAIR images at baseline, 1 month and 2 months. (b) Serial display of ADC percentiles 

and lesion sizes. (PG – progression. CT – completed therapy. D – deceased. ). (c) Serial display of ADC 

histograms in T2L and CEL lesions. 
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A cutoff value of 853µm2/s at the 2 month time point was determined by CART analysis to 

differentiate patients into two groups based on OS (log-rank, p=0.00048) (Figure 2-3a), and a 

cutoff value of 853µm2/s based on PFS (log-rank, p=0.02) (Figure 2-3b). The mean and standard 

deviation for ADC10% over time for each split group is shown in Figure 2-3c. At baseline, no 

parameters from the 2-mixture normal fitting were found to be associated with either OS or PFS 

(p>.1). 

 

Figure 2-3 Stratification of patients based on CART analysis of ADC10% in T2L at 2 months. (a) Kaplan-Meier 

curves for each group when split on CART threshold at 2 months for OS with ADC10% < 853µm2/s in dash line 

(12 patients), ADC10% > 853µm2/s in solid line (13 patients). (b) Kaplan-Meier curves for each group when split 

on CART threshold at 2 months for PFS with ADC10% < 853µm2/s in dash line (12 patients), ADC10% > 853µm2/s 

in solid line (13 patients). (c) The mean and standard deviation for ADC10% over time for each CART split 

group. 

2.3.4 fDM 

The traditional fDM technique typically applies a single ΔADC threshold to classify voxels 

into increasing or decreasing ADC. The 95% confidence interval for defining normal-appearing 

white and grey matter was 250µm2/s for our protocol. For graded fDMs, the 95% confidence 

interval for defining normal-appearing white matter was 180µm2/s for our data set.  
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Within the CEL, the recommended minimum overlapping CEL volume that should be 

considered is 4cc for traditional fDM [20]. In this study, due to the strong anti-angiogenic effect, 

none of our patients had an overlapping CEL larger than 4cc. Without consideration of this 

criteria, the traditional fDM and graded fDM analyses within the CEL provided parameters that 

were associated with OS and PFS (VolΔADC<-250 with OS, p < 0.003; HR = 9.52; Vol-250<ΔADC<-180 

with OS, p < 0.03, HR = 15509; with PFS p < 0.03, HR = 23775). However, these were not 

significant when adjusting for clinical factors. Within the T2L, none of these parameters were 

found to be associated with OS or PFS (Table 2).   

2.4 Discussion 

Although bevacizumab has been shown to reduce the volume of the contrast enhancing and 

T2 lesions after the initiation of therapy, the highly variable response and limited improvement in 

overall survival times highlight the need for identifying alternative parameters that can more 

accurately predict treatment outcomes. Diffusion imaging techniques are dependent on the 

microscopic structure of tissue, and are sensitive to cell density and necrosis as well as vasogenic 

edema. It is for this reason that analysis of the ADC maps has been proposed as a method for 

providing information about the properties of both enhancing and non-enhancing tumor.  

Consistent with previous report for patients treated with bevacizumab [1-4], there were 

reductions in the volumes of the CEL and T2L at 1 and 2 month follow-up scans (Table 1), and 

the CEL volume was associated with survival as a univariate variable [29]. However, this 

association was no longer significant when adjusting for clinical factors, suggesting that the CEL 

volume does not add value in addition to clinical factors in relation to survival. We would like to 

note that due to the strong anti-leakage effect of bevacizumab, over half patients demonstrated 

CEL volume < 1cc at 2 month, and 1/3 patients had non-enhancing progressive disease. All these 

motivated us to look more closely at the T2L as the region of interest for imaging biomarkers.  



56 
 

Regions within T2L with low ADC values are thought to correspond to regions of higher 

cellularity, while regions with increased ADC to correspond to vasogenic edema [32-34]. Both of 

these opposing effects are present within the tumor microenvironment and may therefore 

counteract each other. In tumors being actively treated with bevacizumab, vasogenic edema is 

more effectively controlled [30], resulting in a reduction in the volume of the T2L and lower 

ADC values that may more closely reflect the cellularity of the tumor. Our results support this 

hypothesis by indicating that lower ADC percentiles within the T2L at 2 months time window 

were significant risk factors for both PFS and OS. Two factors that could influence ADC values 

in the earlier and later time window and confound the interpretation of the data are ischemia that 

results from the surgical resection and RT-induced edema. Regions of ischemia occur around the 

resection cavity may result in temporarily reduced ADC values that typically return to normal 

within 90 days [31]. Regions of reduced ADC that are observed during this early time frame 

should therefore be interpreted with caution, as they may be confused with recurrent tumor. In the 

later time frame (e.g. post-4mon), increases in edema that occur during RT may result in higher 

ADC values, which could mask the presence of tumor. With bevacizumab, the confounding 

effects from surgery and during RT appear to have resolved at 2 month, so that the ADC values 

provided a more accurate representation of residual tumor. At subsequent time points, reactive 

edema associated with growing tumor may result in elevated ADC (Figure 2-3C). Another 

potential confounding factor is gelatinous necrosis, which could cause persistent restricted 

diffusion in bevacizumab treated patients [35-36]. Caution must be exerted in interpreting 

restricted diffusion because it has been reported that patients who demonstrated such 

bevacizumab caused necrosis had longer survival [35]. The average time of detecting such 

necrosis with diffusion was 8 months, therefore it is unlikely to have developed by the 2 month 

follow-up in our study (6 weeks into bevcizumab). We hypothesize that it is for these reasons that 

the 2 months (post-RT) time point appeared to be the best time point for using ADC to assess 

residual tumor.  
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 Although previous studies have shown that the two normal distribution mixture curve 

analysis of pre-surgery ADC histograms in the CEL can predict response to bevacizumab for 

patients with newly diagnosed GBM [19], we were unable to detect an association for our patient 

population. This may have been due to our baseline data having been post-surgery and therefore 

lacking information about the resected tumor and/or being influenced by surgically-induced 

ischemia.  

The fDM analysis was developed to examine voxel-wise changes in ADC in the patient over 

time. Our results showed that the fDM analysis of higher volumes of tissue within the CEL that 

showed decreased ADC were associated with worse PFS and OS when considered without 

adjustment for clinical factors. While this may be a less sensitive metric than others, the finding is 

consistent with areas of reduced diffusion corresponding to more cellular tumor and hence 

inferring a worse outcome. The global reduction in ADC metrics that we observed within the T2L 

is likely to be due to reabsorption of edema after treatment.  

Despite the promising results obtained in this study using fDM analysis, there are limitations 

that should be taken into account in patients treated with bevacizumab in the up-front setting. 

First, the CEL volumes of all patients in this study were smaller than the minimum recommended 

size (4cc) to be considered for the traditional fDM [20]. A second limitation is in the accuracy of 

the image registration methods used to align serial ADC images. Significant tissue shifts were 

observed in some of our patients after initial of therapy, mainly because of the reduction in edema 

caused by the anti-angiogenic agent, which reduces the intracranial pressure. In these cases, 

accurate tissue matching between different time points can be challenging, even with non-linear 

registration.   

In conclusion, our study emphasizes the value of ADC metrics for early assessment of 

residual tumor in patients with newly diagnosed GBM being treated with a combination of 



58 
 

therapy that includes bevacizumab. While there was a rapid decline of ADC percentile values 

immediately following onset of therapy in almost all subjects, the ADC percentile values were 

lower for the patients who progressed early. This suggests that tracking the changes in ADC using 

serial histogram analysis as shown in Figure 2-2 could potentially assist radiologists in 

monitoring patient response to therapy that includes bevacizumab. Our results highlighted the 

value of ADC10% within the T2L at the post-RT exam in conjunction with standard clinical factors 

in predicting PFS and OS. We hypothesize that this is due to the anti-angiogenic effect of 

bevacizumab reducing the extent of vasogenic edema at this time point and therefore allowing the 

observed ADC values to more accurately reflect the residual tumor burden.   
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Chapter 3  
Changes in Diffusion and Anatomic Imaging Parameters and 

their association with Survival Vary with Treatment Regimen 

for Patients with Newly Diagnosed Glioblastoma 

This chapter extends the ADC analysis methodology from the previous chapter to the analysis 

two additional clinical trials. It compares the associations of lesion volumes and ADC metrics to 

patient outcomes in different patient cohorts. The results highlight distinct patterns of change in 

lesion volumes and ADC parameters in patients who were treated with the combined therapy that 

included bevacizumab.   

3.1 Introduction 

Glioblastoma (GBM) is the most malignant primary brain tumor in adults.  The standard of 

care for patients with newly diagnosed GBM consists of surgery, radiotherapy and temozolomide 

(TMZ). In a definitive phase III trial, patients treated with TMZ plus radiotherapy (RT) had 

significantly improved overall survival (OS), compared with patients who received RT alone [1]. 

Despite the use of this multi-modality treatment, the 2-year survival rate for patients treated was 

only 26.5%, with the median overall survival being around 15 months. A number of additional 

therapeutic agents are being considered with the goal of improving outcomes for patients with 

GBM. 

Enzastaurin is a protein kinase C β-inhibitor that has been reported to have both direct 

antitumor effect, through suppression of tumor cell proliferation and induced apoptosis, and 

indirect effects, through inhibition of tumor-induced angiogenesis [2]. Although its mechanism of 

action is not yet fully understood, pre-clinical reports have shown that enzastaurin and radiation 

are synergistic and that when combined are able to induce apoptosis in glioma models [3]. These 
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data provided the rationale for a Phase II clinical trial of RT, TMZ and enzastaurin in patients 

with newly diagnosed GBM. 

With the discovery that vascular endothelial growth factor (VEGF) is a major driver of tumor 

angiogenesis [4], recent efforts have focused on novel therapeutics that inhibit its activity. 

Bevacizumab is a humanized monoclonal VEGF-blocking antibody that has been shown to 

normalize vascular permeability and regulate angiogenesis in patients with GBM. A phase II trial 

of bevacizumab alone or in combination with irinotecan for patients with recurrent GBM reported 

a dramatic improvement in PFS and a high response rate [5]. This led to the proposal that the use 

of adjuvant bevacizumab in combination with standard radio- and chemotherapy would act to 

normalize tortuous tumor vasculature and improve delivery of chemotherapeutics and oxygen [6].  

While adjuvant anti-angiogenic therapy has been associated with increased time to 

progression, reports from recent phase II/III trials have indicated that it is unable to improve 

overall survival for newly diagnosed GBM. This has highlighted the difficulties in using 

conventional imaging methods to evaluate response to therapy for such agents [7-9]. The 

assessment of response to bevacizumab is especially problematic, because it directly affects the 

size of the contrast-enhancing lesion (CEL) by reducing the permeability of the vasculature to 

gadolinium-based agents but does not necessarily signify that there is a reduction in bulk tumor 

[9]. Another complication is that there have been reports of increased tumor invasiveness 

following treatment failure in patients receiving bevacizumab, which is expressed as an increase 

in the size of the region of T2 hyperintensity (T2L) [11]. Although the Response Assessment in 

Neuro-Oncology (RANO) criteria integrate changes in the T2L into the definition of response 

[10], it is not clear whether such changes are specific to recurrent tumor or represent non-specific 

radiation-induced white matter changes. This provides strong motivation for seeking alternative 

imaging biomarker that can help to resolve these ambiguities. 
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The apparent diffusion coefficient (ADC) is a parameter derived from diffusion weighted MR 

imaging that reflects changes in water mobility and is therefore sensitive to the variations in 

tissue composition and architecture. It has been proposed as a metric for assessing changes in 

normal tissue, as well as monitoring treatment efficacy for patients with GBM. The ADC is 

sensitive to a number of structural alterations in tumor that include increase in tumor cellularity, 

formation of necrosis, and the presence of vasogenic edema.  

Pretreatment and early changes in ADC metrics have been reported as predictors of response 

to therapy in human brain tumors [18-26], but the analysis of their associations with survival have 

been more variable. In patients with recurrent GBM, the analysis of pretreatment ADC 

histograms was shown to be predictive of survival after treatment with bevaciuzmab but not with 

temozolomide [17]. It was also shown that patients with tumors responding favorably to RT plus 

TMZ show an increase in ADC values shortly after treatment [20-23,18], and those that respond 

favorably to RT plus enzastaurin have higher ADC within the contrast-enhancing lesion [19]. In 

the recurrent setting, patients treated with bevacizumab who exhibit a change in ADC (either 

decrease or increase) have worse overall survival than those who show no change in ADC [20]. 

Our recent study of patients with newly diagnosed GBM being treated with RT plus TMZ, 

erlotinib and bevacizumab evaluated the association of different ADC metrics with survival and 

highlighted the value of parameters from the T2L at the post-RT examination in predicting 

outcome [21].   

The ambiguities in findings from studies of changes in lesion volumes and ADC metrics for 

patient receiving different types of treatments have created uncertainties about when and how to 

interpret these early markers of treatment efficacy. The purpose of this study was to compare the 

patterns of early changes in imaging parameters for populations of patients with newly diagnosed 

GBM who had been treated with three different regimens using consistent data acquisition and 

analysis methodologies. These treatments were (1) temozolomide plus RT (TMZ), (2) 
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temozolomide plus RT with enzastaurin (TMZ+enza) and (3) TMZ plus RT with bevacizumab 

and erlotinib (TMZ+bev). The imaging time points included baseline, mid-RT and post-RT scans, 

with clinical outcomes of progression free survival (PFS) and overall survival (OS). 

3.2 Materials and Methods 

3.2.1 Study Population 

A total of 96 patients with newly diagnosed GBM (WHO Grade IV) who had agreed to have 

research imaging examinations during the course of treatment were evaluated in this study. 

Patients received surgical resection and were treated with standard care of RT concurrently with 

TMZ (TMZ cohort, 31 patients), TMZ and enzastaurin (TMZ+enza cohort, 35 patients), or TMZ, 

erlotinib and bevacizumab (TMZ+bev cohort, 30 patients). Patients were required to have a 

Karnofsky performance score (KPS) of ≥ 60 in order to be treated in this manner and provide 

informed consent for participation in the imaging studies as approved by the Committee on 

Human Research at our institution. Figure 3-1B describes the baseline characteristics of these 

three patient populations. 
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Figure 3-1 (A) Treatment schema for the three patient cohorts. (B) baseline characteristics. (C) The Kaplan-

Meier curves of progression free survival (PFS) and overall survival (OS). Median PFS values were 6.2 months, 

7.3 months and 12.4 months, while Median OS values were 17.6 months, 17.8 months and 17.0 months 

respectively. Log-rank tests showed that PFS was significantly longer in the TMZ+bev cohort than in the 

TMZ+enza cohort, and no significant OS differences between the three cohorts. 

The treatment schema for the three separate patient cohorts is seen in Figure 3-1A.  Within 5 

weeks of diagnosis, patients began treatment with fractionated RT (total dose of 60 Gy) and 75 
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mg/m2 of TMZ given daily over a period of 6 weeks. Patients in the TMZ+enz cohort were 

administered enzastaurin (250 mg daily) concurrent with the other treatments.  Patients in the 

TMZ+bev cohort received erlotinib (150 mg/day continuously or 500 mg/day continuously if on 

anti-epileptic drugs) starting on day 1 of RT and received bevacizumab at a dose of 10 mg/kg IV 

every 14 days starting in week 2 of radiotherapy.  MRI exams considered in the analysis were 

performed at three time-points: (1) following surgical resection or biopsy but prior to RT (pre-

RT); (2) between 3 and 5 weeks into treatment (mid-RT); and, (3) within 2 weeks after 

completion of RT (post-RT). Patients in the TMZ cohort did not have a mid-RT scan.  

Criteria for defining true progression were clinical deterioration and/or radiological 

progression, which was based upon changes in cross-sectional diameters of the contrast-

enhancing lesion (CEL) as defined by McDonald criteria for TMZ and TMZ+enza cohorts [22], 

and by RANO criteria for the TMZ+bev cohort, which integrates changes in the T2-

hyperintensity lesion (T2L) into the definition of response [10].  When tumor progression was 

suspected, patients received an additional scan at a short time interval (~1 month) to help in 

confirming true progression. 

3.2.2 MR Imaging and Post-processing 

All scans were obtained using a 3T GE MR scanner using the body coil for transmission and 

an 8-channel phased array coil for reception. Exams included axial T2-weighted fluid attenuated 

inversion recovery (FLAIR), T1-weighted pre- and post-gadolinium (Gd) spoiled gradient echo 

(SPGR), and six-directional axial diffusion echo-planar imaging (EPI) (b = 1000 s/mm2, NEX=4) 

sequences.  

