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ABSTRACT 

A theoretical analysis of steady turbulent flow with small solid 

particulates in suspension has been conducted based on the continuum 

hypothesis for both phases. The analysis provides the basis for a 

two-dimensional numerical model capable of predicting dilute two-phase 

flows. The numerical procedure requires the solution of fully elliptic 

coupled transport equations for both phases. The turbulence charac-

teristics of the fluid phase are predicted using a two equation (k-c) 

model of turbulence and involves the calculation of the fluid turbulent 

kinetic energy (k) and its rate of dissipation (c). 

Due to their appearance in the modeled equations for k, c and 

particulate phase momentum, algebraic relations describing fluid-

particle interactions and the particulate phase turbulent kinetic 

energy (k r ) are derived from the instantaneous Lagrangian equation of 

motion for the particulates. Modeled forms of the fluid-particle 

velocity and velocity gradient correlations appearing in the transport 

equations are shown to conform with expected limiting behavior. 
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While the particulate phase mean motion is presumed to respond to 

fluid flow changes via the Stokes viscous drag, in the vicinity of 

solid walls the solid phase is assumed to behave like a rarefied gas 

flow; i.e., particles are allowed to "slip" at the wall. 

The;anaiysis shows the existence of two mechanisms for the 

dissipation of fluid turbulent kinetic energy. The first corresponds 

to direct viscous dissipation by small scales of motion in the single 

phase. The second, however, is due to the presence of the particulate 

phase which, through interaction with the fluid, provides a second sink 

for turbulent kinetic energy. Further, it is found that the presence 

of particles provides an additional mechanism for transorming mean 

kinetic energy from both the fluid and the particle phases to their 

respective turbulent kinetic energy components. 

The numerical model has been rigorously tested by reference to 

single and two-phase flow experimental data in confined flows. In 

general, predictions of the mean flow and of the turbulence quantities 

for both phases are in good agreement with the available experimental 

data. The inclusion of a model for erosive wear has allowed the pre-

diction of erosion on the concave wall in developing curved channel 

flow. Both the longitudinal position of maximum erosion and the rela-

tive amount of wear as a function of Reynolds number for different 

particle/fluid characteristics are well predicted by the numerical 

procedure. 
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NOMENCLATURE 

Cf 
	

friction coefficient 

CT 
	 constant in the expression for fluid Lagrangian integral 

time scale 

C li 	 constant in Prandtl-Kolmogorv relation 

D 
	

pipe diameter 

d 
	

particle diameter 

E 
	

erosion rate 

ELf 
	 fluid Lagrangian energy spectrum 

EL 
	 particle Lagrangi an energy spectrum 

g 
	

gravity acceleration 

k 
	

fluid phase turbulent kinetic energy 

k 
	

particulate phase turbulent kinetic energy 

kB 
	

Boltzman constant 

Lm 
	 particle momentum equilibration length 

LE 
	

Eulerian integral length scale 

Lf.. 	 fluid-particle interaction length scale 

L_ 	 particle mean free path 

Lp 	 average interparticle distance 

M 
	

Mach number 

mp 	 mass of a single, particle 

mf 
	 mass of fluid displaced by a single particle 

P1 
	 wall hardness 

p 
	

instantaneous pressure 

p 
	

time-averaged pressure 

p 
	

fi uctuati ng pressure 
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magnitude of particle impingement velocity 

R straight pipe radius 

Ri curved channel 	inner wall radius of curvature 

R0  curved channel outer wall radius of curvature 

Rc curved channel average radius of curvature 

Rf_p  fluid-particle correl ation coefficient 

RE fluid Eulerian correlation coefficient 

RLf  fluid Lagrangian auto-correlation 

RL particle Lagrangi an auto-correlation 

Re flow Reynolds number 

Re particle Reynolds number 

I time scale of energy containing eddies 

TL fluid Lagrangian integral 	time scale 

T'. flow temperature 

t time 

Uf 1  instantaneous fluid phase velocity in i direction 

U 1  instantaneous particulate phase velocity in i direction 

Ufi time-averaged fluid phase velocity in i direction 

time-averaged particulate phase velocity in i direction 

Uf fluctuating fluid phase velocity in i direction 

up i  fluctuating particulate phase velocity in i direction 

Ur instantaneous slip velocity between the phases 

IiPw1 particulate wall 	velocity in i direction 

Xj spatial 	coordinate in i direction 

y distance from pipe/channel wall 
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a instantaneous particulate volume concentration 

time-averaged particulate volume concentration 

a fluctuating particulate volume concentration 

8imp particle angle of impingement on the wail 

c-Prandtl number 

Ok k-Prandtl number 

channel width 

Apw deformation rate for the particulate phase at the wall 

Kronecker delta 

C dissipation rate of fluid turbulent kinetic energy 

CD Drag dissipation 	 V  

Kolmogorov length scale 

K Von Karman constant 

A Length scale of energy containing eddies 

Af fluid Eulerian integral 	length scales 

ALf  fluid Langrangian integral 	length scales 

XE fluid Eulerian Taylormicroscale in isotropic turbulence 

Xf fluid Taylor microscale in streamwise direction 

X g  fluid Taylor microscale in lateral 	direction 

fluid dynamic viscosity 

v fluid kinematic viscosity 

Vtf fluid eddy viscosity 

Vt particulate eddy viscosity 

Vtf fluid turbulent diffusivity for the transport of the 
scalar a 
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(cx) 
Vt 	 particulate turbulent mass diffusivity 

vB 	 particulate diffusion coefficient due to Brownian motion 

Pf 	 fluid density in the presence of particulate phase 

P T, 	 particulate density in the presence of fluid phase 

Pf 	 fluid density 

P
p 	

particle density 

Kolrnogorov time scale 

Tm 	 particle response time 

particle response parameter, ratio of particle response 
time to time scale of the mean motion 

subscri pts 

f 	 fluid phase 

in. 	 value at the inlet 

max 	 corresponding to the maximum value across the curved 
channel width 

p 	 particulate phase 

free stream condition 
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CHAPTER 1 

INTRODUCTION 

The Practical Problem 

Processes associated with two-phase turbulent flow have today 

a very significant influence on human life. Two-phase flows cover a 

very wide spectrum of applications in many areas, ranging from numerous 

engineering applications to a variety of processesassociated with 

natural flows. The dispersion of dust and pollutant particulates in 

the atmosphere, the transport of silt ad fine mineral particles by 

rivers, the erosion of pipeline components in coal liquefaction/ 

gasification systems, and also the erosion of gas turbine blades and 

internal walls of nozzles in solid-propellant rockets are but a few 

examples of the diversified processes which arise due to the motion of 

two-phase turbulent flows. Other engineering examples of these. types 

of flows of strong relevance to this work are: fluidized beds, 

pneumatic conveying, settling tanks, sand blasting, the flow of 

slurries and fibers and the flows occurring in cyclone separators and 

electrostatic precipitators. 

The flows of particle-laden fluids in coal liquefaction/ 

gasification pipeline systems, in rocket nozzles and over gas turbine 

blades cause erosion of the wall materials and can result in serious 

damage and possible catastrophic failures of these systems, both from 

the safety and economical points of view. For coal liquefaction/ 

gasification systems the problem of erosive wear is quite severe at 

2 
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pipe bends, tee junctions and impinging jet surfaces. The successful 

design and determination of optimum operation conditions of such 

systems requires analysis and prediction of the fluid mechanical 

characteristics of the turbulent flows in the components comprising the 

systems. 

Earlier works and modeling approaches 

In the course of reviewing the literature on two-phase fluid-

particulate flows, the variety of investigations and the range of 

complexity of the analyses is amazingly large. Many significant 

contributions have been cited in the books by Soo [1967] and Boothroyd 

[1971], and in the review given by Torobin and Gauvin [1959], [1960] 

and [1961]. The motion of the dispersed particulate phase in the 

continuous fluid phase has been analyzed by both Lagrangian and 

Eulerian methods. In the Lagrangian approach, the dynamics of a single 

particle are analyzed by following the motion of the particle with 

prescribed set of initial conditions. In the Eulerian approach, the 

two-phase flow is considered as two interacting continua, with a 

different set of boundary conditions for each phase. The success of 

either approach for prediction of the flow variables of interest, 

depends on the appropriate inclusion and accurate modeling of the 

various and relatively complex physical processes represented in the 

governing equations. The occurrence of fluid turbulence, and the 

associated solid phase turbulence, implying complex interaction and 

exchange mechanisms between the two phases, can be fairly significant 

and requires proper modeling. 
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Continuum-type approaches can be generally divided into two 

categories. In the first, the two-phase flows are treated as separate, 

interacting continua, in which, for the particulate phase, a diffu- 

-- 	 sional mode of transport, as well as convection, is conceived. In this 

respect, the following investigations are noteworthy: Soo £19681,, Drew 

[1976b], Hinze [1962] for laminar flow, and Hinze [1972], Drew [1976a], 

Nagarajan [1972] and Soo [1962a] for turbulent flow. In another 

approach, the two-phase flow is treated as a single continuum in which 

fluid variables are redefined to include the presence of the dispersed 

particulate phase. The formulation of this approach is given by Wallis 

[1969] and Hinze £19621 and is common in two-phase, gas/liquid flows 

with mass exchange between the phases. Wallis [1969] has shown that 

for such an approach to be valid, the assumption of dynamical and 

thermal equilibrium between the phases must be made which is approxi-

mately valid only for very small particles and low flow velocities. 

In the Lagrangian approach, the motion of a single particle is 

considered and the relevant variables are calculated along the particle 

trajectory. Early approaches based on Lagrangian equations of motion 

are due to Glauert [1940], Langmuir and Blodgett [1946] and Brun and 

Mergler [1953] in relation to the impingement of rain-drops on aircraft 

surfaces for the analysis of ice formation on aircraft wings. Other 

more recent investigations using this approach are those due to Laitone 

[1979a], Yeung [1977] and Abuaf and Gutfinger £19741. 
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The influence of turbulence 

In the presence of turbulence, the problem of measuring and/or 

predicting two-phase flows becomes even more complicated. A successful 

prediction of turbulent two-phase flow requires a thorough understand- 	 - 

ing and proper modeling of the important turbulence-related processes 

involved. It is clear that a detailed analysis requires the under-

standing of the fundamentals of fluid. and particulate phase turbulence, 

including fluid-particle interactions which are significant. in this 

regard the investigation of Baw and Peskin [1971] can be mentioned. 

In that study, the particle effects on the fluid turbulence energy 

spectrum were analyzed and the results showed an increased reduction in 

the spectrum value with an increase in wave-number compared to the pure 

fluid spectrum. In a related work, Owen [1969] has shown a reduction 

in fluid turbulence intensity with increase in particle concentration 

which was not shown by Soo et al. [1960] who noticed no effect due to 

the presence of particles. An increase in dissipation rate of turbu-

lent kinetic energy with particulate concentration has been reported by 

Kada and Hanratty [1960], Owen [1969] and Hino ]1963]. In the last two 

investigations, a decrease in eddy diffusivity with particle concentra-

tion was observed which is in contrast with the results given by Kada 

and Hanratty. 

A review of the fundamental problems arising in turbulent two-

phase flows is given by Peskin [1975]. The particle effects on fluid 

mean velocity have been investigated by Sco [1964], Peskin [1963] and 

Peskin and Dwyer [1965] in pipe flow. The results show a flattening of 
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fluid velocity by solid particles even at small concentrations of 

the particulate phase. Soo et al. [1960] have shown a decrease in 

Lagrangian integral scale with an increase in particulate concentra- 

- - 	 tion. The investigations for measurement of various two-phase flow 

properties in channel/pipe flows are listed in Table (7.1 ) of Chapter 

7. Other works for the same configurations are due to Soo [1969], Soo 

and Regalbuto [1960], Eichorn et al. [1964], Soo et al. [1964], Soo and 

Tung [1971], McCarthy and Olson [1968] and Reddy and Pei [1969]. 

Measurements in two-phase turbulent jet flows are due to, Melville and 

Bray [1977], Goldschmidt and Eskinazi [1966], Popper et al. [1974), 

Hedman and Smoot [1975) and Yuu et al. [1978]. 

Despite the lack of detailed fundamental knowledge, required for 

the formulation and modeling of two-phase turbulent flows, the need to 

predict flows of industrial interest has stimulated the analysis for 

obtaining solutions for these flows. Drew [1975] has modeled the 

problem of turbulent sediment transport over the flat bottom of a 

stirring tank in which the mixing length hypothesis was used. 

Nagarajan and Murgatroyd [1971] have presented an analytical model for 

two-phase turbulent flow in a fully-developed pipe flow. The assump-

tion of a linear variation of the turbulent shear stress in the radial 

direction, the neglect of all but.the dissipation and production terms 

in the turbulence kinetic energy equation, and the introduction of 

several empirical and configuration-dependent coefficients make the 

solution obtained too specific for a general application. In a related 

work, the effects due to gravity and electrostatic effects were later 



included by Nagarajan [1972]. Based on the single-continuum model 

approach, Kramer and Depew [1972a] developed a calculation model for 

fully developed two-phase turbulent pipe flows. To obtain a solution, 

they expressed velocity fields in terms of various empirical coeff i-

cients and in addition an assumption of linear mixing length was made. 

Yuu et al. [1978] developed a solution for two-phase turbulent jet 

flows. In their calculations, Yuu et al. substituted empirical rela- 

- 

	

	tions for the fluid mean velocities in the Lagrangian equations for the 

motion of the particles. 

Smith et al. [1980) have presented a two-dimensional model in 

which the fluid variables have been obtained using a two-equation (k-c) 

model of turbulence, without considering particle effects on fluid 

turbulence. The particle Lagrangian equations are solved for a 

representative number of particle trajectories. The particlevelocity 

is assumed to be composed of convective and turbulent diffusive 

components. The first component is obtained from a particle Lagrangian 

equation of motion and the diffusion velocity is approximated by a 

gradient-type diffusion of particle mean concentration, the derivation 

of which is based on empirical information. The treatment of particles 

in this way has lead to great simplifications in the calculation of 

particle variables, however, no rigorous justification for this type of 

approach is presented by the authors. In addition, collision effects 

between neighboring solid particles were also excluded in the above 

approach making it valid only for cases of extremely dilute mixtures. 
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Danon et al. [1977] have presented a turbulence model for 

two-phase turbulent flows which is based on a set of parabolic 

conservation equations. In their model the particulate phase mean 

velocity is not solved directly but is assumed to be equal to the fluid 

velocity. Furthermore, in order to avoid complex particulate-wall 

Interaction effects, themodel was applied to axi-symmetric free jet 

flows. The fluid Reynolds stresses were modeled using fluid turbulent 

length scale and fluid turbulent kinetic energy concepts. For the 

turbulent length scale, an algebraic relation was assumed which 

remained constant in the lateral directions, and the fluid turbulent 

kinetic energy was obtained froma parabolic conservation equation in 

which particulate interaction effects with the fluid were included. 

However, the closure relation for the fluid-particle correlation term 

was assumed to be of an exponential form and was not rigorously.  

derived. Finally, for obtaining better agreement with the data for 

turbulent kinetic energy, the dissipation and production terms were 

assumed to have a linear variation with particulate concentration. 

This assumption, however, resulted in the introduction of two new 

empirical constants which were dependent on particle size and were 

"tuned" to match the experimental data. 

Genchev and Karpuzov [1980] proposed a turbulence model for 

fluid-particle flows inwhich the effect of particles in the turbulence 

transport equations were considered. The assumptions of uniform 

particulate concentration and equivalence of particle-phase mean 

velocity to the fluid velocity simplified the problem by making it 
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possible to discard the governing equations for particulate phase 

concentration and momentum. These assumptions, of course, have limited 

the range of applicability of the model with respect to the flow and 

particulate conditions. In the Genchev and Kapuzov model, the closure 

for fluid Reynolds stresses is based on an eddy viscosity concept 

proposed by Harlow and Nakayama [1967] in which the transport equations 

for fluid turbulent kinetic energy and a turbulent length scale are 

solved. Despite the inclusion of particle effects in the fluid turbu-

lence transport equations, the fluid-particle correlation terms were 

assumed to be negligible in comparison with their fluid-fluid counter-

parts. This simplified the modeling problem even further by avoiding 

the need to account for the complex fluid-particle correlation terms. 

As argued by the authors, this assumption is valid if the particle 

response time becomes much larger than the time scale characteristic of 

the mean fluid mean motion. However, the last assumption regarding 

time scales is in conflict with the earlier assumption regarding equal 

fluid and particulate mean velocities. For the equal velocity condi-

tion the particle response time must be much smaller than the mean 

fluid motion time scale. Thus, the assumption which makes it possible 

to avoid the complexity of the fluid-particle interaction terms raises 

a serious inconsistency in the model. Finally, the authors applied 

their turbulence model to the case of fully-developed pipe flow, with 

no experimental data provided in order to evaluate the capabilities and 

limitations of their model. 
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Summary and Conclusions 

As discussed above, the various calculation methods for two-phase 

turbulent flows, have generally embodied numerous simplifying 

assumptions in order to obtain a solution for the flow field 

variables. Furthermore, in the majority of the investigations, the 

particulate phase effects on the fluid turbulence structure have not 

been considered. In the few investigations where such effects have 

been incorporated, further simplifications in the governing turbulence 

equations were necessary and various empirical coefficients were 

introduced. The latter are, in general, a function of flow 

conditions. These calculation schemes can, therefore, yield results 

which are strictly valid for the flow conditions for which they were 

formulated and are not readily extended to encompass more general flow 

conditions and configurations. 

The purpose of this work is to analyze two-phase flow turbulence 

in depth and, as a resuslt, to develop a more generalized turbulence 

model for the computation of turbulent two-phase flows of engineering 

interest. The model of interest is based on the two-equation (k-c) 

model of turbulence for single-phase flows with universal constants. 

The governing equations for particulate and fluid phase velocities are 

taken in their fully-elliptic forms in order not to preclude the 

possibility of predicting flow recirculation. In the momentum balance 

equations, the interactive effects of the two phases are considered 

and, in addition, the particulate phase momentum exchange with the 

solid walls is included. The inclusion of the latter effect enhances 
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further the capability of the present model for predicting wall-bounded 

flows which are of great importance in engineering. 

The influence of the particulate phase on the fluid turbulence is 

included in the present model through terms which arise in a detailed 

derivation of the transport equations for the turbulent kinetic energy 

and the rate of turbulent kinetic energy dissipation of the fluid., 

The analysis of two-phase turbulence based on these equations, as well 

as the transport equations for the mean kinetic energies, reveals vari -

ous mechanisms for the exchange of kinetic energy between the mean and 

turbulent motion of the fluid and the particulate phases. The various 

fluid-particulate correlation terms in the equations for fluid turbu-

lent kinetic energy and its dissipation rate are rigorously modeled 

using the governing equation for the particulate-phase fluctuating 

velocity. Ultimately, the numerical model developed in this investiga-

tion will be used to predict various two-phase flow quantities as well 

as erosive wear by a dilute mixture of solid particulates in a curved 

two-dimensional channel. The tested and validated calculation pro-

cedure can be viewed as a relatively inexpensive and very valuable 

tool for conducting two-phase flow and erosive wear "experimentation"; 

not only in curved channels, but in' other shapes such as sharp bends, 

tees, backward- and forward-facing steps, axisymetric contractions 

and expansions, and curved solid objects immersed in a free flow, to 

name a few. 
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While the computational tool developed in the remainder of this 

text is more economical than experimentation, it can not be looked upon 

as a substitute for experiments. The foundations of the model depend 

on critical experimentation and validation of the model requires appro-

priate test data, for checking purposes. Notwithstanding, in many 

systems of engineering interest, especially newly conceived ones, often 

the data required to characterize the system is not available, and to 

conduct an experiment is prohibitively expensive or time consuming. In 

such cases the tool provided here is of most use. While in absolute 

terms calculations of an unknown two-phase flow may not be verifiable, 

relative comparisons of parametric effects are still extremely useful 

for altering and/or optimizing the system characteristic and perform-

ance. It is in this spirit that the present study has been motivated. 
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CHAPTER 2 

SINGLE PARTICLE MOTION AND TURBULENCE INTERACTIONS 

The following chapter consists of three sections. In Section 2.1 	 - 

the general equation for the motion of a single particle in viscous 

flow is presented, and the variouscontributing• terms are discussed.. 

In Section 2.2 existing solutions for the equation of motion for 

turbulent flow are analyzed. The interaction with turbulence will be 

discussed in Section 2.3. 

2.1 Equation of Motion for a Single Solid Particle 

The motion of a single particle suspended in viscous fluid is 

complicated due to the interaction of various forces which make a 

mathematical description of the particle motion extremely difficult to 

obtain. Owing to this complexity, it is comon to introduce simpli-

fying assumptions which make mathematical solutions possible, even if 

only for the special flow cases to which the assumptions apply. 

The original derivation ofan equation of motion for a single 

particle suspended in viscous flow is due to Basset [1888], Boussine.sq 

[1903], and Oseen [1927]. 

The equation was further generalized by Tchen [1947] to include 

effects due to a possible unsteady state and the surrounding viscous 

fluid. Tchen's derivation has also been reviewed by Hinze [1975] and 

Soo [1967]. 
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The general equation 

flow as given by Tchen [1 

dU Pi 
m =F = 31rud(Uf-U Pi 

(a) 

of motion for a single particle in turbulent 

47] is: 

dU 	/;fi  dU Pi 
_____ 1 	i___

+mf dt +mf 	- dt P) 

(b) 	 (c) 

t dU 	dU 

+ d V'PfUJ( 
dt' 	

dt' + mg (1 - !t) 	t+ Fej 

(d) 	 (e) 	(f) 

where; 

d - = _+upj  

and 

d 	- = -+ hf 

and furthermore; 

mp mass of the particle 

mf mass of the fluid occupied by the particle 

Xg 	represents the coordinate in the direction of gravity. 
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In Eq. (2.1) the following assumptions are made; 

1 - The particle is considered to be rigid and spherical. 

The Reynolds number, based on the particle diameter and 

slip velocity, is to be small compared to unity. 

2 - The turbulence is homogeneous and stationary. 

3_ The.particle size is small comparedto the smallest 

length - scale characteristic of the turbulence, i.e., 

the Kolmogorov length scale, n. 

Equation (2.1) states that the time rate of change of particle 

momentum is equal to the sum of forces acting on the particle, these 

forces are described below. 

a) Viscous drag force 

This force represents the main contribution to particle 

motion in most viscous fluid-particle flows and is caused by the 

non-zero velocity difference between the particle and the 

neighboring fluid (the "slip" velocity). The assumption of a 

rigid, spherical particle eliminates the need to consider 

deformation and directionality dependent effects. Non-spherical 

dependent effects in particle geometry have been discussed by 

Boothroyd [1971]. 

The assumptions 1 and 2 above lead to a simplification of the 

equation of motion, since the linear Stokes viscous drag relation 

can then be incorporated. The particle Reynolds number is defined 

as: 
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AUrdp 
Re 	 (2.1.2) 

with 

Ur = JUf_Upj 

For Rep < 0.1, the drag coefficient can be expressed as; 

Schlichting [1968]: 

CD - 24 Te-  . 	 2.1.3 

The inclusion of this relation in the equation of motion 

simplifies it considerably since Eq. (2.1.3) represents a linear 

drag law in terms of slip velocity. 

The.assumption 3 above implies a simple sheararound the 

particle and excludes the possibilityof complex effects on fluid 

drag due to various small eddies randomly distributed around the 

larger particle. 

If the Stokes' viscous drag is assumed to be the only driving 

• force in steady uniform fluid flow, from Eq. (2.1.1) one obtains: 

dUn. 	Uf. 
1_Up1 

. 

dt 	= 	
(2.1.4) 

m  

with the solution: 

••tUrj(t) = 	Uri(0) e_tttm 
	 (2.1.5) 

where: 	

Ur 	= 	Upj_J 



-16- 

In Eq. (2.1.2), the parameter Tm  has dimension of time and is 

defined as; 

= 

Pp  d 	
(2.1.6) 

Throughout the analysisrelated to particle motion, the parameter 

TmWll be extensively considered.. It is a. measure of par-

ticle's inertial response time to variations in neighboring fluid 

velocity, and is comonly referred to as the "particle momentum 

equilibration time" or "particle response time." Thus, relatively 

large values of Tm are associated with large, dense particles 

which require longer times for dynamical adjustment to changes in 

the imediate flow. In contrast, small, less dense particles have 

short dynamical response times. 

Mathematically, from Eq. (2.1.5) TM  is defined as the time 

period during which particle relative velocity .(AU r)will reduce 

to e 1  of its initial value at t = 0. Based on Tm a "momentum 

equilibration length" can also be defined as, Marble [1963]; 

Lm 	tmU.f 
	 (2.1.7) 

Characteristic of a particle's responsive traveling distance. 

In Eq. (2.1.7), Uf0  represents the characteristic velocity of 

mean fluid motion. 
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b) Pressure gradient force 

The pressure gradient in the flow exerts a net force on the 

particle and is approximately related to the fluid velocity as 

given by Tchen [1947]: 

dUf  
= - P., 	dt (2.1.8) 

However, it has been argued that due to viscous effect, the 

pressure .gradient term should actually be substituted from the 

Navier-Stokes equations, Corrsin and Lumley [1956]: 

dU 
- 	 2 

= Pf 	j - U V Uf 	 (2.1.9) 

with the implication of no particle effects on fluid motion. 

However, for particle sizes smaller then the Kolmogorov length 

scale associated with the neighboring fluid element, a relatively 

uniform fluid velocity around the particle can be assumed to exist 

with negligible viscous effects, as argued by Hinze [1975]. 

The motion of fluid around relatively small particle has been 

approximated as steady potential flow with linear variation as in 

Soo [1975]. Further substitution of this linear form in the 

viscous drag term (a) of Eq. (2.1.1) results in an additional term 

which cancels the pressure gradient term (b) when the Reynolds 

number based on free stream velocity is unity. In a related 

analysis the same linear velocity function i§ used to obtain the 

same result for any value of the Reynolds number, Soo [1976]. 
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The latter analysis is based on the inclusion of the force 

balancing the rate of change in fluid momentum around the 

particle. 

For the case of invisid flow around the particle as can be 

shown from Eq. (2.1.8), the ratio of the pressure gradient force 

to particle inertia force becomes proportional to the fluid to 

particle density ratio if the particle and its neighboring fluid 

element possess nearly equal accelerations. Therefore, under such 

a condition in gas-solid flows, the effect of the pressure gra-

dient term becomes negligible compared to the inertia. However, 

the assumption of equal accelerations is, apparently, not valid in 

the regions of excess gas acceleration like shock waves. 

c) The "app:arent mass" force 

The apparent, or virtual, mass term represents a resisting 

force on the accelerating particle due to a non-zero relative 

acceleration between the particle and its neighboring fluid 

elements. As shown by Mime-Thomson [1968] it is equal to; 

(duf 	dU\ 
 Pi 

F1 = CAmf dt - dt) 	
(2.1.10) 

with CA = 0.5 for spherical particles. However for values of 

Re beyond the valid range of Stokes drag law, CA  becomes an 

empirical constants as indicated by Odar [1966]. The apparent 

mass force is usually broken up into it's particle and fluid 

acceleration terms as defined by Eq. (2.1.10). The particle 

acceleration contribution to this term can be coinbinedwith the 
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inertia term on the LHS of Eq. (2.1.1). The fluid acceleration 

contribution can be incorporated into the pressure gradient term. 

Therefore, the particle response time with apparent mass effects 

included can be re-written as: 

d2  

Tm  = (; + 0.5 Pf) TL 

d) Basset force 

The unsteady viscous effect associated with fluid-particle 

interaction results in the Basset force. In general, this force 

represents the deviation of the total viscous drag from the steady 

component and is, therefore, associated with the changes in flow 

pattern around the particle during the unsteady motion. The term 

shows a dependency on the history of particle-fluid relative 

accelerations. For a spherical particle the force is expressed 

as, Basset E18881: 

tdU 	dU 

	

2 	

f  

2 	
pi 

F = CH 4 1/2 	
dtdt 	

dt' (2.1.11) 

where to  15 the initial time of particle motion. Also for CH, 

Bassett theoretically obtained: 

CH = 6 

However, for Rep > 0.1, CH  becomes an empirical constant. 



-20- 

The influence of unsteady flow patterns around a particle, when 

falling in a quiescent fluid, have been investigated by Hughes 

and Gilliland [1952]. The analysis shows small deviations from 

Stokes drag law when the ratiop/f  becomes large, i.e., 

0(10), while rather large deviations are observed when the 

ratiobecomes small, i.e., o(10 4 ). 

