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TURBULENCE MODELING OF SINGLE AND TWO PHASE CURVED CHANNEL FLOWS

Farzad Pourahmadi
Department of Mechanical Engineering
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

ABSTRACT

A theoretical analysis of steady turbulent flow with small solid
particulates in suspension has been conducted based on the continuum
hypothesis for both phases. The analysis provides.the basis fok é
~»two-dimehsiona1 numerical model cabab]e of predicting dilute two-phase
~-flows. The numerical broéedure requires thé'sqlution df-fu]lygelliptié
| Eoupled tfansport equatiéhS'for both phases. The turbuience charac-
terfstics of the fluid bhase are predicted using a two equation (k-¢)
model of turbulence and inQolves the éaTch]atiqn_of the fluid turbulent
kinetic energy (k)~and its rate of dissipétion (e);

Dde to their appearance in the modeled equations for k, ¢ and
barticu1ate phase momentum, algebraic relations describing fluid-
particle‘ihieractions and the barticulatevphase tufbu]ent'kinetic

'énergy (kp)_are derived from the instanténeous Lﬁgrangian equatibn of
motion fbr the particulates. Modeled forms of thevfiuid-particlé
velocity and ve]ocity_gradienf corre]étions appearing-in'the trahsport

'equations are shown to conform with expected 1imiting behavior.
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While the particulate phase mean motion is presumed to respond to
fluid flow changes via the Stokes viscous drag, in the vicinity of
-solid walls the solid phase is aSsumed to behave like a rarefied gas
flow; i.e., particles are allowed to "slip" at the wall.

The .analysis shows'the existence of two mechanisms for the
dissipation of fluid turbulent kinetic energy. The first corresponds
to direct viscous dissipation by small scales of motion in the single
phase. The second, howeQer, is due to the presence of the particulate
phase which, through interactionvwith the fluid, provides a second sink
for turbulent kinetic energy. Further, it is found that the presence
of particles provides an additional mechanism for transorming mean
kinetic energy from both the fluid and the particle phases to their
respective turbulent kinetic energy components. |

The numerical model has been rigorously tested by reference to
single and two-phasevf]owvexperimeﬁta] data in confined flows. 1In
general, predictidns of the mean flow and of the turbulence quantities
for both phases are in good agreement with the available experimental
data. The inclusion of a model for erosive wear has allowed the pre-
diction of erosion on the concave wall in developing curved channel
fiow. Both the longitudinal position of maximum erosion and the rela-
tive amount of wear as arfunction of Reynolds number for different
particle/fluid characteristics are well predicted by the numerical

procedure.
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NOMENCLATURE
C¢ - friction coefficient .
Ct | constant. in the expression for fluid Lagrangian integraT
' time scale ' .

Cu constant in Prandti-Kolmogorv relation

D - pipe diameter

dp particle diameter -

E “erosion rate

ELf fluid Lagrangian énergy spectrum

ELp. | | particle Lagfangian enefgx spectrum

g gravity acceleration

k. | f]uid phase turbulent kinetic energy

Kp . particulate phase turbulent kinetic enérgy
kg Boltzman constant

Lm ~ particle mOméntum'equiiibrationblength

Lg : Eulerian integral length scale

Lfp - fluid-particle interaction length scale

Lp.p particle mean free path

p average interparticle distance

M Mach number

Mp | -mass of a single particle

m¢ mass of fluid displaced by a single particle
P1 wall hardness |

P - instantaneous pressure

P ' time-averaged pressure

p fluctuating pressure



-X=-

~ magnitude of particle impingement velocity

straight pipe radius

curved channel inner wall radius of curvature
curved channel outer wall radius of curvature
curved channel average radius of curvature
fluid-particle correlation coefficient.

fluid Eulerian correlation coefficient

fluid Lagrangian auto-correlation

particle Lagrangian auto-correlation

floW'Reynolds number

particle Reynolds number

time scale of energy containing eddies
fluid Lagrangian integral time scale
flow temperature

time

instantaneous fluid phase velocity in i direction
insfantanedus particulate phase velocity in i direction
time-averaged fluid phase ve]ocity in i direction
time-averaged particulate phase Ve]ocity in i direction
fluctuating fluid phase velocity in i direction
fluctuating particulate phase velocity in i direction

instantaneous slip velocity between the phases

particulate wall velocity in i direction
spatial coordinate in i direction

distance from pipe/channel wall



-Xi=

instantaneous particulate volume concentration

,time-éveraged particulate volume concentration

fluctuating particu]ate volume concentration -

particle angle of impingement on the wall |

e?Prandfl number

k-Prandtl number

channel width

deformation rate for the particulate phase at the wall |
Kronecker delta |

dissipation rate of f]uid turbu]ent‘kinetfc_energy v
Drag dissipation |
Kolmogorov. length sca1é

Von Karman constant

Length scaTé of energy containing eddies

fluid Eulerian integral length scales

fluid Langrangian integral 1ength scales

fluid Eulerian Tay]or'micfoscale in isotropic turbulence
f]uid Taylor microscale in streahwise'direction

fluid Taylor microscale in lateral direction

fluid dynamic viscosity | |

fluid kinematic_viécosity

fluid éddy viscosity

”particuiate eddy viscosity

fluid turbulent diffusivity for the transport of the
scalar a



subscripts
f

in.

max

-xii-

particulate turbulent mass diffusivity

particd]ate diffusion coefficient due to Brownian motion

fluid density in the presence of particulate phase

particulate density in the presence of fluid phasé
fluid density |

particle .density

Kolmogorov time scale

particle response time

particle response parameter, ratio of particle response
time to time scale of the mean motion

fluid phase
value at the inlet

corresponding to the maximum value across the curved
channel width.

particulate phase

free stream condition
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CHAPTER 1
* INTRODUCTION

The Practical Problem

Processes associated with two-phase turbulent flow have today
‘a very significant influence on human life. wa-phase flows cover a
very wide spectrum of applications in many areas, ranging from numerous
engineering applications to a variety of processes-associated with - |
natural flows. The.dispersion of dust and pollutant particulates in
the atmosphere, the transport of silt ad fine mineral particles by
.Eivers, the e;;;ioﬁ of pipeline components in coal liquefaction/
gasification systems, and also the erosion of gas turbine b]ades and
internal walls of nozzles in solid-propellant rockets are but a few .
examples of the diversified processes which arise due_to the motion of -
two-phase turbulent flows. Other engineering examples of these types
of flows of strong relevance to this work are: fluidized beds,
- pneumatic conveying, settling tanks, sand blasting, the flow of
slurries and fibers and the flows occufrihg in cyclone separators and
electrostatic precipitators.

The flows of particle;laden fluids in coa]rliquefaction/
: gasifiéation pipeline systems, in rocket nozzles and over gas turbine
blades cause erosion of the wall materials and can result in serious
damage and possible catastrophic failures of these systéms, both from
fhe safety and econbmica1-point$ of view. For coal liquefaction/

gasification systems the problem of erosive wear is quite severe at
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pipe bends, tee junctions and impinging jet surfaces; The successful
design and determination of optimum operation conditions of such
systems requires analysis and prediction of the fluid mechanical
chéracteristics of the turbulent flows in the components comprising the
systems.

, Earlier,workS;and modeling approaches

In thé course of reviewing the literature on two-phase fluid-
particulate flows, the variety of investigations and the range of
complexity of the analyses is amazingly large. Many significant
contributions have been cited in the books by Soo [1967] and Boothroyd
[1971], and jn‘the review given by Torobin and Gauvin [1959], [1960]
and [1961]. The motion of the dispersed particulate phase in the
continuous fluid phase has been analyzed by both Lagrangian and
Eulerian methods. In the‘Lagrangian'approach, the dynamics of a single
particle afe analyzed by following the motion of the particle with
prescribed set of initial conditions. In the Eu]érian approach, the
two-phase flow is considered as two interacting continua, with a |
different set of boundary conditions for each phase. The success of
either approach for prediction of the flow variables of interest,
depends on the appropriate inclusion and accurate modeling of the
various and relatively complex physical processes represented in the
governing equations. The occurrence of f1ufd turbulence, and the
associated solid phase turbulence, implying complex interaction and
exchange mechanisms between the two phases, can be fairly siénificant

and requires proper modeling.
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Continuum-type approaches can be generally divided into two
categories. In the first, the two-phase flows are treated as separate,
interacting continua, in which, for the partfculate phase, a diffu-
sional mode of transport, as well as convection, is conceived. In this
respect, the following investigatiqns are noteworthy: Soo [1968], Drew
[1976b], Hinze [1962] for laminar flow, and Hinze [1972],'Drew [1976a],
Nagarajan [1972] and Soo [1962a] for turbulent flow. In another
approéch, the two-phase flow is treated asa singie continuum in which
_f101d variables are redefined to include the presence of the dispersed
particulate phase. The formulation of this apbroach is given by Wallis-
[1969] and Hinze [1962] and is common in two-phase, gas/1iquid flows
with mass exchange between the phases. Wallis [1969] has shown that
for such an approach to be valid, the assumption of dynamical and
tﬁerma] equilibrium between the phases must’be made which is approxi-
mately valid only for very small particles and Tow fTow ve]ocities.

In the Lagrangian approach, the motion of a single parficle is
considered and the relevant variables are ¢a1cu1ated:a1ong thé partid]e
trajectory. Early approaches based on Lagrangian equations of motion
are due to Glauert [1940], Langmuir and Blodgett [1946] and Brun and
Mergler [1953] in reiation to the impingement of rain-drops oh aircraft
surfaces for the analysis of ice formation on aircraft wings. Other
more recent investigations USing thisvapproach are those due to Laitone

[1979a], Yeung [1977] and Abuaf and Gutfinger [1974].



The influence of turbulence

In the presence of turbulence, the prob]em of measuring and/or
predicting two-phase flows becomes even more complicated. A successful
prediction of turbulent two-phase f]oﬁ requires a thorough understand-
ing and proper mode]ing of the important turbu]ence-fe1ated-processe$
involved. It is-clear that a detailed-analysis requires: the under-
standing of the fundamehtals of fluid and particulate phase turbulence,
including fluid-particle interactions which are significant. In this
regard the investigation of Baw and Peskin [1971] can be mentioned. -
In that study, the particle effects on the fluid:turbulence energy
spectrum were‘analyzed and the results. showed an increased reduction in
the spectrum value with an increase in wave-number compared to the pure
fluid spectrum. In a related work, Owen [1969] has shown a reduction
in fluid turbulence intensity with increase in pafticle concentration
which was not shpwn by Soo et al. [1960] who noticed no effect due to
the presence of particles. An increase in dissipation raté of turbu-
lent kinétic energy with particulate concentration has been reported by
Kada and Hanratty [1960], Owen [1969] and Hino ]1963]. In the last two
ihvestigations, a decrease’ in eddy diffusivity with particle concentra-
tion was observed which is in contrast with thevresultS‘given by Kada
and Hanratty. |

A review of the fundamental prob]ehs arising in turbulent two-
phase flows is given by Peskin [1975]. The particle effects on fluid
mean velocity have been investigated by Soo [1964], Peskin [1963] and

Peskin and Dwyer [1965] in pipe flow. The results show a flattening of
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fluid velocity by solid particles even at sma1lvconcentrations of

the particulate phase. Soo et al. [1960]_have shown a decrease in
Lagrangian integral scale with an increase in particulate concentra-
tion. The investigations for measurement of various two-phése flow
properties in channel/pipe floﬁs are Tisted in.Table.(7.1') of Chapter
7. Other works for the same configurations are due .to Soov[1969], Soo
and Regalbuto [1960], Eichorn et al. [1964], Soo et al. [1964], Soo and
Tung [19711, McCarthy and Olson [1968] and Reddy and Pei [1969].
Measurements in two-phase turbulent jet'flowé are due to, Melville and
Bray [1977], Goldschmidt and Eskinazi [1966], Popper et al. [1974],
Hedman and Smoot [1975] and Yuu et al. [19781.

Despite the lack of detailed fundamental know]edge, required for
= fhe formulation and modelihg of two-phaseaturbuient flows, the need to
pfédict flows of industrial interest has stimulated the analysis for.
obtaiﬁing solutions for these flows. Drew [1975] has modeled the
Vproblem of turbu]ent‘sediment transport over the flat bottom bf a
-stirring tahk in which the mixing length hypothesis was used.

Nagarajan and Murgatroyd [1971] have presented an»ana1yticé1 model'fof
fwo-phase_turbu]ent flow in a fully-developed pfpe flow. The assump-
‘tion of a linear variation of the furbu]ent shear stressAin the radial
directfon, the neglect of all but.the dissipatioﬁ and production téfms
in the turbulence kinetic enérgy equation, and the_introduction-of
several empirical and configuration-dependént‘coefficients make the
sdiution obtained too specific for-a genera1 app]icatfon.' In a related

work, the effects due to gravity and electrostatic effects were later
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included by Nagarajan [1972]. Based on the single-continuum model
approach, Kramer and Depew [1972a] developed a calculation model for
fully developed two-phase turbulent pipé flows. To obtain a solution,
they expressed velocity fields in terms of various empirical coeffi-
cients and in addition an assumption of linear mixing length was made.
Yuu et al. [1978] developed -a solution for two-phase turbulent jet
flows. In their calculations, Yuu et al. substituted empirical rela-
tions for the fluid mean velocities in the Lagrangian equations for the
motion of the particles.

Smith et al. [1980) have presented a two-dimensional model in
which the fluid variables have been obtained using a two-equation (k-¢)
model of turbulence, without considering particle effects on fluid
turbulence. The particle Lagrangian equations are solved for a
representative number of particle trajectories. The particle velocity
is assumed to be composed of convective and turbulent diffusive
components. The first component is OBtained from a particle Lagrangian

equation of motion and the diffusion velocity is approximated by a
}gradient-type diffusion of particle mean concentration, the deri?ation
of which is based on empirical information. The treatment of particles
in this way has lead fo great simplifications in the calculation of
particle variables, however, no rigorous justification for this type of
approach is presented by the aufhbrs. In addition, collision effects
between neighboring solid particlés were also excluded in the above

approach making it valid only for cases of extremely dilute mixtures.
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Danon et al. [1977] have presented a turbulence model for
two-phase turbulent flows which is based on a set of parabolic
conservation equations. 1In their model the particulate phase mean
velocity is not solved directly but is assumed to be equal to the fluid
velOcity;, FUrthermore, in order to avoid complex particulate-wall
interaction effects, the model was app]iéd<to axi-symmetric free jet
- flows. The fluid Reynolds stresses were modeled using fluid turbulent
length scale and fluid turbulent kinetic energy concebts.‘*For the
turbulent length scale, an algebraic relation was'assumed which
remained constant in the lateral directions, and the fluid turbulent
kinetic energy was obtained from-a parabo1ic conservation’eQuation in
_whﬁch particulate interaction effects with the fluid were included.
 However, the closure relation for the fluid-particle correlation term
was assumed to be of an exponential form and was not rigorously
" derived. Finally, for oBtaining better agreement with the data for
turbulent kinetic ehergy,»the dissipation and‘pfoduction terms were
aﬁsumed to have a Tinear variétion with particulate concentration.
This assumption, however, resulted in the introduction of two new
empirical constants which were dependent on particle size and were
"tuned" to match the experimental data. -

- “Genchev énd:KarpuZdv‘[iQBO] prOposéd a turbulence model for
fluid-particle flow5‘in;whi¢h the effect of particles in the turbu]ence
transport equations were considered. The assumptions of uniform
particulate concentration and equivalence of partic]e-bhase mean

- velocity to the fluid velocity simplified the problem by making it
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possible to discard the governing equations for particulate phase
concentration and momentum. These assumptions, of course, have limited
the range of applicability of the model with respect to the flow and
particulate conditions. In the Genchev and Kapuzov model, the closure
for fluid Reynolds stresses is based on an eddy viscosity concept
'proposed by Harlow and:Nakayama [1967] in which the transpdrt equations
for fluid turbulent kinetic energy and a turbulent length scale are
solved. Despite the inclusion of particle effects in the fluid turbu-
lence transport equations, the fluid-particle correlation terms were
assumed ;o be negligible in comparison with their fluid-fluid counter-
parts. This simp]ified the modeling problem even further by avoiding
the need to account for the complex. fluid-particle correlation terms.
As argued by the authors, this assumption is valid if the particle
reéponse time becomes much larger than the time scale characteristic of
the mean fluid mean motion. However, the last assumption regarding
time scales is in conflict with the earlier assumption Eegarding equal
.fluid andvparticd1ate mean velocities.  For the equal velocity condi-
tion the particle response time must be much smaller than the mean
fluid motion time scale. Thus, the assumption which makes it possible
to avoid the complexity of the fluid-particle interaction terms raises
a serious inconsistency in the model. Finally, the authors applied
their turbulence model to the case of fully-developed pipe flow, with
no expéfimental data provided in order to evaluate the capabilities and

limitations of their model.



Summary and Conclusions

As discussed above, the various calculation methods for two-phase
turbulent flows, have generally embodied numerous.simplifying
assumptions in order to obtain a'solution‘for the flow field
variables. vFurthermore, in the majority of the investigations, the
particulate phase effects on the fluid turbulence structure have not
been considered. In the few investigations where such effects have
been incorporated, further simplifications in the governing turbulence
equations were necessary and various empirical coefficients were
~introduced. The latter are, in general, a function of flow
conditions. These calculation: schemes can, therefore, yie]d-résu]ts
which are strictly valid for the flow conditions for which they were.
formulated and are not readily extended to encompass more general flow
conditiohs and cqnfigurations. |

| The purpose of this work is to analyze two-phase flow turbulence
" in depth and, as a kesuslt, to develop a more generalized turbulence
model for the computation of turbulent two-phase flows of engineering
~ interest. The model of interest is based on the two-equation (k-¢)
model of turbulence for single-phase flows with universal constants.
The governing equations,for particulate and fluid phase velocities are
taken in their fu11y-e11iptic forms in order not to preclude the |
possibility of predicting flow recirculation. In the momentum balance
eduations, the interactive effects of the two phases are considered
and, in additidn, the particulate phase momentum exchange with the

. solid walls is included. The inclusion of the latter effect enhances
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further the capability of the present model for predicting wall-bounded
flows which are of great importance in engineering.

The influence of the particulate phése on the fluid turbulence is
included in the present model through terms which arise in a detailed
derivation of the transport equatiohs for the turbulent kinetic energy
ahd;the'rate of turbulent kinetic energy dissipation of the fluid.

The analysis of two-phase turbqlence based on these equations, as well
as the transport equations for the mean kinet{c energies, reveals vari-
ous mechanisms for the exchange of kinetic energy between the mean and
turbulent motion of the fluid and the particulate phases. The various
fluid-partiéulate correlation terms in the equations for fluid turbu-
lent kinetic energy and its dissipation rate are rigorously modeled
using the governing equation for the particu1ate-phase fluctuating
velocity. Ultimately, the numerica] model developed in this investiéa-‘
tion will be used to predict various two-phase flow quantities as well
as‘erosivé wear by a dilute mixture of solid particulates in a curved
two-dimensional channel. The tésted and validated calculation pro-
cedure can be viewed és a relatively inexpensive and very valuable

tool for conducting two-phase flow and erosive wear "experimentation";
not only in curved channels, but in other shapes such-as sharp bends,

~ tees, backward- and forward-facing stéps, axisymmetric contractions

and expansions, and curved solid objectS'iMmersed in a free flow, to

name a few.
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| While the computational fbo] déve]oped'in the remainder of this
text is more economical than experimentation,.it can not be looked upon
as a substitute for experihents. The foundations of thé model depend
on critical experimentation and validation of the model requires'appro-
' priate‘test data,.fbr checking purposes. Notwithstanding, in many
systems of engineering interest, especially newly conceived ones, often
the data required to characterize the system is not available, and to
conduct an experiment'i§ prohibitively expensive or time consuming. In
such cases the tool provided here 15 of most use. While in absolute
terms ca]cuiations of an unknown two-phase flow may not be verifiable,
relative comparisons df parametric,effects are still extremely useful
for altering and/or optimizing the system characteristic and perform-

ance. It is in this spirit that the present study has been motivated.
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CHAPTER 2
SINGLE PARTICLE MOTION AND TURBULENCE INTERACTIONS

The following chapter consists of three sections. In Section 2.1
the general equation for the motion of a single particlé in viscous
flow is presented, and théhvarious~contributing-terms are discussed..
In'Section 2.2 existing solutions for the equation of motion for
turbulent flow are aha]yzed.' The interaction with turbulence will be

discussed in Section 2.3.

2.1 Equation of Motion for a Single Solid Particle

The motion of a single particle suspended in viscous fluid is
complicated due to the interaction of various forces which make a
mafhematica] description of the particle motion extremely difficult to
obtain. Owing to this COmpléxity, it is common to introduce simpli-
fying assumptions which make mathematical solutions possible, even if
only for the spécia] flow cases to which the hssumptions apbly.

The original derivatibnvof'an equation of motion for a sfng1e
- particle suspended in viscous flow is due to Basset [1888], Boussinesq 
[1903], and Oseen [1927]. |

~ The equatidn was further generalized by Tchen [1947] to include
effect§ due to. a possible unsteady state and the surrounding viscous
fluid. Tchen's derivation has also been reviewed by Hinze [1975] and

Soo [1967].
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The general equation of motion for a single particle in turbulent

flow as given by Tchen [1947] is:

du ’ de de du
i 3rud_(Ug -U_ ) + Pi
" gt T Imdplle Uy, me g * 7 e (et - T

1

(a) () (c)

t dufi dUpi _
dat’ -~ “dt’

. e\

+3 &

(-t

(d) &) (f)

(2.1.1)
where;
d ? )
atp ot pj axJ
and
d 9 ' 9
S ==+ U =—
dat at fj axJ

and furthermore;

mp-' mass of the part1c1e

~mg  mass of the fluid occup1ed by the part1c1e

xg represents the coordinate in the d1rect10n of gravity.
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In Eq. (2.1) the following assumptions are made;
1 - The particle is considered to be rigid and spherical.
| The Reynolds number, based on the particle diameter and
slip velocity, is to be small compared to unity.
2 - The turbulence is homogeneous and stationary.
3'- The particle size is small compared:to the-smallest
rTength“scale characteristic of the turbulence, i.e.,
the Kolmogorov length scale, n. |
Equation (2.1) states that the time rate of change of particle
momentum is equal to the sum of forces acting on the particle, these
forces are described below. |

a) Viscous drag force

This force represenfs the main contribution to particle
motion in most viscous fluid-particle flows and is caused by the
non-zero velocity difference between the particle and the
neighboring fluid (the "slip" velocity). The assumption of a
rigid, spherical particle eliminates the need to consider
deformation and directionality dependent effects. Non-spherical
dependent effects in particle geometry'héve-been discussed by
Boothroyd [1971].

The assumptions 1 and 2 above lead tqia simplification of the
equation of motion, since the linear Stokes viscous drag relation
can then be incorporated. The particle Reynolds ﬁumber is defined

as:
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Rep = ——;—B | (2.1.2)
with} _
AU = .|uf-up| .

For-Rep < 0.1, the drag coefficient can be expressed as;
Schlichting [1968]:

_ 24
CD - FE; . o (2.1.3)

“The inclusion of this re]&ffon in the equation of motion .
simplifies it considerably since Eq. (241;3) represents a linear
drag law in terms of slip velocity.

The,assumption 3 above impfies a §imple shear around the
particle andfeXCludeé the possibility of complex effects thfluid
drag due to various small eddies randomly distributed around the
larger particle.

If;the Stokes'[viscous_drag is assumed to be the only driving

force in steady uniform fluid flow, from Eq. (2.1.1) one obtains:

du_ Ug =U
pi. = —f'1_p1 o (2.1.4)
at - Tw o ' st

‘with the solution: _ - L v
AU (8) = au (0) et/ (2.1.5)
i Cd ’ .

where: :
AU . = U -U .
Ty l P; fi' |
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In Eq. (2.1.2), the parameter 1y, has dimension of time and is

defined as;

3 d2

T (T (2.1.6)

Throughout : the ana]ysis related to particle:motion, the parameter
. Will be extensively considered.. It is a measure of par-
ticle's inertial response time to variations in neighboring fluid
velocity, and is commonly referred to as the "particle moment um
equilibration time" or "particle response time." Thus, relatively
large values of rh are associated with large, dense particles
which require Tonger times for dynamical adjustment to changes in
the immediate flow. In contrast, small, less dense particles have
short dynamical response times. | |

Mathematically, from Eq. (2.1.5) 1 is defined as the time
period dufing which particle relative velocity (aU,) ‘will reduce
to e~l of its initial value at t = 0. Based on 1y a “momentum

equilibration length" can also be defined as, Marble [1963];

L

m e - (2:1.7)
0 - .

Characteristic of a particle's responsive traveling distance.
In Eq. (2.1.7), Ufo represents the characteristic velocity of

-mean fluid motion.
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b) Pressure gradient force

The pressure gradient in the flow exerts a net force on the
“particle and is approximately related to the fluid velocity as
given by Tchen [1947]:
du
3 f

TR S K . (2.1.8)
, € |

However, it has been argued that due to viscous effect, the'
pressure gradient term shoqu actually be substituted'frOm the

Navier-Stokes equations, Corrsin and Lumley [1956]: -

due

T i 2 | |
i R

with the'impiicatioﬁ of no particle effects on fluid motion.

" However, for parfic]e_sizes smaller then the Kolmogorov 1éngth_
scale associated with the neighboring fluid element, a relétive]y ’
v unifofm fluid §e1ocity.around the partié]e can be assumed tovexist
with negligible viscous effects, as argued by Hinze [1975].

| The motion of fluid around relatively small particle has been
approiimated as Steady potentia]‘flow‘with'linear variation'as in

- Soo [1975]. Further substitution of this linear form in the
viscous draQ term (a) of Eq. (2.1.1) results in an additioha] term
which cancels the pressure gradient term (b) when the Reynolds
number based on fEée stream velocity isvunity.' In a related
analysis the same linear ve]péity fﬁnction'is used to pbtain the

same result for any value of the Reynolds number, Soo [1976].
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The latter analysis is based on the inclusion of the force
balancing the rate of change in fluid momentum around the'
- particle.

For the case of invisid flow around the particle as can be-
shown from Eq. (2.1.8), the ratio of the pressure gradient force
to particle inertia force becomes proportional to the fluid to
particle density ratio if the particle and its neighboring fluid
.element possess nearly equal éccelerations. Therefore, under such
a condition in gas-solid flows, the effect of the pressure gra-
“dient term becomes negligible compared to the inertia. However,
.the assumption of equal accelerations is, apparently, not valid in
the regions of excess gas acceleration like shock waves.

c) The “"apparent mass" force

The apparent, or virtual, mass term represents a resisting
force on the accelerating particle due to a non-zero relative
acceTefation between the particle and its neighboring fluid

elements. As shown by MiTne-Thomson [1968] it is equal to;

du du
) fi Py
Fi = Cae e - - (2.1.10)

- with Cj = 0.5 for spherical particles. However for values of
Rep beyond the valid range of Stokes drag law, Cp becomes an
empirical constants as indicated by Odar [1966]. The apparent
mass force is usually broken up into it's particle and fluid
“acceleration terms as defined by Eq.v(2.1;10). The particle

acceleration contribution to this term can be combined with the
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‘inertia term on the LHS of Eq. (2.1.1). The fluid acceleration
contribution can be incorporated into the pressure gradient term.
Therefore, the particle response time with apparent mass effects

| included can be re-written as:

o d2v
rml = (pp + 0.5 pf) -1-57 o

~d) Basset force

The unsteady viscous effect associated with fluid-particle
interacfion results in the_Bassef force. In general, this force
represents the deviation of the total Viscous drag from the steady
~ component ahdAis;.ﬁhérefore, associated with the changes in flow B
pattern around the ;artic1e during'thelunsteady moffdn. The term
 shoWs a dependency on the"historyjof-partic]e-fId?d‘relative
accelerations. For a sphérica1 partic]é’the force is expressed

as, Basset [1888]: |

, t duf1 _'dUpi
< —at  dt_ |
Fy = Cy— (v5pu) J T dt (2.1.11)
PR A |

where t, is the initial time of pértic]e'motion., Also for Cy,
Bassett theoretically obtained:
CH = 6

- However, for Rej > 0.1, Cy becomes an empirical constant.
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The influence of unsteady”flow patterns around a partic]e,vwhen
falling in a quiescent fluid, have been investigated by Hﬁghes
and Gilliland [1952]. The analysis shows sma11 deviations from
Stokes drag law when the ratio 39/3; becomes large, i.e.,
0(103), whf]e rather large deviations are observed when the
ratio;becoheSvsmall, i.e., 0(10‘4);

The investigation of Hjemfelt and Mockros [1966] shows the
significance of pressure gradient, apparent mass and Basset force
on the amplitude ratio and phase shift angle of the fluid-particle
oscillatory motion.v Their ana]ysis is based on a linearized equa-
tion of motion obtained by Tchen [1947]_which will be discussed
in Section 2.2. In general, the analysis shows no significant
contributions by these forces at high Stokes number cbrresponding
‘to the low frequency region of the fluid oscillatory motion.

The Stokes number is defined as:

N = Y ' : (2.1.12)
s :;% 7

with w, representing the frequency of the fluid motion past the
particle, proportional to the ratio of the velocity scale to fhe
Iength scale of the turbulence in the vicinity of the particle.
For the case of BP/Ef = 0(1), typical of 1iqdid-so1id
flows, contributions by thevpressure gradient term to the fluid-
particle amplitude ratio and phasé shift angle become important

for values of Ng < 0.40 and Ng < 0.82, respectively.

-
'
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For the caée when Sp/Sf = 0(103), typical of gés-so1id
flows, the analysis shows less significant overall contributions
by all three pressure gradient, apparent mass and Basset forces.
This is especially the case for changes induced in the amp]itude
~ ratio. However, from among the three forces, the Basset forée
“shows the largest influence on the amplitude ratio. For values of
the phase shift ahgle the‘éfféct of the pressure gradfent fofce

‘becomes significant when,
v
(0_2 -d—z— .
: p
The maximum error induced by dropping the'BaSsetvtérm from

the forcebbalance»oh a sphericé] particle is approximately 16%

for:
w - .25-:",-
. dc
: -p

Theiénalysis of Hinze [1975] for gas-solid systems, also shows a

non-significant contribution by the Basset force for:

- e) Buoyancy force
' Buoyancy force is caused by the fluid-particle density
difference and~affects partié]e momentum.in the direction of

gravity.
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f) External forces

The term Fei in Eq. (2.1.1) represent the forces caused

by anything other than fluid 1ike electrostatic force.

Lift forces:

Under certain flow conditions, solid particles experience lateral
1ift’ forces which move them away from wall regions in, for instance,
straight channel or pipe flows.  In general, such 1ift forces are
generated by the combination of particle rotation and f1uid.shear. The
particle rotation in a fluid-particle flow can‘be attributed to various
effects among which are the fluid shear, particle-particle collision
and particle-wall collision.

For a spherical particle with an angular velocity Ep in

potential flow the 1ift force is, Rubinow and Keller [1961]:

.3
nd
_rL1- = = 5 (0 x 5p) (2.1.13)
with;
Uf‘ = Uf-Up

as the relative velocity vector.

The 1ift force so defined in usually referred to as.the "Magnus"
1ift and requires a knowledge of the particle angular velocity in order
to be determined.‘vaa1uation of 3p in a flow is not simple. How-

- ever, for small, short response time particles in shear flow, §p can

be approximated by assuming it is equal to the neighboring fluid

rotation. Thus:
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e

i
= €. .
plk | axj ijk

where ejjkx is the third-order alternating tensor.
As an example, in the case of simple shear flows with all velocity

gradients equal to zero except that along a normal to the wall:

‘ 1 deXl’ _
lﬂplz =3 TX; . | . : (2.1.15)

and from Eq. (2.1.13) for this case the 1ift force is:

A ads dexl | 4
LT U R | (2.1.16)

Equation (2.1.16) shows the same'functional:dependency on fluid
variables as'presented by Owén [i969]; o

The 1ift force given by Eq. (2.1.13) is app]it§b1e fo the case 6f
ihviscid flow only and does not include viscoué effects.. Therefore, it
is not to be used in 16w'partic1e Reynolds number viscous dominated |
flows. However, the adoption of such a 1ift force as an approximation
in a viscous flow shows that the effects on the particle motion are, at
| least, one‘brder.df,magnitude smaller than‘those due to the viscous |
drag when the'particle motion in the smal]-sca]e,‘dissipatiVe eddies is.
'considered,-Hinze [1972]. Evaluation of the 1ift force with the
viscous effects considered for aisphefica] particle requires a solution
of the Navier-Stokes equatfons in the vicinity of the particle. It -has

been shown that by neglecting non-linear inertia terms at low Reynolds

numbers the resulting linear momentum equation is not capable of
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producing a net 1ift force on the particle in the direction of the

- normal to the relative velocity as shown by Cox and Mason [1971] and
Lumley [1957]. This result is in contfadiction with the experimental
observation of Segre and Silberberg [1962] who have observed the
migration of neutrally buoyant ﬁarticles away from the Wall to an
equilibrium dimensionless radial position equal to 0.6 in Poiseuille
flow. The transverse fbrce associated the particle migration is
therefore attributed to fluid inertial effects with the conclusion that
such effects are not to be neglected, but should be incorporated in the
derivation of the 1ift force.

Using perturbation methods, Saffman [1965] has derived the viscous

affected 1ift force. The result is applicable in uniform shear low
Reynolds number flows with the first term of the series obtained as:

(RN ERTN S (2.1.17)

which is usually referred to as the Saffman 1ift force. The assump-

tions are that:

Q

ud, & W a2
-2 . T o, T« (2.1.18)
and also:
Wex, 20,
W >> al_J_ (2.1.19)

where @ represents the particle's angular velocity.
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The ratio of Saffman 1ift force to the Stokes drag is;

172
FL2 d2 del_ - :
.FD_ = 4.3 1% E | : (2.1.20)

The expression in the brackets is much smaller than ynityvaccording to
the second assumption in Eq. (2.1.18). For the ratio in‘Eq. (2.1.20)

to be small, the particle size shpu1d satisfy the condition:

1 1) |
d, <« 0.5(3 x (2.1.21)

Therefore, for the 1ift force to be neglected with respect to the -
Stokes drag, the partic]é size should be small compared to a charac-
teristic dimension of the near-wall flow region where ve]oc1ty

vgrad1ents due ‘to viscous effects, are. steep.