The FLAIR and pre-Gd T1-weighted images were rigidly aligned to the post-Gd T1-weighted 

images using previously developed software [23]. CEL regions were manually defined on the co-

registered post-Gd T1 SPGR images at each available time point. Any enhancement that was also 
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present on the pre-Gd T1 images was assumed to be indicative of acute blood products and was 

excluded. The T2L regions were segmented based on the hyper-intensity region of FLAIR images 

using a semi-automatic method [27]. The resection cavity was excluded from all ROIs.   

ADC values were calculated on a voxel-by-voxel basis using software developed in-house 

based on previously published algorithms [25]. They were compared to anatomical imaging by 

rigidly aligning the T2-weighted (b=0) diffusion image to the T2-weighted FLAIR and applying 

the transformation to the ADC maps. ADC parameters that were selected for analysis were the 

median and 10th percentile from the histogram of values in the T2L and CEL. This choice was 

based upon our prior analysis of different ADC metrics in the TMZ+bev cohort alone (see 

Chapter 2), which suggested that they are the most relevant for this type of analysis. 

3.2.3 Statistical Analysis 

3.2.3.1 Patterns of Changes Between Pre-, Mid-, and Post-RT 

Volumes of the CEL and T2L were obtained by multiplying the number of pixels in the 

region of interest by the pixel dimensions. Histograms of ADC values were estimated within the 

CEL and T2L regions.  Parameters that were used to summarize the shape of the histogram were 

the 10th and 50th percentiles of the distribution. The percent change in each volume and the ADC 

values were calculated for three periods: from pre- to mid-RT (pre-mid), as 100 x [mid-pre]/pre; 

from mid-post RT (mid-post), as 100 x [post-mid]/mid; and from pre- to post-RT (pre-post), as 

100 x [post-pre]/pre within the CEL and T2L regions.  A Kruskal-Wallis test was employed to 

assess differences in imaging parameters between the three cohorts. In cases where significance 

was found, a Wilcoxon rank-sum test was employed to assess differences between any two 

cohorts. 
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3.2.3.2 Survival Analysis 

OS and PFS were evaluated using Kaplan–Meier survival curves. A log-rank test was used to 

compare variables among patient cohorts. OS was determined from the day of the baseline scan to 

the date of death or last contact at which the patient was known to be alive (censored). PFS was 

defined as the time from the baseline scan to disease progression or death due to any cause, 

whichever came first. Age, Karnofsky Performance Score (KPS) at baseline, gender and extent of 

resection (EOR: 0=biopsy, 1=subtotal, 2=gross total) were considered as covariates in the 

survival analysis.   

3.2.3.3 Association of Imaging Parameters and Outcome 

Cox proportional hazard (CoxPH) models were used to evaluate which parameters were 

associated with PFS or OS within each treatment cohort. The differences in survival between 

groups that were dichotomized by imaging parameters were assessed by log-rank analysis. 

Multivariate Cox Hazard models were employed with covariates for treatment cohort, imaging 

parameter, and the interaction between treatment cohort and imaging variable. These models were 

also adjusted for clinical factors. No formal adjustment of type I error was undertaken because of 

the exploratory nature of the study; in all cases, P < .05 was considered statistically significant. 

Statistical analyses were performed with R (Version 3.0.3). 

3.3 Results  

3.3.1 Patients Characteristics and Outcomes 

Of the baseline patient characteristics that were considered, only gender was significantly 

different between TMZ+enza and TMZ+bev cohorts (Table 3-1; rank-sum, p=0.01). Age, KPS, 

and extent of surgery were not significantly different amongst the three cohorts (Kruskal-Wallis, 

p>0.1). Kaplan–Meier curves describing PFS and OS are displayed in Figure 3-1C. Median PFS 
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was 6.2 months in TMZ (95%CI: 5.53-22.9 months), 7.3 months in TMZ+enza (95%CI: 4.89-

10.5 months), and 12.4 months in TMZ+bev (95%CI: 11.60-16.3 months). Median OS was 17.6 

months in TMZ alone (95%CI: 11.4-33.1 months), 17.8 months in TMZ+enza (95%CI: 14.0-20.5 

months), and 17.0 months in TMZ+bev (95%CI: 15.9-25.1 months). Although PFS was 

significantly longer in the TMZ+bev cohort than in the TMZ+enza cohort (Log-rank test, 

p<0.008), there were no significant differences in OS were among the three cohorts (p>0.1).  

Table 3-1 Cox proportional hazard analysis of associations between baseline clinical factors, followed by 

anatomic lesion volumes and 10% ADC at pre-, mid-, and post-RT to progression free survival (PFS) and 

overall survival (OS) with adjustment for the baseline clinical factors (age, gender, KPS, extent of surgery). 

  
PFS 

 
OS 

  
TMZ TMZ+Enza TMZ+Bev 

 
TMZ TMZ+Enza TMZ+Bev 

    p-value HR (95CI) p-value HR (95CI) p-value HR (95CI)   p-value HR (95CI) p-value HR (95CI) p-value HR (95CI) 

Baseline 
Clinical 
Factors  

age 0.42 
1.01  

[0.98 1.05] 0.27 
1.02  

[0.99 1.05] 0.08 
1.04  

[1 1.08] 
 

0.17 
1.03  

[0.99 1.07] 0.15 
1.03  

[0.99 1.06] 0.06 
1.04  

[1 1.08] 

gender 0.99 
0.99  

[0.45 2.18] 0.57 
0.78  

[0.33 1.83] 0.91 
0.96  

[0.44 2.07] 
 

0.63 
1.22  

[0.54 2.73] 0.82 
0.90  

[0.36 2.26] 0.86 
0.93  

[0.4 2.15] 

kps - - 0.48 
1.03  

[0.95 1.12] 0.10 
0.96  

[0.92 1.01] 
 

0.96 
1.00  

[0.9 1.1] 0.86 
0.99  

[0.92 1.08] 0.25 
0.97  

[0.93 1.02] 

Surgery 0.45 
1.26  

[0.69 2.29] 0.06 
0.53  

[0.28 1.03] 0.006 
0.36  

[0.18 0.74] 
 

0.37 
1.35  

[0.7 2.63] 0.15 
0.6  

[0.3 1.19] 0.008 
0.35 

 [0.16 0.77] 

               

pre-RT 

Vol CEL (cc) 0.05 
1.09  

[1 1.2] 0.34 
1.02  

[0.98 1.07] 0.79 
0.99  

[0.91 1.07] 
 

0.26 
1.07  

[0.95 1.2] 0.27 
1.03  

[0.98 1.08] 0.22 
0.94  

[0.85 1.04] 

Vol T2L (cc) 0.26 
1.01  

[0.99 1.03] 0.38 
1.01 

 [0.99 1.02] 0.68 
1.00  

[0.99 1.01] 
 

0.64 
1.00  

[0.98 1.03] 0.09 
1.01  

[1 1.03] 0.29 
0.99 

 [0.98 1.01] 

10%ADC_CEL 0.55 
0.92  

[0.69 1.22] 0.29 
1.16 

 [0.88 1.52] 0.38 
0.9 0 

[0.72 1.13] 
 

0.19 
0.83  

[0.63 1.09] 0.35 
1.17  

[0.84 1.62] 0.63 
0.94 

 [0.73 1.21] 

10%ADC_T2L 0.02 
0.51  

[0.29 0.9] 0.31 
1.15 

 [0.88 1.5] 0.02 
0.66  

[0.48 0.92] 
 

0.09 
0.62 

 [0.36 1.07] 0.63 
1.08  

[0.78 1.49] 0.07 
0.74 

 [0.53 1.02] 

               

mid-RT 

Vol CEL (cc) - - 0.19 
1.07  

[0.97 1.18] 0.8 
1.02  

[0.89 1.17] 
 

- - 0.1 
1.10  

[0.98 1.22] 0.15 
1.14  

[0.95 1.35] 

Vol T2L (cc) - - 0.46 
1.01  

[0.98 1.03] 0.36 
0.99  

[0.98 1.01] 
 

- - 0.03 
1.03  

[1 1.06] 0.57 
1.00 

 [0.98 1.01] 

10%ADC_CEL - - 0.66 
1.08  

[0.78 1.49] 0.08 
0.73 

 [0.52 1.03] 
 

- - 0.66 
1.08 

 [0.76 1.55] 0.62 
0.91 

 [0.62 1.34] 

10%ADC_T2L - - 0.65 
0.90  

[0.58 1.41] 0.007 
0.36  

[0.17 0.76] 
 

- - 0.44 
0.82  

[0.5 1.36] 0.09 
0.43 

 [0.17 1.13] 

               

post-RT 

Vol CEL (cc) 0.0001 
1.12  

[1.06 1.19] 0.03 
1.08  

[1.01 1.15] 0.15 
1.29  

[0.91 1.84] 
 

0.05 
1.06  

[1 1.13] 0.01 
1.10  

[1.03 1.19] 0.51 
1.13  

[0.78 1.63] 

Vol T2L (cc) 0.004 
1.02  

[1.01 1.03] 0.11 
1.02  

[1 1.05] 0.21 
1.03  

[0.98 1.07] 
 

0.32 
1.01 

 [0.99 1.02] 0.02 
1.03  

[1 1.06] 0.75 
1.01  

[0.96 1.07] 

10%ADC_CEL 0.12 
0.78  

[0.58 1.07] 0.86 
1.03  

[0.77 1.37] 0.06 
0.54  

[0.28 1.03] 
 

0.41 
0.88  

[0.65 1.2] 0.31 
1.18  

[0.86 1.63] 0.05 
0.45  

[0.202 1.01] 

10%ADC_T2L 0.69 
0.91 

 [0.56 1.48] 0.15 
1.41  

[0.88 2.26] 0.01 
0.3  

[0.13 0.7163]   0.57 
0.86  

[0.51 1.44] 0.21 
1.36 

 [0.84 2.2] 0.0005 
0.09  

[0.03 0.3551] 
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3.3.2 Changes from Pre-RT to Post-RT 

Changes in median volumes and ADC within the CEL and T2L during the course of RT are 

illustrated in Figure 3-2A. Mid- and post-RT data were normalized to pre-RT within each patient.  

The percent changes in the CEL and T2L volumes from pre- to post-RT were different between 

three treatment cohorts (Kruskal-Wallis, p<0.002, p<0.004). In particular, patients in the 

TMZ+bev cohort had a significant and more extreme percentage decrease in the CEL volume 

from pre- to post-RT (median -79%) than patients in the TMZ cohort (median -30%; rank-sum, 

p<0.004) and patients in the TMZ+enza cohort (median -39%; rank-sum, p<0.001). Patients in 

the TMZ+bev cohort had a marked decrease in T2L from pre- to post-RT (median -56%), which 

was significantly different from patients in the TMZ cohort (median -20%; rank-sum, p < 0.003) 

and patients in the TMZ+enza cohort who demonstrated an increased median change (median 

25%; rank-sum, p < 0.004). It can also be seen in Figure 3-2A that for the TMZ+bev cohort, the 

largest change in CEL took place from pre- to mid-RT while the largest change in T2L was from 

mid- to post-RT. Patients in the TMZ cohort did not receive imaging examinations at the mid-RT 

time point. Figure 3-3 illustrated the patterns of changes in volumes of CEL and T2L based upon 

images from three representative patients. 
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Figure 3-2 Representative T1-weighted post-Gd images at pre-, mid-, and post-RT with contrast-enhancing 

lesion (CEL, red) and T2-hyperintensity lesion (T2L, green) overlay. ADC images were shown for the patient in 

the TMZ+bev cohort. Compared to the patients in the TMZ and TMZ+enza cohorts, there was a dramatic 

decrease in both CEL and T2L from pre- to post-RT for the patients in the TMZ+bev cohort. While the largest 

change in CEL happened from pre- to mid-RT, which was only 2 weeks into bevacizumab, the largest change in 

T2L happened from mid-RT to post-RT.  
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Changes in ADC parameters from pre- to post-RT were also found to be significantly 

different between the three treatment cohorts within both the CEL (Kruskal-Wallis, p<0.0002) 

and the T2L (Kruskal-Wallis, p<0.05) (Figure 3-3Figure 3-2A). The TMZ and TMZ+enza 

cohorts demonstrated a ~30% increase in median ADC from pre- to post-RT, while the TMZ+bev 

cohort demonstrated a 2% decrease in median ADC (rank-sum, p<0.0001; p<0.0001, 

respectively). Similar patterns were found for median ADC within the T2L (TMZ: 5% increase; 

TMZ+enza: 13% increase; TMZ+bev: 5% decrease).  

Figure 3-3B shows barplots of the mean and standard error of anatomical volumes and 

median ADC at pre-, mid- and post-RT, with significance levels highlighted. At pre-RT, the CEL 

was larger in the TMZ+enza cohort but no other parameters showed significantly differences 

amongst the three cohorts. At post-RT, the TMZ+bev cohort demonstrated significantly smaller 

T2L and CEL volumes, as well as lower median ADC compared to the other two treatment 

cohorts. 
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Figure 3-3 (A) Median contrast enhancing lesion (CEL) volume, T2-hyperintensity lesion (T2L) volume and 

median ADC within the CEL and T2L during the course of RT in the three cohorts. Parameters were 

normalized to values at pre-RT within each patient. In the TMZ+bev cohort, a marked decrease was observed in 

both CEL and T2L volumes during the course of RT (A. upper row). While ADC increased from pre- to post-

RT in the TMZ and TMZ+enza cohorts, it decreased in the TMZ+bev cohort (A. lower row). (B) barplots of the 

mean and standard error of lesion volumes and median ADC at pre-, mid- and post-RT for the three treatment 

cohorts. Parameters that were significantly different between cohorts at each time point were labeled with 

asterisk. In the TMZ+bev cohort lesion volumes and ADC were significantly different from those in the TMZ 

and TMZ+enza cohorts. (* p<.05, ** p<.005, *** p<.0005 ) 
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3.3.3 Association of Imaging Parameters with Outcome  

Table 3-1 summarizes the Cox proportional hazard (CoxPH) analysis of associations between 

baseline clinical factors (age, gender, KPS, extent of surgery) and patient outcomes, as well as 

CoxPH analysis of associations with imaging parameters at pre-, mid-, and post-RT with 

adjustment for clinical factors. Within clinical factors, more extensive surgery was a protective 

factor for both PFS and OS in the TMZ+bev cohort only (CoxPH, p=0.006 and p=0.008, 

respectively). Too few KPS values were available to perform an analysis of this parameter in the 

TMZ cohort. 

Univariate CoxPH analysis was first performed to assess associations between imaging 

parameters and outcomes within each individual study.  At pre-RT (post-surgery and before 

treatment), lesion volumes were not found to be associated with survival. Lower 10%ADC within 

the T2L was found to be a risk factor for PFS in the TMZ cohort (CoxPH, p=0.02) and in the 

TMZ+bev cohort (CoxPH, p=0.02). At mid-RT, larger T2L volume was a risk factor in the 

TMZ+enza cohort (CoxPH, p=0.03 for OS). Lower 10%ADC remained as a risk factor in the 

TMZ+bev cohort (CoxPH, p=0.007 for PFS). Data were not available in the TMZ cohort for this 

time point. At post-RT, larger CEL and T2L volumes were risk factors for PFS in the TMZ 

cohort and for OS in the TMZ+enza cohorts, but not in the TMZ+bev cohort. Lower 10%ADC 

within the T2L was a risk factor only in the TMZ+bev cohort. Specifically, larger CEL and T2L 

were associated with shorter PFS for the TMZ cohort (CoxPH, p=0.0001, p=0.004). Larger CEL 

was associated with shorter PFS (p=0.03) and OS (p=0.01) and larger T2L was associated with 

shorter OS (p=0.02) in the TMZ+enza cohort. In the TMZ+bev cohort, 10%ADC within the T2L 

was associated with both PFS (p=0.01) and OS (p=0.0004).  The percent change of lesion 

volumes and ADC from pre- to post-RT were not found to be associated with survival. 
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Multivariate Cox regression further confirmed that the predictive effects of CEL or ADC 

were significantly different or trending towards being different between the TMZ+bev cohort and 

the other cohorts, as the interaction between treatments and CEL or ADC were significant 

predictors of OS, and of PFS between TMZ+bev and TMZ+enza cohorts (Table 3-2). 

Table 3-2 Multivariate Cox Hazard models with covariates for treatment cohort (0=TMZ, 1=TMZ+enza, 

2=TMZ+bev), imaging variable (at post-RT), and the interaction between treatment cohort and imaging 

variable with adjustment for the baseline clinical factors (age, gender, KPS, extent of surgery). 

