
UC Riverside
UCR Honors Capstones 2016-2017

Title
Creating Social Virtual Reality in Campus Environments

Permalink
https://escholarship.org/uc/item/7cg1507j

Author
Handojo, Daniel Bina

Publication Date
2017-12-08

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7cg1507j
https://escholarship.org
http://www.cdlib.org/

CREATING SOCIAL VIRTUAL REALITY IN CAMPUS ENVIRONMENTS

By

Daniel Bina Handojo

A capstone project submitted for

Graduation with University Honors

May 23, 2017

University Honors

University of California, Riverside

APPROVED

Dr. Jiasi Chen

Department of Computer Science and Engineering

Dr. Richard Cardullo, Howard H Hays Jr. Chair and Faculty Director, University Honors

Interim Vice Provost, Undergraduate Education

ii

Abstract

 This paper explains the programming details, development history, and planned

features for VR’Tour, my campus tour application for UCR created in virtual reality.

VR’Tour uses 360° videos and online features to emulate a real campus tour experience.

You can join groups of people who are taking a tour and listen to a live tour guide talk

about UCR. You can even ask the tour guide questions and talk with other people on the

tour. After one year of development, a demo version of the application is complete and it

features videos that simulate a walk from the campus store to the bell tower. Further

details about the demo, including screenshots and pictures of people using it, are

provided in this paper. VR’Tour’s development had two key phases: handling 360°

videos and programming the application. I mostly recorded videos in the beginning of the

project with the help of several students from my research team. Once all of the videos

were recorded, I focused on programming VR’Tour. I did this task on my own, but I

worked with Dr. Jiasi Chen, my mentor for this project, and my teammates to design the

features. There are many features we discussed that have not been implemented yet. For

example, we want small informational notes to be displayed when people look at places

of interest like the bookstore. I may continue developing this application in the future to

complete these features and perhaps even publish the application for the public. Ideally, I

may someday share a full version of VR’Tour with the UCR Campus Tours office.

iii

Acknowledgment

 Special thanks to Dr. Chen for agreeing to act as mentor for this project back in

February last year. The commitment, resources, and time she gave were precious and

invaluable. Thanks also to J. Pham for his initial part in starting the project. Thanks to C.

Verdegan and M. Morelos for their programming efforts in Unity. J. Kaur, Z. Wang, and

C. Yuan spent countless hours on synchronizing and stitching raw GoPro footage, which

was amazing of them. Lastly, a very special thanks to Jesus, or rather God. His strength

and patience brought this project from beginning to conclusion and made this project

possible.

iv

Table of Contents

Abstract ... ii

Acknowledgment ... iii

Introduction ... 1

Intentions for VR’Tour ... 2

General Specifications for the Demo of VR’Tour .. 3

Demo Features and Libraries .. 3

Creating and Joining Rooms ... 6

Networking Foundations for the Tour .. 8

Avatars and Relevant Tour Features ... 10

The Virtual Reality Tour ... 12

Process for Creating 360° Videos ... 13

Synchronizing Large Sets of Videos Efficiently .. 14

Stitching Videos Together and Stitching Issues ... 15

Developing in Virtual Reality ... 16

Conclusion .. 18

Appendix ... 21

Bibliography ... 23

1

Introduction

When I first considered working with virtual reality, I initially intended to create a

social media application for Google Cardboard. The majority of free Google Cardboard

applications on the Android Play Store are of very low quality, have unwieldy user

interfaces, and do not have multiplayer functionality to enjoy with friends. My goal was

to tackle this with an idea inspired from an xkcd comic that depicts the author trying to

understand the size of clouds [1]. Users of the social media application would all be

placed into a digital and scaled-down representation of the earth. The smaller size of the

digital earth would give people the sensation of being giants. They would be able to see

users in other countries over the ocean, for example. Virtual reality was, and still is, a

very young medium and so no major social applications had been developed yet to my

knowledge. Furthermore, I had enormous creative freedom for this project because of

University Honors’ multidisciplinary nature and the creative potential of virtual reality.