2.2 Solutions to the Equation of Motion

| Equation (2.1.1) describing the motion of a particle in turbu]ent
flow is complex in its full differential form, and én exact solution is
~difficult to dbtain. The greatest difficulty is due to the.complieated
‘nature'qf fluid-particle interactions which appear through the.
ihc]Usion ot:Various fluid-induced accelerating and dece]erating
forces. Equation (2.1.1) in its general form is a non-linear integro-
) d1fferent1a1 equat:on for the motion of a s1ng1e part1c1e in Lagrang1an
| coord1nates. The. non-linearity is due to the condition that the

particle does not general]y remain in the v1c1n1ty-of its 1n1t1a1
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neighboring fluid element. As a consequence, the ith component of

the fluid velocity encountered by the particle at time (t) will be:

Uf. l;p(gp’t) ;At] ’

1

instead of the.velocity:
<>
Uf1 le(tfst) H t] ’

with Eb and E{ representing initial vectorial positions of the
particle and fluid e1ement_which are coincident at t = 0.

The fluid velocity encountered by the particle depends on the
position at time t. By further manipulations, Eq. (2.1.1) becomes a
second order differential equation in terms of the partic]e position
withvthe solution depending on the particle initial position, the
particle response time and alsb on a complete description of the
turbu1ént flow field. ‘Such a description, if available, is sfatistica1
and will result in é statistical description of particle motfon. |

However, the non-linearity as defined above, requires a description of

turbulent f]bw field along the particle trajectory. In other words,
since the partiﬁ]é does not follow the same fluid element in general,.
the probability of the'partic1é being in a specified location at a
certain time is also required.

| This non-linearity does not exist in, for instance, Brownian
motion, where the particle motion driving mechanism is provided by the
random co]lfsion with other particles independently of par;ic1e

position as shown by Peskin [1959].
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The first solution for the Basset;Bouésinesq-Oseen equation of
single particle motion is due to Tchen t1947].‘ 1n addition to the
assumptions following Eq. (2.1.1), Tchen assumed that the particle
" remained in the neighborhood of its original fluid element. The latter
assumption produces fdentical values for the difquion coefficients of
“the partic]e'énd its neighbérfng fluid element. It has been arguéd
that, Hinze [1975], for the particle to remain in the vicinity of the
same fluid element, the particle displacement'relative to the initial
neighboring fluid must remain smaller than the local charactefistic~
fluid length scale, during a time period shbrtér»than the 1oca1.time

scale.
For a conservative estimate, such Tocal Tength'and time scales can
»be taken as the Kolmogorov length and time scales, n and . This

implies that:
—1— 11 <« 1 - (2.2.1)
and the assumption of the fluid and particle following the same
trajectory results in:
atd— z g.t. | O (2.2.2)
b

which removes the non-linearity in Eq. (2.1.1) and simplifies the

problem of finding a solution.
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The requirement for linearization is that, Soo [1967];

42 ani- |
P W « 1 (2.2.3)
The condition expressed by Eq. (2.2.3) can be obtained.by.comparing
linear and non-linear terms in Eq. (2.1.1) after some algebraic
rearrangement. . ’ |
Furthermore, removal of the viscous second-order term in Eq.
(2.1.1) introduced by the pressure gradient term requires that, Soo

(1967]:

2 azuf | -
LA (2.2.4)
U ———— 2.

- which means that if the time scale for parficle inertial effects is
substantially smaller than that characterizing'viscoué_f]dw effects,'
the particle "sees" an essentially inviscid fluid element in its
vicinity. The conditions Eq. (2.2.3) and Eq. (2.2.4) have been shown
by Levich and Kuchanov [1967] to be equivalent to the respective
conditions: | | ’ |

2

- « 1 | (2.2;5)

Ref/d 5> 1 (2.2.6)
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The solution of Tchen [1947] for Eq. (2.1.1) includes all the

assumptidns mentioned above regarding linearization and also the

removal of the fluid viscous terms.

In that analysis a stationary

solution was obtained with the initial time set to (-=). Tchen's

solution is significant in that it has subsequently been followed by

many investigations. ‘Hinze [1975] obtained a solution by taking

Fourier integrals of fluid and particle velocities and substituting in

the linear equation of motion.

The results are similar to those

obtained by Tchen for the particle diffusivity. A similar approach has

been followed by Hjelmfelt and Mockros [1966]. Finally, a solution has

been obtained by Chao [1964] which is based on the Fourier transport,

Tinearized form of the equation of motion with the same results.

In order to facilitate further the analysis of the dynamics of a

particle in turbulent flow it is appropriate to focus on a more simpli--

fied equation of motion. In the absence of significant external

forces, it can be assumed that the drag force gives the major contribu-

tion to the particle motion and on this basis produce a rigorous anal-

ysis for solid particle motion. Therefore, following this argument one

would obtain from Eq. (2.1.1):

where:

du U
P; P

@t T A

.Ufilip(tp,t);t]

™m

- (2.2.7)

- (2.2.8)
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in turbulent flow. For the cases where diffusion mechanisms other than
turbulence are present, the term A;(t) in Eq. (2.2.7) should be
substituted appropriately. This has been discussed by Peskin [1959]

in case of Brownian diffusion and diffusion under Bernouli forces.

By integration of Eq. (2.2.7) with Eq. (2.2.8) substituted one obtains,
Lumley [1957]:

t . s | |
Xpi(fp,t) = fo g(t-n) Ufi[xp(ip,n);n] dn + xpio (2.2.9)

In general, the solution to Eq. (2.2.7)'15, Peskin [1959]:

L

T

xpi(ﬁp,t) s

t . |
]0 g(t-n) Ailfpj(itn),n] dn + xpio (2.2.10)

where:

té t-n)/ v
e,( n)/ 1y

g(t-n) = 1- (2.2.11)

represents the response function which becomes identical to unity in
‘the case of particles with 1y = 0. This implies that the turbulent
dispersion of fluid elements is a special cése of the dispersion of
solid particles for the case of 1y = 0.

Furthermore, using Eq. (2.2.9) for the,derivatfon of the particle

mean square displacement, it has been shown by Peskin [1959],that

G. I. Taylor's theory of "diffusion by continuous movements,“~Tay16r
[1921], is a special cése of solid pértic1e diffusion when t, = 0 and

the Solid_particle becomes indistinguishable from its neighboring fluid

elements.
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2.3 Interaction of a Single Particle with TurbuTent Flow

For further analysis of the dynamics of a single particle
suspended in turbulent flow, a comparison between the particle respOnSe
“time and the characteristic time of turbulent eddies surrounding the
particle should be made. For a particle much larger than neighboring
eddies, the particle dynamics.are affected through modifications to
viscous resistance drag rather than by the direct action of inertial
forces on the eddies.themse1ves., For a particle to be responsive to
the smallest eddies, its response time (1) should be comparable to
that of the Kolmogorov time scale, t = (v/e)l/z, which is a charac-
teristic time scale in the high wave number part of the turbulence
spectrum. |

Hence, for a responsiveness of the particles to eddies in this

~ part of the spectrum, the ratio:

- 0.06 <§E+ o.os> (-‘%)2 O (2.3.)
°f .

should be small compared to unity. |

In Eq. (2.3.1), n is Kolmogroff's length ;cale and rm‘a1sq 
includes the effects due to apparent mass. Tﬁerefore, for the particle
“to be responsive to the viscous dominated, small eddies in.]iquid-so1id
_ systems, where Bp/5¥ = 0(1), the particle size should be of the
order, or smaller than the eddy size. However, in gas-solid flows,
with EP/Sf = 0(103), the partic1e should be;ét least one order bf

magnitude smaller than the eddies.
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In high Reynolds number flows, turbulent eddies are characterized
by their turbulent kinetic energy,-k, and dissipation rate of kinetic
energy, ¢, the typical time and length scales are, respectively:

3/2
k
Al e

-~
]

and;

-
10
>

N
olx

in which A; and Ap are constants.
Hence, for a particle with response time.(ty) to respond to the

eddies in this range: -

- 2 /.~ 2 | B

T 0.06 A ) d 1/2 3/2 .

m o 1 (k="°) (k™ °/¢€)

T— = —TZ— (EB + 0.05> (tp'> [ ) < ] (2‘3°2)
f .

should be small compared to unity.

“In Eq. (2.3.2), the last bracket contains the local Reynolds
number which is 1arge. The particle to eddy size ratio should
compensate the high Reynolds number effect to give a small value for
the-time-fatio, As . above, a higher’density ratio requires a smal]ér
particle size. |

In the case of enerqgy contaihing eddies characterized by thef

velocity scale uf and length scale A, the time scale of the eddies

are;

e
f
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therefore the ratio of the time scales is:

| ~ 2 ~ o
T P d- U
—— = 0.06 (:9+ o.os) -Ag L (2.3.3)
o] .
f

which should be smaller than unity. Hence, it requires that, Hinze

[1972]:

d ugh /o . .
pf )
for the particle to respond to the large energy-contaﬁning eddies.

However, from Tennekes and Lumley [1972]:

. B

2 | Re3! | (2.3.5)
with By = 0(10).
Thus Eq. (2.3.4) becomes
d 3 ; -1/2
E \B:
" requiring particle'sizesitwo orders of magnitude sma]]ér for the cases
of gas-solid flows, when compahed'to~1iquid-§o1id flows for equivalent

flow conditions.
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CHAPTER 3
TRANSPORT EQUATIONS FOR TURBULENT TWO-PHASE FLOWS

- In the previous chapter the dynamics of a single particle
suspended in turbulent flow were discussed. Furthermore, the particle
equation of motion in a Lagrangian frame of reference-ﬂaé considered
and the vérious forces affecting partic1e motion, due to particle-fluid
interactions were evaluated and discussed.

Analysis based on the equation of motion for a specific particle,
yields predictions which are related to a-specific.pérticle with
defined initial conditions. Results 50'obtained, such as particle
velocity and trajectory are basically restricted to the motion of a
single wandering particle. Although valuable from a fundamental point
of view, such results are of little interest ih engineering appiica-
tions. Instead, particulate properties associated with an ensemble or
collection of particles, such as the particulate concentration density
or the velocity‘at a specified point in the flow fié]d, are of rela-
tively greater practical importance.

Analysis of the flow based on the. governing equations formulated
in Eu1erian‘coordinates is generally capable of providing such
information for a particle-laden flow. Syéh an approach does also
allow, at least in principle, for the particle-particle collision
effects.” These can be forha]ly incorporated in the momentum-ba]ance
equations by the inclusion of a particulate viscosity accounting for
the momentum exchange between particle caused by inter-particle

coliision. ~In the analysis for single particle motion based on
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Lagrangian equations, particle-particle collision effects can bé :
included by-incorporatfng a spatially and temporally function
describing a.distributed collision force. Consequently, in the
majority of single particle investigations ft is customary to neglect
the.collision effects between particléS'and to adopt the assumption of
forces produced by fluid interactions. Although such an assumption may
be justified for dilute particulate flows, it is unacceptable for
concentrated flows. '

On the basis of'the preceeding argument, a development of the
governing equations in Eulerian coordinates is desired, which will
remain invariant' with respect to changes in particulate concentration.
As will be seen, however, expressions in Lagrangian coordinates will be
required to derive a closure for the Eulerian transport equations.

In the féllowing sections, consef?ation equationS'for‘the maSs,-
mean mbmentdm and mean kinetic. energy of the fluid and particulate

'bhases are developed. Transbort eqqations'for'f1uid turbulent kinetic
energy and dissipation of kinetic energy are also derived. By
‘incorporafion bf abpropriate boundary cdnditibns éﬁd the closure
relations in the transport equations, numerical so]utions‘for the

equations presented are subsequently obtained.

3.1 Continuum_Mode] for a Cloud of Particles

A derivation of the governing equations,for a particulate phase in
- terms of Eulerian coordinates, requires a continuum model approath fbrv'
the cloud of particles. The continuum'assumption allows for a reb]ace-

ment of the f]uid-partic1e heterogeneous mixture by the two interacting
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phases governed by their respective conservation lows. Therefore, a
fixed "point" in the flow field is here defined as an infinitesimal
volume element consisting of many sma]l solid partiples coexisting with
' the‘f1uid phase, and for which a statistical averaging of the various
properties of the particulate phase is feasible and meaningful. The
infinitesimal element thus defined should be small compared to the
smallest dynamical scale in the flow fluid, Kraiko and Sternin [1965],
yet large enough to contain a sufficient humber of particles to make
meaningfq] the local definitions of macroscopic properfies, such as
velocity and density, obtained through statistical averaging.

It has been shown that under conditions of negligible particle
interactions, the RMS fluctuations in the density of a particulate
~ volume element decrease with an increase in the element size, Lumley
- [1976]. - However, as the element size becomes of the order of the
macroscopic flow scales, it can experience spatial variations in mean
density. |

The condition for smallness of the particle characteristic length
scale whenvcompared to the smallest 1ength scale in the flow requires

that:

L, << n | (3‘.1.1»)

In Eq. (3.1.1), 2p represents the ‘average interparticle distance and
n is the Kolmogorov length scale in turbulent flow. For a large number
of uniformly distributed and equally spaced solid spherical particles

‘with 2p/dy > 10 a simple analysis yields;
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3™/
n
where a is the particulate volume fraction.
Comparing Eqs. (3.1.2) with (3.1.1) yields:

o d\ o o
a » (-2> % o | (3.1.3)

n

Thus, the continuum>requirement'renders é condition for the particulate
volume fraction in thé flow. Alternatively, from Eq. (3.1.3);
EE << §21/3 | (3.1.4)
n m v
~which is a.condition for the ratio of particle size to Kolmogorov
1ength scale for a giveh‘particulate volume fraction. The same

analysis which led to the Eq. (3.1.1) yields:

R o
dax = B (3.1.5)
which indicates that the right side of .Eq. (3.1.4) is always smaller

than, or at most equal to, unity.: Henée:
4 o . | o
, ;R <1 - | (3.1.6)

~In the case of Brownian motion for the particles, the associated
: mean free_path-of the particles becomes the appropriate length scale.
In analogy wjth molecular random motion and from kinetic theory. of

gases; Vincenti and Kruger t1965], one can'define.tﬁe_particle,mean.

free path as:
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d
z —E (3.1.7)

Lp.‘p » 6v2a
In analogy with gas molecules, the random Brownian-type motion of
particles is assumed to be generated by collisions of rigid spherical
particies. The analogy is more: justified for very fine, sub-micron
partié1e sizes for which the .collisions with carrier gas molecules can |
also be significant, Yeung [1978]. For larger particle sizes, the
Brownian-tybe motion is more likely to happen in concentrated particle-
fluid suspensions with relatively small mean free path and high
' co1lisfon frequency per particle. In a dilute mixture, viscous drag
effects of the cérrier fluid tend to deccelerate the particle after,
and priof to, a collision.

It is reasonable to assume that in the cases of dilute
suSpensions, particles are more strongly affected by the fluid,
although collision effects with other particles may still be
considered. Therefore, it can be concluded that in contrast with
collision-dominated particulate elements for which the local
equilibrium is established by inter-collision of particles, in the
viscous-dominated cases the equilibrium condition is reached by
interactions wifh the carrier fluid in which the particles are -
contained.

The random movement'of_the'partiéles with different QeloCities
and in different directions in a particulate volumetric element leads
to the definition of a distribution function fp(xpi,“pi’t) for

the averaged local variables.
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For uniformly sized particles and steady mean flows,. the value;

fp(xi’vpi) dx; dxy dxs dvpl dvpz dvp3 . (3.1.8)

represents the number of partic1e with Qelocities between Vp; and
vp; + dvpi at the position bounded by xj and x5 + dxi- Local
averaged variables can be obtain¢d=by integration over all particles
within a volume element with fp as the heightihg fuction. The
derivation of a probability distribution function fp for "gas-like
partic]és” requires solution to a Bo]timann type equation with particle
~ characteristics incorporated. This requires a cafeful evaluation of
the forces exerted on the_particuiate phase. In the investigation of -
Culick [1964] several simplifying assumptions have been made and an
apprbpriatevsolut%on wés obtained. In that ahalysis was included the
collision between two cJass sizes of particles with non-zero relative
velocity due to differences in their respective1y'induced motion by
- fluid viscous. In Culick's analysis, the inclusion of various simpli-
fying assumptions, however, restricts the range of applicability of the
result obtained. ’In the invéstigatidn by Marble [1963], the conserva-
tion equations for the particulate phase_have been obtained uﬁing the
Boltzmann equation without derivation of f; function.

The situafion of viscous-established particulate equilibrium with
- weak particle-particle collision effects is more likely to arise in
dilute suspensiqns as'oppoéed to concentrated flows. In dilute cases, -
the length scale characterizing fluid-particle 1hteracfion effects

should be small compared to the charactéristic length-Sca]e for
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particle-particle collision. The fluid-particle length scale for

turbulent suspensions is defined by Soo [1969] as;

~

where,

- —— 12
Au = (uf - up) ' (3.1.10)

with ug and up as direction-averaged fluctuating velocities for the
fluid and particulate phases, respectively.
Thus, for a viscous-dominated suspension:

Lep <€ L (3.1.11)

p-p °

which from Eqs. (2-2-6) and (2-2-8) it would yield the condition:

a & —B— | o (3.1.12)

for the volume fraction of the solid phase.

From the above condifion it can be shown that for a fixed a, it
is the more responsive.particles which are affected primarily by
viscous, as opposed to inter-particle collision, effects. For small
rm; particle Volume fracfions can assume higher values with almost
no-significant paktic]e-partitle cdllision effectshand-loéal equili-
brium is established by interactions with the fluid rather than direct

- inter-particle collisions.
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Finally, it éan be stated in suppoft of the continuum approach
that good agreement is found in the literature between experimental
data and theoretical analyses incorporating the approach. For example,
the studies by Stukel and Soo [1969], Nagarajan [1972] and Kramer and
Depew [1972a] can be mentioned. The,work of Kramer and Depew was
specifically conducted to verify the particle phase cont inuum hypothe-
sis in a turbulent pipe flow configuration. In their study, the
authors investigated particle sizes of 62 and 200 ym, with volume
fractions as low as 10'3, and found good agreement between their

theoretical and experimental results.

3.2 Conservation Equations for Two-Phase Turbulent Flows -

- The general fdrm'of the conservation equations for mass and
momentum in two phase flow have been presented by Soo [1967], Drew
- [1966], aﬁd Hinze [1962]. The transport equation for fluid turbulent
kfnetic'energy has been given by Hinze [1972], Danon et al. [1977] and
Drew [1976a]. In this section the equations are developed to yield
their time-averaged forms, using Reynold's decomposition procedure.
In additioh, time-averaged transport equations for the turbulent
kinetic energy and the dissipation of turbulent kinetic energy, for
the fluid phase, are also derived and presented.
o The following assumptions are imp]ied'in the equations:

'i - Steady state,visotherma1:f1ow and imcompressible, Newtonian

fluid -

2 - Constant fluid and particle properties
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3 - Continuum hypothesis for the dispersed phase composed of
uniform size, spherical particles. |

4 - The main dynamicaT interactipn between fluid and partfcu1ate._
phase is dde'to Stoke's viﬁcous drag |

5v- Dilute particulate suspensions with a << 1 everywhere in the

| flow field. ) -

6 - For fluid phase the viscous diffusion is neglected compared
to turbulent diffusion.

7 - For particulate phase the Brownian and Bernoullion diffusion
are negligible compared to the turbulent diffusion induced by
the fluid motion. | |

8 - Third-order termSACOntaining particle concentration fluctua-
tions are assumed negligible.

9 - Local isotropy for the fluid-particle turbulence.

3.2.1 Mass conservation equations

a) Fluid phase

The mass'balénce for a fluid element with volume fraction (1l-a),

~ yields, Hinze [1962]:

- L 0 | (3.2.1)
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This is the continuity equation for a fluid phase in the presence of
particulates with volume fraction a. However, from the assumptions 2
and 5, the equation simplifies to:

g
3 *
1 =190 . (3.2.2)

axi
Using Reynb]d'é decomposition for velocity:

Ue = T +up | (3.2.3)
f, £ | |

and substituting in Eq. (3.2.2) followed by time-averagin95 yie]ds:

U,

-~ Equation (3.2.4) is an‘adeqUate approximation for fluid mass conserva-
tion in a dilute fluid-particle flows.

'b) Particulate phase

The same cons1derat1on leading to Eq. (3.2.1), when app]1ed to the
particulate phase of a third-particle suspension, w111 yield the solid
phase continuity equation, Hinze [1962]:

- = 0 . 3.2.5
axi .(pp o Upl) , ( )

*Note that, rigorously, Eq. (3.2.4) 1nc1udes a term o' u wh1ch
, need not be zero. However, since |a'| = 0(a) and a << 1 it is
L presumed that. the term represents a neg11g1b1e contr1but1on to the
' balance equation. .
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Using Reynold's decomposition procedure:

a = a+a : (3.2.6)

u, = T, +u s (3.2.7)
for .the mass‘conservation of'pérticlexphasegone obtains:
3 o) =
% (ZUpi +a upi) 0 | _ (3.2.8)

In Eq. (3.2.8), first term represents a contribution to the particle
mass flux due.to mean hétion while the second term represents that due
to turbulent diffusion of the particulate phase, and any other contri-
buting term must be modeled in terms of appropriate flow field varia-
bles. In‘tdrbu]ent two-phase flow, it is customary, Hinze [1972], to
assume a gradient-type diffusion form for the correlation term in

Eq. (3.2.8) in analogy with the turbulent diffusion of heat in single

‘phase flows. Thus:

T . Jla) EET; | (3;2}9)

where vgz) represents turbulent diffusivity for particulafe mass
concentration. - The gradient-type turbulent diffusion expressed by

Eq. (3.2.9) denotes a local field effect,'with no memory of the past
history of the particles. It is, therefore, inapplicab]e to cases with

significant "over-shooting" effect of the particles. 'As will be
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discusSed later forlsuch‘cases, due to inertia, or under the influence
of external forces, such as gravity, the particles do not necessarily
remain in the vicinity of their initia]»neighboring fluid element and
- can "over-shoot" to a different fluid element. Since this proéess‘is
 assdciated with particle "memory" effects, it can not be accounted for
by a gradient-type diffusion mechanfsm;-

For cases of non-significant “bver-shooting" effects, Eq. (3.2.9)
will be used to close the governing mass concentration equation. AS
will be seen later in the sub-section for the momentum balance, a
‘similar constitutiQe relation for turbulent transbort of particle
momentum will be assumed; |

It has been argued that in dilute flows, the momentum transport
process for the particulate‘phase is due to turbulent diffusion of
particles as through the containing fluid.' This is an extension of
‘Reynold's analogy applied to the mass and momentum transport of the

particulate phasé-as shown by Soo [1969] to yie]d;.

(3.2.10)

"with A as a constént of order unity. From Eq. (3.2.10), therefore, a
-difect'Iinear proportionality between particle mass and momentum
diffusivity exists. Thus, by obtaining the ré]atioh,between vgz)

and Vtgs fluid eddy diffusivity, a relation for the particle

momentum diffusivity will also be obtained.
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Substitution of Eq. (3.2.9) into Eq. (3.2.8) yields:
2 EACE-AN
_a"i-i' G.Up.i) - ax.i (vtp axi> - 0 (3.2011)

for particulate mass transport.

'3;2.2_ Momentum balance equationsv

Fluid phase.
In a derivation of the fluid momentum-balance equation in a fluid-

particle mixture, the dynamical effects due to presence of the par-
ticles should be cohsidered. In gases, for example, it ha§ been shown
that the presence of particles effects the mohentum exchange process
between gas molecules, and hence the gas viscosity. Thus Einstein

[1906] obtains:

W= uy (1+ 2.5q) (3.2.12)

where u and u, denote fluid laminar viscosities with and without
particles. Such a change of fluid molecular viscosity"is'not‘signifi-
cant here, due to the diluteness assumption as well as the assumption
of neg1igible‘mo1ecu1ar transport compared to turbulence diffusion.

The momentum balance equation for the fluid phase is therefore a
balance among various forces of inertial, pressure and viscous origin,
and includes the flow-resistance forces induced by the particles on the

fluid element.
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The instantaneous fluid momentum transport equation is given by
Soo [1967]: '

Uf.'Up.

1Y)
. f.
3 g~ ~ 1 1 ] 3 i
+— |pe(l-a)U . U, ] = «p a——— - (l-a) — (P§,.) + =— <-—-—->
8xj f f5 fj, P T axj i axj 35
I ' II S ITI : IV
(3.2.13)
with the following interpretation for various te?ms;
I - inertia term
I - particle-induced drag force
I - pressure force
IV - viscous force>
The assumption 5 above, that is:
a1 (3.2.14)
can be incorporated in Eg. (3.2.13), resulting in the following
equation for the instantaneous momentum:
5 _a_"(u U ) . R (ps..)+—§-<,—-—auf"> (3.2.15)
f axj | fi fj _ p L axj ij | axj 3 axj

Thus, depending on (Ufi - Upi) being positive of negative, the
~effect of the particu1ate phase is to decelerate or to accelerate

the fluid.
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Application of Reynolds decomposition procedure on Eq. (3.2.15)
and averaging results in the following equation for the fluid mean

momentum:

) P - . 3
ot 3y U Bed = - [“ D¢, = Tp,) * o700, ]] - (P &)

J m i " J
IIa IIb
+ | _8- E (3 2 16)
Pf o Veff a5 - \J.c.

In this equation the Boussinesq assumption has been used for expressing

the Reynolds stresses. Thus,

U U
f. f.
= 1 J
- Uz U = vy |\ — + -
fi fJ. tf< ax.j ax1.>

2

3 85k
where k = 1/2 (ug;uf;) is the fluid turbulent kinetic energy.

Also, from the previous assumptions of negligible viscous diffusion,

in Eq. (3.2.16);

v = v +y = vy
eff _tf tf

~The fluid-particle interaction in Eq. (3.2.16) is comprised of two
terms. The first term (II;) represents the mean viscous drag indchd

by the particles, and the second term,(IIb) is the drag ;ontribution

induced by the turbulent diffusion of the pafticles.
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The f1hid-partic1e interaction in Eq. (3.2.16) is comprised of two
terms. The first term (II,) represents the mean viscous drag induced
by the particles, and thé second -term (IIy) is the drag contribution
induced by the turbulent diffusion of the particles. h
| It has been postulated by Hinze [1972] and Davidson and McComb
[1975] that:

— (a) 35 N |
Uug @ = =y — (3.2.17)
| fi ‘ tf X;
with vgi)denoting the turbulent difftsivity for the transport of
the scaTar a. The ratio: |
v, -
t
cela) _ _f
Sctf " —C;)-
v
t,f. ;

thus represents the eddy Schmidt number for the transport of particles
by velocity fluctuations.

- The govérning»equation for the fluid fluctuating velocity,
IUfi3 is obtained by subtraction qf the instantaneous moment um
balance Eq. (3;2.13) from the time-averaged Eq.v(3.2.16); the.reSu1f
is:

, |
Pea— (Ueug +u T, +u,u,.)
FEG U
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Equation (3.2.18) will be used later to obtain the transport equation
for the fluid turbulent kinetic energy (k) and its rate of dissipation
(¢). Equation (3.2.18) could also be used to derive a transport
equation for ;Tﬁ}i and so obleviate the gradient diffusion assump-
tion. However, this approach leads to higher order and increasiﬁg]y |
more complex correlations which, in turn, require closure. Due mainly
to the difficulty of modeling higher order terms involving fluctuating
pressure, concéntratibn and viscous effecté, this appfoach is not pur-
sued here.

An investigation on the limiting behavior of the correlations

a‘Ufi and‘;TEbi yields:

QIUf' = ‘Q'u'p. | (3.2.19)

1 1

when 15/T = 0
and , _
a'ufi o= q'upi = 0 - (3.2.20)

when 1p/T » 0

with T denoting a characteristic local time scale of the turbulent
fluid eddies. |

The condition shown by Eq. (3.2.19) is obtained since in the limit
of small tp,/T values the particles behave very much like fluid.
However, in the limit of large tp/T, Eq. (3.2.20), the fluid and

particulate motion become non-correlated resulting in G'Ufi = 0.
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Also, since a'upi'is proportional to particulate masseddy diffu-
sivity, Eq. (3.2.9), its value diminishes as tp/T becomes large and __
Vtp goes to zero.

Based on Eq. (3.2. 19) and (3.2.20) it can be assumed that:

for all /T values. The Eq. (3.2.21) is also in accordance with
Hinze [1972] regarding the possible proportionality of the cbrrélation

terms. Substitution of Eq. (3.2.21) in Eq. (3.2.16) results in:

~

pfax(UU)=- (Uf p,) = 37 (Poiy)
J . J
Few e\ | (3:2.22)
| ; 1

J

which is the mode]led;momentum'equation for the fluid phase.

Particulate phase '

The momentum balaﬁceIfor'the-particulate phase is derived'noting
that the on]y maJor driving force retained is that ‘due to the f1u1d
viscous drag. As noted by Soo [1976], contributions of the part1cu1ate
phage to pressure-gbadient force are negligible in di]Uﬁé systems and,

- therefore, are not includeé in formulation. A bg]anééibetween '
instantaneous inertial andAViscoué drag forceé results in the following
- equation; Soo [1967]:

2 (wou )= L [a(U, -U_ )] (3.2.23)
3xj Pi Pj Tm _f-i' P; . ‘
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In the presence of the external force fields like gravity or electro-
static forces, these should be included in the balance.

Time-averating the Reynolds-decomposed form of Eq. (3.2.23)

yields:_'
2 (3T, T ) - —[a(U T )+?Tr'r7]
axj Py P; T fi P; f’i Py
I Il
3 (“""—" 3 - -
ce— (et u )-+— (U au +U ou_ )
3Xj Pi Pj axj- P; - Pj Py Py
ITI Iv v
(3.2.24)

in which the triple correlation term is neglected according to
assumption 8. The first term on the left side of Eq. (3.2.24) is

the conQective contribution to the changes in particle momentum in
the ith direction. The terms (I) and (II) on the right side of

Eq. (3.2.24) are the various contributions to momentum by the Stoke's
viscous drag which had also appeared in the corresponding flﬁid
momentum balancé.with opposite sign.

" The term (ITI) on. the fight repreéents a contribution to the mean
momentum ba]ance_dueﬂto the correlation of parficu]ate velocity
fluctuations and is similar to the Reynolds stress term in the fluid
momentum balance. Implicit in Eq. (3.2.23) was the negiécf of '

B Brownian-type diffu§ion. However, the turbulent inertial -effects give
rise to the Reyno]ds-stress type term which,vhere,_Wi11 be expressed in

terms of particulate phase eddy viscosity.



-53-

Thé~Boussinesq»assumption will be extended to the particulate
phase by assuming:

aUp aﬁp ) : a'ﬁp
- T = —1 . =

J TP

with kp =.1/2 “Pi“bj'as the particulate phase turbulent kinetic
energy which can be obtained, for instance, from Eq. (4.2.6). The.
-divergence term in Eq.v(3.2.25) is necessary to ensure constistency:
~when the summation of diagonal terms is considered. A similar term,
howeQer,vdoes not appear in the fluid phase Reynolds stress re]ation
given earler since it becomes approximately zero fbr dilute suspen-
sions. The assumption of zero divergence for the~partitu1ate phase
velocity as made by Hinze [1972] is not justifiedvas evidenced by the
particulate mass balance equation. |

The term (IV) in Eq. (3.2.24) represents transport of the fluctua-
- ting momentum pp q'upi by the mean motion and the next term (V)
is viewed as the transport of particulate mass by the turbulent motion
contributing to the mean momentum. After substitution of the relations

Eqgs. (3.2;9), (3.2.21) and (3.2.25) in Eq. (3.2.24) one obtains:

R 1 =
35~ Py Py ™o T P
aU U aU
p Ps P
2 - i 1) 2 -~ < ;>
- = 1=~ av + + ad k + v
axJ. tp< axj Xy 3 *Pii\0p t, X,

o | (m osm Ly s\ . -'
B} S t'p ( pj a‘xi pi‘ax )] _
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The governing equation for the particulate fluctuating velocity
Upi'can be obtained accordingly. Thié equation will be used later
for the derivatfon of the particle turbulent kinetic energy which,
though not to be solved; is beneficial in further interpretation and
analysis of various interaction terms in the k transport equation.
Theytransportfequatibn{fOr*Ufi isvobtained:from substraction of

Eq. (3.2.24) from Eq. (3.2.23) with the result:

. _ | . B
=— |(a+ta')(u T +0 u +u_ u )+a'U_ U - u -T o0 -T au
3Xj [ | P; pj. Pi Pj Py Pj Pi Pj Pi Pj pJ Pi Pi Pj

= _1__ ' -' - 1 - i -
= o [a. (Ufi Upi)f(wa )(ufi upi) a||uf1‘ up'i l] (3.2.27)

3.2.3 Transport equations for the mean kinetic energy.

of the phases

These equations are obtained by multiplying the appopriate momen-
tum equation in the i direction by the mean velocity in the same direc-
tion and invoking the repeated index summation convention. The results

for the fluid and particle phases are given below:
Fluid phase
~ -_a- . 1 - -EE —-— - ) . i ,,-‘
f 3"5[Uf“‘(? UfiUfi )] ST [c (UfiUfi UfiUpi) +Ufia s upi)]

j m

If If

(a'f auf>
- 9 o - 3 i j
- U, == (pé‘“) + p U, — |y +
fi axj ij f fi axj 1:f axj axi

(3.2.28)
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Particulate phase

spm[au< )] ,ZE: Egtr aGUZ)

=3E[7;(UU 0,047, (T'U-au )
*m fi Py
T Hy

-7 2 uu )-T = (0 3 +7 30 )
Py axj P; pj P; 3xj pj Py Py P;

—

| _ (3.2. 29)
The transport equations for the mean kinetic energy of the phases are
not solved since thg distribution and the transport of mean krnet1c
energies are of little interest here. ;Howevér, as will be shown latér,
these equations will be used to assist with the interpretation of the
interaction terms in the equations for turbulent kinetfc energies of

the fluid and partjculate phases, respectively.