SurvType   TMZ vs TMZ+enza   TMZ vs TMZ+bev   TMZ+enza vs TMZ+bev 

  
p-value HR [95%CI] 

 
p-value HR [95%CI] 

 
p-value HR [95%CI] 

OS Vol_CEL 0.79 1.01 [0.93 1.10] 
 

0.054 . 1.153 [0.998 1.33] 
 

0.067 . 1.29 [0.98 1.69] 
  10%ADC_T2L 0.2 1.6 [0.8 3.2]   0.07 . 0.7 [0.4 1.04]   0.0009 ** 0.17 [0.06 0.48] 

          
  

TMZ vs TMZ+enza 
 

TMZ vs TMZ+bev 
 

TMZ+enza vs TMZ+bev 

  
p-value HR [95%CI] 

 
p-value HR [95%CI] 

 
p-value HR [95%CI] 

PFS Vol_CEL 0.36 0.97 [0.9 1.03] 
 

0.16 1.09 [0.96 1.24] 
 

0.025 * 1.3 [1.04 1.7] 
  10%ADC_T2L 0.15 1.6 [0.8 2.9]   0.42 0.8 [0.6 1.2]   0.0004 ** 0.27 [0.13 0.55] 

.  p<0.1 
* p<0.05 
** p<0.005 
***p<0.0005 

Figure 3-4 demonstrate the relationship between dichotomized imaging parameters and 

survival without adjusting for clinical factors by plotting Kaplan-Meier curves for each cohort. 

Figure 3-4A shows Kaplan-Meier curves for PFS and OS dichotomized by the median CEL 

volume (VolCEL) within each treatment cohort at post-RT. For the TMZ cohort, patients with 

VolCEL<median had a longer PFS that trended towards significance (A. log-rank, p=0.06). In the 

TMZ+enza cohort, patients with VolCEL<median had both longer PFS and OS (B, E. log-rank, 

p=0.002 for PFS, p=0.02 for OS). In the TMZ+bev cohort, patients with VolCEL<median had no 

survival benefit (C, F. log-rank, p>0.1). Figure 3-4B shows Kaplan-Meier curves dichotomized 

by the 10%ADC within each treatment cohort at post-RT. Patients in the TMZ+bev cohort with 

10%ADC>median had significantly longer OS (log-rank p=0.02) and had longer PFS that trended 

toward significance (log-rank p=0.08). No survival benefits were found for patients with 

10%ADC>median in the TMZ or TMZ+enza cohorts. 
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Figure 3-4 (A) Kaplan-Meier curves for progression free survival (PFS) and overall survival (OS) 

dichotomized by median CEL volume within each treatment cohort at post-RT. (B) Kaplan-Meier curves for 

progression free survival (PFS) and overall survival (OS) dichotomized by 10%ADC within the T2L at post-RT.  
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3.4 Discussion 

Combined therapy that includes bevacizumab as the first line treatment for patients with 

newly diagnosed GBM was associated with improved progression-free survival but not with 

overall survival compared to patients in the TMZ and TMZ+enza cohorts. This is consistent with 

the overall results from patients in the clinical trial of radiation, temozolomide, erlotinib and 

bevicizumab that our cohort was selected from [7], as well as reports from multi-institutional 

phase III trials of patients who were receiving bevacizumab [8-9]. Factors that might contribute to 

the prolonged PFS are the lower incidences of pseudoprogression and increased incidence of 

pseudoresponse. Pseudoprogression is expressed as a transient increase in tumor enhancement 

that is caused by changes in permeability of the blood-brain barrier but does not imply an increase 

in the spatial extent of the tumor. Because bevaciuzmab can control leakage from the vasculature, 

it is expressed by a reduction in the volume of the CEL that may or may not be accompanied by a 

reduction in bulk tumor [9]. The latter is commonly referred to as “pseudoresponse” [26-11] and 

could compromise the use of anatomic lesion volumes as a biomarker for treatment efficacy. In 

this paper, we evaluated the lesion volumes and ADC parameters before and after the treatments 

were given, and analyzed their association with survival within each treatment cohort. 

It is clear that patterns of changes in lesion volumes are different when anti-angiogenic 

therapy is added to standard TMZ and RT (Figure 3-2). Patients treated with bevacizumab 

demonstrated a marked decrease in CEL volume (median: -79%) from pre- to post-RT, while 

patients in the TMZ and TMZ+enza cohorts showed only a slight decrease in CEL volume. The 

reduction in the CEL and T2L volumes with bevacizumab is attributed to its strong anti-VEGF 

effect, which controls vessel permeability and reduces vasogenic edema. It is interesting to see 

that the timeline of changes in CEL and T2L were different, as the larger reduction in CEL 

occurred from pre- to mid-RT, while the larger reduction in T2L was from mid- to post-RT. 

Enzastaurin does not directly affect vascular permeability and its effect on CEL was less obvious.   
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The associations of imaging parameters with outcome also varied with treatment. Although 

lesion volume has been regarded as a variable that defines response, its predictive value was 

compromised when bevacizumab was added to the treatment. Consistent with previous reports 

[18-19], our analysis showed that smaller post-RT lesion volumes in the TMZ and TMZ+enza 

cohorts were associated with longer survival. These were not found to be associated with survival 

for the TMZ+bev cohort when clinical factors (age, KPS, extent of surgery) were taken into 

account. We would like to note that over half of the patients who received bevacizumab had a 

CEL volume at the post-RT exam that was less than 1cc and a third of the patients had non-

enhancing progressive disease. This suggests that the CEL is not a good measure of 

residual/reactive tumor for patients treated with bevacizumab and provides motivation for 

identifying alternative parameters within the T2L that can more accurately predict treatment 

outcomes. 

Parameters that have recently been suggested as early biomarkers for predicting subsequent 

progression following treatment with anti-angiogenic agents are derived from histogram analysis 

of the ADC and the manner in which these parameters change before and during treatment 

[18,17,19]. When examining the time course of changes in ADC, it was not surprising that 

bevacizumab-treated patients demonstrated a distinct pattern (Figure 3-2). While the median 

ADC increased (30%) from pre- to post-RT in TMZ and TMZ+enza cohorts, it decreased in both 

CEL (3%) and T2L (5%) for the TMZ+bev cohort. The increase of ADC shortly after TMZ plus 

RT has been reported previously [28-29] and was associated with the disruption of tissue 

architecture and decreased cellularity caused by treatment–induced necrosis and/or apoptosis. 

With bevacizumab, ADC metrics decreased due to a reduction in vasogenic edema.  

Although ADC metrics were reduced from pre- to post-RT in almost all patients in the 

TMZ+bev cohort, our results showed that patients with lower 10% ADC at post-RT also had 

shorter survival (Figure 3-4B). This association was further confirmed in the Cox survival 
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analysis when adjusted for clinical factors (Table 3-1). ADC was not found to be associated with 

survival for the TMZ or TMZ+enza cohorts. Tumor and vasogenic edema are two factors that are 

commonly present but have opposing effects within the tumor microenvironment [32-31]. 

Vasogenic edema often accompanies effective RT, but can also be symptomatic of tumor [32]. 

This compromises the potential of using ADC as a measurement of tumor cellularity, as 

vasogenic edema may mask the existence of recurrent tumor, and may explain why ADC was not 

associated with survival for TMZ and TMZ+enza cohorts when adjusted for clinical factors. In 

tumors being actively treated with bevacizumab, the vasogenic edema is more effectively 

controlled [30], resulting in lower ADC values, which may more closely reflect the cellularity of 

the tumor. Our results support this hypothesis by indicating that lower ADC percentiles within the 

T2L were significant risk factors for both PFS and OS for the TMZ+bev cohort when adjusted for 

clinical factors. The multivariate Cox analysis that took into account the interaction of ADC and 

treatment indicated that it was only predictive of outcome for the TMZ+bev cohort.   

While the 10% ADC in the T2L at the post-RT exam can be a metric for evaluation of 

residual tumor in treatment that includes bevacizumab, caution should be taken in interpreting 

low ADC values within the lesion at both earlier and later time windows. Low ADC within the 

T2L that is observed immediately after surgery may be due to ischemia, which typically returns to 

normal within 90 days [31]. These abnormalities are replaced by contrast enhancement on follow-

up imaging and can be identified on the immediate postoperative diffusion-weighted scan. 

Another issue that can confound the interpretation of low ADC is gelationous necrosis. This can 

occur in patients who are treated with bevacizumab but not until several months after RT [35-36]. 

Patients who demonstrate this type of necrosis were shown to have longer survival [35].  

Other studies in the literature have reported that fDM and other ADC metrics that reflect 

pixel by pixel changes in ADC in the overlapping contrast enhancing volumes between baseline 

and mid-RT examinations are predictive of outcome in patients with newly diagnosed GBM 
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[38,39]. In Chapter 2, where we performed a detailed analysis of the fDM and single time point 

ADC metrics in the TMZ+bev cohort, we found that the median and 10th percentile values in the 

T2Lwere the only ADC metrics associated with survival. The reason why the fDM and related 

parameters are unable to predict outcome for this patient population is likely to be due to the 

relatively limited volumes of the contrast enhancing volumes that were observed in comparison to 

other studies. This reflects both the relatively aggressive resections performed at our institution, 

which result in relatively low residual enhancing tumor volumes, and the anti-angiogenic effects 

of the treatments considered, which cause a further reduction in enhancing volumes at the 1 

month time point. Future studies of ADC metrics should consider alternative strategies for 

defining regions of interest that take into account regions of non-enhancing tumor.  

3.5 Conclusion 

This study evaluated 96 patients with newly diagnosed GBM who were on three different 

treatment regimens and found that there were differences in the evolution of imaging parameters 

between cohorts. These showed that there was no overall survival benefit found when 

enzastraurin or bevacizumab was added to standard temozolomide treatment plus RT. The most 

distinct pattern of changes in lesion volumes and ADC parameters occurred in the treatment arm 

that included bevacizumab. There was a rapid decline of ADC percentile values immediately 

following onset of TMZ+bev in almost all subjects, with lower ADC percentile values observed 

for the patients who progressed early. We hypothesize that this is due to the anti-VEGF effect of 

bevacizumab, which reduced the extent of vasogenic edema at this time point and therefore 

allowed the observed ADC values to more accurately reflect the presence of residual tumor 

burden. We suggest that tracking the changes in ADC could potentially assist radiologists in 

monitoring response to therapy that includes bevacizumab. Of interest is that lesion volumes, 

which were biomarkers in cohorts treated with TMZ and TMZ+enza, were not associated with 
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survival for patients in the TMZ+bev cohort. This suggests that oncologists should consider the 

treatment regimen being used when interpreting variations in these imaging parameters.  
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Chapter 4  
Association among MR diffusion, perfusion, spectroscopy, and 

image-guided histophathology with special attention to 

treatment effect 

This chapter takes the advantage of image-guided tissue samples to directly compare 

relationships between tissue histopathology and imaging parameters within the contrast 

enhancing lesion for patients with recurrent GBM and has a special focus on the differentiation of 

treatment effect and tumor.  

4.1 Introduction 

Standard therapy for glioblastoma (GBM) involves maximal safe tumor resection followed by 

radiotherapy with concurrent and adjuvant temozolomide [1]. Currently, changes contrast 

enhancement on anatomic MRI and clinical evaluation are key determinants of response to 

therapy and evaluation of tumor recurrence. Despite their widespread use, it is well known that 

changes in contrast enhancement after treatment are not specific for tumor. Chemoradiation 

therapy can cause early or late effects on contrast enhancement, which can manifest during the 

immediate post-radiation period or for months to years after treatment. It’s been reported that 20% 

to 30% of patients show increased contrast enhancement on their first post-radiation MRI that 

eventually subsides without any change in therapy [2-4]. This phenomenon, termed 

pseudoprogression, likely results from transiently increased permeability of the tumor vasculature 

from chemoradiation, and complicates the determination of tumor progression. Some of these 

changes might represent radiation necrosis, as defined by histopathology. These treatment related 

effects have implications for patient management, because while true tumor progression indicates 

treatment failure and necessitates a change in therapy, a positive effect of the therapy may 

indicate that it is being successful. Mistaking treatment effects with tumor progression may 
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therefore result in premature discontinuation of effective adjuvant therapy or unnecessary surgery. 

Providing a more reliable strategy for distinguishing between treatment effects and tumor 

progression is vital for making informed decisions about patient care.  

There has been much effort to differentiate true progression from treatment effect by using 

advanced MR imaging techniques such as diffusion weighted imaging (DWI), perfusion imaging, 

and proton spectroscopic imaging (1H MRSI). As recurrent high-grade glioma is associated with a 

combination of hypercellularity, hypervascularity, hypermetabolism, and rapid growth, it has 

been widely speculated that true tumor recurrence should demonstrate lower ADC, higher 

cerebral blood volume (CBV) and higher Choline (Cho) to N-acetyl aspartate (NAA) ratio than 

pure treatment related effect. Although some success has been reported, published results have 

been quite mixed. First investigation on DWI showed lower ADC values in the recurrent tumor 

group compared to those in the treatment induced necrosis [5]. This result was mirrored by 

another group but there was a bigger variation in ADC values for the radiation necrosis than the 

recurrent tumor group [6]. Cases of radiation necrosis with low ADC values have also been 

reported [7]. For MRS, the Choline (Cho)/Creatine (Cr) ratios, Cho/NAA ratios, and NAA/Cr 

ratios that are obtained may differ between tumor recurrence and radiation necrosis [8-10], but it 

has been reported that there is a large overlap between the two groups [11-14]. Results obtained 

with MR perfusion have been relatively more consistent, with an excellent correlation between 

elevated rCBV values and the presence of recurrent tumor having been reported in a recent 

image-guided prospective study [15]. While these general findings have been corroborated by 

other studies [16-20], the sensitivity and specificity have been highly varied, and values of rCBV 

that are recommended to be used as threshold for distinguishing between the two conditions have 

been 0.71 [15], 1.49 [20] and 1.75 [16]. A recent study that discussed patterns of elevated rCBV 

and low ADC indicate that they are frequently observed in coagulation necrosis [21].   



91 
 

Some of the mixed results that have been observed may be due to the small sample sizes 

considered (usually a total of 10-30 patients), to recruiting patients with mixed glioma grades as 

well as metastases, and to lacking histopathological confirmation of radiation necrosis cases. In 

addition, most studies use ROI based analysis of values in the lesion, which suffers from 

limitations due to the complexity of the tissue microenvironment. High-grade gliomas are 

intrinsically heterogeneous and after treatment are likely to include mixed regions of tumor and 

treatment effects. These factors may lead to difficulties in dichotomizing patients into ‘pure’ 

tumor and ’pure’ treatment effect, as well as causing there to be large variations in imaging 

parameters within each sub-group. 

In this study, we prospectively recruited patients whose initial diagnosis was GBM and who 

were presenting for surgical resection due to suspected recurrence and who had agreed to have  

pre-surgical examination that included perfusion, diffusion and spectroscopy. This enabled us to 

study both variations in the entire lesion and to relate in vivo imaging parameters to 

histopathology obtained from image-guided tissue samples. Our goal was to evaluate the 

performance of advanced MR techniques in differentiating between treatment effect and tumor 

samples, and to understand the underlying challenges inherent in evaluating these samples based 

upon measures of hypoxia, microvascular morphology, axonal disruption, cell proliferation and 

cell density.  

4.2 Materials and Methods 

4.2.1 Patient Population 

A total of 88 patients with an initial diagnosis of GBM, who were presenting for surgical 

resection due to suspected recurrence were prospectively enrolled into our study from July 2007 

to November 2011. All participants had previously received standard-of-care treatments that 

included surgical resection, external beam radiation therapy (EBRT) and chemotherapy. The 
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EBRT comprised 180 cGy per day for a total dose of 5940 cGy or 200 cGy per day for a total 

dose of 6000 cGy over approximately 6 weeks, which is the standard protocol being used at our 

institution. All patients had received prior temozolomide (Temodar; Schering-Plough, 

Kenilworth, NJ) and some had received other adjuvant chemotherapies. This study was approved 

by our Institutional Review Board and informed consent was obtained for each subject for both 

acquiring the advanced imaging data and for the surgeon taking additional, image guided tissue 

samples from regions that were from would have been removed as part of the standard clinical 

resection. 