The idea of a campus tour application came from my mentor, Dr. Jiasi Chen. She

too was excited about the recent rise of virtual reality, so she agreed immediately to work

with me. Her proposal, which is included as an appendix, was to create a “software

platform [for] easy content creation of VR tours, using the UCR campus tour as an

example application”. Tours would be composed of panoramic pictures, 360° videos, and

audio commentary. The platform would contain a simple method to create navigable

paths made of panoramic pictures in virtual reality. The campus tour application was

meant to be a proof of concept and a secondary, equally important project. We actually

discussed the campus tour more often in my meetings with Dr. Chen however than the

platform.

2

We also discussed what my Capstone project would ultimately be. Initially, I had

no intention of creating a campus tour application. It was discouraging to see how

different my original idea was from Dr. Chen’s idea. Furthermore, I found the idea of a

virtual tour uninteresting because many virtual tours had been made for businesses

already. We discussed our own ideas at length until we eventually began talking about

the lack of multiplayer features in virtual reality. This led us to the idea of allowing

multiple people to participate in a single tour, which became the essential idea for

VR’Tour.

Intentions for VR’Tour

I wanted to create a virtual reality application for Google Cardboard that includes

social functionality. As I previously mentioned, there were very few social applications in

virtual reality when I first started this project. There are more in development today, but

many of these are restricted to premium virtual reality devices such as Oculus Rift or

HTC Vive [2, 3, 4]. The challenge of incorporating social functionality into a Google

Cardboard application is creating a useable user interface [5]. Google Cardboard only has

one button on its side for developers to work with and requires users to gaze at menu

options within virtual reality. VR’Tour solves this by presenting the menu options to

users before entering virtual reality.

My other goal was to make virtual tours more exciting. Most virtual tours [6, 7,

8], including the one offered by UCR’s Campus Tours Offices [9], use panoramic

pictures. These pictures are beautiful but they often lack people, making the area feel

empty and lifeless. Another issue is that virtual tours are typically silent and only present

3

tour information in text. Harvard’s virtual tour tackles this issue by including a video

recording of a student tour guide with each picture.

VR’Tour improves the virtual tour experience with 360° videos and voice chat.

Multiple people who have tried the demo ask if the videos are live, demonstrating that

using videos over panoramic pictures bring a sense of life to the campus. The voice chat

feature adds an element of interactivity that Harvard’s solution lacked by allowing people

to speak with their tour guide during a virtual tour. It also adds a social element to the

virtual tour experience by allowing tour participants to speak with each other.

In this paper, I discuss all of the features included in the demo for VR’Tour, along

with my development process and research challenges. Before I discuss the demo’s

specifications, I first want to state that the demo is a prototype for VR’Tour. I created it

as a proof of concept for the sake of the Capstone project and my research. You can look

at the Unity project on my GitHub page here [10].

General Specifications for the Demo of VR’Tour

Demo Features and Libraries

The demo for VR’Tour is a functional campus tour application that includes the

essential features planned for the full version. It allows you to create new tours, join

tours, and use voice chat to communicate. The creator of the tour can change the video

that everybody in a tour sees, taking them from location to location. Also, as you watch

the 360° video, you can see where other people viewing the video are looking. This

allows you and your friends to concentrate on individual items of interest in the tour to

discuss them. The demo consists of six videos recorded at several points between the

4

campus store and the bell tower. You may view some screenshots of these videos in Figs.

1-2.

Figure 1—Demo screenshot of campus store

Figure 2—Demo screenshot of UCR path

All of the demo’s online capabilities are provided by Photon, a “real-time

multiplayer game development framework” [11]. This includes voice chat, which I will

discuss later, and multiplayer networking. Photon defines two constructs for multiplayer

that I use in the demo, lobbies and rooms. A lobby is a list of rooms that users can access

before selecting a room. It is a useful construct for organizing and separating rooms, but

the demo only uses one lobby, the default one. A room is a grouping of players who can

interact with each other. Rooms are given a unique name when they are created so that

5

players may discover and join them. In the demo, every tour occurs in a room and is

hosted by the room’s creator.

Virtual reality functionality is provided by Google Cardboard’s software

development kit (SDK). One key feature is stereo rendering, where the phone screen is

divided into two display windows, one for each eye [12]. This can be seen in Fig. 1.

Another integral feature is head tracking, which adjusts where you look in a 360° video

according to the rotation of your Android device [12]. The SDK achieves this by

retrieving data from sensors on your smartphone, such as the gyroscope and

accelerometer [13].