The' investigation of Hjemf'èlt and Mockros [1966] shows the 

significance of pressure gradient, apparent mass and Basset force 

on the amplitude ratio and phase shift angle of the fluid-particle 

oscillatory motion. Their analysis is based on a linearized equa-

tion of motion obtained by Tchen [1947] which will be discussed 

in Section 2.2. In general, the analysis shows no significant 

contributions by these forces at high Stokes number corresponding 

to the low frequency region of the fluid oscillatory motion. 

The Stokes number is defined as: 

N 
	

(2.1.12) 

with w, representing the frequency of the fluid motion past the 

particle, proportional to the ratio of the velocity scale to the 

length scale of the turbulence in the vicinity of the particle. - 

For the case of/f = 0(1), typical of liquid-solid 

flows, contributions by the pressure gradient term to the fluid-

particle amplitude ratio and phase shift angle become important 

for values of N 5  1 0.40 and N5  < 0.82, respectively. 
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For the case when vp/f = 0(10 3 ), typical of gas-solid 

flows, the analysis shows less significant overall contributions 

by all three pressure gradient, apparent mass and Basset forces. 

This is especially the case for changes induced in the amplitude 

ratio. However, from among the three forces, the Basset force 

shows the largest influence on the amplitude ratio. For values of 

the phase shift angle the effect of the pressure gradient force 

becomes significant when, 

p 

The maximum error induced by dropping the Basset term from 

the force balance on a spherical particle is approximately 16% 

for: 

w- .25--- 

The analysis of Hinze [1975] for gas-solid systems, also shows a 

non-significant contribution by the Basset force for: 

U - 

p 

e) Buoyancy force 

Buoyancy force is caused by the fluid-particle density 

difference and affects particle momentum in the direction of,  

gravity. 
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f) External forces 

The term Fej  in Eq. (2.1.1) represent the forces caused 

by anything other than fluid like electrostatic force. 

Lift forces: 

Under certain flow conditions, solid particles experience lateral 

lift forces which move them away from wall regions in, for instance, 

straight channel or pipe flows. In general, such lift forces are 

generated by the combination of particle rotation and fluid shear. The 

particle rotation in a fluid-particle flow can be attributed to various 

effects among which are the fluid shear, particle-particle collision 

and particle-wall collision. 

For a spherical particle with an angular velocity Q in 

potential flow the lift force is, Rubinow and Keller [1961]: 

= 	P 	 (2.1.13) 

with; 

t
r  = of - 

as the relative velocity vector. 

The lift force so defined in usually referred to as.the "Magnus" 

lift and requires a knowledge of the particle angular velocity in order 

to be determined. Evaluation of np in a flow is not simple. How-

ever, for small, short response time particles in shear flow, 	can 

be approximated by assuming it is equal to the neighboring fluid 

rotation. Thus: 
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Uf  

I Pik 	
3Xj £ijk  

where cijk  is the third-order alternating tensor. 

As an example, in the case of simple shear flows with all velocity 

gradients equal to zero except that along a normal to the wall: 

dU fx 

	

= 	1. 
p 	

1 

 2 	•2 	dx2 ' 	 (2.1.15) 

and from Eq. (2.1.13) for this case the lift force is: 

	

d3 	dUf 

FL= T2 Urx 	dX2 	• 	 (2.1.16) 

Equation (2.1.16) shows the same functional dependency on fluid 

variables as presented by Owen [1969]. 

The lift force given by Eq. (2.1.13) is applicable to the case of 

inviscid flow only and does not include viscous effects. Therefore, it 

is not to be used in low particle Reynolds number viscous dominated 

flows. However, the adoption of such a lift force as an approximation 

in a viscous flow shows that the effects on the particle motion are, at 

least, one order of magnitude smaller than those due to the viscous 

drag when the particle motion in the small-scale,.dissipative eddies is 

considered, Hinze [1972]. Evaluation of the lift force with the 

viscous effects considered for a spherical particle requires a solution 

of the Navier-Stokes equations in the vicinity of the particle. It has 

been shown that by neglecting non-linear inertia terms at low Reynolds 

numbers the resulting linear momentum equation is not capable of 
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producing a net lift force on the particle in the direction of the 

- normal to the relative velocity as shown by Cox and Mason [1971] and 

Lumley [1957]. This result is in contradiction with the experimental 

observation of Segre and Silberberg [1962] who have observed the 

migration of neutrally buoyant particles away from the wall to an 

equilibrium dimensionless radial position equal to 0.6 in Poiseuille 

flow. The transverse force associated the particle migration is 

therefore attributed to fluid inertial effects with the conclusion that 

such effects are not to be neglected, but should be incorporated in the 

derivation of the lift force. 

Using perturbation methods, Saffman [1965] has derived the viscous 

affected lift force. The result is applicable in uniform shear low 

Reynolds number flows with the first term of the series obtained as: 

FL = 81.2 Ur 
d2 	( dUfxy/2 	

(2.1.17) 

which is usually referred to as the Saffman lift force. The assump-

tions are that: 

Ud 	d2 dUf 	2 
2yp 	4 	dX2 	

.4_2. << 1  

and also: 

dUfx 	2U 

dx2 
 

where c2 represents the particle's angular velocity. 
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The ratio of Saffman lift force to the Stokes drag is; 

F1 - 	I 	fduf\]h12 

-t dx2)j 
(2.1.20) 

The expression in the brackets is much smaller than unity according to 

the second assumption in Eq. (2.1.18). For the ratio in Eq. (2.1.20) 

to be small, the particle size should satisfy the condition: 

dUf -1/2 

d 	<< 0.5(. 	
dx2) 	 (2.1.21) 

Therefore, for the lift force to be neglected with respect to the 

Stokes drag, the particle size should be small compared to a charac-

teristic dimension of the near-wall flow region where velocity 

gradients, due to viscous effects, are steep. 

2.2 Solutions to the Equation of Motion 

Equation (2.1.1) describing the motion of a particle in turbulent 

flow is complex in its full differential form, and an exact solution is 

difficult to obtain. The greatest difficulty is due to the complicated 

nature of fluid-particle interactions which appear through the, 

inclusion of various fluid-induced accelerating and decelerating 

forces. Equation (2.1.1) in its general form is a non-linear integro-

differential equation for the motion of a single particle in Lagrangian 

coordinates. The non-linearity is due to the condition that the 

particle does not generally remain in the vicinity of its initial 
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neighboring fluid element. As a consequence, the 1th  component of 

the fluid velocity encountered by the particle at time (t) will be: 

IJ f  1(1t) ;t} 

instead of the velocity: 

Uf  [)(f (tf ,t) ; t] 

with & 0  and Ef representing initial vectorial positions of the 

particle and fluid element which are coincident at t = 0. 

The fluid velocity encountered by the particle depends on the 

position at time t. By further manipulations, Eq. (2.1.1) becomes a 

second order differential equation in terms of the particle position 

with the solution depending on the particle initial position, the 

particle response time and also on a complete description of the 

turbulent flow field. Such a description, if available, is statistical 

and will result in a statistical description of particle motion. 

However, the non-linearity as defined above, requires a description of 

turbulent flow field along the particle trajectory. In other words, 

since the particle does not follow the same fluid element in general, 

the probability of the particle being in a specified location at a 

certain time is also required. 

This non-linearity does not exist in, for instance, Brownian 

motion, where the particle motion driving mechanism is provided by the 

random collision with other particles independently of particle 

position as shown by Peskin [1959]. 
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The first solution for the Basset-Boussinesq-Oseen equation of 

single particle motion is due to Tchen [1947]. In addition to the 

assumptions following Eq. (2.1.1), Tchen assumed that the particle 

remained in the neighborhood of its original fluid element. The latter 

assumption produces identical values for the diffusion coefficients of 

the particle and its neighboring fluid element. It has been argued 

that, Hinze [1975], for the particle to remain in the vicinity of the 

same fluid element, the particle displacement relative to the initial 

neighboring fluid must remain smaller than the local characteristic 

fluid length scale, during a time period shorter than the local time 

scale.. 

For a conservative estimate, such local length and time scales can 

be taken as the Kolmogorov length and time scales, n and T. This 

implies that: 

Uf• _Up•  

	

1 	1 	<< 1 	 (2.2.1) 
f 

and the assumption of the fluid and particle following the same 

trajectory results in: 

	

d 	_d 
- 

	

.t 	
'222 € 

which removes the non-linearity in Eq. (2.1.1) and simplifies the 

problem of finding a solution. 



The requirement for linearization is that, Soo [1967]; 

d2 Uf 

3 •4 • 	1 	
<< 1 	 (2.2.3) 

The condition expressed by Eq. (2.2.3) can be obtained by comparing 

linear and non-linear terms in Eq. (2.1.1) after some algebraic 

rearrangement. 

Furthermore, removal of the viscous second-order term in Eq. 

(2.1.1) introduced by the pressure gradient term requires that, Soo 

[1967]: 

U 	>> v 	 (2.2.4) 

which means that if the time scale for particle inertial effects is 

substantially smaller than that characterizing viscous flow effects, 

the particle "sees" an essentially inviscid fluid element in its 

vicinity. The conditions Eq. (2.2.3) and Eq. (2.2.4) have been shown 

by Levich and Kuchanov [1967] to be equivalent to the respective 

conditions: 

d2  
<< 1 	 (2.2.5) 

Re"4  >> 1 	 (2.2.6) 
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The solution of Tchen [1947] for Eq. (2.1.1) includes all the 

assumptions mentioned above regarding linearization and also the 

removal of the fluid viscous terms. In that analysis a stationary 

solution was obtained with the initial time set to (-a').  Tchen's 

solution is significant in that it has subsequently been followed by 

many investigations. Hinze [1975] obtained a solution by taking 

Fourier integrals of fluid and particle velocities and substituting in 

the linear equation of motion. The results are similar to those 

obtained by Tchen for the particle diffusivity. A similar approach has 

been followed by Hjelmfelt and Mockros [1966]. Finally, a solution has 

been obtained by Chao. [1964] which is based on the Fourier transport, 

linearized form of the equation of motion with the same results. 

In order to facilitate further the analysis of the dynamics of a 

particle in turbulent flow it is appropriate to focus on a more simpli-

fied equation of motion. In the absence of significant external 

forces, it can be assumed that the drag force gives the major contribu-

tion to the particle motion and on this basis produce a rigorous anal-

ysis for solid particle motion. Therefore, following this argument one 

would obtain from Eq. (2.1.1): 

dU 	U 

dt = A 1 (t) 	 (2.2.7) 
m 

where: 

Uf  [(tt);tJ 

A(t) = 	
Tm 
	 (2.2.8) 
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in turbulent flow. For the cases where diffusion mechanisms other than 

turbulence are present, the term A(t) in Eq. (2.2.7) should be 

substituted appropriately. This has been discussed by Peskin [1959] 

in case of Brownian diffusion and diffusion under Bernouli forces. 

By integration of Eq. (2.2.7) with Eq. (2.2.8) substituted one obtains, 

Lumley [1957]: 

t + + 
x(t) = f 	g(t-n) h f  lx ( ,n);n} di, + x 	 (2.2.9) 

0 	 p p 	 pio  

In general, the solution to Eq. (2.2.7) is, Peskin [1959]: 

t 
x(t) = -?- f g(t-n) 	 di, + x 	(2.2.10) 

1 	 m 	0 	 pj 	 Pio 

where: 

g(t-) = 1 - e 	
m 	 (2.2.11) 

represents the response function which becomes identical to unity in 

the case of particles with TM  = 0. This implies that the turbulent 

dispersion of fluid elements is a special case of the dispersion of 

solid particles for the case of Tm = 0. 

Furthermore, using Eq. (2.2.9) for the derivation of the particle 

mean square displacement, it has been shown by Peskin [1959] that 

G. I. Taylor's theory of "diffusion by continuous movements," Taylor 

[1921], is a special case of solid particle diffusion when Tm = 0 and 

the solid particle becomes indistinguishable from its neighboring fluid 

elements. 
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2.3 Interaction of a Single Particle with Turbulent Flow 

For further analysis of the dynamics of a single particle 

- 	 suspended in turbulent flow, a comparison between the particle response 

time and the characteristic time of turbulent eddies surrounding the 

particle should be made. For a particle much larger than neighboring 

eddies, the particle dynamics are affected through modifications to 

viscous resistance drag rather than by the direct action of inertial 

forces on the eddies themselves. For a particle to be responsive to 

the smallest eddies, its response time (Tm)  should be comparable to 

that of the Kolmogorov time scale, t = ( v/c) 1 !2 , which is a charac-

teristic time scale in the high wave number part of the turbulence 

spectrum. 

Hence, for a responsiveness of the particles to eddies in this 

part of the spectrum,, the ratio: 

= 0.06 (a + 0.05) ()2 
	

(2.3.1) 

Pf 

should be small compared to unity. 

In Eq. (2.3.1), n is Kolmogroff's length scale and Tm also 

includes the effects due to apparent mass. Therefore, for the particle 

to be responsive to the viscous dominated, small eddies in liquid-solid 

systems,here/f = 0(1), the particle size should be of the 

order, or smalley- than the eddy size. However, in gas-solid flows, 

with Pp/Pf = 0(10 3 ), the particle should be.at least one order of 

magnitude smaller than the eddies. 
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In high Reynolds number flows, turbulent eddies are characterized 

by their turbulent kinetic energy, k, and dissipation rate of kinetic 

energy, e, the typical time and length scales are, respectively: 

3/2 

it 

and; 

T=Ai 
2c 

in which A1 and A2 are constants. 

Hence, fOr a particle with response time(rm)  to respond to the 

eddies in this range: 

= O.06A (Pf 
+ 0.05) (d)2 [k

1 / 2  (k3'2/c)] 	
(2.3.2) 

should be small compared to unity. 

In Eq. (2.3.2), the last bracket contains the local Reynolds 

number which is large. The particle to eddy size ratio should 

compensate the high Reynolds number effect to give a small value for 

the time ratio. As above, a higher density ratio requires a smaller 

particle size. 

In the case of energy containing eddies characterized by the 

velocity scale Uf and length scale A, the time scale of the eddies 

are; 

T- A 

Uf 
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therefore the ratio of the time scales is: 

Tm = 0.06 (lEa + 
Ø•Ø\ 4 !r± 	(2. 3.3) 

'\Pf 	A 	
V 

which should be smaller than unity. Hence, it requires that, Hinze 

[1972]: 

d 	 Uf A - 	-1/2 

	

0.2 [__(_2+  0.5] 	 (2.3.4) 

for the particle to. respond to the large energy-containing eddies. 

However, from Tennekes and Lumley [1972]: 

XE - B R - 	1 (2.3.5) 

with B1 = 0(10). 

Thus Eq. (2.3.4) becomes 

X E 

	< 0.6 (i + 0.5) 

requiring particle sizes two orders of magnitude smaller for the cases 

of gas-solid flows, when compared to liquid-solid flows for equivalent 

flow conditions. 
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CHAPTER 3 

TRANSPORT EQUATIONS FOR TURBULENT TWO-PHASE FLOWS 

In the previous chapter the dynamics of a single particle 

suspended in turbulent flow were  discussed. Furthermore, the particle 

equation of motion in a Lagrangian frame of reference was considered 

and the various forces affecting particle motion, due to particle-fluid 

interactions were evaluated and discussed. 

Analysis based on the equation of motion for a specific particle, 

yields predictions which are' related to a specific particle with 

defined initial conditions. Results so obtained, such as particle 

velocity and trajectory are basically restricted to the motion of a 

single wandering particle. Although valuable from afundamental point 

of view, such results are of little interest in engineering applica-

tions. Instead, particulate properties associated with an ensemble or 

collection of particles, such as the particulate concentration density 

or the velocity at a specified point in the flow field, are of rela-

tively greater practical importance. 

Analysis of the flow based on the 'governing equations fOrmulated 

in Eulerian coordinates is generally capable of providing such 

information for a particle-laden flow. Such an approach does also 

allow, at least in principle, for the particle-particle collision 

effects. These can be formally incorporated in the momentum-balance 

equations by the inclusion of a particulate viscosity accounting for 

the momentum exchange between particle caused by inter-particle 

collision. In the analysis for single particle motion based on 
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Lagrangian equations, particle-particle collision effects can be 

included by incorporating a spatially and temporally function 

describing a distributed collision force. Consequently, in the 

majority of single particle investigations It is customary to neglect 

thecollision effects between particles and to adopt the assumption of 

forces produced by fluid interactions. Although such an assumption may 

be justified for dilute particulate flows, it is unacceptable for 

concent rated fl ows. 

On the basis of the preceeding argument, a development of the 

governing equations in Eulerian coordinates is desired, which will 

remain invariant with respect to changes in particulate concentration. 

As will be seen, however, expressions in Lagrangian coordinates will be 

required to derive a closure for the Eülerian transport equations. 

In the following sections, conservation equations for the mass, 

mean momentum and mean kinetic energy of the fluid and particulate 

phases are developed. Transport equationsfor fluid turbulent kinetic 

energy and dissipation of kinetic energy are also derived. By 

incorporation of appropriate boundary conditions and the closure 

relations in the transport equations, numerical solutions for the 

equations presented are subsequently obtained. 

3.1 Continuum Model for a Cloud of Particles 

A derivation of the governing equations for a particulate phase in 

terms of Eulerian coordinates, requires a continuum model approach for 

the cloud of particles. The continuum assumption allows for a replace- 

ment of the fluid-particle heterogeneous mixture by the two interacting 
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phases governed by their respective conservation lows. Therefore, a 

fixed "point' in the flow field is here defined as an infinitesimal 

volume element consisting of many small solid particles coexisting with 

the fluid phase, and for which a statistical averaging of the various 

properties of the particulate phase is feasible and meaningful. The 

infinitesimal element.thus defined should be small compared to the 

smallest dynamical scale in the flow fluid, Kraiko and Sternin [1965], 

yet large enough to contain a sufficient number of particles to make 

meaningful the local definitions of macroscopic properties, such as 

velocity and density, obtained through statistical averaging. 

It has been shown that under conditions of negligible particle 

interactions, the RMS fluctuations in the density of a particulate 

volume element decrease with an increase in the element size, Lumley 

[1976]. However, as the element size becomes of the order of the 

macroscopic flow scales, it can experience spatial variations in mean 

density. 

The condition for smallness of the particle characteristic length 

scale when compared to the smallest length scale in the flow requires 

that: 

tp << 11 	 (3.1.1) 

In Eq. (3.1.1), &, represents the average interparticle distance and 

n is the Kolmogorov length scale in turbulent flow. For a large number 

of uniformly distributed and equally spaced solid spherical particles 

with t/d > 10 a simple analysis yields; 
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Lp 	
d\/ 
	

(3.1.2) 

where a is the particulate volume fraction. 

Comparing Eqs. (3.1.2) with (3.1.1) yields: 

a 
 >>(

d3  .a) .. 	 (3.1.3) 

Thus, the continuum requirement renders a condition for the particulate 

volume fraction in the flow. Alternatively, from Eq. (3.1.3); 

(1/3  

which is a condition for the ratio of particle size to Kolmogorov 

length scale for a givenparticulate volume fraction. The same 

analysis which led to the Eq. (3.1.1) yields: 

=(3.1.5) 

which indicates that the right side of Eq. (3.1.4) is always smaller 

than, or at most equal to, unity. Hence: 

dp 
 << 1 

in 

In the case of Brownian motion for 

mean free path of the particles becomes 

In analogy with molecular random motion 

gases, Vincenti and Kruger [1965], one 

free path as: 

(3.1.6) 

the particles, the associated 

the appropriate length scale. 

and from kinetic theory of 

:an define the particle.rnean 



d 

L PP 	6/z 
	 (3.1.7) 

In analogy with gas molecules, the random Brownian-type motion of 

particles is assumed to be generated by collisions of rigid spherical 

particles. The analogy is more justified for very fine, sub-micron 

particle sizes for which the collisions with carrier gas molecules can 

also be significant, Yeung [1978]. For larger particle sizes, the 

Brownian-type motion is more likely to happen in concentrated particle-

fluid suspensions with relatively small mean free path and high 

collision frequency per particle. In a dilute mixture, viscous drag 

effects of the carrier fluid tend to deccelerate the particle after, 

and prior to, a collision. 

It is reasonable to assume that in the cases of dilute 

suspensions, particles are more strongly affected by the fluid, 

although collision effects with other particles may still be 

considered. Therefore, it can be concluded that in contrast with 

collision-dominated particulate elements for which the local 

equilibrium is established by inter-collision of particles, in the 

viscous-dominated cases the equilibrium condition is reached by 

interactions with the carrier fluid in which the particles are 

contained. 

The random movement of the particles with different velocities 

and in different directions in a particulate volumetric element leads 

to the definition of a distribution function f p ( X pj ,U p , t) for 

the averaged local variables. 
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For uniformly sized particles and steady mean flows, the value; 

dv 	dv 	 (3.1.8) f(xv) dx1  dx2  dx3 	 dv 
p2 p3  

represents the number of particle with velocities between v and 

Vp.j  + dvp i  at the position bounded by Xj and Xj + dx 1 . Local 

averaged variables can be obtained by integration over all particles 

within a volume element with f as the weighting fuction. The 

derivation of a probability distribution function f for "gas-like 

particles" requires solution to a Boltzmann type equation with particle 

characteristics incorporated. This requires a careful evaluation of 

the forces exerted on the particulate phase. In the investigation of 

Culick [1964] several simplifying assumptions have been made and an 

apprpriate solution was obtained. In that analysis was included the 

collision between two class sizes of particles withnon-zero relative 

velocity due to differences in their respectively induced motion by 

fluid viscous. In Culick's analysis, the inclusion of various simpli-

fying assumptions, however, restricts the range of applicability of the 

result obtained. In the investigation by Marble [1963], the conserva-

tion equations for the particulate phase have been obtained using the 

Boltzmann equation without derivation of f1 function. 

The situation of viscous-established particulate equilibrium with 

weak particle-particle collision effects is more likely to arise in 

dilute suspensions as opposed to concentrated flows. In dilute cases, 

the length scale characterizing fluid-particle interaction effects 

should be small compared to the characteristic lengthscale for 
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particle-particle collision. The fluid-particle length scale for 

turbulent suspensions is defined by Soo [1969] as; 

Lf_ = Tm  Au  

where, 

- 	 2 1/2  
= 	(Uf  - u)  

with Uf and Up as direction-averaged fluctuating velocities for the 

fluid and particulate phases, respectively. 

Thus, for a viscous-dominated suspension: 

Lf_ 	<< 
	

(3.1.11) 

which from Eqs. (2-2-6) and (2-2-8) it would yield the condition: 

d 
a 	 p 	, 	 ( 3.1.12) 

612 T A u 

for the volume fraction of the solid phase. 

From the above condition it can be shown that for a fixed a, it 

is the more responsiveparticles.which are affected primarily by 

viscous, as opposed to inter-particle collision, effects. For small 

Tm, particle volume fractions can assume higher values with almost 

no significant particle-particle collision effects and local equili- 

brium is established by interactions with the fluid rather than direct 

inter-particle collisions. 
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Finally, it can be stated in support of the continuum approach 

that good agreement is found in the literature between experimental 

data and theoretical analyses incorporating the approach. For example, 

the studies by Stukel and Soo [1969], Nagarajan [1972] and Kramer and 

Depew [1972a] can be mentioned. Thework of Kramer and Depew was 

specifically conducted to verify the particle phase continuum hypothe-

sis in a turbulent pipe flow configuration. In their study, the 

authors investigated particle sizes of 62 and 200 pm, with volume 

fractions as low as 10, and found good agreement between their 

theoretical and experimental results. 

3.2 Conservation Equations for Two-Phase Turbulent Flows 

The general form of the conservation equations for mass and 

momentum in twophase flow have been presented by Soo [1967], Drew 

[1966], and Hinze [1962]. The transport equation for fluid turbulent 

kinetic energy has been given by Hinze [1972], Danon et al. [1977] and 

Drew [1976a]. In this section the equations are developed to yield 

their time-averaged forms, using Reynold's decomposition procedure. 

In addition, time-averaged transport equations for the turbulent 

kinetic energy and the dissipation of turbulent kinetic energy, for 

the fluid phase, are also derived and presented. 

The following assumptions are implied in the equations: 

1 - Steady state, isothermal flow and imcompressible, Newtonian 

fl ui d 

2 - Constant fluid and particle properties 
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3 - Continuum hypothesis for the dispersed phase composed of 

uniform size, spherical particles. 

4 - The main dynamical interaction between fluid and particulate 

phase is due to Stoke's viscous drag 

5 - Dilute particulate suspensions with a << 1 everywhere in the 

flow field. 

6 - For fluid phase the viscous diffusion is neglected compared 

to turbulent diffusion. 

7 - For particulate phase the Brownian and Bernoullion diffusion 

are negligible compared to the turbulent diffusion induced by 

the fluid motion. 

8 - Third-order terms containing particle concentration fluctua-

tions are assumed negligible. 

9 - Local isotropy fOr the fluid-particle turbulence. 

3.2.1 Mass conservation equations 

a) Fluid phase 

The mass balance for a fluid element with volume fraction (1-a), 

yields, Hinze [1962]: 

a Pf (1-ct)Uf  

axi 	
1 	=0 	 (3.2.1) 
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This is the continuity equation for a fluid phase in the presence of 

particulates with volume fraction a. However, from the assumptions 2 

and 5, the equation simplifies to: 

aUf  

____ = 0 . 	 (3 . 22)* 

Using Reynold's decomposition for velocity: 

Uf 	= tTf  +Uf 	, 	 (3.2.3) 

and substituting in Eq. (3.2.2) followed by time-averaging, yields: 

3Uf  
1 

ax. (3.2.4) 

Equation (3.2.4) is anadequate approximation for fluid mass conserva-

tion in a dilute fluid-particle flows. 

b) Particulate phase 

The same consideration leading to Eq. (3.2.1), when applied to the 

particulate phase of a third-particle suspension, will yield the solid 

phase continuity equation, Hinze [1962]: 

( 	aU . ) = 0 
	

(3.2.5) 

*Note that, rigorously, Eq. (3.2.4) includes a term a'uf.. which 
need not be zero. However, since Ia'I = O(a) and a << ], it is 
presumed that the term represents a negligible contribution to the 
balance equation. 
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Using Reynold' s decomposition procedure: 

= 	 (3.2.6) 

Upi -  1J + u 	, 	 (3.2.7) 
ri 	ri 

for the mass conservation of particle, phase one obtains: 

- ('U1, + &u) = 0 	 (3.2.8) axi 

In Eq. (3.2.8), first term represents a contribution to the particle 

mass flux due to mean motion while the second term represents that due 

to turbulent diffusion of the particulate phase, and any other contri-

buting term must be modeled in terms of appropriate flow field varia-

bles. In turbulent two-phase flow, it is customary, Hinze [1972], to 

assume a gradient-type diffusion form for the correlation term in 

Eq. (3.2.8) in analogy with the turbulent diffusion of heat in single 

phase flows. Thus: 

	

V 
(a) 	a 

T. 
	 (3.2.9) 

where Vt 	 represents turbulent diffusivity for particulate mass 

concentration. The gradient-type turbulent diffusion expressed by 

Eq. (3.2.9) denotes a local field effect, with no memory of the past 

history of the particles. It is, therefore, inapplicable to cases with 

significant "over-shooting" effect of the particles. As will be 
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discussed later for such cases, due to inertia, or under the influence 

of external forces, such as gravity, the particles do not necessarily 

remain in the vicinity of their initial neighboring fluid element and 

can "over-shoot" to a different fluid element. Since this process is 

associated with particle "memory" effects, it can not be accounted for 

by a gradient-type diffusion mechanism. 

For cases of non-significant "over-shooting" effects, Eq. (3.2.9) 

will be used to close the governing mass concentration equation. As 

will be seen later in the sub-section for the momentum balance, a 

similar constitutive relation for turbulent transport of particle 

momentum will be assumed. 

It has been argued that in dilute flows, the momentum transport 

process for the particulate phase is due to turbulent diffusion of 

particles as through the containing fluid. This is an extension of 

Reynold's analogy applied to the mass and momentum transport of the 

particulate phase as shown by Soo [1969] to yield; 

= A , 	 (3.2.10) 
p 	

p 

with A as a constant of order unity. From Eq. (3.2.10), therefore, a 

- 	 direct linear proportionality between particle mass and momentum 
(a) 

diffusivity exists. Thus, by obtaining the relation between 

* 	
and Vtf, fluid eddy diffusivity, a relation for the particle 

momentum diffusivity will also be obtained. 
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Substitution of Eq. (3.2.9) into Eq. (3.2.8) yields: 

7 r • ) -.f (v 	.) = 0 	 (3.2,11) 

for particulate mass transport. 