4.2.2 Pre-operative MRI/MRS and Data Processing 

Pre-operative MR imaging exams were performed on a 3T or 1.5T GE scanners. Similar MRI 

protocol was utilized: Anatomic imaging included sagittal T1-weighted spin echo, axial 3D T2-

weighted fast spin echo (FSE), axial fluid attenuated inversion recovery (FLAIR), contrast-

enhanced 3D spoiled gradient-recalled acquisition in the steady state (SPGR) T1-weighted and 

T1-weighted post-contrast spin echo images. Physiologic imaging included 3 or 6-directional 

DWI (echo-planar; repetition time (TR)/echo time (TE) = 10s/99ms, NEX=4, voxel 

size=1.7x1.7x3mm3, b=1000s/mm2), Gradient-echo echo-planar dynamic susceptibility contrast-

enhanced (DSC) perfusion imaging acquired immediately before, during, and after an injection of 

0.1 mmol/kg gadolinium diethyltriamine pentaacetic acid (Gd-DTPA) at 5ml/s (TR/TE/Flip-angle 

= 1250-1500/35-54 ms/35º or 60º; voxel size=1.9x1.9x3-4mm3, 60-80 timepoints). Spectroscopy 

was acquired in a subset of the patients using Lactate-edited 3D MR H-1 MRSI with point 

resolved spectroscopic selection (PRESS) for volume localization and very selective saturation 

(VSS) pulses for lipid signal suppression (TR/TE = 1104/144 ms, field of view = 16×16×16 cm3, 

nominal voxel size = 1×1×1 cm3, flyback echo-planar readout gradient in the SI direction). 
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The imaging data were then transferred to a commercially available Linux workstation and 

were processed to guide prospective selection of tissue sampling sites. All anatomical images 

were co-registered to the corresponding post-Gd 3D SPGR images [22]. The accuracy of co-

registration was visually verified. In-house software was applied to derive estimates of in vivo 

DWI, DSC and MRSI parameters. Maps of the ADC and fractional anisotropy (FA) were 

generated on a pixel-by-pixel basis. DSC datasets were nonrigidly aligned using the VTK CISG 

software package [23]. Cerebral blood volume (CBV), percent ΔR2* signal recovery (Recov), 

ΔR2* peak heights (PH) were calculated for each voxel. CBV intensities were obtained by fitting 

the dynamic perfusion data by a modified gamma-variate function with a recirculation parameter 

[24]. Peak height and percent recovery values were estimated using a simple nonparametric 

procedure [25]. MRSI data were processed to quantify total choline (Cho), creatine (Cre), N-

acetyl-aspartate (NAA), lipid (Lip), and lactate (Lac) levels, from which maps of the choline-to-

N-acetyl-aspartate index (CNI) could be derived. CNI values were generated from a linear-

regression-based algorithm and represent the deviation of choline and NAA levels relative to 

normal voxels [26].  

4.2.3 Intraoperative Tumor Tissue Site Selection 

Tissue sampling sites within the contrast enhancement was prospectively selected based on 

the processed preoperative MR images. Regions demonstrating either abnormally decreased 

ADC, increased CBV and/or elevated CNI values that were suspicious for viable tumor, were 

evaluated for the purpose of planning which tissue to samples to obtain during surgery. One to 

four tumor tissue samples from each patient were designated with 5-mm diameter spherical 

targets on co-registered MR images using surgical navigation software (BrainLAB Inc.). To 

minimize risks to the patient, no control tissue (normal brain) was acquired. Image-guided 

navigation was applied to locate tissue corresponding to planned targets and to acquire safely 

accessible samples. The surgeon did their best to obtain tissue from the proposed targets, but in 



94 
 

some cases this was not possible. An estimate of the actual location where the tissue sample came 

from was obtained by taking a screenshot of that location, which provided a record of the LPS 

coordinates to be made. Upon excision, tissue samples were immediately fixed in 10%zinc 

formalin, dehydrated by graded ethanols, and embedded in Paraplast Plus wax (McCormick 

Scientific) using standardized techniques for tissue processing and immunohistochemistry. 

Additional non-image guided samples were obtained for clinical diagnosis as per standard 

practice. 

4.2.4 Quantification of MR Parameters for the Image Guided Tissue Samples 

Tissue sample ROIs corresponding to 5mm diameter spheres that were centered at the 

location where actual sample was obtained were generated on the pre-surgical images. ROIs that 

corresponded to normal appearing brain (NAB), the lesion on the T2-weighted images (T2L) and 

the contrast-enhancing lesion (CEL) on post-Gadolinium T1-weighted images were also defined 

for comparative purposes. Median ADC and FA values were quantified for each ROIs. For DSC, 

a weighted-average model-curve was generated at each image guided sample location by 

determining the percentage of the tissue sample mask within each perfusion voxel and 

automatically excluding unquantifiable voxels of noise [25] before taking a weighted average of 

the remaining dynamic curves based on the percentage overlap with the mask.  This process 

created one curve per tissue sample to quantify that resulted in an increase in SNR of the dynamic 

data which in turn improved the accuracy or goodness of fit of model fitting for cerebral blood 

volume (CBV) calculation. MR parameters were normalized by dividing estimated values in 

NAB for further analysis (rADC, rFA, rCBV, rPH, rCHO, rNAA, rLIP, rLAC).  

4.2.5 Histopathologic Analysis 

Sections from the tissue specimens were stained with hematoxylin and eosin (H&E) or 

immunostained using an automated immunohistochemical (IHC) tissue staining process (Ventana 
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Medical Systems Benchmark XT). Digital images were captured with an Olympus BX41TF 

microscope and an Olympus DP70 digital microscope camera. All samples were reviewed and 

scored by a board-certified pathologist blinded to the imaging and clinical status of the patients. 

All of the tissue specimens were of sufficient size and IHC staining quality to be included for 

analysis. 

4.2.5.1 Determining Treatment Effect and Tumor Tissue Samples 

For each tissue sample, the presence of tumor cells was scored based upon review of H&E-

stained sections. A tumor cellularity score ranging from 0~3 was given based on the contribution 

of tumor cellularity to total cellularity: 0 = no tumor/neoplastic feature present. 1 = infiltrating 

tumor margin, 2 = infiltrating cellular tumor and 3 = highly cellular tumor involving >75% of the 

tissue. Tumor cells were identified based upon morphologic features, including cytologic atypia, 

enlarged nuclear to cytoplasmic volume ratio, and hyperchromasia. Samples with tumor score of 

0 were further confirmed by pathologist as corresponding to true treatment effect if it contains 

one of the treatment related features including hyalinized blood vessels, reactive gliosis et al. 

Samples with 0 tumor score but that demonstrate no treatment effect features were excluded from 

the analysis (about 1%). With this definition for the purposes of our analysis the samples with  

“tumor score = 0” can be considered as corresponding to “treatment effect”.  

4.2.5.2 Other Histopathologic Analysis 

The cumulative extent of necrosis was scored from H&E stain as 0 = no necrosis, 1 = focal 

necrosis involving <50% of the tissue area, and 2 = extensive necrosis involving ≥ 50% of the 

tissue area, and 2 = extensive necrosis involving ≥ 75% of the tissue area. 

The degree of microvascular hyperplasia (MVH) was measured using immunohistochemistry 

(IHC) stained sections for factor VIII. The microvascular morphology was graded as delicate 
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(delicate MV) (resembling normal cerebral vessels), simple microvascular hyperplasia (simple 

MVH) (circumferential single cell hyperplasia with definitive lumen), or complex microvascular 

hyperplasia (complex MVH) (circumferential multi-layered and glomeruloid-type vessels). The 

relative contribution of each vascular morphology to total vascularity within the sample was 

qualitatively measured on a four-tiered ordinal scale (0 = no contribution, 1 = minimal, 2 = 

prevalent, 3 = predominant). The contribution of each type of microvascular element to the 

overall vascularity was scored as: 0 = delicate only, 1 = simple MVH identified, and 2 = complex 

MVH identified.  

The degree of hypoxia was assessed by the percentage cells that were positive based on 

immunohistochemical (IHC) analysis with CA-9 and was scored as 0 = no positive staining, 1 ≤ 

10%, 2 = 10%~25%, 3 ≥ 25%. The degree of architectural disruption was measured based on IHC 

analysis with SMI-31 staining, which is an antibody against a phosphorylated neurofilament 

epitope in thick and thin axons. This was scored as: 0 = no disruption of the normal architectural, 

1 = minimal disruption, 2 = mild disruption, 3 = severe disruption with no residual SMI-31 

immunostaining.  

Proliferation and average cell numbers were quantified based on number of Ki-67 stained 

cells and total cells over 3-5 separate fields. Proliferation was calculated as a labeling index 

[MIB-1-positive nuclei per total tumor cells counted per 200× field) × 100%] based on the 

evaluation of 3-5 fields and more than 1000 cells. Note that average cell numbers not only count 

tumor cells but can include microglia, reactive gliosis, lymphocytes et al as well.   

In selected cases, further IHC analysis was performed using CD45 and CD68 staining. CD45 

is a leukocyte common antigen, which is able to confirm the presence of T and B lymphocytes, 

produced by acquired or adaptive immunity. CD68 is a 110 kDa transmembrane glycoprotein, 

expressed by monocyte/macrophage lineages and serves as a marker for macrophages and 
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microglia, produced by innate immunity. The score was defined as: 0 = none to <5% of tissue 

contains positive cell, 1 = <25%, 2 = 25%~50%, 3 = ≥50%.  

4.2.6 Statistical Analysis 

As tumor score defined treatment effect and tumor samples, it was the main parameter 

considered in the analysis. Three aspects were considered: (1) assessment of association between 

histopathologic features and tumor score. (2) assessment of association between MR parameters 

and tumor score with univariate and multivariate regression. (3) assessment of association 

between vivo MR parameters and histopathological features.  

4.2.7 Association of Histopathological or MR Parameters and Tumor Score 

This analysis focused on whether any of the features were associated with tumor score. As 

our observation (tumor score) is ordinal, a marginal models for correlated ordinal multinomial 

responses，adjusted for repeated measures, was applied to evaluate the probability of observing 

ordinal outcomes. 

This model is written as: 

𝑙𝑜𝑔𝑖𝑡 𝑝 𝑌!" ≤ 𝐾  |  𝑋! ,𝑍! =   𝛼! + 𝑋!"! 𝛽 + 𝑍!"! 𝑏!;     𝑖 = 1,⋯ ,𝑁!"#$%&'!;𝐾 = 1,⋯ , 𝑐 − 1 

where 𝑌!" is the binary outcome for subject 𝑖 with biopsy measurement 𝑗 (ranges from 1 to 4), 𝑐 is 

the total levels of the ordinal variable, 𝑋!" is the design matrix for the fixed effects, 𝑍!" is the 

design matrix for the random effects, 𝛼! are rows corresponding to the 𝑗th biopsy specimen, and 

𝛽 and 𝑏! are the vectors of fixed and random parameters. The intercepts are fixed and category 

dependent. The odds ratio, 95% confidence interval (95% CI) and p value for each variable are 

reported. The ordinal outcome mixed effect models were analyzed using ordLORgee in R.  
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4.2.7.1 Association of Multiple MR Parameters with Tumor Score 

A multivariate mixed effects linear model was applied to evaluate whether including multiple 

MR parameters would improve their association with tumor score. Missing values were first filled 

in through imputation. Pearson correlation test was then applied to test correlations of each pair of 

MR parameters. Uncorrelated MR parameters (correlation coefficient<0.7) and parameters that 

were likely to be associated with tumor score (p<0.2) in the univariate analysis were included. 

The purpose of this analysis was to see whether combinations of these parameters would improve 

the association with tumor score compared with the univariate parameters.  

4.2.7.2 Association of MRI Parameters with Histopathology Features 

The univariate mixed effects linear models described above were used with each 

histopathology feature as the outcome, and the imaging parameters as a fixed predictor, adjusting 

for the patient effect. Models of ordinal-valued outcomes (e.g. Necrosis, MVH, et al.) were 

analyzed with ordLORgee in R, and models involving continuous outcomes (e.g. proliferation, 

average cells) were analyzed with geeglm, with the family being “Gaussian”.   

4.2.7.3 Comparison of Clinical Diagnosis with Whole Lesion-Based MR Parameters  

In addition to the sample-wise analysis, we also evaluated whether MR parameters from the 

entire CEL were associated with the patient based clinical diagnosis of treatment effect or tumor 

recurrence. For each imaging parameter, the percentile values, as well as volumes takes on values 

cut off by heuristically determined thresholds were quantified (e.g. Vol(rCBV>2) calculates the 

volume that has rCBV>2). A logistic regression was applied to evaluate the association between 

each variable and the clinical diagnosis. 

A p value of less than 0.05 was considered to be significant for all of the statistical tests. Field 

strength was adjusted for in the MRI parameters and flip angle was adjusted for in the DSC 
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parameters. For patients with multiple recurrences, only the first recurrence was included to avoid 

ambiguity in assigning independent data. Because of the exploratory nature of the study, no 

adjustment for type I error was included. All analysis was done in R (Version 3.0.3) 

4.3 Results 

Of the 88 patient enrolled in this study, 17 patients were identified based upon the clinical 

diagnosis as treatment effect and 71 patients were identified as recurrence GBM. This diagnosis 

was made on the basis of histologic findings in non-image guided surgical resection that indicated 

more than 5% of the sample had viable tumor. 

For the image-guided analysis, a total of 106 tissue samples were taken from 62 patients. The 

other 26 subjects were excluded either because the planned samples were not obtained during 

surgery, the coordinates of their locations were unable to be recorded, they were too small for 

histopathology analysis, or they were taken from non-enhancing regions of the lesion. Of 106 

tissue samples, 33 were characterized as treatment effect with no tumor cells present (tumor score 

= 0), 14 samples had a tumor score of 1, 21 had a tumor score of 2, and 38 had a tumor score of 3. 

Of the 33 treatment effect samples, 12 were from patients whose lesion was considered to be 

treatment effect based upon the clinical diagnosis and 21 were from patients with a confirmed 

clinical diagnosis recurrent GBM. Table 4-1 summarizes the patient and tissue sample 

populations.   

 
Table 4-1 Summary of patient and tissue sample population in samples-wise and lesion-wise analysis. 

Sample-wise  
  Patients Samples TS=0/TE TS=1 TS=2 TS=3 

62 106 33 14 21 38 
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Lesion-wise 
Patients Treatment effect Tumor recurrence 

88 17 72 
 
Abbreviations: TS=tumor score; TE: treatment effect 

4.3.1 Association between Tumor Score and Other Histopathological Features 

Summary statistics are shown in Figure 4-1A. The mixed effect model showed that all 

histopathological features were significantly associated with tumor score (p<0.05) with a odds 

ratio > 1, except for delicate MV, which indicated that a higher tumor score was associated with 

more necrosis, more microvascular hyperplasia, more hypoxia, more axonal disruptions, more 

cell proliferation, higher cell density and less delicate MV. Figure 4-1B shows the 

histopathological features of a tumor sample and treatment effect sample. Figure 4-2 showed the 

distribution of all histopathological features in relation to tumor scores with spineplots (for 

ordinal features) and boxplots (for continuous features). It’s worth noting that despite the overall 

trend and the statistical significance, treatment effect samples (Tumor score=0) demonstrate 

bigger variation than low tumor samples (Tumor score=1) in features such as complex MVH, 

hypoxia, axonal disruption, CD45, CD68, cell density.  

A more intuitive way for visualizing the histopathological features graded by tumor scores is 

the clustered colormap as shown in Figure 4-3. The high degree of heterogeneity in the features 

from the TS=0 group in the enhancing lesion are clearly seen.  
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Figure 4-1 A. Association of histopathological parameters with tumor score. B. Comparison of histopathological 

features between a tumor sample (upper) and a treatment effect sample (lower). 
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Figure 4-2 Spineplots (ordinal) and boxplots(continuous) of Histopathological parameters in relation to tumor 

score. 
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Figure 4-3 Colorcoded maps for histopathological features graded by tumor score for tissues taken from 

enhancing lesion (left) and non-enhancing lesion (right). Each row corresponds one tissue sample.  

 

4.3.2 Association between Tumor Score and MRI Parameters 

Summary statistics for association between tumor score and MRI parameters were shown in 

Table 4-2. Mixed effects model showed that only parameters extracted from DSC were 

significantly associated with tumor score. Higher rCBV from both nonlinear fitting and higher 

rPH nonparametric analysis were associated with higher tumor score (p=0.0008, p=0.002 
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respectively). Other than that, rADC from DWI was trending lower and CNI/rCho from MRSI 

were trending higher with higher tumor score, but neither of these reached statistical significance 

(p>0.1). In Figure 4-4 the distributions of these parameters are displayed as boxplots, 

demonstrating the large variations of all these parameters within the treatment effect group.  

Multivariate analysis showed that the rCBV was the only parameter demonstrating 

association to the tumor score (p=0.007), and that adding rADC, CNI/rNAA had no contribution 

to the model fitting (Table 4-2).  

Table 4-2 Association of in vivo MR parameters with tumor score within contrast-enhancing region (CE). Note 

that there were a much smaller number of samples that had MRSI data available for analysis. 