The demo’s 360° video playback feature is provided by Easy Movie Texture, a

video texture asset developed by JaeYunLee [14]. Unity defines a texture as an “image

file” [15]. Textures are most commonly applied onto materials, which are assets that

“control the appearance of a GameObject”, to give it a “textured surface” at a low

computational cost [16]. To play a video on the surface of a GameObject, such as a

sphere or cube, you need to use a texture that loads the frames of the video. Unity’s built-

in MovieTexture class does not support Android or iOS at this time [17], which is why I

rely on a third party asset. EasyMovieTexture is applied to the material of a sphere in

order to play videos on its internal surface. When you use the demo, you are placed inside

the sphere at its center to view videos in 360°.

6

Figure 3—A digital sphere, displayed in Unity's editor, that is using EasyMovieTexture

as its texture to play a video on its surface.

Creating and Joining Rooms

The demo first begins with a menu that allows you to create or join a room. There

is a sprite image that indicates if you are connected to the lobby. You see a red x when

you are disconnected and a green check mark when you are connected. Connecting to the

lobby is an automatic process that occurs when the demo first starts. The demo must be

connected to the lobby in order to create or join rooms. If it fails to connect, you can

resolve this by restarting the demo to try again.

If you choose to create a room, you will be instructed to assign a name to your

new room. The name you pick must be unique relative to the names of the other rooms in

the lobby. After you submit your room name, Photon attempts to create a new room. If it

succeeds, you will see a list of buttons labeled with “Bourns” and a number from 28 to

33, such as “Bourns28”. These correspond to the six videos available in the demo. The

room creator is in charge of determining which videos everybody watches, so I refer to

the list of buttons as the tour guide menu. I include a diagram of this whole process in

Fig. 4.

7

Figure 4—How to create a room in the VR'Tour demo

If you choose to join a room, a list of available rooms will be displayed. You can

join the room of your choice by pressing it from the list. A button labeled “Start Tour”

will appear if Photon successfully adds you to the room. Note that this end result differs

from what occurs when you create a room. After you start the tour, the demo application

switches to stereo rendering to let you view 360° videos of the UCR campus through a

virtual reality headset. The process for joining a room is depicted in Fig. 5.

Figure 5—Example of joining a room in the VR'Tour demo

The framework established here for joining and creating rooms is meant to mimic

aspects of a real-life campus tour. A tour guide hosts a tour by creating a room and is

given the tour guide menu to take participants from location to location. People who wish

to take a tour can follow a tour guide by joining a room. There are two limitations to this

framework that are worth noting however.

8

The first is that, for the sake of the demo, participants in a tour are only able to

view the video that the tour guide selects. There is no way for a tour participant to

explore independently. The second limitation, which can be seen in Fig. 4, is that there is

no way to view a selected video from the tour guide menu. The application is designed in

such a way that the menu is in front of the video. This typically is not a problem when I

present the demo at events because I use my computer to run the application in Unity.

Unity has a “scene” window that lets you inspect every object in the digital environment

while the demo is running. By using the scene window, I can view the video behind the

tour guide menu.

Networking Foundations for the Tour

The virtual reality tour begins after you create or join a room. However, I should

first explain the general architecture of a networked Unity application. It will be

fundamental to understanding later features like avatars and voice chat.

In a networked application, each user in a room has his or her own instance of

every present digital object [18]. For example, let us suppose that you and I are on a tour

together using two separate smartphones. Both of us have a sphere that we view 360°

videos on, but they are not the same sphere. They are two separate instances, one on your

device and one on mine. Thus they do not necessarily have the same properties even

though we are on the same tour.

Figure 6—There are two instances of objects 1 and 2, one for each user in a room [19].

9

In Unity, you can synchronize properties such as position, height, or rotation

among every instance of an object if they all have a NetworkView [20, 21]. A

NetworkView is a class that sends messages about its associated object’s properties to

every other instance of its object. Continuing from our previous example, say my sphere

increases in size by 50%. If both of our spheres have a NetworkView, then your sphere

will receive a message about my sphere’s change in size and grow accordingly. However,

the NetworkView has to be set to observe the object’s scale property before it can send

the message.