3.2.4 Transport equation for the fluid turbulent

kinetic energy (k)

The transport équation~f0k the turbu1ent kinetic energy of the
fluid phése is obtained by multfplying both sides of the governing
eduation for the f]uttuatihg.ve]dcity_by'the‘fluctuatingﬁvelocity énd
. time-averaging the result.  The transport-eduation for the fluid

turbulent kinetic energy is:
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aU. ,
- P Uz U -ﬁ-+—a-(2us ug ) -2us, s
+ EE['E (Uf Uf - Uf u ) - ﬁf (Uf -U ) - aru_f' LUf -u )
“m RE i Py i i Py i i P
If | ' IIf IIIf
(3.2.30)
with:
' dUg au
) f. f.
s - 1 LS |
f.. 2 axj. X,

1

as the fluctuating rate of strain for the fluid phase.

The interpretation of all but thé particle interaction terms of
Eq. (3.2.30) is given»ih the appendix 11 describing the two-equation
(k-¢) model of turbulence. The presence of a particulate phase and its
dynamic- interaction with the turbulent eddies creates additional mecha--
‘nisms for energy exchange between the two phases. Thus, Eq. (3.2.30)
contains fluid-partic1e intéraction terms which alter the distribution

of the fluid turbulent kinetic energy. These are discussed below.
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3.2.5 Transport equation for the particle turbulent

kinetic energy (kn)

The development of an equation for the turbulent kinetic energy of
the particulate phase, kp = 1/2(5;;Lpi)is of value mainly for
a thorough interpretation of the phase interaction terms. The deriva-

tion follows the same procedure which resulted in Eq. (3.2.30), and the

result is:

~ a po ' ~ . a - — '

. +—|U_ (a+a') u_u ] = epu . —— U u (ata')
P 3x; [ ; (7 P; pi) PP; 3X; Py P;

(3.2.31)

The first three terms onfthe right side arisé due tb_inertia] effects
and are caused by the interactions-betweeh.the parfic]e turbulent and
mean motions. These terms are complicated due to the fluctuations in
| particle concentration, and also by the non-zéro divergence of the

- particle phase velocity which generates terms in excess of those

.obtained in single-phase flows. .
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The last term in Eq. (3.2.31) arise due to fluid-particle:
interactions. These terms are used in the following to interpret
various mechanisms for transfer of energy from the fluid to the
particulate phase and vice versa. It should be noted that no attempt
is being made here to solve Eq. (3.2.31) and the particulate turbulent
- kinetic energy will, instead, be obtained from an algebraic exbression
which will be dérived in Chapter 4.

Transport of f1uid turbu]ent kinetic energy

and the particle interaction effects

In this section, various fluid-particle interaction terms in the
kinetic energy transport equations for the mean and turbulent motion of
the phases are compared and interpreted. The terms labelled as If

and Ip in the Eqs. (3.2.30) and (3.2.31) are re-written as:

- Dt [u {u, -u )]
f T _fi f'i Pj

a
m

1

and

2|

I

% e
p ™ up‘i(ufi- upi)

Following Eq. (4.1.16) for the modeled form: of Ufiﬂpi,

this correlation is bounded as:

where lower and upper bound 1imits are for small and large values of

/T respectively.
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Accordingly,
B ok
-2 ¢ 1, <o
'rm-f—

The negative value Of‘If generally implies a loss of turbulent -
kinetic energy for the fluid phase. The analogous term Ip in kp

equation can be re-written as;

5 i | |
1= 2 [u (u; -u_ ) +u; (u; -u_ ) -u; (u, -u_ )| (3.2.32)
P T LR fy Py R Ry Ry
or;
Ip = "If'ED . (3.2.33)
(+) (=)
with
?a
= P ( - )2
€y = Ug =u
D T | f'i P

The result implied by Eq. (3.2.33) is significant. It shows a
generation rate or “source" for kp éxactly equal to the loss
represented by I¢ in‘transport.equatidn for k.-vHowever, during the
process of energy trahsfer'from»fluid to particulate bhaseva net

K dissipation of turbulent kinétfc energy will occuf, as shown by the
second term on the right side of Eq. (3;2;23). This term is always
neﬁatiye in value, irrespective‘ofAthe sign and mégnitudesvof Uf;
and upi.' The additibnal dissipation mechéhism caﬁsed:sqlely by thé

presence of the particles will be negligible only if perfectly
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~ responsive particles are suspended in the fluid and no slip velocity
arise between the phases. This dissipation term is usually referred to
as the "drag dissipation”, Drew [1976a], and has a similar counterpart
in the mean motion. This can be shown by a comparison between the
terms T¢ and Tb invKs. (3.2.28) and (3.2.29). 'Therefofe, for the

mean motion the dissipation .due to viscous drag is equal to:

14
!

=

(Uf,-Up,)2 ' (3.2.34)
m i ri

T
which is analogous to the drag dissipation term in the turbulent motion
as indicated by Eq. (3.2.33). The evolution of drag dissipation is not
restricted to the I¢ and Ip terms.. Since by comparing the terms

IT1¢ and I1I, one can write:

~

[+
1. = -2 o' (ug -u
P “m fi

2
- II1
p'i) f

which suggests an additional drag dissipation, €Dy » given by:

and is caused by the fluctuating mass of the particulate phase when it
cqrrelates with the fluctuating slip velocity. |

The drag dissipation associated with the terms If and Ip is
based on the mean particle mass as shown by Eq. (3.2.33). The term
IIIp is, however, neglected in the calculation according to the

assumption 8 above. Therefore, due to presence of the particles an
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additional mechanism to "sink" the fluid tufbu1ent kihetic.energy s
estab]ished which is represented by term If in Eq. (3.2.30). A frac-
tion of this extracted energy will be transferred to the particulate
phase (term I, in Eq. (3.2.31)) while the rest will be dissipated
(term ep in Eq. (3.2.32)) due to a non-zero slip velocity between the
phases in the fiow. Therefore, for a two-phase third-particle flow in

general:

total dissipation = e + ¢p
in which ¢ is the dissipation caused by fluid viscous effects and ¢p
is drég dissipation caused by fluid-particle interactions. The expres-
sion for ep is given by Eq. (3.2.33) and the transport equation for ¢
will be derived in the next section. Thé e-transport equation, how-
ever, is further modified by the fluid-particle interaction effects
which will be discussed.

For interpretation of the term IIf'in k-transport equation, the
counterpart term (IIp) in the kp-transport equation should also be
examined. In single,phéée flows, the transfer of energy from the mean
motion to the turbulence is due to interactions between the Reyno1ds
stress andvthe mean»shear, that is;
ani

s X,
J J

Production (for a=0) = -ug ug

The associated transfer pfdcess is the well-known "cascading process",
- Tennekes and Lumley [1972], responsible for an energy exchange over a
range of scales between the mean and the turbulent motion. However,

the presence of the particles and the subsequent dynamic interactions
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between the phases givés rise to an additional transfer mechanism by
means of which fluid kinetic energy could further be exchanged between
the mean motion and the turbulence. |
It has already been shown that the interaction terms T¢ and T,

in the Egs. (3.2.28) and (3.2.29), respectively, are mainly responsible -
for the energy exchange between the mean motions. ThiS exchange is
also associated with a mean energy dissipation proportional to the
square of mean velocity difference between the phases as shown by
Eq; (3.2.384). The second interaction terms, II¢ and TTb, can be

re-written as:

and

e ‘
1T £ |7 (37, a7 }
P Ty [pi( )

The coupling effects between the phases result in an energy
exchange for the mean motions. The net excess energy resulting from

such an exchange is obtained. from:

.I_Ip = - -Tf - EE . (3-2.35)

with;
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Examination of the corresponding interaction terms, Il¢ and~IIp, in
the transport equations for k and kp, Eqs. (3.2.30) and (3.2.31),
shows that the next excess energy represented by Eq. (3.2.35) is trans-
ferred to the turbulence to be distributed between the interacting

phases. This can be shown from Eqs. (3.2.30) and (3.2.31):

E . .
I, + 11 =—2[U-U)(?'u'-?'ﬁ ]
R TR L) fg? 50 Py

which is exactly equal, and opposite in sign, to the net excess mean
kinetic energy exchanged,betWeen the mean motion of the phases. The
preceding argument suggests that in two-phase turbulent flows, dynami-

. cal interaction effects between the phases can develop an additional
mechanism for the dissipation of kinetic energy. Furthermore, an addi-
tional process can be established by'which kinetic_éhergy will be |
éxchanged between the mean and the turbulent motions.

3.2.6 The transport equation for dissipation of fluid turbulent

kinetic energy (¢)

The pfocedure for obtaining the transport equation for the dissi-

pation rate of fluid turbulent~kinetic energy, €, is to:

1 - take the derivative of both sides of the governing equation v
for Ufss Eq. (3.2.18), with respect tO X2, ‘
2 - multiply both sides of the equation by v aug,/axy,

3 - time-average the resulting equation.
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The result for a dilute suspension is:

~ - u u -ou
5.0, 2 . 00 fi( - pi)
f fj xj. . T - ax2 ax2 axz
Ie 'IIe
-5, =TT o 2 1 v 2
f axj fJ B X, 93X, axJ
IIIe
—5u 30 ‘ 3u 3 ey
N fi f. L M
- 2vp U : - 2vpe
f fj axzv axzaxj f X ax ax2
IVe Ve
[ —— — ‘ 2 .2
| 8Uf. auf. auf' 3uf auf. ) 3 uf. 9 uf.
ey 313'1-“313 - 298 35 TR
X; Xy X, X5 X, o X53X, 333X,
vI_ | VI,
(3.2.36)

In the derivation of the transport equation for e ‘above the terms
aa'/axz_ani/ax£ and Q'3Ufi/3X2 are neglected due to the assumption
of local isotropy which is assumed to be associated with the small

scale structure of turbulence. The terms in Eq. (3.2.36) are:



11,
11,

IV,
. ve

VI,
VII,
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convection by mean motidn

fluid-particle. interaction tgrms

diffusion due to turbu]encé; pressure
fluctuations and viscous effects

secondary production by mean flow
production by self-stretching of turbulence
production by mean flow

dissipation by viscosity

The pressure of the particulate phase and subsequent interaction
between the phases ar responsible for the fluid-particle term (II.)

ww—weee. . ... Which disappears as the particle volume fraction, a, goes to zero. The
term I1_ in Eq. (3.2,36) is the correlation bétween the fluid

fluctuating rate of strain, represented by;_

g
Se T 3o
. . X -
ij 7

and the rate of strain associated with the fluctuating slip vélocify:

3
S = = (ug -u_)

The term can be re-cast as:

- : auf. aupr
B L e il (3.2.37)
o |

ax_z | axg



-66-

Therefore, closure for the particle-fluid interaction terms in the ¢
equation is only required for the correlation term shown in Eq. (3.2.37).
This correlation is modeled further on in the text. For this second-

order correlation term it can be shown that:

oty (3.2.38)
v ’ e N L ] L ]

axz axz

T
as Tm + 0
and

v 0 (3.2.39)

ax, ux :

These expressions correspond to the limits of perfectly responsive and
non-responsiVe particles, respectively.

As will be shown in Chapter 4; the 1imiting behavior of the
correlation term given above will be-used as thé criteria‘for testing
the va1idity of an expression derived for tHe correlation term.

.Therefore, using the limits in Eq;_(3.2.37), one obtains:

I1. + 0 o (3.2.40)
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and,

_ P '
1 -2 (3.2.41)

Therefore, according to the result in Eq. (3.2. 41) the transport

equation for e can show a. reduct1on in e caused by dynam1c interactions
| between high- frequency, small scale turbulent eddies with the sol1d
particle phase.

In the data of Zisselmar and Molerus.[1979] for solid-liquid pipe
flow a decrease in fluid turbulent kinetiC-proportiona1 to a« for most
regions of the flow was observed. With the fluid Tay]or m1crosca1e, .
rema1n1ng constant with the part1c1e loading, reduction in k translates

into a reduction in e since,

e = 15y = _1ov;57 (3.2.42)

with u2- = 2/3 k.

The increase in v wifh the particle volume concentration is not
high enough to overcome the decrease_in k and, therefore, fn €e
- From experimental data the velue of /Ty can be calculated to be

approximate1y~eeua1,to 0.2 following the expression, Hinze [1975]:

t

T = C £
€

T

~ for T_ with Cy = 0.41.
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For this value of t/T and by taking T = T_ (which will be
shown in Chapter 4), the experimentally observed reduction fn € can be
predicted theoretically using Eq. (3.2.36). The reduction is demon-
strated theoretically in the II. term which shows a linear variation
with a. The linear variation‘is also observed in the experiment of
Zisselmar and Molerus [1979] based on which Fig. 7.12 is plotted. The
- figure shows the variation of turbulent kinetic energy with a« at various
distances from the pipe well. Therefore, according to.Eq. (3.2.42) this
corresponds to-similar linear variation for the turbulent dissipation rate.
| The presence of particles gives rise to yet another mechanism by
which an additional mechanism for dissipation of turbulent kinetic
energy evolves. As’showﬁ earlier in a discussion involving a relative
comparison of the k-tranéport eqﬁations, the "drag dissipation" based

on particle mean concentration was defined as:

)2

b

= 2 3 (
€ a u - U
D m fi Py

By adopting the expressions for ;E; and'ufiupi which will

be derived in Chapter 4, Eq. (3.2.43) becomes:

eD = 2 pp a T +T‘ (302044)

In the following, a comparison between the viscous dissipation, e, -
-and drag dissipation, ep, which constitute the total dissipation, is

made. The comparison is conducted for small and large tn,/T_ values.
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In the limit of large tp,/TL, one can compare the net'effect'of
the particle on the dissipation of‘k by comparing the decrease in
viscous dfssipation, as indicated by Eq. (3.2.41), to the increase due
to drag dissipation as shown by Eq. (3.2.44). For Targe values of

tm/TL» €p 1S expanded as:

2
T T
.25 Tk Lol |

This equation is an expression for the drag compoﬁent of the total
dissipation. The term II_ in Eq. (3.2.41) represents a "sink" for €
and will account‘for reduction in this quantity.

In the 1imit of small tp/T values, the rate.of change in ¢
due to particle effects is zero, as shown by Eq. (3.2.40) while the

- increase in total dissipation is:

' 2] -
o T =k m | m :

Therefore, the analysis indicates a net increase in total dissipation
of turbulent kinetic energy with the viscous dissipatibn component, e,
of tota}'diSsipafion not affected by fiuid-partic]e interaction -
effgcts. _ | | »
After substitution for TL,from Eq. (4.1.22) ﬁn Eq; (3.2.44); one

obtains:
= 2o~ = ke o
= 2p a p—— _ (3.2.47)_

with CT = 0(0.1).
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The ratio of drag dissipation to the viscous dissipation becomes:

€ P.a T
2 L
ED = T (3.2.48)
- 7T Ps L 'm

In two phase liquid-solid flows with Sb/S% = 0(1), a particulate
volume fraction of E;<< 0(10~2) will give small ep/e values.
Therefore, for these conditions the drag dissipation becomes small
compared to the viscous dissipation.

For gas-solid flows, however, with:

= 0(10%)

;3z|tpé

a small dissipation ratio is given far:

a K« 10‘4

A conéideration of this result shows that the range of a is more
restricted in gases than it is in liquids. However, as noted in
Chapter 2, very small a values might not be acceptable due to
restriction imposed by the assumption of a continuum approximation.

To conclude thiS‘section;'a comparison between the results |
obtained above and the established investigations in the field can be.
made. Owen [1969] considered the case of a dilute mixture of fine
particles with a small response time compared to the characteristic
times of energy-containing eddies and dériVed for the total dissipation

of turbulent kinetic energy;
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~

- P
ftotal = (1 + 3 —E>e (3.2.49)

Pg

Equation (3.2.49) is a special case of the equations derived in this
section. A general equation for the total dissipation can be obtained
by summation of the drag dissipation, Eq. (3.2.44), and the viscous

dissipation, €. Thus, one obtains:

20 a

R /
—L 1+
~ T
CTpf L y
€total ete = o e (3.2.50)
1+ T : ‘
L

In the limit of /Ty << 1, corresponding to the case

considered by‘0wen [1969],"Eq. (3.2.50) can be expanded to give;

+'o<%_"l>]e' 0 (3.2.51)

Equation (3.2.51) has the same form as that derived by Owen [1969],

o 2
€ = |1 4+ =
total [v CT

'ol}cl
) |

Eq. (3.2.49), except for the proportionality constant 2/Ct which is

unity in the Owen's analysis.

3.3 Boundary conditions for the fluid phase

~ In the following settibn'boundary conditions for the fluid'phase
in tWo-phase fluid-particulate flows are presented. These conditions
“consist of a set of boundary expressions to be incorporated in the

fully elliptic transport equations for the solution of the fluid

—
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velocities, turbulent kinetic energy and dissipation of tﬁrbulent
kinetic energy. In Appendix (II) the boundary conditions for the
single phase flow using two-equation (k-e) model of turbulence are des-
cribed and Table (1) contains a summary of the results. In the case of
turbulent fluid-particle flows the expressions for single-phase flows
should, however; bexmodified to account for the particle interaction:
effects. This is done in the folldwing section.

" Momentum balance

The transport equation for the fluid mean momentum is given by
the Eq. (3.2.16) with partic]e-f]ﬁid interaction effects incorporated.
The treatment, however, at the solid walls is rather independent of the
rigorously derived fluid mean momentum equation, since the region
between the node closest to the wall itself is patched by the standard
logarithmic distribution for streamwise velocity in accordance with
ékpérimenta].observations. Such a treatment is a good approximation as
1ong as the wall node is positioned in the inertial sublayer region
where-turbulent transport of the mean fluid streamwise velocity, should
also be incorporated. The iﬁvestigation of Peskin and Dwyer [1965]
shows no significant effect when inter-particle distances of particles
with small inertial effects are large compafed to the length scale of
energy-cqntaining eddies since the effect of particles is then merely
to cause viscous disturbances far apart from one another, with no
possibility of an overlap. The results of Peskin and Dwyer investiga-
| tion, furthermore, shows that for large interparticle distances, an

increase in the particle inertia is associated with inertial
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disturbances and a decrease in the laminar sublayer thickness which
is equivalent to a downward shift of the velocity profile. For the |
npn-inertial particles, the same analysis shows that for relatively
small inter-particle distances'the increase in f1uid;viscosity in the
vicinity of the solid wall causes an increase in the viscous-sublayer
thickness and a subsequent-reductionvin ékinvfriction, which is asso-
ciated with an upward shift in the log-well relation for fluid velocity.
In the investigations of Virk et al [1967] and Wells et al [1968]
a logarithmic velocity profile similar to that in single-phase flow was
observed. However, thickening of the laminar sublayer causes an upward
displacement of the velocity profile equivalent to the existence of 5
~ virtual slip at the wall, with consequent drag reduction at the wall.
In such cases the’same sca]ing relations for the velocity in the vis- |
cous and inertial sub-layers exists as argued by Lumley [19731. Thé
preceed1ng observations justify the assumpt1on of the ex1stence of a
log-wall relationsip for f]uid streamwise velocity in the inertial
sublayer of two-phase flow. Thfs assumptiqn iS even more'justifiéd :
when diiute fluid;particle systems are considered. Consequent]y,bthe
“expression for the fluid wall shear stress from Table (1) which is.
derfved on thé bésis of a logarithmic velocity profi]e.wi11'be used.

k-transport equation near the solid wall

The wa11_treatment in single phase flows is often based on the -
assumption of a local equilibrium condition in the vicinity of the
wall. For this condition, the production of turbulent kinetic;energy,

extracted from the mean motion through vortex-stretching of fluid
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filaments, becomes equivalent to the local viscous dissipation. The
incorporation into k equation of the local equilibrium.effect then
yields an expression for turbulent shear stress in terms of a linear

variation of turbulent kinetic energy in the inertia sublayer as given

by:

1'% 1
- —T- = Cu (30301)

with Cu as tﬁe constant in Prandtl-Kolmogorov relation and the
coordinates x). and xp represent directions parallel and normal to
the wall. In Fig. 1 of Appendix (II) lateral variation of the ratio
’(turbulént shear stress/turbulent kinetic energy) is shown for straight
channel, mildly curved channel and strongly curved channel flow.

~ The constancy of this ratio in regions close to walls is observed
as a partial verification of Eq. (3.3;1) in Single phase flows. In
two-phase,f]uid-particle flows the kétransport equation, Eq. (3.2.30),

may be similarly reduced at the wall to the following form:

(3.3.2)

In which are included the Boussinesq relation for the turbulent shear

stress and the Prandtl-Kolomogorov relation for eddy viscosity.-

Comparison between Eqs. (3.3.1) and (3.3.2) indicates the.possibility
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of modifying the single phase wall expressions-by_inc1usipn‘of
fluidparticle interaction effects. It can be seen that for zero
particle concentratiohs,_Eq.‘(3.3.2) becomes equivalent to its single
phase version, Eq. (3.3.1).. The expression in brackets in Eq. (3.3.2)
- accounts for the partiquIafe effects on the ratio (:E¥Iﬁ}zlk) in
vicinity of the wall. It is a complicated function of a, Ty, k and e.
The main complexity is due to unknown and yet unexplored wall effects.
It should be noted that in the c]oéure for fhe term G;;;Li,.aSjwill be
shown in Chapter 4, the complex wall effects are not included. - There-
fore, the ihcorporatibn of the far from-the-wall G?;Upi modeled Eq.
(3.3.2) for neér-the-wé]] regions is not justified which could lead to
-»erroneous results. The same reasoning is also applied for the term
'At,this point, ft seems necessary to further the analysis on the
basis of available experimental déta. The data presented by Zisselmar
and Molerus [1979] for turbulent pipe flow of‘53 um particles is one of
few detailed measurements for which non-interfering LaSér—Dopp]ér .
velocimeter has been utilized. Figure (3.1) shows the lateral variétion
of the ratio ﬁ?zﬁ}zlk at various particulate concentfations in the
vicinity of the wall which has been obtained from the data.of Zisselmar

and Molerus. It can be obsér#ed that similar to the single phase flows,

a constant (Ufl/UfZ/k) ratio in vicinity of the wall does exist which

shows some variations with respect to the particle volume concentration

(o).
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Interestingly, the Va1ue of the ratio for a= 0, i.e., clear
fluid, is close to that of Laufer's data shown in Fig. 1 of Appendix
II. The variation of the fatio (G?IE}Z/kf;/(U?IU}Z/k);ab
vs. a for the wall region of Zisselmar and Molerus [1979] data is shown
in Fig. (3.2). This ratio represents the particle-interaction term in
big brackets in Eq. (3.3.2). From Fig. (3.2) it can be seen that ini-
tial ihtroduction'of'the solid particles in the fluid slightly increases
the ordinate while with further increase in a, it decreases below that
for the fluid with @ = 0. Quantitatively, the relative maximum increase
is about 12% at o = .0171 and the re]étive maximum decrease is about 25%
at @ = .056 which is the highest « tested. |

From Fig. (3.2), the insignificant effects of dilute concentra-
tions, a < .005 for instance, can also be observed and furthermore in
the regions where @ £ .035 the maximum deviation from unity is about
12%. Thérefore, considering expérimenta] errors, which can be observed
by the degree of non-symmetry of the various profiles in Fig. (10) of
Zisseimar and Molerus [1979], one can assume no variation around unity
for the region of @ £ .035. From Eq. (3.3.2) this assumption is

equivalent to saying:

~ : ' 172
, p - -
{1 D [a(uf ug - ufiupi)'+ aufiﬂ]fi - Upii]} = 1

pf-Tme 1T 1
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which is justified'fbr the wall regions of the flows with the values
tp/TL corresponding to that of the experiment. Calculations in

previous sections showed that for the flow of Zisselmar and Mo]erus:

T
m .
= 0.2
i

which is a moderate value of the order of unity. Equation (3.3.2) can

be analyzed at high and low /T values.

For tq/TL << 1 values, one would have:

Ug u = . Ueg U
BRI i f

and also:

U, =1
Py
which would make the interaction terms in Eq. (3.3.2) vanish. On the
'other hand, for large values of the time scale ratio, m/TL >>'1,_
no correlation bétWeen-fhe fluid and parfiCTe fluctuations is expected

to exist, that is:

i Py

and
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Therefore, SUbstitutioh of above expressions in Eq. (3.3.2) yields:

<U; u - ~ =

f, f, 20 a
12 _ 172 (} +—P . K )
u €

12 ct/2<1+%_._;L.?L> | (3.3.3)
k , T p m
f

Therefore, in the cases of large tp,/T_ values, the f1u{d—partic1e'

interaction terms in Eq. (3.3.3) can be neglected if;

T

m
Moy a8
T

_'??I_DDI

@ (3.3.4)

for Ct = .41. A

~ The condition expressed by Eq. (3.3.4) should be evaluated at
various density ratios. In the case of liquid-solid flows,
3p/3f = 0(1), the diluteness of the particulate phase guarantees
the condition (3.3.4) to hold. For the gas-solid flows,
EP/Zf = 0(103) the condition (3.3.4) requires that:

- | -4 m
‘ L

for large values of the ratio /T
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From this argument it is concluded that for all Tn/TL values
of interest here, the interaction terms in Eq. (3.3.2) can be
neglected. This conclusion is ‘applicable to the wall regions of dilute.
fluid-particle flows. Following the analysis for large n/TL
values, the condition (3.3.5) for the particle mean volume concentra-
tion has been developed and for moderate tm/TL values, the analysis
has been based on the experimental data of Zeisselmar and Molerus
[1979]. The use of experimental data is justified since equations of
motion and consequently the correlation terms do not contain complex
wall effects and their substitution in equations writﬁén for wall
regions is, therefore, not justified.

Based on the experimental results no modifications for particle
effects on the form of the boundéry expressions seems to be necessary.
‘However, it should be noted that such a conclusion is based on a single
set of experiment and therefore more detailed and consistent
experimental data at different ranges of /T and a values are
required for an extension of this conclusion. |

Particle-interaction effects on e-Prandtl number (o.)

In the single phase flows, by approximation of e-transport
equation in the near-wall regions an expression for oe is obtained
which is shown in the Appendix (I1). Accordingly, from Eq. (3.2.36)

one obtains the following result in the near-wall region:

o ax k 2 ~

Vf ' 2 11
0 = <2 ( t 3€)+c1-€-a_-c == (3.3.6)
2 5
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where:

Ay wm

du. /au au
o= 2%, f"( G pi)

€ ‘l'm axz vaxz axz

represents the fluid-particle interaction effects.
With:

: 3/2
32k

: (3.3.7)
u K Xz

€ =

and assuming a nearly uniform k-distribution near the wall Eq. (3.3.6)

reduces further to:

X2 pf,
cuk2 cﬁ/z K2\ 11
0 = = + (-Gl |- =
and consequently:
s = e 1 (3.3.8)
€ (c,-c,)ci/? 1 x 2 o
271)%, e X2 "
- 1+ — 5o
pf k (CZ‘CI)Cu
\\—ﬁ_——-\vf—--_—//
IO

It can be seen that with no partic]eé-present, a =0, the term II
vanishes and the value fdr single phase fTow, Eq. 18 1in Appendix II,
results. The effect of particles is, as seen from Eq. (3.3.8), to
reduce és below that for sing]e-phase flows. The particle effect

term in Eq. (3.3.8) is re-written as:
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. Kz xg 25 % 3(.1“_-.i (aufi 3Upi>
I = - o ® . o \V] - -

* with the expression for II_ substituted.

~ In the limit of very small rm/T values, the expression in
brackets:vanishes since the particle dynamics correspond to those‘of
the surrounding fluid. - However, in the limit of Targe values for
/T, almost no correlation between the dynamics of the two phases

exist. Therefore, in this limit;

o 372 "< "TZ7_
(c)5, B W,
which is re-written as:
1 _ Eéf kKX
I = . [} ‘
° et s W

when the boundary value for e, Eq. (3.3.7), is substituted for. The
characteristic time scale for energy-containing eddies close to the

wall is:

. 3 % X
T =Vz —172



Therefore:
Pa
I = 10.35_L._T_.
o ~ T
Pf m

Thus, in the limit of large 1,/T, it is possible to neglect the

particle effects on o, if:

~

P T '
3 <« 0.006 — . 2. (3.3.9)
°p

with the fluid time scale (T) defined on the basis of a linearly

variable wall length scale and the local velocity scale.

3.4 Boundary conditions for-theAparticu1ate,phasé

In most practical flows of interest where the flow domain is
bounded by the so]id walls, the complexity of the particle behavior at
“the walls has been an important facfor hindering the development of
numerical, and analytical, schemes for predicting two-phase so]id;f1uid
flows. Such developments require a fundémenta] and -thorough knowledge'
- about the nature of solid particle-solid wall intefactions in terms of
the flow, particle, wall variables and characteristics. Recent devel-
opments in experimental methods and, specifically, the introduction of
non-infrusive oﬁtical’measurement techniques such as the laser-=Doppler
aremometer have increased the potential for acquiring such fundamental
knowledge in wall regions of two-phase flows.

Derivation of the exact boundary conditions for the particulate
phase requires an evaluation of the probability distribution function

from a Boltzman-type equation for the particulate phase, as well as
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knowledge about the laws governing particle rebound from the wall upon
impact, as indicated by Yeung [1978]. However, due to the complexities
involved and the lack of basic information, such a derivation has not
been conducted yet. It should be noted that for fluid flow over solid

- walls, a zero slip boundary condition is not the exact condition but is
only approximately true. In reality, the exchange of tangential
momentum associated with the gas molecules rebounding from the wall
gives rise to a velocity component para11e1 to and in the vicinity of

the wall. This slip velocity is approximately equal to, White [1974]:

Ufw = 0.75 MCf Ufa

where M, C¢ and Ug_ represent the Mach number, friction coefficient -

and the free-stream ve]ocity; respectively. Therefore, the slip velocity
becomes very small for subsonic flows and for all practical purposes

fhe zero slip velocity presents a satisfactory approximation for the
fluid boundary condition on the solid boundary.

For the particulate flow, it has been obsefved fhat-in the
vicihity of solid walls, therparticles do experience a non-trivial slip
velocity parallel to the wall. This is evidenced by the experiments of
many investigators among which are: Lee and Einav [1972] for flow on
the flat wall, Stukel and Soo [1969] channel flow and Soo and Trezek
[1966] for pipe flow. A brief survey on turbulent pipe flows and the
associated well slip has been presented by Wakstein [1970]. Based on
the assumption of potential flow, Soo and Tien [1955] have analyzed the
motion of a single particle near a solid wall. In that investigation,

the motion of the particle near the wall was assumed to be equivalent
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to that of the particle and its virtual image with respect to the
wall. Results are then obtained by incorporation of the Stokes viscous
drag and the Bernoulli mutual force in the equations of motion. The
results are valid for the cases when the ratio dp/2yo becomes very
5ma11, with y, being the typical distance from the wall. Further
discussion of the Bernoulli forces which are caused by the relative
motion of two. spherical particles will be provided further on in the
text.

Rarefied gas analogy for dilute suspensions

It is generally known for the flow of a rarefied gas over solid
’surfaces that a finite slip occurs at the wall as noted by Lugt and
Schot [1974]. In these flows the mean free path of the gas molecules
is of the order of, or larger than, some characteristic length asso-
ciated with the solid wall, which canAbe}identified as a pore diameter,
or the height of a local roughness on the solid wall. Thus, although
in the near wall regions continuum can not rigorously be assumed, it is
generally agreed that the governing equation, such as the Navier-Stokes
equations for Newtonian fluids, can still be applied with the slip
boundary condition for téngentia] velocity at the wall imposed, as
argued by Sherman [1969].

In d11ute fluid-solid particle suspensions with the part1c1e cloud -
governed by cont1nuum equations, an analogous situation at the walls |
exists, where particle-particle collision becomes negligible compared
to the collisions with the wall as argued by Soo [1962]. The analogy

is not complete due to the obvious differences between the physical and
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dynamical Characteristics of macroscopic solid particles and micro-
scopic gas molecules. However, in the absence of more rigorous
expressions, such an analogy can be uti1ized‘tb define an approximate
boundary condition for the particulate phase. The agreement between
predictions and measurements of Soo and Tung [1972] and Stukel and Soo
[1969] justifies the application of rarefied-gas type boundary
condition for the dilute particulate phase.

The slip Ve1qcity and the wa]i.shear<stress fdr.the particﬁ]ate
phase are, respectively, defined by Stukel and Soo [1969] and Soo
[1962] as: |

. ’ ° L
U ) = L A + U - _—s 6- (3'401)
Py . pF < p‘> p < T U ‘> Js
( w J w J 0 _ m po _ |

and,

1/2 - ' o |
T} = A o. (U <:1-2-> _ (3.4.2) -
P /. 2/n P\ P/ \ Py ,
3 J ,
“In Eq. (3;4.1) Lpr is the fluid-particle interaction length defined
by Eq. (3.1.9), and (apy) 1is the deformation rate for the particu-
late phase at the wall with.Xj aﬁd Xg representing coordinates
along the parallel and the stream-wise directions with respect to the
~wall.  The second term in Eq. (3.4.1) is due to initial particle.
inertia effects which cause slip at the walls in the entrance regions
- of straight channels, Stukel and Soo [1969], or flat wa11s;vSOO [1968].

It should be incorporated in the regions with distances from the

leading edge Lg which satisfy the condition;
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0 <L, < U 1 (3.4.3)

where Ufo represents the fluid entrance velocity to the pipe or
channel.

The quantity Uporm in Eq. (3.4.3) represents characteristic
equi]ibrium-]ength scaie"for the parficulate phase. The appearance of:
therpartic]e“turbqlent intensity for}the'wa11 region, Upw, in |
Eq. (3.4.2) implies that the momentum exchange with the wall is carried
out by turbulent diffusion of solid particles'through the viscous sub-
layer. This is cdnsistent with the assumption of a relatively large
particulate mean free path to maintain the analogy with a rarefied gas;
since a large mean free path is associated with a 1ohger retention of
- memory effects coming from regions outside the viscous sublayer in
momentum exchgnge with tﬁe wall.