MR Summary Statistics   Univariate Mixed Efffect Model 
  Pt # Tiss # TS=0 # TS=1 # TS=2 # TS=3 # 

 
Odds Ratio 95% CI P Value 

DTI 
           rADC 60 102 31 14 20 37 

 
0.43 0.15 1.21 0.11 

rFA 57 98 29 13 19 37 
 

1.85 0.46 7.48 0.39 
DSC 

           rCBV_nlin 50 84 23 13 17 31 
 

2.39 1.43 3.98 0.00082 *** 
rPH_npar 50 84 23 13 17 31 

 
2.48 1.40 4.40 0.0018 ** 

recov_npar 50 84 23 13 17 31 
 

1.00 0.96 1.04 0.96 
MRSI 

           CNI 22 34 9 4 10 11 
 

1.13 0.91 1.40 0.27 
rCho 22 34 9 4 10 11 

 
1.26 0.50 3.15 0.62 

rCre 22 34 9 4 10 11 
 

1.24 0.30 5.08 0.76 
rNAA 22 34 9 4 10 11 

 
0.03 0.00 3.20 0.14 

rLip 22 34 9 4 10 11 
 

0.55 0.09 3.22 0.51 
rLac 22 34 9 4 10 11   0.14 0.01 2.15 0.16 

            
            
            Multivariate model       

        MR Odds Ratio 95% CI P Value 
       rADC 0.62 0.18 2.11 0.44 
       rCBV 1.96 1.20 3.19 0.0071 ** 
       CNI 1.06 0.87 1.30 0.56 
       rNAA 0.12 0.01 1.94 0.13 
       * p<0.05, ** p<0.001, ***p<0.0001 
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Figure 4-4 Boxplots of key MRI parameters versus tumor score in the sample-wise analysis.
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4.3.3 Association between MRI Parameters and Histopathological Features 

Summary statistics for association between key histology and MR parameters were shown in 

Table 3. Univariate mixed effects model demonstrated that higher rCBV were associated with 

many histopathological features including more necrosis (p=0.01), more architectural disruption 

(p=0.0003), less delicate MV (p=0.005), higher proliferation (p=0.002) and higher cell density 

(p=0.001). Higher lipid was associated with lower proliferation (p=0.01). ADC and CNI were not 

found to be significantly associated with any histopathological features. rLip was negatively 

associated with proliferation. 

Table 4-3 Association among key histopathological parameters and MR parameters 

  
Tumor 
score Necrosis 

Delicate 
MV 

Simple 
MVH 

Complex 
MVH Hypoxia AD Proliferation Avg Cells 

rADC 
         rCBV ++ + -- 

  
++ +++ ++ ++ 

CNI 
         rLip 
       

-- 
  

4.3.4 Lesion-wise Analysis for MR Parameters vs Clinical Diagnosis  

Boxplots of imaging variables within the entire CEL between patients with a clinical 

diagnosis of treatment effect vs true recurrence were shown in Figure 4-5. In general, the lesion-

wise analysis showed consistent results as the biopsy-wise analysis. Logistic regression showed 

that only parameters from DSC were significantly associated with clinical diagnosis, with 90 

percentile rPH (90% rPH), and volume of rCBV>2 (Vol(rCBV>2)) being higher for the subjects 

having a diagnosis of tumor recurrence (p=0.01, p=0.038).  The CEL volume was in general 

higher for tumor recurrence, and was trending significance (p=0.08). rADC was trending lower 

and rCHO, rCNI, vol(rCNI>2) was trending higher in tumor recurrence, but did not reaching 

statistical significance (p>0.1).  
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Figure 4-5 Boxplots of lesion volumes and MRI quantification within the contrast enhancement between 

treatment effect and tumor recurrence in the lesion-wise analysis. 

Cases with a clinical diagnosis of between tumor and treatment effect are shown in Figure 4-6. 

The tumor case showed decreased ADC, elevated PH and elevated CNI/Cho compared to the 

treatment effect case. Figure 4-7 shows a case where whole lesion was confirmed treatment effect 

but MR imaging resembled tumor recurrence in all aspects including low ADC, high PH, high 
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CNI/Cho and low NAA. Despite the overall clinical diagnosis and characterization of tumor score 

=0 for the image guided sample from the circled region, its histopathological features 

demonstrated high microvasculature hyperplasia, abundant lymphocytes, macrophages and 

microglia. This patient had recently been treated with HSP-90 vaccine, which suggests that the 

explanation for the ambiguous imaging and histopathology results are that that the samples 

correspond to regions with a very active inflammatory response.  

 

Figure 4-6 A tumor sample taken from true recurrence (upper) and a treatment effect sample taken from 

treatment effect lesion (lower). Comparing with treatment effect, tumor showed decreased ADC, elevated PH 

and elevated CNI/Cho. From left to right: T1-gad, ADC, PH, MRSI at the sample location, and H&E staining. 

On T1-gad image, yellow circle denotes the sample ROI. 
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Figure 4-7 A case where the whole lesion was confirmed treatment effect but MR imaging resembled tumor 

recurrence with low ADC, high PH, high CNI/Cho and low NAA. Histophatological features of the biopsy-

guided sample demonstrated high microvasculature hyperplasia, abundant lymphocytes, macrophages and 

microglia, indicating very active treatment related inflammatory response. 

 

4.4 Discussion 

Ambiguities in distinguishing tumor recurrence from treatment effects have a significant 

impact upon the management of patients with glioma and the interpretation of results obtained in 

clinical trials. Recent findings have emphasized the difficulty in differentiating true progression 

from pseudoprogression following treatment with radiation and temozolomide due to there being 

the possibility of a temporary increase in contrast enhancement that disappears in follow-up scans. 

The addition of anti-angiogenic treatments has further complicated the situation by providing a 

clear reduction in size of the contrast enhancing lesion without necessarily impacting the viability 

of the tumor. These issues have underlined the need for more advanced imaging techniques that 

are able to resolve ambiguities between treatment effect and recurrent tumor.  
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In the current study we evaluated 88 patients with a suspected diagnosis of recurrent GBM  

who presented for surgical resection and who were prepared to have image-guided tissue samples 

obtained from regions of contrast enhancement in order to make direct correlations of advanced 

imaging parameters with histological features. In contrast to other image-guided studies that have 

focused on samples with that were paucicellular and corresponded to regions of necrosis [11,15], 

we considered samples from contrast enhancing regions with more general characteristics of 

‘treatment effect’. This is important because radiation and chemotherapy can produce quite 

complicated histological features such as vascularization, demyelination and reactive cell 

proliferation that are caused by inflammatory responses [27-30]. Such histological findings 

develop, progress, and extend sporadically at different times and areas in the irradiated field of 

the brain for a long time after treatment and, biopsies from such lesions may demonstrate varying 

degrees of vascularization, cell density and demyelination [30-31]. Our histopathological findings 

in samples classified in treatment effect confirmed the presence of such variations. Although the 

overall scores were smaller than for tumor, varying degrees of necrosis, hypoxia, microvascular 

hypalasia, axonal disruptions, cell density and proliferation existed in the treatment effect 

samples.  

Such complications in histopathological features in the radiation necrosis partially explains 

the variation we observed in the imaging parameters in the treatment effect samples. In particular 

there was a huge variation of rADC in the treatment effect group, with a 10 percentile of 1.23 

(~984 mm2/s) and 90 percentile of 2.5 (~2000 mm2/s). Many factors can influence water diffusion 

in living tissue, including restriction (cellular compartmentalization, cell type and number, cell 

membrane density, and macromolecular size and type), physiochemical properties of tissue 

(viscosity and temperature), and perfusion [32].  Histologically, radiation induced injury has been 

described as an area of necrosis surrounded by a robust inflammatory cell infiltrate [33-34]. This 

can be seen in our results in that some of the treatment effect samples contained abundant 
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immune cells (CD45, CD68) and average cell count. Besides increased cellularity, high viscosity 

due to coagulation necrosis that contains creamy pus-like material with abundant leukocytes can 

contribute to ADC [35]. In previous reports of radiation necrosis that had low ADC values, the 

authors suggested that low ADC value could also be explained by the development of 

intracellular edema in the viable tumor cells during the transition to complete necrosis with 

liquefaction [6,7,36,37]. These observations suggest that low ADC values in regions of treatment 

effect can be caused by a mixed effect of high inflammatory cellular composition, high viscosity 

and cell swelling, while high ADC values may be reflective of simple acellular, cystic or 

liquefactive necrosis. Given these observations, it is not surprising that we found there was no 

association between ADC and cell density or other histopathological features in our analysis. 

Multi-voxel 3D MRSI provides parameters that reflect cellular metabolism, and have been 

shown to differentiate tumor from non-tumor in patients with newly diagnosed glioma [26,44]. 

Based upon these and other results, we would anticipate recurrent tumor would be characterized 

by high Cho and low NAA levels, which corresponds to elevated CNI. [8-10,45-47]. As was the 

case for ADC, the main ambiguity here is expected to be in samples corresponding to treatment 

effect, because inflammatory cells and gliosis are also likely to have reduced NAA, increased 

Cho and CNI. The other complication for the MRSI data is that its inherent spatial resolution is 

much larger (1cc) than the size of the tissue sample that the association between in vivo and ex 

vivo results may be weaker than for the DWI and the DSC images. In our study, over half of the 

patients with a clinical diagnosis of treatment effect had elevated Cho and decreased NAA levels 

in the contrast enhancing lesion. This is consistent with previous reports of radiation injuries that 

reported the presence of inflammation, demyelination, and reactive astrogliosis [48]. Other 

studies indicated that Cho has exhibits a temporary increase during the first few months after 

radiation therapy and then decrease again as radiation necrosis begins to appear [49-51]. The 

presence of Lipid is indicative of necrosis, which can also result radiation injury. Lactate is most 
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frequently observed in high grade tumor but may also accumulate in areas of radiation injury. 

Neither of these was able to separate our treatment effect and recurrent tumor samples. In a recent 

study that we performed to compared ex vivo HRMAS spectra from samples of gliosis versus 

samples from recurrent GBM, our results indicated that myo-inositol/Cho was able to distinguish 

between them [52]. We were not able to use this metric in the current study as our MRSI data 

were acquired with an echo time (TE) of 144ms. Future studies will determine whether in vivo 

levels of myo-inositol/Cho can be used to separate these two options using 1H MRSI methods 

with short TE.  

Of all imaging parameters analyzed in our study, the rCBV and rPH from DSC were the 

parameters that showed the best association with tumor scores and other histopathological 

features such as hypoxia, axonal disruption, proliferation, average cells. Values of rCBV have 

previously been shown to be associated with with tumor grade and histological findings of 

increased tumor vascularity, particularly in glioma [38-40]. Although they have demonstrated the 

potential for differentiating between treatment effect and recurrent tumor in other studies [15-21] 

it is not clear whether there is a single threshold that can be used to distinguish the 2 entities. We 

observed a big spread of rCBV values in the treatment effect that overlapped with tumor. As 

discussed previously, this may be due to radiation-induced cellular responses resulting in local 

neuroimmune and inflammatory reactions [41] that can mimic tumor progression. It is well 

known that inflammation is associated with neurovasculature in neurodegenerative diseases and 

shows increased rCBV [42,43]. Hu et al reported that rCBV between post-treatment radiation 

effect samples and tumor samples in a prospective image-guided study [15] but their radiation 

effect samples were restricted to those that were paucicellularity and lacked reactive cells. Our 

results showed that there was a wide range of cell counts (Avg. cells) in our treatment effect 

samples that also increased with rCBV (p<0.0001). 
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The multi-variate regression that we used to see whether using a combination of these 

imaging parameters could improve their association with outcomes was unable to improve upon 

the univariate analysis. One possible reason is that treatment induced inflammatory process could 

cause low ADC, high CBV and high Cho level at the same time, as was illustrated for the case in 

Figure 4-7. A three-layer pattern of low ADC and high CBV was found to be specific to radiation 

necrosis in a prior study [21] but was unable to be extended to the current, more general study.  

Overall, there was a bigger overlap between the imaging and histological characteristics of 

treatment effect and recurrent tumor compared with those published by other authors. There are 

several reasons for these differences. First, many of the prior studies defined radiation necrosis as 

areas that did not progress on serial MRIs rather than having histological confirmation. Second, 

many studies included mixed grades of gliomas, with low grade gliomas having been treated with 

less aggressive therapies. One can expect that treatment induced inflammatory response of these 

patients were not as severe as in patients with GBM [53]. Third, we guided the selection of tissue 

sampling to spots that were suspicious for viable tumor with either abnormally decreased ADC, 

increased CBV and/or elevated CNI values. This means that we were more likely to have 

identified regions with ambiguous findings. 

In conclusion, our biopsy-wise and lesion-wise analysis consistently demonstrated that rCBV 

was a useful imaging parameter in differentiating between treatment effect and recurrent tumor, 

and that it was associated with histopathological features that reflect malignancy. Despite these 

general findings, there was overlap in the values of imaging parameters between treatment effect 

and tumor that would make it difficult to be definitive based upon evaluating a single region of 

the tumor. Our studies also showed that the some of samples from the patients who had a clinical 

diagnosis of treatment effect had image guided tissue samples that were classified as recurrent 

tumor. There were also tissue samples defined as treatment effect which demonstrated similar 

histopathological and imaging features as the tumor samples. These ambiguities were caused by 
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treatment related inflammatory responses that involve vascularization and proliferation of 

immune cells. Finding imaging signatures of inflammation and gliosis will be critical for future 

progress in this field. Another factor of interest that was not considered in our comparison of 

imaging and histological parameters was the presence and role of non-enhancing tumor. 

Addressing these problems is likely to require a multi-modality approach and further analysis 

using image guided tissue samples.  
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Chapter 5  
Clinically Feasible NODDI Characterization of Glioma Using 

Multiband EPI at 7T 

In this chapter, we present an optimized multiband diffusion acquisition sequence at 7T. This 

sequence is able to accelerate diffusion acquisition by 3-fold and enables the characterization of 

brain tumor using the NODDI model within clinically feasible time. A SNR comparison is carried 

out between multiband and regular diffusion sequence at both 7T and 3T. The sequence was 

evaluated clinically and the variations in NODDI maps within the tumor are discussed.  

5.1 Introduction 

It is estimated that 68,530 new cases of primary brain and central nervous system tumors 

were diagnosed in the United States in 2012, and gliomas account for the majority of primary 

malignant brain tumors in adults [1]. Although low-grade lesions have a better prognosis, they 

often undergo transformation to a more malignant, higher grade at the time of progression. Both 

primary and recurrent gliomas infiltrate into adjacent brain tissue, making it difficult to define 

tumor margins. Proper diagnosis and grading, correct localization, and assessment of response to 

therapy are of great importance for all phases of treatment planning and selection.  

Conventional T1- and T2-weighted MRI are applied in conjunction with an injection of a 

Gadolinium-based contrast agent to delineate structural abnormalities in the brain and assess 

regions where the brain–blood barrier has been compromised. However, neither are able to 

distinguish between the complex components within the anatomic lesion, which include, edema, 

gliosis, inflammation, cyst and active tumor. The specificity of conventional MRI is further 

compromised after treatment with radiation, temozolomide and anti-angiogenic agents [2].  

Diffusion weighted imaging (DWI) is a rapidly expanding field in MRI and has been found 
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valuable in evaluating many neurological diseases [3]. By sensitizing MR signal to the random 

motion of water molecule protons at a microscopic level (of the order of 5–20µm), it is able to 

probe tissue microstructures in the brain such as axons, dendrites, glial cells, and extra-cellular 

spaces [4], in a manner that may provide valuable insights into tumor physiology. A simple and 

most widely used model to describe changes in signal intensity is diffusion tensor imaging (DTI), 

which represents water diffusion within a voxel as an ellipsoidal tensor. The apparent diffusion 

coefficient (ADC), which is estimated from this model, is a sensitive yet non-specific metric 

when evaluated in the highly heterogeneous tumor environment. A reduction in ADC may be 

associated with a decrease in vasognenic edema, or an increase in cell density. Increased ADC 

can be due to the formation of necrosis, an increase in interstitial fluid, or a decrease cell density 

due to effective treatment. The ability to distinguish between the mechanisms that lead to changes 

in ADC would be very important for treatment planning and monitoring patients. One approach 

to addressing this problem is to use a more sophisticated diffusion model and provides maps of 

parameters that represent different tissue compartments. 

Neurite Orientation Dispersion and Density Imaging (NODDI) is a diffusion model that 

allows the quantification of specific microstructural features directly related to neuronal 

morphology [5]. In particular, the NODDI model assumes that water protons in neuronal tissue 

belong to one of three different pools: i) free water in areas such as the ventricles that contain 

CSF and exhibit isotropic diffusion; ii) restricted water within linear structures that represent 

dendrites and axons; and iii) water that is anisotropically hindered, representing diffusion within 

glial cells, neuronal cell bodies and extracellular environment. An orientation dispersion index 

(OD) is produced to describe the coherence of neurite directions, with a higher value indicating 

more coherent organization. Data that have been recommended to fit the NODDI model comprise 

a 2-shell 90-direction DWI sequence. Recent applications of NODDI that have provided 

encouraging results are from patients with multiple sclerosis [6,7], focal cortical dysplasia [8], 
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neurofibromatosis [9], neonatal encephalopathy [10], healthy newborn brain [11], as well as in 

spinal cord [12]. For patients with brain tumors it is anticipated that changes in vasogenic edema 

would be reflected in the free water compartment, and changes in cell density changes would be 

associated with changes in the hindered water compartment.  