NetworkViews also allow you make remote procedure calls (RPCs) on multiple

devices all at once. An RPC is a function that can be called on remote machines, such as

the devices of other people in a room [22]. Calling RPCs on multiple devices is very

similar to synchronizing properties. The process first starts by calling an RPC through an

object with a NetworkView. The NetworkView sends a message about the RPC to the

object’s other instances, which then execute the RPC’s code. This is very useful for when

you want something to occur for every user in a room, such as giving everyone a room-

wide notification message.

The demo uses Photon’s networking library, not Unity’s, but the concepts

described above still apply. Photon intentionally designed its library to resemble Unity’s

and many of its classes are nearly exact parallels [23]. For example, the Photon

equivalent of a NetworkView is PhotonView [24]. The reason I use Photon’s library over

Unity’s built-in library is to use Photon’s voice chat feature.

10

Avatars and Relevant Tour Features

When the virtual reality tour begins, you automatically instantiate a digital avatar

object. An instance of your avatar is generated for every person in the room. This object,

for the sake of the demo, is a simple blue sphere with visors. Avatars are placed in the

center of the sphere that plays 360° videos, where you are placed also. In Unity, you

cannot see objects that are in the same position as you, so you do not see avatars during

the demo. However, they enable us to have certain features because they all have

PhotonViews.

Figure 7—The avatar that is instantiated for every person in a room

One such feature, that lets you see where other people are looking, relies on

synchronizing an avatar’s rotation property. Your generated avatar rotates according to

the rotation of your smartphone so that it faces the direction that you face. Likewise,

everyone else’s avatar rotates according to the rotation of their smartphone. All of these

changes are synchronized between instances. If you were able to see the avatars, you

would be able to tell where everyone is looking in the tour. However, as I mentioned

before, every avatar is placed in a blind spot.

To overcome this, I placed a blue square object in front of every avatar that moves

around to follow their corresponding avatar’s rotation. As you can see in Fig. 8, the blue

square is visible to the participants in a room so they can see where other people are

11

looking. The one that corresponds to your avatar is invisible to you so that it does not

obstruct your view. To save network bandwidth, the blue square does not have a

PhotonView. It is instantiated as a local object and its position is determined by the

rotation of its corresponding avatar rather than by a synchronized position property.

Figure 8—The blue square indicates where other people in the tour are looking.

 Another feature that relies on PhotonView is the tour guide menu, which makes

use of RPCs. Every person in a room has an avatar, including the tour guide. The tour

guide menu uses the PhotonView attached to the tour guide’s avatar to send RPCs to

every other device in the room. The tour guide menu uses an RPC that changes the video

that is currently playing in the tour. This is how the tour guide controls which video is

currently playing in the tour.

Four out of the five classes needed to use Photon’s voice chat feature, including

PhotonView, are attached to avatars [25]. This includes PhotonVoiceRecorder,

PhotonVoiceSpeaker, AudioSource, and PhotonView. PhotonVoiceRecorder records

audio from the person who owns the avatar it is attached to. PhotonVoiceSpeaker

receives remote audio data from other people in the room and plays it on your device.

12

AudioSource is a Unity class that handles playing sound clips. PhotonView sends and

receives audio data between instances of objects, similar to how it synchronizes

properties.

The fifth class, PhotonVoiceSettings, handles settings for Photon’s voice chat

feature [25]. The main two settings that affect the demo are AutoConnect and

AutoTransmit. Photon separates multiplayer interaction and voice chat into two room

types. You enter the first type of room when you first start the demo. You enter the

second type of room, a “voice room”, automatically and simultaneously if AutoConnect

is turned on. Once you join a voice room, your device immediately starts recording audio

if AutoTransmit is turned on. In the demo, both of these settings are turned on so that the

voice chat feature works without any user interaction.

The Virtual Reality Tour

The demo’s tour consists of six videos recorded on the path from the bookstore to

the bell tower. The first video in the tour, named Bourns28, begins playing automatically

after you join a room. The other videos are played when they are selected from the tour

guide menu. When a video completes, EasyMovieTexture is set to loop them to maintain

a sense of liveness in the tour. Each video has a resolution of 3840 by 1920, nearly 4K

[26], to avoid pixelation from being played in 360° on a sphere. I store the videos in local

memory and their combined size is 702 MB.