362.2 Momentum balance equations 

Fluid phase 

In a derivation of the fluid momentum-balance equation in a fluid-

particle mixture, the dynamical effects due to presence of the par 

tides should be considered. In gases, for example, it has been shown 

that the p.resence of particles effects the momentum exchange process 

between gas molecules, and hence the gas viscosity. Thus Einstein 

E19061 obtains: 

p = p0  (1 + 2.5a) 	 (3.2.12) 

where p and u o  denote fluid laminar viscosities with and without 

particles. Such a change of fluid molecular viscosity is not signifi-

cant here, due to the diluteness assumption as well as the assumption 

of negligible molecular transport compared to turbulence diffusion. 

The momentum balance equation for the fluid phase is therefore a 

balance among various forces of inertial, pressure and viscous origin, 

and includes the flow-resistance forces induced by the particles on the 

fluid element. 



-47- 

-- 	 The instantaneous fluid momentum transport equation is given by 

Soo [1967]: 

Ufi  k [Pf (1-a)Uf Uf ] = - a 

Uf.Up• - (1a 

	(P61 ) + _ (u 	
) 

- 	 I 	 II 	 III 	 IV 

(3.2.13) 

with the following interpretation for various terms; 

	

I - 	inertia term 

	

II - 	particle-induced drag force 

	

III - 	pressure force 

	

IV - 	viscous force 

The assumption 5 above, that is: 

<< 1 	 (3.2.14) 

can be incorporated in Eq. (3.2.13), resulting in the following 

equation for the instantaneous momentum: 

Pf 	(ufuf) 
= - 	

a 

Uf. U p.  - 	

+ 	( 	
(3.2.15)  (PS 

Thus, depending on (Uf - Ups) being positive or negative, the 

effect of the particulate phase is to decelerate or to accelerate 

the flud. 
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Application of Reynolds decomposition procedure on Eq. (3.2.15) 

and averaging results in the following equation for the fluid mean 

momentum: 

Pf j (Uf.  Uf ) = - !. [ (U - U) + aluf  U, J] - -_ (• &) 

+ Pf 	(vff :;) 	 (3.2.16) 

In this equation the Boussinesq assumption has been used for expressing 

the Reynolds stresses. Thus., 

- ufuf = 	
+ 	- 	

6k  

where k = 1/2 (uf 1 uf) is the fluid turbulent kinetic energy. 

Also, from the previous assumptions of negligible viscous diffusion, 

in Eq. (3.2.16); 

"eff = 	
+ t

f 	tf  

The fluid-particle interaction in Eq. (3.2.16) is comprised of two 

terms. The first term (ha)  represents the mean viscous drag induced 

by the particles, and the second term (lib)  is the drag contribution 

induced by the turbulent diffusion of the particles. 
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The fluid-particle interaction in Eq. (3.2.16) is comprised of two 

terms. The first term (ua)  represents the mean viscoUs drag induced 

by the particles, and the second term (JIb) is the drag contribution 

induced by the turbulent diffusion of the particles. 

It has been postulated by Hinze [1972] and Davidson and McComb 

[1975] that: 

U f  a' = - 	

•i 	
(3.2.17) 

with v f  denoting the turbulent diffusivity for the transport of 

the scalar a. The ratio: 

= Vtf  

t f 	
t.f  

thus represents the eddy Schmidt number for the transport of particles 

by velocity fluctuations. 

The governing equation for the fluid fluctuating velocity, 

Ufl, is obtained bysubtraction of the instantaneous momentum 

balance Eq. (3.2.13) from the time-averaged Eq. (3.2.16); the result 

is: 

- 	 Pfj (Ufuf + U f Uf  + U f Uf ) 

- 	[(uf  _u) + a(Uf-U) + a'(Uf -u) - auf _U p )] 

-, 	
( a::) 	

(3.2.18) 
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Equation (3.2.18) will be used later to obtain the transport equation 

for the fluid turbulent kinetic energy (k) and its rate of dissipation 

(c). Equation (3.2.18) could also be used to derive a transport 

equation for 	and so obleviate the gradient diffusion assump- 

tion. However, this approach leads to higher order and increasingly 

more. complex correlations which, in turn, require closure. Due mainly 

to the difficulty of modeling higher order terms involving fluctuating 

pressure, concentration and viscous effects, this approach is not pur-

sued here. 

An investigation on the limiting behavior of the correlations 

a s uf i  and a'up yields: 

	

cz'Uf 	= ct'u 	 (3.2.19) 

	

1 	 1 

when im/T = 0 

and 

	

auf 	= a'u 	= 0 	 . 	(3.2.20) 

	

1 	 1 

when Tm/T + 0 

with T denoting a characteristic local time scale of the turbulent 

fluid eddies. 

The condition shown by Eq. (3.2.19) is obtained since in the limit 

of small Tm/I  values the particles behave very much like fluid. 

However, in the limit of large Tm/T, Eq. (3.2.20), the fluid and 

particulate motion become non-correlated resulting in a'Uf = 0. 



-51- 

Also, since u'u 	is proportional to particulate mass eddy diffu- 

sivity, Eq. (3.2.9), its value diminishes as rm/T becomes large and 

Vt goes to zero. 

Based on Eq. (3.2.19) and (3.2.20) it can be assumed that: 

	

cz'Uf 	= aU 

	

i 	pi 
(3.2.21) 

for all Tm/I  values. The Eq. (3.2.21) is also in accordance with 

Hinze [1972] regarding the possible proportionality of the correlation 

terms. Substitution of Eq. (3.2.21) in Eq. (3.2.16) results in: 

	

Pf  k (Uf Uf ) = -! 	(Uf. _U . ) - 4- (P)  

I fall 	aU 

	

+ P.f 	Lvt f  aX + ax)] 	 (3.2.22)  ax 

which is the modelled momentum equation for the fluid phase. 

Particulate phase 

The momentum balance for the particulate phase is derived noting 

that the only major driving force retained is that due to the fluid 

viscous drag. As noted by Soo [1976], contributions of the particulate 

phase to pressure-gradient force are negligible in dilute systems and, 

therefore, are not included in formulation. A balance between 

instantaneous inertial and viscous drag forces results in the following 

equation; Soo [1967]: 

(aUU) 	L [a(Uf U)} 	 (3.2.23) 
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In the presence of the external force fields like gravity or electro-

static forces, these should be included in the balance. 

Time-averating the Reynolds-decomposed form of Eq. (3.2.23) 

yields: 

C&U,U, ) = _[(Uf _U) + a ' (uf_ui] 
axj 

- -- (& u u ) - L (U 'tJ +lJ 	iT 
j 	pipi 	pi 	P1 P1 	P 

III 	 Iv 	V 

(3.2.24) 

in whichthe triple correlation term is neglected according to 

assumption 8. The first term on the left side of Eq. (3.2.24) is 

the convective contribution to the changes in particle momentum in 

the 1th  direction. The terms (I) and (II) on the right side of 

Eq. (3.2.24) are the various contributions to momentum by the Stoke's 

viscous drag which had also appeared in the corresponding fluid 

momentum balance with opposite sign. 

The term (III) on the right represents a contribution to the mean 

momentum balance due to the correlation of particulate velocity 

fluctuations and is similar to the Reynolds stress term in the fluid 

momentum balance. Implicit in Eq. (3.2.23) was the neglect of 

Brownian-type diffusion. However, the turbulent inertial effects give 

rise to the Reynolds-stress type term which, here, will be expressed in 

terms of particulate phase eddy viscosity. 
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The Boussinesq assumption will be extended to the particulate 

phase by assuming: 

Pi 
 

	 p. 	2 
 ax - 	= 	

+ 	

/ 

- 	
+ Vt ____ 
	

(3.2.25) 
 
ax 

with k = 1/2 up i u pj  as the particulate phase turbulent kinetic 

energy which can be obtained, for instance, from Eq. (4.2.6). The 

divergence term in Eq. (3.2.25) is necessary to ensure constistency 

when the summation of diagonal terms is considered. A similar term, 

however, does not appear in the fluid phase Reynolds stress relation 

given earler since it becomes approximately zero for dilute suspen-

sions. The assumption of zero divergence for the particulate phase 

velocity as made by Hinze [1972] is not justified as evidenced by the 

particulate mass balance equation. 

The term (IV) in Eq. (3.2.24) represents transport of the fluctua-

ting momentum Pp a'U p  by the mean motion and the next term (V) 

is viewed as the transport of particulate mass by the turbulent motion 

contributing to the mean momentum. After substitution of the relations 

Eqs. (3.2.9), (3.2.21) and (3.2.25) in Eq. (3.2.24) one obtains: 

.f  
j. 	Pij 	T

m 	f ii 

allall 

- 	
[—;vt( 1 + ai)+ p + 

- i;[vtp (ui-+ Up1 ax 

air 
Pt 

axt 

(3.2.26) 
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The governing equation for the particulate fluctuating velocity 

Upi can be obtained accordingly. This equation will be used later 

for the derivation of the particle turbulent kinetic energy which, 

though not to be solved, is beneficial in further interpretation and 

analysis of various interaction terms in the k transport equation. 

The transport.equation. foruf 1  is. obtained from substraction of 

Eq. (3.2.24) from Eq. (3.2.23) with the result: 

	

.L [C+a')(u p  Up  +U U p  +Up  up  )+czUU - 	 rii1_ 	
3j 

= 	
[a(Uf _Up )+( a')(u f -u p )-&( Uf  -u p j 	 (3.2.27) 

3.2.3 Transport equations for the mean kinetic energy 

of the phases 

These equations are obtained by multiplying the appopriate momen-

turn equation in the i direction by the mean velocity in the same direc-

tion and invoking the repeated index sumation convention. The results 

for the fluid and particle phases are given below: 

Fluid phase 

(IZ 	 (Uf Uf 	Uf U 	+Uf a h 1Uf u p j 
IP 	

Tf 	 'If 

- U
f  ••••• (P&) + PfUf 	f I (aUf + 

L tf 

(3.2.28) 
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Particulate phase

IP  _ [ 	
uu)] - 	_ cuu 	- . U aç U)

pi 

= .a 

 

[;(Uu_uu) + UpC1i7f_Tip)] 

lip 

- g 	(r U U ) — 11 	(U • 1-i:r 
p1 	 pi P 	P1 	P 	P1 P1 	P 

(3.2.29) 

The transport equations for the mean kinetic energy of the phases are 

not solved since the distribution and the transport of mean kinetic 

energies are of little interest here. However, as will be shown later, 

these equations will be used to assist with the interpretation of the 

interaction terms in the equations for turbulent kinetic energies of 

the fluid and particulate phases, respectively. 

3.2.4. Transport equation for the fluid turbulent 

kinetic energy (k) 

The transport equation for the turbulent kinetic energy of the 

fluid phase is obtained by multiplying both sides of the governing 

equation for the fluctuating velocity by the fluctuating velocity and 

time-averaging the result. The transport equation for the fluid 

turbulent kinetic energy is: 
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Pf!Jf 	
_ ( 

Uf Uf ) = 	-- [ ( UfUf)] 

Of  

- Pf UfUf 	+ ..L (2p Sf  Uf ) - 2 Sf  Sf ij 

+ 	
[_ (u 
	Uf  - u1 u) - 	Uf  (Uf _tr) - at f (Uf _U p )] 

	

I f 	 ' If 	 "If 

(3.2.30) 

wi t h: 

Uf f ___ Uf 
it  

S f 	- 2\ ax 	. ax 

as the fluctuating rate of strain for the fluid phase. 

The interpretation of all but the particle interaction terms of 

Eq. (3.2.30) is given in the appendix II describing the two-equation 

(k-c) model of turbulence. The presence of a particulate phase and its 

dynamic interaction with the turbulent eddies creates additional mecha-

nisms for energy exchange between the two phases. Thus, Eq. (3.2.30) 

contains fluid-particle interaction terms which alter the distribution 

of the fluid turbulent kinetic energy. These are discussed below. 
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3.2.5 Transport equation for the particle turbulent 

kinetic energy (kr) 

The development of an equation for the turbulent kinetic energy of 

the particulate phase, k = 1/2(up. 1.u p1 )is of value mainly for 

a thorough interpretation of the phase interaction terms. The deriva-

tion follows the same procedure which resulted in Eq. (3.2.30), and the 

result is: 

;; 	 _ 1-api(+at) ( u p. u p. )] = 	pU p  

- P 	
[(a' )u p.( u p. up. )] - 	 (a1trU . ) 

+ fa [;(uf u+T7) + a T  U (Uf U) + 0 1 (u p uf_u)] 

' p 	 ''p 	 '''p 

(3.2.31) 

The first three terms on the right side arise due to inertial effects 

and are caused by the interactions between the particle turbulent and 

mean motions. These terms are complicated due to the fluctuations in 

particle concentration, and also by the non-zero divergence of the 

particle phase velocity which generates terms in excess of those 

obtained in single-phase flows. 
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The last term in Eq. (3.2.31) arise due to fluid-particle 

Interactions. These terms are used in the following to interpret 

various mechanisms for transfer of energy from the fluid to the 	 - 

particulate phase and vice versa. It should be noted that no attempt 

is being made here to solve Eq. (3.2.31) and the particulate turbulent 

kinetic energy will, instead, be obtained from an algebraic expression 

which will be derived in Chapter 4. 

Transport of fluid turbulent kinetic energy 

and the particle interaction effects 

In this section, various fluid-particle interaction terms in the 

kinetic energy transport equations for the mean and turbulent motion of 

the phases are compared and interpreted. The terms labelled as If 

and I in the Eqs. (3.2.30) and (3.2.31) are re-written as: 

- 

If' f 	 f 
m L. j 	j r 

and 

P PIO  = . 
	Iu

p (u f _u p )] 

Following Eq. (4.1.16) for themodeled formof UfUp, 

this correlation is bounded as: 

o < UfU 	< 2k
Pi 1 

where lower and upper bound limits are for small and large values of 

Tm/IL respectively. 
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Accordingly, 

- 	 2p 	<1<0 
Tm — 

The negative value of If  generally implies a loss of turbulent 

kinetic energy for the fluid phase. The analogous term I in k 

equation can be re-written as; 

= 
	Iu

P. (uf. _u P. ) + Uf(Ufj_Upj) - uf.uf.uP.)] 	(3.2.32) 

or; 

'p = 	'f - 
to 
	

(3.2.33) 

(+) 	(-) 

with 

-u 
D - Tm 	" i p) 

The result implied by Eq. (3.2.33) is significant. It shows a 

generation rate or source" for k exactly equal to the loss 

represented by If in transport equation for k. However, during the 

process of energy transfer from fluid to particulate phase a net 

dissipation of turbulent kinetic energy will occur, as shown by the 

second term on the right side of Eq. (3.2023). This term is always 

negative in value, irrespective of the sign and magnitudes of ufi 

and u pi . The additional dissipation mechanism caused solely by the 

presence of the particles will be negligible only if perfectly 
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responsive particles are suspended in the fluid and no slip velocity 

arise between the phases. This dissipation term is usually referred to 

as the "drag dissipation", Drew [1976a], and has a similar counterpart 

in the mean motion. This can be shown by a comparison between the 

terms I f  and I p in Eqs. (3.2.28) and (3.2.29). Therefore, for the 

mean motion the dissipation due to viscous drag is equal to: 

: 	(TJf _U)2 
	

(3.2.34) 

which is analogous to the drag dissipation term in the turbulent motion 

as indicated by Eq. (3.2.33). The evolution of drag dissipation is not 

restricted to the If and 1 p terms. 	Since by comparing the terms 

Illf and 	III one can write: 

Pp  Hip= - 	cz'(Uf_U)2 - 
"I f 

which suggests an additional drag dissipation, CD1, given by: 

= Tm 	
(uf_u)2 

and is caused by the fluctuating mass of the particulate phase when it 

correlates with the fluctuating slip velocity. 

The drag dissipation associated with the terms If and I p is 

based on the mean particle mass as shown by Eq. (3.2.33). The term 

III, is, however, neglected in the calculation according to the 

assumption 8 above.. Therefore, due to presence of the particles an 
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additional mechanism to °sink" the fluid turbulent kinetic energy is 

established which is represented by term If in Eq. (3.2.30). A frac -

tion of this extracted energy will be transferred to the particulate 

phase (term I, in Eq. (3.2.31)) while the rest will be dissipated 

(term CD  in Eq. (3.2.32)) due to a non-zero slip velocity between the 

phases in the flow. Therefore, for a two-phase third-particle flow in 

general: 

total dissipation = £ + ED 

in which c is the dissipation caused by fluid viscous effects and CD 

is drag dissipation caused by fluid-particle interactions. The expres-

sion for CD  is given by Eq. (3.2.33) and the transport equation for c 

will be derived in the next section. The c-transport equation, how-

ever, is further modified by the fluid-particle interaction effects 

which will be discussed. 

For interpretation of the term IIf in k-transport equation, the 

counterpart term (II) in the k r_transport equation should also be 

examined. In single phase flows, the transfer of energy from the mean 

motion to the turbulence is due to interactions between the Reynolds 

stress and the mean shear, that is; 

a Uf  
- 	 Production (for =0) = -ufuf 

	ax 

The associated transfer process is the well-known "cascading process", 

Tennekes and Lumley [1972], responsible for an energy exchange over a 

range of scales between the mean and the turbulent motion. However, 

the presence of the particles and the subsequent dynamic interactions 
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between the phases gives rise to an additional transfer mechanism by 

means of which fluid kinetic energy could further be exchanged between 

the mean motion and the turbulence. 

It has already been shown that the interaction terms Tf  and TP - 

in the Eqs. (3.2.28) and (3.2.29), respectively, are mainly responsible 

for the energy exchange between the mean motions. This exchange is 

also associated with a mean energy dissipation proportional to the 

square, of mean velocity difference between the phases as shown by 

Eq. (3.2.34). The second interaction terms, iTf and Up , can be 

re-written as: 

lTf  = - 1[Tif(' 	LU p  )] 

and 

= .ia [li . 
	IP 

The coupling effects between the phases result in an energy 

exchange for the mean motions. The net excess energy 'resulting from 

such an exchange is obtained from: 

Tr 	= - ' 1 f - 	 (3.2.35) 

with; 

CE = - . 	[UP  -Uf ) 	_au 
T m 	i 	i 	i 	pi)] 
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Examination of the corresponding interaction terms, Hf and lI i,, in 

the transport equations for k and k p , Eqs. (3.2.30) and (3.2.31), 

shows that the next excess energy represented by Eq. (3.2.35) is trans-

ferred to the turbulence to be distributed between the interacting 

phases. This can be shown from Eqs. (3.2.30) and (3.2.31): 

'If + II 	
= 	[(U  ~ -Uf  ) (rii_.&1-)] 

which is exactly equal, and opposite in sign, to the net excess mean 

kinetic energy exchanged between the mean motion of the phases. The 

preceding argument suggests that in two-phase turbulent flows, dynami-

cal interaction effects between the phases can develop an additional 

mechanism for the dissipation of kinetic energy. Furthermore, an addi-

tional process can be established by which kinetic energy will be 

exchanged between the mean and the turbulent motions. 

3.2.6 The transport equation for dissipation of fluid turbulent 

kinetic energy (E) 

The procedure for obtaining the transport equation for the dissi-

pation rate of fluid turbulent kinetic energy, , is to: 

1 - 	 take the derivative of both sides of the governing equation 

for ufi, Eq. (3.2.18), with respect to x, 

- 	 2 - multiply both sides of the equation by v auf/axL, 

3 - 	 time-average the resulting equation. 
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The result for a dilute suspension is: 

-- I- 3u 	/3u 	au Pi 
 - - 	 pp 	f 

 ( 
fi  

P f  Uf 	- 
- - Tm 

1_• ax \a x I -  ax 
11 

I C 
	

lI E: 

 
+!2 

 auf  
_ 	j_ ---- - Pf 3x. 1Uf•C 	ax 	ax 	ax. 

Pf £ 	£ 	j 

'' I C 

	

3Uf 	aUf 	 aUf 	aU f 	auf  
- 2vfuf 	

ax 	axax 	- 2vf ax 	ax 	3x 

Iv 	 V 
C 

aUf (—,Ufjl 

aUf 	aUf  auf\\ 	
2 

a2 Uf 	auf  
- 2VPf ax 	ax 	ax + ax 	ax.j 2V Pf axax

L  axax 

VI E: 	 VIl E:  

(3.2.36) 	 - 

In the derivation of the transport equation for c above the terms 

aa'/ax& auf./ax& and cz'auf./axL are neglected due to the assumption 

of local isotropy which is assumed to be associated with the small 

scale structure of turbulence. The terms in Eq. (3.2.36) are: 
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I C -  convection by mean motion 

	

H e 
	fluid-particle interaction terms 

	

HI C 
	 diffusion due to turbulence, pressure 

fluctuations and viscous effects 

I V 
	

secondary production by mean flow,  

	

ye 	production by self-stretching of turbulence 

	

VI E 	 production by mean flow 

	

VIl E 	 dissipation by viscosity 

The pressure of the particulate phase and subsequent interaction 

between the phases ar responsible for the fluid-particle term (II) 

which disappears as the particle volume fraction, a, goes to zero. The 

term II in Eq. (3.2.36) is the correlation between the fluid 

fluctuating rate of strain, represented by; 

9Uf  

Sf  	ax 

and the rate of strain associated with the fluctuating slip velocity: 

Sf_ 	= . f 	Uf - u) 

The term can be re-cast as: 

Du 

= -
- 

 
 a 
	___ 	

(3.2 37) ax Tm 



Ve 

Therefore, closure for the particle-fluid interaction terms in the c 

equation is only required for the correlation term shown in Eq. (3.2.37). 

This correlation is modeled further on in the text. For this second-

order correlation term it can be shown that: 

3uf 	3u 

ax 
1 	1 	

+ e 	 (3.2.38) 
£ 	£ 

as 	+ 0 

and 

aUf 	
au Pi 

+ 0 	 (3.2.39) 

TM 
as r 

These expressions correspond to the limits of perfectly responsive and 

non-responsive particles, respectively. 

As will be shown in Chapter 4, the limiting behavior of the 

correlation term given above will be used as the criteria for testing 

the validity of an expression derived for the correlation term. 

Therefore, using the limits in Eq. (3.2.37), one obtains: 

lic + 0 
	

(3.2.40) 

as 	+ 0 
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and, 

p ac 

	

+ - 	 (3.2.41) 
m 

Tm  

	

as 	+ 	40 

Therefore, according to the result in Eq. (3.2.41), the transport 

equation for c can show a reduction in £ caused by dynamic interactions 

between high-frequency, small scale turbulent eddies with the solid 

particle phase. 

In the data of Zisselmar and Molerus [1979] for solid-liquid pipe 

flow a decrease in fluid turbulent kinetic proportional to a for most 

regions of the flow was observed. With the fluid Taylor microscale,. A, 

remaining constant with the particle loading, reduction in k translates 

into a reduction in c since, 

	

= 15v 	= 10v 
	

(3.2.42) 

with u2  = 2/3 k. 

The increase in v with the particle volume concentration is not 

high enough to overcome the decrease in k and, therefore, in c. 

From experimental data the value of Tm/IL  can be calculated to be 

approximately equal to 0.2 following the expression, Hinze [1975]: 

= C1 -. 

for TL  with C1 = 0.41. 



I: 

For this value of Tm/TL  and by taking T = k (which will be 

shown in Chapter 4), the experimentally observed reduction in c can be 

predicted theoretically using Eq. (3.2.36). The reduction is demon- 	 - 

strated theoretically in the II term which shows a linear variation 

with . The linear variation is also observed in the experiment of 

Zisselmar and Molerus [1979] based on which Fig.. 7.12 is plotted. The 

figure shows the variation of turbulent kinetic energy with 	at various 

distances from the pipe well. Therefore, according to Eq. (3.2.42) this 

corresponds tosimilar linear variation for the turbulent dissipation rate. 

The presence of particles gives rise to yet another mechanism by 

which an additional mechanism for dissipation of turbulent kinetic 

energy evolves. As shown earlier in a discussion involving a relative 

comparison of the k-transport equations, the "drag dissipation" based 

on particle mean concentration was defined as: 

tD = 	( Uf 	u)2  

By adopting the expressions for u 1  and Uf j Up j  which will 

be derived in Chapter 4, Eq. (3.2.43) becomes: 

k 
CD = 2 	a 

t+TL 	
(3.2.44) 

In the following, a comparison between the viscous dissipation, c, 

and drag dissipation, CD,  which constitute the total dissipation, is 

made. The comparison is conducted for small and large Tm/TL values. 



I .  

In the limit of large Tm/TL,  one can compare the net effect of 

the particle on the dissipation of k by comparing the decrease in 

viscous dissipation, as indicated by Eq. (3.2.41), to the increase due 

to drag dissipation as shown by Eq. (3.2.44). For large values of 

Tm/TL, CD is expanded as: 

CD = 	
•; 

/ 
Ii - - + 0 
L 	Tm 	\Tm  

(3.2.45) 

This equation is an expression for the drag component of the total 

dissipation. The term II in Eq. (3.2.41) represents a "sink" for c 

and, will account for reduction in this quantity. 

In the limit of small Tm/TL  values, the rate of change in C 

due to particle effects is zero, as shown by Eq. (3.2.40) while the 

increase in total dissipation is: 

=2 	 - 	+ 0 ()2] 

	

(3.2.46) 

Therefore, the analysis indicates a net increase in total dissipation 

of turbulent kinetic energy with the viscous dissipation component, c, 

of total dissipation not affected by fluid-particle interaction 

effects. 

After substitution for TL  from Eq. (4.1.22) in Eq. (3.2.44), one 

obtains: 

= 2 	a 
Cik+TmC 	

(3.2.47) 

with CT = 0(0.1). 
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The ratio of drag dissipation to the viscous dissipation becomes: 

cD 	2 	TL 
= 	- 	' 1 +t 	

(3.2.48) 
I 	 L m 

In two phase liquid-solid flows withp/f = 0(1), a particulate 

volume fraction of &<< 0(10-2) will give small CD/c  values. 

Therefore, for these conditions the drag dissipation becomes small 

compared to the viscous dissipation. 

For gas-solid flows, however, with: 

p 	 3 = 0(10) 
Pf 

a small dissipation ratio is given far: 

. 	<< 10-4 
 

A consideration of this result shows that the range of 	is more 

restricted in gases than it is in liquids. However, as noted in 

Chapter 2, very small a values might not be acceptable due to 

restriction imposed by the assumption of a continuum approximation. 

To conclude this section, a comparison between the results 

obtained above and the established investigations in the field can be 

made. Owen [1969] considered the case of a dilute mixture of fine 

particles with a small response time compared to the characteristic 

times of energy-containing eddies and derived for the total dissipation 

of turbulent kinetic energy; 
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Etotal 	(i +; 	

)

C 	 (3.2.49) 
Pf 

Equation (3.2.49) is a special case of the equations derived in this 

section. A general equation for the total dissipation can be obtained 

by summation of the drag dissipation, Eq. (3.2.44), and the viscous 

dissipation, c. Thus, one obtains: 

Etota l = C + C D = 

2pcz 
p 	+(1+-.) 

C1Pf 	L 
£ (3.2.50) 

In the limit of tm/IL << 1, corresponding to the case 

considered by Owen [1969], Eq. (3.2.50) can be expanded to give; 

TM  
£total = 	+ .g.... 	+ 0 	 (3.2.51) 

Equation (3.2.51) has the same form as that derived by Owen [1969], 

Eq. (3.2.49), except for the proportionality constant 2/C1 which is 

unity in the Owen's analysis. 

3.3 Boundary conditions for the fluid phase 

In the following section boundary conditions for the fluid phase 

in two-phase fluid-particulate flows are presented. These conditions 

consist of a set of boundary expressions to be incorporated in the 

fully elliptic transport equations for the solution of the fluid 
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velocities, turbulent kinetic energy and dissipation of turbulent 

kinetic energy. In Appendix (II) the boundary conditions for the 

single phase flow using two-equation (k-c) model of turbulence are des-

cribed and Table (1) contains a sumary of the results. In the case of 

turbulent fluid-particle flows the expressions for single-phase flows 

should, however, be modified to account for the particle interaction 

effects. This is done in the following section. 

Momentum balance 

The transport equation for the fluid mean momentum is given by 

the Eq. (3.2.16) with particle-fluid interaction effects incorporated. 