Equations (3.4.1), (3.4.2), and the condition of zero normal
velocity constitute a set of boundary conditions which can be incor-
porated in the particle moment um equations in the cases where deposi-
tidns or accumu]atidn}of the particles by the mean motion is not con-
sidered. - It should be noted that the cases of non-vanishing normal
mean particle veiocity at the wall are associated with unsteady wall

deposition which will not be considered in this work.
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CHAPTER 4
SECOND-ORDER ‘CLOSURE FOR FLUID-PARTICLE CORRELATION TERMS

In the previous chapters the transporﬁ equations for the fluid and
particulate phases were presented. Furthermore, the boundary condi-
tions were introduced and the related expressions were discussed. The
second-order correlation terms in the continuity and momentum equations
~ for the particulate phase were expressed through the analogy with
single phase flow constitutive relations. The closure for various
fluid correlation terms are discussed in Appéndix IT which describes
the k-e model of turbulence. In this chapter various fluid-particle
correlation terms appearing in the fluid transport equations for k and
€ (presented earlier) will be discussed, and alternate modeled expres-
sions w111 be derived; thus making the prdblem of pfedicting.two-phase
fluid-particulate flow tractable. | |

The appearanée ofrf]uid-particle corre]atibn terms fn the govern-
ing equations is due to dynamical coupling effects of the phases.
Thefefore, it is required that fnrthe‘1imit of perfectly responﬁive
particles (essentially zero response time), particles dynamics are in
perfecf accord with neighboring fluid element motion and all fluid-
partic]e:velocity‘correlations are equivalent to corresponding fluid-
fluid correlation terms. - On the other hand, for particles with Targe
respbnse time scales the fluid-particle correlation diminishes and the
- turbulent motion of the phases become essentially independent.  The two

limiting behaviors of the fluid-particle correlation terms as discussed
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above constitute necessary, but not sufficient, criteria for examining

the validity of the modeled expressions derived here.

4.1 The Corre1ation»ufiup: (k Equation)

The following analysis is based on»thé equation of motion for a
single spherical particle with the Stokes drég as the only driving
force. The equation of motion is obtained from Eq. (2.1.1) by
neglecting all terms except for viscous drag. A modeled form of this
equation will be va1id‘for flows where the neglected terms have a

minimal effect. Thus, Eq. (2.1.1) yields:

du Ug -U
Poy ey o)
dt T : °te

- from which, using Reynolds decomposition (for exémp]e, Ufi =
.Ufi + Ufi) an equation of motion for the fluctuating velocity

component, up., is obtained:

dupi ufi-upi ,
o T (4.1.2)

For the flows of interest here it may be assumed that the flow
field is stationary with respéct to time and, therefore, the ensemble--
averaged quantities become equivalent to their‘corresponding time-
averaged quantities,.with the ensemble averaging process taken over

many independent particles which is possible fdr dilute conditions.
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The solution to Eq. (4.1.2) is; Drew [1976]:

‘ t
e-to/rm t'/rm -t/rm
up.(t) L — e uf.(t')dt'-+ up.(to) e

i Tm i i

%

(4.1.3)
with ty as the initial time for the onset of particle motion. In
Eq. (4.1.3), the integration is along the trajectory of the particle.

Using the transformation £ = t-t', Eq. (4.1.3) can be re-written as:

t-to . ‘
1 -E/tm -(t-to)/rm
upi(t) = e B ufi(t-s)dg + up.(to) e

mo i
0 .
(4.1.4)
After multiplying both sides of Eq. (4.1.4) by,Ufi(t) and ensemble

- averaging over a large number of independent particles, the following

result is obtained:

At o .
: _ -E/T -At/ﬁn'

1 m ' v
ug, u_ - e [ug TE=EJu; (tV]de + U_ (T _Ju, (t) e
il W Bt 5 Py 07,

(4.1.5)
where:

At = t - tO

- represents the travelling time period for the particles. In the
derivation of Eq. (4.1,5), Ufi(t) has been carried inside the

integral since it is independent of £. In order to avoid the initial
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transient effects in the integration of Eq. (4.1.5), At must be a time
scale larger than that characterizing local velocity fluctuations.

This condition is given by:

At D> Tm : (4.1.6)

and Teads to a negligible contribution from the second term on the

right side of Eq. (4.1.5). Thus, to.a good approximation:

At
1 -t/ v
u; u = = e ue (t-gju, ()| de (4.1.7)
fipy Tm'/‘ [fi f ]
0

Thus, for obtaining an analytical expression for UfiUpss the form of

Ufi(t?E)Ufi(t) must be specified. This term expresses the correla-
- tion between fluid velocity fluctuations of fluid elements which at
time t pass through the particle location of interest (Point A in Fig.
4.1), and at time t-£ (earlier) were'surrounding the same particle at
sbhe other location in space. In general, since the particles do not
remain in the vicﬁnity of their initial fluid elements and "over-shoot"
to different fluid elements, the correlation becomes a complicated |
~expression. Thevprob1em_can be simplified if Tchen [1947] assumption'
is incorporated that the particle remains in the vicinity of the same
fluid element.

In this case:

— ,
t- t) = R. (g 4,1.8)
ufl( E)ufl( ) ufl fl_( ) (

with RfL representing the Lagrangian correlation coefficient for

fluid phase. In Eq. (4.1.8) it is assumed that:
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u7f uif- (t-8) =
1 1 1

for stationary turbulence. Furthermore, by the assumption of local

isotropy:

i A A AR
= = = = k 4.1.10)
ug uf3 uf ( )

The Langrangian microscale (r;) and the integral time séales

(Ty) aré.respective]y defined as:

o, | |
1. 1 L
o= g\ — | (4.1.11)
T A€ Teap
and
o= [ R (e) d BCRRY.
L = £ () de o (4.1.12)

At high Reynolds. numbers 1| becomes very small compared to T;.  For
“such conditions it has been argued, Hinze [1975] and Tehnekes and .

'LumTéy'[1972], that it is a good approximation to take:

AN -
Re () = e ~ with £ > 0 . (4.1.13)
L v

The eXponential.form for.RfL(E) has been shqwn by Ké]ihske and
Pien [1944] to be in good agreement'withvexperimenta1 data'obtained by
the same authors. Furthermore, the édoptionvof an-exponentiél form is”’
not unprécedented.since it has been_in;orporated by G. I. Taylor in théé-
deve1opment of his theory of “diffusion by.cpntinuous:movements",

TayTor [1921].
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Substituting Eq. (4.1.13) in Eq. (4.1.7) yields:

1,1
-t =+
T (‘t T-)
- 3. '1—+1L’[ clr-e MM L (4.1.14)
m

Ue u

fi P

In line with the arguments presented earlier it is required that:
At > T,

for which, it-is found:

.
32 —k (4.1.15)

Uge U = u
., f T AT

This equation is an expression for the fluid-particle velocity
correlation at a fixed point in space, and is a function of the flow
field variables at that point. Substituting Eq. (4.1.10) into (4.1.15)

yields:

T
P, = 2k ;;;TE , (4.1.16)
As discussed earlier it is necessary to investigate thé limiting
behaviors of the correlation given by Eq. (4.1.15). Deviations of this
relation from expected 1imiting values will establish its limitations
and'applfcabi1ity. | |

-a) The limit of perfect response

In this 1imit the response time scale of the particulate phase,
Tm» becomes small compared to the turbulent fluid local time scale,
TL.' This situation is representative of very small pértic1es sus-

pended in highly viscous flows. Equation (4.1.15) can be written as:
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(4.1.17)

which, in turn, can be expanded for small n/TL values to give:

) _
' 2 Tm (Tm) ]

Ug U = 3u 1 - =+ - - oo (401018)
fihi f[ Lo\ |

for /T <« 1. |

Equation (4.1.18) iﬁdicates thet,'due to their small response
time, particles adjust dynamiéa]]y’to-f]uid f]uetuations and,
therefore, will display the dynamic characteristics of surrounding
fluid element.

b) Theu]ihit»of»no-response

In this case, the particle time scale beeomes much 1afger than the
lTocal time Scale'of the fluid. This correspondseto cases of large
ihertial'partieles suspended in inviscid fluids. Therefore, a- |
'“re1ative]y'weak.COrrelatioh between the phases ié to be expected.

Equation (4.1.15) can be re-written as:

T/t - |
o 2 LY "m .
.ufiupi = 3Uf W . . (4.1.19)

which can be expanded- for small T /tp values as:

o T\[ T /T ¥ |
i P A\, | tm: T e o
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Equation (4.1.20) shows that a weak correlation between fluid and
particle vercity fluctuations. arises for T /1y << 1, as was
expected. Thus, it is seen that the correlation given by Eq. (4.1.15)
doeS indeed yield the correct limiting behavior of relative motion
between the two phases.
| At high Reynolds numbers, it has beenishown that for short
diffusion times of marked fluid elements, Hinze [1976]:

RfL(t) = 1-¢ ;%t_ (4.1.21)

. ,

In which C is a constant of order unity. The expression for RfL(t)
in Eq. (4.1.13) is then expanded as:

2
t t
R. (t) = 1 ===+ 0 (= 4.1.22
fL( ) T ¥ (T > - ( )

and a comparison between Eqs. (4.1.21) and (4.1.22) results in:

, g
TL = 'C- '—E—- (401-23)

The constant C must be evaluated from experimental data. Although
~ direct measurements of the constant are not available at the present
time, it can be determined from a knowledge of the relative ratio of

the isotropic Lagrangian and Eulerian integral length scales, given by:

| A
81 = e (4.1024)
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Substitution of functional forms for A_ and As taken yields, Hinze

[1975]:

g = 238 | (4.1.25)

Qe

where a = 0.4 is the Heisenberg coﬁstént éndvthe numerical value of the
constant g) depends on the type of flow. Most e*perimenta1 results
show a decrease in g} with an increase in the Reynolds number. In
Table 4.1 various values of B) are shown.

Corrsin [1963] has proposed 8] = 2/3. A value of g = 1.02
corresponding_to-the investigation of Shlien and Corrsin [1974]‘pro-
vides a reasonably moderate estimate for this}parameter. Incorporation’
of this value in Eq. (4.1,25) yields the corresponding estimate for

C = 3.33. Substituting C = 3.33 into Eq. (4.1.23) yields:

~with C7 = 0.41. Finally, substitution of Eq. (4.1.26) for T into
Eq; (4.1.16) yields an expiicit function of G?;Gb{ in ferms of

| flow field variables calcﬁlab]e by the numerical algorithm.

It shoujd-be noted that in relation to the above derivations,

- Danon et al. [1977] proposed an exponential form for G?;Ubi.

‘ Their;postu]ation was based on observations of the limiting values of
E¥;Ubi' Since the proposed formvof their correlation’is not

rigorous (in fact it is a form constructed to satisfy the limiting

| éonditions), its validity ét'intermediate,values of tp/TL is

duestionab]e.
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4.2 Particle Turbulent Kinetic Energy (kn)

Whereas the transport equation for kp has already been derived,
the complexity of various second- and third-order correlation terms
prevent. its direct solution. From Eq. (4;1.4) for the particle
fluctuating ve1qéity, an algebraic expression for particle iurbulent
kinetic energy, kp = 1/2 ;g;, may be obtajed in terms of local
variables.

Multiplying Eq. (4.1.4) by itself and ensemble -averaging the

results yields:

t

£
- - =(e+g')/x -
:,2,—. : lz-[f e T U {tEug (€7 de de' (4.2.1)

' ™m0 0 i i

The variables ¢ and ¢’ are independént.and the term tontaining the
initial condition is neglected following the séme arguments which Tead
to Eq. (4.1.7). - |

 Similarly, the high Reyno1d$ number'assumption-leading to Eq.

- (4.1.3) gives for the present case:

. - (e
o T8 6] - e T e

Defining;



-98-

Equation (4.2.1) becomes:

2 t £ 2t (1 1 )- .
2u - (- - t
- f T T !
(t) = = _[.ds / e ™ \m L4, (4.2.3)

Integration of this .equation gives:

27 T, <1_e-t(1/rm+1/TL))]

”an e i ( ‘Zt/‘m>
= ‘ . 1- -
LR T e p B ) S A
(4.2.4)

For large t values the stationary solution obtained is:

T .T (1.2.5)

pi f'i‘ ‘rm+TL SATeEe
or equivalently:

T
kp = k Trm+_T|_ (4.2.5&)

Equation (4.2.5) shows the same functional relationship as Eq.
(4.1.15) for Uf; Up; - Henﬁe, the results for the limiting behaviors
of E?;ibi are -also valid here; that is, for small rm/TL values
Targe»;g; values are obtained and vice versa. Therefore, adoption of
Eq. (4.2.5) imp]ieS»that'the fluid tdrbulence is the only source.bf

energy for particulate turbulence and the turbulence energy exchange

process between the phases is through viscous interaction.
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4,3 Fluid-Particle Ve1ocity,Corre1ation Coefficient Rf:E

The fluid-particle velocity correlation coefficient at a fixed

point is defined as:

Ugeg U
fiop
Re 171 , (4.3.1)
-p ~ ~
uf o]
1 P1

- which, by substitution from Eq. (4.1.15) and (4.2.5) yields:

| L \172 | | |
Re o = (pee— | BRI
..p‘ ‘_._'4'1 ,

~in Eq. (4.3.2) is
analogous to the non-dimensional distance r..io which appears in
two-point spatfa] Eulerian correlations, or the non-dimensional time

ratio appearing in tempora],Lagrangian correlations.

4.4 Fluid-Particle Interaction Length Scale (Lf-EZ

'The fluid-partic1e interaction length scale defined by Eq. (3.1.9)

~can be re-written, assuming local isotropy, as:

with: :
2 _ 2
uf . ‘3 k ¢
2 - 2y
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Equation (4.4.1) may be re-written as:

1/2 |
(o2 + :g - &) (4.4.2)

and substitution from Eqs. (4,1.16) and (4.2.5) results in:.
| \1/2 312
Lf- = <'§' k) —m1-7-2- (4.4-3)
P - (‘rm+TL) e ‘ v .

which exprésses the interaction length scale Lf-p in terms of various

known field variables.

4.5 The Correlation 3uf./dxj aup./dx; (e equation)

In order to close the transport equation for dissipation of

kinetic energy, e, the correlation term

i Py

must be modeled in terms of known field variables. In this section,
an expression for the term is derived which will be examined in its
dynamical limits. In the~process‘of the derivation the results of
the pfeceeding sections will be extensively used.

It is assumed here that the variables uf;» Up; and uf,
up; are continuous and differentiable with finite values in. space.

Using Taylor series expansion, it can be shown that:
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-
ufi(b)- ufi(a),f X, () A, f O(sz) | (4.5.1)
and
: : aupi>' 2 .i_
upi(b)- up%(a) - (‘axz(a) Ax% +0(ax,) (4.5.2)

For purposes of the analysis attention is restricted here to the
‘case where i = 1, qnd £ = 2 only corresponding to Figure 4.3. This
figure shows two points (a) and (b) separatéd-in space by a distance
Axnghfch is assumed to be small compared to the local length scale
| of the f16w. Combining Eqs; (4.5.1), (4.5.2) and time-averaging, the

result yields:

a.xz 8x2 (a) N
it T e, e a, av, |
2 Yoy by Ha) Ya) ) Yy ey La)|

as axp + 0 |
- (4.5.3)

in which x; and xp refer to the stream-wise and laterial coordinate
directions. EXtra-terms of-fhe order of Axp, and higher powers, will
. 'véTso appear on the'right.hand side of Eq. (4.5.3) but disappear as the 7

indicated 1imit is approached.
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From Eq. (4.1.6) at point (a):

;
L
'uf u =§— k T—‘%z—- (4.5.4)
Ha) Ha) O | |

noting that tp is constant in space.

The corre]at1on Ufl( )upl( b) in Eq. (4.5.3) is one arising
a

between the f]uctuat1ng fluid velocity at point (a) and that of the
particle at point (b). A form for the correlation may be obtained as
follows.

Rewriting Eq. (4.1.4) at point (b) gives:

t-t
-E/r -(t-t ) /1,
(t)=1—'/- f(ts)ds:+up(t)e o m
L(b) : Yb) L(b)

(4.5.6) '
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Multiplying both SideS’Ufl(t) and ensemble ayeraging, the result

gives:
1 "o “&/ T
u (thue (t) = — e uc(t-gluc(t) de
P, 11 n fi fL
(b) “(a) "4 b)) Ha)
(4.5.7)
in which it has been assumed that:
t - to » rm

The evaluation of Ty u
p f
| ) a)
the correlation uf, (t)ug;(t-£) which is the covariance between the
(a) “(b)

Lagrangian velocity of a marked fluid particle at time (t-&) with its

from Eq. (4.5.7) requires knowledge of

~ trajectory passing through point (b) at time (t) [Fig. (4{3)]. The

averaging process for uf,(t)ufs,(t-g) is an ensemble averaging which:
-, | “la)  b) |

by substitution into Eq. (4.5.7) result in an ensemble averaged correla
tion of fluid and particle velocities corresponding to the points (a) and

(b) respectively. However, with the assumption of stationary flow the

ensemble- apd time-averaged values of ufl(t)upl(t)‘become identical.

(a) (b) _
As it has been pointed out, the evaluation of ufy (EJup, (F)
| | (a) " "(b)

requires a-knowledge-of7the,functiona1'fofm of the velocity correlation

'Uflgt3Uf1§E;E)- ‘SubstitutiOn in Eq. (4.5.7) of this function and
“(a o .

fuptherrintegratioh will yield an expressidh for ufl(t)ypl(t-s).

(a) “(b)
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The correlation Ufl(t)Ufl(t-E) is a "mixed" Eulerian-lLangrangian corre-
(a) (b)

lation which is not readily evaluated. This prevents a development of

the velocity correlation upl(t)Ufl(t) from Eq. (4.5.7). Hence, at
(b) (a)

this stage, it is necessary to seek alternatives for obtaining the
correlation.
The Eulerian correlation coefficient for velocities at two points

(a) and (b) is defined as:

4, U \ ,
Re = —i2) (b) (4.5.8)
112 U el
1,y 11
(a)  “(b)

~ This can be approximatedrby its parabolic form, Hinze [1975] as:

2

, sz
RE = 1 - T—-— ’ (4.509)
- T112 g

for Axg << g

where Ag is the Taylor lateral microécaTe defined as:

1 .
3 = -3 |1 (4.5.10)
’q Lodeld -0 |

For the velocity correlation Ufl( )"bl( )
a b

between the velocity of different material phases at different points

which is the correlation

in space, a correlation coefficient can be defined as:
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u% Up
1, . P ‘
R - —fa) ‘(b)) (4.5.11)

1,1 u ou
(a) “(b) f p
: L)y "Lb)

In the previous section, it was shown that, at a sihgle point fixed in’
space, the correlation coefficient between fluid and particle velocities
is a function of /T thch is analogous to the non-dimensional
variable sz/xg in the Eulerian correlation coefficient, (Eq. (4.579);
or to /T -in the Langrangian corre]ation coefficient, Eq. (4.1.13).

: Therefore,}ifAis.assumed that the correlation coefficient defined in

Eq. (4.5.11) is a function of both independent variables tp/T| and

Axp/Ag. Thus:

- ' ) Tn A%
Rflj o T R<=r-1"- T‘) - |  (4.5.12)
(a) “(b)

For the determination of the function R in Eq. (4.5.12) it is
: necessary to derive its gbVerning eqdation.' Thisvcah~be formed by
appropriate algebraic manipulations of thé equations governing fluid
and particle f1uctdating ve]ocifies.‘ The result, howeve}, is quite _
cbmp]éx,.and requires further closure fdr variou§ higher order inteEA
- action terms arising'betweenvthe.métefial phaséé being at two different
‘positions,in space.>

The approximate form for the Eulerian corre]ation coefficient as

shown in Eq. (4.5.9) implies; that:

, sz <€ Ag
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Therefore, for both the points (a) and (b), Ag represents the local length
scale.

Fluid-particle interactions at point (b) corresponding to the
correlation in Eq. (4.5.12) imply a dependency on the local velocity time
scale at point (b). Since direct particle-fluid interactions at point (b)
affect the fluid turbulence at that point. These in turn will affect fluid-
fluctuations at point (a) due to the fluid-fluid correlation which exists
between the two points. The argument, therefore, suggests a corre]atidn
between fluctuations of fluid velocity at (a) and fluctuations of particle

veToCity at (b). Therefore, the fluid time scale T_ in the correlation

u uf, __, and the coefficient Rfy; - in Eq. (4.5.11),
Plib) "1(a) (a)™P1(b)
in Eq. (4.5.11), should be evaluated at the point where the particle "

perturbation are introduced into the correlation. Thus, the fluid time
scale TL(b) is chosen as the appropriate scale in the correlation
coefficient defined by Eq. (4.5.11) and Eq. (4.3.12) and the parameter
i Tm/TL(b) for the time scale ratio must appear in Eq. (4.5.12).

The correlation coefficient of Eq. (4,5.12) can be separated into

two independentAfunctions as:
v Tm sz - Tm sz ,
iy Ty )~ TR J A s
- “(a) “(b) M ~(b) (b)"

In'vord_er to determine the functional forms of T and x it is necessary
to inspect the 1imiting values for the correlation coefficient of Eq.

(4.5.11). These are:
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m

T

— )
b)

Ax?—) R' B <T—T"‘ > (4.5.15)
-i— — f ;p e Jde
9 L) La)\ La)

X,
—2_,0

A

-9

with the points (a) and (b) coinciding.

| The correlation coefficient in Eq. (4.5.13) must satisfy the above

bodndary:CQnditions. Comparing Eqs. (4.5.14) and (4.5.15) with

(4}5.13)‘giyes:

(-

1 .(sz)z.
7o Pt

(4.5.16)
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and;
» T——-T'“ - 70 |TT— Ve (4.5.17)
T L(b) m) +Tl'|'| L(b) e

In which the Eulerian and fluid-particle correlation coefficients from
Eq. (4.5.9) and (4.3.2) are incorporated, respectively. The factors

’]'(0) and X(O) are non-zero constants and satisfy the conditions:

700 X0y = 1 (4.5.18)

Substitution of Eq. (4.5.6) and (4.5.17) in Eq. (4.5.13) yields:

| T, /2 W
R X2
LU e~ Ll IS
- “(a) “(b) - (b) : g
and simiTar]y:
‘ \1/2 |
T 2
L (ax,)
: _ a 2
LPICIU | w0 B e B
(b) “(a) (a) g

It should be noted that the partiéuTar form of a parabolic Eulerian
correlation coefficient, as introduced in Eq. (4.5.5), impose§ no
restrictions on the derivatiqn procedure which could have been based on
a more general Rg(axp) function. However, it is the parabolic form

of this correlation which is of interest to this study as shown further

‘on on this section.
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The afgumeht leading to Eq. (4,5.19) is based on the assumption

that the variables which determine the correlation coefficient,

Ax2/2g ahd‘rm/TL, are-indebendent of each other. Equation

@) Y(b)

of the product of two functions each of which is smaller than, or at

(4.5.19) shows. that the correlation coefficient R¢ P consists

“most equal to, unity. Therefore, the effect of either variable,

~ spacial or interactional, is to reduce further the magnitude of the

correlation. Figure 4.4 illustrates the correlation coefficient as
given by Eq. (4.5.19). | | |
- Using Eq. (4.2.5) in combination with Eqs. (4.5.19) and (4.5.20)

corresponding velocity correlations can be obtained and are given by:

_— . 2 1/2 : (b) , A2
(a) “(b) ) I g
“and

| T » 2
2 2 Leay - (8x,)

| 1/
PEURE UOTRLIOVRINR el U s IERCERS

(b)

(a)

o T,/.\tT
) (a? m | Ag

At this point, with all the velocity correlation terms in Eq. (4.5.3)

Adefined,bthe velocity gradient correlation term uf,/3axp dup,/3x2

~ can be obtained. Subsequently, summing over all indices the correlation -

term duf./3xj 3Up./3X; in e4equation:is obtained. The rgsu]ts

which are required for the derivation are re-written as:



.
L
2 gaz
uf u 3 k °T - (4.5.23)
1y Py ) Ty
o T |
o w T kg T | (4.5.24)
) ") by ™

L (4.5.25)

(sz)Z] .. TL(a

2 172
DT JUREI R [1 - T
_ b (a)

a @] Ty |
R JUSESIG °[l - §]-T S (sa2e)
a

(a) 4 L) ™

u u
f p
1
g

L(b)

Using a Taylor series expansion, the variables at point (b) can be -

expressed in terms of corresponding variables at point (a). In this

way:
| - T, \ | azTL» o |
TL(b) = TL(a) +<ax2 >(a) Ax, +<;;§—>(a) =+ .. (4.5.27)
and ‘ )

k) = K(ay * (%';2)(”“24%)(” %‘2 P (4.5.28)
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hence:
% V2 VAP RS U £] 3\ W
® 7 M) PR (ax)(a) ‘

N (a?k) o1 <ak >2 o2 4
ak :! 2 a LN

(4.5.29)

Equation (4.5.29) is obtained by using a binomial series expansion with

the'assumption that:

. 2 e B
1 (ak > ax, + 1 <3 k> A;Z + e <1 (4.5.30)
(a) (a) (a) 3X2 |

(a)

- which is the case for small szlz. The quahtity 2 represents the
fluid Tocal integral length scale. It characterizes the distance over
which significant variations in mean values are expected. Thus, we may

.expect:
x- 0k |  (4.5.31)

It has been assumed in the analysis that axp << Ag and an -

. expression for Aglz'given by Tennekes and Lumley -[1972] is:
Ag A - e
= = E;T7z- | | | - (4.5y32)

It is seen that at hfgh Reynolds number the condition for inequality

(4.5.30) is established.
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Likewise:
T T '
L L T aT
Tm+ L 'tm+TL TL rm+TL ) 3x2 2
(b) (a) ' (a) = “(a) (a)

2 2
T °T T oT 3
L(a) m L(a) 3x2 ' T ('l' +T ) 2 (a)

(4.5.33)

which requires that:

3T 3°T :
1 L 1 L 2
(a) (a) (a) 2 |

(a)

which is similarly established along the lines of the preceeding
arguments. |

Substitution of Egs. (4.5.27)-(4.5.33) in'Eqs. (4.5.23)-(4.5.26)
and final substitution in Eq. (4.5.3) résq]ts-in an expression for
increasing powers of Axp which should be taken to its limit; After
some aigebraic manipulation, terms of’the order (Axg)0 and
(sz)1 are eliminated and the'femaining terms are of order (sz)2
and higher powers. Therefore, taking the limit axp + 0, the fo]lowing

result is obtained:
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TP |
f p1> - 1 m <ak> (,”L)
X, X [t +T 1 \3x ax
¢ ") "Ly V)N )
T T
L 2 k,.y L -
4ol _(a) 3k Y\~ .4 “(a) (a) !
bk ( a) Tm+TL _ axz . 3- ‘l’m+'TL ( a) 7
(@) ot (a) g
(4.5.34)
By using the assumption of local isotropy and'summing over all
'éoordinate indices, the following result is obtained:
3u au
i Tp T »(ak), (ﬂ)
\9x, 39X o 2 \3x \ax
RO R U TR IO N T
T , 10k\T
: L 2 (a)'L
1 (a) -3k ~(a) 1
! Zk(a) Tm+TL | <3x2> . TmtiL ) ;? |
- (a) " 7(a) (a) g
(4.5.35)

In the last term of Eq. (4.5.35) the relation for streamwise Tay]br

microscale (xf) given by Hinze [1975];
A = 2 xg : _ ; (4.5.36)

is used.
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In line with the earlier arguments for high Reynolds numbers;

Af,kg<<2,

This allows the second term on the right-hand side of the Eq.
(4.5.35) to be neglected. That this is the case can be shown by
evaluating the order of magnitude of the second and the third terms on

the right side of Eq. (4.5.35), that is:

ZK Tm+TL ax 2 T+

2
and:
T T
L 1 k L
10k —— = 0 * —
'rm+TL ;g Tg tm+TL

Hence the ratio of the second to the third term in Eq. (4.3.35) becomes
of the order of (Ag/z)2 which is very small at high Reynolds
numbers.

“Equation (4.5.35) simplifies to:

3ue U |
f. °p. T aT T
i i m ak L. ; L 1

ax, 3x, N (Tm+TLj2 ax, 3x, 1L A?

g
" which is used for the closure of thé-transport equation for fluid

dissipation of turbulent kinetic energy in Eg. (4.5.37) the transverse

Taylor microscale is. given by:
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1/2 . .
o k ;
Ay * (10v-E) (4.5.38)

see Hinze [1975].

In order to be certain of the validity of Eq. (4.5.37) it is
essential to investigate its~limitiﬁgvbehavior. -The limiting
expressions for this correlation should bécdme'identical to the speci-
fic relations corresponding to the properties of the'corre1ation térm,

when the limits are approached. The two'casés are investigated be1dw.

‘The no-response 1imit (tq > Tp)

In this 1imit, the pahticle does not respond to the neighboring

. fluid velocity fluctuations and this is expected to result in a weak

correlation. From Eq. (4.5.37) it can be seen that:

! _;Ei + 0 | S ' '(4 5.39)
3x, axy
T
m
as e =
T

which is the expected behavior for this limiting condition.

- The perfect-response 1imit (tp << TL)

This 1imit corresponds to an almost perfectly responﬁivevparticles
in the fluid, with no distinction between the dynamics of the
‘particulate phase and the néighboring:fluid elements. : Henceffrpm Eq.

(4.5.37) it is seen that:
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ou Ju
P, ok (4.5.40)
ax, ox, ;?"
g .
T,
as Tm + 0
L

However, at high Reynolds numbers the.corresponding limit of the:

gradient correlation is:

an. 8up'. 3Uf. an.
.a_’. .5._1 > 'a'—"l 3__’. = £ . (4.5.41)
Xy Xy Xy Xy v |
T
as Tm + 0
L

Corresponding the above two 1imiting expressions:

e _ 10k
’\)‘ - —2_ . ‘ (4.5.42)
A
g
- or, in keeping with the assumption of Tocal isotropy:
2 | o
£- 15 4 (4.5.43)
A ,
g
‘Equation (4.5.43) is exactly the definition of ¢ as shown in Hinze
[1975]. It is seen that Eq. (4.5.37) does indeed display appropriate

limiting behaviqr. The modeled equation will thus be used for

numerical calculation of e-transport equation.
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CHAPTER 5
DIFFUSION PROCESSES IN TWO PHASE FLOWS

The comp]exity of two-phase fluid-particulate flow dynamics is
associated with the variously different modes of diffusion governing
the.re1ative.motion of the dispersed phase in the carrier fluid. In
addition<to.convectioh, particulate phase diffusion processes can also.
be important in détermining the transport of mean parficu]éte quanti-
“ties such as momentum and mass concentration. Thérefore, it is essen-
tial to account for such transport processes when the particulate mean
- conservation equations are considered.

In general, the processes governing particulate diffusion arise '
frém interactions of the particles with the fluid, and/or interactions
of particles with neigﬁboring particles and nearby walls. The diffu-
sioh.processes associated with the fluid forces are generally functions
of both the fluid and particulate phase characteristics. - For example
for the case of diffusion by turbulent fluid drag on the particles, fhe
investigatidh of Soo [1956] and Peskin [1962] are noteworthy. For very
gmall submicron-sized particles, collisions with the carrier gas mole-

- cules can be significant and may establish a different mode for par-
ticle diffusioh. In the cases of significant‘particle-particle colli-
sions.é Brownian-type diffusion céused-by mutual particle interactions
will arise. It has been argued by Hinze [1975] that the viscous drag
and Brownian-type diffusion are practically independent. Consequently,

their respective contributions to the particulate phase mean momentum
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A form for Eq.v(4.5.37) more suitable for numerical computation
can be obtained by substituting Eq. (4.5.38) for Ag in Eq. (4.5.37),

to obtain:

au au .
LR R TR L W (4.5.4)
3X2. 3)(2‘ (Tm"'TL)z‘ -3X£ a.Xz 7 Tm+TL. v :

With all the variables on the right hand side of Eq. (4.5.44) defined,

it can be used for closure of the e-transport equation.
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momentum is additive which simplifies the analysis, particularly when
one contribution becomes negligible with respect to the other. The
situation is analogous to the high Reynolds number single phase flows
in which laminar viscosity becomes negligible compared to its turbd1ent
eddy diffusion counterpart. Finally, indirect particle-particle inter-
actions are represented by the so-called Bernoulli forces and are asso-
ciated with a corresponding diffusion process as shown by Peskin [1959].
In this chapter the above diffusion processes for the particulate
phase will be éna1yzed'with the view of incorporating the significant

components in the particulate momentum balance equations.

5.1 Diffusion by turbulent drag

- One of the significant Characteristics.of‘turbu]ent flow is their
‘capability for dispersing quantities such as momentum, heat,rmass and
related quantities. For an-accurate prediction of the mean values of
such'quanéities, it is essential to have a sufficiently adequate know-
Tedge of the relevant turbulent diffusion processes. The dispersion of
solid particles into the atmosphere in the form bf pollutants from |
smokestacké,-and'fhe diffusion of particles toward the walls of a
- channel with subsequent deposition are among many practical cases of
~parti¢1e turbulent diffusion induced by fluid motions. Varioué experi-
menfaT-investigafions havg been conducted in regard to fluid turbulence-
inddced particle diffusiqn, some of these are briefly discussed in this
‘section. The experiment- of Rouse_[1939]}dea15 with the turbulent trans-

port of sand particles in watef which are kept in suspensibn by the
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vertical oscillations of a metallic lattice. In this case gravity
effects tended to settle down the particles while turbulent diffusive
effects opposed particle settling, with a tendency to uniformizing the
particle concentration distribution. In order to analyze the flow, the
assumptions of a gradient-type mass diffusion flux and of a constant
particulate turbulent diffusivity were made and subsequently incor-
porated in the-mass balance.- equations. The analysis revealed an
exponential variation for the particu1ate phase mass concentration in
the vertical direction which agreed well with experimental data from
the same study. The investigation by Rouse then, not only illustrates
the significance of turbulent diffusion effects on the concentration
distribution, it also demonstrates the usefulness of the gradient-type
hypothesis assumption for particulate phase diffusion mass f]ux. ‘Under
certain conditions, turbulent diffusion effects has a predominant
influence on the wall deposition of solid particles in straight pipe
flows as has been shown By Friedlander and Johnstone [1957]. In this
investigation, solid particles with a size range of 0.8 um to 2.63 um
were used in air. The results show a drastic increase in the wall
deposition of solid particles when transition from laminar to turbulent
regime occurs. The deposition rate subsequently increased with in-
crease in the flow Reynolds number. The particle turbulent diffusivity
was aséumed to be identical to that of the fluid, resulting in a fairly
accurate prediction of particle wall deposition. A collective review
of particle eddy diffusi&ity has been made by Householder and
Goldschmidt [1969].
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Since the ear]iest'investigatiohs relating to two phase flows, the
prbb1em of solid particle diffusion by turbulent fluid action hasv
presented itself as one of the»most‘difficu]t and fundamenta] issues.
The results of the majority of ihvestigations have consistently shown
the dependence of solid particle diffusion on the turbulent charac-
teristics of the carrier fluid as well'as~a dependence on particle
characteristics. A thorough knowledge of the fluid turbulence struc- -
ture and its diffusive characteristics, particu]ariy in relation to
fluid-particle interactions is necessary.