In Bourns28, if you look at the bookstore sign, you will see a red circle and red

square containing information about the bookstore (See Fig. 9). This object is called an

annotation. For VR’Tour, I want to create a number of annotations for key locations in

13

UCR. In the demo however, I only have one annotation at the bookstore as a proof of

concept.

Figure 9—Annotation of the UCR bookstore

To summarize, the virtual tour component of the demo mainly consists of 360°

videos of UCR and voice chat. Participants can discuss the videos they watch together

and ask the tour guide questions about UCR. They can also point at specific locations in

the tour through the feature that lets you see where other people are looking. The tour

guide takes participants from location to location and can share interesting facts about

UCR with them. The demo gives students a way to explore UCR together in an

immersive tour experience. Its 360° high-resolution videos give the campus a sense of

life and voice chat makes the tour more interesting by turning it into a social experience.

Process for Creating 360° Videos

For recording, my research team used six GoPro Hero 4 cameras, inserted into a

Freedom 360° GoPro mount. The GoPro mount is shaped like a cube and each of its sides

has a slot where a GoPro is inserted. We also used a GoPro remote that connects via wi-fi

to our six cameras. The GoPro remote enables us to start and stop recording from all six

14

cameras simultaneously. The recording process was straightforward, but processing the

videos to use them in virtual reality was complicated. We first needed to synchronize the

six videos by audio, then stitch them together into a single video.

Synchronizing Large Sets of Videos Efficiently

Our research team needed to find an efficient way to synchronize videos because

we recorded a lot of videos for the tour. When we record videos, the GoPros do not start

or finish recording at the exact same moment even though we have a GoPro remote. If we

play all six videos at once, we will hear things like words repeating and noises

overlapping. Synchronizing the videos involves shifting when they start and end so that

we hear a single clear recording if we play all of them at once.

We initially synchronized videos manually using VSDC Free Video Editor, which

was extremely time-consuming. This process involved comparing the audio of two videos

at a time and adjusting their start times by units of milliseconds. Each 360° video has six

GoPro videos, so we were doing this process five times per 360° video. Being off by a

few milliseconds on any one of the six videos could ruin the stitching process, so we had

to be very thorough with each video.

Dr. Chen advised us to use Adobe Premiere Pro to automatically synchronize all

of our videos at once. This dramatically sped up our work because Adobe Premiere can

synchronize multiple videos at once in less than 10 seconds. Once we complete the

synchronization, we need to process and save the synchronized files from Adobe

Premiere. There is a backlog feature however in Adobe Media Encoder that lets us

process these videos in the background. This allowed us to synchronize large sets of

videos at a time without waiting for videos to process.

15

Stitching Videos Together and Stitching Issues

Once the videos were synchronized, we stitched them together using Kolor

Autopano Video Pro. Autopano Video automatically stitches video files based on

algorithms that attempt to determine how videos should blend together to make a

complete scene. This can be likened to completing a jigsaw puzzle, where each puzzle

piece is one of our videos. We can make minor adjustments to the scene, like

straightening out horizon lines, and try to improve the video blending before saving the

result as our 360° video.

Autopano Video is usually successful at blending, but there were cases in our

research when it failed to stitch videos together properly. This was caused by the location

we recorded at. Indoor places with walls that were a single color or with a lot of desks

caused the algorithm to fail, producing images like what you see in Fig. #. In less severe

cases, simply rerunning the blending process could sometimes fix the issue. In the most

severe case, we

Autopano Video is usually successful at blending, but there were cases in our

research when it failed to stitch videos together properly. This was caused by the location

we recorded at. Indoor places with walls that were a single color or with a lot of desks

caused the algorithm to fail, producing images like what you see in Fig. 10. In less severe

cases, simply rerunning the blending process typically fixed the issue. In the most severe

case, we used a template that defined where each camera’s view should be placed in the

final scene. In other words, the template defined where our six “puzzle pieces” should go

since Autopano Video could not determine this automatically. We obtained this template

from videos we finished that were successfully stitched together.

16

Figure 10—A case where Autopano Video fails to blend 7 images together into a single

panoramic picture [27].