The treatment, however, at the solid walls is rather independent of the 

rigorously derived fluid mean momentum equation, since the region 

between the node closest to the wall itself is patched by the standard 

logarithmic distribution for streamwise velocity in accordance with 

experimental observations. •Such a treatment is a good approximation as 

long as the wall node is positioned in the inertial sublayer region 

where turbulent transport of the mean fluid streamwise velocity, should 

also be incorporated. The investigation of Peskin and Dwyer E19651 

shows no significant effect when inter-particle distances of particles 

with small inertial effects are large compared to the length scale of 

energy-containing eddies since the effect of particles is then merely 

to cause viscous disturbances far apart from one another, with no 

possibility of an overlap. The results of Peskin and Dwyer investiga-

tion, furthermore, shows that for large interparticle distances, an 

increase in the particle inertia is associated with inertial 
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disturbances and a decrease in the laminar sublayer thickness which 

is equivalent to a downward shift of the velocity profile. For the 

non-inertial particles, the same analysis shows that for relatively 

small inter-particle distances the increase in fluid viscosity in the 

vicinity of the solid wall causes an inc,ease in the viscous-sublayer 

thickness and a subsequent reduction in skin friction, which is asso- 

ciated with an upward shift in the log-well relation for fluid velocity. 

In the investigations of Virk et al £19671 and Wells et al [1968] 

a logarithmic velocity profile similar to that in single-phase flow was 

observed. However, thickening of the laminar sublayer causes an upward 

displacement of the velocity profile equivalent to the existence of a 

virtual slip at the wall, with consequent drag reduction at the wall. 

In such cases the same scaling relations for the velocity in the vis-

cous and inertial sub-layers exists as argued by Lumley [1973]. The 

preceeding observations justify the assumption of the existence of a 

log-wall relationsip for fluid streamwise velocity in the inertial 

sublayer of two-phase flow. This assumption is even more justified 

when dilute fluid-particle systems are considered. Consequently, the 

expression for the fluid wall shear stress from Table (1) which is 

derived on the basis of a logarithmic velocity profile will be used. 

k-transport equation near the solid wall 

- 	 The wall treatment in single phase flows is often based on the 

assumption of a local equilibrium condition in the vicinity of the 

wall. For this condition, the production of turbulent kinetic energy, 

extracted from the mean motion through vortex-stretching of fluid 
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filaments, becomes equivalent to the local viscous dissipation. The 

incorporation into k equation of the local equilibriumeffect then 

yields an expression for turbulent shear stress in terms of a linear 

variation of turbulent kinetic energy in the inertia sublayer as given 

by: 

	

- uquq 	

= C 	 (3.3.1) 

with C. as the constant in Prandtl-Kolmogorov relation and the 

coordinates xi and  X2  represent directions parallel and normal to 

the wall. In Fig. 1 of Appendix (II) lateral variation of the ratio 

(turbulent shear stress/turbulent kinetic energy) is shown for straight 

channel, mildly curved channel and strongly curved channel flow. 

The constancy of this ratio in regions close to walls is observed 

as a partial verification of Eq. (3.3.1) in single phase flows. In 

two-phasefluid-particle flows the k-transport equation, Eq. (3.2.30), 

may be similarly reduced at the wall to the following form: 

- uf:f 

= c 2 	+ - ' 	[-;(ufuf - ufu) + 
	 1/2 

(3.3.2) 

In which are included the Boussinesq relation for the turbulent shear 

stress and the Prandtl-Kolomogorov relation for eddy viscosity. 

Comparison between Eqs. (3.3.1) and (3.3.2) indicates thepossibility 
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of modifying the single phase wall expressions by inclusion of 

fluidparticle interaction effects. It can be seen that for zero 

particle concentrations, Eq. (3.3.2) becomes equivalent to its single 

phase version, Eq. (3.3.1).. The expression in brackets in Eq. (3.3.2) 

accounts for the particulate effects on the ratio (-uf 17f2/k) in 

vicinity of the wall. It is a complicated function of a, Tm,  k and c. 

The main complexity is due to unknown and yet unexplored wall effects. 

It should be noted that in the closure for the term uflup,  as will be 

shown in Chapter 4, the complex wall effects are not included. There-

fore, the incorporation of the far from-the-wall ufu p  modeled Eq. 

(3.3.2) for near-the-wall regions is not justified which could lead to 

erroneous results. The same reasoning is also applied for the term 

a.' Uf 1 . 

At,this point, it seems necessary to further the analysis on the 

basis of available experimental data. The data presented by Z,isselmar 

and Molerus [1979] for turbulent pipe flow of 53 jim particles is one of 

few detailed measurements for which non-interfering Laser-Doppler 

velocimeter has been utilized. Figure (3.1) shows the lateral variation 

of the ratio uf 1 uf2/k at various particulate concentrations in the 

vicinity of the wall which has been obtained from the data. of Zisselmar 

and Molerus. It can be observed that similar to the single phase flows, 

a constant (uf1 /uf2/k) ratio in vicinity of the wall does exist which 

shows some variations with respect to the particle volume concentration 

(a).. 
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Interestingly, the value of the ratio for Y= 0, i.e., clear 

fluid, is close to that of Laufer's data shown in Fig. 1 of Appendix 

II. The variation of the ratio (ufiuf2/k)/(uf1uf2/k)0 

vs. a for the wall region of Zisselmar and Molerus [1979] data is shown 

in Fig. (3.2). This ratio represents the particle-interaction term in 

big brackets in Eq. (3.3.2). From Fig. (3.2) it can be seen that mi-

tial introduction of the solid particles in the fluid slightly increases 

the ordinate while with further increase in , it decreases below that 

for the fluid with T = 0. Quantitatively, the relative maximum increase 

is about 12% at 	.0171 and the relative maximum decrease is about 25% 

at 	.056 which is the highest a tested. 

From Fig. (3.2), the insignificant effects of dilute concentra-. 

tions, a < .005 for instance, can also be observed and furthermore in 

the regions where 	.035 the maximum deviation from unity is about 

12%. Therefore, considering experimental errors, which can be observed 

by the degree of non-symmetry of the various profiles in Fig. (10) of 

Zisselmar and Molerus [1979], one can assume no variation around unity 

for the region of 	.035. From Eq. (3.3.2) this assumption is 

equivalent to saying: 

+[;(uf. uf. ._ Uf. U p. ) + auff - U.)]  
1 112 

 1 	 - 
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which is justified for the wall regions of the flows with the values 

Tm/TL corresponding to that of the experiment. Calculations in 

previous sections showed that'for the flow of Zisselmar and Molerus: 

0.2' T. 

which is a moderate value of the order of unity. Equation (3.3.2) can 

be analyzed at high and low Tm/TL values. 

For Tm/TL << 1 values, one would have: 

ufuUfUf 
ipi 	 i 

and also: 

Upi 	
Uf 

which would make the interaction terms in Eq. (3.3.2) vanish. On the 

other hand, for large values of the time scale ratio, tm/TL >> 1, 

no correlation between the fluid and particle fluctuations is expected 

to exist, that is: 



Therefore, substitution of above expressions in Eq. (3.3.2) yields: 

_UfUf 	

ci2 
( + 2' 	

• 
Pf 	TM—C) 

Using Eq. (4.1.22) this may be re-written as: 

P pa  
- 	_UfUf 	

C l '2  ( +. 	. 	 (3.3.3) 
T 	Pf 	m 

Therefore, in the cases of large Tm/TL  values, the fluid-particle 

interaction terms in Eq. (3.3.3) can be neglected if; 

>> 4.8 2. 
L 	 Pf 

for C1 = .41. 

The condition expressed by Eq. (3.3.4) should be evaluated at 

various density ratios. In the case of liquid-solid flows, 

Pp/if = 0(1), the diluteness of the particulate phase guarantees 

the condition (3.3.4) to hold. For the gas-solid flows, 

Pp/Pf = 0(103 ) the condition (3.3.4) requires that: 

TM  
<< .769 x 10 	 (3.3.5) 

for large values of the ratio Tm/TL. 
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From this argument it is concluded that for all Tm/IL  values 

of interest here, the interaction terms in Eq. (3.3.2) can be 

neglected. This conclusion is applicable to the wall regions of dilute 

fluid-particle flows. Following the analysis for large Tm/IL 

values, the condition (3.3.5) for the particle mean volume concentra-

tion has been developed and for moderate Tm/IL  values, the analysis 

has been based on the experimental data of Zeisselmar and Molerus 

[1979]. The use of experimental data is justified since equations of 

motion and consequently the correlation terms do not contain complex 

wall effects and their substitution in equations written for wall 

regions is, therefore, not justified. 

Based on the experimental results no modifications for particle 

effects on the form of the boundary expressions seems to be necessary. 

However, it should be noted that such a conclusion is based on a single 

set of experiment and therefore more detailed and consistent 

	

experimental data at different ranges of Tm/IL  and 	values are 

required for an extension of this conclusion. 

Particle-interaction effects on c-Prandtl number (ad 

In the single phase flows, by approximation of c-transport 

equation in the near-wall regions an expression for a. is obtained 

which is shown in the Appendix (II). Accordingly, from Eq. (3.2.36) 

one obtains the following result in the near-wall region: 

/Vf 	
2 	II 

) 	 =2 	2) + C
1  . G .- C2  - 	- - 	 (3.3.6) 



:i. 

where: 

au 1 
___ 	 ___ II 	= 	Iv 

	

'm L 
	(—,Ufji 

- aXt/J 

represents the fluid-particle interaction effects. 

With: 

£ = c3'2 	k3"2 

	

U 	KX2  
(3.3.7) 

and assuming a nearly uniform k-distribution near the wall Eq. (3.3.6) 

reduces further to: 

	

(~Jjj \ 	/c32  k2 \ ii 
- a 	__ 1 lr r'( U

ax 	a 	x I 	1 	' 
2Tj

-2 	£ 2/ 	 \K 	Pf 

C k 	 /C3' 2  k2 \ 	ii 
- 	 U 	 'f U 	1' 	c 

U 	 + 

	

2 	L""  l'
r 

 2 )  t 2 2) 	- 

	

OX2 	 \K X2 / 	Pf 

and consequently: 

2 
K a 

= (c 2-c 1 )c/2  2  
II 	x -4 	2 

K 

Of  k(C2C1)C 
3
'

2 
 

I 0  

It can be seen that with no particles present, 	= 0, the term II 

vanishes and the value for single phase flow, Eq. 18 in Appendix II, 

results. The effect of particles is, as seen from Eq. (3.3.8), to 

reduce o below that for single-phase flows. The particle effect 

term in Eq. (3.3.8) is re-written as: 



	

K2 	4 	aUf  (aU f 	au 

- (c2-c1)c3/2 	
k 	Pf Tm 	£ '\ 3Xt - ____ 

with the expression for II substituted. 

In the limit of very small tmIT values, the expression in 
brackets vanishes since the particle dynamics correspond to those of 

the surrounding fluid. However, in the limit of large values for 

Tm/T, almost no correlation between the dynamics of the two phases 

exist. Therefore, in this limit; 

	

= 	(2 

a 	(c2_c 1 )cj 	Pf 	k2 Tm •  

which is re-written as: 

	

- 	

1p 
P  a

KX2 

1a 
- ( c 2-c 1 )c 4 	Pf 	k' '2 T 

when the boundary value for c, Eq. (3.3.7), is substituted for. The 

characteristic time scale for energy-containing eddies close to the 

wall is: 

I - V3 K  X2 

 k1"2 
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Therefore: 

T = 10.35_2_.___ 
a 	 t 

Pf 	m 

Thus, in the limit of large rm/T,  it is possible to neglect the 

particle effects on o if: 

Pf tm  
••• << 0.096 ~ • 
	 (3.3.9) 

p p  

with the fluid time scale (T) defined on the basis of a linearly 

variable wall length scale and the local velocity scale. 

3.4 Boundary conditions for the particulate phase 

In most practical flows of interest where the flow domain is 

bounded by the solid walls, the complexity of the particle behavior at 

the walls has been an important factor hindering the development of 

numerical, and analytical, schemes for predicting two-phase solid-fluid 

flows. Such developments require a fundamental and thorough knowledge 

about the nature of solid particle-solid wall interactions in terms of 

the flow, particle, wall variables and characteristics. Recent devel-

opments in experimental methods and, specifically, the introduction of 

non-intrusive optical measurement techniques such as the laser-Doppler 

aremometer have increased the potential for acquiring such fundamental 

knowledge in wall regions of two-phase flows. 

Derivation of the exact boundary conditions for the particulate 

phase requires an evaluation of the probability distribution function 

from a Boltzman-type equation for the particulate phase, as well as 
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knowledge about the laws governing particle rebound from the wall upon 

impact, as indicated by Yeung [1978]. However, due to the complexities 

involved and the lack of basic information, such a derivation has not 

been conducted yet. It should be noted that for fluid flow over solid 

walls, a zero slip boundary condition is not the exact condition but is 

only approximately true. In reality, the exchange of tangential 

momentum associated with the gas molecules rebounding from the wall 

gives rise to a velocity component parallel to and in the vicinity of 

the wall. This slip velocity is approximately equal to, White [1974]: 

Uf 	0.75 MCf  Uf  
w 

where M, Cf and Uf represent the Mach number, friction coefficient 

and the free-stream velocity, respectively. Therefore, the slip velocity 

becomes very small for subsonic flows and for all practical purposes 

the zero slip velocity presents a satisfactory approximation for the 

fluid boundary condition on the solid boundary. 

For the particulate flow, it has been observed that in the 

vicinity of solid walls, the particles do experience a non-trivial slip 

velocity parallel to the wall. This is evidenced by the experiments of 

many investigators among which are: Lee and Einav [1972] for flow on 

the flat wall, Stukel and Soo [1969] channel flow and Soo and Trezek 

- 	 [1966] for pipe flow. A brief survey on turbulent pipe flows and the 

associated well slip has been presented by Wakstein [1970]. Based on 

the assumption of potential flow, Soo and Tien [1955] have analyzed the 

motion of a single particle near a solid wall. In that investigation, 

the motion of the particle near the wallwas assumed to be equivalent 
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to that of the particle and its virtual image with respect to the 

wall. Results are then obtained by incorporation of the Stokes viscous 

drag and the Bernoulli mutual force in the equations of motion. The 

results are valid for the cases when the ratio d/2y 0  becomes very 

small, with y0  being the typical distance from the wall. Further 

discussion ofthe Bernoulli forces which are caused by the relative 

motion of two spherical particles will be provided further on in the 

text. 

Rarefied gas analogy for dilute suspensions 

It is generally known for the flow of a rarefied gas over solid 

surfaces that a finite slip occurs at the wall as noted by Lugt and 

Schot [1974]. In these flows the mean free path of the gas molecules 

is of the order of, or larger than, some characteristic length asso-

ciated with the solid wall, which can be identified as a pore diameter, 

or the height of a local roughness on the solid wall. Thus, although 

in the near wall regions continuum can not rigorously be assumed, it is 

generally agreed that the governing equation, such as the Navier-Stokes 

equations for Newtonian fluids, can still be applied with the slip 

boundary condition for tangential velocity at the wall imposed, as 

argued by Sherman [1969]. 

In dilute fluid-solid particle suspensions with the particle cloud 

governed by continuum equations, an analogous situation at the walls 

exists, where particle-particle collision becomes negligible compared 

to the collisions with the wall as argued by Soo [1962]. The analogy 

is not complete due to the obvious differences between the physical and 
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dynamical characteristics of macroscopi.c solid particles and micro-

scopic gas molecules. However, in the absence of more rigorous 

expressions, such an analogy can be utilized to define an approximate 

boundary condition for the particulate phase. The agreement between 

predictions and measurements of Soo and Tung [1972] and Stukel and Soo 

[1969] justifies the application of rarefied-gas type boundary 

condition for the dilute particulate phase. 

The slip velocity and the wall shear stress for the particulate 

phase are, respectively, defined by Stukel and Soo [1969] and Soo 

[1962] as: 

(UPW) = LpF () + u0 ( - 	 ( 3.4.1) PO) 6js 

and, 

/ ' 	 I 

	rupw) 1/2 

(T\

\ 	 2/w 	w 
	 (3.4.2) 

In Eq. (3.4.1) LPF  is the fluid-par'ticle interactionlength defined 

by Eq. (3.1.9)., and (pw)  is the deformation rate for the particu-

late phase at the wall with Xj and x representing coordinates 

- 

	

	 along the parallel and the stream-wise directions with respect to the 

wall. The second term in Eq. (3.4.1) is due to initial particle. 

- 	 inertia effects which cause slip at the walls in the entrance regions 

of straight channels, Stukel and Soo [1969], or flat walls, Soo [1968]. 

It should be incorporated in the regions with distances from the 

) 	leading edge Ls  which satisfy the condition; 



0 < L 	i UpTm 	 (3.4.3) 

where Uf0  represents the fluid entrance velocity to the pipe or 

channel. 

The quantity Up 0tm in Eq. (3.4.3) represents characteristic 

equilibrium length scale for the particulate phase. The appearance of 

the particieturbulent intensity for the wall region,U PW$ in 

Eq. (3.4.2) implies that the momentum exchange with the wall is carried 

out by turbulent diffusi'on of solid particles through the viscous sub-

layer. This is consistent with the assumption of a relatively large 

particulate mean free path to maintain the analogy with a rarefied gas; 

since a large mean free path is associated with a longer retention of 

memory effects coming from regions outside the viscous sublayer in 

momentum exchange with the wall. 

Equations (3.4.1), (3.4.2), and the condition of zero normal 

velocity constitute a set of boundary conditions which can be incor-

porated in the particle momentum equations in the cases where deposi-

tions or accumulation of the particles by the mean motion is not con-

sidered. It should be noted that the cases of non-vanishing normal 

mean particle velocity at the wall are associated with unsteady wall 

deposition which will not be considered in this work. 



CHAPTER 4 

SECOND-ORDER CLOSURE FOR FLUID-PARTICLE CORRELATION TERMS 

In the previous chapters the transport equations for the fluid and 

particulate phases were presented. Furthermore, the boundary condi-

tions were introduced and the related expressions were discussed. The 

second-order correlation terms in the continuity and momentum equations 

for the particulate phase were expressed through the analogy with 

single phase flow constitutive relations. The closure for various 

fluid correlation terms are discussed in Appendix II which describes 

the k-c model of turbulence. In this chapter various fluid-particle 

correlation terms appearing in the fluid transport equations for k and 

c (presented earlier) will be discussed, and alternate modeled expres-

sions will be derived, thus making the problem of predicting two-phase 

fluid-particulate flow tractable. 

The appearance of fluid-particle correlation terms in the govern-

ing equations is due to dynamical coupling effects of the phases. 

Therefore, it is required that in thelimit of perfectly responsive 

particles (essentially zero response time), particles dynamics are in 

perfect accord with neighboring fluid element motion and all fluid-

particle velocity correlations are equivalent to corresponding fluid-

fluid correlation terms. On the other hand, for particles with large 

response time scales the fluid-particle correlation diminishes and the 

turbulent motion of the phases become essentially independent. The two 

limiting behaviors of the fluid-particle correlation terms as discussed 



above constitute necessary, but not sufficient, criteria for examining 

the validity of the modeled expressions derived here. 

4.1 The Correlation Uf 1 Up 1  (k Equation) 

The following analysis is based on the equation of motion for a 

single spherical particle with the Stokes drag as the only driving 

force. The equation of motion is obtained from Eq. (2.1.1) by 

neglecting all terms except for viscous drag. A modeled form of this 

equation will be valid for flows where the neglected terms have a 

minimal effect. Thus, Eq. (2.1.1) yields: 

dU 	Uf. _Up•
Pi  

dt 	= 	
1 

from which, using Reynolds decomposition (for example, Uf = 

Uf i  + uf) an equation of motion for the fluctuating velocity 

component, u pi , is obtained: 

du 	u -u
Pi = 

	
(4.1.2) dt 	Tm  

For the flows of interest here it may be assumed that the flow 

field is stationary with respect to time and, therefore, the ensemble-

averaged quantities become equivalent to their corresponding time-

averaged quantities, with the ensemble averaging process taken over 

many independent particles which is possible for dilute conditions. 



MO 

The solutionto Eq. (4.142) is; Drew [1976]: 

- 	 to/rm

f

t 
 

Up.(t) =Tm 

0 

t'/t 
e 	

m 
 Uf• (t)dt + Up.(t0) e'm 

(4.1.3) 

with to  as the initial time for the onset of particle motion. In 

Eq. (4.1.3), the integration is along the trajectory of the particle. 

Using the transformation E = t-t', Eq. (4.1.3) can be re-written as: 

(t) 

t-t 

1  f ° -/r-(t-t )/Tin
= 
	

e 	U f  (t-)d + u (t a ) e  

(4.1.4) 

After multiplying both sides of Eq. (4.1.4) byuf(t) and ensemble 

averaging over a large number of independent particles, the following 

result is obtained: 

At 

1 	r 'm 	 t/Tm 
U f. U p•  = 	e 	1Uf• (t)Uf (t)] 	+ u(t 0 )u f  (t) e 

(4.1.5) 

- - 	
where: 

at = t - to  

represents the travelling time period for the particles. In the 

derivation of Eq. (4.1.5), uf(t) has been carried inside the 

) 	integral since it is independent of E. In order toavoid the initial 
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transient effects in the integration of Eq. (4.1.5), At must be a time 

scale larger than that characterizing local velocity fluctuations. 

This condition is given by: 

	

At >> Tm 	 (4.1.6) 

and leads to a negligible contribution from the second term on the 

right side of Eq. (4.1.5). Thus, to a good approximation: 

At 

Uf Up•  = 	f e 	[uf t-uf t] d 	(4.1.7)  TM  
1 1  

0 

Thus, for obtaining an analytical expression for u 1 u, the form of 

ufi(t_)ufi(t) must be specified. This term expresses the correla-

tion between fluid velocity fluctuations of fluid elements which at 

time t pass through the particle location of interest (Point A in Fig. 

4.1), and at time t- (earlier) were surrounding the same particle at 

some other location in space. In general, since the particles do not 

remain in the vicinity of their initial fluid elements and "over-shoot" 

to different fluid elements, the correlation becomes a complicated 

expression. The problem can be simplified if Tchen [1947] assumption 

is incorporated that the particle remains in the vicinity of the same 

fluid element. 

In this case: 

U f  (t-)u (t) = () 	 (4.1.8) 
.1 	 i 	L 

with Rf 1  representing the Lagrangian correlation coefficient for 

fluid phase. In Eq. (4.1.8) it is assumed that: 
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7 = 2 (t-) = 7 
1 	1 	 fl 

for stationary turbulence. Furthermore, by the assumption of local 

isotropy: 

- 

Uç 

1 	' 
- Uç 

2 	' 
- üç 

3 - 
	- 	k 	 (4.1.10) 

'  

The Langrangian microscale (TL)  and the integral time scales 

(TL) are respectively defined as: 

d 
1 	11 	L 

	

= 2 	 4.1.11 
TL 	 d 

and 

TL = 	Rf () d 	 (4.1.12) 

At high Reynolds numbers r becomes very small compared to TL.  For 

such conditions it has been argued, Hinze [1975] and Tennekes and 

Lumley [1972], that it is a good approximation to take: 

R ç  () = e 	with 	E > 0 	 (4.1.13) 

The exponential form for RfL() has been shown by Kalinske and 

Pien [1944] to be in good agreement with experimental data obtained by 

the same authors. Furthermore, the adoption of an exponential form is 

not unprecedented since it has been incorporated by G. I. Taylor in the-

development of his theory of "diffusion by continuous movements", 

Taylor [1921] 
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Substituting Eq. (4.1.13) in Eq. (4.1.7) yields: 

-At 
L + 

U U 

i pi 	 t+T . 	
- e 	

( 	

(4.1.14) f 	= 	 _ 

In line with the arguments presented earlier it is required that: 

At >> TL 

for which, it is found: 

2 TL 

	

Uf  Up 	= 3Uf 	
m+TL 	

(4.1.15) 

This equation is an expression for the fluid-particle velocity 

correlation at a fixed point in space, and is a function of the flow 

field variables at that point. Substituting Eq. (4.1.10) into (4.1.15) 

yields: 

	

TL  
Uf  U p 	= 21 

t rn+TL 	
(4.1.16) 

As discussed earlier it is necessary to investigate the limiting 

behaviors of the correlation given by Eq. (4.1.15). Deviations of this 

relation from expected limiting values will establish its limitations 

and applicability. 

a) The limit of perfect response 

In this limit the response time scale of the particulate phase, 

TM , becomes small compared to the turbulent fluid local time scale, 

TL• This situation is representative of very small particles sus-

pended in highly viscous flows. Equation (4.1.15) can be written as: 



U U 	= 
Tm  

1+  TL 

(4.1.17) 
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which, in turn, can be expanded for small Tm/TL  values to give: 

Uf• U p•  = 	
I - 
	

+ (

t)2 - ...] 

	

(4.1.18) 

for Tm/TL << 1. 

Equation (4.1.18) indicates that, due to their small response 

time, particles adjust dynamically to fluid fluctuations and, 

therefore, will display the dynamic characteristics of s'urrounding 

fluid element. 

b) The limit of no-response 

In this case, the particle time scale becomes much larger than the 

local time scaleof the fluid. This corresponds to cases of large 

inertial particles suspended in inviscid fluids. Therefore, a 

relatively weak correlation between the phases is to be expected. 

Equation (4.1.15) can be re-written as: 

2 	TIM  
Uf U p• 

 = 3uf TL/t + 1 	 (4.1.19) 

which can be expanded for small IL/tm  values as: 

/ 

= 37(-iIi _-L + (--L 
f pi 	f\Tm /L 	Tm  \Tm  

(4.1.20) 
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Equation (4.1.20) shows that a weak correlation between fluid and 

particle velocity fluctuations arises for IL/tm << 1, as was 

expected. Thus, it is seen that the correlation given by Eq. (4.1.15) 

does indeed yield the correct limiting behavior of relative motion 

between the two phases. 

At high Reynolds numbers, it has been shown that for short 

diffusion times of marked fluid elements, Hinze [1976]: 

R (t) = 	et 	 (4.1.21) 

.Uf  

In which C is a constant of order unity. The expression for RfL(t) 

in Eq. (4.1.13) is then expanded as: 

R(t) = 1 -4- + a (+-) 	 (4.1.22) 

and a comparison between Eqs. (4.1.21) and (4.1.22) results in: 

2 

TL = • 	4t 	 (4.1.23) 

The constant C must be evaluated from experimental data. Although 

direct measurements of the constant are not available at the present 

time, it can be determined from a knowledge of the relative ratio of 

the isotropic Lagrangian and Eulerian integral length scales, given by: 

A 1  
= 	 (4.1.24) 
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Substitution of functional forms for AL  and Af taken yields, Hinze 

[1975]: 

8 	
= 1.36 

1 	a.0 (4.1.25) 

where a = 0.4 is the Heisenberg constant and the numerical value of the 

constant . depends on the type of flow. Most experimental results 

show a decrease in al with an increase in the Reynolds number. In 

Table 4.1 various values of al are shown. 

Corrsin [1963] has proposed 81 	2/3. A value of al = 1.02 

corresponding to the investigation of Shlien and Corrsin [1974] pro-

vides a reasonably moderate estimate for this parameter. Incorporation 

of this value in Eq. (4.1.25) yields the corresponding estimate for 

C = 3.33. Substituting C = 3.33 into Eq. (4.1.23) yields: 

C.. k/c 
	

(4.1.26) 

with C1 = 0.41. Finally, substitution of Eq. (4.1.26) for TL  into 

Eq. (4.1.16) yields an explicit function of ufupl  in terms of 

flow field variables calculable by the numerical algorithm. 

It should be noted that in relation to the above derivations, 

Danon et al. [1977] proposed an exponential form for ufiupi. 

Their postulation was based on observations of the limiting values of 

uf1 u. Since the proposed form of their correlation is not 

rigorous (in fact it is a form constructed to satisfy the limiting 

conditions), its validity at intermediate values of Tm/TL is 

questionable. 
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4.2 Particle Turbulent Kinetic Enerc(k) 

Whereas the transport equation for k has already been derived, 

the complexity of various second- and third-order correlation terms 

prevent its direct solution. From Eq. (401.4) for the particle 

fluctuating velocity, an algebraic expression for particle turbulent 

kinetic energy, k = 1/2 u 1 , may be obtaied in terms of local 

variables. 

Multiplying Eq. (4.1.4) by itself and ensemble averaging the 

results yields: 

upi= 	If1m Uf (t-)Uf (t-') d dC (4.2.1) 

The variables E and F are independent and the term containing the 

initial condition is neglected following the same arguments which lead 

to Eq. (4.1.7). 

Similarly, the high Reynolds number assumption leading to Eq. 