The concept of eddy viscosity was introduced originally in the
early work of Boussinesq [1877]. This concept has been broadly
incdrporated in various closures modeling turbulent f]ows.‘ Later, in
1883, the well-known experiments of Reynolds showed the chaotic and
irregular fluid patterns shown by the turbu1ehce-induced disper#ion of
colored dye. In 1925 Prandtj introduced the concept of mixing length |
for fluid e]éments in a tufbu]ent stream,based on an analogy with the
~ mean free path of gas mo]ecﬁ]es. Prior to Prandtl, Taqur [1921]
introduced the theory of "diffusion by continuous moveméntsf in homo-
geneous turbdlence. The theofy is based on the concept that fluid
elements move in a continuous and correlated fashion;adistinguishable
from md]ecu1ar or Brownian motion which is a purely random motion in
space .and time. The diffusion coefficient derived by Taylor is defined

as:

v o= 1420 (5.1.1)
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in analogy with molecular diffusion. In this expression x§(t) is the
mean square displacement of the fluid element. The Taylor theory of

“diffusion by continuous movements" provides an expression for xf(t)

as: .,

:FZ t t

xf(t) = 2 £ [f) dt'é R’Lf('r)-dr (5.1.2)

with’RLf(t) indicating the-Lagrangian correlation coefficient.
It is seen that a knowledge of the Lagrangian correlation
coefficient is necessary in order to obtain the turbulent diffusion

.coefficient defined by (5.1.1). The incorporation of expressions for

RLf(T) corresponding to small and large values of t yields,

respectively:
x%(t) = ui t2 ~ for t K TLf (5.1.3a)
and
x2(t) = 2 CT ot for £t T (5.1.3b)
f R | Le et

where"TLf and-rLf are, respectively, the Lagrangian integral
and micro-time scales of turbulence for the fluid. Hehce;ffor.1ong

diffusion times, Hinze [1975]:

AL ORI [y - (5.1.4)
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The application of Eq. (5.4.1) requires a knowledge of the Lagrang1an
time scale characteristics of the fluid.

The diffusion theory outlined above can be extended to the motion
of a single particle suspended in a turbulent fluid. The problem
reduces to an evaluation of RLp(t) and of the mean square displace-
ment, ;;2-fof'the particle motion. The mean square displacement
for a sing]e‘partic1e'can be obtained from the general equation of
motion, Eq. (2.1.1). . However, as already noted, a rigorous solution of
this equatioh is not Straightforward, and all practial investigations
to date are essentially based oh simplified forms of the particle equa-
tion of motion. The classical investigation of Tchen [1947] is 6ne of
the early works in this regard for the motion of a single particle in
~an unsteady flow field and was discussed in Chapfer 2. One of the
major assumptions embodied in Tchen's 1hvestigation is that a particle
remains in the v1c1n1ty of the same fluid element it 1n1t1a1]y encoun-
tered. This implies identical turbulent diffusivities for the f1u1d
| and solid particle. In the computations of two phase ‘turbulent flows
'such an assumptfon will Téad'to significant simplifications in relation
to particulate momentum ba1anée closure. The assumption is correct
.:bnly'for perfectly re§pbnsive-partic1es with respect to turbulent fluid
fluctuations. For th1s case, the particle length and time scales

satisfy the fo]]ow1ng conditions:
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which n and T representing Kolmogorov length and the scales,
respectively. The conditions above impose restrictions on the two
phase flow to be considered.

There are numerous examples of experimental data which do not
support Tchen's assumption. Among these are the studies by Goldschmidt
et al. [1972], Yuu et al. [1978] and Soo and Peskin [1958]. The inves-
tigations point out to the so-called "over-shooting" effect, due to
which inertial particles will not remain in the vicinity bf'the origi-
nal fluid element, and thus resulting in a different diffusion coeffi-
cients for the fluid and particle phases. For large, non-inertial
‘particles the defdrmation of neighboring fluid elements should be
accounted for since, due to the stretching, shortening and in general
the complete distortion of the neighboring fluid element, the particle
will hard1y remain in its vicinity evén if inertial "overshooting"
effects are heg1igib1e. In such cases, the particle response timev
should be compared to the time scale characteristic of fluid elément
deformation.

The basis for the derivatfon of a particle-tq-f]uid diffusivity
ratio in Tchen's investigation is Taylor's diffusion theory and the
utilization of Eq. (5.1.2) specifically for particle mean
displacement. Using integration by parts, this equation can be
ré-writteh as: |

i = ! -
xp(t) = 2 u é (t-1) RL () d=

p .
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‘which has been derived by Kampe de Fériet and shown by Hinze [1975].
The results of Tchen's study for the case of statistically stationary
~particuléte motion show that for short and long diffusion times the

ratios of particle to fluid eddy diffusivity are,vTchén [1947]:

Ve L’Z .
;—E = £ (for short times) (5.1.6)
t 2 : :

f ug

and

\)t . .
=L - (for long times) (5.1.7) -
t : A

f

Equation (5.1.6) show that for short d1ffus1on times the
d1ffus1v1ty rat1o becomes. proportional to the ratio of mean square
veloc1t1es in any direction for the case of isotropic turbulence.
However, for long diffusion times the rat1o becomes un1ty, Eq. (5.1.7).

The derivation of a more general d1ffus1v1ty ratio requ1res a
vknowledge of the Lagrangian energy-spectrum funct1ons for the fluid and
particle pha;es, ELf(n) and ELp(n), respectively. - Although a

‘felation for the ratio of the two spectrum functions is available from
Tchen's analysis, it can not be used to obtain the individual diffusion -
coefficients. HoweVer, by assuming an exponentia] form for the Lagranf
gian correlation coeffiéient, an appfoximate expression for ELf(n)
cén be obtained, Hinze‘[1975];' The incorporation of this expression in

.thevequations of motioniresults in time-dependent relations fbr the
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eddy diffusivities and the turbulence intensities of each phase.
Hinze's analysis, however, shows that for long diffusion times the
diffusivity ratio becomes unity and is consistent with Tchen's result.
In another investigation, Friedlander [1957] used the particle equation

xp(t) 2 uft f “f(e) de (5‘1°8)
0

in which Rg(8) is the fluid correlation coefficient encountered by
the particle along its path and has a functional form which depends on
the relative motion of the suspended particle phase. Two limiting
cases can be considered:

a) for small non-inertfal particles perfectly following the fluid
element, R¢(8) becomes equivalent to the fluid Lagrangian
correlation coefficient, RL%fe), aTready defined. In this
case the diffusion coefficients become identical.

b) In the case of large heavy particles which do not remain in
the vicinity of the same fluid element the particles

| experience a series of turbulent eddies which, for relatively
high partic]e terminal velocity values, are essentially frozen -
with respect to the particle motion. In this situation,
Rf(e).becomés identical with the fluid Eu1erian correlation
coefficient. |

Finally, in the case of large inertial particles with high 1,

values the diffusivity ratio for small diffusion times becomes,

Friedlander [1957]:
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<

\ ) - | |
=L . LZ (5.1.9)
tf Tm .

The ratio given by Eq. (5.1.9) is quite small compared to unity and
indicates the slow response of inertial particles to fluid motion.

Gravity effects

;'The studies on the Lagrangian behavior of soliq particles with
»non4neg1igib1e terminal velocities constitute a significant part of the
fnvestigations'on many-particle diffusion, of‘practiéé1.ihtérest in
'relation to atmospheric diffusion of sbiid poilutantsvandﬁdust
partiéles in the atmosphere. The existence of a non-negligible
termiha] velocity for a solid particle will cause the particle to
depart from the vicinity df its initia1~neighboking f]ui& element and
evehtua11y to fall-out under gfavity effect. The particle will
experience a séries'of‘different eddies during its gravity-inddced
'descent through the fluid. This effect, which is usually referred to
as "crossing-trajectories;“ results in .a more rapid decrease.in the
particle Lagrangian corre1ation’coeffi¢ient and has a significant
influence on the heavy particle dffosion coefficient. The'argument
- presented earlier, given by Fried]ander’[1957],-régérding the 1imiting_
conditions for small andAlafge terminal velocities can.be generalized

- to give, Csanady [1963]:;

Rf" = Rf(rl’él) . ’ . . : . (5.1-11)
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This relation can be substituted in Eq. (5.1.8) with rl_the travel-
ing time in the direétion of gravity, £1 = rjut the corresponding
distance travelled by the particle, Yudine [1959], and uy represent-
1ng the partic]e terminal velocity. The correlation coefficient in
Eq. (5.1.11) becomes identical to the Lagrangian coefficient when ut
is small, while for large.ut values it becomes equivalent to the
spatial Eulerian correlation coefficient. Therefore, in general, the
correlation coefficient in Eq. (5.1.11) is a combination of the two
11miting-cofré1atidn coefficients. Furthermore, analysis based on the
use of such "mixed" correlation coefficients shows a reductfon in

Vi, with a increase in particle terminal velocity, ut, as indicated

by Yudine [1959]. For an evaluation of the "mixed" correlation coeffi-

cient with fall-out effects included, Csanady [1963] has suggested that:

. T L
Re(tysE,) = exp |- 2 [ul+E (5.1.12)
£171°51 P\ T2 ) b
o ) L

where Lg and T_ are the Eulerian integral length and the Lagranéian
integral time scales, respectively, which are to be evaluated in the
direction of the particle terminal velocity. This proposed form for
Re(11,£1) above is based on the investigafion of Mickelsen [1955]
regarding exponential forms for both the Lagrangian and the Eulerian

correlation coefficients.
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The -incorporation of -Eq. (5.1.12) in (5.1.10) results in the

following expression for the diffusivity ratio:

vt 12 ) -1/2
=2 - |1 +..% up (5.1.13)
te L

Consistent with previous investigations, this expression shows a
reduction in Vtp with an increase in terminal velocity. It should
be noted from Eq. (5.1.13) that, fpr zero terminal velocity, identical
diffusion coefficients for the fluid and particle phases will be
obtained. This is because in the»énélysis leading to Eq. (5.1f13),
the particle inertial effects have not been included. In a related
investigation, Meek and Jones [1973] have derived a modified particle
enefgy spectrum function with the particle termina1‘velocity

incorporated. The partic]e Lagrangian correlation coefficient obtained

by them is: |
RLp(rl)‘ ) .T%E [%'TI/T' e e'Tl/(eTf)] | : (5'1.;4)
with:
k1.'
and:
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'The inclusion of Eq. (5.1.14) in the éxpression for mean square
displacement from Taylor's diffusion theory (Eq. (4.1.12)), results in

the following expression for the eddy diffusivity ratio:

-1/2

vy u\2
v_a = f1+(=L) qa+0)] (5.1.15)
te (7 . - |

This expression shows that the diffusivity ratio is smaller than, or
at most equal to, unity. The preSence of utvin Eq. (5.1.15)

indicates how the "crossing-trajectories" effect tends to reduce the
particle eddy diffusivity relative to that of the fluid. For zero
termiha] velocity the diffusi&ity ratio in Eq. (5.1.15) becomes equal
to unity, consistent with the result given by Eq. (5.1.13). In
relation to gravity effects it may be concluded that an important
non-dimensional variable is uy/uf, in addition to the non-gravity
Ct/TL a]réady introduced. The presence of gravity effects tends tov
diminish particle eddy diffdsivity as well as the particle Lagrangian
correlation coefficient. Physically, this means that due to particle
fall-out under the influence of gravity, various regions of the flow
will be entountered by the particle which are not correlated with its
motion and, therefore, will reduce the particle correlation coefficient
as particle terminal velocity increases. Among the experimental
investigations supporting this notion is the work by Snyder and Lumley
[1971]; in which diffusion coefficiénts,for'solid particles with
terminaT velocities rahging from 1.67 cm/sec to 44.2 cm/sec in grid

'generated turbulence have been measured.
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Particle inertia effects

In problems of solid particle dispersion induced by turbulent
f]ufd drag, particle inertia has a significant influence on the par-
ticle phase diffusion process. It.is because inertia effects that:
small, hon-ineftial, 5artic1es tend to follow turbulent fluctuations
a1most comp1ete1y; while inertial partiéTes iag behind high frequency
fluctuations of turbulent fluid motion. In the case of the latter,
particles tend ﬁot to remain in the vicinity of the same fluid element.
This results in a different eddy diffusivity for the particulate phase
~compared to that of the fluid phase. The ihvestigatidns of Soo [1956]
and Liu [1956], based on a‘Fourier series representation of fluid
turbulence in confirmation with tﬁe particle equation of hotion yielded
so]utioné.showing different eddy diffusivities for the fluid and
particle phases when‘partic1é inertia was-significant.~ Particle
inertia is a]so responsible for the penetration of solid particles from
the turbulent core of the flow into_the viséous sub-Tayer in turbulent
pipe f16w resulting in particuiate wall deposition shpwn by Friedlander
and Johnstoné‘[1957J. | |

- Tﬁe'major assumption in most investigations related to partit]e
turbulent diffusion is that:originally intrbduced by Tchen [1947],
namely that the partiéle.reméins in the neighborhood of its initial
fluid element. This idealized assuhption poses limitations on the
apb]icabi]ity of the results derived to more reé1-flow conditions in

Which "over-shooting" effects can be significant. vaer-shooting"
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refers to the condition in which inertiai particles are removed from
the neighborhood of‘their initial accompanying fluid elements resulting
in a diminished particulate phase diffusion coefficient. This has been
shown by Peskin [1959] and Soo and Peskin [1958] through introduction
of the statistically defined the most probable fluid element encoun-
tered by the particle at a certain time in flow domain. It should be-
noted that the escape of the particle from one flow region to another
is associated with a weakening of the particle-fluid velocity correla-
tion function.

Through statistical treatments, Peskin [1962] has derived a
particle-fluid eddy diffusivity ratio which shows a dependence not
only on the time scale ratio /T, but also on the Lagrangian
and Eulerian microscales of the fluid. The derivation is based on
the particle equation of motiQn (2.1.1) with thé-Stokes viscous drag
term as the only driving force present in the momentum balance. At a
time t after the start of the motion, the fluid e]emeht surrounding a
particle is different from that which the particle originally encoun-
tered. The derivatfon is then reduced to determining the most probab]e
- fluid ve]ocity'ehcountered by the particle at time t given the velocity
of the initially-encountered fluid element at time to. The most
probab]e fluid velocity is obtained by assuming a joint Gaussian
-probability distribution function for the pérticle-encountered fluid
velocities. In addition, statistically stationary isotropic turbulence
random variables are assumed. The results show'that on average the

- fluid velocity encountered by a particle becomes equal to the velocity
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of the fluid initially encountered at time to multiplied by the two-
point Eu]érian coefficient based on the fluid velocities encounfered at
time t. The hostvprobable fluid ve]oéity surrounding a particle at
‘time t obtained in this way is then substituted in Eq. (2;2.9) with a
parabolic expression for the coFrelation coefficient as given in Eq.
(4.5.9), an expression for the particle mean square displacement is
obtained and is ensemble-averaged over all the possible fluid velocity
encounfered. Throughout the derivation process, the fluid Lagrangian
vcorre1afion coefficient has been apprdximated by‘the exponential
function given by Eq. (4.1.13). The result fof the diffusion coeffi-

cient ratio is, Peskin [1962]:

vt 22 L2
S S P . S o(%—) (5.1.16)
te A A :
f E E
‘with:
L

Equation (5.1.16) is significant since it accounts for "over-shooting"
as well as local response effecfs.' In the derivation process leading
to Eq. (5.1.16) it is assumed by Peskin thaf the particlé; a]thpugh'
allowed to over-shoot the-origina] fluid eiement, stays in.regions
close to it sd that the second term on the right hand side of Eq.-

- (5.1.16) remains small'cdmpared to unity. The parameter K is
characteristic of the part1c1e résponse to the fluid fluctuations.

For inertial particles with high K values, deviation from initially
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neighboring fluid elements results in a reduction of the particle eddy
diffusion coefficient as predicted by earlier investigations.

Particle size effects

Several investigations on turbulent diffusion of solid particles,
have shown that the ratio of particle size to the Tocal length scale of
turbulence is a significant parameter. Among these investigations are
those by: Tchen [1947], Peskin [1962], Yuu et al. [1978] and Abramovich
et al. [1974]. In general, it has been shown that with an increasing
particle size the diffusion coefficient ratio, “tp/“tf- decreases.

This is usually referred to as the "filtering" effect by which the par-
ticles "filter-out" the influence of eddies with length scales smaller
‘than the particle diameter, thus resulting in a reductfon of the
turbulence-induced particulate diffusivity. The above investigations

show the following 1imiting conditions:

—£ 4 1 as (5.1.17)

m>é l_ca
.
o

and;

-2 4 0 as (5.1.18)

m» l_ca.
+
8

with Ap as the fluid Eulerian microscale.
Using the assumption of stationary, homogeneous and isotropic
turbulence, Hinze [1971] has approximated the turbulence energy

spectrum function from which the ratio th/“tf’ as a function

of dp/Le, is derived; Le representing the length scale of the
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energy-containing eddies. In this derivation the "filtering" effect of

small eddies by large particles, discussed above, was included.
Analytical results so obtained for the diffusivity ratid, for inter-
mediate values of particle diaméter, dp, are consistent with the
experiménta] data of Goldschmidt et al. [1971]. For the intermediate
particle size range contained by:

< 4y & 051 | | (5.1.19)

~

the data shows a diffusivity ratio larger than unity, Hinze [1971].
For a physical interpretations of this remarkable result, Hinze [1971]
has re-written the diffusion coefficient ratio as:

v A ' '

t L u. . . :
-2 - _P,P | ' (5.1.20)
Yt A, Yf

f f

with AL, and ALf,denoting the particle and the fluid particle
‘Langragian integral length scales. Hinze then argues that for the
ranges where:

dy < 051 C(5.1.21)

the length scale ratio in Eq. (5.1.20) will increase with inéreésing
particle size, since large inertial particles will correlate over
longér distances'as Comparedjtb small non-inertial particles. A]though'
the ve]dcity scale ratio in Eq. (5.1.20) will decrease with increasing
particle size, it can not compénSate for the increase in the length
scale ratio, thus resulting in an overall increase in the diffusivity
ratio. For rangés corresponding to the particle sizes‘iargef'than Le
the same argument suggests implies diffusivity ratios values smaller

than unity.
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In closing Section 5.1 it may be remarked that in addition to the
various effects reviews above Ee]ating to particle turbu]ént diffu-
sivity, the wall effects has been investigated by Gudmundsson and Bott
[1977]; Based on the results of various experimental studies, these
authorS»haVe proposed that in wall regions of the flow, particulate:

thrbu1entcviscosity“can~be modeled by:

This proposal is based purely on physical arguments without rigorous
mathematical proof. Other noteworthy investigations relating to
particulate turbuient diffusion’of less importance to the present study
are those by: Lilly [1973] and Eskinazi and Goldschmidt [1966]. In
addition, Peskin and Kau [1979] have developed aAnumerica]lscheme for
the difect‘simulation=of particle dispersion in turbulent channel

flow. Their determinfstic method is based on solution to Eq. (2.1.1)
‘with the Stokes drag term as.the dnly driving force incorporated in the

particle momentum balance.

5.2 Brownian Diffusion for Solid Partic1es

Brownian diffusion of solid pértic]eS'suSpendedAin a viscous fluid.
is caused by random collisions among solid particles, br; in the case.
. of sub-micron particles, by collision of fluid molecules with the

particles..
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A relation for the particle mean square Brownian disp1écement and
a corresponding diffusion coefficient has been obtained by Peskin
[1959] which is based on Eq. (2.2.10) describing the particle position.
In the Brownian motion of solid particles, the diffusion process |
evolves by collisions which are random in nature and which have no
correlation with the particle position and velocity. The use of Eq.
(2.2.10) for predicting particle Brownian motion requires a knowledge
of the functidn A(t) representing the random‘particfe acceleration
induced by néighboring particle and/or molecular impacts. Peskin
[1959] assumes that the A(t) statistics are similar io those charac-
teristic of a perfect gaé. Thus, a Maxwe1lién probability density is
used in combination with ah éssumed form of the auto-correlation

function of A(t) given by:

TET ATEFE) = o s(e) (5.2.1)

with 8(g) the Dirac function.
For long diffusion times it is assumed that the particle is in
thermal equilibrium with the neighboring fluid in which case Peskin

obtains:

2 kg T

[s) =

mr_ (5.2.2)

withm = 3p n(dp)3/6, kg and T' as the mass of solid partic]é,

Boltzman constant'and flow temperature, respectively.
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The function A(t) defined by Eq. (5.2.1) when substituted in Eq.
(2.2.10) yields an expression for the mean square particle

displacement, corresponding to long diffusion times, given by:

%k, T :
2 _ B
Xp(t) - mqu t (50203)

Using this result in the definition for diffusion coefficient given by
Eq. (5.1.1) yields the following expression for solid particle Brownian

diffusivity:
\)B = -m— (5.2.4)'

Equation (5.2.4) 1$ identical to the Einstein relation for Brownian
diffusion of solid particles in a viscous fluid, Einstein [1906].

An order of magnitude analysis will show that for most practical cases,
Brownian diffusion is negligible compared to turbulence-induced

diffusion.

5.3 Diffusion of Solid Particles'by Bernoulli Forces

~The relative motion of a discrete spherical particle with respect
to another partiéle in.inviscid potential flow results in mutual forces
between the particles caused by the pressure gradients which arise due
to their relative motion. Such forces are usually referred to as
Bernoulli forces. The derivation of the velocity potential function
for this case has been described by Mi‘lne-Thompsd_n [1968]. The
procedure is to assume that the overall poténtia] function is a linear

combination of the individual particle velocity potential functions.
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Subsequently, by means of an iteratiVe'analytical procedure, an erra]]
potential function is derived such that its spatial derivatives yield
the values of the individual particle velocities from which it is |
formed. |

In the case of the motion of a cloud of particles suspended in a
fluid, randomly arising Bernoulli forces:between pairs of particles in
the cloud will account for diffusion of the particulate phase. While
Brownian diffusion is due to direct partic]e—péfticle or particle-
molecule interactfons, Bernoulli diffusion is due to the mutually
induced, but indirect, particle-particlé interactidns. ‘

Bernoulli diffusion has been investigated by Peskin [1959] and the
corresponding dfffusion coefficient has been derivéd. The dérivation
is based on:Eq. (2.2.10) in which probability distribution function was
incorporated. The analytical results obtained by Peskin for particle
mean square dispiacement and solid phase diffusion coefficient show -
that a field of randomly located (relatively) stationary particles has
a significant effect on the instantaneous motion.of any one particle.
‘The effect which referred to as "dynémic friction" can have a retarding
influence on the motion of a single particle with a consequent reduc-
ﬁion in its diffusivity. The results of Peskin derivations also show a
‘direct proporfiona]ity of particle diffusion coefficient to solid
particle-fluid volume ratio. Furthermore, the Bernoulli diffusivity
becohes significant only for large iﬁertia] particles and is negligible
for small, non-inertia].péftic1es. Due to the.dependence-df Bernoulli
diffusivity on particulate volume fraction, the effect is negligible in

practically ‘all dilute fluid-particle flows of interest.
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CHAPTER 6 |
SINGLE-PHASE FLOW MODELING, EROSION MODEL AND NUMERICAL METHOD

This chapter consists of three different sections. In section
6.1, the modifications to two-equation (k-¢) model of turbulence for
computation of single-phase flows in developing curved channels is
discussed. In section 6.2 the mathematical model for the computation
of erosion is described and, finally, the generaitnumericai method for
the computation of two-phase and‘single-phase flow is discussed in

section 6.3.

6.1} Computation of Single-Phase Curved Channel Flows

In this section the general mathematical formulation for the
computation of single-phase developing curved channel flows is briefly
discussed. The detai]ed derivation and the related considerations are
presented in appendix Il.

Correct predidtion of single-phase turbulent curved channel flows
by twofequationr(k-e) model of turbulence, requires a direct incorpora-
tion of the curvature effects not only in the governing equations but
also into thé structure of the tufbuience model - through modifications
of turbuiencevconstants and also the boundary conditidns. This is
achieved through re-arrangement of Reynolds stress transport equations
and.their further reduction to algebraic terms with the wall-induced
dampening effects included in their corresponding pressure-strain
correlation terms. This leads to a general expression for Cy in

- Prandt1-Kolmogorov relation:
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v . = Cu -Ké

based on the assumption that ﬁ?;ﬁ?}/k,is constant as shown in
appendix II. The general expression fbr C, thus obtained, success-
fully reduced to the less general expressions present in the |
literature. The incorporation of such general C, function in
numerical scheme qoes produce the increase and decrease in turbulent
length scale at the outer and inner walls, respective]y.

The effect of wall-induced pressure fluctuations in the pressure-
stfain terms is considered by intrdduction_of a wall function, f(z/y).
The f function depends on the length scale £ of the energy containing
eddies and 1s_diminfshed‘with the increasing distance y from the wall
- which induces the largest contributions to the wa]l-cqnvectibn_terms,
that is, the concave wall in a curved Ehanne]. It is proposed here to
'take:

- 372 v
f = %_/_ [1+M]

we. y A-y

the constants C,, -is chosen such that f + 1 and y +» 0 and the constant
m is determined exactly from experimental measurements for_strong1y"
curved, Rc/A < 20, and weakly curved, RC/A'>'20 flows. Form=0

the above expression reduces to the straight channel situation.
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The expressions for boundary conditions in the standard two-
equation (k-¢) model when applied to curveq channel flows requires
special modifications which could accomodate changes in turbulent
length scales in the vicinity of the outer and inner walls. This last
‘modification shows a better prediction of the wall shear stress for
both concave and convex walls. The combination of ‘modifications as-
outlined above when- incorporated in the numerical scheme show an
overall improvement in the prediction of fiuid velocity, turbulent
kinetic energy and wall shear stress for'developing'curved channel

flow. The results are shown in Appendix II.

6.2 Erosion Wear Model and Related Considerations

Erosion of walls in curved channel flows is controlled by the
dynamics of the fTow. ‘Therefore, for an analysis of wall erosion under
various flow conditions, the pfediction of the fluid mechanical |
variab]es of the flow is necessary. The computation of erosive wear
ultimately requires the selection of a proper mathematical model for
surface erosion. ' The mechanism of erosion of solid walls by solid
particulates depends on various'factors among which are:v particle
impact velocity;‘direction, and mass, as well és particle shape, size,
hardness and the physical nature of the wall material. |

Finnie [1972] has introduced a mathematical model for erosion wear
of ductile matéria]s whfch shows good agreement with experimental daté '
at small angles of impingement. In that model, the cutting action of

the solid particles is assumed to be similar to that of cutting tools
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with the cutting depth depending on wall physical properties. Based on
this model the rate of vo1umetfic material removed from the wall
surface per unit area is:

.

. _ m_ 2 . ‘ '
E c ) qp.f(simp) | (6.2.{)

In Eq. (6.2.1) a friction coefficient of order'Z’between partic]es”and
the wall is imp1ied'and for the momentfof'inertia for a single particle

is apprdximated by the value for a sphere:

with m and r representing mésg and the radius of a single particle.
In Eq. (6.2.1) above the variables are defined as:
E erbsion raté in terms of volume per unit area and time
c fraction of the numbef of particles cutting in an idealized
manner
p; taken as Vickers hardness -of the wa]] material
m mass of the particlés striking ihe surface per unit area and
unit time v
p the magnitude of:the particulate phaSe.imﬁact ve]bcity
f(Bimp) funétion of angle of attack, gimp (see Fig. (6.1) wﬁich.is-
defined as: |

f(8 2q B, < 14°

sin(28, ) - 4 sin imp <

imp

imp)

2 | | 140
f(8 cos“g; /4 B > 14

imp) p - Timp
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6.3 Numerical Method
" The numerical method for the calculation of the single and two
phase flows is discussed in this section. The mathematical models and

the corresponding boundary conditions for the flows have been discussed

in the previous chapters and in the;appendices. The discussion here is-

restricted to steady, fully e111ptiq, two-dimensional, incompressible
and isotherma] flows although the method can be extended to more
general flows. - |

The numerica] scheme to be discussed is based on the work of many
investigatbrs among which are Gosman and Pun [19741, Spalding [1972],
Patankar and Spalding [1972] and Harlow and Welch [1965]. A more
detailed description of the numerical hethod'is available in Patankar
[1980], and its application to laminar and turbulent curved duct flows
has been carried out by:Humphrey-[1978] and Humphrey, Whitelaw and Yee
[1981]. | |

6.3.1 Grid system

The grid system is such that scalér quantities such as pressure

and turbulent kinetic energy are stored at the grid points while

velocity components are calculated at points located midway between the

grid nodes. In this so-called “"staggered" grid system the velocity -
.componehts-are positioned such that the flow of a scalar quantity into
its control volume can be easily calculated. This is illustrated in
Fig.}(6.2a) which shows the control‘volume for the scalar dependent
variables. The U velocities are stéggered in x direction and,
-accordingly, the V velocities in y direction. The control volume for U

and V are shown in Figs. (6.2b) and (6.2c), respectively.
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6.3.2 Derivation of finite¥difference equations

The finite-difference equations ere descriptions of the
distribution of 1ndependent variables for d1screte grid povnts. They
are obtained by volume integration of the different1a1 equations
describing the transpprt of a mean quantity ¢. The control volume over
which the integration 1s:performed,‘corresponds.t0~the cell volume
surrounding the grid point for either a scalar or vector quantity. The
- derivation of finite-difference equatiqns-are described is defined as
the "control-volume" formulation which is e'specia1 case of the method
- of "weighted residuals” discussed by Patankar [1980]

" The modeled partial differential transport equat1ons for e1ther
f1u1d or the particulate phase can be written in the following
genera11zed form:

) p—
x; P

)6 - 1 o g ‘ (6.3.1)
j J m ax _axj

i ¢
with subscript m referring to either fluid or particulate phase. The
first term on the left hand side of Eq; (6.3.1) is the convection of
quantity ¢ and the second term is the diffusion of ¢; T being the
~corresponding diffusion coefficient; - S¢ represents the source term for
the independent variable ¢. Integration of Eq. (6.3.1) yields:
I I _2 3% '
f [ax. _(p Uj) ¢ TR ax.] dAJ. fs¢ dv (6.3.2)
A L J m J J ' .
c B

VC.’
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where A. and V. represent the surface and the volume of the cell

and Aj is the area normal to the coordinate Xje The integral on

left hand side of Eq. (6.3.2) is the net eflux of the quantity ¢ for
the cell with volume V¢, Fig. (6.2), due to combined effects of con-
vection and diffusion. The term on right hand side of Eq. (6.3.2) is
the inteQraliof"sOurce term S, over the cell volume.. When the source
term is a function of ¢ it is preferably expressed in a linear form.
The 1inear12ation of the source term is done for the purpose 6f
preserving the linearity of thé corresponding finite-difference
equation which can then be solved by the usual techniques for linear

~ algebraic equations. Hence: 

-/;CS¢ dv = (S,u + Sp¢) Ve - (6.?.3)
The exact solution for Eq. (7.2.1) for a one-dimensional case with

S¢ = 0 corresponding to Fig. (6.2e) is, Spalding [1972]:

"¢'¢n = exp (Pe:/Axl)'l o (6.3.4)
b1y exp (Pg)-1
with:
o . (o U)ax

e r

as the Peclet number.
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Application of the exact solution to, for instance, the east side

of the cell in Fig. (6.2a) results in:

Jo = (V) fety+ (1-felse . (6.3.5)
with

. - exp[(Pg)g

e ° exp[(ﬁeJeJ-l

_as weighing factor for the convective flux and

() (0eVe)  4xpe
e - l"e

in the cell Peclet nUmber calculated at its east boundary;
: Thevflux.in Eq.A(6.3.5) is due to combined effects of convection

‘and diffusion. Although it is the exact so1utfoh to the one- B
dimensional transport'equation‘its-fncorporation in the numeric#1
scheme fs not appropriate since the-exbonential terms in fg of |
Eq. (6.3.5) are expenéive to evaluate. ATSo. it should be remembered
_ that Eq. (6.3.4) has been obtained with the assuﬁbtion that S, = 0
and is not applicable for cases when Sp * 0.

| For thé-computation'of convettive-diffusive'quX'at'the‘cell
~ boundaries a”numericél~scheme called "Hybrid" scheme fs incorporated.
It is an appfoximation to the exact solution and was developed

initi§11y by Spalding [1972]. The "hybrid" scheme is a combination of



-148-

upwind-difference and central-difference schemes which becomes
identical to above schemes when local Peclet number, P, , becomes
larger or smaller than 2, respectively. The “"Hybrid" scheme is
selected here since it does not have the instabilities associated with
the "central-difference" scheme at high P, numbers, and, in addifion,
it is more accurate than "upwind-difference" scheme at-low Pg

numbers.