Now we had a complete scene, but videos were still in the wrong place in the

scene. The issue was that we had the correct locations for each video, thanks to our

template, but not the correct mapping of videos to locations. For example, a video of the

floor could be placed where the ceiling should be. We were able to fix this manually by

swapping videos until they were mapped to the correct locations. From there, we only

needed to do minor blending adjustments to finish stitching the 360° video.

Developing in Virtual Reality

 Initially, I had very little understanding of how to develop applications for Google

Cardboard. Much of my confidence in my ability to succeed came from my year-long

internship in which I developed an Android application for the company Morning Sign

Out. My intention was to develop a virtual reality application for Android because of my

comfort and experience with the Android operating system. I also was capable of using

Android Studio, a development environment program that developers use to create

applications. Because of this, when I first started reading Google’s instructions for how to

develop applications for Google Cardboard, I focused solely on working with Android

Studio.

17

 The problem with using Android Studio for virtual reality is that the learning

curve is very steep. Virtual reality relies heavily on the field of computer graphics.

Computer graphics is responsible for generating and displaying three-dimensional objects

and environments, which it does through applying many mathematical and physical

concepts. My previous Android programming experiences never covered computer

graphics or matrix mathematics. I also had not taken a computer graphics course up to

that point. It turns out that, to create digital objects and environments, it requires a lot of

verbosely written code that involve matrices. Thus, I quickly learned that I had no idea

how to begin programming for this application.

Even if I had understood computer graphics concepts, another problem was that

the math that describes three-dimensional objects was far too “low-level” for me to finish

VR’Tour in a timely manner. It takes a lot of code to define and manipulate simple

objects at the level of flat planes and cubes. To describe something as complex as, say, a

human, it can take thousands of triangles and consequently thousands of coordinates.

This would quickly become unmanageable. I only had a year to create VR’Tour, so there

was no way that I could use Android Studio to develop for virtual reality.

Google’s Cardboard demo treasure hunt project, which you can examine in [28],

is an excellent example of these two issues. In the application, your task is to search for a

cube that spawns in a random location around you. The only other digital object in the

application’s “world”, or digital environment, besides the cube is a coordinate grid that

represents the floor. This alone uses around 300 lines of vector and matrix values, which

are stored in WorldLayoutData.java [29]. The difficult learning curve can be seen in the

other file, TreasureHuntActivity.java. Google’s application uses OpenGL for generating

18

graphics. Just to clarify, OpenGL is a “software interface to graphics hardware” [30]; it

works with graphics hardware on a hardware level, but it is still programmable. The

problem is that OpenGL has its own terminology and set of functions, which you have to

be familiar with in order to use. Simple tasks like placing a cube in the world have a

series of steps that have to occur in the right order for you to succeed. For this reason, it

was impractical to use Android Studio to develop VR’Tour.

To overcome these problems, I accepted a suggestion from Mark de Ruyter, a

member of UCR’s Association of Computing Machinery (ACM) chapter, and used the

Unity game engine software instead of Android Studio to develop the application. Mark

advised me to use Unity over OpenGL because I wanted to create a fairly complex

application in a short period of time and learning OpenGL would take too long. Unity

contains a graphical user interface (GUI) that drastically simplifies the process of

working with digital objects and environments. For example, if I want to have one object

face another object, instead of calculating a rotation vector, I can rotate the object by

clicking and dragging my mouse. The GUI is much friendlier to new developers and

Unity offers a wide variety of tutorials. Unity enabled me to develop VR’Tour within a

year through its powerful features and interface.

Conclusion

 The demo for VR’Tour proved to be a functional social virtual reality application

and an enjoyable virtual tour. I presented the demo at Electrical and Computer

Engineering (ECE) Day and the meeting for the CSE Board of Advisors. Both times, I

received positive reviews about it from professors and event participants. They were

19

impressed by the videos and the voice chat. Some offered suggestions for the future, such

as using ambient noise for tour videos or submitting the demo to the UCR YouTube page.

My mentor and I have many more features planned for the full version of

VR’Tour. We want to give the tour guide more ways to manage the room, such as

volume controls for participants in the room or kicking people out. We also want to

create more features for tour participants. The blue square that shows where other people

are looking is supposed to be a profile image and a name. Participants would be able to

use a “raise hand” gesture to ask the tour guide questions or emotes to express to others

how they feel. The most important feature to implement however is a full tour of the

UCR campus.