(4.1.3) gives for the present case: 

2• 
-k-iIt m  ) 

U f (t)Uf (t) = uf e 	 (4.2.2) 

Defining; 



Equation (4.2.1) becomes: 

2 Ct) 
= 2u f 

d f pi 	 Tfl 

	

_ 2C 	1 	
1 -)

T 

	

e m 	TM TL dt (4.2.3) 

Integration of this equation gives: 

2  u(t) - 	_____  
- Uf(t) Tm(TmTLJ 

[Tm(12tITm) 	2TmTL (1 -e 
-t(

Tm+TL 
	

1/Tm+1/TL))] 

(4.2.4) 

For large t values thestationary solution obtained is: 

2 	TL upi 
= Ufi. Tm+TL 	

(4.2.5) 

or equivalently: 

TL 
k 	

= k Tm+TL 	
(4.2.5a) 

Equation (4.2.5) shows the same functional relationship as Eq. 

(4.1.15) for ufiupi.  Hence, the results for the limiting behaviors 

of ufup are also valid here; that is, for small Tm/IL  values 

large u 	values are obtained and vice versa. Therefore, adoption of 

Eq. (4.2.5) implies that the fluid turbulence is the only source of 

energy for particulate turbulence and the turbulence energy exchange 

process between the phases is through viscous interaction. 
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4.3 Fluid-Particle Velocity Correlation Coefficient R1 2  

The fluid-particle velocity correlation coefficient at a fixed 

point is defined as: 

u' u 
'1 p1 Rf 	 (4.3.1) 

p 	Uf1•Up1 

which, by substitution from Eq. (4.1.15) and (4.2.5) yields: 

/ 	1 	\1/2 
R f-p 

in Eq. (4.3.2) is 

analogous to the non-dimensional distance rio which appears in 

two-point spatial Eulerian correlations, or the non-dimensional time 

ratio appearing in temporal Lagrangian correlations. 

4.4 Fluid-Particle Interaction Length Scale (L1 

The fluid-particle interaction length scale defined by Eq. (3.1.9) 

can be re-written, assuming local isotropy, as: 

r 	11/2 
Lf_ 	= Tm L(u f_u p ) ZJV 	 (4.4.1) 

with: 

2 _2 Uf 	-.k 	 V  

2 - 2 k 
) 
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Equation (4.4.1) may be re-written as: 

- 	1/2 
Lf 	= T ( 	+ u - 2ufu) 	 (4.4.2) 

and substitution from Eqs. (4.1.16) and (4.2.5) results in: 

(7
2\/2 	T3/2 

Lf  =k) 	

(Tm+TL)"2 	
(4.443) 

which expresses the interaction length scale 	in terms of various 

known field variables. 

4.5 The Correlation auf/aX 	au/ax (c equation) 

1n order to close the transport equation for dissipation of 

kinetic energy, c , the correlation term 

	

3Uf 	au 
Pi 

	

ax 	ax 

must be modeled in terms of known field variables. In this section, 

an expression for the term is derived which will be examined in its 

dynamical limits. In the process of the derivation the results of 

the preceeding sections will be extensively used. 

It is assumed here that the variables ufi,  upi  and ufi 

up i  are continuous and differentiable with finite values in space. 

Using Taylor series expansion, it can be shown that: 
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(aUf  
Uf 	

Ufi (a)  = 	aX)() Ax! + 0 (Ax) 2 	(4.5.1) 

and 

U- 
UP(a) = () 

	

Ax! + O(Ax) 2 	(4.5.2) 

For purposes of th e analysis attention is restricted here to the 

case where i = 1, and £ = 2 only corresponding to Figure 4.3. This 

figure shows two points (a) and (b) separated in space by a distance 

Ax2 which is assumed to be small compared to the local length scale 

of the flow. Combining Eqs. (4.5.1), (4.5.2) and time-averaging, the 

result yields: 

1 	'1 
3U 

P1 	- 

\aX2 (a). 

limit 
(Ax2 )Z [uPl ufl +UPl ufl u P ufuPu f] 

asAx2+O 

(4.5.3) 

in which xj and x2 refer to the stream-wise and laterial coordinate 

directions. Extra terms of the order of Ax2, and higher powers, will 

• also appear on the right, hand side of Eq. (4.5.3) but disappear as the 

indicated limit is approached. 
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From Eq. (4.1.6) at point (a): 

2 k 
	

TL(a) 

Ufl( a ;IP l 	= 	 __________ 
(a) 	 L(a)+Tm 

(4.5.4) 

while at point (b) using the Taylorseriesexpansion; 

TL 	 T 
= 	(a), 	2 	 L(a) /ak \ 

1(b) P1 (b) 	TL(a)+Tm 	
k(a) + 

TL (a) +Tm 	)(a) Ax2 

+
Tm 	faTL\ 

	

• (a) 	FT 
	+ '\2 UJ(a) 2 + 0(Ax 2 ) 2  

( a)m/ 

(4.5.5) 

noting that Tm  is constant in space. 	 - 

The correlation Uf1 
(a) 

Up1  (b) in Eq. (4.5.3) is one arising 

between the fluctuating fluid velocity at point (a) and that of the 

particle at point (b). A form for the correlation may be obtained as 

follows. 

Rewriting Eq. (4.1.4) at point (b) gives: 

t-to  

u(t) = 	 em U f  (t-)d + u (t0) e_(tt0VTm 

(b) 	m 0 
	 1 (b) 	1 (b) 

(4.5.6) 
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Multiplying both sides uf 1 (t) and ensemble averaging, the result 

gives: 

u (t)u (t)

Pi (b) 	(a) 

t-t 
1 	(° 
tm J 

0 

- /tfl 
e 	u (t-C)u (t) d 

11 (b) 	(a) 

(4.5.7) 

in which it has been assumed that: 

t - to  >> Tm 

The evaluation of Up1 
(b) 

Uf1  (a) from Eq. (4.5.7) requires knowledge of 

the correlation uf 1 (t)uf1 (t-) which is the covariance between the 
(a) 	(b) 

Lagrangian velocity of a marked fluid particle at time (t-) with its 

trajectory, passing through point (b) at time (t) [Fig. (4.3)]. The 

averaging process for uf 1 (t)uf 1 (t-) is an ensemble averaging which 
(a) 	(b) 

by substitution into Eq. (4.5.7) result in an ensemble averaged correla 

tion of, fluid and particle velocities corresponding to the points (a) and 

(b) respectively. However f  with the assumption of stationary flow the 

ensemble- and time-averaged values of uf 1 (t)u 1 (t) become identical. 

(a) 	(b) 	 ___ 
As it has been pointed out, the evaluation of Uf 1 (t)up 1 UtJ 

(a) 	(b) 

requires a knowledge of the functional form of the velocity correlation 

uf1 (t)uf1 (t-). Substitution in Eq. (4.5.7) of this function and 
(a) 	(b)  

further integration will yield an expression for uf 1 (t)u 1 (t-). 
(a) 	(b) 
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The correlation uf 1 (t)uf1 (t-) is a "mixed" Eulerian-Langrangian corre- 

	

(a) 	(b) 

lation which is not readily evaluated. This prevents a development of 

the velocity correlation Up1 (t)Uf 1 (t) from Eq. (4.5.7). Hence, at 
(b) 	(a) 

this stage, it is necessary to seek alternatives for obtaining the 

correl ation. 

The Eulerian correlation coefficient for velocities at two points 

(a) and (b) is defined as: 

	

Uf 	Uf 

(a) 	1 (b) 
RE 	= 	 (4.5.8) 

112 	Uf 	•Uf  

(a) 	1 (b) 

This can be approximated by its parabolic form, Hinze [1975] as: 

/Ax\2  

	

RE 	= 1 - t 1) 	 ( 4.5.9) 
112 	 g 

for 	 Ax2 << A g  

where A g  is the Taylor lateral microscale defined as: 

1d2R 	] 

	

1 	1 	I 	E112 	
(4.5.10) 

= - .LAx22J Ax2=O 

For the velocity correlation Uf1 (a) U 
 (b) 
p1 	which is the correlation 

between the velocity of different material phases at different points 

in space, a correlation coefficient can be defined as: 
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1 	-p1 
(a) 	(b) 

Uf1 (a) U 1 (b)  

.0 

'(a) 	'(b) 

(4.5.11) 

In the previous section, it was shown that, at a single point fixed in 

space, the correlation coefficient between fluid and particle velocities 

is a function of tm/TL which is analogous to the non-dimensional 

variable X2/Xg  in the Eulerian correlation coefficient, (Eq. (4.5.9), 

or to /TLifl  the Langrangian correlation coefficient, Eq. (4.1.13). 

Therefore, it is assumed that the correlation coefficient defined in 

Eq. (4.5.11) is a function of both independent variables Tm/TL and 

AX2/Xg. Thus: 

R f 	= R (!!! 	

, 	
(4.5.12) 

(a) 	(b) 	L(b) 	g 

For the determination of the function R in Eq. (4.5.12) it is 

necessary to derive its governing equation. This can be formed by 

appropriate algebraic manipulations of the equations governing fluid 

and particle fluctuating velocities. The result, however, is quite 

complex, and requires further closure for various higher order inter-

action terms arising between the material phases being at two different 

positions in space. 

The approximate form for the Eulerian correlation coefficient as 

shown in Eq. (4.5.9) implies; that: 

Ax2  << Ag 
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Therefore, for both the points (a) and (b), A g  represents the local length 

scale. 

Fluid-particle interactions at point (b) corresponding to the 

correlation in Eq. (4.5.12) imply a dependency on the local velocity time 

scale at point (b). Since direct particle-fluid interactions at point (b) 

affect the fluid turbulence at that point. These in turn will affect fluid 

fluctuations at point (a) due to the fluid-fluid correlation which exists 

between the two points. The argument, therefore, suggests a correlation 

between fluctuations of fluid velocity at (a) and fluctuations of particle 

velocity at (b). Therefore, the fluid time scale TL  in the correlation 

Up j 	Uf1 , and the coefficient RflU_Pl(b)  in Eq. (4.5.11), 

in Eq. (4.5.11), should be evaluated at the point where the particle 

perturbation are introduced into the correlation. Thus, the fluid time 

scale TL(b)  is chosen as the appropriate scale in the correlation 

coefficient defined by Eq. (4.5.11) and Eq. (4.3.12) and the parameter 

for the time scale ratio must appear in Eq. (4.5.12). 

The correlation coefficient of Eq. (4.5.12) can be separated into 

two independent functions as: 

	

/ tm 	x2 Rf 	
-p1 	TL 	A 

(a) 	(b) 	(b) 	g 
=r(Tm  

(b) (

"gX2
) (4.5.13) 

In order to determine the functional forms of rand I it is necessary 
to inspect the limiting values for the correlation coefficient of Eq. 

(4.5.11). These are: 
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i) 	
Rfl(apl(b) (+L(b)' 

 ) 	REfl(a)fl(b() 

as; 

Tm 
- —*0 

L(b)

"2)ii) Rf 	

( 	, 	

- R 	
1 (1m ) (a) 	(b) 	(b) 	g 	(a) 	(a) 	(a) 

as; 

(4.5.14) 

(4.5.15) 

Ax2 

g 

with the points (a) and (b) coinciding. 

The correlation coefficient in Eq. (4.5.13) must satisfy the above 

boundary. conditions. Comparing Eqs. (4.5.14) and (4.5.15) with 

(4.5.13) gives: 

(

Ax 	 I 	( Ax )21 

•) 	

(4.5.16) 
Xg 



and; 

tm \ 

	1 	1 	11/2 

( 
7" T 	

) = 
	[1+ Tm/TLj 

(4.5.17) 

Elm 

In which the Eulerian and fluid-particle correlation coefficients from 

Eq. (4.5.9) and (4.3.2) are incorporated, respectively. The factors 

T(0) andX( 0 ) are non-zero constants and satisfy the conditions: 

710VX(0) = 1 
	

(4.5.18) 

Substitution of Eq. (4.5.6) and (4.5.17) in Eq. (4.5.13) yields: 

Rf1 (a) p1 (b)  

T 	1/2 	2 

	

L(b) 	 AX2 

= T 	+t 	. 
L(b) m 	 A g,  

(4.5.19) 

and similarly: 

Rf 	
_1 

(b) 	(a) 

I T \1/2 

+ 
- 	L(a) 
- T 	t 

\L(a) m 
• 1 - (x

2 ) 2  

g 

(4.5.20) 

It should be noted that the particular form of a parabolic Eulerian 

correlation coefficient, as introduced in Eq. (4.5.9), imposes no 

restrictions on the derivation procedure which could have been based on 

a more general RE(x2)  function. However, it is the parabolic form 

of this correlation which is of interest to this study as shown further 

on on this section. 
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- The argument leading to Eq. (4.5.19) is based on the assumption 

that the variables which determine the correlation coefficient, 

AX2/Ag and Tm/TL,  are independent of each other. Equation 

(4.5.19) shows that the correlation coefficient R f 	- 	consists 

1(a) Plo 
of the product of two functions each of Which is smaller than, or at 

most equal to, unity. Therefore, the effect of either variable, 

spacial or interactional, is to reduce further the magnitude of the 

correlation. Figure 4.4 illustrates the correlation coefficient as 

given by Eq. (4.5.19). 

Using Eq. (4.2.5) in combination with Eqs. (4.5.19) and (4.5.20) 

corresponding velocity correlations can be obtained and are given by: 

TL 	 (x)2  
U f 	U 	 (k(a)k(b)) 	TL 	

. 1 - 	 (4.5.21) 
(b) 	 (b) m 
	 Ag  

and 

12 	1 	 2 
uq 	u 	= 	

.. k(b)) 	 • 1 - 	22 	(4.5.22) 
(a) 	 (a 	m 	

g 

At this point, with all the velocity correlation terms in Eq. (4.5.3) 

defined, the velocity gradient correlation term auf1/ 3 X2 5Up 1 I1X2 

can be obtained. Subsequently, summing over all indices the correlation 

term 3uf/3xj aup./axj in c-equation is obtained. The results 

which are required for the derivation are re-written as: 

) 
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T I  
=• 

'1, 	P1 	 (a) 	T 1 	+ 	
(4.5.23) 

a) 	(a) 	 (a) m 

TL 
(b) 

1(b) P1(b) 
	•• (b) • TL 	

(4.5.24) 
+t  

	

U 	 [k 	I k f 	U 	= 	( a)(b)1"2 	
( x 

. 	
-  

	

(a) 	(b) 	 Ag 

1 
2 	 il/2 	I 	12) 

	

Uf 	 = - [k(a)Sk(b)J 	 2 
(b) 	(a) 	 L 	Ag  

TL (a) 
. I 	+t 	(4.5.25) 

L(a) m 

TL 
(a) 	

(4.5.26) 
+T TL ()  m 

Using a Taylor series expansion, the variables at point (b) can be 

expressed in terms of corresponding variables at point (a). In this 

way: 

T 	= 	

+ (3x2 

aTL
( a2TL)

L(b) 	L(a) 	
)(a) 	

2 	
(a) 

 T + ••• 	 (4.5.27) 

and 

2 
k(b) = k(a) + 
	X2)(a) 	

2 + 
	4(a) 	

2 	+ 	 (4.5.28) 
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hence: 

=k1 /2 

 1 + 2k(a) ()(a) Ax2 

+ [(a)()( a ) 	8ka) ();
a)] Ax2  + * 00 

(4.5.29) 

Equation (4.5.29) is obtained by usThg a binomial series expansion with 

the assumption that: 

1 	/ak 	 1 	(32 k' 

k(a) 	 AX2 + k( a ) 

which is the case forsmall Ax2/1. 

fluid local integral length scale. 

which significant variations in me 

expect: 

AX 2  
) _.?. + ... 	< 1 	(4.5.30) 

(a) 

The quantity z represents the 

It characterizes the d.istance over 

in values are expected. Thus, we may 

	

3x2 
 - 0 (k 
	

(4.5.31) 

It has been assumed in the analysis that Ax2 << A g  and an 

expression for x 9/ given by Tennekes and Lumley[1972]is: 

	

1/2 	 (4.5.32) 

It is seen that at high Reynolds number the condition for inequality 

(4.5.30) is established. 

) 
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Likewise: 

TL 	
TL( a ) 	 Tm 

	
(ax2)

aTL

tm+IL 	Tm+TL 	 +TL (T 1+TL a) J 	() (a) 	 (a) 

+ 	Tm 	
I____ 	 2 	Tm 	faT\ 	2 	31 

2TL (a) l Tm+TL (a) J 	aX 	
- TL(a)(Tm+TL(a)) 	

aX2)2 + 0(x2 )] 

(4.5.33) 

which requires that: 

	

(a) 	L(a) 	ax) 	
+ ... 	1 

1 (alL) 	 1 	fa2r\ 

TL(a) ax
2 	+ 21 

(a) 

which is similarly established along the lines of the preceeding 

arguments. 

Substitution of Eqs. (4.5.27)-(4.5.33) in Eqs. (4.5.23)-(4.5.26) 

and final substitution in Eq. (4.5.3) results in an expression for 

increasing powers of Ax2  which should be taken to its limit. After 

some algebraic manipulation, terms of the order (x2)0  and 

(Ax2) 1  are eliminated and the remaining terms are of order (ax2) 2  

and higher powers. Therefore, taking the limit ax2 + 0, the following 

result is obtained: 
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au. 	au 
I 	'1 	p11 	1 	Tm 	/9k\ 	IL 
\9x2 3 X2 I 	

= 	
[ t +TL 	' 

(a) 	
m 	

(a) 	)(a) 	(a) 

1
+  

(a) 	(1k  \ 	4 	(a) (a) 
+ 6k( a ) 	Tm+TL 	2/() 	T+T () 	••• 

(4.5.34) 

By using the assumption of local isotropy and summing over all 

coordinate indices, the following result is obtained: 

f9Uf 	9L1 	 'aT i 	pij 	= 	Tm 	(ak\ 	(L 
\ax 	

£ '( a) 	km+TL (a) 12 	'(a) " 	)(a) 

T 	10k, T 
1 	L(a) 	'ak \ 	a1 L(a) 

2k 	
m +i 	i —) 	+. T+T (a) 	L(a) 	(a) 	m L(a) 	Ag 

(4.5.35) 

In the last term of Eq. (4.5.35) the relation for streamwise Taylor 

microscale(xf) given by Hinze [19751; 

A f  = /ZAg 	 (4.5.36) 

is used. 
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In line with the earlier arguments for high Reynolds numbers; 

Af 	Ag  << £ 

This allows the second term on the right-hand side of the Eq. 

(4.5.35) to be neglected. That this is the case can be shown by 

evaluating the order of magnitude of the second and the third terms on 

the right side of Eq. (4.5.35), that is: 

1 	TL 	(akjt)2o(TL 

•t+T 	= 	 Tm+T 

and: 

10k 	
TL 	1 	k 	TL 

mTL 	
= 0 

- 	T +TL 

Hence the ratio of the second to the third term in Eq. (4.3.35) becomes 

of the order of (A g/) 2  which is very small at high Reynolds 

numbers. 

Equation (4.5.35) simplifies to: 

aUf au 
i 	i_ 	k 	DTL 	TL 

ax 	ax 	
- ( T +TL) 2 	

•t ••;ç + 
10k m

TL • 	
(4.5.37) ax 

M. 

which is used for the closure of the transport equation for fluid 

dissipation of turbulent kinetic energy in Eq. (4.5.37) the transverse 

Taylor microscale is given by: 
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1/2 
A g  = ( lOv ) 	 (4.5.38) 

see Hinze [1975]. 

In order to be certain of the validity of Eq. (4.5.37) it is 

essential to investigate its limiting behavior. The limiting 

expressions for this correlation should become identical to the speci-

fic relations corresponding to the properties of the correlation term, 

when the limits are approached. The two cases are investigated below. 

The no-response limit (Tm >> TO 

In this limit, the particle does not respond to the neighboring 

fluid velocity fluctuations and this is expected to result in a weak 

correlation. From Eq. (4.5.37) it can be seen that: 

aUfi 
	1 	0 

	

p 	
(4.5.39) 

axL 	ax L  

as 

which is the expected behavior for this limiting condition. 

The perfect-response limit (Tm << TO 

This limit corresponds to an almost perfectly responsive particles 

in the fluid, with no distinction between the dynamics of the 

particulate phase and the neighboring fluid elements. Hence from Eq. 

(4.5.37) it is seen that: 
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aUf 9U Pi 	
+10 4-. 	(4.5.40) 

T 
as 	m— + 0 

'L 

However, at high Reynolds numbers thecorresponding limit of the 

gradient correlation is: 

	

pi 	_____ _____ 
aUf 	U 	 3u 	aUf 	

= £ 	 (4.5.41) 
axL 	3x 2 	ax 	ax& 	v

it 

as 	. T!!! 	+ a 
TL  

Corresponding the above two limiting expressions: 

	

- 10k 	 4.5.42 

g 

or, in keeping with the assumption of local isotropy: 

	

= 15 - 	 (4.5.43) 

g 

Equation (4.5.43) is exactly the definition of c as shown in Hinze 

[1975]. It is seen that Eq. (4.5.37) does indeed display appropriate 

limiting behavior. The modeled equation will thus be used for 

numerical calculation of c-transport equation. 



-118- 

CHAPTER 5 

DIFFUSION PROCESSES IN TWO PHASE FLOWS 

The complexity of two-phase fluid-particulate, flow dynamics is 

associated with the variously different modes of diffusion governing 

the relative motion of the dispersed phase in the carrier fluid. In 

addition to convection, particulate phase diffusion processes can also 

be important in determining the transport of mean particulate quanti-

ties such as momentum and mass concentration. Therefore, it is essen-

tial to account for such transport processes when the particulate mean 

conservation equations are considered. 

In general, the processes governing particulate diffusion arise 

from interactions of the particles with the fluid, and/or interactions 

of particles with neighboring particles and nearby walls. The diffu-

sion processes associated with the fluid forces are generally functions 

of both the fluid and particulate phase characteristics. For example 

for the case of diffusion by turbulent fluid drag on the particles, the 

investigation of Soo [1956] and Peskin [1962] are noteworthy. For very 

small submicron-sized particles, collisions with the carrier gas mole-

cules can be significant and may establish a different mode for par-

tide diffusion. In the cases of significant particle-particle colli-

sions a Brownian-type diffusion caused by mutual particle interactions 

will arise. It has been argued by Hinze [1975] that the viscous drag 

and Brownian-type diffusion are practically independent. Consequently, 

their respective contributions to the particulate phase mean momentum 

,1 
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A form for Eq. (4.5.37) more suitable for numerical computation 

can be obtained by substituting Eq. (4.5.38) for A g  in Eq. (4.5.37), 

to obtain: 

au 	au f. 	p. 	T m 	ak  IBT 	I 

XL 	Xt 	= ( Tm+TL)2 	 + Tn+T 	 (4.5.44) 

With all the variables on the right hand side of Eq. (4.5.44) defined, 

it can be used for closure of the c-transport equation. 



-119- 

momentum is additive which simplifies the analysis, particularly when 

one contribution becomes negligible with respect to the other. The 

situation is analogous to the high Reynolds number single phase flows 

in which laminar viscosily becomes negligible compared to its turbulent 

eddy diffusion counterpart. Finally, indirect particle-particle inter-

actions are represented by the so-called Bernoulli forces and are asso- 

ciated with a corresponding diffusion process as shown by Peskin [1959]. 

In this chapter the above diffusion processes for the particulate 

phase will be analyzed with the view of incorporating the significant 

components in the particulate momentum balance equations. 

5.1 Diffusion by turbulent drag 

One of the significant characteristics of turbulent flow is their 

capability for dispersing quantities such as momentum, heat, mass and 

related quantities. For an accurate prediction of the mean values of 

such quantities, it is essential to have a sufficiently adequate know-

ledge of the relevant turbulent diffusion processes. The dispersion of 

solid particles into the atmosphere in the form of pollutants from 

smokestacks, and the diffusion of particles toward the walls of a 

channel with subsequent deposition are among many practical cases of 

particle turbulent diffusion inducedby fluid motions. Various experi-

mental investigations have been conducted in regard to fluid turbulence-

induced particle diffusion, some of these are briefly discussed in this 

section. The experiment of Rouse [1939] deals with the turbulent trans-

port of sand particles in water which are kept in suspension by the 
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vertical oscillations of a metallic lattice. In this case gravity 

effects tended to settle down the particles while turbulent diffusive 

effects opposed particle settling, with a tendency to uniformizing the 

particle concentration distribution. In order to analyze the flow, the 

assumptions of a gradient-type mass diffusion flux and of a constant 

particulate turbulent diffusivity were made and subsequently incor-

porated in themass balanceequations. The analysis revealed an 

exponential variation for the particulate phase mass concentration in 

the vertical direction which agreed well with experimental data from 

the same study. The investigation by Rouse then, not only illustrates 

the significance of turbulent diffusion effects on the concentration 

distribution, it also demonstrates the usefulness of the gradient-type 

hypothesis assumption for particulate phase diffusion mass flux. Under 

certain conditions, turbulent diffusion effects has a predominant 

influence on the wall deposition of solid particles in straight pipe 

flows as has been shown by Friedlander and Johnstone [1957]. In this 

investigation, solid particles with a size range of 0.8 urn to 2.63 urn 

were used in air. The results show a drastic increase in the wall 

deposition of solid particles when transition from laminar to turbulent 

regime occurs. The deposition rate subsequently increased with in-

crease in the flow Reynolds number. The particle turbulent diffusivity 

was assumed to be identical to that of the fluid, resulting in a fairly 

accurate prediction of particle wall deposition. A collective review 

of particle eddy diffusivity has been made by Householder and 

Goldschmidt [1969]. 
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Since the earliest investigations relating to two phase flows, the 

problem of solid particle diffusion by turbulent fluid action has 

presented itself as one of the mostdifficult and fundamental issues. 

The results of the majority of investigations have consistently shown 

the dependence of solid particle diffusion on the turbulent charac-

teristics of the carrier fluid as well as a dependence on particle 

characteristics. A thorough knowledge of the fluid turbulence struc-

ture and its diffusive characteristics, particularly in relation to 

fluid-particle interactions is necessary. 

The concept of eddy viscosity was introduced originally in the 

early work of Boussinesq [1877]. This concept has been broadly 

incorporated in various closures modeling turbulent flows. Later, in 

1883,, the well-known experiments of Reynolds showed the chaotic and 

irregular fluid patterns shown by the turbulence-induced dispersion of 

colored dye. In 1925 Prandtl introduced the concept of mixing length 

for fluid elements in a turbulent stream based on an analogy with the 

mean free path of gas molecules. Prior to Prandtl, Taylor [1921] 

introduced the theory of "diffusion by continuous movements" in homo-

geneous turbulence. The theory is based on the concept that fluid 

elements move in a continuous and correlated fashion;distinguishable 

from molecular or Brownian motion which is a purely random motion in 

space and time. Thediffusion coefficient derived by Taylor is defined 

as: 

Vtf E 4 •E x(t)  

a.s t+ 
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in analogy with molecular diffusion. In this expression Xf(t) is the 

mean square displacement of the fluid element. The Taylor theory of 

"diffusion by continuous movements "  provides an expression for xf(t) 

as: 
t 	t i  

4(t) = 2 	f dt'  f 	RL (t) dt 	 (5.1.2) 
0 	0 	f 

with RLf(t) indicating theLagrangian correlation coefficient. 

It is seen that a knowledge of the Lagrangian correlation 

coefficient is necessary in order to obtain the turbulent diffusion 

coefficient defined by (5.1.1). The incorporation of expressions for 

RLf ( T ) corresponding to small and large values of T yields, 

respectively: 

4(t) = Ft2 	for t << 
	

(5.1.3a) 

and 

x2 (t)= 2 u2 T t 	for t >> I 
	

(5.1.3b) 

where'TLf  and TLf  are, respectively, the Lagrangian integral 

and micro-time scales of turbulence for the fluid. Hence, for long 

diffusion times, Hinze [1975]: 

Vt = 	I RL () d = 7 1 	 (5.1. 4) 
f 	0 	IF 	 IF 
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The application of Eq. (5.4.1) requires a knowledge of the Lagrangian 

time scale characteristics of the fluid. 

• 	 The diffusion theory outlined above can be extended to the motion 

of a single particle suspended in a turbulent fluid. The problem 

reduces to an evaluation of RL(t) and of the mean square displace-

ment, Xp2  for the particle motion. Themean square displacement 

for a single particle can be obtained from the general equation of 

motion, Eq. (2.1.1). However, as already noted, a rigorous solution of 

this equation is not straightforward, and all practial investigations 

to date are essentially based on simplified forms of the particle equa-

tion of motion. The classical investigation of Ichen C1947] is one of 

the early works in this regard for the motion of a single particle in 

an unsteady flow field and was discussed in Chapter 2. One of the 

major assumptions embodied in Tchen's investigation is that a particle 

remains in the vicinity of the same fluid element it.initially encoun-

tered. This implies identical turbulent diffusivities for the fluid 

and solid particle. In the computations of two phase turbulent flows 

such an assumption will lead to significant simplifications in relation 

to particulate momentum balance closure. The assumption is correct 

only for perfectly responsive particles with respect to turbulent fluid 

fluctuations. For this case, the particle length and time scales 

satisfy the following conditions: 

d 	< i 

Tm < •r 
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which n and T representing Kolmogorov length and the scales, 

respectively. The conditions above impose restrictions on the two 

phase flow to be considered. 