The availability of improved hardware and fast acquisition techniques make it possible to 

obtain 90-directional multi-shell DWI within a clinically feasible time. Conventional parallel 

imaging [13,14] results in a significant loss in SNR because the number of phase encoding steps 

that are acquired is reduced. For 2D multi-slice imaging, significant improvements can be 

achieved by exciting several slices at the same time using multiband radio frequency (rf) pulses. 

Since each slice is excited and sampled identically without skipping or missing k-space data, 

there is no loss in SNR. This technique has been successfully implemented in the human 

connectome project for accelerated diffusion imaging acquisition at 3T [15,16]. At higher field 

strengths, reduced T2 compromises the gain in SNR from the increased static magnetization, 

making the benefit of diffusion imaging at ultra-high field unclear. Other challenges, such as 

increased B0 and B1 field inhomogeneity, can also influence the quality of diffusion data. This 

has meant that the applications of ultra high field diffusion weighted imaging have been limited, 

and there has not yet been a direct comparison of the SNR between 3T and 7T.   

In this paper, we report on the use of multiband DWI at 7T in order to obtain 90-directional 

multi-shell data within a clinically feasible acquisition time for patients with glioma. This 

included a comparison between the SNR for 3T and 7T, and the application of B1 mapping and 

distortion correction procedures for reducing the impact of variations in B0 and B1. The 

optimized multiband sequence was applied to generate both DTI and NODDI maps and to 

compare the values in tumor and normal appearing white matter (NAWM).  
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5.2 Data Acquisition 

5.2.1 Multiband Acquisition 

Multiband EPI data were obtained with 2-channel transmit and 32-channel receive head coil 

(Nova Medical, Wilmington, MA) on GE scanners. Three slices (40 mm apart) were 

simultaneously excited (multiband factor of 3, or MB=3) with a three-band RF excitation and 

axial spin-echo echo planner (SE-EPI) readout with phase encoding (PE) in the anterior-posterior 

(AP) direction, resulting in 60 slices for whole brain coverage with isotropic voxels of 

2×2×2mm3 over a field of view of 256×256 mm2. ¾ partial Fourier k-space sampling was 

employed to reduce TE and an in-plane acceleration factor of 3 (R=3) further shortened TE and 

reduced distortion due to susceptibility effects. With a 50 mT/m amplitude gradient system at 

b=2000s/mm2, the TE obtained was 71.6ms and TR was 3200 ms. Calibration images were 

acquired at the beginning of the sequence with the same three-band excitation pulses but with 

different phase offsets applied to each band so that they could be unwrapped through a Fourier 

Transform (FT). This used the same SE-EPI readouts but was interleaved three times in order to 

fully sample the center of k-space.  

A B1 mapping procedure was performed prior to the multiband acquisition, in order to 

determine the optimal transmit gain (TG) [17] needed to account for the B1 inhomogeneity at 

high field. B1 maps were generated using a gradient echo acquisition sequence (TR/TE=250/8 ms) 

with a 1ms adiabatic Bloch-Siegert pulse and the transmitter gain was automatically adjusted 

based on the median B1 of the image volume.  

To correct for the susceptibility distortion, an additional b=0 image was acquired with 

reversed phase encoding blips using the same multiband sequence. This resulted in a pair of b=0 

images with distortions going in opposite directions and allowed the susceptibility-induced off-
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resonance field to be estimated with a method similar to that described in [20] and implemented 

in FSL [21]. The correction was then applied to the other diffusion images.  

5.2.2 Volunteers Data Acquisition for SNR Comparison  

Five volunteers received MR examinations with GE 3T MR 750 and GE 7T MR950 scanners 

(GE Healthcare, Maukesha, WI) using 32-channel receive-only head coils (Nova Medical, 

Wilmington, MA) and the same gradient system (50 mT/m amplitude and 200 T/m/s slew rate). 

Ten b=0 (T2 weighted) images were repetitively acquired with both standard EPI (MB=1) and 

MB=3 using the acquisition parameters described above. With the same TR, only the central slab 

of the brain was acquired for MB=1.  

5.2.3 Phantom Data Acquisition for Determination of g factor Maps 

A homogeneous spherical water phantom was used to evaluate the geometry factor (g-factor) 

map in order to quantify the fractional loss in SNR caused by the non-orthogonality of the array 

coil sensitivities [22]. Two datasets were acquired in each scanner using a gradient-recalled echo 

(GRE) imaging sequence (FOV = 256×256mm2, matrix size = 64×64, slice thickness = 2mm). 

The first data set was used to assess the noise covariance matrix and was obtained with all RF 

pulses suppressed. The second data set served to determine coil sensitivity maps for each coil 

element and was obtained with regular RF excitation. 

5.2.4 NODDI Data Acquisiton in Patients 

Twenty patients with glioma (13 males and 7 females, median age = 54 years) were referred 

by physicians from the neuro-oncology service at our institution and recruited to this study. The 

characteristics of the patient population are summarized in Table 4. Tumors had been graded by 

histological examination of tissue samples obtained during biopsy or surgical resection: 10 had 
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grade II, 3 had grade III and 7 had grade IV. All patients had received prior treatment and 4 of 

them were showing progressive disease at the time of the scan.  

Table 4. Patient Characteristics 

No. Age Sex Grade RT Chemotherapy Disease state image comments 
1 59 M 2 yes TMZ recurrent stable 
2 65 M 4 yes TMZ recurrent stable 
3 48 M 2 YES None recurrent stable 
4 68 F 2 yes TMZ recurrent progressive disease 
5 60 F 3 yes TMZ recurrent stable 
6 34 M 2 no None recurrent stable 
7 50 M 3 no TMZ recurrent stable 
8 44 F 4 yes TMZ recurrent progressive disease 
9 48 M 4 yes TMZ recurrent progressive disease 
10 59 M 2 yes TMZ recurrent stable 
11 40 M 2 no none recurrent stable 
12 41 F 4 yes TMZ recurrent stable 
13 65 M 2 yes RAD001 recurrent stable 
14 46 M 4 yes TMZ recurrent stable 
15 57 F 4 yes none recurrent stable 
16 55 M 4 yes TMZ recurrent stable 
17 27 F 2 yes none recurrent stable 
18 60 F 3 yes TMZ recurrent stable 
19 52 M 2 yes TMZ recurrent stable 
20 75 M 2 yes none recurrent progressive disease 

 

A two-shell diffusion imaging protocol was used for the 7T scanner with MB=3. This 

protocol included 7 b=0 images (and one additional b=0 image with reversed phase-encoding 

gradient for distortion correction), 30 directions at b=1000 s/mm2, and 60 directions at b=2000 

s/mm2 with a total acquisition time of 5’42’’.  

Anatomical images of these patients were acquired at the 3T scanner, including sagittal T1-

weighted spin echo, axial 3D T2-weighted fast spin echo (FSE), axial fluid attenuated inversion 

recovery (FLAIR), contrast-enhanced 3D spoiled gradient-recalled acquisition in the steady state 
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(SPGR) T1-weighted and T1-weighted post-contrast spin echo images (T1-gad). In 14 patients, 

24-directional DWI with regular SE-EPI sequence was also acquired (repetition time (TR)/echo 

time (TE) = 10s/99ms, voxel size=2x2x2mm3, in-plane R=2, b=1000s/mm2).  

5.3 Post-processing and Analysis 

5.3.1 Multiband Image Reconstruction 

The image was aliased in both SI and AP directions, and was unfolded using the 

SENSE/GRAPPA procedure as described in [23]. The calibration data were first concatenated 

and Fourier transformed (FT) to generate the fully sampled k-space. Once the kernel has been 

generated, aliased images went through the reconstruction pipeline as illustrated in Figure 5-1. 

The under-sampled k-space data were first zero filled in the direction that no acceleration was 

performed (left-right, Figure 5-1B) and a standard GRAPPA/ARC procedure was applied to 

reconstruct the k-space data (Figure 5-1C). After an inverse Fourier Transform (ifft), the unalised 

images (Figure 5-1D) were individually transformed into k-space again (Figure 5-1E) in order to 

reconstruct the full k-space (Figure 5-1F) through a partial k-space reconstruction method called 

projection onto convex sets (POCS) [24].  A 2D fermi filter was then applied to reduce Gibbs 

ringing, and single coil images (Figure 5-1G) were combined with a sum of squares coil 

combination (Figure 5-1H). 
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Figure 5-1 Reconstruction flowchart for a data set with MB=3 and in-plane R=3.  A. Aliased image and its 

under-sampled k-space in PE direction. B. Zero filled k-space in the non-accelerated direction for un-folding 

aliased slices. C. Reconstructed full k-space with GRAPPA/ARC. D. Single coil un-aliased images.  E. K-space of 

un-aliased slices. F. Full k-space after partial k-space reconstruction with POCS. G. Single coil images after 

Fermi filtering in k-space. H. Images reconstructed and combined using a sum of squares function..  

5.3.2 SNR Calculation and Determination of g-factor 

Each slice of the volunteer data was first smoothed with an 8-by-8 mean filter. The SNR was 

then calculated from Eq 5-1 for each voxel within the brain. 

 
𝑆𝑁𝑅 =

𝑚𝑒𝑎𝑛(𝑣𝑜𝑥𝑒𝑙)
𝑠𝑡𝑑(𝑣𝑜𝑥𝑒𝑙)

 
Eq 5-1 

   
To calculate g-factor maps, phantom data were used to estimate relative coil sensitivity maps 

using the eigenvector method described by Walsh et al [25]. g-factor maps were then estimated 

from the sensitivity maps with the equation shown in Eq 5-2 [22] for different under-sampling 

schemes (MB1, R=3 and MB3, R=3).  
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 𝑔! = 𝐶!∗Ψ!!𝐶! !,! 𝐶!∗Ψ!!𝐶! !!
!,! 

Eq 5-2 

   
𝐶! is the coil sensitivity encoding matrix corresponding to an R fold accelerated acquisition. 

Ψ is the noise covariance matrix of the 32-channel coils, which was estimated by calculating the 

covariate matrix of the noise data acquired with RF excitation disabled.  

5.3.3 NODDI and DTI Processing  

After the multiband data were reconstructed, a susceptibility distortion correction was applied 

using the TOPUP method available in FSL [20,21]. Eddy current correction was followed by 

affine registration of the data to a reference volume image (eddy_correct, FSL).  

The NODDI model was fitted within the brain mask using the NODDI MATLAB toolbox 

(http://www.nitrc.org/projects/noddi_toolbox/).. The two diffusivities representing the diffusion 

coefficient of the isotropic compartment (diso) and the intrinsic diffusivity of the intra-neurite 

compartments (d//) were fixed as in the original model [5] to diso=3.00µm2/s and d//=1.70µm2/s, 

which are the values commonly employed in literature for the free diffusivity of water particles in 

CSF and neural tissue in vivo at body temperature. The DTI fitting program in FSL was 

employed to fit DTI with weighted least squares tensor fitting (dtifit, FSL). Both models were 

fitted to the whole double-shell data set, and the DTI model was also applied separately to the 

shell acquired at b=1000s/mm2 and a shell acquired at b=2000s/mm2.  

The following voxel-wise maps were obtained. For NODDI: the isotropic volume fraction 

(viso), the intra-neurite (restricted) volume fraction (vic), the extra-neurite (hindered) volume 

fraction (vec) and the orientation dispersion index (OD). In this study, we calculated the effective 

volume fraction for vic and vec so that viso+vic+vec = 1. For DTI, we evaluated ADC and fractional 

anisotropy (FA).  
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3T anatomical images were aligned to 7T diffusion images and resampled to the resolution of 

the diffusion data. Regions of interests (ROIs) included voxels within the region of T2 

hyperintensity (T2L) on the FLAIR images and contrast-enhancing lesions (CEL) on the T1-gad 

images. NAWM, gray matter (GM) and cerebrospinal fluid (CSF) were defined from the 3D 

SPGR brain images. Median values of diffusion maps were analyzed within each ROIs. 

5.3.4 Statistical Analysis 

Statistical analysis was performed using Matlab R2012a. Nonparametric Wilcoxon rank sum 

tests were applied to assess difference in diffusion maps between tumor grades, or between 

different regions of interests (ROIs), including T2L, CEL, NAWM, GM and CSF. A P-value of 

0.05 or smaller w considered to be significant. Adjustment for multiple comparisons was not 

applied due to the exploratory nature of this study.   
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5.4 Results 

5.4.1 SNR Comparison between 3T and 7T 

Figure 5-2A shows the center slice from two volunteers (V3 and V4) acquired with MB1 and 

MB3 at 3T and 7T. The median SNR of all slices was compared using a scatter plot for all 5 

volunteers in Figure 5-2B. The median SNR was 68.4 and 43.9 for 3T MB1 and MB3 at 3T, and 

50.2 and 46.1 for MB1 and MB3 at 7T.  

 

3T MB1                              

V3 
 
 
 
 
 
 
 
V4 

A 
 
 
 
 
 
 
 
 
 
 
 
B 

 3T MB3  7T MB1 7T MB3    

S
N

R
 /A

U
 



132 
 

Figure 5-2 A. Center slice from two volunteers acquired with MB1 and MB3 at 3T and 7T. White matter is 

outlined in red. B. Scatter plot of median SNR values of all slices of 5 volunteers (V1-V5). Median SNR of each 

method was highlighted with a black line, with median SNR=68.4 and 43.9 for 3T MB1 and MB3, 50.2 and 46.1 

for 7T MB1 and MB3.  

5.4.2 g-factor Maps  

g-factor maps (center slice and slices 40mm above and below) at 3T and 7T for different 

under-sampling schemes are shown in Figure 5-3A. Median 1/g values of all slices are shown in 

the scatter plot in Figure 5-3B, with the black line indicating the median value of each method. 

Median 1/g was 0.97 and 0.57 for 3T MB1 and MB3, 0.98 and 0.71 for 7T MB1 and MB3. The 

noise correlation matrix of the 3T 32-channel coil and 7T 32-channel coil are shown in Figure 

5-3C, with the median value of off-diagonal correlation coefficients being 0.06 for 3T and 0.03 

for 7T.     
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Figure 5-3 A. g-factor maps at 3T and 7T when under-sampling in one direction (MB1, in-plane, R=3), or in two 

directions (MB3, in-plane R=3) . g-factor maps were calculated from sensitivity maps estimated from a phantom 

data acquired at different field strength with 32-channel coils. B. Scatter plot of median 1/g value of all slices. 

Median 1/g of each method were shown in black line, with median 1/g=0.97 and 0.57 for 3T MB1 and MB3, 0.98 

and 0.71 for 7T MB1 and MB3. 
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5.4.3 DTI and NODDI Results in Patients 

5.4.3.1 Quality of Fit of DTI 

14 out of 20 patients had 3T DTI data acquired with the product sequence. 3T and 7T DTI 

data were compared for this population, which included: (1) 3T regular DTI with b=1000, 24dir 

(2) 7T multiband DTI with b=1000, 30dir (3) 7T multiband DTI with b=2000, 60dir (4) 7T 

multiband double shell, 90dir. ADC and FA maps of a patient were shown in Figure 5-4A. The 

median values of ADC and FA within the NAWM, GM and CSF for 14 patients from different 

datasets are shown as bar plots in Figure 5-4B. For b=1000, the ADC was not significantly 

different between 3T and 7T within the NAWM, and FA was significantly higher at 7T 

(p<0.0001). The ADC and FA contrast was higher for 7T between NAWM, GM and CSF.  As 

expected, the ADC obtained at b=2000 was significantly lower than ADC at b=1000 (p<0.0001) 

due to the non-Gaussian nature of water diffusion in a restricted environment, and the values 

fitted from the double shell were inbetween the values fitted from each shell. 3T data were 

aligned to the 7T data prior to quantification. 