To quickly create a full tour of UCR, it would be helpful to use Dr. Chen’s

original proposal idea to create a platform that simplifies the tour creation process. The

video recording process can be left unchanged, but synchronization and stitching should

be automated. There needs to be a framework for adding videos into an existing tour

without editing the original VR’Tour program. There should also be a fast method for

creating new annotations.

One interesting problem my mentor and I spent a fair amount of time on was how

the application should access tour videos. I decided early on that due to the number of

videos in a tour, I could not have them stored in local memory. The videos would need to

be downloaded over the internet, but because of their size and resolution, this proved to

be difficult. We considered three main options, which I discuss below.

The most rudimentary option was to ask the user to download the videos before

taking a tour. This would create long waiting periods, which I wanted to avoid to make

20

the tour more appealing. A second option was to download and play the video

simultaneously with EasyMovieTexture. After trying this, I discovered that playing

videos over 5 seconds using our near 4K resolution caused significant lagging.

Experimenting with video file size, length, and resolution showed that EasyMovieTexture

can handle longer videos if they are around 20 MB, which lower resolutions help to

achieve. I wanted to avoid this however because of pixelation.

The last option, which Dr. Chen suggested, was to use MPEG DASH. MPEG

DASH is an adaptive streaming format that segments large video files into smaller

segments for faster playback over the internet [31]. Neither EasyMovieTexture nor any

other third party asset I could find supported streaming though. For the sake of

completing a prototype, I chose to store the videos in local storage in the demo for

smooth playback and high resolution. In the future, it would be beneficial to research a

streaming solution for Unity so that we can store the videos on a server and keep using

high resolution videos.

VR’Tour is far from complete, but its demo is a substantial prototype that shows

VR’Tour’s potential. Combining my goal to create a social virtual reality application with

Dr. Chen’s idea of a campus tour application was well worth the effort. I may continue to

work on the prototype over the summer with Dr. Chen to add additional features and

include more UCR locations. If possible, it would be great to offer this application to the

UCR Campus Tours Offices as a way of providing tours to out of state or international

students.

21

APPENDIX

R’Welcome: Virtual Reality Campus Tour

22

23

Bibliography

[1] R. Munroe. Depth Perception [Online]. Available: https://xkcd.com/941/.

[2] R. Franklin, (2017, April 18). Facebook Spaces: A New Way To Connect With

Friends In VR," Facebook [Online]. Available: https://newsroom.fb.com/news/

2017/04/facebook-spaces/. [May 22, 2017].

[3] AltspaceVR Inc | Be there, together., AltspaceVR, Inc. [Online]. Available: https://

altvr.com/. [May 22, 2017].

[4] Werewolves Within, Ubisoft, [Online]. Available: https://www.ubisoft.com/en-US/

game/werewolves-within/. [May 22, 2017].

[5] B. Lang (2017, January 16). VR Interface Design Contest with $10,000 in Cash

Prizes Launched by Purple Pill, Road To VR [Online]. Available: http://

www.roadtovr.com/purple-pill-vr-interface-design-contest-10000-prizes/. [May 22,

2017].

[6] Kolor. Panotour Gallery, [Online]. Available: http://www.kolor.com/panotour/

panotour-gallery/. [Accessed 17 May 2017].

[7] Smithsonian Institution. NMNH Virtual Tour: Smithsonian National Museum of

Natural History [Online]. Available: http://naturalhistory.si.edu/VT3/. [May 17,

2017].

[8] Harvard College. Harvard Virtual Tour [Online]. Available: https://

college.harvard.edu/admissions/visit/virtual-tour. [May 17, 2017].

[9] University of California, Riverside. Visit UCR | Campus Virtual Tours [Online].

Available: http://admissions.ucr.edu/visit-ucr/index.html. [May 17, 2017].

[10] D. Handojo (2017, January 15). UCR-UnityTour, GitHub, Inc. [Online]. Available:

https://github.com/Fire3galaxy/UCR-UnityTour. [May 21, 2017].

[11] Exit Games. Introduction [Online]. Available: https://doc-api.photonengine.com/

en/pun/current/index.html. [May 10, 2017].