There are numerous examples of experimental data which do not 

support Tchen's assumption. Among these are the studies by Goldschmidt 

et al. [1972], Yuu et al. [1978] and Soo and Peskin [1958]. The inves-

tigations point out to the so-called "over-shooting" effect, due to 

which inertial particles will not remain in the vicinity of the origi-

nal fluid element, and thus resulting in a different diffusion coeff i-

cients for the fluid and particle phases. For large, non-inertial 

particles the deformation of neighboring fluid elements should be 

accounted for since, due to the stretching, shortening and in general 

the complete distortion of the neighboring fluid element, the particle 

will hardly remain in its vicinity even if inertial "overshooting" 

effects are negligible. In such cases, the particle response time 

should be compared to the time scale characteristic of fluid element 

deformation. 

The basis for the derivation of a particle-to-fluid diffusivity 

ratio in Ichen's investigation is Taylor's diffusion theory and the 

utilization of Eq. (5.1.2) specifically for particle mean 

displacement. Using integration by parts, this equation can be 	 - 

re-written as: 

	

-z 	—t 
x (t) = 2 u' f (t-t)  RL (T) dT 

	

p 	 p0 	
p 
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which has been derived by Kampe de Fériet and shown by Hinze [1975]. 

The results of Tchen's study for the case of statistically stationary 

particulate motion show that for short and long diffusion times the 

ratios of particle to fluid eddy diffusivity are, Tchen [1947]: 

Vt 	7 
= _2_ 	(for short times) 	 (5.1.6) 

tf 	4 
and 

Vt 
= 1 	(for long times) 	 (5.1.7) 

tf  

Equation (5.1.6) show that for short diffusion times the 

diffusivity ratio becomes proportional to the ratio of mean square 

velocities in any direction for the case of isotropic turbulence. 

However, for long diffusion times the ratio becomes unity, Eq. (5.1.7). 

The derivation of a more general diffusivity ratio requires a 

knowledge of the Lagrangian energy-spectrum functions for the fluid and 

particle phases, ELf(n) and EL(n) respectively. Although a 

relation for the ratio of the two spectrum functions is available from 

Tchen's analysis, it can not be used to obtain the individual diffusion 

coefficients. However, by assuming an exponential form for the Lagran-

gian correlation coefficient, an approximate expression for EL f (n) 

can be 
I

obtained, Hinze [1975]. The incorporation of this expression in 

the equations of motion results in time-dependent relations for the 
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eddy diffusivities and the turbulence intensities of each phase. 

Hinze's analysis, however, shows that for long diffusion times the 

diffusivity ratio becomes unity and is consistent with Tchen's result. 

In another investigation, Friedlander [1957] used the particle equation 

of motion to obtain: 

(t) = 2 U
f
t f R(o) do 	 (5.1.8) 

in which Rf(6) is the fluid correlation coefficient encountered by 

the particle along its path and has a functional form which depends on 

the relative motion of the suspended particle phase. Two limiting 

cases can be considered: 

for small non-inertial particles perfectly following the fluid 

element, Rf(6) becomes equivalent to the fluid Lagrangian 

correlation coefficient, RLf (8) already defined. In this 

case the diffusion coefficients become identical. 

In the case of large heavy particles which do not remain in 

the vicinity of the same fluid element the particles 

experience a series of turbulent eddies which, for relatively 

high particle terminal velocity values, are essentially frozen 

with respect to the particle motion. In this situation, 

Rf(0) becomes identical with the fluid Eulerian correlation 

coefficient. 

Finally, in the case of large inertial particles with high Tm 

values the diffusivity ratio for small diffusion times becomes, 

Friedlander [1957]: 
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2 

tf 
	 (5.1.9) 

The ratio given by Eq. (5.1.9) is quite small compared to unity and 

indicates the slow response of inertial particles to fluid motion. 

Gravity effects 

The studies on the Lagrangian behavior of solid particles with 

non-negligible terminal velocities constitute a significant part of the 

investigations on many-particle diffusion, of practical interest in 

relation to atmospheric diffusion of solid pollutants and dust 

particles in the atmosphere. The existence of a non-negligible 

terminal velocity for a solid particle will cause the particle to 

depart from the vicinity of its initial neighboring fluid element and 

eventually to fall-out under gravity effect. The particle will 

experience a series of different eddies during its gravity-induced 

descent through the fluid. This effect, which is usually referred to 

as 'crossing-trajectories," results in a more rapid decrease in the 

particle Lagrangian correlation coefficient and has a significant 

influence on the heavy particle diffusion coefficient. The argument 

presented earlier, given by Friedlander [1957], regarding the limiting 

conditions for small and large terminal velocities can be generalized 

to give, Csanady [1963]: 

Rf  = Rf (T 1 , 1 ) 
	

(5.1.11) 

) 
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This relation can be substituted in Eq. (5.1.8) with tj the travel-

ing time in the direction of gravity, El = tuj the corresponding 

distance travelled by the particle, Yudine [1959], and Ut  represent-

ing the particle terminal velocity. The correlation coefficient In 

Eq. (5.1.11) becomes identical to the Lagrangian coefficient when Ut 

is small, while for largeu values it becomes equivalent to the 

spatial Eulerian correlation coefficient. Therefore, in general, the 

correlation coefficient in Eq. (5.1.11) is a combination of the two 

limiting correlation coefficients. Furthermore, analysis based on the 

use of such "mixed" correlation coefficients shows a reduction In 

with a increase in particle terminal velocity, u., as indicated 

by Yudine [1959]. For an evaluation of the "mixed" correlation coeffi 

cient with fall-out effects included, Csanady [1963] has suggested that: 

I  
t 	

2\1'21 

Rf(1 1 ,E 1 ) = exp - T.:i (u + L 
	

) 	I 	(5.1.12) 

LI J 
where LE  and TL  are the Eulerian integral length and the Lagrangian 

integral time scales, respectively, which are to be evaluated in the 

direction of the particle terminal velocity. This proposed form for 

Rf(71,F1) above is based on the investigation of Mickelsen [1955] 

regarding exponential forms for both the Lagrangian and the Eulerian 

correlation coefficients. 
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The incorporation of Eq. (5.1.12) in (5.1.10) results in the 

following expression for the diffusivity ratio: 

•1 	

2 	 h/2  

= (1 	
T 	

(5.1.13) 

Consistent with previous investigations, this expression shows a 

reduction in vt, with an increase in terminal velocity. It should 

be noted from Eq. (5.1.13) that, for zero terminal velocity, identical 

diffusion coefficients for the fluid and particle phases will be 

obtained. 	This is because in the analysis leading to Eq. (5.1.13) 9  

the particle inertial effects have not been included. In a related 

investigation, Meek and Jones [1973] have derived a modified particle 

energy spectrum function with the particle terminal velocity 

incorporated. The particle Lagrangian correlation coefficient obtained 

by them is: 

	

[e- 	
/(eT')

RL(tl) = .1-.
t IT' 	-t 

- 0 e 	j 	( . . 1 ) 

with: 

Tm  

-- 	 and: 
11/2 

TL 	+ (Ut/Lp)2j 
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The inclusion of Eq. (5.1.14) in the expression for mean square 

displacement from Taylor's diffusion theory (Eq. (4.1.12)), results in 

the following expression for the eddy diffusivity ratio: 

1_12  
_!.2. = 	' 	(i + e)J 	 (5.1.15) 
Vtf 	L 	\1 	J. 

This expression shows that the diffusivity ratio is smaller than, or 

at most equal to, unity. The presence of Ut  in Eq. (5.1.15) 

indicates how the "crossing-trajectories" effect tends to reduce the 

particle eddy diffusivity relative to that of the fluid. For zero 

terminal velocity the diffusivity ratio in Eq. (5.1.15) becomes equal 

to unity, consistent with the result given by Eq. (5.1.13). In 

relation to gravity effects it may be concluded that an important 

non-dimensional variable, is ut/tif,  in addition to the non-gravity 

Tm/TL already introduced. The presence of gravity effects tends to 

diminish particle eddy diffusivity as well as the particle Lagrangian 

correlation coefficient. Physically, this means that due to particle 

fall-out under the influence of gravity, various regions of the flow' 

will be encountered by the particle which are not correlated with its 

motion and, therefore, will reduce the particle correlation coefficient 

as particle terminal velocity increases. Among the experimental 

investigations supporting this notion is the work by Snyder and Lumley 

t19711; in which diffusion coefficients for solid particles with 

terminal velocities ranging from 1.67 cm/sec to 44.2 cm/sec in grid 

generated turbulence have been measured. 
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Particle inertia effects 

In problems of solid particle dispersion induced by turbulent 

fluid drag, particle inertia has a significant influence on the par-

tide phase diffusion process. It is because inertia effects that: 

small, non-inertial, particles tend to follow turbulent fluctuations 

almost. completely; while inertial particTes lag behind high frequency 

fluctuations of turbulent fluid motion. In the case of the latter, 

particles tend not to remain in the vicinity of the same fluid element. 

This results in a different eddy diffusivity for the particulate phase 

compared to that of the fluid phase. The investigations of Soo [1956] 

and Liu [1956], based on a Fourier series representation of fluid 

turbulence in confirmation with the particle equation of motion yielded 

solutions showing different eddy diffusivities for the fluid and 

particle phases when particle inertia was significant. Particle 

inertia is also responsible for the penetration of solid particles from 

the turbulent core of the flow into the viscous sub-layer in turbulent 

pipe flow resulting in particulate wall deposition shown by Friedlander 

and Johnstone [1957]. 

The major assumption in most investigations related to particle 

turbulent diffusion is that originally introduced by Tchen [1947], 

- - 	 namely that the particle remains in the neighborhood of its initial 

fluid element. This idealized assumption poses limitations on the 

applicability of the results derived to more real flow conditions in 

which "over-shooting" effects can besignificant. "Over-shooting" 
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refers to the condition in which inertial particles are removed from 

the neighborhood of their initial accompanying fluid elements resulting 

in a diminished particulate phase diffusion coefficient. This has been 

shown by Peskin [1959] and Soo and Peskin [1958] through introduction 

of the statistically defined the most probable fluid element encoun-

tered by the particle at a certain time in flow domain. It should be 

noted that the escape of the particle from one flow region to another 

is associated with a weakening of the particle-fluid velocity correla-

tion function. 

Through statistical treatments, Peskin [1962] has derived a 

particle-fluid eddy diffusivity ratio which shows a dependence not 

only on the time scale ratio TmITL, but also on the Lagrangian 

and Eulerian microscales of the fluid. The derivation is based on 

the particle equation of motion (2.1.1) with the Stokes viscous drag 

term as the only driving force present in the momentum balance. At a 

time t after the start of the motion, the fluid element surrounding a 

particle is different from that which the particle originally encoun- 

tered. The derivation is then reduced to determining the most probable 

fluid velocity encountered by the particle at time t given the velocity 

of the initially-encountered fluid element at time t o . The most 

probable fluid velocity is obtained by assuming a joint Gaussian 

probability distribution function for the particle-encountered fluid 

velocities. In addition, statistically stationary isotropic turbulence 

random variables are assumed. The results show that on average the 

fluid velocity encountered by a particle becomes equal to the velocity 
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of the fluid initially encountered at time t o  multiplied by the two-

point Eulerian coefficient based on the fluidvelocities encountered at 

time t. The most probable fluid velocity surrounding a particle at 

time t obtained in this way is then substituted in Eq. (2.2.9) with a 

parabolic expressionfor the correlation coefficient as given in Eq. 

(4.5.9), an expression for the particle mean square displacement is 

obtained and is ensemble-averaged over all the possible fluid velocity 

encountered. Throughout the derivation process, the fluid Lagrangian 

correlation coefficient has been approximated by the exponential 

function given by Eq. (4.1.13). The result for the diffusion coeffi-

cient ratio is, Peskin [1962]: 

Vt 	T22 

.. = 1 - L 
Uf  

V 
A E 

+ 0 

(XE--.) 	
(5.1.16) 

wi t h: 

2t 

-77 

Equation (5.1.16) is significant since it accounts for "over-shooting 0  

as well as local response effects. In the derivation process leading 

to Eq. (5.1.16) it is assumed by Peskin that the particle, although 

allowed to over-shoot the original fluid element, stays in regions 

close to it so that the second term on the right hand side of Eq. 

(5.1.16) remains small compared to unity. The parameter K is 

characteristic of the particle response to the fluid fluctuations. 

For inertial particles with high K values, deviation from initially 
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neighboring fluid elements results in a reduction of the particle eddy 

diffusion coefficient as predicted by earlier investigations. 

Particle size effects 

Several investigations on turbulent diffusion of solid particles, 

have shown that the ratio of particle size to the local length scale of 

turbulence is a significant, parameter. Miong these investigations are 

those by: Ichen [1947], Peskin [1962], Yuu et al. [1978] and Abramovich 

et al. [1974]. In general, it has been shown that with an increasing 

particle size the diffusion coefficient ratio, Vt p/Vtf  decreases. 

This is usually referred to as the "filtering" effect by which the par-

tides "filter-out" the influence of eddies with length scales smaller 

than the particle diameter, thus resulting in a reduction of the 

turbulence-induced particulate diffusivity. The above investigations 

show the following limiting conditions: 

v+  

+ 1 	as 	
p

+ 0 	 (5.1.17) 
t f  

and; 

v4  

+ 0 	as 	.ia + Go 	 (5.1.18) 
Vtf 	 ¼ 

with XE  as the fluid Eulerian microscale. 

Using the assumption of stationary, homogeneous and isotropic 

turbulence, Hinze [1971] has approximated the turbulence energy 

spectrum function from which the ratio Vt p/Vtf as a function 

of dp/Le  is derived; Le representing the length scale of the 
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energy-containing eddies. In this derivation the "filtering effect of 

small eddies by large particles, discussed above, was included. 

Analytical results so obtained for the diffusivity ratio, for inter-

mediate values of particle diameter, dp, are consistent with the 

experimental data of Goldschmidt et al. [1971]. For the intermediate 

particle size range contained by: 

AE < d 	< 0.5 L e 	 (5.1.19) 

the data shows a diffusivity ratio larger than unity, Hinze [1971]. 

For a physical interpretations of this remarkable result, Hinze [1971] 

has re-written the diffusion coefficient ratio as: 

Vt 	AL u  
= 	• _2 	 (5. 1.20) 

v4 

f 	
A 1 	u 

I..   

with AL and ALf  denoting the particle and the fluid particle 

Langragian integral length scales. Hinze then argues that for the 

ranges where: 

< 0.5 Le 	 (5.1.21) 

the length scale ratio in Eq. (5.1.20) will increase with increasing 

particle size, since large inertial particles will correlate over 

longer distances as compared to small non-inertial particles. Although 

the velocity scale ratio in Eq. (5.1.20) will decrease with increasing 

particle size, it can not compensate for the increase in the length 

scale ratio, thus resulting in an overall increase in the diffusivity 

ratio. For ranges corresponding to the particle sizes larger than Le 

the same argument suggests implies diffusivity ratios values smaller 

) 	than unity. 
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In closing section 5.1 it may be remarked that in addition to the 

various effects reviews above relating to particle turbulent diffu-

sivity, the wall effects has been investigated by Gudmundsson and Bott 

[1977]. Based on the results of various experimental studies, these 

authors have proposed that in wall regions of the flow, particulate 

turbulentviscosity can be modeled by: 

V. 	= V 
t f 

+ Tm(t4) 

This proposal is based purely on physical arguments without rigorous 

mathematical proof. Other noteworthy investigations relating to 

particulate turbulent diffusion of less importance to the present study 

are those by: Lilly [1973] and Eskinazi and Goldschmidt [1966]. In 

addition, Peskin and Kau [1979] have developed a numerical scheme for 

the direct simulation of particle dispersion in turbulent channel 

flow. Their deterministic method is based on solution to Eq. (2.1.1) 

with the Stokes drag term as the only driving force incorporated in the 

particle momentum balance. 

5.2 Brownian Diffusion for Solid Particles 

Brownian diffusion of solid particles suspended in a viscous fluid. 

is caused by random collisions among solid particles, or, in the case. 

of sub-micron particles, by collision of fluid molecules with the 

particles. 
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A relation for the particle mean square Brownian displacement and 

a corresponding diffusion coefficient has been obtained by Peskin 

[1959] which is based on Eq. (2.2.10) describing the particle position. 

In the Brownian motion of solid particles, the diffusion process 

evolves by collisions which are random in nature and which have no 

correlation with the particle position and velocity. The use of Eq. 

(2.2.10) for predicting particle Brownian motion requires a knowledge 

of the function A(t) representing the random particle acceleration 

induced by neighboring particle and/or molecular impacts. Peskin 

[1959] assumes that the A(t) statistics are similar to those charac-

teristic of a perfect gas. Thus, a Maxwellian probability density is 

used in combination with an assumed form of the auto-correlation 

function of A(t) given by: 

A(t) A(t+) = 	2 
	

(5.2.1) 

with () the Dirac function. 

For long diffusion times it is assumed that the particle is in 

thermal equilibrium with the neighboring fluid in which case Peskin 

obtains: 

	

2 - 2kBT 	
(5.2.2) - 	 a 

- 	mTm 

with m = 	n(d) 3/6, kB  and T' as the mass of solid particle, 

Boltzman constant and flow temperature, respectively. 
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The function A(t) defined by Eq. (5.2.1) when substituted in Eq. 

(2.2.10) yields an expression for the mean square particle 

displacement, corresponding to long diffusion times, given by: 

2kBT' 
- 3wud (5.2.3) 

Using this result in the definition for diffusion coefficient given by 

Eq. (5.1.1) yields the following expression for solid particle Brownian 

diffusivity: 

VB 	= 3ird 
	

(5.2.4) 

Equation (5.2.4) is identical to the Einstein relation for Brownian 

diffusion of solid particles in a viscous fluid, Einstein [1906]. 

An order of magnitude analysis will show that for most practical cases, 

Brownian diffusion is negligible compared to turbulence-induced 

diffusion. 

5.3 Diffusion of Solid Particles by Bernoulli Forces 

The relative motion of a discrete spherical particle with respect 

to another particle in inviscid potential flow results in mutual forces 

between the particles caused by the pressure gradients which arise due 

to their relative motion. Such forces are usually referred to as 

Bernoulli forces. The derivation of the velocity potential function 

for this case has been described by Mime-Thompson [1968]. The 

procedure is to assume that the overall potential function is a linear 

combination of the individual particle velocity potential functions. 
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1 	
Subsequently, by means of an iterative analytical procedure, an overall 

potential function is derived such that its spatial derivatives yield 

the values of the individual particle velocities from which it is 

formed. 

In the case of the motion of a cloud of particles suspended in a 

fluid, randomly arising Bernoulli forces between pairs of particles in 

the cloud will account for diffusion of the particulate phase. While 

Brownian diffusion is due to direct particle-particle or particle-

molecule interactions, Bernoulli diffusion is due to the mutually 

induced, but indirect, particle-particle interactions. 

Bernoulli diffusion has been investigated by Peskin [1959] and the 

corresponding diffusion coefficient has been derived. The derivation 

is based on Eq. (2.2.10) in which probability distribution function was 

incorporated. The analytical results obtained by Peskin for particle 

mean square displacement and solid phase diffusion coefficient show 

that a field of randomly located (relatively) stationary particles has 

a significant effect on the instantaneous motion of any one particle.. 

The effect which referred to as "dynamic friction" can have a retarding 

influence on the motion of a single particle with a consequent reduc-

tion in its diffusivity. The results of Peskin derivations also show a 

direct proportionality of particle diffusion coefficient to solid 

particle-fluid volume ratio. Furthermore, the Bernoulli diffusivity 

becomes significant only for large inertial particles and is negligible 

for small, non-inertial particles. Due to the dependence of Bernoulli 

diffusivity on particulate volume fraction, the effect is negligible in 

practically all dilute fluid-particle flows of interest. 
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CHAPTER 6 

SINGLE-PHASE FLOW MODELING, EROSION MODEL AND NUMERICAL METHOD 

This chapter consists of three different sections. In section 

6.1, the modifications to two-equation (k-c) model of turbulence for 

computation of single-phase flows in developing curved channels is 

discussed. In section 602 the mathematical model for the computation 

of erosion is described and, finally, the general numerical method for 

the computation of two-phase and single-phase flow is discussed in 

section 6.3. 

6.1 Computation of Single-Phase Curved Channel Flows 

In this section the general mathematical formulation for the 

computation of single-phase developing curved channel flows is briefly 

discussed. The detailed derivation and the related considerations are 

presented in appendix II. 

Correct prediction of single-phase turbulent curved channel flows 

by two-equation (k-c) model of turbulence, requires a direct incorpora-

tion of the curvature effects not only in the governing equations but 

also into the structure of the turbulence model through modifications 

of turbulence constants and also the boundary conditions. This is 

achieved through re-arrangement of Reynolds stress transport equations 

and their further reduction to algebraic terms with the wall-induced 

dampening effects included in their corresponding pressure-strain 

correlation terms. This leads to a general expression for C. in 

Prandtl-Kolmogorov relation: 
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V 	= C 	•- tf 	ii 	C 

based on the assumption that ufuf/k is constant as shown in 

appendix II. The general expression for C. thus obtained, success-

fully reduced to the less general expressions present in the 

literature. The incorporation of such general Cu  function in 

numerical scheme does produce the increase and decrease in turbulent 

length scale at the outer and inner walls, respectively. 

The effect of wall-induced pressure fluctuations in the pressure-

strain terms is considered by introduction of a wall function, f(./y). 

The f function depends on the length scale £ of the energy containing 

eddies and is diminished with the increasing distance y from the wall 

which induces the largest contributions to the wall-convection terms, 

that is, the concave wall in a curved channel. it is proposed here to 

take: 

	

= k3"2 	
ly 	

+ (/)m

Cc 	-y 

the constants Cw  is chosen such that f + 1 and y + O and the constant 

m is determined exactly from experimental measurements for strongly 

curved, Rc /A ( 20, and weakly curved, R c /A > 20 flows. For m = 0 

the above expression reduces to the straight channel situation. 
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The expressions for boundary conditions in the standard two-

equation (k-c) model when applied to curved channel flows requires 

special modifications which could accomodate changes in turbulent 

length scales In the vicinity of the outer and Inner walls. This last 

modification shows a better prediction of the wall shear stress for 

both concave and convex walls. The combination ofmodifications as 

outlinedabove when incorporated in the numerical scheme show an 

overall improvement In the prediction of fluid velocity, turbulent 

kinetic energy and wall shear stress for developing curved channel 

flow. The results are shown in Appendix II. 

6.2 Erosion Wear Model and Related Considerations 

Erosion of walls in curved channel flows is controlled by the 

dynamics of the flow. Therefore, for an analysis of wall erosion under 

various flow conditions, the prediction of the fluid mechanical 

variables of the flow is necessary. The computation of erosive wear 

ultimately requires the selection of a proper mathematical model for 

surface erosion. The mechanism of erosion of solid walls by solid 

particulates depends on various factors among which are: particle 

impact velocity, direction, and mass, as well as particle shape, size, 

hardness and the physical nature of the wall material. 

finnie [1972] has introduced a mathematical model for erosion wear 

of ductile materials which shows good agreement with experimental data 

at small angles of impingement. In that model, the cutting action of 

the solid particles is assumed to be similar to that of cutting tools 
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with the cutting depth depending on wall physical properties. Based on 

this model the rate of volumetric material removed from the wall 

surface per unit area is: 

E = c - q f(8imp) 	 (6.2.1) 

In Eq. (6.2.1) a friction coefficient of order 2 between particles and 

the wall is implied and for the momentof inertia for a single particle 

Is approximated by the value for a sphere: 

mr2  

with m and r representing mass and the radius of a single particle. 

In Eq. (6.2.1.) above the variables are defined as: 

E 	erosion rate in terms of volume per unit area and time 

c 	fraction of the number of particles cutting in an idealized 

manner 

P1 	taken as Vickers hardness of the wall material 

iii 	mass of the particles striking the surface per unit area and 

unit time 

qp the magnitude of the particulate phase impact velocity 

f(Bimp) function of angle of attack, 6imp  (see Fig. (6.1) which is 

-• 	 defined as: 

imp 	= sin(2Bjmp) - 4 sin a 	8imp 	
140 

(imp) 	= COS28imp/4 	
6imp > 140 
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6.3 Numerical Method 

The numerical method for the calculation of the single and two 

phase flows is discussed in this section. The mathematical models and 

the corresponding boundary conditions for the flows have been discussed 

in the previous chapters and in the appendices. The discussion here is 

restricted to steady, fully elliptic, two-dimensional, incompressible 

and isothermal flows although the method can be extended to more 

general flows. 

The numerical scheme to be discussed is based on the work of many 

investigators among which are Gosman and Pun [1974], Spalding [1972], 

Patankar and Spalding [1972] and Harlow and Welch [1965]. A more 

detailed description of the numerical method is available in Patankar 

[1980], and its application to laminar and turbulent curved duct flows 

has been carried out by Humphrey [1978] and Humphrey, Whitelaw and Yee 

[1981]. 

6.3.1 Grid system 

The grid system is such that scalar quantities such as pressure 

and turbulent kinetic energy are stored at the grid points while 

velocity components are calculated at points located midway between the 

grid nodes. In this so-called "staggered" grid system the velocity 

components are positioned such that the flow of a scalar quantity into 

its control volume can be easily calculated. This is illustrated in 

Fig. (6.2a) which shows the control volume for the scalar dependent 

variables. The U velocities are staggered in x direction and, 

accordingly, the V velocities in y direction. The control volume for U 

and V are shown in Figs. (6.2b) and (6.2c), respectively. 
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6.3.2 Derivation of finite-difference equations 

The finite-difference equations are descriptions of the 

distribution of Independent variables for discrete grid points. They 

are obtained by volume Integration of the differential equations 

describing the transport of a mean quantity . The control volume over 

which the integration Is performed, corresponds to the cell volume 

surrounding the grid point for, either a scalar or vector quantity. The 

derivation of finite-difference equations are described is defined as 

the "control-volume" formulation which is a special case of the method 

of "weighted residuals" discussed by Patankar [1980]. 

The modeled partial differential transport equations for either 

fluid or the particulate phase can be written in the following 

generalized form: 

m 	
r-_ 	= 	 ( 6.341) 

with subscript m referring to either fluid or particulate phase. The 

first term on the left hand side of Eq. (6.3.1) is the convection of 

quantity and the second term is the diffusion of ; r being the 

corresponding diffusion coefficient. S represents the source term for 

the independent variable 4.  Integration of Eq. (6.3.1) yields: 

f I (_P 	sf rfi_] dA 	S dV 	(6.3.2) 
i'm 	 fV 
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where Ac  and V represent the surface and the volume of the cell 

and A is the area normal to the coordinate x3 . The integral on 

left hand side of Eq. (6.3.2) is the net eflux of the quantity • for 

the cell with volume V, Fig. (6.2), due to combined effects of con-

vection and diffusion. The term on right hand side of Eq. (6.3.2) is 

the integral of source term S  over the cell volume.. When the source 

term is a function of 	it is preferably expressed in a linear form. 

The linearization of the source term is done for the purpose of 

preserving the linearity of the corresponding finite-difference 

equation which can then be solved by the usual techniques for linear 

algebraic equations. Hence: 

fV 
S dV = ( s u + sr.) V c 	 (6.3.3) 

The exact solution for Eq. (7.2.1) for a one-dimensional case with 

S, = 0 corresponding to Fig. (6.2e) is, Spalding [1972]: 

exp (Pex/Lx)_1 	
(6.3.4) = 	exp 

with: 

- (• U)mEX 

e 	r 

as the Peclet number. 



-147- 

Application of the exact solution to, for instance, the east, side 

of the cell in Fig. (6.2a) results in: 

= C eUe ) 	ep + (1_fe)+e 	 (6.3.5)
m. 

with 

f 	
- 	exp[(Pe ) e  

e = 	exp[PeJ i_i 
e 

as weighing factor for the convective flux and 

( eUJe ) m  

in the cell Peclet number calculated at its east boundary. 