The result of Eq. (6.3.2) thus becomes:

Jhe - JwAw +JA, - JSAS = (Su+Sp¢)VC (6.3.6)

where J's are the fluxes and A's represent the surfaces at the corres-
ponding boundaries.
Using the "hybrid" scheme the flux at the east boundary, for

instance, becomes :

, -1 -1, 3
3 [(1+2p7 e + (1-2070)0, ] for [P,| < 2

p
Ja = (ere)m |
| 0, for P > 2
4 for P < -2 (6.3.7)

Substitution of Eq. (6.3.7) and: similar expressions for other
boundaries;, in Eq. (6.3.6) results in the following linear algebraic
equation:

4

(ap-Sp)¢p = Z a;6; + S, ' (6.3.8)
i=1
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which is the finite-difference equation corresponding to transport
equation (6.3.7) with a linearized source term. The_coefficients in

Eq. (6.3.8) are:

| ~ U 7
a, = Max ’—-(pU)e , (-“};)é-%k , oJ'
a, = Max r(pu)w , () +(—°g)—" . o]

i W i
a, = Max l'-'--(;Y:U)Vn R f%;)n - ££;29 l, 'bj
a, = Max'rkpu)s " (%;Js + Ef;li » OJ

where the symbd1'Max [ ] refers to the 1argest of the arguments
contained within the brackets. |

The solution for the'veTocity field needé, however, special
attention. This.is.due to the presence of the pressure gradient terms
in the momentum balance eqdation which not readily available from the
Knumerica] scheme throughout the flow fie]d but rather indirectly speci-
fied through continuty equations. In order to obtain the pressure
gradient for the solution of finite-differenced momentum balance the
numerical procedure known as SIMPLE (Semi-Implicit Method for Pressure-
Linked Equation) in utilized, Patanker [1980]. The algorithm is based
on solving equations for the momentum balance corresponding to a
“guessed“'pressufé fie]d,_P*, as well as the equation governing
pressure correction component, P'. The‘pressure is composed of P* and

P':
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*
P = P +P

The governing equation for P' is obtained from the fluid continuity
equation using a procedure of deéomposing the velocities into
“guessed",vu*. and “corrected", u' components corresponding to

"quessed" and “"corrected" pressure field.

6.3.3 Solution of the Finite Difference Equations

The finite difference equations presented in their general form
as Eq. (6.3.8) in the previous section constitute a set of 1ihear
a]gébraic equations which are solved a set of Iineér algebraic equa-
tions which are solved using the Gaussian elimination method. The
algorithm used for this purpose is TDMA {Tri-Diagona1-Matrix Algorithm)
which uses a recurrence process through thé corresponding recurrence
“relations. For two-dfmensiona1 problems, the substitution along a grid
1ine is processed asSuming known values for the neighboring grid 1ines
which are avai]able from the.previous iterations.

The procedure is then repeated for all the grid lines in direction
of one coordinate. The numerical algorithm for this purpose is.called
LBL (Line-By-Line) algorithm. |

The finite difference equation governing transport of the quantity

¢,is'then:.
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,(aP'SP)% = Lageg + S,

The numerical stability of the equation above is described by the |
Scarborough criterion which states the sufficient Condition for the

convergence to be that:

>

Iap'sp

Treatment of boundary conditions

At the inlet and outlet the boundary conditions aré~inserted by
simply imposing the indicated values. Near a so)id wall the treatment
is different deﬁending on the type of boundary condition. For scalar
‘qﬁantities the boundary condition is given either by the flux ok'by the
magnitude of that quantity. In the first situation the normal link |

op ¢w» Fig. (6.2d), is broken by setting

and the flux is included as a “false" source in the difference
equatibn. In the latter case for the boundary value indiéated, the
tréatment is the same except thaf with the flux written using the
bOundary'and_thé wall-node values, the cogfficiehts in the source term
‘will be differént from the»first~caSe. For tangential velocity the |
link ¢p-¢y is again broken and‘theveffects_of'wall is incorporated
through inclusion of wall shear stress in the source term.

- The procedure to obtain the fluid velocity field and other

dependent variables is:
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Guess the pressure field.

Solve the finite-difference momentum equations corresponding
to the “"Guessed" pressure field.

Using the velocities from previous step thé equation for
pressure_correction term can be solved.

The total pressure is then obtained by addition of the
"guessed" and the "corrected" pressure field.

Fluid momentum equations are‘so1ved using the adjusted
pressure field obtained in step 4.

After obtaining the adjusted velocities, other
velocity-dependent variabTes.can be solved from their
finite-difference governing equations.

The pressure obtained in step 4 is then used as a new
guessed pressure and the procedure is repeated until
convergency is obtained.

The residual source, R¢, is defined as:
Ry = ape, -2 a6, - S4

The criteria for convergence here is:

M < 5 x 1073
¢,ref

where Ry rof is a reference residual value.
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9 - In order to slow-down the'changes in the quantities ¢ during

iterations; they are under-relaxed according to:
¢ = (1-Fy) 0514 * Fy tnew

where F, is the under relation factor. In this‘work,_it
is taken as 0.5 for ve]ocities'and.scalar quantities except
for pressure for which it is taken as 1.0.

The grid system for curved channel is shown schematically in Fig.
(6.3). The calculations were performed on 18 x 50 and 20 x_40 grid for
f straight and curved channel'flow, respective1y; which_were eVenly
'v'spaced:in streamwise and unevenly spaced in lateral directions. The -
storage required on a CDC 7600 computer for straight (curved) channel
flow was 155(135) kg words and a typical converged run after 150(226)
J jterations was 130(196) CPU seconds. - | o

| " Al though the above has been a cursory overview of the numer1ca1
method it should be not1ced that detailed derivations of the scheme,
its testing and pract1ce1 applications have a}ready been given in the
references quoted. Fina11y,~ih:appendix (I1) the application of the

same scheme to single-phase curved channel flows is being shown.



-154-

CHAPTER 7
TWO-PHASE FLOW RESULTS AND DISCUSSION

In this chapter results are presented corresponding to the numeri-
cal computation of various two-phase flow experiments of dilute concen-
tration documented in the literature. In addition, the calculation
" procedure has also been used to predict two-phase curved channel flow
~ and erosion over a wide range of values for the parameters of interest
not previously documented.

A review of the two-phase, fluid-particulate turbulent flow
1iteratqre, shows that there are only a few consistent and reliable
experimental investigations which can be used for testing and
evaluating a two-phase turbulence model such as the one of this work.
There are even fewer studies which provide detailed and directly
measured turbulence characteristics in addition to the mean flow
quantities. For example, in curved channel flows, the data available
for experimental measurement is usually related to secondary effects.
These arise as a consequencé of the flow and are manifested by such
observable quantities és location and amodnt of erosion wear, and rate
of wall deposition of the particulate phase. In such cases, proven
models of erosion, or depositibn, can be utilized to predict these
effects, with the flow-dependent input provided by the turbulence
model. While valuable, such comparisons are of limited value for
~ establishing the validity and use of a two-phase flow turbulence
model. Therefore, whenever possible, comparisons will be made with

direct measurements of mean flow and turbulence quantities.
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7.1 Straight Channel/Pipe Flow ResuTts

Tab]e 7.1 presents a summary of the experimental conditions
- pertaining to the straight channel/pipe flows predicted in this
section. |

Prediction of mean streamwise fluid velocity and of mean particu-
late velocity are presented in Figures (7.1) and (7.2) for the pipe
flow study by Kramer and Depew [1972b]. The velocity profiles are
normalized by respective center line values and the flow conditioné are
indicated in the figures. In general, agreement between the measure-
ments and the predictions of this work is good, although for higher
ajp it is less satisfactory for fluid velocity in the flow region
near the pipe wall whereAdiscrépancies of the order of 13% are found.
The fact that these discrepancies arise for the more concentrated
particulate flow is in agreement with the turbulence model limitations.
Howevef, measuremeﬁt'errors in the velocity profiles, estimated from
the information givén by Kramer and Depew, suggest a root mean square
variation of 4-6% in the measurements. Sources and quantification of
possible systematic errors in the measurements were not documented by
Kramer and Depew, nor are they estiméb]e from their paper. In view of
the above, the discrepancies observed between fluid velocity measure-
ments and calculations is not judged to be seriqus. | “

Figures 7,3 - 7.6 show the results of fluid and particle velocity
prediction for the tho—phase straight channel flow exberiment of Stukel
and Sbo:[1969]. The flow characteristics are indicated in the'figures;

Figure 7.3 shows calculated mean;paktic]e velocities in excess of
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correspondfng measurements by as much as 12% in the neaf wall region of
the flow 0.05 < y/D < 0.2. The over-prediction can be attributed in
| part to the presence of electrostatic effects in the experiment which
are not included in the model formulation. In the experiment, the
particulate phase consisted of 14 ym magnesia particles in a very
dilute concentration, i.e., Eﬁn = 0(10-9). By repeated contacts
- with the electrically'grounded wall, the particles became electrically
charged and moved toward the walls. This resulted in an increase in
particle concentration in the wall region. Due to the electrostatic
attractidn, particles in the vfcinity of the Qa]] undergo a reduction
in longitudina1 momentum, and hence velocity. In addition, the
electrostatic force increases particle concentration near the wall
relative to the core region of the flow (see Stukel and Soo [1969]).
Particle accumulation in the wall region tends to decelerate the fluid
longitudinal velocity through particle viscous drag effects (see Eq.;}
(3.2f13)); Thus, ihdirect]y, the particTes act on the fluid in such a
way as to reduce the longitudinal momentum. Figure 7.4 shows the
correspdnding fluid velocity profiles for the same longitudinal
lTocations as Figure 7.3. Althoughrthere are no experimental
measurements for comparfsbn, it is worth noting that due to smallness
of-the'particies the fluid and particulate phase velocities are inv
close agreement at any streamwise location.

The centerline values of developing fluid and particle veloci-
ties are shown in Figures 7.5 and 7.6. The velocities are noh-

- dimensionalized with respect to the corresponding inlet ve]ocities,
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and the longitudinal distance measured from the channel inlet is
non-dimensionalized in terms of both inletvveTOCity and fluid kinematic
viscosity. Similarly, to conform with the manner in thch the data is
provided by Stukel and Soo, for particulate centerline velocity, the
distance from the channel leading edge is non-dimensionalized by an
"equilibrium length", Tm(ﬁ}x)in. defined in Chapter 2. This pracfice
has the advantage of including the particulate phase responsiveness
characteristics without referring to a specjfic particle size or fluid
property. The prediction in these two figures show 1inear1yAincreasing
values of both fluid and particle center-line velocities with streamwise
position and in very good agreément with the experimentai data. The
longitudinal variation of partiéulate phase wall-slip velocity is given
in Fig. 7.7. The good agreemént between measurements and prediction is
" an indirect confirmation of'the validity of the wall treatment model
presented in Chapter 3. From Fig. 7.7 it can be seen that for small
values of X/(U}in_rm), the wall-slip velocity, Ubw. varies linearly’
with x/(ﬁ}in.rm)‘indicating_thé dominance of the inertial component to
Ubw in the entrance region as anticipated. It is interesting to note
fhat for particulate phase mean volume fraction, a, as 1ow as 10‘5,
corresponding to the Stukel and Soo experimént predicted here, the
continuum model for the Eulerian system of equations presented is still
yielding fairly accurate results.

Comparisons between preditted'and measured lateral variation of

longitudinal slip velocity, UfZ-Upz, are shown in Figs. 7.8 and
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7.9 for the experimeht of Kramer and Depew [1972b]. Figure 7.8
~corresponds to the case with ajp, = 8.4 x 104 while Fig. 7.9 to

the case with ajp, = 4.2 x 10-3. ' In each case the slip velocity is
predicted for two particle sizes in flows which, otherwise, have the
same characteristics. As shown in the figures, the larger 200 m
~diameter particles are less.responsive to the fluid motion and produce
a higher slip velocity than the 62 um particles. In the experiment,
estimated values of the partcle response times non-dimensionalized by
the time scale of the mean fluid motion (D/Ufiﬁ.) were 552 and 53,
respectively. The tenfold increase in particle response time for the
larger particles relative to the small corresponds fo a Ee]ative
increase of about 2.7 in slip velocity at the pipe centerline for both
values of particulate volume fractions. While both figures show good
predictions for the_62~um partié]es, predictionsvfor the 200 um par-
ticles show a considerable disagreement with respect to the data. This
poor agreement can be explained by referencé to several factors. The
major source of discrepancy'is the assdmption of Stokes viscous drag
.for particle motion. The Reynolds number based on particle diameter
and mean longitudinal slip velocity for the 62 um and 200 m particles
are, Rep = 12 and Rep.= 130, respectively. These values correspond
to the pipe centerline for ajp, = 8.4 x 10-4. The rather high
. Reynolds number of the larger particles indicates the invalidity of a
Stokes drag law assumption for the large particle calculations.
Furthermore, the éssumption of a continuum model for the particulate |

phase may be violated by relatively large particles. As already
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mentioned, in order for the cont inuum model to hold in turbulent flow,
the particle size should be smaller than the Kolmogorov length scale
n. Estimates of n for the 0.5 in. pipe diameter flow experiment of
Kramer and Depew give 10 < n € 100 um. This suggests that neither
particle size conforms to the continuum assumption (dp << n).

However, it is clear that the 200 um particles are in more serious
violation of the assumption than the 62 um particles for which
predictions are in fairly good agreement'with the measurements. In
addition to the above two arguments aécounting for the discrepancies
observed between measurements and calculations, it should be noticed
that the expression used for particle turbulent diffusivity in the
calculation model is that of Peskin [1962] and is rigorously valid only
for particles small enough that inertial forces will not displace them
significaht]y from the vicinity of their initially neighboring fluid
elements. The slip velocity pfofi]es in Figs. 7.8 and 7.9 show maxima
occurring at the pipe centerline. The slip ve16city becomes zero as
the wall is approached and it eventua11y attains a negative value due
to the fact that while the fluid must come to rest on the wall, the
particle phase is allowed to slip bj.

The effect of>partfc1e volumetric concentration, or 10ading; for
the 0.5 in. diameter pipe flow of Kramer aﬁd Depew [1972b] is shown in
Fig. 7.10 with»particulate mean velocity difference as the abscissa.
Higher particulate vo]ume'fractions are associated with larger dissipa-
tion of fluid mean kinetic energy and, hence, fluid mean velocity. In

the core region, fluid velocity will be decreased as is evident by the
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data of Kramer and Depew. However, since the same partic1é size is
used in each loading, the slip velocity remains roughly the same (see
Figs. 7.8 and 7.9 resulting in a decrease in particd1ate‘hean velocity
ﬁith increase in particulate volume fraction. The increase in the wall
region shown by prediction of this work can be explained due to
incorporation of a particulate wall shear stress which is proportional
to particulate volume fraction, Eq. (3.4.2), resulting in larger
velocities for more dilute flows.

So far only mean velocity prediction and their comparsion with
corresponding measurements have been considered..‘Figure 7.11 provides
a cdmparison between measurements and calculation of particfe volume
fraction, o, for different particlé loading ratios (particle mass flow/
air_mass'f1ow). 'TheAexberiménta1 data wereAreported by Kramer and
Depew [1972b] for a 0.5 in. pipeflow, at Re = 24,500, of 62 um glass
particles in air. The measurements show a radial dependence in a for
loéding ratios larger than about 3, with a larger at the pipe center-
line than at thé wall. This phenomenon has not been explained by
| Kramer and Depew and, in fact, there appears to be conflicting informaQ
‘tion in the 1iteraturel(see thé‘same authors for such a discussion)
concerning the éorrett vériation of a with distance from the wall.

In general, particles can be moved transversely to the main flow by the
influence of body forces, thus setting up transverse variations in a
dictated by the sense of the appiied body force. Since in the experi-
ment by Kramer and Depew it appears that body forces were about norma]

- to the pipe wall, if their observations are correct, the variation of «
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with radial position must be due to a concentration-dependent fluid-
particule interaction. Corresponding predictions of « given in Fig.
7.11 do not display the radial dependence shown by the experimental
data. In the absence of body forces the two-phase flow turbulence
model predicts uniform distributions of a for all particle load ratios
. due, mainly, to the homogeneity influence of turbulence diffusionQ
Since the weak radié] variation of a measured by Kramer and Depew has
not been explained by those authors and, in any event, the discrepancy
between measurements and predictions is less than 16% for the highest
load ratio, it may be concluded that a uniform prediction of = is
physically reasonable and certainly accurate enough for the present
work.

Zisselmar and Molerus [1979] have measured the influence of
particle concentration, a, on fluid turbu]enf characteristics for the
case of 53 um glass particles in Tiquid pipe flow using Laser-Doppler
technique. Figure 7.12 shows predicted profiles of the transverse
variation of fluid turbulent kinetic energy as a function of «, non-

_dimensiona]ized by the pure fluid phase value. Both experiments and
caiculations show that increasing the particle concentration lowers the
level of fluid turbulence which can be dampened by as much as 50% for
ajpn. = 5.6%. As discussed in Chapter 3, with reference to term I¢
of equation (3.2.30), the reduction in turbulent kinetic energy can be
attributed to the turbulent energy transfer from the fluid to the

- particulate phase. - The two-phase turbulence model presented in this

work is capable of predicting such a variation as evidenced in the
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figdre. Deviations from the experimental data at the higher particu-
late concentrations are due to the diluteness assumption limitation
present in the two-phase flow model. The under-predictinn of the data
at higher concentrations is, however, larger at the core region of the'
flow relative to the wall region as shown in Fig. 7.12. This can be
attributed to the significance of mean convection and turbulent diffu-
sion terms in the core region relative to the wall region where‘produc- \
tion and viscous dissipation effects are more dominant (see Eq;
‘(3.2.30)). It should be noted that the mean convection, turbulent
- diffusion and production terms in k-transport equation contain a factor
(1-a) which is assumed to be unity when the diluteness assumption is
incorporated.

Variation of turbulent shear stress, -5f uf Uf,, with
particulate concentration corresponding to the.data of Zisselman and
Molerus [1979] is shown in Fig. 7.13. The data correéponds to the
radial position of y/D = 0.05 where maximum values for shear stress is
reported by the authors. The'reduction in fluid shear stress with
increasing conéentrations in predicted with good agreement by this
| work. The reduction in - G;:—GF; can be explained by writing
. thét:

aU.

€

up U, = ¢
frfs "

at the wall region and in which the Prandt1-Kolmogorov relation for

fluid eddy viscoéity is incorporated. The experimental data of Kramer
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and Depew [1972b] already presented show no significant variation in
fluid longitudinal velocity gradient at the wall region of‘turbu1ent
pipe flows. Therefore, the reductions in -G?;'E?;'with a is
attributed to corresponding decreases in k values which was already
discussed. Similar to Fig. 7.12 and Fig. 7.13 also shows prediction
deviations from data at higherfconcéntrations which are due to:

incorporation of diluteness assumption.

7.2 Curved Channel Flow énd Erosion Results

a) Testing
In contrast to straight channel flow, the lack of experimental

data for fluid mechanical variables for two phase curved channel flows
precludes any direct comparison between the calculations and corres-
ponding experimental results.

A survey of literature shows that the basic dynamics of two-phase
flow in curved channels and pipe §eometries remain yet to be investi-
gated. Techniques'such as Laser-Doppler velocimetry have the potential
for future research in.this réspett. For a thorough understanding of .
many effects of practical interest such a fundamental investigation is
- necessary. Among these are the erosion at walls caused by the impinge-
ment of solid particles, and wall deposition of solid particles,

The prediction of the relative rate of erosion at the concave
walls of two-phase curved duct flows are shown in Figé. 7.14 and 7.15
for the experimental cases invesfigated by Mason and Smith [1972]; In

their study the authors measured the erosion rate as a function of bend
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angles for Reynolds numbers of 96000 and 140000'respective1y in bends
of different curvature. It can be seen that the qualitative pattern of
erosion wear at the outer (concave) wall is well predicted.

The pattern shows an initially abrupt increase in the erosion rate
maximizing at about a duct angle of 20°-25°. This is followed by a
monotonic -decrease in erosion until the duct exit is approached. The
angular position corresponding to maximum erosibn rate is predicted
with good accuracy with the percentage deviation of prediction from
eXperiment being about 5% at Re = 96000 and 2% at Re = 140000. Very
good qualitative agreement is found betwéen measurements and .
predictions of erosion rate over the first 20°-25° of duct curvature.
The same agreement is not, however, found for bend angles larger than
the maximum erosion position. In the region immediately following this
‘Tocation, prediction of»érosive.wear are larger than the corresponding
measurements. This over-prediction is part1y due to the absence of
three-dimensibna] secondary flows in the calculation scheme which arise
.in practice; see Humphrey, Whitelaw and Yee [1981]. The lateral motion.
induced by the'secoﬁdary flow, tends to reduce fhe particle angle of
vimpingement as well as its mean kinetic energy of impingement byvre-
directing and dragging the particles in the 1atera1‘diréction. Such an
increase in the bartic1e effective path-length through the duct in-
creases the chances for repeated collisions with the bend walls which,
by reducing the particdlate kinetic energy of impingement, also reduce
the rate of'erdsion. 'In the inlet region of thé curved duct, the

secondary motion is relatively weak and the closer agreement between
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measurements and predictions is to be expected. It should be noticed
that for bend angles following the position of maximum erosion, the
experimental data, particularly for Re = 96000, shows considerable
.scatter rendering a comparison, at best, qda1itative. However, in this
region of the flow secondary motions clearly favor the overall
reduction of erosive wear at concave wall as shown by the trend in the
experiments.

Besides the secondary flow effects just discussed, an
over-prediction of relative erosion rate in regions following the point
of maximume erosion can also be attributed to particle wall rebounding
effects which are not included in the prediction model. Particles with
Tow mean kinetic energy rebounding from the band wall can slow down,
'direét1y through collision or induced drag, the more energetic
particles approaching the wall. Consequently, the rate of erosive wear
is reduced. |

It should be noted that in spite of the lack of an inclusion of
secondary flow and particle rebounding éffects, the present model has
reliably predicted the points of maximum erosion rates as well as the

fairly large ratio of erosion weaf throughout the inlet band region.

b) Applications:

The results preﬁented in the previous subsection have demonstrated
the adequacy of the calculation procedure for predicting turbulent
two-phase flow in straight and curved channels. In the following
subseétion the calculation procedure is used to document various

characteristics of turbulent two-phase curved channel flow for which
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there does not exist experimental information. In particular,
predictions are presented and discussed for fluid and particle phase
velocities, kinetic energies, and dissipation of fluid phase kinetic
energy. Erosive wéar is also predicted over a range of relevant
parameters including particle size, response time and concentration;
and fluid ve]o&ity.v

Fluid mechanical resu]ts‘

Velbcity profiles for both the fluid and the partic]é phase are
shown in Figs. 7.15 - 7.19, and correspond to the cases of v = .01
(highly responsive), 1 and 100 (non-responsive) particles,
respectively. Thefparameter v is a non-dimensional particle response

time which is defined as:

'Qith A and»Ufo as ‘the channel width and fluid mean streamwise
velocity at:thevchanne1 in]et,'respectively. - For the cases predicted,
Re = 10° and Rc/a = 12. The particle to fluid density ratio was
typical of that of coal in water (Ep/Bf = 1.8).

From the velocity profile calculations shown in Figs. 7.16 - 7.18

it is seen that the slip velocity,

U}e-Upel. becomes more significant
as ¢ increases with the largest slip ve]ocity_corresponding_to v = 100. -
- For ¢ = .01 there is virtually no difference between-the}ve1ocity of

the two phases. For this case, the ratio of slip velocity at the wall,

where the highest velocity difference is expected, to the local
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friction velocity, U;, is about 0.05; small enough to conclude that
particulate wall slip velocities are negligible when ¢ < 0.01. For y =
1, the local wall slip ye1ocity'is still small except in the wall
regions where it is not negligiblie. As the parameter y increases the
particulate phase beéomes less responsive to the fluid motion and lags
behind as shown in Fig. 7.18. The slip velocity increases'és the flow
proceeds through the channel. For large y values the particulate
velocity profiles show siower particle motion in the vicinity of the
outer wall as compared to the inner wall. The decrease is attributed
to the presence of the Coriolis term in the particqlate phase longi-
tudinal momentum equation (thebterm Ub;ﬁpe/r in Eq. (I.19)).
For high v values the Coriolis force has a dominant effect compared to
that of the viscous drag. The Coriolis force becomes‘particu1ar1y more
significant at the outer wall where it becomes large in its value. For
small ¢ values the particulate motion is influenced much more directly
by f]uid-induced viscous drag. A comparison between the results in
Fig. 7.18 for ajn. = 0.1 and Fig. 7.19 for aj,, = 0.001 shows that
the magnitude of the slip velocity is independent of concentration for
Fin. € O0.1. |

Transverse variation of fluid turbulent kingtic energy:and dissi-
pation are plotted in Figs. 7.20 - 7.22 for various values of the para-
meters ¢ and ajp,. The plots show that both k and e decrease with

increasing particle concentration. The decrease in fluid turbulent
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kinetic energy is a manifestation of the dampening influence of the
particulate phase on the flow. The energy lost by the fluid is
transferred to the particulate-phase, in the form of a particulate
kinétjc energy of turbulence through particle—fluid interaction, and/or
dissipated, i.e., the so-called "drag dissipation". For both large,

¢ = 100, and small, ¢ = 0.01, values of'the-partic1e response parameter -
the reduction in € is small. At intermediate values of y (=1) contri-
butions to the balahce‘of € arising from the particle-fluid interaction
term (see Eq. (3.2.36)) are maximized leading'to‘more pronounced
reductions in ¢ as a function of ajp.e It is a corresponding inter-
action which accounts for the reduction of k. Plots of the fluid
turbulent kinetic energy for two values of the particle response time
parameter are shown in Fig. 7.20 for aj,, = 0.01. The profiles, show
that small particles, with small response times, are more effective in
extractihg turbulent kinetic energy from the fluid to‘raise their own
level of turbulent kinetic energy. The mechanism for ‘this interaction
was'previous1y discussed in section 2 of Chapter 3.

Profiles for the transverse variation of dissipation of fluid
kinetic energy of turbulence, shown in Fig. 7.21, display a notable
dependence on the concentration (ajp,) at y = 1, which is not evident
at the higher and lower values of thevparficleiresponsive-parameter
(i.e., ¥ = 100 and ¢ = 0.01).  The sensitivity to a at intermediate
values of ¢ can be explaihed by reference to Eq. (3.2.30). In this
equation for large values of ty (y = 100, for example) the fluid

particle interaction term II_ in the ¢ equation does not contribute
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significantly to the bé1ance of €; hence variations in the magnitude of
the term which é%e due to changes in ajn 90 dnnoticed. Similarly, -
when tp is small (y = 0.01) particles respond so quickly to fluid
fluctuations that differences between fluid and particle velocity
gradients are small. This, again, leads to a reduced contribution of
| term II. to the-balance of e. However, at intérmediategva1ues of the
particle response time parameter (¢ = 1) for which particle and
velocity fluctuations are not entirely in phase, the predicted level of
dissipation is signfficant]y dependent on the,concentration (a) of the
particulate phase. o
Hith‘respect to the above, it is important to note that while the

fluid dissipation € decreases with increasing concentration a, the
total dissipation ey (the sum of ¢ and the additional "drag
dissipatidn", eps see Eq. 3.2.33) may actually increase.

| Transverse profiles of particulate phase turbulent kinetic energy
(kp) are given in Figs. 7.23 and 7.24 for various values of ¢ and
ajn, The profiles in Fig. 7.23 show that particles with relatively
large response times, ¢ = 100, have lower values of kp due to their
inertia, while particles with smaller y (1 - 0.1), because they are |
able to respond to fluid fluctuations more readily, show 1arger_va1ués
of turbulent kinetic energy. Values of kp were predicted from Eq.
(4.2.5a), kp = k TL/(TL + ). For small values of the par-
ticle response time <y, kp approaches the fluid kinetic energy
distribution result; as shown by the profile for y = 0.01.. However,

for larger values of tp, corresponding to y = 1 and 100 respectively,
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the behavior of k, is that of k, modulated by the ratio T /p.
This ratio of time scales is proportional to k/e and is responsible for
the peaks in the kp distributions near the walls.

The dependence of kp on Eﬁn. is displayed in Fig. 7.24. The
peaks in the distribution arise for the reasons explained above. In
addition, the profiles show that as the particulate phase COnceﬁtration
is increased, dampening effects diminish the levels of fluid kinetic
energy of turbulence k, thus reducing (see formula for kp above) the
source of kinetic energy for the particulate bhase. |

Erosion wear results

Figures 7.25 through 7.29 provide the bulk of the'calculated
results obtafned in this study relating to erosive wear at the concave
wall of a two-dimensional curved channel flow. As in the previous
sections, the channel'curvature ratio was R./a = 12. Values of the

Reynolds number and particle response time parameter investigated were:

Re = 104, 5 x 104, 105, 5 x 10°, 108

v = 0.01, 0.1, 1.0, 10.0, 100.0

The Choice of the values covers almost the complete range of situations
of practical interést. | |
Erosion-predictions»wereAmade using the modei of Finnie as
described in'Chapter;G, and the results are given in the form of
dimensionless rates of erosion wear as a function of the curved channel
angle (streamwise location). In the p1bts, the quantity E is the |

volume eroded of wall material per unit area per unit time, p; is the ‘
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Vickers hardness of’the material, mp is the mass flux of the
particulate phase at the channel inlet and (Ubein;) is the
parficulate phase mean velocity at the same location.

Figures 7.25 - 7.29 show that, for a fixed.Reynolds number, the
rate of erosion (E) increases with an increase in the particle response
time parameter (v).  Physica11y, this is realistic sinée large inertial
particles, large y; can be expected to deport more significantly from
$n élignment with the f}uid streamlines at the outer wall, than the
sma11er-m§re responsive particles.

Calculations for ¢ = 4.9 x 10-5 (not shown here) corresponding
to 5 ym solid particles at a Re = 10% with op/of = 1.8 show no
particulate phase impingement on the concave channel wall and almost
identica] velocity profiles for both phases. However, for y = 0.01,
corresponding to 72 um particles with the same density ratio and at the
same Reynolds number, particles impinge on the concave wall only after
a channel angle of 8 = 38°, causing erosion of the channel wall as of
the location. Betﬁeen 6 = 38° énd the channel inlet, for this case the
particulate phase inertial forces are balanced by fluid viscous drag
which controls the movement of the particles and prevents any collision
with the_wa11. Nevertheless, as the.flow proceeds downstream, the
centrifugal force due to flow curvature induces a radial component of
- motion on the particles which eventually results in their particulate

impingement on the concave wall. For this case it follows that:

centrifugal force > radial viscous drag force
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and from Fig. (6.1): .

(7.2.1)

ak?

v
a-! |_°<|

in which the radial fluid velocity component is neglected with respect
to the particulate phase velocity. Therefore, the angle of impingement

(Bimp.) is, approximately:

U T
: —L Y m Y A
tan Bimpo < 'U -'T‘ r (7.202)
fo
For small values of tp/T, Up = Ufo and thus from Eq. (7.2.2)
one obtains:
-1 v
Bimp. < tan (rm/T . A/r) | {7.2.3)

This expression'gives an upper limit for fhevangle of impingement when
~ centrifugal forces are significant. For Re/A = 12 and /T = 4.7 x
10;5, corresponding to 5 um sélid particles with p/3f = 1;8,
the maximum impingement angles is; Bpax = 2.2 x 104 which is too
small to cause significant erosion. |

Table 7.2 providesra comparison between values of the'maximgm
partic1e fmpingement angle calculated from Eq. (7.2.3) and also from
the numerical turbulence model of this wofgufof.é curved channel with
Re/A = 12. Given the rélative]y gbod égreement for_the-order of
magnitudes-shown between correspbnding results for a given y, it may be
inferred that for 0.01 < ¢'< 1.0 the centrifugal and.viscous drag

forces are in approximate balance and Eq. (7.2.3) provides a convenient‘
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Table 7.2

(from turbulence model

(from Eq. (7.2.3)) B
of this work)

¥ Bmax max?

Re = 10°  Re = 10° Re = 10°
.01 4.8 x 102 2 x 102 1.4 x 1072 1.5 x 1072

0.1 ' 0.48 " 0.20 0.29 0.28
1.0 4.8 5.2 3.3 3.0
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estimate for the particle phase impingement angle at the concave wall.
For larger values of v, the approximation Up = Ufo can not be
made due to the importance of particle inertial effects and Eq. (7.2.3)
for predicting 8pax does not apply. A
With increasing values of y, particles become less responsive to.

theﬁfluﬁd’motion at a fixed Reynolds number and the point of initial
erosion moVes further upstream in the channel. This is shown in Fig.
(7.2.5) for Re = 10% in which the increase in v from .01 to 0.1
causes the inftia] erosion point to be moved from 38° to 22° while at
Re = 106 the same increase moves that point from 40° to 12° which is
‘an indication of the particles' fncreased inertial effects in the
’higher Reyno1ds numbers. The‘situations for v = .1 and ¢ = 1 values
correspond to 226 um and 715 um particles with pp/pf = 1.8 at
Re = 104, | | |
The increase in v will increase the eroswon rates accordlng]y.
However. the increase is not linear as is shown in Figs. 7 2.5 to
7.2.9. At Re = 104 the»1ncrease in ¢ from .01 to 100, four order of
magnitudes, will cause an erosfon rate by as much as'six ordefs of
maghitudesvhigher. |

~ Based on above arghments”it is concluded that for a constant-
Reyno]ds number different erosion patterns could be observed depend1ng
on ¢ va1ues. For small values of w the non-dimensional erosion rate
increases as one proceeds downstream and the maximum erosxon rate
"~ occurs at the exit. However, for 1arge ¥ values, i.e., for v > 10, the
erosion patterns becomes complete1y dffferent. 'It reaches a maximum .

initially and then descends down until it reaches an almost constant
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value as the channel exit is approached. It is interesting to note
that for such large ¢ values the shape of the profile remains the same
irrespective of y values or the Reynolds number and fhe profiles
corresponding to the larger ¢ values are_sﬁifted slightly upwards.
This means that in this region of high y starting approximately from

v = 10 (corresponding to, for instace, 226¥ particle with Bb/S% =

1.8 at Re = 105),to higher y-values (corresponding to higher particle
sizes at any-Reynolds number~2.104) the ébso1ute value for erosion
rate at a fixed point on the curved channel outer wall becomes propor-

tional to:

. C\3 |
E « °""(Upin) - (7.2.4)

irrespective of Reynolds nuhber and y. Although, strictly speaking it
is a weak functioﬁ of the latter variable as shown in Figs. 7.25 -
7.29. It is interesting to note that the same dependency as above, of
the erosion rate on the mean characteristic velocity in the range of
high ¢ value was also obtained by Laitone [1979b]. In that investiga-
tion the erosion caused by the laminar, two-phase, fluid-particulate

flow for a flat wall was ana1yzed'in which the mean time scale T was

defined by the free stream velocity and a characteristic length scale.