Correction for the susceptibility artifact with TOPUP at 7T is shown in Figure 5-4C. It can be 

seen that distortions were in the opposite direction between reversed and regular phase encoding 

blips, and with TOPUP the distortion was well corrected. 
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Figure 5-4 A. ADC and FA maps for patient data acquired with (1) 3T regular DTI, b=1000, 24dir (2) 7T 

multiband, b=1000, 30dir (3) 7T multiband, b=2000, 60dir (4) 7T multiband, double shell. B. Box plots of 

median ADC and FA within NAWM, GM, and CSF of 14 patients. C. Susceptibility artifact correction with 

TOPUP for 7T multiband acquisition. 
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5.4.3.2 Evaluation of NODDI Parameters 

The mean and standard deviation of NODDI and DTI parameters in the NAWM, GM, CSF, 

T2L and CEL are summarized in Table 5 as a function of tumor grade. Within both the T2L and 

CEL, the ADC was significantly higher and the FA was lower than in NAWM (p<0.0001). Both 

viso and vec were significantly elevated (p<0.0001) compared to NAWM and vic was significantly 

decreased (p<0.0001). ADC was significantly lower in the CEL than the T2L, while OD and Vic 

were significantly higher (p<0.01, p<0.001), Viso was significantly lower (p<0.05) and Vec was 

not significantly different between the two lesions.  These metrics were not found to be different 

between tumor grades (p>0.1).  

Table 5. DTI and NODDI matrices values (Mean ± SD) in the T2L, CEL and NAWM, GM and CSF. 

  T2L CEL NAWM GM CSF 
   N=20 N=11 N=20 N=20 N=20 
 ADC 1.29 ± 0.21 0.97 ± 0.19 0.61 ± 0.03 0.79 ± 0.05 1.41 ± 0.20 
 FA 0.17 ± 0.04 0.17 ± 0.04 0.36 ± 0.05 0.15 ± 0.01 0.09 ± 0.02 
 OD 0.25 ± 0.08 0.35 ± 0.09 0.29 ± 0.03 0.46 ± 0.03 0.46 ± 0.03 
 Viso 0.37 ± 0.19 0.15 ± 0.12 0.09 ± 0.05 0.11 ± 0.08 0.66 ± 0.19 
 Vic 0.16 ± 0.08 0.32 ± 0.17 0.55 ± 0.06 0.38 ± 0.04 0.13 ± 0.07 
 Vec 0.43 ± 0.15 0.44 ± 0.21 0.28 ± 0.06 0.34 ± 0.08 0.07 ± 0.10 
 

         G2 T2L G3 T2L G4 T2L G2 CEL G3 CEL G4 CEL 
  N=10 N=3 N=7 N=5 N=1 N=5 
ADC 1.27 ± 0.20 1.43 ± 0.22 1.24 ± 0.21 0.99 ± 0.25 1.05 ± 0.00 0.94 ± 0.16 
FA 0.18 ± 0.04 0.13 ± 0.02 0.16 ± 0.04 0.18 ± 0.03 0.11 ± 0.00 0.18 ± 0.04 
OD 0.23 ± 0.07 0.26 ± 0.10 0.28 ± 0.08 0.34 ± 0.08 0.44 ± 0.00 0.34 ± 0.11 
Viso 0.36 ± 0.21 0.43 ± 0.23 0.35 ± 0.17 0.15 ± 0.10 0.41 ± 0.00 0.10 ± 0.10 
Vic 0.15 ± 0.06 0.11 ± 0.05 0.19 ± 0.10 0.30 ± 0.24 0.24 ± 0.00 0.35 ± 0.12 
Vec 0.46 ± 0.16 0.42 ± 0.19 0.39 ± 0.14 0.44 ± 0.26 0.34 ± 0.00 0.47 ± 0.19 

 

NODDI maps of three patients who had lesions with different grades are shown in Figure 5-5, 

together with ADC and FA maps fitted from the same double-shell data, and 3T T1-gad and 

FLAIR images. All patients had received radiation therapy (RT) and were stable at the time of 
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scan. Within in the T2L, variations were seen in viso, vic and vec, that reflected different water 

mobility characteristics. Contrast enhancing lesions were present in all patients (blue arrow) and 

all demonstrated elevated ODI and vic compared to surrounding tissues. The white arrow 

indicates two regions of interest at the edge of T2L of the grade II and grade II patients. These 

regions could easily be missed on anatomical images and DTI maps, as their intensities were very 

close to NAWM, but they were highlighted in NODDI maps due to elevated vec. 
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Figure 5-5. NODDI maps of three patients with lesions of different grades, together with ADC and FA maps 

fitted from the same double-shell data, and 3T T1-gad and FLAIR images. T2L were outlined, defined as the 

OD###################################Viso#####################################Vic##################################################Vec###########################

T1,gad#(3T)# ##############FLAIR#(3T)#

0###############################1# 0###############################1#

GII 

GIII 

GIV 

0###############################1# 0###############################1#

OD###################################Viso#####################################Vic##################################################Vec###########################

T1,gad#(3T)# ##############FLAIR#(3T)#

OD###################################Viso#####################################Vic##################################################Vec###########################

T1,gad#(3T)# ##############FLAIR#(3T)# ADC  
         
 
  

ADC  
          

ADC  
          

 FA  

 FA  

 FA  



139 
 

hyperintensity abnormality in the FLAIR image. Within in the T2L, variations were seen in viso, vic, vec, 

reflecting different water mobility characteristics at different parts of the lesion. Contrast enhancing lesions 

were present in all patients (arrow) and all demonstrated elevated ODI and vic. The white arrow indicated two 

interesting regions at the edge of T2L of the grade II and grade II patients, which could easily be easily missed 

on anatomical images and DTI maps, but was highlighted due to elevated vec. 

5.5 Discussion 

The use of sophisticated diffusion models to provide improved the characterization of tissue 

composition is a promising technique for evaluating lesion heterogeneity in patients with glioma. 

The application of these models has typically been limited by the need to acquire a large number 

of diffusion directions at high b-values, which is not feasible in clinical settings [18,19]. In this 

study, we demonstrated the feasibility of acquiring multi-shell diffusion weighted data using the 

multiband technique within the same acquisition time that has been used to acquire routine DTI. 

The resulting data were fitted with both NODDI and standard DTI models. Our results showed 

that the NODDI maps were able to provide unique contrast within the T2L and are likely to 

provide information that is complementary to FA and ADC. 

Major concerns for obtaining diffusion data using ultra high field strength MR scanners are 

increased variation in B0 and B1. In this study, we used 3-fold in-plane acceleration to shorten 

TE, as well as to increase the bandwidth in the phase-encoding direction in order to reduce the 

extent of distortion. To further correct for the susceptibility distortion, we used the TOPUP 

correction by adding an additional b=0 image with reversed phase encoding blips into the 

sequence [20-21]. The correction performed well for these data, as was illustrated in Figure 5-4. 

B1 inhomogeneity caused imperfect spin-echo over the entire brain, resulting in non-uniform 

signal intensity. To ameliorate this situation, we optimized the transmitter gain based on the 

median B1 of the image volume by incorporating the measured B1 field strength. It has been 

previously demonstrated that this technique can improve the situation by providing 82% of the 
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available spin echo signal [17]. The volunteer data in Figure 5-2 illustrate uniform images from 

central slice.  

The performance of the EPI sequence at ultra-high field has been difficult to assess because 

the impact of the T2 values from brain tissue are unknown. We carried out a straightforward SNR 

comparison between 3T and 7T with the same hardware settings (gradient, coils) and acquisition 

parameters (TR, TE, k-space coverage and voxel size). Our results showed that without multiband, 

the SNR was higher at 3T (SNR≈68.4) than 7T (SNR≈50.2), indicating the shortened T2 at 7T 

outweighed the increased static magnetization and the total signal was reduced at the same echo 

time. However, when 3-fold acceleration was applied with multiband, the SNR was comparable 

between 3T (SNR≈43.9) and 7T (SNR≈46.1). The SNR loss after the simultaneous multi-slice 

acquisition is caused by the spatially dependent amplification of noise, known as the geometry 

factor, or ‘g-factor’. Our estimation of g-factor maps showed that with MB=3 and in-plane R=3, 

g-factor was lower at 7T (g = 1.4) than 3T (g=1.75). This explains why the SNR is no longer 

superior at 3T with the multiband sequence.  The improved g-factor map at 7T compared to 3T 

observed in our study is in agreement with the current literature [26]. It has been shown both in 

theory [27,28] and in experiments [26] that the g-factor is dependent upon B0 field strength at 

high field (B0>1.5T), and improves as the field increases, because the coil sensitivities grow 

progressively asymmetric [29] and become increasingly structured due to the shortening RF 

wavelength and related interference effects [30]. It has also been demonstrated that improvement 

in the g-factor at high field becomes more obvious as acceleration factor increases [26]. Our data 

demonstrated comparable SNR between 7T and 3T with 9-folder acceleration, and it can be 

predicted that even higher SNR would be achieved at 7T than 3T with higher acceleration.  

The 3-fold acceleration that was achieved in the slice direction was the optimal that could be 

obtained with our current multiband technique, as the separation of aliased slices (40mm) is close 

to the coil size and SNR would be exacerbated if higher acceleration factors were used in that 
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direction. Another multiband technique, termed blipped-CAIPI can be implemented to both 

increase the SNR and achieve higher acceleration factor [31]. This technique can reduce the g-

factor in simultaneous multi-slice acquisitions by introducing interslice image shifts and thus 

increase the distance between aliased voxels. This will be the target for future studies.  

The multiband diffusion sequence was applied to the characterization of glioma using a 2-

shell, 90-direction protocol that is straightforward to implement and sufficiently economical for 

clinical applications, yet sophisticated enough to distinguish three types of water diffusion in the 

brain.  The ADC and FA maps fitted from this 7T protocol were first compared to the data 

acquired at 3T for patients with both data sets available (N=14). Our results showed that ADC 

values at b=1000mm2/s within NAWM and GM were very close between 3T and 7T, with ADC 

higher in GM than NAWM, which is consistent with the trend reported in the literature [32]. It 

can also be seen that ADC at 7T demonstrated better contrast between different brain regions than 

3T. One possible reason is that 3T data was aligned to 7T before the quantification, and the 

interpolation process could reduce the contrast. This may also explain why FA was lower in the 

3T data in these regions. In general, ADC and FA maps acquired with multiband at 7T were 

comparable to those acquired with regular sequence at the 3T, and data quality was satisfying 

(Figure 5-4).  

The NODDI model distinguishes three types of water diffusion behavior and each was 

quantified with a compartment fraction. When applied to tumor, it is natural to speculate that 

vasogenic edema would belong to viso given its isotropically fast diffusing movement. Invading 

tumor cells along fiber tracts should be categorized as vec, as they co-exist with glial cells in the 

space around the neurites. Our data were in general supportive of these assumptions by showing 

increased viso and decreased vic within T2L and CEL lesions compared to NAWM, consistent 

with increased edema and loss of neurons. The increased vec was likely to reflect the invading 

tumor cells. These assumptions should be validated with tissue samples, which were not available 
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in the current study. Patients recruited into this study were at different stage of disease and had 

received varying treatment, which may explain why these matrix were not found to be significant 

different between tumor grades. 

The NODDI maps provided unique contrast across the tumor and highlighted interesting 

regions that could not be seen in ADC or FA maps. The different types of contrast observed may 

be reflective of progressive disease or of treatment effects that are worth noting for radiologists. 

Obtaining follow-up data at later time points would be valuable for tracking changes in these 

regions and may be helpful in interpreting them. Definitive verification and interpretation would 

require the use of image guided tissue samples and will be considered for future studies. 

Another interesting finding that is observed in Figure 5 was that vic values was higher in CEL 

compared to the T2L. In NODDI model, vic represents neuron density, which conflicts with this 

finding as we know that the CEL contains less neurons than T2L and reflects either most 

aggressive tumor packed with dense tumor cells or non-specific changes related to treatment 

effect. This suggests that when applied to tumor, vic can no longer be interpreted as “neuron 

density”. Rather, the elevated vic can be explained as the model saw restricted structures in that 

region with restrictions in all direction, which is consistent with the similarly elevated OD. This 

warned us that we should be very cautious when interpreting NODDI results in tumor, as this 

model was not directly built on tumor and some parameters were prefixed based on values in 

normal brain such as the intrinsic free diffusivity in vic. 

In conclusion, we have demonstrated the feasibility of using multiband diffusion weighted 

imaging at 7T within 6 minutes in order to apply the NODDI model to characterize glioma. The 

data quality was encouraging and comparable to that acquired at 3T. We showed that NODDI 

maps provided unique contrast within the T2L lesion that is not seen in anatomical images or DTI 

maps. Such contrast may reflect the complexity of tissue compositions associated with disease 
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progression and treatment effects. Changes in viso, vic and vec in tumor lesions compared with 

NAWM were consistent with the alternations in tissue components within tumor. The histological 

analysis of image-guided tissue samples is needed in future studies to better understand these 

variations. 

5.6 References 

1. Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain 

and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro 

Oncol 2012;14(Suppl 5):v1–v49. 

2. Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-

grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 

2010;28:1963–1972. 

3. A Lerner, MA Mogensen, PE. Kim, MS Shiroishi, DH Hwang, M Law. Clinical Applications 

of Diffusion Tensor Imaging. World Neurosurgery. 82(1-2):96-109, 2014. 

4. Yablonskiy DA, Sukstanskii AL. Theoretical models of the diffusion weighted MR signal. 

NMR Biomed. 2010 Aug;23(7):661-81. 

5. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo 

neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012 Jul 

16;61(4):1000-16.  

6. L. Magnollay, F. Grussu, C. Wheeler-Kingshott, V. Sethi, H. Zhang, D. Chard, D. Miller, O. 

Ciccarelli. An investigation of brain neurite density and dispersion in multiple sclerosis using 

single shell diffusion imaging. Proc 22nd Scientific Meeting of the ISMRM, Milan, Italy 

(2014), p. 2048 

7. T. Schneider, W. Brownlee, H. Zhang, O. Ciccarelli, D. Miller, C. Wheeler-Kingshott. 

Application of multi-shell NODDI in multiple sclerosis. Proc 22nd Scientific Meeting of the 

ISMRM, Milan, Italy (2014), p. 0019 



144 
 

8. G.P. Winston, C. Micallef, M.R. Symms, D.C. Alexander, J.S. Duncan, H. Zhang. Advanced 

diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and 

epilepsy. Epilepsy Res., 108 (2014), pp. 336–339 

9. T. Billiet, B. Madler, F. D'Arco, R. Peeters, S. Deprez, E. Plasschaert, A. Leemans, H. Zhang, 

B.V. den Bergh, M. Vandenbulcke, E. Legius, S. Sunaert, L. Emsell. Characterizing the 

microstructural basis of “unidentified bright objects” in neurofibromatosis type 1: a combined 

in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis. Neuroimage 

Clin, 4 (2014), pp. 649–658 

10. P. Lally, H. Zhang, S. Pauliah, D. Price, A. Bainbridge, G. Balraj, E. Cady, S. Shankaran, S. 

Thayyil. Microstructural changes in neonatal encephalopathy revealed with the neurite 

orientation dispersion and density imaging (NODDI) model. Arch. Dis. Child Fetal Neonatal 

Ed., 99 (Suppl. 1) (2014), p. A14 

11. N. Kunz, H. Zhang, L. Vasung, K.R. O'Brien, Y. Assaf, F. Lazeyras, D.C. Alexander, P.S. 

Hüppi. Assessing white matter microstructure of the newborn with multi-shell diffusion MRI 

and biophysical compartment models. Neuroimage, 96 (2014), pp. 288–299. 

12. Grussu F, Schneider T, Zhang H, Alexander DC, Wheeler-Kingshott CA. Neurite orientation 

dispersion and density imaging of the healthy cervical spinal cord in vivo. Neuroimage. 2015 

Jan 31.  

13. Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, 

SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson 

Imaging. 2004 Aug;15(4):223-36. 

14. Deshmane A, Gulani V, Griswold MA, Seiberlich N. Parallel MR imaging. J Magn Reson 

Imaging. 2012 Jul;36(1):55-72.  

15. Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, Glasser 

MF, Hernandez M, Sapiro G, Jenkinson M, Feinberg DA, Yacoub E, Lenglet C,Van Essen 

DC, Ugurbil K, Behrens TE. Advances in diffusion MRI acquisition and processing in the 



145 
 

Human Connectome Project. Neuroimage. 2013 Oct 15;80:125-43.  

16. Setsompop K, Kimmlingen R, Eberlein E, Witzel T, Cohen-Adad J, McNab JA, Keil 

B, Tisdall MD, Hoecht P, Dietz P, Cauley SF, Tountcheva V, Matschl V, Lenz 

VH, Heberlein K, Potthast A, Thein H, Van Horn J, Toga A, Schmitt F, Lehne D, Rosen 

BR, Wedeen V, Wald LL. Pushing the limits of in vivo diffusion MRI for the Human 

Connectome Project. Neuroimage. 2013 Oct 15;80:220-33.  