[12] Google. Google VR SDK for Unity [Online]. Available: https://

developers.google.com/vr/unity/guide. [May 17, 2017].

[13] D. Kopitchinski and K.L. Google Cardboard VR sensors, StackOverflow [Online].

Available: http://stackoverflow.com/questions/26792526/google-cardboard-vr

-sensors. [May 17, 2017].

[14] JaeYunLee, (2013, July 18). Easy Movie Texture (Video Texture), Unity

Technologies [Online]. Available: https://www.assetstore.unity3d.com/en/#!/

content/10032. [May 12, 2017].

[15] Unity Technologies (2013). Textures. [Online]. Available: https://unity3d.com/

learn/tutorials/topics/graphics/textures. [May 12, 2017].

[16] Unity Technologies, (2013). Materials, [Online]. Available: https://unity3d.com/

learn/tutorials/topics/graphics/materials. [May 12, 2017].

[17] Unity Technologies, (2017, May). MovieTexture. [Online]. Available:

https://docs.unity3d.com/Manual/class-MovieTexture.html. [May 12, 2017].

24

[18] Unity Technologies. Networking Player Movement [Online]. Available:

https://unity3d.com/learn/tutorials/topics/multiplayer-networking/networking-

player-movement?playlist=29690. [May 18, 2017].

[19] Unity Technologies. "6players.png", in Networking Player Movement [Online].

Available: https://unity3d.com/learn/tutorials/topics/multiplayer-networking/

networking-player-movement?playlist=29690. [May 18, 2017].

[20] Unity Technologies. Manual: Network View [Online]. Available: https://

docs.unity3d.com/Manual/class-NetworkView.html. [May 18, 2017].

[21] Unity Technologies. Manual: State Synchronization Details (Legacy) [Online].

Available: https://docs.unity3d.com/Manual/net-StateSynchronization.html. [May

18, 2017].

[22] Unity Technologies. Manual: RPC Details (Legacy) [Online]. Available: https://

docs.unity3d.com/Manual/net-RPCDetails.html. [May 18, 2017].

[23] Exit Games. Main Page [Online]. Available: https://doc-api.photonengine.com/en/

pun/current/index.html. [May 18, 2017].

[24] Exit Games. PhotonView Class Reference [Online]. Available: https://doc-

api.photonengine.com/en/pun/current/class_photon_view.html. [May 18, 2017].

[25] Exit Games, "Photon Voice for PUN," [Online]. Available: https://

doc.photonengine.com/en-us/voice/current/getting-started/voice-for-pun. [May 20,

2017].

[26] S. Jukic, (2016, April 5). 4K Resolution Guide - Compare 4k vs 1080p and Ultra

HD (UHD) Resolution, 4K. [Online]. Available: http://4k.com/resolution/. [May 21,

2017].

[27] Gtilloux (2012, April 25). "Ex 2 pano detected.jpg", in Autopano - Common cases

that don't stitch automatically - Repetitive patterns, Kolor [Online]. Available:

http://www.kolor.com/wiki-en/action/view/Autopano_-_Common_cases_that

_don%27t_stitch_automatically_-_Repetitive_patterns. [May 22, 2017].

[28] cyisrrael (2016, June 10). gvr-android-sdk/samples/sdk-treasurehunt at master,

Google VR [Online]. Available: https://github.com/googlevr/gvr-android-sdk/

tree/master/samples/sdk-treasurehunt. [May 23, 2017].

[29] cyisrael (2016, June 10). gvr-android-sdk/WorldLayoutData.java at master, Google

VR [Online]. Available: https://github.com/googlevr/gvr-android-

sdk/blob/master/samples/sdk-treasurehunt/src/main/java/com/google/vr/sdk/

samples/treasurehunt/WorldLayoutData.java. [May 23, 2017].

[30] M. Woo, J. Neider and T. Davis. OpenGL Programming Guide: The Official Guide

to Learning OpenGL, 1997 [Online]. Available: http://www.glprogramming.com/

red/. [2016]

[31] J. Ozer (2011, November 22). What is MPEG DASH?, StreamingMedia.com

[Online]. Available: http://www.streamingmedia.com/Articles/

ReadArticle.aspx?ArticleID=79041. [May 22, 2017].