The same conclusion was also reached by Yeung [1977] who investigated
the erosion in curved pipes using a Lagrangian formulation in laminar
flow. In the latter study the‘erosion results were subdivided into

respectively high and low velocity categories, equivalent to high and

Tow values of v here. The dependency of E on ajp is linear as shown
by Eq. (7.2.4). This has also been concluded by Yeung [1977].
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The non-dimensionalized erosion rate profiles, for ¢ > 1.0, are
characterized by a maximum at 8 = 20° after which the profiles descends
slightly to approach asymptbtic values. The existence of the maximum -
point of.erosion for large y values, corresponding to rather large and.
non-responsive particles, is due to erosion effects by initial momentum
of the entering particles. ‘In this situation, unlike the case for
small ¢ values, i.e.} small and responsive particles, the fluid viscous
drag is not capable of aligning the particles rapidly enough with the
fluid streamlines at the concave wall which subsequently results in
impaction with the wall and erosion of the wall material. Thevdecline
in profile following the maximum is due to réductions in the
particulate mean kinetic energy as one moves downstream.

In the experiment of Mason and Smith [1972] at Re = 140000,

Fig. 7.15, the corresponding ¢ value is about 5.24 and therefore shows
the high erosion pattern. The non-dimensional erosion rate becomés,
approximately, constant as the channel exit isvapproached. This is due
to counteracting effects.of longitudinal reduction in the mean kinetic
energy which is being balanced by the centrifugal force acting in such
a way as to pu$h the particles outwards and therefore enhance the the
impingement on the wall. In Fig. 7.30 the longitudinal variation of
mean kinetic energy of impact at various ¢ values at Re = 10° is

shown. It can be seen that as y increases the reduction in kinetic
energy becomes more significant as the exit is abproached. The

streamwise variation of angle of_impingemeht is shown in Fig. 7.31.
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The velocity vector plots corresponding to various ¢ values at
Re = 10° are shown in Figs. 7.32 - 7.34. It can be seen that with
decreasing y, the particulate velocity at the outer wall becomes more
aligned with the fluid velocity. From Figs. 7.25 to 7.29 it is
observed that for large v va]ues‘thé magnitude of non-dimensional
erosion wear remains almost constant with respect to changes in
Reyné]ds number. However, for small ¢ values its magnitude will
increase with the Reynolds number and the increase is more enhaﬁcéd for
lower ¢ value. For example, for an increase of Reynolds number from
104 to 105 the non-dimensional erosion rate at.the channel exit for
¥ = .1 is almost doubled while for ¢ = .01 it is as much as ten times
higher.

From the practical point of view and for the design of pipeline
components and apparatus it is the maximum erosion rate of the wall
material which plays a decisive role in the design process. Figure
'7.35 shows the variation of normalized maximum erosion rate versus.
Reynolds number for vérious w.va1des whfch correSpond to different

particle size, fluid properties and channel widths.
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

The main conclusions of this study are summarized below.

The purpose of this work has been twofold:

b)

To formulate,'and predict tﬁo—phase turbuient flows based on

‘mode1edvtransport equations for the f]uid-and particulate

phases as well as the equations governing fluid turbulent
kinetic energy and dissipafion of turbulent kinetiC'energy; _
Related to the above, to deve]op a model of turbulence for
dilute two-phase f]uid-particulate:flows. The turbulence
model is based on the two-equation (k-¢) model of turbuTencé |
Eonsidered here in its fully-elliptic form to allow for

possible flow recirculation.

The analysis of solid particulate effects on the fluid tdfbu]encé

in dilute two-phase flow shows the following results:

a) 

b)

Viscous interactions between the‘f1uid and suspended solid
partic]es causes a reduction in fhé f]uid turbu]ent-kinetic
energy ahd alSo in the small scale dissipation rate of viscous
fluid turbulent kinetic energy. |

Thé pbééence of solid particulates in turbulent iwo-phase
f]ows;'and attendant dynamical.interactions‘between‘the-two
phases,-pfovide a second mechanism for the dissipatioh of
turbulent, and méan, kinetic energy}’ The dissipation rate
associated with this process is referﬁed to as "drag |

dissipation”.
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c) Furthermore, an additional mechanism is evolved by which
kinetic énergy is exchanged between the mean and the turbulent
motion of both phases.

The f]uid-partfc]e velocity and velocity-gradient correlation

terms which appear in the transport equations for fluid turbulent

kinetic energy and dissipation rate of fluid turbulent-kinetic
energy, respectively, are modejed using the particu]ate Lagrangian
equation of motion with Stokes' drag as the only driving force
considered. Modeled terms obtained in this manner display
expected 1imiting forms in the formulation. |

Predictions based on the turbulence model presented in this work,

of various characteristics of straight channel turbulence two-

phase flow, are generally in good agreement with the available
experimental data. Deviations from the experimental data occur
for the cases in which: particulate concentration exceeds 5% by

vo]dme; particle Reynolds number becomes much larger than unity;

field forces arise, such as electrostatic, which have not been

included in the model formulation.

The variation of various f]uid'ﬁurbu]ence quantities such as
turbulent kinetic energy and turbulent shear stress with particu-
late concentration are correctly predicted by the model. Signifi-
cant deviations from experimental data occur ét‘high particulate
concentrations, for which the turbulence model is not valid.

For curved channel flows, the pattern of erosion rate and the

streamwise location of the point of maximum erosion on the outer

-channel wall are well predicted using the models for turbulence.
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and erosion presented in this work. Deviations from experimental
data are due mainly to the non-inclusion of cross-stream
(secondary) flows in the prediction scheme, as well as the absence

of particle wa]l‘rebounding effects in the erosion model.

The following recommendations are offered for continqing.research
along the lines of the present approach. For the prediction of a widér
class of turbulent two-phase flows, further genera]ization of the
model presented in thfS work is in order. This can be achieved by
reconsidering and minimizing the simplifying assumptions made during
the course of the analysis in order to extend the range of validity of
the dependent variables in the fofmulatibn. Among these, an extension
- of solid particulateAconcentrations to higher values is probably the
most desirabie; This is because in most solid-liquid flows of indus-
~ trial interest, like slurry flows or pneumatic conveying of solid
particulates, the particulate volume concentration can réach values as
high as 50%. The model and the numerical technique presented in this
"‘work can be used as a basis for further developments in this regard.
The inclusion of field forces such as e]ectrostat{c, gravity, etc.,
will,a1so;extend the range of applféability of the model. The adoption -
of a more general expression for the particulate phase eddy diffusivity
in terms of known field}variables should also be considered. Finally,
based on the arguménts given in Chapterv7, for improvedvpredictionsvof
the erosion pattekn at the outer wall of curved ducts, cross-stream
(seéondary) flows and particulate wall rebounding effects should be

included in the model formulation.
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Although there have been and continue to be numerous research
activities in the field of fluid-particulate turbulent fldws, high
quality fundamental investigations still remain an absolute necessity.
In particular, there is a serious need for quantitative experimental
work yielding accurate results of value for guiding and testing
numerical models for these flows. While the practical need to predict.
the characteristics of turbulent two-phase flows has been the main
incentive for this work, the author believes that more improved model
formulations can only be achieved at a ﬁace comparable to that of the
discovery of basic facts through experimentation. Strategically
planned, carefully executed, fundamental experimental work will
continue to play a dominant role in future theoretical and modeling

advancements relating formulations to turbulent two-phase flows.
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FIGURE CAPTIONS

Lateral variation of (-UfrUfz/k) in‘two-phase pipe flow.
Variation of -uf ufz/k with particulate concentration.

The posit1ons of a solid particle at two d1fferent t1mes when .
contained in a viscous fluid.

The plot of fluid-particle correlation coefficient.

Definition of points (a) and (b) in space separated by axj
in lateral direction.

The plot of f1u1d-part1cle correlation coeff1c1ent being at two
different points in space.

Definition of velocity and angle of impingement for erosion
caused by a solid particle.

Control-volume for scalar and vector quantities.

Transverse variation of normalized f1u1d mean velocity for
different part1cu1ate volume concentration in two- -phase
straight pipe flow.

Transverse variation of normalized particulate mean velocity
for different particulate volume concentrat1on in two-phase
straight pipe flow.

Transverse variation of particulate mean velocity in
developing two-phase straight channel flow.

Transverse variation of fluid mean velocity for two-phase

~developing straight channel flow.

Streamwise variation of fluid normalized mean velocity in
developing two-phase straight channel f]ow.‘

Streamwise variation of norma11zed particulate mean veloc1ty
in developing. two-phase straight channel flow.

Streamwise variation of part1cu1ate phase wall-slip velocity

in developing two-phase stra1ght channel flow.

Transverse variation of norma11zed mean slip ve]oc1ty for
different particle sizes in two-phase stra1ght p1pe flow.
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Transverse variation of normalized mean slip ve]oc1ty for
different particle sizes in two-phase straight pipe flow.

The effect of particle concentration on the transverse
variation of mean particulate velocity for two-phase

straight pipe flow.

Transverse variation of particulate mean volume fraction at
different particulate loadings for two-phase straight pipe

flow.

The effect of part1cu1ate mean volume concentration on fluid
turbulent kinetic energy at different radial positions in
two-phase fully-developed straight pipe flow.

Variation of fluid normalized turbulent shear stress'with
particulate mean volume concentrations in the fully
developed region of two-phase straight p1pe f]ow.

Two-dimensional pred1ct1n of relative erosion rate at the
concave wall of a two-phase curved duct three-dimensional

flow.

Two-dimensional prediction of the relative erosion rate at
the concave wall of a two-phase curved duct

three-dimensional flow.

Transverse variations of
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two-phase curved channel
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Transverse variation of normalized fluid turbulent kinetic
energy for different particle response parameters in fully
developed region of two-phase curved channel flow.
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Transverse variation of normalized fluid turbulent kinetic
energy for different particulate concentrations in fully-
developed region of curved channel flows.

Transverse variation of normalized dissipation rate of fluid
turbulent kinetic energy in fully developed region of
two-phase curved channel flows.

Transverse variation of particulate turbulent kinetic energy
for different particulate response parameters in fully
developed region of two-phase curved channel flow.

Transverse variation of particulate turbulent kinetic energy
for different particulate concentrations in fully developed
region of two-phase curved channel flow.

Streamwise variation of normalized erosion rate at the outer
wall of two-phase curved channel flow for different particle
response parameters.

Streamwise variation of normalized erosion rate at the outer
wall of two-phase curved channel flow for different part1c1e
response parameters.

Streamwise variation of normalized erosion rate at the outer
wall of two-phase curved channel flow for different particle

response parameters.

Streamwise variation of normalized erosion rate at the outer
wall of two-phase curved channel flow for different particle
response parameters.

Streamwise variation of normalized erosion rate at the outer
wall of two-phase curved channel flow for d1fferent particle
response parameters.

Streamwise variation of normalized particulate phase
impingement mean kinetic energy at the outer wall of
two-phase curved channel flows.

Streamwise variation of particulate bhase impingement angle
at the outer wall of two-phase curved channel flow for
different particle response parameters.

Velocity vector plot for fluid and particulate phase
velocities in developing two-phase curved channel flow.

Velocity vector plot for fluid and particulate phase
velocities in developing two-phase curved channel flow.
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Velocity vector plot for fluid and particulate phase
velocities in developing two-phase curved channel flow.

Variation of normalized maximum erosion rate with Reynolds
number for various particle response parameters.
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APPENDIX I
CONSERVATION EQUATIONS FOR TURBULENT TWO-PHASE FLOWS

~ In this appendix the general transport -equations are presented for
tufbulent two-phase flows in cartesian and cylindrical coordinates. In
the case of zero particulate volume fraction, the equations reduce to
the single-phase conservation equations given by Bryant and Humphrey

[1976] and Rodi [1979].

I.1 Cartesian Coordinates (x,y,z)

I.1.1 fluid phase

mass balance:

X y z _
5 oy T3z - O (1.1)

momentum balance:

X = 2 ([, -7 )-2F
X Ps Dt T (E}x pr) Ix
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i v
o Ty Px W
+uV2U -p (Upue) - o (uf )
f3 3
fy X f f.y f 3y _fy
- °f'32.(“fz”fy)
LG aP

(1.4)



-244-

In above equations the expressions for Reynolds stresses are given

au.
T = 2u fx -2 bk
f vfx tf X 3 °f
aﬁf
‘31’:12:= 2uy =3 --§'5fk
y e
T' i 2
~ - ) z ~
-Ppup = 2w —5>= -3 gk
z f
U, aU.
f f
~ _ X _J
f fx fy tf Ay | X
<aufx aufz> '
-Pes Ug U = yu
f fx fz tf 3z X
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kinetic energy:

Dk °p [- m -

X = . a(2k) = +au, (U..-U )+ <", (U, -U )

bt e WL Tx o Tx Px fy Ty Py

= : . v, - o v v
: t : t - t
- v 1, 9 f 9k}, 3 f 3k 3 °f 3k
" "fz(”f;”p)]*a—x<7k %) 7("; 2 = 2)

+G-¢€ (1.5)

In above equation'the expression for Lagrangian integral time

scale, T, the particle dispersion correlation, mfi, and the

generation of turbulent kinetic energy, G, are given by:

a u
f t 3
y p Y
TU = -y, 2o
f 't 9z
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2 2 2
[<3Ufz> (aU_fx) (anz> anx any
2\ *\&y/ Y\ Yy

: 2
+ 4 X + Yy r4 + z + —X
Tox 9z & 3z ay 3y

G = v

te

2 2 2 2
+ \—L) Y] + Z| & Z
X 92 ax oy

Dissipation of Kinetic Energyv

) ~ . AY
| : t
De _ b - 3 [_f 3¢
bt~ T~ @ (e - pr) 3% < o, 3x>
°f'm :
\Y V
te oo t 2
2 f d¢ 3 f 3¢ € £
+T§(T€a—y>+33<-€;'a_z>+celT(G'ce2T' (1.6)

With the fluid-particle correlation term given as:

[ e —TVm 35.2*35.23&2._53&2)
fp 2. | \ax 3y 9z e \9Ix/\3x

e(rm+TL) |
k [ak) (3¢ 5_<ak> (85) . all
Te\ay) \ay) T e \3z/\3z/] " T T
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I1.1.2 Particulate phase

mass balance:

axru )+ g rv) 260 )+5 T )

pz ax px
+L @ )+ (7T,) = 0 G 85
Y P.y Pz
with:
T = -y, B
Py tp X
alu = -\ E
]
Py tp y
‘alu = -\) a—.E
pz tp 9z .

momentum balance:

x: -%;(Errgx)+a—y(zv U, )+5 G0 T ) -

37 fUp a'u. + Ub U, ) . - (1.8)
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X (beu upy +'Ubya upx 3y (2 Uby a u?y)
"a—'(U a u +T d'u )
°z P Py Py P
(3T T 3 =T T 3 =17
= (a0 )+ = (a T )+ = (qUu°) =
X P, Py 3 TP, R B2 P,
2 (7, T 3 (31 3 (= 9 2
— (U U, ) -5 (@ u ) -=(au_ u_ ) -2 (au)
T fz P, X Py P, oy . py a; pz
2 TR —_ _ 3 |
-5 (O T+ T 0 ) -5 (U 0 + T 70 )
X pZ pz pz px 8y p‘y pz pz py
3 -
'5(2Upz°“pz)
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(1.9)

(1.10)
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The particulate Reynolds stresses are given by:

wa *Tp |
-ut = 2y, =X [k + v (»V-U)]
Py tp ax 3 P tpv p
va Ty
2 (o
-us = 2y, L. [k + v, (v.T )]
v
Py tp y -3 |°p tp p
30 :
P 2 [ T ]
-ut = 2 - x|k, + v, (VU )
P, t, %2 3 t, P
U U
p, - p
Py Py o \ %
aU, au
-uu o=y <apx + apz>
Py P, o \ 22 X

]
[~
o

]

| /3T au,
p::» P,Y
, Vi < 32 3 z> E

py pz _ D | .V

VIn above expression the divergence of the mean particle vélocity is:




-250-

also:
D _ 3 ,m 23 3
5t = 3t * Us ax+Uflay
and:
2 L I
v = 5+ =g+ —3
axX. 3y 9z
1.2 Cylindrical Coordinates (r,0,z):
[.2.1 fluid phase:
mass balance:
an 3Uf 3Uf , Uf‘
r +.l 8, z,_Tr
ar r 236 9z r .

momentum balance:

R A I P
oo\t -0, -

Dt r

(1.11)
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In which the Reynolds stresses are expressed as:

7 _ RAN
~ r ~ .
RGP G T e R
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and also;
D _ 2 2 8 3 3
5 = 5w+t 5 t—= 55+ 0,53
2 1 a2
g2 .03 .13 .1 3 —
v = o b o —— —'2+
3!"2 r ar r? 28

Dk pp [ZEka
- +TT, (O
W °¢™m LTt TL r
—r— T 0 1 3
e, (Ufz-Upz)] o
v
_ t ‘
3 f 3k
+3-z-<? -87)+ G-c¢
- with:
T = o-v, B
If tp or
o tp 18
Bt e = E
ale = =V 37
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and for production of bkinet'ic energy:
0.\ (0. (WU, \° U [/ U, U
f f f fe 1 f f
6 = v, {2 |\—==L] + +\ =2 - i__r,_°9
tf ar rag;/ - 9z r \r 26 ar

T, /U. . o0 50, a0, 23U, U U, ol |
1rr' fr ,_2_ fe +l( fr _fe + fz , 1Ee + fr fz ,
r 99 r\ 96 ar 38 8z 9z ar

2 . 2 2 2
<Ufe) (aﬁfe> (ane) <1 an)
+\—/ + t\m—] +\2—F
. r or 9z r 236
2 2 o \2
(anr> (anz> < . an2>
*\3z/ *\aF/ t\v38

Disspation of turbulent kinetic, energy

D

D

~ v
' t
De P 1 3 f _ 3¢
= e a (g - I1 ) + - _<—_ r __.)
Dt et fp r ar o r
v v '
t t
1 | f 3e) . 9 f d¢e
+ AT ('o'a ae) + '8z< 5, z) (1.16)

with the fluid-particle correlation term Ipr given by:

S Crvtp 1 (k¥ ak)2 ak\2 k(oK) (3
S Iy & [;7-(%) *(w *(?z') 'E(W)<'5'§’

. € tm+TL
_k &(ﬁ_-ﬁa_k e\, STL
e \ras/ \rae € \9z2/ \9z -rm+TL
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R

A.2.2 Particulate Phase

mass balance:

r ar P roé Pg 92 P,
+12 (mm )+ @)+ (3N, ) - o0
r or P raé Pg Z P,
(1.17)
with:
By TR [
Pr tp ar
- . ., J
Pg tp ras
TG = -y, 2@
P, tp 9z
momentum balance:
. - =2
a Up
13 - =2 13 - ) : 0 _
r ?a—r-(r UprJ‘F-F-a—e-(;UprUpe)"‘E GUprUpz,)- v =

"m fr Pr Pr Pz
- %-g—r (2r0_3""u_ ) - rgé | (U ou. +T ou )
rPr Pr Pg Pgp Pr
:ag ’ a'up
Y - Py Py
) (U TT 4T T )+ =2+ 0 (1.18)
- 92 2P P Py Pp r Pg T o
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%-g—r' (ra Upr—p,e) ) %:—6 Gﬁge) ' %7 (= Upe -pz) ' gvprﬁpe i
%_(Ufe‘fpe) -t (s “pr"pe) - ¥ ;:ge Tz areupz)
A, ) @, 7
U +T W0 )-2 Tw _EE.?"J _Ep_em
92 *"pg P, P, Pg° T PPy T Po T©  Pp
(1.19)
PTG ERL)  H G -
% (Ufz'-Upz) '_% g—r (ra “pr“pz) - ?:'6 (a “pe"pz) - %z' GEEZ)
'% %F ('rUpr‘FG;z ¥ r'UPZ a’u ,.) ) 72-5 (Upe o 2 ) Upzmpe)
2 (zvpempz) (1.20)
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APPENDIX 11
PREDICTION OF CURVED CHANNEL FLOW
WITH AN EXTENDED k-¢ MODEL OF TURBULENCE

ABSTRACT

Using algebraic approximations for the Reynolds stress equations a
general expression has been derived for Cu in Vg = Cu k2/c which accounts'
simultaneously fur the effects of streamline curvature and pressure-strain
in the flow, with the latter 1nc1udin§ wall-induced effects on velocity
fluctuations. The expression derived encompasses similar but more specific
forﬁuIations proposed in the literature. The presént formulation has been
used 1n ;onjunction with a k-c¢ model of turbulence to predict developing,
tuo-dimgnsiona!, curved channel flows. While, in general, predictions are
in good ﬁgreement with experimental measurements of mildly and strongly
curved floWs.;the model tends to overpredict the kinetic energy of turbu-
lence in the'inner-radius'(cqﬁvex) wall region. This is attributed to a
breakdown of the assumption that U;E;Yk is a constant in ‘the derivation of
the general expression for Cu' The present formulation provides a degree
of generality not previously availablelin two-equation modeling of turbulent

flows.
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NOMENCLATURE
Cw constant §n equation (23)
c - sodified coefficient in equation (1) (includes curvature and .
v pressure-strain effects)
Cw unmodified coefficient in equation (2)
D channel width
D, j Reynolds stress diffusive transport term
f (=f(2/y)) wall-dampening function
' 8 1/2
6; ('43('R-) ) Grtler parameter
o .
k kinetic energy of turbulence
L modified length scale of turbulence (includes curvature and
pressure-strain effects)
£, . unmodified length scale of turbulence
m : experimental coefficient in equation (24)
P mean pressure
Pij “Reynolds stress production term
FIRL :
Re (tﬁ—c') channel mean radius of curvature
Re (-DUm/v) Reynolds number
Ro ' concave wall radius of curvature (corresponds to r_ in a
curved channel) °
r radial coordinate _
ry channel inner-wall radius
o channel outer-wall radius
Uy maximum (streamwise) velocity
U, radial component of mean velocity

Ug streamwise component of mean velocity
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Gij
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components of Reynolds stress tensor
triple velocity correIation»
unmodified velocity scale of turbulence

distance along normal to a curved wall (into the flow)

“Greek symbols

empiricél constant in equation (3)
Ue BUe
(==/<7) extra strain in equation (3)

Kronecker delta

rate of dissipqtion of kinetic energy of turbulence

Reynolds stress viscous dissipation term

rer:

(Er ——) normalized radial coordinate
o i :

streamwise coordinate; also boundary layer momentum thickness
von Karman universal constant

spacing bé;ween Taylor-Gortier vortices

laminar viﬁcqsity '

(=y 4 ”t) effective viscosity

turbulent Qfscbsity

Taminar kinematic viscosity

(iéf) turbulent kinemgtic viscosity

Reynolds st?ess pressure-strain redistribution term
density . |

Prandtl number for kinetic'energy of turbulence
Prandt! number for dissipation ’ '

wall shear stresS
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INTRODUCTION

The importance of experimental measurements and theoretical predibctions
of turbulent flows over convex and concave surfaces and in curved channe‘ls
is evidenced by the attention which these two topics have and continue to
receive in relation to, for example, flow cooling and erosion of turbine
blades and rocket nozzles, flows in compressors, turbomachinery, curved
diffusers and channel passages. (ases of studies pertaining to flows over
convex surface_s are given in [1-7] while .sim.ﬂar examples pertaining to
flows over concave surfaces are available 1n [4-7]). Curved channe} studies
have been reported in [7-16].

In an extensive review of the subject Bradshaw [19] evidences the
sensitivity of turbulent flow characteristics to even small amounts of
mean streamline curvature Thus, for example, in the early study by
Kre1th [20] and in subsequert investigations by Thomanr, [21] and Mayle et

- [22] it has been shown that the heat flux through the concave wall of
& curved channel can be up to 33 percent larger. and through the convex
wall 15 percent sma‘ller, relative to that through the walls of a straight
channel. A s'nm'lar experimental heat transfer study by Brinich and Graham
[13] (not entirely free of side-wall-driven secondary motion) confirms this
result and, in addition, shows that while friction on the inner curved wall
of a channel can fall below the values for a straight channe] friction

measurements on the outer curved wall yield increases of about 50 percent.

Three-Dimensional Motions 1n Curved Channel Flows

Hunt and Joubert [14] make a “istinction between two types of curved
channel flows: a) ‘shear-dominated' flows with small curvature effects,
(R /D > 20, 8pproximately), and b) 'inertia-domnated flows with large
curvature effects (RC/D < 20, approximately). In their study the channel

. mean radius of curvature was large relative to the channel wicth (R./D = 100).
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Measurements at three Reynolds numbers corresponding to 3 . 104. 6 - 10‘1
and 1.3 » 105 respectively, indicated small variations of about 2% in the
Tongitudinal mean velocity component. Detailed cﬁaracterfzation of this
ve1oc1ty‘component for Re = 6 104 revealed a Taylor-Girtler vortex
pattern [23-25] in the central flow region.

The cellular structure found by Hunt and Jo_ubert has been observed in
other curved channel flows, both in laminar [4,17,26] and turbulent regime
[4,9,18], and in boundary layers deve1opihg on concave walls [4,11.25.27].

The onset and subsequent amplification of longitudinel vortices is char-
acterized by the Gortler parameter G;. Tani [4] shows that for 6; < 0.35
longitudinal vortices will be dampended in turbulent flow, while-for values
GT 2 0.35 amplification depends on the value of the vortex spacing para-
meter A € and the curvature parameter 3 R »

“Al though not reported by the authors there is evidence in the study by
Eskinazi and Yeﬁ [8) (RCID = §.5) supporting the notion that their flow
contained Taylor-Gortler vortices. As in [14] measurements of shear stress
across the channel show good agreement with theoretical pred1ction in the
1nner-rad1us flow region. However, the data for the outer-radius flow region
are in disagreement with the distribution expected from the wall shear mea-
surements and, as pointed out in [14], 1s most 11ke1y an indication of the
existence of a weak secondary flow.

El11s and Joubert [9] specifically remark on having observed Tay1oroGort1er
vortices for a radius ratio RC/D = 30 but not for R /D=6, Similarly. Crane
and Hinoto (18] observed a collapse of these organized structures for Re 2 16000.
These findings contradict expectations based on stability considerations and
suggest that turbulence diffusion and pressure redistribution in the flow near

the outer-radius wall of a strongly curved channel may be responsible for’
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'smearing out' three-dimensional time averaged structures which otherwise
would be observed. The net effect of the structures, then, can be looked
upon as contributing to the overal! process of turbulent mixing in the outer-

radius wall region of the flow.

The Prediction of Curved Channel Flows

Although concavely curved flows are prone .to three-dimensional insta-
bi1itie§. for purposes of numerical computation they are commonly presumed
to be two-dimensional in their mean structure. Concave wall boundary layer
development predictions of Tongitudinal velocity in [7] based on this assump-
‘tion show good agreement with experimental measurements. However, similar
calcu1qtions for friction factors [6] and turbulent shear stress )]
seriously underpredict the values of these parameters in the concave wall
flow region. Likewise, while the fully deve]dped curved channel longitudina?
velocity predictions of [7] are in good agreement with experimental measure-
ments of [9] for RC/D ; 6 over most of the channel width, near the concave
wall velocity is undérpredi;ted by apprgximately 9%. A simflar discrepancy
does not arise at the fnner-radius wall of this flow. One might attribute
the above discrepzncies to three-dimensional Taylor-Gortler vortices as, for
example, suggestecrin [11] However. it also seems reasonable to suspect that
the influence of streamTine curvature and/or wall effects on turbulent mixing
may have been underestimated at the concave walls. That, in fact, higher levels
of turbulent diffusion should arise than were actually predicted by the models

employed.

The Present Contribution

It s argued in, for example, [2,6] that only turbulence modeling approaches

baséd»on‘the calculation of Reynolds stresses directly from their transport
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equations can 8ccurately account for streamline curvature, pressure-strain
and wall pressure fluctuations in curved channel flows. Stmpler approaches
such as in [7], based on a two-equation (k-s) model of turbulence. appear to
require an empirical modeling of curvature effects 1n the equation for dis
sipat1on of kinetic energy of turbulence and the corresponding definition of
an additional model constant which must be optimized numer1ca11y Even
simpler approaches based on the mixing-length concept, such as in [10], are
seriously 1imited by the need to prescribe different mixing-length variations
for differently curved flows. '

The present work shows how the k-c model of turbulence can be rigorously
extended to predict developing curved channel flows by making C in the

expression for turbulent viscosity:

c e (32,0 172 o
uy/e = cu(g /e) k' - , M
2 v

0 0

an appropfiate functfon of streamline curvaturevaccountingbfor pressure-strain
and wall-induced pressure fluctuation effects. In Eq. (1) the symbols 2 and
Yo denote characteristic length and velocity scales of turbulence respectively,
and are determined from transport equations for k ‘and €. The essence of the
approach pursued in this study is then, that the product c 2 in £q. (1) should
yleld a modvfied length scale of turbulence () which reflects the direct in-
f1uence of streamline curvature and pressure-strain in the flow. Calling CUO

the value of cu in the absence of thesebeffects it is clear that:,

L= (cu/cuo) L, o : , (2)
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1f the local-equilibrium approximation is made it can be shown (28] that
Cuo = 0.12. The recommended experimental value is Cuo = 0.09. |

It has been argued by Wilcox and Chambers [1] and by So [15] that it
is not £, but Yo in Eq. (1) which should be medified forvthe influence of
curvature effects. 'Their arguments are based on the observation that the
transport equation for k does not manifest an explicit dependénce on Coriolis
and centrifugal accelerations and that, as a consequence, Yo ® kllz misrep-
resents the ;urbulence velocity scale. The study by So‘[ISJ. for.exampIe. is -
based entirely on the assumption that the turbulence length scéle is unaffected
by streamline curvature. However, there is ample experimental evidence in the
work by Eskinazi and Yeh [8) showing that both the microscale and the integral
scale of turbulence are incréased at the concave wall and decreased at the con-
. vex wall of curved channel flow.  More recently, Prabhu and Sundaras1va Rac [16]
have ‘shown that the mean 1nc11nataon of large scale structures in curved charnel
fiow also depends strongly on curvature The essence of their finding is that
large eddies are 'fIattened' more in the convex wall region of 2 Cufved channel
than in the concave wall region.

* For models based on the notion of a turbulent viscosity as defined by

Eq. (i) 1t would seem to be immaterial which of the two scales (20 dr'vo) is
modified to include the influence of curvature (and related) effects. However,
because it will be consistent with subsequent modifications to be made to the
turbulence model, 1t will pe the length scale which is modified in this work.
This approach is consiﬁtent ndth-that'proposed by Bradshaw [19] on heuristic
grounds for mildly curved flow, and parallels to some e*tent various ideas set
forth in the studies of Gibson [2], Irwin and Arnot Smith [§], So [15],
Ljuboja and Rodi [29] and Leschziner and Rodi [30]". The general expression

.
Reference [30] came to our attention after the present study was completed.
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provided here for C includes as subsets the more specific expressions derived

in [28-30] and yields as a special limfting case Bradshaw s proposal [17]:

Ug/r | |
't 8507w

for the turbulence length scale in mild1y curved channel flows. In Eq. (3)
8 {s an empirical constant of order 10, r is the radia] coord1nate direction
- (transverse to the flow) and Ug s the local value of the streanwise compon-
ent of mean velocity along 2 streamline of curvature radius r, _

‘The modified form of the k-¢ model provided here, with its general fornu-
lation for C x offers a compromise between the potent1a11y more accurate but
computatwonally more costly Reynolds stress model closures and the simpler but
considerably more restrictive m1x1ng-1ength calculation approaches. In this
‘study, attention is fixed principzlly on flows in channels with relo’1vely
strong curvature (R /D 20) in which inertial effects are domwnant. waever,
the extended form of the model has also beenfapplied successfully to channel

- flows with mild curvature.
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~ GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
Continuity and momentum equations governing steady, two-dimensional,
turbulent, incompressible, developing curved channel flow in cylindrical

coordinates (Fig. 1) are given by:

Continuitx-f
1l al U
r.1%%  r
ER R T (4)
-
r-Momenturm
W Y, U], au
e B T T T 5 T or Cerr T )
al U au )
] 2 r .
*rar (eerry PR eff 7 7 Feff 7 & * Sy
6-Momentum
aU U, 3y HRY au
2. 8_8,ref, 1 13 ot
purar"r 5 v °r e*rar{”effrar
: ' (6)
Hess OV U 2 au

In the above equations the Reynolds stresses have been modeled according
to the Boussinesq assumption which relates the stresses to velocity gradients

through a turbuIent viscosity.  The terms S and S in equations (5) and (6)
are given by

U BU U
3 ] ] 13
Trae (e T aE () 4R Tt wZ (7)

v
wu-a
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a y, U y, oU U
12 r.1% 3 t, " r t 6 0, .
v T rr e (T -y +F(FE-Y (@

In order to solve for the spatial variation of ¥y » transport Equations
are required for k and ¢. Following -the mode11ng approach outlined in [1]
(based on the earlier work of [32,33]) but restricted here to tuo-dimensionaI
cylindrical coordinates yields

\

Kinetic energy of turbulence, (k)

’ Up 2| v ke - Vo
ok ak 1.9 (leff 3 1 3 reff 3k :
[Urar TE}'FF(T'W)_*;TE(T?)‘G"" )

Dissipation of kinetic energy of turbulence, (¢)

w'cv
La ol i)
S|

v k L
k., e 2 (et o 2 [Leff
ollr3r * 7 T ( o " ar) * 9c ( '>

’ (10)
sc f6-c, 08
ak®" 2 P
with the production term "G" given by:
{73V tlY ) 1Y ol
rl {15 8 (1 °°r s
G"”t-z(‘a'r") *(FW) ’T(r % ' ar>
u. fu aU U aU . '
rir.,2°s 1-r \
‘7(?*?w)*F 5 ar] | | | .

u\Z  7au)\2 L U\
4(_6) + _9 + LA
: r ‘ar r a6

Values of the constants in the above equations were set in accordance with
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the recommendations of [33]: ch s 1.4z, Cez = 1.92 and O = 1.0. However,
'the value of % (customarily fixed to 1.3) was allowed to vary with radial
location as described further below.