17. D Kelley, S Banerjee, W Bian, JP Owen, CP Hess, and SJ Nelson. Improving SNR and 

Spatial Coverage for 7T DTI of Human Brain Tumor Using B1 Mapping and Multiband 

Acquisition. Proc 21nd Scientific Meeting of the ISMRM, Utah, USA (2013), p. 3642 

18. Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion (CHARMED) MR 

imaging of the human brain. Neuroimage. 2005 Aug 1;27(1):48-58. 

19. Panagiotaki E, Walker-Samuel S, Siow B, Johnson SP, Rajkumar V, Pedley RB, Lythgoe 

MF, Alexander DC. Noninvasive quantification of solid tumor microstructure using 

VERDICT MRI. Cancer Res. 2014 Apr 1;74(7):1902-12.  

20. J.L.R. Andersson, S. Skare, J. Ashburner. How to correct susceptibility distortions in spin-

echo echo-planar images: application to diffusion tensor imaging. NeuroImage, 20(2):870-

888, 2003. 

21. S.M. Smith, M. Jenkinson, M.W. Woolrich, C.F. Beckmann, T.E.J. Behrens, H. Johansen-

Berg, P.R. Bannister, M. De Luca, I. Drobnjak, D.E. Flitney, R. Niazy, J. Saunders, J. 

Vickers, Y. Zhang, N. De Stefano, J.M. Brady, and P.M. Matthews. Advances in functional 

and structural MR image analysis and implementation as FSL. NeuroImage, 23(S1):208-219, 

2004. 

22. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity encoding for 

fast MRI. Magn Reson Med, 1999. 

23. Blaimer M, Breuer FA, Seiberlich N, Mueller MF, Heidemann RM, Jellus V, Wiggins 

G, Wald LL, Griswold MA, Jakob PM. Accelerated volumetric MRI with a 



146 
 

SENSE/GRAPPA combination. J Magn Reson Imaging. 2006 Aug;24(2):444-50. 

24. Yudilevich, E.; Stark, H.; Reconstruction from partial data in multislice magnetic resonance 

imaging. Acoustics, Speech, and Signal Processing, 1989. ICASSP-89, 1989 International 

Conference on 23-26 May 1989 Page(s):1488 - 1491 vol.3. 

25. Walsh DO1, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR 

imagery. Magn Reson Med. 2000 May;43(5):682-90. 

26. Wiesinger F, Van de Moortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP. 

Parallel imaging performance as a function of field strength--an experimental investigation 

using electrodynamic scaling. Magn Reson Med. 2004 Nov;52(5):953-64. 

27. Wiesinger F, Boesiger P, Pruessmann KP. Electrodynamics and Ultimate SNR in Parallel MR 

Imaging. Magn Reson Med 2004;52:376 –390. 

28. Ohliger MA, Grant AK, Sodickson DK. Ultimate intrinsic signal-to-noise ratio for parallel 

MRI: Electromagnetic field considerations. MagnReson Med 2003;50(5):1018–1030. 

29. Collins CM, Yang QX, Wang JH, Zhang X, Liu H, Michaeli S, Zhu XH,Adriany G, Vaughan 

JT, Anderson P, Merkle H, Ugurbil K, Smith MB,Chen W. Different excitation and reception 

distributions with a single-loop transmit-receive surface coil near a head-sized spherical 

phantomat 300 MHz. Magn Reson Med 2002;47(5):1026–1028. 

30. Yang QX, Wang J, Zhang X, Collins CM, Smith MB, Liu H, Zhu XH,Vaughan JT, Ugurbil 

K, Chen W. Analysis of wave behavior in lossydielectric samples at high field. Magn Reson 

Med 2002;47(5):982–989. 

31. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL.Blipped-controlled 

aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-

factor penalty. Magn Reson Med. 2012 May;67(5):1210-24.  

32. Helenius J, Soinne L, Perkiö J, Salonen O, Kangasmäki A, Kaste M, Carano RA, Aronen 

HJ, Tatlisumak T. Diffusion-weighted MR imaging in normal human brains in various age 

groups. AJNR Am J Neuroradiol. 2002 Feb;23(2):194-9.  



147 
 

Chapter 6  
Summary 

The research being performed in this thesis has focused on the development, optimization and 

application of acquisition and quantification methods for diffusion imaging, with the objective of 

improving the interpretation of routine diffusion maps in high-grade glioma, as well as to bridge 

the gap between advanced diffusion models and their clinical application using fast imaging 

techniques.  

Changes in apparent diffusion coefficient (ADC) were first analyzed with different 

quantification methods and their associations with clinical outcomes were examined for patients 

with newly diagnosed GBM being treated with a combined therapy that includes bevacizumab. 

Due to the strong anti-VEGF effect of bevacizumab and the reduction on vasogenic edema, there 

was a rapid decline of ADC percentile values immediately following onset of therapy in almost 

all subjects. However, the ADC percentile values were lower for the patients who progressed 

early. This suggests that tracking the changes in ADC using serial histogram analysis could 

potentially assist radiologists in monitoring patient response to therapy that includes 

bevacizumab. We hypothesize that this is due to the anti-angiogenic effect of bevacizumab 

reducing the extent of vasogenic edema at this time point and therefore allowing the observed 

ADC values to more accurately reflect the residual tumor burden. 

To further validate this hypothesis and to determine whether ADC percentile value at early 

follow-up is a bevacizumab-specific biomarker, we performed similar ADC analysis methods to 

datasets acquired in two other clinical trials where patients were treated with RT concurrently 

with either temozolomide, or temozolomide and enzastaurin. Our results showed that the ADC 

percentile value was associated with survival for the treatment that included bevacizumab, but not 

for the other treatments. This supported our hypothesis, and suggests that the impact of treatment 
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regimen on the pattern of changes in imaging parameters must be considered when deciding 

patient care. 

A major challenge in monitoring patient response after being treated with combined radiation 

and chemotherapy is the difficulty in distinguishing treatment related effect from the true tumor 

recurrence, both of which manifest contrast enhancement in T1-gad image. To better understand 

this problem, we conducted image-guided tissue sampling to directly correlate the tumor 

histopathology to various imaging contrasts that included diffusion weighted imaging, perfusion 

imaging and spectroscopic imaging.  Our results demonstrated that elevated cerebral blood 

volume (CBV) was the best indication of true recurrence. However, overlap between the two 

groups were observed in all imaging parameters, as well as many of the histopathological features, 

including cell density, microvascular hyperplasia, level of axonal disruptions and hypoxia. One 

possible explanation for the big variations observed with treatment effect was presence of 

inflammatory responses that increase vascularization and immune cells proliferation. This makes 

characterizing recurrent lesions with MR measurements extremely challenging. 

These results highlighted the challenges of using ADC in the management of patients with 

high-grade glioma. The availability of improved hardware and fast acquisition techniques make it 

possible to obtain more diffusion weighted directions within a clinically feasible time that allows 

advanced diffusion models to be applied. These models aim to disentangle specific factors 

contributing to the exhibited patterns of DTI indices and can potentially add specificity to the 

evaluations of glioma. We optimized the multiband diffusion acquisition technique at 7T with the 

application of B1 mapping and distortion correction procedures to reduce the impact of B0 and 

B1 field variations at ultra high field. This sequence allows 3-fold acceleration compared to the 

regular diffusion acquisition, and our SNR comparison demonstrated encouraging data quality. 

The optimized multiband sequence was applied in patients with glioma to generate both DTI and 

NODDI maps. In the NODDI model, water protons into three pools with different diffusion 
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characteristics and can be potentially used to distinguish tissue compartments such as edema, 

tumor cells and intact neuron in gliomas. Our results demonstrated that NODDI maps provided 

unique contrast within the tumor lesion that is not seen in anatomical images or DTI maps. Such 

contrast may reflect the complexity of tissue compositions associated with disease progression 

and treatment effects. The histological analysis of image-guided tissue samples is needed in 

future studies to better understand these variations. 

In conclusion, this thesis has explored the value of using diffusion imaging to assess gliomas 

from several different perspectives. While some results are preliminary and further evaluation is 

needed, we have successfully demonstrated the potential of using combined advanced diffusion 

acquisition, post-processing and modeling techniques in adding specificity to the characterization 

of gliomas. These techniques are not restricted to applications in patents with brain tumor and can 

be extended to subjects with other brain diseases. 
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 Scripts Appendix A

A.1 process_DTI_brain  

(/netopt/share/bin/local/brain/process_DTI_brain) 

To apply diffusion tensor fitting to get ADC, FA, ev1, ev2, ev3 and t2di, run this script within t-
folder. 

Usage: process_DTI_brain dicom_dir rootname  

Example: process_DTI_brain E1234/11 t3333 

This script: 
1. Convert dicom images to nifti format 
2. Check if TOPUP DTI is acquired, if yes, apply TOPUP correction 
3. Apply eddy current correction to diffusion data 
4. Apply DTI fitting with weighted least square fitting 
5. Align generated diffusion maps to anatomical images by aligning t2di image to FLAIR 

Notes: it extracts b-value and b-vector information from dicom header. In old datasets where 
these information is not available in the header then try a older script: make_diffu_brain 

A.2 align_DTI  

(/netopt/share/bin/local/brain/align_DTI) 

To align DTI maps (ADC, FA, ev, t2di) to anatomical images, run this script within diffusion 
folder: e.g. /diffusion_b=1000/ 

Usage: align_DTI t# anatomical_root  

Example: align_DTI t1234 fla (or alternatively fsea, t1va) 

This script:  
1. Align t2di to fla/fsea (fa to t1va) with align_tool.dev (essentially using flirt) to get the 

transformation  
2. Apply the transformation to diffusion images 

Notes: if aligning to fla doesn’t work well, recommend trying t1va 
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A.3 process_NODDI_3T  

(QB3 grid access required) 

To generate NODDI on separately acquired data sets acquired with matched FOV and matrix size 
(no registration was performed between the two datasets), run this script within t-folder. 

Usage: process_NODDI_3T dti_dicom_dir hardi_dicom_dir [o basename] 

Example: process_NODDTI_3T E1234/10 E1234/8 [o test] 

This script: 
1. Import dicom images to nifti and combine the two datasets into one. 
2. Apply eddy current correction 
3. Generating NODDI on grid 
4. Apply DTI fitting for the two-shell data 
5. Convert nifiti results to idf/int2 
6. Align results to anatomical images (through aligning t2di to fla) 

Notes: if no [-o] is given, this script assumes it is running within a t-folder and will extract the t-
number from the directory path and use that as the output rootname.   

A.4 process_NODDI_7T  

(QB3 grid access required) 

To generate NODDI on a 90-direction two-shell diffusion data set acquired with multiband 
sequence. Run this script within t-folder. 

Usage: process_NODDI_7T E_number/exam_number  

Example: process_NODDTI_3T E1234/10 

This script:  
1. Reconstruct multiband diffusion data on grid with ‘recon_multiband_epi’ 
2. Apply TOPUP correction 
3. Apply eddy current correction on grid 
4. Apply NODDI fitting on grid with ‘generate_NODDI_grid’ 
5. Apply DTI fitting for the two-shell data 
6. Convert nifty results to idf/int2 

Notes: Raw pfiles are supposed to be in E1234/10_raw, including, t*_multiband_dti_noddi.7, 
t*_.ref.dat, t*_vrgf.dat. This script also assumes it is running within a t-folder and will extract the 
t-number from the directory path and use that as the output rootname. 
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A.5 eddy_correct_grid  

(QB3 grid access required)  

(/netopt/share/bin/local/brain/eddy_correct_grid) 

To parallelize eddy_correct by diffusion directions. Run this the same way as running 
eddy_correct. 

Usage: eddy_correct_grid 4dinput 4doutput reference_volume 

Example: eddy_correct_grid data data_ec 0 

This script:  
1. Split 4D data into multiple 3D data with each one represents one DWI 
2. Run eddy_correct on grid for each DWI 
3. Combine results back into 4D 

A.6 generate_NODDI_grid  

(QB3 grid access required)  

(/netopt/share/bin/local/brain/generate_NODDI_grid) 

To parallel NODDI processing by slice. Run this in the data folder.  

Usage: generate_NODDI_grid -k <filename> 

Compulsory arguments (You MUST set all of): 
-i,  data       dti data file 
-o,  out        Output basename 
-m,  mask       Bet binary mask file 
-r,  bvecs      b vectors file 
-b,  bvals      b values file 

Example: generate_NODDI_grid -i data_ec.nii.gz -o t1234 -m data.mask_mask.nii.gz -r 
data.bvec -b data.bval 

This script: 
1. Split input data into slices 
2. Parallelize NODDI fitting for each slice on grid with ‘NODDI_matlab_grid_single’ 
3. Combine results with ‘NODDI_combine_results’ 

Notes: 
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1. As it runs, it will generate many temp files in the same directory, but the files to track the 
progress is called NODDI_grid_job.o***.#. # is the job number, or slice number. If there is 
error processing, check NODDI_grid_job.e***.# 

2. Once the job gets finished, it will combine results of all slices to one. And all the intermediate 
files will be saved in tmp_files folder just in case, you can remove the folder later if find the 
combined results looks right. And the NODDI_gird_job.o/e files will be moved to 
grid_io_noddi folder.   

3. The progress is recorded in NODDI_grid_job.o******.**, you can track while it's running, 
but once it finished running, these files will be moved to grid_io_NODDI 

4. In addition to regular NODDI outputs, two more maps are generated: abs_fecvf = 
fecvf*(fiso_inv), abs_ficvf = ficvf*(fiso_inv). Therefore fiso + abs_ficvf + abs_fecvf = 1. 
This is performed because ecvf and icvf are not normalized so it's hard to compare with iso.  

A.7 recon_multiband_epi  

(QB3 grid access required)  

(/netopt/share/bin/local/brain/recon_multiband_epi) 

To parallelize multiband EPI reconstruction (diffusion, fMRI) by slice*pass. Run this in the data 
folder.  

Usage:    recon_multiband_epi -s slice_num -p pass_num                 
[ -o output_path ]             
[ -q queue ] 
[ -c cluster ] 
[ -h help info]  
-s slice_number          slice number to reconstruct (enter "all" for grid recon)  
-p slice_number         pass number to reconstruct (enter "all" for grid recon)  
-o output_path           output_path (default = cwd)   
--suffix suffix              suffix of output files  
-q queue                 queue for grid submission  
-c cluster               options qb3(default) or rad 
-h                             print this help text 

Example: recon_multiband_epi –s all –p all 
   recon_multiband_epi –s 10 –p 3  (reconstruct slice 10 in pass 3) 

This script: 
1. Automatically detect input files in current directly, including: raw_file, ref_file (ref.dat file 

for EPI phase correction), vrgf_file (vrgf.dat file for ramp sampling correction), and one 
dicom_file to extract the header info for reconstructed dicom images.  

2. Calculate grappa kernel by calling compiled matlab function ‘process_cal’ 
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3. Parallelize data reconstruction on grid, Reconstruction is done with compiled matlab function 
‘recon_multiband_grid’ 

4. Clean up intermediate files. 

Notes: the number of jobs = number of passes * number of slices (for 98dir 20slices, #jobs = 
1960, which takes about 20min-1hr on qb3 grid)  

A.8 recon_multiband_grid.m 

This is the core function that takes multiband raw files and reconstruct dicom images.  

Usage: recon_multiband_grid(pfile, reffile, vrgffile, dcmfile, pass, slice); 

This function: 
1. Import calibration data to generate grappa kernel 
2. Apply grappa/ARC to reconstructed partial k-space 
3. Apply POCS to reconstruct full k-space 
4. Fermi filtering to reduce Gibbs ringing. 
5. Sum of squares coil combination to combine images. 

A.9 NODDI_matlab_grid_single.m 

This is the core function that does NODDI fitting. This script is a wrapper around the NODDI 
toolbox online (https://www.nitrc.org/projects/noddi_toolbox/) with the following modifications:  
1. inputs and outputs are customized to our dataset 
2. Two repeatedly called functions in NODDI toolbox (repmat, legendre) that are time-

consuming are replaced by equivalent C code written by Akash Kansagra. 
3. After NODDI fitting is done, NODDI maps Vec and Vic are further normalized as abs_Vec = 

(1-Viso)*Vec, abs_Vic = (1-Viso)*Vic, so that Viso + abs_Vec + abs_Vic = 1 

Usage: NODDI_matlab_grid_single(slice_root, slice_mask_root, bvecfile, bvalfile, sl) 

This script calls functions in NODDI toolbox to apply NODDI modeling and output NODDI 
maps. 

A.10 plot_serial_curve.m 

This function displays serial data (curves & histograms) for patients with serial follow-up scans.  

Preparations: 
1. roi_analysis folder needs to be generated for serial exams. 
2. List of t-numbers for the patient and patient directory. 
3. Timelines for the t-numbers.  
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4. Clinical information, if available. (PFS, OS etc..) 
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