The flux in Eq.. (6.3.5) is due to combined effects of convection 

and diffusion. Although it is the exact solution to the one-

dimensional transport 'equation its incorporation in the numerical 

scheme is not appropriate since the exponential terms in fe of 

Eq. (6.3.5) are expensive to evaluate. Also, it should be remembered 

that Eq. (6.3.4) has been obtained with the assumption that S 	0 

and is not applicabl.e for cases when S * 0. 

For the computation of convective-diffusive flux at the cell 

boundaries a numerical scheme called "Hybrid" scheme is incorporated. 

It is an approximation to the exact solution and was developed 

initially by Spalding E19721. The "hybrid" scheme is a combination of 
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upwi nd-difference and central-difference schemes which becomes 

identical to above schemes when local Peclet number, P e  becomes 

larger or smaller than 2, respectively. The "Hybrid" scheme is 

selected here since it does not have the instabilities associated with 

the "central-difference" scheme at high P e  numbers, and, in addition, 

it is more accurate than "upwind-difference" scheme at low P e  

numbers. 

The result of Eq. (6.3.2) thus becomes: 

J A ee  - J.wAw  + JnAn - J5A5 = ( S u+Sp)Vc 	(6.3.6) 

where J'5 are the fluxes and A's represent the surfaces at the corres-

ponding boundaries. 

Using the "hybrid" scheme the flux at the east boundary, for 

instance, becomes: 

[(1+2P1) 	+(1_2P;')$e] 	for fe < 2 

je = (peUe) 
m 	

for P e ! 2 

for Pe . 	-2 	 (6.3.7) 

Substitution of Eq. (6.3.7) and similar expressions for other 

boundaries, in Eq. (6.3.6) results in the following linear algebraic 

equation: 

= 	

+ S 	 (6.3.8) 
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which is the finite-di-fference equation corresponding to transport 

equation (6.3.7) with a linearized source term. The coefficients in 

Eq. •(603.8) are: 

I 	 (pU) 
ae = Max 	

' 	
e - 2 e 
	01 

I 	 (pU) 
a 	= Max L(P hI )w 	() + • 2 

W 	
, 01 

a= Max {_(U) , () - 
	

, o] 

(pU) 
as = Max {(u) s  , 	+ 2 	a] 

where the symbol Max t 3 refers to the largest of the arguments 

contained within the brackets. 

The solution for the velocity field needs, however, special 

attention. This is due to the presence of the pressure gradient terms 

in the momenttmi balance equation which not readily available from the 

numerical scheme throughout the flow field but rather indirectly speci-

fied through continuty equations. In order to obtain the pressure 

gradient for the solution of finite-differenced momentum balance the 

numerical procedure known as SIMPLE (Semi-Implicit Method for Pressure-

Linked Equation) in utilized, Patanker E19803. The algorithm is based 

on solving equations for the momentum balance corresponding to a 

"guessed" pressure field, P, as well as the equation governing 

pressure correction component, P . . The pressure is composed of * and 

) 
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= p*p, 

The governing equation for P is obtained from the fluid continuity 

equation using a procedure of decomposing the velocities into 	 -- 

11 guessed", u, and "corrected", u' components corresponding to 

"guessed" and "corrected" pressure. field. 

6.3.3 Solution of the Finite Difference Equations 

The finite difference equations presented in their general form 

as Eq. (6.3.8) in the previous section constitute a set of linear 

algebraic equations which are solved a set of linear algebraic equa-

tions which are solved using the Gaussian elimination method. The 

algorithm used for this purpose is IDMA (Tn-Diagonal-Matrix Algorithm) 

which uses a recurrence process through the corresponding recurrence 

relations. For two-dimensional problems, the substitution along a grid 

line is processed assuming known values for the neighboring grid lines 

which are available from the previous iterations. 

The procedure is then repeated for all the grid lines in direction 

of one coordinate. The numerical algorithm for this purpose is called 

LBL (Line-By-Line) algorithm. 

The finite difference equation governing transport of the quantity 

4 is then: 
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= 	+ S n 	U 

The numerical stability of the equation above is described by the 

Scarborough criterion which states the sufficient condition for, the 

convergence to be that: 

a_S 	.: ( 

Treatment of boundary conditions 

At the inlet and outlet the boundary conditions are inserted by 

simply imposing' the indicated values. Near a solid wall the treatment 

is different depending on the type of boundary condition. For scalar 

quantities the boundary condition is given either by the flux or by the 

magnitude of that quantity. In the first situation the normal link 

Fig. (6.2d), is broken by setting 

a = 0 

and the flux is included as a " false source in the difference 

equation. In the latter case for the boundary value indicated, the 

treatment is the same except that with the flux written using the 

boundaryand the wall-node values, the coefficients in the source term 

will be different from the first case. For tangential velocity the 

link 	is again broken and the effects of wall is incorporated 

through inclusion of wall shear stress in the source term. 

The procedure to obtain the fluid' velocity field and other 

dependent variables is: 
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1 - Guess the pressure field. 

2 - 	Solve the finite-difference momenttnu equations corresponding 

to the "Guessed" pressure field. 

3 - Using the velocities from previous step the equation for 

pressure correction term can be solved. 

4 - The total pressure Is then obtained by addition of the 

"guessed" and the "áorrected" pressure field. 

5 - 	Fluid momentum equations are solved using the adjusted 

pressure field obtained in step 4. 

6 - 	After obtaining the adjusted velocities, other 

velocity-dependent variables can be solved from their 

finite-difference governing equations. 

7 - 	The pressure obtained in step 4 is then used as a new 

guessed pressure and the procedure is repeated until 

convergency is obtained. 

8 - 	The residual source, Rt  is defined as: 

R.
=  a

p o p -  Ea4 - S 

The criteria for convergence here is: 

EfR 
0• 	 < 51O 
r, ref 

where R$,ref  is a reference residual value. 
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9 - 	In order to slow-down the changes in the quantities during 

iterations; they are under-relaxed according to: 

• = (1 - F•) +old + F 4new 

where F is the under relation factor. In this work, it 

is taken as 0.5 for velocities and scalar quantities except 

for pressure for which it is taken as 1.0. 

The grid system for curved channel is shown schematically in Fig. 

(6.3). The calculations were performed on 18 x 50 and 20 x 40 grid for 

straight and curved channel flow, respectively, which were evenly 

spaced in streamwise and unevenly spaced in lateral directions. The 

storage required on a COC 7600 computer for straight (curved) channel 

flow was 155(135) k8 words and a typical converged run after 150(226) 

iterations was 130(196) cpu seconds. 

Although the above has been a cursory overview of the numerical 

method it should be noticed that detailed derivations of the scheme, 

Its testing and practical applications have already been given in the 

references quoted. Finally, in appendix (II) the application of the 

same scheme to single-phase curved channel flows is being shown. 



-154- 

CHAPTER 7 

NO-PHASE FLOW RESULTS AND DISCUSSION 

In this chapter results are presented corresponding to the numeri-

cal computation of various two-phase flow experiments of dilute conceri-

tration documented in the literature. In addition, the calculation 

procedure has also been used to predict two-phase curved channel flow 

and erosion over a wide range of values for the parameters of interest 

not previously documented. 

A review of the two-phase, fluid-particulate turbulent flow 

literature, shows that there are only a few consistent and reliable 

experimental investigations which can be used for testing and 

evaluating a two-phase turbulence model such as the one of this work. 

There are even fewer studies which provide detailed and directly 

measured turbulence characteristics in addition to the mean flow 

quantities. For example, in curved channel flows, the data available 

for experimental measurement is usually related to secondary effects. 

These arise as a consequence of the flow and are manifested by such 

observable quantities as location and amount of erosion wear, and rate 

of wall deposition of the particulate phase. In such cases, proven 

models of erosion, or deposition, can be utilized to predict these 

effects, with the flow-dependent input provided by the turbulence 

model. While valuable, such comparisons are of limited value for 

establishing the validity and use of a two-phase flow turbulence 

model. Therefore, whenever possible, comparisons will be made with 

direct measurements of mean flow and turbulence quantities. 
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7.1 Straight Channel/Pipe Flow Results 

Table 7.1 presents a suriinary of the experimental conditions 

pertaining to the straight channel/pipe flows predicted in this 

section. 

Prediction of mean streamwise fluid velocity and of mean particu-

late velocity are presented in Figures (7.1) and (7.2) for the pipe 

flow study by Kramer and Depew [1972b]. The velocity profiles are 

normalized by respective center, line values and the flow conditions are 

indicated in the figures. In general, agreement between the measure-

ments and the predictions of this work is good, although for higher 

mi n  it is less satisfactory for fluid velocity in the flow region 

near the pipe wall where discrepancies of the order of 13% are found. 

The fact that these discrepancies arise for the more concentrated 

particulate flow is in agreement with the turbulence model limitations. 

However, measurement errors in the velocity profiles, estimated from 

the information given by Kramer and Depew, suggest a root mean square 

variation of 4-6% in the measurements. Sources and quantification of 

possible systematic errors in the measurements were not documented by 

Kramer and Depew, nor are they estimable from their paper. In view of 

the above, the discrepancies observed between fluid velocity measure- 

- 	 ments and calculations is not judged to be serious. 

Figures 7.3 - 7.6 show the results of fluid and particle velocity 

prediction for the two-phase straight channel flow experiment of Stukel 

and Soo [1969]. The flow characteristics are indicated in the figures. 

Figure 7.3 shows calculated mean particle velocities in excess of 

) 
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corresponding measurements by as much as 12% in the near wall region of 

the flow 0.05 < y/D < 0.2. The over-prediction can be attributed in 

part to the presence of electrostatic effects in the experiment which 

are not included in the model formulation. In the experiment, the 

particulate phase consisted of 14 um magnesia particles in a very 

dil.ute concentration, i.e., ai n  = 0(10'). By repeated contacts 

with the electrically grounded wall, the particles became electrically 

charged and moved toward the walls. This resulted in an increase in 

particle concentration in the wall region. Due to the electrostatic 

attraction, particles in the vicinity of the wall undergo a reduction 

in longitudinal momentum, and hence velocity. In addition, the 

electrostatic force increases particle concentration near the wall 

relative to the core region of the flow (see Stukel and Soo [19691). 

Particle accumulation in the wall region tends to decelerate the fluid 

longitudinal velocity through particle viscous drag effects (see Eq.. 

(3.2.13)). Thus, indirectly, the particles act on the fluid in such a 

way as to reduce the longitudinal momentum. Figure 7.4 shows the 

corresponding fluid velocity profiles for the same longitudinal 

locations as Figure 7.3. Although there are no experimental 

measurements for comparison, it is worth noting that due to smallness 

of the particles the fluid and particulate phase velocities are in 

close agreement at any streamwise location. 

The centerline values of developing fluid and particle veloci-

ties are shown in Figures 7.5 and 7.6. The velocities are non- 

- 	dimensionalized with respect to the corresponding inlet velocities, 

) 
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and the longitudinal distance measured from the channel inlet is 

non-dimensionalized in terms of both inlet velocity and fluid kinematic 

viscosity. Similarly, to conform with the manner in which the data is 

provided by Stukel and Soo, for particulate centerline velocity, the 

distance from the channel leading edge is non-dimensionalized by an 

"equilibrium length", Tm(Ufx)in  defined in Chapter 2. This practice 

has the advantage of including the particulate phase responsiveness 

characteristics without referring to a specific particle size or fluid 

property. The prediction in these two figures show linearly increasing 

values of both fluid and particle center-line velocities with streamwise 

position and in very good agreement with the experimental data. The 

longitudinal variation of particulate phase wall-slip velocity is given 

in Fig. 7.7. The good agreement between measurements and prediction is 

an indirect confirmation of the validity of the wall treatment model 

presented in Chapter 3. From Fig. 7.7 it can be seen that for small 

values of x/(Uf1 Tm) the wall-slip velocity, tT,, varies linearly 

with x/(Ufinrm) indicating the dominance of the inertial component to 

UPW in the entrance region as anticipated. It is interesting to note 

that for particulate phase mean volume fraction,, as low as iO, 

corresponding to the Stukel and Soo experiment predicted here, the 

continuum model for the Eulerian system of equations presented is still 

yielding fairly accurate results. 

Comparisons between predicted and measured lateral variation of 

longitudinal slip velocity, Ufz_Upz  are shown in Figs. 7.8 and 
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7.9 for the experiment of Kramer and Depew [1972b]. 	Figure 7.8 

corresponds to the case with 	= 8.4 x 	while Fig. 7.9 to 

the case with &irl. = 4.2 x 10. In each case the slip velocity is 

predicted for two particle sizes In flows which, otherwise, have the 

same characteristics. As shown in the figures, the larger 200 lAn 

diameter particles are less. responsive to the fluid motion and produce 

a higher slip velocity than the 62 pin particles. In the experiment, 

estimated values of the partcle response times non-dimensionalized by 

the time scale of the mean fluid motion (D/Ufi n  ) were 552 and 53, 

respectively. The tenfold increase in particle response time for the 

larger particles relative to the small corresponds to a relative 

increase of about 2.7 in slip velocity at the pipe centerline for both 

values of particulate volume fractions. While both figures show good 

predictions for the 62 pm particles, predictions for the 200 pin par-

ticles show a considerable disagreement with respect to the data. This 

poor agreement can be explained by reference to several factors. The 

major source of discrepancyis the assumption of Stokes viscous drag 

for particle motion. The Reynolds number based on particle diameter 

and mean longitudinal slip velocity for the 62 on and 200 on particles 

are, Re p  = 12 and Re = 130, respectively. These values correspond 

to the pipe centerline forin. = 8.4 x i0. The rather high 

Reynolds number of the larger particles indicates the invalidity of a 

Stokes drag law assumption for the large particle calculations. 

Furthermore, the assumption of a continuum model for the particulate 

phase may be violated by relatively large particles. As already 
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mentioned, in order for the continuum model to hold in turbulent flow, 

the particle size should be smaller than the Kolmogorov length scale 

n. Estimates of ii for the 0.5 in. pipe diameter flow experiment of 

Kramer and Depew give 10 < n < 100 urn. This suggests that neither 

particle size conforms to the continuum assumption (d << n). 

However, it is clear that the 200 urn particles are in more serious 

violation of the assumption than the62 urn particles for which 

predictions are In fairly good agreement with the measurements. In 

addition to the above two arguments accounting for the discrepancies 

observed between measurements and calculations, it should be noticed 

that the expression used for particle turbulent diffusivity in the 

calculation model is that of Peskin [1962] and is rigorously valid only 

for particles small enough that inertial fOrces will not displace them 

significantly from the vicinity of their initially neighboring fluid 

elements. The slip velocity profiles in Figs. 7.8 and 7.9 show maxima 

occurring at the pipe centerline. The slip velocity becomes zero as 

the wall is approached and it eventually attains a negative value due 

to the fact that while the fluid must come to rest on the wall, the 

particle phase is allowed to slip by. 

The effect of particle volumetric concentration, or loading, for 

the 0.5 in. diameter pipe flow of Kramer and Depew [1972b] is shown in 

FIg. 7.10 with particulate mean velocity difference as the abscissa. 

Higher particulate volume fractions are associated with larger dissipa-

tion of fluid mean kinetic energy and, hence, fluid mean velocity. In 

the core region, fluid velocity will be decreased as is evident by the 
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data of Kramer and Depew. However, since the same particle size is 

used in each loading, the slip velocity remains roughly the same (see 

Figs. 7.8 and 7.9 resulting in a decrease in particulate mean velocity 

with increase In particulate volume fraction. The Increase in the wall 

region shown by prediction of this work can be explaineddue to 

Incorporation of a particulate wall shear stress which is proportional 

to particulate volume fraction, Eq. (3.4.2), resulting in larger 

velocities for more dilute flows. 

So far only mean velocity prediction and their comparsion with 

corresponding measurements have been considered. Figure 7.11 provides 

a comparison between measurements and calculation of particle volume 

fraction, a, for different particle loading ratios (particle mass flow/ 

air mass flow). The experimental data were. reported by Kramer and 

Depew [1972b] for a 0.5 in. pipeflow, at Re = 24500, of 62 an glass 

particle.s in air. The measurements show a radial dependence in a for 

loading ratios larger than about 3, with 	larger at the pipe center- 

line than at the wall. This phenomenon has not been explained by 

Kramer and Depew and, in fact, there appears to be conflicting Informa-

tion in the literature (see the same authors for such a discussion) 

concerning the correct variation of a with distance from the wall. 

In general, particles can be moved transversely to the main flow by the 

- 	 influence of body forces, thus setting up transverse variations in 

dictated by the sense of the applied body force. Since in the experi-

ment by Kramer and Depew it appears that body forces were about normal 

to the pipe wall, if their observations are correct, the variation of a 
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with radial position must be due to a concentration-dependent fluid-

particule interaction. Corresponding predictions of a given in Fig. 

7.11 do not display the radial dependence shown by the experimental 

data. In the absence of body forces the two-phase flow turbulence 

model predicts uniform distributions of for all particle load ratios 

due, mainly, to the homogeneity influence of turbulence diffusion. 

Since the weak radial variation of umeasured by Kramer and Depew has 

not been explained by those authors and, in any event, the discrepancy 

between measurements and predictions is less than 16% for the highest 

load ratio, it may be concluded that a uniform prediction of is 

physically reasonable and certainly accurate enough for the present 

work. 

Zisseimar and Molerus [1979] have measured the influence of 

particle concentration,, on fluid turbulent characteristics for the 

case of 53 urn glass particles in liquid pipe flow using Laser-Doppler 

technique. Figure 7.12 shows predicted profiles of the transverse 

variation of fluid turbulent kinetic energy as a function of a, non-

dimensionalized by the pure fluid phase value. Both experiments and 

calculations show that increasing the particle concentration lowers the 

level of fluid turbulence which can be dampened by as much as 50% for 

am. = 5.6%. As discussed in Chapter 3, with reference to term I 

of equation (3.2.30), the reduction in turbulent kinetic energy can be 

attributed to the turbulent energy transfer from the fluid to the 

particulate phase. The two-phase turbulence model presented in this 

work is capable of predicting such a variation as evidenced in the 
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figure. Deviations from the experimental data at the higher particu-

late concentrations are due to the diluteness assumption limitation 

	

w. 

	

	

present in the two-phase flow 	model. The under-prediction of the data 

at higher concentrations is, however, larger at the core region of the 

flow relative to thewall region as shown in Fig. 7.12. This can be 

attributed to the significance of mean convection and turbulent diffu-

sion terms in the core region relative to the wall region where produc-

tion and viscous dissipation effects are more dominant (see Eq. 

(3.2.30)). It should be noted that the mean convection, turbulent 

diffusion and production terms in k-transport equation contain a factor 

(1-&) which is assumed to be unity when the diluteness assumption is 

incorporated. 

Variation of turbulent shear stress, -Pf UfrUfz with 

particulate concentration corresponding to the data of Zisselman and 

Molerus E19791 is shown in Fig. 7.13. The data corresponds to the 

radial position of y/D = 0.05 where maximum values for shear stress is 

reported by the authors. The reduction in fluid shear stress with 

increasing concentrations in predicted with good agreement by this 

work. The reduction in - Uf r  ufz  can be explained by writing 

that: 

2'f 

	

- 	k 	z 

	

- ufuf - 	u  C 	By 

at the wall region and in which the Prandtl-Kolmogorov relation for 

) 	fluid eddy viscosity is incorporated. The experimental data of Kramer 
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and Depew [1972b] already presented show no significant variation in 

fluid longitudinal velocity gradient at the wall region of turbulent 

pipe flows. Therefore, the reductions in Uf r  Ufz  with & is 

attributed to corresponding decreases in k values which was already 

discussed. Similar to Fig. 7.12 and Fig. 7.13 also shows prediction 

deviations from data at higher concentrations which are due to 

Incorporation of diluteness assumption. 

7.2 Curved Channel Flow and Erosion Results 

a) Testing 

In contrast to straight channel flow, the lack of experimental 

data for fluid mechanical variables for two phase curved channel flows 

precludes any direct comparison between the calculations and corres-

ponding experimental results. 

A survey of literature shows that the basic dynamics of two-phase 

flow in curved channels and pipe geometries remain yet to be investi-

gated. Techniques such as Laser-Doppler velocimetry have the potential 

for future research in this respect. For a thorough understanding of 

many effects of practical interest such a fundamental investigation is 

necessary. Among these are the erosion at walls caused by the impinge-

ment of solid particles, and wall deposition of solid particles. 

The prediction of the relative rate of erosion at the concave 

wails of two-phase curved duct flows are shown in Figs. 7.14 and 7.15 

for the experimental cases investigated by Mason and Smith [1972]. In 

their study the authors measured the erosion rate as a function of bend 
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angles for Reynolds numbers of 96000 and 140000 respectively in bends 

of different curvature. It can be seen that the qualitative pattern of 

erosion wear at the outer (concave) wall Is well predicted. 

The pattern shows an initially abrupt increase in the erosion rate 

maximizing at about a duct angle of 20 0-25 0 . This is followed by a 

monotonic decrease in erosion until the duct exit is approached. The 

angular position corresponding to maximum erosion rate is predicted 

with good accuracy with the percentage deviation of prediction from 

experiment being about 5% at Re = 96000 and 2% at Re = 140000. Very 

good qualitative agreement is found between measurements and 

predictions of erosion rate over the first 20°-25° of duct curvature. 

The same agreement is not, however, found for bend angles larger than 

the maximum erosion position. In the region imediately following this 

location, prediction of erosive wear are larger than the corresponding 

measurements. This over-prediction is partly due to the absence of 

three-dimensional secondary flows in the calculation scheme which arise 

in practice; see Humphrey, Whitelaw and Vee [1981]. The lateral motion 

induced by the secondary flow, tends to reduce the particle angle of 

Impingement as well as its mean kinetic energy of impingement byre-

directing and dragging the particles in the lateral direction. Such an 

increase in the particle effective path-length through the duct in-

creases the chances for repeated collisions with the bend walls which, 

by reducing the particulate kinetic energy of impingement, also reduce 

the rate of erosion. In the inlet region of the curved duct, the 

- 	secondary motion is relatively weak and the closer agreementbetween 
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measurements and predictions is to be expected. It should be noticed 

that for bend angles following the position of maximum erosion, the 

experimental data, particularly for Re = 96000, shows considerable 	 - 

scatter rendering a comparison, at best, qualitative. However, in this 

region of the flow secondary motions clearly favor the overall 

reduction of erosive wear at concave wall as shown by the trend in the 

experiments. 

Besides the secondary flow effects just discussed, an 

over-prediction of relative erosion rate in regions following the point 

of maximume erosion can also be attributed to particle wall rebounding 

effects which are not included in the prediction model. Particles with 

low mean kinetic energy rebounding from the band wall can slow down, 

directly through collision or induced drag, the more energetic 

particles approaching the wall. Consequently, the rate of erosive wear 

is reduced. 

It should be noted that in spite of the lack of an inclusion of 

secondary flow and particle rebounding effects, the present model has 

reliably predicted the points of maximum erosion rates as well as the 

fairly large ratio of erosion wear throughout the inlet band region. 

b) Applications 

The results presented in the previous subsection have demonstrated 

the adequacy of the calculation procedure for predicting turbulent 

two-phase flow in straight and curved channels. In the following 

subsection the calculation procedure is used to document various 

characteristics of turbulent two-phase curved channel flow for which 
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there does not exist experimental information. In particular, 

predictions are presented and discussed for fluid and particle phase 

velocities, kinetic energies, and dissipation of fluid phase kinetic 

energy. Erosive wear is also predicted over a range of relevant 

parameters Including particle size, response time and concentration, 

and fluid velocity. 

Fluid mechanical results 

Velocity profiles for both the fluid and the particle phase are 

shown in Figs. 7.15 - 7.19, and correspond to the cases of = .01 

(highly responsive), 1 and 100 (non-responsive) particles, 

respectively. The parameter j' is a non-dimensional particle response 

time which is defined as: 

tm  

h f  
0 

with A and Uf0  as the channel width and fluid mean streamwise 

velocity at the channel inlet, respectively. For the cases predicted, 

Re = 10 5 and Rc/A = 12. The particle to fluid density ratio was 

typical of that of coal in water (p/f = 1.8). 

From the velocity profile calculations shown in Figs. 7.16 - 7.18 

it is seen that the slip velocity, 1e_upoI becomes more significant 

as s increases with the largest slip velocity corresponding to 	100. 

For j, = .01 there is virtually no difference between the velocity of 

the two phases. For this case, the ratio of slip velocity at the wall, 

where the highest velocity difference is expected, to the local 



friction velocity, J,  is about 0.05; small enough to conclude that 

particulate wall slip velocities are negligible when 	< 0.01. For j, 	= 

1, the local wall slip velocity is still small except in the wall 

regions where it is not negligible. As the parameter 4 increases the 

particulate phase becomes less responsive to the fluid motion and lags 

behind as shown in Fig. 7.18. The slip velocity increases as the flow 

proceeds through the channel. For large 4.'  values the particulate 

velocity profiles show slower particle motion in the vicinity of the 

outer wall as compared to the inner wall. The decrease is attributed 

to the presence of the Coriolis term in the particulate phase longi-

tudinal momentum equation (the term tJp Up /r in Eq. (1.19)). 

For high 	values the Coriolis force has a dominant effect compared to 

that of the viscous drag. The Coriolis force becomes particularly more 

significant at the outer wall where it becomes large in its value. For 

small 	vaiue:s the particulate motion is influenced much more directly 

by fluid-induced viscous drag. A comparison between the results in 

Fig. 7.18 for am. = 0.1 and Fig. 7.19 for din. = 0.001 shows that 

the magnitude of the slip velocity is independent of concentration for 

Olin:. 0 . 1 . 

Transverse variation of fluid turbulent kinetic energy and dissi-

pation are plotted in Figs. 7.20 - 7.22 for various values of the para-

meters . and in.'  The plots show that both k and c decrease with 

increasing particle concentration. The decrease in fluid turbulent 
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kinetic energy is a manifestation of the dampening influence of the 

particulate phase on the flow. The energy lost by the fluid is 

transferred to the particulate phase, In the form of a particulate 

kinetic energy of turbulence through particle-fluid interaction, and/or 

dissipated, i.e., the so-called "drag dissipation". For both large, 

* = 100, and small, i = 0.01, values of the particle response parameter 

the reduction in e is small. At intermediate values of p (4) contri-

butions to the balance of c arising from the particle-fluid interaction 

term (see Eq. (3.2.36)) are maximized leading to more pronounced 

reductions in c as a function of 	It is a corresponding inter- 

action which accounts for the reduction of k. Plots of the fluid 

turbulent kinetic energy for two values of the particle response time 

parameter are shown in Fig. 7.20 for afl. = 0.01. The profiles, show 

that small particles, with small response times, are more effective in 

extracting turbulent kinetic energy from the fluid to raise their own 

level of turbulent kinetic energy. The mechanism for this interaction 

was previously discussed in section 2 of Chapter 3. 

Profiles for the transverse variation of dissipation of fluid 

kinetic energy of turbulence, shown in Fig. 7.21, display a notable 

dependence on the concentration (in.)  at ,. = 1, which is not evident 

at the higher and lower values of the particle responsive parameter 

(i.e., 	= 100 and qi = 0.01). The sensitivity to a at intermediate 

values of qi can be explained by reference to Eq. (3.2.30). In this 

equation for large values of TM  (q, = 100, for example). the fluid 

particle interaction term II in the e equation does not contribute 
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significantly to the balance of c; hence variations in the magnitude of 

the term which are due to changes In ain  go unnoticed. Similarly, 

when Tm  is small (, = 0.01) particles respond so quickly to fluid 

fluctuations that differences between fluid and particle velocity 

gradients are small. This, again, leads to a reduced contribution of 

term II to thebalance'of e. However, at intermediate values of the 

particle response time parameter (q = 1) for which particle and 

velocity fluctuations are not entirely in phase, the predicted level of 

dissipation is significantly dependent on the concentration () of the 

particulate phase. 

With respect to the above, it is important to note that while the 

fluid dissipation c decreases with Increasing concentration a, the 

total dissipation et (the sum of c and the additional "drag 

dissipation", CD;  see Eq. 3.2.33) may actually increase. 

Transverse profiles of particulate phase turbulent kinetic energy 

(k r ) are given in Figs. 7.23 and 7.24 for various values of , and 

airl. The profiles in Fig. 7.23 show that particles with relatively 

large response times, 4, = 100, have lower values of k due to their 

inertia, while particles with smaller4, (1 - 0.1), because they are 

able to respond to fluid fluctuations more readily, show larger values 

of turbulent kinetic energy. Values of k were predicted from Eq. 