In order to solve Egs. (4-6,9 and 10) the boundary conditions summarized
in Table 1 were used. The region between a curved wall and the node P closest
to that wall was bridged by'Specifying the wall shear stress (Tw) from the
standard logarithmic velocity profile. Assuming local-equilibrium of the flow
in neaE-Qa11 regiqns. the law of the wall relation yields:

*
. | ?fclga k2 [V,

W= " V. Q78 7%
A 2n -f__HQG-ﬁ- +B

(12)

where subscript P denotes the grid node position nearest to the wall, y is
the distance from the wall and T is the wall shear stress. Values of the
law of the wall constants were set to A = 2.39 and B = 5.45, It should be
mentioned that an attempt to include curvature effects in the law of the wal)
using an equivalent form ofvK.-(B) in the paper by Meroney and Brad;ﬁaw [1]
did not yield a significant improvenent in the calculations. The simpler
logarithmic relation given by Eq. (12) above was adhered to.

The w21l value of kinétit energy of turbulence, kP' was fdund from its
standard transport equation with the flux from the wall set equal to zero
and the production term modified to include the wall shear stress as given
| by F. (12). The wall value of dissipatéon of kinetic.energy,veé. vas
fnitially determined by requiring that the turbulence length scale vary
1inearly with distance from the wall. Substituting (aUe/By)P from the

Taw of the wall into the simplified (near-4all region) turbulent kinetic



-271-

_ energy q:lance yields:

« 0P (13)

€
P %

where the turbulence length scale 1s given by 2 = xyp Fo1lowing Bradshaw
[17]. the influence of extra-strain curvature effects on the magnatude of
the turbulence length scale near curved walls can be modeled according'to
fq. (3)- for regions of the fTbw in whicﬁ S E j(Ue/r)/(aUe/ar)J £ 0.05. An
expression for dissipation at the near-wall node P which includes the

influence of streanﬂine Curvature effécts is:

C3/4 k32

yo P ‘
€ = - . (1a)
Py, T2 _ .

Following Launder and'Spaldfng [33], the equation for dissipation of

kinetic energy in the near wall region simplifies to:
<13Vt € €
R CRERE R (%)

Assumfng loca!-equilibrium in the flow and recaI]ing Eqs. (1) and (15) the

above expression may be rewritter:

0=

S|

» . | o
3 _ 3¢ 3/2
o) e @
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where k' a (] 2 86,,) Further assuming that -5— 0 in the near wall region
[33] 1t may be shown that Eq. (16) simplifies to the following curvature-

~ modified expression for 0!

o (7)
€ ] ) 1/2
(Cp =€) O12

In the standard form of the k-¢ model of turbulence the value of % is
fixed to the wa'l‘l value of 1.3 throughout the flow [33]. In this study o,
at any radial location was 1inearly interpolated from the near-wall grid
node values determined by means of Eq. (17) 3t the concave and convex walls

respectively.
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GENERAL EXPRESSION FOR Cu ‘

Prior to outiining the derivation of the ‘general form of the Cu
coefficient, it is instructive to Justify by means of a simple example the
advantages of an improved modeling of this coafficient;‘ Combination of
Eqs. (1-3) ylelds the expression: ‘

u/o = cuo 2 (1 +8¢) Yo
This equation is a 1imiting form of the more general re1q§fbn sought in this
study. Waile Eq. (18} accounts for the influence of mild curvature effects

on the turbulence length scale £ through' the curvaturévparameter (1 28 8),

- @ more general relationship 1s desirable in which arbitrary stream!ine curva-

ture, pressure-strain and wall pressure corrections are simultaneously
1nc{uded. The purpese of this section is to Out1§ne the. derivation of this
&nre-general coefficient, which is obtained by substitution of an expression
for the turbufent shear stress, determined from an algebraic-stress model,
into a Boussinesq approximation for the shear stress in whfch the turbu1ent'

viscosity fs given by Eq. (1);

The Reynolds Stress Equations

The starting point for the present analysis 1s‘the highQReyno1ds
number form of the ujuy transport equation given in'[29].  In three-dimen-
sional Cartesian coordinate notationf and neglecting molecular diffusion

this eqpation is:

*The model equations were formulated and used in cylindricz! coordinates.
Cartesian notation is used here for convenience.
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ou.u L1 3 oU, du,
i - -—_i§__i - —i
Uk axk * "Ju axk N axk v axk axk
(19)
p (% o 3 |—.0p e 7 :
+ o -;; + =, - 5;; "i“j"k + 5 (cj.ku1 4'61kuj)
M3 Dy
In the abbve equat'ip'nvP'iJ rebresents the production of “i"j and requires
no approximation. Viscous dissipation (‘1j) and contributions to the
pressure-strain term (nij) were modeled as in [29]). The forms of these
terms are: |
€y " % € 615 (isotropic dissipation) ' , (20)
and
(21)

CTR TR TIPRE RIS A

In Eq. (21) 11”..l represents contributions to the pressure-strain arising
from fluctuating velocities only, while n‘j.z accounts for the interaction
between the mean strain and fluctuating velocities. The additional contri-
butions n;i.1.and n;j’zlrepresent pressure-strain coérections_due to the
effect of walls on the level of turbulent fluctuations in the flow. The
terms in £q. (21) were approximated according to mﬁdel 20f [38]. A
tabulated summary of their modeling and of the necessary model cunstants is
given by Humphrey and Pourahmadi [35].

The diffusive transport of E;Ug is attributed primarily to turbulent
velocity fluctuations [34] for which the simple gradient diffusion hypothesis
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of Daly and Harlow [36] yields:

— au,u :
e k i .
-y " 6 ¢ T . (@)

where C; s an empirically determined constant (not needed in this study).

The "f" Wall Function

In the approximations for nij'1 and H%j’z a wall function, f(2/y), must
be specified whose role it 1s to diminish the magnitude of the wall pressure -
correction to the total pressure-strain Qith increased distance from the wall
(y). Tne form of the f function depends on the length scale 2 of the energy-

containing eddies and for straight channel flows s given by [34]:

5: e k2, 0 o - __
,f('y'),-.f "tF. ;*m . . o (23)

where D is the channel width. Eq. (23) reflects the fact that distance-

"weighted contributions to f at any point in the flow arise from both walls.

In the expression, the constant Cw_is chosen such that f -1 as. y » 0.

3/4 ,3/2

o /xy (- the inertial sublayer value) in Eq. (23)

Therefore, setting ¢ = C
yields ¢, = x/C0%,

| For straight channel flows the function f 1; symmetrical with respect
to the symnntry‘piané. where ft possessesia minimum value. This is con-
sistent with the notion that at the symmetry plane the walls of a straight
channel should generate equivalent pressure-corfeétions to the pressure-strain
terms. The same will not be the case for channel flows in which an asymmetric

condition exists; for example, straight channel flows with one smooth wall
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and one rough wall, and curved channe! flows. In these c@ses the position
of the minfmum value of f in the flow wiil be shifted towards the wall con-
tridbuting least to changes in the turbulence by wall pressure fluctuation
effects; (f.e., the convex wall in a curved chzhne] or the smooth wall in
an asymmetrically roughened channel). In this work the location for the
minimum in the f function has been assumed to coincide with the location of
zero turbulent shear stress. This {s consistent with the notion that the
length scale of the energy-cont2ining motion, which also transmits the
pressure-fluctuations effects, should be smallest at the zero shear stress
position; see, for example, the data in [8], and Eq. (30) ﬁnd related dis-
cussfon in [2]. In this way the flow is divided into two regions in efther
one of which the wall nearest to that region is the major source of wall-
induced contributions to the pressure-strain correlation.

.A general expression for f whick accomodates both the symmetric and

assymmetric conditions referred to above is:

3/2 m
Lk ll /D l o ,

In Eq. (24) y 1is taken as the distance into the flow measured from the wall
which induces the largest contributiors to the wall-correction terms: i.e.,
the concave wall in a curved channel. The value of m can be determined
exactly fromvexperim!ntal measurement as described in [35].vwhere it is
found that m = 7.95 for R./D < 20 and m = 2.56 for R/D > 20. For m = 0 |
Eq. (24) reduces to the straight channel result given by Eq.(23). |
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Derivation of the C Function

FoIlowing Rodi [28], algebraic expressions for the Reyno1ds stresses
ere obtained from Eq. (19) by assuming that the ratio uy J/k is constant
throughout the fiow field. Although inexact, this assumption allows con-
vection minus diffusion of the Reynolds stresses to be expressed as a
function of turbulent kinetic energy production (G) and its rate of dis-

sipation (¢):

ou.u

YN U.u.
! i i j
Uz axx - D.Sj & [G - CJ
Substitution of Eq. (25) into Eq. (19) yields:

u.u.
—4J 16 - = g
CT B e Py gy v Ty

fron which algebraic re]ationsifbr_ﬁzﬁg are -obtained. The general form of
C, s obtained by combining the algebraic expréssfon for 3;33 with Eq. (1)
for My in the Boussinesq approximation for E;'_. Because the der1vat1on

in cylindrical coordinates is lenuthy. the reader is referred to Humphrey
and Pourahmadi [35] for details. The final result may be cast into compact

notation form and {s given by:

wjn

M2 [ (Roz/a)]-

where Q, R and S are complex algebraic expressions available in [35] which

(25)

(26)

(27)

are functions of velocity gradients, the wall function f, the ratio G/¢ and

the turbulence model constants.
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——

imiting Expressions for the;gv Function

The general expression for Cﬁ given by Eq. (27) has several interesting
limiting forms attesting to its validity. These have been obtained in [35]
and correspond to the fbllow1ng cases: a) Variation of Cu for flow in the
presence of a flgt wall [29]; b) variation of Cu for flow with variable G/¢c
[28]; ¢) variation of Cu for flow with streamline curvature [30]; and,
d) variation of cu for flow with small & in the presence of a curved well.
~Case d yields:

€, = 0.05 [1 - 12.176 + 0(s%)] (26)

Comparing £q. (28) with Eq. (2) and recalling Eq. (3) shows that Cuo = 0.05¢
and 8 = 12.17. This value for g is in good agreement with the values
recdmmended in the literature; for example, Eide and Johnston [37] sigzost

g = 12 for both concave and convex wélls. while Bradshaw [19] recormends

8 =0 at a concave wall and g = 14 at a convex wall. Similarly, the value
for Cuo obtained here falls in the range of values ca1cu1a;ed for turbulert
wall jets in [29] where the authors find that Cu = 0.05 in the near wall

region of their jet flow.
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THE WUMERICAL SCHEME

It 1s required to solve the transport equations (4,6,9 and 10) in con-
Junction with the boundary conditions summarized in- Table 1. Finite difference
equations are cbtained by volume integration of the transport equatvons over
control volumes or “cells” into which the flow. domain is discretized. Detai?s
concerning the method for deriving the difference equations and the inclusion
of boundary conditions are provided in, for example, [38,39], while an
exposition and thorough discussion of the philosophy underlying the calcu-
lation approach followed here is available in [4°J‘f

The velocity components, pressure, kinetic energy of turbulence and
dissipation of kinetic energy of turbulence are the dependent variables
calculated on’staggered interconnected grids, each of whicﬁ is associated
with a specific variable (211 scalar quantities share the same grid node
locat1ons) The general forn of the finite difference expressions is given
by:

ZA¢ +s, _ , .
o T —zm— o | (29)

‘where ¢Pvrepresents any one of the dependent variables solved. for at the

grid node 'P'. The Ailcoefficients are determined at the respective cell
surfaces and they represent combined contributions to balance of ¢ arising
from diffusion and convection. The terms So and Sp represent other
contributions arising from sources (or sinks) in the flow [38].

The numerical procedure used to so1ve the f1n1te difference equations

was .the ImperiaI College "TEACH-2E" code [41] Together with appropriately
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differenced boundary conditions, elliptic fbrms' of the equations are
solved by means of a cyclic serfes of predictor-corrector operations involving
the use of the tridiagonal matrix algorithm applied on a 1ine-by-line basis
to the calculation domain. From an inftial or intermediate value of the
pressure field an intermediate velocity field 4s found.- By means of the -
SIMPLE'[#O] algorithm, pressure corrections are determined by bringing the
-intermediate velocity field into conformity with continuity. After correc-
tions to the»présshre and velocity fields are applied, the transport
equations for kinetic energy of turbulence and its rate of dissipation are
solved. Hithfn each iteration various sweeps are made of the entire calcu-
lation domain along the main flow direction. The above steps are repeated
until a‘pre-estabiished convergence Criterion {s satisfied; usually, that
the largest of the normalized residuals be less than 5 10'3. _ .

. A1 the numerical calculations were pefformed on a 20 x 40. grid, éve:]y
spaced in the st?eamwise direction and unevenly spaced 1ﬁkthe radial direc-
tion, after ascertaining that thfs'degfee of refinement was sufficiently
sccurate for the purposes of this study. The storage required on a CDZ 7600
computef was 61 ks words, and a typical (converged) run time for 300 itera-

tions (3 sweeps per variable) was 130-150 CPU seconds.

-

In principle, for the flows calculated here, parabolic equations shoild
suffice since there are no streamwise-reversed flow regions. Howeve.:,
parabolic procedures have been shown [42] to 1ead to poor estirates of

the pressure fields in strongly curved duct flows and dictated the present
choice of the elliptic scheme.
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CALCULATED RESULTS AND DISCUSSION

In this section nesuits are reported of tno-dimensional
numerical calcuTations performed using the extended turbulence model and
- the general expression for C given by Eq. (27). The calculations cover
both mildly and strongly curved channel flow configurations and include the
straight channel flow data of Laufer [43]) as a Iimiting test case. Prior
to presenting the calculated cases a discussion is in order regarding
the dependence of C on wall curvature and pressure-stra1n
effects. Also, since it 1s assumed in the derivation of the general
expressfon for C that the ratio Yy J/k remains constant inithe flow, the
limitations of this assumption and 1ts effect on the caIcuTations shoulc
be assessed.

_ Figure 2 is a p1of of measurements of U;U:Vk for ‘three channel flows
ranging from strongly curvec to straight. In [8]) values of k were not
provided but could be estimated from tne data for ;;2 and ::zmby assuming
- that u ——? _-7 in k = 2{-? .-7 -f?). The straight channe1 flow .
shows tuo regions, correspondzng ton < 0.20 and n > 0. 80 respectively,
wherein !ueu /k| 1s approximately constant. Similarly, in the inner-radius
wall region the curved channe} flows al1so show relatively constant values of
this ratio for n < 0.20. By contrast, in the outer-radius wall region.'the
-constancy of the ratio is extended (relative to tne Straight channel flow
case) to values of n 2 0.60. In the regfon 0.20 £ng 0 65 the assumption
of constant Uy j/k is obviousiy invalid and curtails the usefulness of the
general expression for C

Figure 3 shows the variation of C as a function of radial position in
channe?s of different curvature. Jn general Cu is seen to increase at beth

ua1ls of a curved channel, at 2 rate inversely pnoportional to channel
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curvature (defined earlier as RCID). At fhe-iﬁner-radius wall Cu reaches
& maximum value at & radial location dictated dy the channel curvature.

As of this location Cu diminishes with increased distance from the inner-
radius wall. For strong curvatures the general function.f@r'cv yielded
unrealistic values of this parameter in the region 0.30 < n < 0.65 due to
the lack of consfancy in the ratio 3;337&. However, calculamions-teveajed
an insensitivity of the numerical results towards the absolute value °f'cu

in this flow region provided that it was contained within the range

0.045 < ClJ € 0.140. This insensitivity is explained, in part, by the small

~ values of aue/ar andtihe respectively counteracting .curvature influences
which arise in the core region of curved channel flow. In the present
stﬁdy Cv was set to the value 0.09 in the region 0.30 ¢ n s 0.65.

Wall curvature and wall pressure fluctuations contribute jbint1y to
the value °f’cu' In an effort to separate these two effects, and therety
establish their re1§tive 1hportance. two sets of Cu profiles in Figure 3
(RCID = 10, 20) have been calculated with a symmetric distribution of the
{f function imposed (m = 0); equivalent to specifying & straight channel
flow condition in so far as wall pressure-corrections are concerned, while
retaining the direct influences of the respective wall curvatures on Cu.

_ Inspection of these profiles shows that curvature at the outér-radius wall

" acts to enhance‘cu while curvature at the inner-radius wall acts to suppress
ft. The inclusion of wall pressure-corrections in the pressure-strain
(m=1.58, m=7.94) further 1ncreases_cu at both walls, but at the inner-
radius wa]I tﬁe direct influence of curvature effects ultimately overcomes
the wall pressure contribution to cu causing a net decrease in its value

with increasing distance from the inner-radius wall.

L
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Plots of the f function, given in [35] for various curvature ratios,

show decreasing values of f with increased distance from either channe1

wall, reflecting the decreased influence of qa11-corrections to the turbu-
lent flow. These plots also show that at a tixed radial location the f wall-
function decreases strongly thh increased curvature at the inner-radius
wall, while 1t increases only slightly in the outer-radius wall region bounded
by 0.85 < n < 1. These observations are in agreement with the algebraic
stress model predictions in [2] and iI]ustrafe the point that convex sur-
faces are considerab?y less effective in red1str1but1ng wall-pressure contribu-
tions to turbulent flows than are concave surfaces. Since C can be shown
to be invarsely proportmonal to. the f wall-function the above observations

. suggest that pressure fluctuations will contribute more strongly to C ‘at
the inner-rad1us wall than at the outer-radius wall with increasing channel
curvature. That this is the case is confirmed by comparing the relative
1ncreases between pairs of inner-radius wall C profiles in Figure 3 {(with
the d1fferent f funct1ons specif1ed) for R /D = 20 and R /0 =10. By con-
trast, relative change in the C prof11es 2t the outer-radius wall are
smaller and of comparable magnitude for both curvatures. This suggests

that 1t is princifally the direct influence of'curvature effects whiéh
determines the shape of the Cu profiles in the outer-radius flow region,
with the magnitude of Cu beihg changed only slightly by the wall-pressure
correction term. It should be noticed that the same cut-off values set

for C apply to the f wall-function since in the present model the effects
of the latter parameter appear exclusively through the former.

Prior to conducting curved channel flow predictions, the calculation
" scheme and the turbulence model in its extended form, including the general

formulation for Cu' were tested by reference to the straight channel turbulent
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flow measurements of Laufer [43]. The law of the wall constants used in
Eq. (12) were those specifically fecoﬁnnnded by Laufer: A= 3.0andB = 5.5,
Figure 4 shows predictions using a standard (Cu_. 0.09; f = 0) k-¢ mode) of
turbulence with predictions using the exténde; version of the mndel offered
here. Also included in the figure are predictions based on the ful)
Reynolds stress closure approach proposed by Hanjalic and Launder [44] (the
profiles shown were taken from Hanjalic [45]). While all three models yield
excellent agreement between calculated and measured velocity profiles, the
figure shows that the inclusion of wall pressure- -corrections in the general -
formu]ation for c leads to an improved prediction of turbulent kinetic
energy near the,wail. In fact, it is surprising to find that across the
whole ﬁhanne1. better predictions of k are given by both the two-equation
models than by the Reynolds sfress closure.

.Predictions of flow velocity, friction‘factor and kinetic
energy of turbulence are présented'in Figures 5 to 9 for mildly and strongly
Curved channel flows. Calculations of mean ve]ocity corresponding to the
mildly curved (R /D = 100) channel geometry of Hunt and Joubert [14] pro-
vided in Figure 5 show very good agreement with the measurements. Minor
differences are displayed between measurements and calcu]at1ons at
Rte/D = 36 and 60 in the inner and outer-radius wall regions. These are
attributed to the presence of a weak Taylor-Gbrt1er type secondary motion
' uhich Was observed in the measurements. Mean velocity calculations for the
strongly curved channel configuration of Esk1na21 and Yeh [8)] (R /D = 9.5)
are plotted in Figure 6. For this case the discrepancies are larger between
measurements and calculations near the ouﬁer-radius-wa]l. However, differences

8re reduced slightly when the more general expression fpr'cu given by Eq. (27) 1s
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employed. As before the discrepancies are attributed to the presence of
Teylor-Girtler vortices, evidenced in the shear stress measurements of
this flow [8].

Measurements of the friction coefficient from the study of Honami et

. [10] are compared in Figure 7 with calculations conducted at three .
levels of turbulence model refinement. The best results correspond to
the extended k-c model with the general cu fonnu1atfon and in which length-
scale curvature adjustments are incorporated in the calculation of dissipa-
tion and dissipation Prandt! number near thebwa1ls While the agreement
between m:asurements and calculations with the extended mode) .is very good
at the inner-radius wall, 1t is at the outer-wall where inclusion of the
above effects produces the largest improvements Calculations of the
friction coefficient for the flow of Eskinazi and Yeh a]sb yielded similar
1evé1s of agreement when using the extended version of the k-¢ model offered
here. | |

Calculations of the kinetic energy of turbulence for the channel flow
of Eskinazi and Yeh are presented in Figure 8. The profiles sﬁowing.the
best overall agreement with the measurements correspond to the extended
model,. although differences between models are seen to decrease towards the
center of the flow. Calculations in the outer-radius wall region are in bet-
ter agreement with the measurements than at the inner-wall.  When contrasted
with similar predictions in [35] of kinetic‘energy of turbulence for the
mildly curved flow of Hunt and Joubert, the results suggest that the magni tude
of the discrepancy inthe inner-radius wall regibn is inversely proportional
to the curvature ratio (R./D); for the strongly curved flow of Eskinazi and
Yeh the level of k is overpredicted by between 30 to 50 while for the flow

of Hunt and Joubert an overprediction of less than 20% is observed.
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Calculations cbrresponding to the mean velocity measurements of ENis
and Joubert [9] ar§ shown in Figuré 9 where they are compared with calculations
by Launder et al [7] using 8 k-c¢ model of turbulence developed along the '
Tines of Jones end Launder [46]. In the mode: of Launder et a1 curvature
effects on the length scale of the flow are fncluded via an empirical modi-
fication to the diséipation equation. This consists in making:the coeffi-
cient CEZ in Eq. (10) a function of a turbulent Richardson number. The
approach has been criticized by Gibson [2], and by Rodi [47]vwho argues
that the appropriate place to make such a modification fs in the production
term of the dissipation equation Effectively, it is the latter approach
which has been deveIoped in this study. The predictions of Launder et a1
show slightly better agreement w1th the measurements at the outer-radius
wall, but over a large portion of the inner-wall region the present
mode1 yields better results. It is difficult to decide on the b§s1s of
this comparison which model is more accurate for the prediction of curved
channel flows in general. However, in view of the points raised by G1b50n
[2] and by Rodi [47]. and given the fact that the model of Launder et al
requires an additional constant (and 1ts numerical optimization), it

would appear that the model offered here is of a2 more general nature.
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CONCLUSIONS
By consideration of ﬂeynolds stress‘equations in algebraicniiy modeled

form a genera) expression has been derived for the coefficient c in the
expression for {urbulent viscosity “t/° . C Lzlc. The genera1ized form

of this coefficient includes streaml ine curvature and pressure-strain effects
(including wall corrections) and, hence, their influence on the turbulent
length scale (kslz/c) in the flow. The expression derived has been snown to
reduce to limiting forms of less gener2l formulations obtained in other works.

One of these forms corresponds to the proposal by Bradshaw, Eq. (3) in

_the text, and yields values of the constants g = 12.17 and C = 0.056

which are in good agreement with values established in the 1iterature
Predictions of developing two-dimensional curved channel flow have
been conducted by incorporating the general expression for C 1nto 3 k-
nndei of turbulence modified to include the direct influence of curvetire
effects on the length scale in near-wall regions of the flow. In general,
agreement between the measurements and calculations is good. The largest
discrepancies observed in the calculations of mean velocity arise at the
outer-radius wall and are attributed to the existence of cross-stream
motions (Taylor-Gortler vortices) in the experiments The present turbu-
lence model consistent?y over-predicts the kinetic energy of turbulence 1n
the inner-radius wall region of curvei channel flow. . The degree of over-
prediction appears to be inversely proportional to mean channel curvature-

(R./D).- The overprediction is attributed to the failing of the model to

‘accomodate fully the stabiiizing influences of convex curvature on turbulent

flow; due to the ‘breakdown of the assumption underlying the formulation, that
u U.u./k §s 8 constant everywhere {1 “the flow.
It is a nateworthy feature of the extended k-¢ nnde1ipresented here that

no previously establ{shed model constants havc been modified or "retuned” t-



-288-

yield improved agreement between predictions and measurements. This includes
the new parameter m appeabring in the f wall-function which is determined
exactly from experimental measurement as opposed to numerical optimization.

In this sense, the present ‘turbulence model ‘provides avmre general formulation
than models based on the ad-hoc {inclusion of a flux Richardson number {n the

equation for dissipation of-kinétic energy o_f'turbulehce.'
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At Curved Ha11s

1, Specified
through Eq. (12)

"Inlet Plane Exit Plane
Prescribed auev
from 56 - 0or
-experiment :
prescribed
from
experiment
0 au
r
% "0
0.005(u?) . 3
: €’inlet ==0
372 - .
(k )1niet 3 _ 0

D . ¥

Prescribed fror
a simplificatior
of the k and ¢

equations at the
walls. See dis-
cussion in text.

TABLE 1: Boundary Conditions for Curved Channel Flows
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FIGURE CAPTIONS

Figure 1
Figure 2

Figure 3

Figure 4

Figure §

- Figure 6

Figure 7

ngure 8

Figure 9

Curved channel configuration. and coordinate system.

Transverse variation of upug/k (Uv/k) in fully developed

curved (and straight) channel flows.

Transverse variation of Cu in fu11y‘deve10pedICurved and

strafght channel flow. For m = 0 wall-function f is syrmetric.
Calculations based on extended k-¢. model.

Transverse variation of normalized streamwise velocity and
kinetic energy of turbulence in fully developed straight
channel flow. U and U_ are maximum and friction velocitys
respectively, MaX T S M

Transverse variation of normalized streamwise velocity in
developing mildly curved channel flow.

Transverse variation of normalized streamwise velocity'in
developing strongly curved channel flow:
Streamwise vakiation of frictior factor at the inner-ang

outer walls»of strongly curved chanrel flow.

Transverse variation of normalized kinetic energy of
turbulence in strongly curved channel flow.

Transverse variation of normalized ingu1ar momentum in
strongly curved channel flow. v :
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FIGURE 1
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FIGURE 3
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FIGURE 4
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FIGURE 5
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FIGURE 6
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FIGURE 7
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FIGURE 8
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APPENDIX III

DETAILED DERIVATION OF GENERAL C, FUNCTION IN SINGLE-PHASE FLOW

The starting point for the derivation of the C, function is

Eq. (20) of reference [35] from Appendix II.

Noting that the diffusion

terms: Dij are-never actually required in the formulation and that

Uy 0 and 3/3z-=

coordinates:

'
o
]

== |

‘1"’5

HESN
@

the following expressions for ug, uz and ueur in cylindrical

Ty o (e U
a8 ueur ar or
2 p 8“6 2
Ug* 25 Tap "3 €
] 30
;) 2 r
—F-Zuri-r-—-Z_u
M2,
ar 3
R S W A
r’ r “r 3ar
ElNj 3u au
_r.,p _8,p _r
96 p ar p rad

= 0, (assumpt1on of 2-D-mean flow) Eq. (20) y1e1ds

(I11.1)

raé
(111.2)
(I11.3)
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where, for convenience, D/Dt = 3/at + U, 3/ar + Ug/r 3/26 has been
used even though 3/3t = 0. In Eqs. Iii.l - II1.3 contributes to the
pressure strain terms are modeled according to Eq. (22) and Table 2 of

ref. [35] from Appendix II. In cylindrical coordinates, these terms

are:

r rio
[1] aU, U aU_
— 8 2 (78 r> r
*Céf[“ "e“r—r*“r(m‘*-F - 2 ugu, ra-e] |
2 ' : ‘
gp(1+c2 f). : (111.4)
ou C:
P - . € 1 >7_2
2p T Clr[(]."'zclf Ur 3-k
U a'u')
. 8 r
'c2(1'2c2f)[6r<4 T
U, U : '
_?'< 8 r> 2
+2Ur ﬁ‘f’—r' -'gp] (III'S)
' du du Cs
1 r ) € 3™
Lttt - ‘Clr“e“r<“7c—lf>
U, U aU.
3 ) —Z 6 _-2. _2- 0 _Z I"]
v u-3gnE S eE-B k.
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From Eq. (26) of Ref. [35] from Appendix II:

D ug ug
o O = (P | (111.8)
D uju TRV

6 ]

Eqs. III.1 to II1.9 lead to a system of algebraic equations which

. can be solved the three unknowns ug, uz and ﬁ;ﬁ;. The result is:

2 _ d(n2-jg) - n(b2-cj) + m(bg-cn
Ug = a(n2-gJ) - e(b&-cj) + 1Ebg-cn% (III.lO)v
? - a(hl-mg) - e(dz-mC) + i(dg-hC) (IIIoll)

r ~ a(nt-g])

e(bf-c3) + 1(bg-cn)

a(nm-hj) - e(bm-dj) + i(bh-dn)

YUy = 3(nt-gj) - e(bf-cj) + i(bg-cn) (111.12)
with the foTTowing values for the coefficients in the above
-expressioné:

a = 0 (IT1.13)

1 ' aﬁ}
b = ¢ [p - (1-C1+2Ci-f)e] + 2(1-C5+2C,Cof) 5— (111.14)
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- U, U, |
2 (Cp =20y €y f = 1) (22 - —F) (111.15)
2 ey 1 (5 V8 1 3Up
[1-¢C, (1-2¢ )] (2 % 1 a--") 111.17
e = U-6GU-36G YT e (111.17)
a, U ’
no= [1-C, (1-30f)] 2D (111.18)
= -lpog-co -3¢ ) e (111 1'9)
9 I3 1°74 .
h = 0 :'(11:1_..20')
1 U e : ' '
i= gP+(C-1)e]-201-0C) 5 - (e
' v 3Ur
i=-q f12 2 c2 ) f 5 (I11.22)
AU ,-U L au,. |
b= 2(1-Cy) gt = Oy F (42 - ﬁ—a—) (111.23)
mos 3o - Derc (1rcy )R]

(111.24)
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Combining the Boussinesq approximation for ugu,, as given by Eq.
(28) of ref. [35] from Appendix II, with the algebraically derived
expression for ugu, given above yields a general expression for

Cu of the form:

C = — 1 1€ 3r - - (111.25)

b ' 9 aU’,Z ( aU‘>
' _ l k "76. | k 76 k &l
(1'6+6c) 2+82<e ) Yo\e 8r> + 62 € ar

where dl, B1s @2, 82,'72 and §o are given as:

Q"

o = E(26-8) [% (+H 2) @ -14n) + 2 (D48 %)Cif]

- el [% (0+8 )] (£ +0)

we

= eees ) [4 0 D) (1) + & (008 2icycyr]s,

+§ E(1+5) .(DfB %) F ab.

- B @-1+h) Bartp)

%2
B, = -2 (£ +0) (1-8) E -1+6)8, + 2F(E -14n) & -146)8,
Y, = -E(za-_sc) {(% -14A) [ZF(.1+6)+2C2Céf(26-6c)]+2(1-_B)(6c-26)cif}

+2E(1-B) (<sc-25) (% +D) (1+8) + 4 'F(1-B)5§(.P€- -1+G)
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- _4E(25-5c)(1-5)5~b [F(1+s)+C2Céf(28-ac) + (ac-za)CZCéf] |

~4EF(1-8)(1+8)(6-26)8y,

Equation (I11.25) does not show the explicit dependence of C, on

the parameters,

6 =aU9/aUe L arrr/ﬂ . arre/a,rre . Ue/aUe |

a ragf ar * "b  Tar/ or c ras/ or ° “rler

the wa]]-function f and the ratio P/e. Using Eq. (11) of reference

[35], Appendix II, it is possible to show that:

T £ (p/e)!/?
or 1/2 2
C, [(1-6+6C)

o=

211/2 (I11.26) -

+ 4 Gb

with a positive sign preceding the above expression when aUg/or > 0 v
and negative when 3Ug/3r < 0. Substitution of Eq. (III.26) into
Eq. (II1.25) yields (after algebraic manipulation):

3/2 , . 0 4 .. Al/2 | - ‘ .-
Cu + alcu + a2Cu + a3 0 . ; (111.27)

wiph:

2[(D+P/€) (1-B) - F(A-1+P/e)] Gb(P/e)i/z

" (0+p/e) (A-14p/6) [1-8+6 ) + 4 62117

ay (I11.28)
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a2 =
'{-» E(28-6.) {(A-1+P/€) [2F(1+8) + 2 C, C;  (28-8.)] + 2 Cif(1-B)(8,-26)}

+ 2E(D+P/e)(1-B) (8 -28)(1+8) + 4F(1-CZ)6§(1-B)(G-1+P/e]}
x P/e/{['(l-s\»svc)z + 48] [-(D+P/e)(_A-1+P/e)(-e-il+|>/s')]}

: {-E(Zé-dc) 27304148/ ¢) (=140 )+2/3(048 P/e) C{f}

+ E(1468)[2/3(D+B P/€)] (D+p/e)}/{-(mp/e](A-up/e)(G-1+P/e)(1-s+lsc)}

(I11.29)

ay = :{E(ZG-GC)Gb {2(1-5)[zr(1+.s)+2c2cy(2s-ac.)]+4(1-B)(GC-ZG)CZC‘éf}

| L \ Ple | 3/2
+ 4 E F(1-B)(8,-28) 5b}[ (1ove )2 452] »{- (D+P/€)(A-14P/€)(G-14P/¢)
' : OO Ay ‘

3 {2/3 E(za-cc)sb. {2(D+H P/e)(1-B) + 2(D+B P/€) CoCHf}

' 1/2
+ 4/3 E(1+6)(D+B P/e)Fab} [(i 5 :/;2 452]
-5+8 )+

c b

///g- (D+P/e)(A-1+P/e)(G-1+P/s)(1-5+8c)}

(111.30)
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“In the above expressions:

A

G

c,(1+2  ¢i/c,)

C,(1-2 f C5)

1-¢, (1-3/2 £ C})

l-cZ

Acl»(1+3/2 frci/cl)'

c, (1+f_Cé)  '

(111;31)'
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