(4.2.5a), k = k TL/(TL + Tm) 	For small values of the par- 

tide response time Tm,  k approaches the fluid kinetic energy 

distribution result, as shown by the profile for = 0.01. However, 

for larger values of Tm,  corresponding to , = 1 and 100 respectively, 
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the behavior of k is that of k, modulated by the ratio IL/tm. 

This ratio of time scales is proportional to k/c and is responsible for 

the peaks in the k distributions near the walls. 

The dependence of k on 	n.  Is displayed in Fig. 7.24. The 

peaks in the distribution, arise for the reasons explained above. In 

addition, the profiles show that as the particulate phase concentration 

is increased, dampening effects diminish the levels of fluid kinetic 

energy of turbulence k, thus reducing (see formula for k above) the 

source of kinetic energy for the particulate phase. 

Erosion wear results 

Figures 7.25 through 7.29 provide the bulk of the calculated 

results obtained in this study relating to erosive wear at the concave 

wall of a two-dimensional curved channel flow. As in the previous 

sections, the channel curvature ratio was Rk = 12. Values of the 

Reynolds number and particle response time parameter investigated were: 

Re = 	5 x 10, io, 5 x io, 106  

= 0.01, 0.1, 1.0, 10.0, 100.0 

The choice of the values covers almost the complete range of situations 

of practical interest. 

Erosion predictions were made using the model of Finnie as 

described in Chapter 6, and the results are given in the form of 

dimensionless rates of erosion wear as a function of the curved channel 

angle (streamwise location). In the plots, the quantity t is the 

volume eroded of wall material per unit area per unit time, pl is the 
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Vickers hardness of the material, m p  is the mass flux of the 

particulate phase at the channel inlet and (U 0 .) is the 

particulate phase mean velocity at the same location. 

Figures 7.25 - 7.29 show that, for a fixed Reynolds number, the 

rate of erosion (E) Increases with an increase in the particle response 

time parameter (*). Physically, this is realistic since large inertial 

particles, large, canbeexpected to deportmore significantly from 

an alignment with the fluid streamlines at the outer wall, than the 

smaller more responsive particles. 

Calculations for = 4.9 x 10 	(not shown here) corresponding 

to 5 pm solid particles at a Re = 10 with p/f = 1.8 show no 

particulate phase impingement on the concave channel wall and almost 

identical velocity profiles for both phases. However, for i = 0.01, 

corresponding to 72 pm particles with the same density ratio and at the 

same Reynolds number, particles impinge on the concave wall only after 

a channel angle of 0 = 38°, causing erosion of the channel wall as of 

the location. Between 0 = 38° and the channel inlet, for this case the 

particulate phase inertial forces are balanced by fluid viscous drag 

which controls the movement of the particles and prevents any collision 

with the wall. Nevertheless, as the flow proceeds downstream, the 

centrifugal force due to flow curvature induces a radial component of 

motion on the particles which eventually results in theirparticulate 

impingement on the concave wall. For this case it follows that: 

centrifugal force > radial viscous drag force 
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and from Fig. (6.1): 

ep  ~ I! a 	 (7.2.1) 

in which the radial fluid velocity component is neglected with respect 

to the particulate phase velocity. Therefore, the angle of impingement 

(imp.) is, approximately: 

tan 	 < 2_ 
T 	A 

• -it • 	 (7.2.2) imp. 
fo  

For small values of rm/T,  Up 	Uf0  and thus from Eq. (7.2.2) 

one obtains: 

8imp. .. tan4 (Tm/T • AIr) 	 (7.2.3) 

This expression gives an upper limit for the angle of impingement when 

centrifugal forces are significant. For R c IA = 12 and tm/T = 4.7 

corresponding to 5 um solid particles with 'p/f = 1.8, 

the maximum impingement angles is; 8max - 2.2 x iO which is too 

small to cause significant erosion. 

Table 7.2 provides a comparison between values of the maximum 

particle impingement angle calculated from Eq. (7.2.3) and also from 

the numerical turbulence model of this work for a curved channel with 

RcIA = 12. Given the relatively good agreement for the order of 

magnitudes shown between corresponding results for a given 4, it may be 

inferred that for 0.01 < 	< 1.0 the centrifugal and viscous drag 

forces are in approximate balance and Eq. (7.2.3) provides a convenient 

) 



-174- 

Table 7.2 

	

4' 	umax (from Eq. (7.2.3)) 	8max' (from turbulence model 
of this work) 

Re = 10 	 Re = 10 	 Re = 

	

.01 	4.8 x 10_2 	2 x 10 2 	1.4 x 10 2 	1.5 x 10 2  

	

0.1 	 0.48 	 0.20 	0.29 	0.28 

	

1.0 	 4.8 	 5.2 	3.3 	3.0 
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estimate for the particle phase impingement angle at the concave wall. 

For larger values of , the approximation U = Ufo  can not be 

made due to the importance of particle inertial effects and Eq. (7.2.3) 

for predicting umax  does not apply. 

With increasingvalues of j, particles become less responsive to 

the fluid motion at a fixed Reynolds number and the point of initial 

erosion moves further upstream in the channel. This is shown in Fig. 

(7.2.5) for Re = 104 in which the increase in 	from .01 to 0.1 

causes the initial erosion point to be moved from 38° to 22° while at 

Re = 106 the same increase moves that point from 400  to 12° which l's 

an indication of the particles' increased inertial effects in the 

higher Reynolds numbers. The situations for r' = . 1 and 	= 1 values 

correspond to 226 pm and 715 pm particles with Pp/Pf = 1.8 at 

Re = 1040 

The increase in 4'  will increase the erosion rates accordingly. 

However, the increase is not linear as is shown in Figs. 7.2.5 to 

7.2.9. At Re = 104 the increase in , from .01 to 100, four order of 

magnitudes, will cause an erosion rate by as much as six orders of 

magnitudes higher. 

Based on above arguments 'It is concluded that for a constant 

Reynolds number different erosion patterns could be observed depending 

- 	 on , values. For small values of , the non-dimensional erosion rate 

Increases as one proceeds downstream and the maximii erosion rate 

occurs at the exit. However, for large 4' values, i.e., for p > 10, the 

erosion patterns becomes completely different. It reaches a maximum 

initially and then descends down until it reaches an almost constant 
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value as the channel exit Is approached. It is interesting to note 

that for such large values the shape of the profile remains the same 

Irrespective of values or the Reynolds number and the profiles 

corresponding to the larger ip values are shifted slightly upwards. 

This means that in this region of high 4 starting approximately from 

* = 10 (corresponding to, for instace, 226U particle with Pp/Pf = 

1.8 at Re = 106) to higher *-values (corresponding to higher particle 

sizes at any-Reynolds number > 10) the absolute value for erosion 

rate at a fixed point on the curved channel outer wall becomes propor-

tional to: 

;j n(up1 )3 

	

(7.2.4) 

irrespective of Reynolds number and . Although, strictly speaking it 

is a weak function of the latter variable as shown in Figs. 7.25 - 

7.29. It is interesting to note that the same dependency as above, of 

the erosion rate on the mean characteristic velocity in the range of 

high i value was also obtained by Laitone [1979b]. In that Investiga-

tion the erosion caused by the laminar, two-phase, fluid-particulate 

flow for a flat wall was analyzed in which the mean time scale T was 

defined by the free stream velocity and a characteristic length scale. 

The same conclusion was also reached by Yeung [1977] who investigated 

the erosion in curved pipes using a Lagrangian formulation in laminar 

flow. In the latter study the erosion results were subdivided into 

respectively high and low velocity categories, equivalent to high and 

low values of p  here. The dependency of t on 	is linear as shown 

by Eq. (7.2.4). This has also been concluded by Yeung [1977]. 
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The non-dimensionalized erosion rate profiles, for 4,  > 1.0, are 

characterized by a maximum at 0 = 200 after which the profiles descends 

slightly to approach asymptotic values. The existence of the maximum 

point of erosion for large values, corresponding to rather large and 

non-responsive particles, is due to erosion effects by initial momentum 

of the entering particles. In this situation, unlike the case for 

small 4,  values, i.e., small and responsive particles, the fluid viscous 

drag is not capable of aligning the particles rapidly enough withthe 

fluid streamlines at the concave wall which subsequently results in 

impaction with the wall and erosion of the wall material. The decline 

in profile following the maximum is due to reductions in the 

particulate mean kinetic energy as one moves downstream. 

In the experiment of Mason and Smith [1972] at Re = 140000, 

Fig. 7.15, the corresponding 	value is about 5.24 and therefore shows 

the high erosion pattern. The non-dimensional erosion rate becomes, 

approximately, constant as the channel exit is approached. This is due 

to counteracting effects of longitudinal reduction in the mean kinetic 

energy which is being balanced by the centrifugal force acting in such 

a way as to push the particles outwards and therefore enhance the the 

Impingement onthe wall. In Fig. 7.30 the longitudinal variation of 

mean kinetic energy of impact at various 	values at Re = 10 5 is 

shown. It can be seen that as 4'  Increases the reduction in kinetic 

energy becomes more significant as the exit is approached. The 

streamwise variation of angle of impingement is shown in Fig. 7.31. 
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The velocity vector plots corresponding to various * values at 

Re = 105 are shown in Figs. 7.32 - 7.34. It can be seen that with 

decreasing ij, the particulate velocity at the outer wall becomes more 

aligned with the fluid velocity. From Figs. 7.25 to 7.29 It is 

observed that for large ' values the magnitude of non-dimensional 

erosion wear remains almost constant with respect to changes in 

Reynolds number. However, for small , values its magnitude will 

increase with the Reynolds number and the increase Is more enhanced for 

lower q,  value. For example, for an increase of Reynolds number from 

104 to 106  the non-dimensional erosion rate at the channel exit for 

4,  = .1 is almost doubled while for ip = .01 it is as much as ten times 

higher. 

From the practical point of view and for the design of pipeline 

components and apparatus it is the maximum erosion rate of the wall 

material which plays a decisive role in the design process. Figure 

7.35 shows the variation of normalized maximum erosion rate versus 

Reynolds number for various 4, values which correspond to different 

particle size, fluid properties and channel widths. 
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) 	 CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

The main conclusions of this study are summarized below. 

1 - The purpose of this work has been twofold: 

To formulate, and predict two-phase turbulent flows based on 

modeled transport equations for the fluid and particulate 

phases as well as the equations governing fluid turbulent 

kinetic energy and dissipation of turbulent kinetic energy. 

Related to the above, to develop a model of turbulence for 

dilute two-phase fluid-particulate flows. The turbulence 

model is based on the two-equation (k-c) model of turbulence 

considered here in its fully-elliptic form to allow for 

possible flow recirculation. 

2 - The analysis of solid particulate effects on the fluid turbulence 

in dilute two-phase flow shows the following results: 

Viscous interactions between the fluid and suspended solid 

particles causes a reduction in the fluid turbulent kinetic 

energy and also in the small scale dissipation rate of viscous 

fluid turbulent kinetic energy. 

The presence of solid particulates in turbulent two-phase 

flows, and attendant dynamical interactions between the two 

phases, provide a second mechanism for the dissipation of 

turbulent, and mean, kinetic energy. The dissipation rate 

associated with this process is referred to as "drag 

dissipation". 
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c) Furthermore, an additional mechanism is evolved by which 

kinetic energy is exchanged between the mean and the turbulent 

motion of both phases. 

3 - The fluid-particle velocity and velocity-gradient correlation 

terms which appear in the transport equations for fluid turbulent 

kinetic energy and dissipation rate of fluid turbulentkineUc 

energy, respectively, are modeled using the particulate Lagrangian 

equation of motion with Stokes' drag as the only drivingforce 

considered. Modeled terms obtained in this manner display 

expected limiting forms in the formulation. 

4 - Predictions based on the turbulence model presented in this work, 

of various characteristics of straight channel turbulence two-

phase flow, are generally in good agreement with the available 

experimental data. Deviations from the experimental data occur 

for the cases in which: particulate concentration exceeds 5% by 

volume; particle Reynolds number becomes much larger than unity; 

field forces arise, such as electrostatic, which have not been 

included in the model formulation. 

5 - The variation of various fluid turbulence quantities such as 

turbulent kinetic energy and turbulent shear stress with particu-

late concentration are correctly predicted by the model. Signifi-

cant deviations from experimental data occur at high particulate 

concentrations, for which the turbulence model is not valid. 

6 - For curved channel flows, the pattern of erosion rate and the 

streamwise location of the point of maximum erosion on the outer 

channel wall are well predicted using the models for turbulence 
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and erosion presented in this work. Deviations from experimental 

data are due mainly to the non-inclusion of cross-stream 

(secondary) flows in the prediction scheme, as well as the absence 

of particle wall rebounding effects in the erosion model. 

The following recoimiendations are offered for continuing research 

along the lines of the present approach. For the prediction of a wider 

class of turbulent two-phase flows, further generalization of the 

model presented in this work is in order. This can be achieved by 

reconsidering and minimizing the simplifying assumptions made during 

the course of the analysis in order to extend the range of validity of 

the dependent variables in the formulation. Among these, an extension 

of solid particulate concentrations to higher values is probably the 

most desirable. This is because in most solid-liquid flows of indus-

trial interest, like slurry flows or pneumatic conveying of solid 

particulates, the particulate volume concentration can reach values as 

high as 50%. The model and the numerical technique presented in this 

work can be used as a basis for further developments in this regard. 

The inclusion of field forces such as electrostatic, gravity, etc., 

will also extend the range of applicability of the model. The adoption 

of a more general expression for the particulate phase eddy diffusivity 

in terms of known field variables should also be considered. Finally, 

based on the arguments given in Chapter 7, for improved predictions of 

the erosion pattern at the outer wall of curved ducts, cross-stream 

(secondary) flows and particulate wall rebounding effects should be 

) 	
included in the model fOrmulation. 



-182- 

Although there have been and continue to be numerous research 

activities in the field of fluid-particulate turbulent flows, high 

quality fundamental investigations still remain an absolute necessity. 

In particular, there Is a serious need for quantitative experimental 

work yielding accurate results of value for guiding and testing 

numerical models for these flows. While the practical need to predict 

the characteristics of turbulent two-phase flows has been the main 

incentive for this work, the author believes that more improved model 

formulations can only be achieved at a pace comparable to that of the 

discovery of basic facts through experimentation. Strategically 

planned, carefully executed, fundamental experimental work will 

continue to play a dominant role in future theoretical and modeling 

advancements relating formulations to turbulent two-phase flows. 
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FIGURE CAPTIONS 

Fig. 3.1 	Lateral variation of (_Ufrufz/k) in two-phase pipe flow. 

Fig. 3.2 	Variation of _Ufrufz/k  with particulate concentration. 

Fig. 4.1 	The positions of a solid particle at two different times when 
contained in a viscous fluid. 

Fig. 4.2 	The plot of fluid-particle correlation coefficient. 

Fig. 4.3 	Defihition of points (a) and (b) in space separated by Ax2 
in lateral direction. 

Fig. 4.4 	The plot of fluid-particle correlation coefficient being at two 
different points in space. 

Fig. 6.1 	Definition of velocity and angle of impingement for erosion 
caused by a solid particle. 

Fig. 6.2 	Control-volume for scalar and vector quantities. 

Fig. 7.1 	Transverse variation of normalized fluid mean velocity for 
different particulate volume concentration in two-phase 
straight pipe flow. 

Fig. 7.2 	Transverse variation of normalized particulate mean velocity 
for different particulate volume concentration in two-phase 
straight pipe flow. 

Fig. 7.3 	Transverse variation of particulate mean velocity in 
developing two-phase straight channel flow. 

Fig. 7.4 	Transverse variation of fluid mean velocity for two-phase 
developing straight channel flow. 

Fig. 7.5 	Streamwjse variation of fluid normalized mean velocity in 
developing two-phase straight channel flow. 

Fig. 7.6 	Streamwise variation of normalized particulate mean velocity 
in developing two-phase straight channel flow. 

Fig. 7.7 	Streamwise variation of particulate phase wall-slip velocity 
in developing two-phase straight channel flow. 

Fig. 7.8 	Transverse variation of normalized mean slip velocity for 
different particle sizes in two-phase straight pipe flow. 
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Fig. 7.9 	Transverse variation of normalized mean slip velocity for 
different particle sizes in two-phase straight pipe flow. 

Fig. 7.10 The effect of particle concentration on the transverse 
variation of mean particulate velocity for two-phase 
straight pipe flow. 

Fig. 7.11 Transverse variation of particulate mean volume fraction at 
different particulate loadings for two-phase straight pipe 
flow. 

Fig. 7.12 The effect of particulate mean volume concentration on fluid 
turbulent kinetic energy at different radial positions in 
two-phase fully-developed straight pipe flow. 

Fig. 7.13 Variation of fluid normalized turbulent shear stress with 
particulate mean volume concentrations in the fully 
developed region of two-phase straight pipe flow. 

Fig. 7.14 Two-dimensional predictin of relative erosion rate at the 
concave wall of a two-phase curved duct three-dimensional 
flow. 

Fig. 7.15 Two-dimensional prediction of the relative erosion rate at 
the concave wall of a two-phase curved duct 
three-dimensional flow. 

Fig. 7.16 Transverse variations of fluid and particulate mean 
longitudinal velocity at different streamwise locations in 
two-phase curved channel flows. 

Fig. 7.17 Transverse variations of fluid and particulate mean 
longitudinal velocity at different streamwise positions in 
two-phase curved channel flows. 

Fig. 7.18 Transverse variations of fluid and particulate mean 
longitudinal velocity at different streamwise positions in 
two-phase curved channel flows. 

Fig. 7.19 Transverse variations of fluid and particulate mean 
longitudinal velocity at different streamwise positions in 
two-phase curved channel flows. 

Fig. 7.20 Transverse variation of normalized fluid turbulent kinetic 
energy for different particle response parameters in fully 
developed region of two-phase curved channel flow. 

) 
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Fig. 7.21 Transverse variation of normalized fluid turbulent kinetic 
energy for different particulate concentrations in fully-
developed region of curved channel flows. 

Fig. 7.22 Transverse variation of normalized dissipation rate of fluid 
turbulent kinetic energy in fully developed region of 
two-phase curved channel flows. 

Fig. 7.23 Transverse variation of particulate turbulent kinetic energy 
for different particulate response parameters in fully 
developed region of two-phase curved channel flow. 

Fig. 7.24 Transverse variation of particulate turbulent kinetic energy 
for different particulate concentrations in fully developed 
region of two-phase curved channel flow. 

Fig. 7.25 Streamwise variation of normalized erosion rate at the outer 
wall of two-phase curved channel flow for different particle 
response parameters. 

Fig. 7.26 Streamwise variation of normalized erosion rate at the outer 
wall of two-phase curved channel flow for different particle 
response parameters. 

Fig. 7.27 Streamwise variation of normalized erosion rate at the outer 
wall of two-phase curved channel flow for different particle 
response parameters. 

Fig. 7.28 Streamwise variation of normalized erosion rate at the outer 
wall of two-phase curved channel flow for different particle 
response parameters. 

Fig. 7.29 Streamwise variation of normalized erosion rate at the outer 
wall of two-phase curved channel flow for different particle 
response parameters. 

Fig. 7.30 Streamwise variation of normalized particulate phase 
impingement mean kinetic energy at the outer wall of 
two-phase curved channel flows. 

Fig. 7.31 Streamwise variation of particulate phase impingement angle 
at the outer wall of two-phase curved channel flow for 
different particle response parameters. 

Fig. 7.32 Velocity vector plot for fluid and particulate phase 
velocities in developing two-phase curved channel flow. 

Fig. 7.33 Velocity vector plot for fluid and particulate phase 
velocities in developing two-phase curved channel flow. 
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Fig. 7.34 Velocity vector plot for fluid and particulate phase 
velocities in developing two-phase curved channel flow. 

Fig. 7.35 Variation of normalized maximum erosion rate with Reynolds 
number for various particle response parameters. 
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APPENDIX I 

CONSERVATION EQUATIONS FOR TURBULENT TWO-PHASE FLOWS 

In this appendix the general transport equations are presented for 

turbulent two-phase flows in cartesian and cylindrical coordinates. In 

the case of zero particulate volume fraction, the equations reduce to 

the single-phase conservation equations given by Bryant and Humphrey 

[1976] and Rodi [1979]. 

1.1 Cartesian Coordinates (x,y,z) 

1.1.1 fluid phase 

mass balance: 

3uf Uf 	3Uf  
axx + ayY+ az Z  = 0  

momentum balance: 

OU 

x: 	 = !t x - 
	

- 

+uV2 Uf _Pf ....()_Pf f(uf uf )
X.  

- Pf  fr(u f u f ) 	 (1.2) 
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D1J 
y: 	Pf Dt 	= - Clif 	p 	

- ap  

	

v2__ 	—a 	 —a 	7 
+ 	Uf  - Pf 	UfxUfy - Pf 5• Uf 

- Pf 	
(UfUf) 	

(1.3) 

011 	-- 	 -
ap  z: Pf 	=• - 	

- •

Up ) - -az 

+ U 	
Ufz  - 	

( f Uf ) - Pf (Uf Uf ) 

-a T 
- Pf 	

Ufz 
(1.4) 
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In above equations the expressions for Reynolds stresses are given 

auf  
x 2- 

	

- Pf Ufx  = 	tf  3x - Pfk 

- 2— 

	

- Pf Uf - 	tf  By 	Pfk 

aUf  
z 2- 

	

- Pf Ufz  = 	tf  aZ - . j. Pfk 

	

(aiJf 	auf \ 

	

P f U f U f  = 	_  

	

y 	
tf ayX+  3x) 

	

______ 	(alif 

LaxPf Ufx Ufz =  tf \_azX +) 

f SZ) 
- Pf 	- 	tf '\ aZ 

ay 

by: 
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kinetic energy: 

Dk  
Dt 

= - 

	

[2k T+TL + tif 

,+ Uf(UfUpj+ fr ( 

(U-Un  

äk'\ 	.a 
ax/ By 

+ aUf  (Uf  -U, ) 
y y y 

v4. 	\ 	, v4. 

	

'f 	I 'f k 

	

az)ak 	11 	aZ\ak 

(1.5) 

In above equation the expression for Lagrangian integral time 

scale, TL, the particle dispersion correlation, auf i , and the 

generation of turbulent kinetic energy, G, are given by: 

CTk/:c 

aUf = ax 

3a a'Uf  = - Vt 
y p ay 

auf = _ V  

	

z 	p 
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= vtf 	

+ (aUf)2 
+  (fz,

)2 
+_ _ 

+ 	:z 	X + 
aUf 	

] + ( 	

+ 

() 

2  

(3Uf \2  (aUf  \2  (aUf  \2  (aUf  \2 

+ ~~)  + yJ +' z) +t z 
 \aZl 	\ax/ 	\ay 

DissipationofKineticEnergy 

Lax  

	

= 

- fTm 	

(c - If p) 	( 	•) 

a  ( vtf + \  ._. 	! + 	G 	
2 

+ 7 	3z 	o 3Z ,, 	ci k 	- c 2  - 	(1.6) 

With the fluid-particle correlation term given as: 

- 	CT'JTrn 	Ifak\2 	f3k\2 	(ak\2 	k fae 
fp 	

T•f•TL) 	LV) + 	+ \i) - 	
ak\f 

 

	

k (ak\ (ac) k (ak\ 
(TZ-)]

3c 	CTL 
\ay/ \ay) 	c \az/ 	+ T+TL 
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1.1.2 Particulate phase 

mass balance: 

(33 

PX PY PZ PX 

 

  

)+L('V ) = 0 
py 	z 	

p 
(1.7) 

with: 

aci 
au px  = - vtp.  ax 

aa 
ciU p 	= 

I 	 3cx aup = 

momentum balance: 

x: •h: ( 1J) + 	( Up  Up  ) + •b ( U U) = 

h (a Up  Up ) - 	Up  Up J 

9 

_f (2 13 	11 ) - f 	a' 

	

(U 	u +U &u ) 
p 	p 	y p 	p 	 y 

- h 
	+ 13 391)

PX 
(1.8) 
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- ( 	) +( U ) + fr ( U U) = 	 -. 

CL  (U-U) 
- fr ( U p  Up) - h ( 	) - fr ( uu) 

-}-tr & 	+ U a'u ) a 
- w (2 U, a' u 

 PY 

&1-tj. 	+U 	 (1.9) z 	p2 	p 	p PZ  

• (; U 2U) + -_. ( UU) + f ( P Z  
 = 

- -p 
	

a -  
Ufz_U z  - - 	a uu 	- - 	a uu 	- - 	a

PZ 
ax  

- b (u  
 a u + Up  a'u p  ) - h (Up & U p  + Up  a' Up 

) 

- -b (2U) 	 (1.10) 
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The particulate Reynolds stresses are given by: 

au 
- 	. 2 	

- + vt(v .Up )] 

- 	= 2 V 	a 	. 	p 	vt (v

IUPZ- 	 2 V 	 - + 

au \ 

- UU 
	= 	

+ Y)  

(aUg 	3U p '\ 

- uu 	= 	t azX  + ax Z) 

- UU= 	
+ 

;z 
Vt 	

) 

In above expression the divergence of the mean particle velocity is:. 

0 	aU 	aU 

	

v.11 = 	x + 	y+ 	z 
ax 	ay 	3z 
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also: 

Ft = fr+iJff+iff+Irff 	 Ii 
and: 

2 	3 2 ' 	a 2 	3 2  V. 

= 

1.2 Cylindrical Coordinates (r,O,z): 

1.2.1 fluid phase: 

mass balance: 

3Uf tJ f 	3U. 	Uf  

+ 	e 
+ 92z:+ __j!: = 0 	 (1.11) 

momentum balance: 

..DU  

( 	

ii2 	 U 	aU 

r: 	 ) 	 (-Uf p 	3r 	f - 7 - 7 3-6) 

Uf  — (- F1 l 	r- 	
+ 3fr U frU fe  + fr U frU fz 	 -. 

(1.12) 
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p pa  0: 	

(Duf + 
1fr ) = - 	 -37 

• 	 +u(v2uf ; :r) 

- 

(71hu 
+frUfeUfr 

+ fr UU + UfOUfr) 

	
(1.13) 

DU fz  

z 	Pf 	= - 	Uf U) - 	+ U V2 Uf 

1a 	__ 	__ 
—1 	z 	13 	 13 

- Pf L az + 	- 	(ruf  uf  ) + 	( Uf Uf ) 

(1.14) 



-252- 

In which the Reynolds stresses are expressed as: 

- f = tf (2 L
qr) - 

	

f2  . 
aU 

0 	
Uf\ 

1 	 2-. - PfU0 = 	tf '%\ r 	ae + 2 J 

	

rl 
	

Pfk 

/ u 

	

 
I __ 	2-. Pf U 	= 	tf 2 	

z 

\ - 

	P.k 

	

faiJ 	all 	U 
- Pf UfrU f o  = tf 	ar + 	30 re) 

	

(auf 	luf  
- Pf UfrUfz  = tf arZ + 

Lz ) 

__ 	 fau 	au 

- P f  UfUf = tf 	30 + 3 
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and also; 

D
+ Ur 	+ 

U0 	a 
—
5_ 

	

2_a2 	ia 	1 	3 2 	3 2  V T 

kinetic energy: 

Dk 	 r faT,,k 

	

= - PfTM LtmL + 	f (Ufr_Upr) + aUf (Uf -U) 

+ 	 + f ( 	
r 	+ 	('Jtf 	

) 

	

)+ 	
c 	 (1.15) 

akt  

with: 

- 
aUf - 

- 	au 
aUf - 

ra 

	

aUf 	
9z 

	

z 	p 

) 
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and for production of kinetic energy: 

G = Vt 

)2 [(r)2 (j)2 (Uaz
a)2 - u( 

:r + ___

ar  

az  

	

ir /u 	\ 	/ aU aU 	airs  aU \ alL alL 1 
'r( 	'r 	2 	'01 	11 	'r 	'e 	'z 	'e) 	'r 	'zi 

ao/ i\ ae 	ar 	30 	az ,/ 	az 	arj 

+ (qUf 

	

__0')+ __f0')
+(U2 

	2 	2 	alT 2 

\3r1 	'3z' 	\r aol 

+ 	r)2 + (

3fl2  + ( 	:Z) 

Disspation of turbulent kinetic, energy 

	

- 	
(VtfDc 	___-( 	3E 

= 	Pftp ac_IIfp )+ F 	---r- a c 	Br) 

1 a ('tf ac) +a ("tf ac ' 

	

30 a 	30 	3z a£ 	
(1.16) 

with the fluid-particle correlation term IIq1  given by: 

fp = c(:m+TL)2 
[i 

()2 + 	

(T

ak)2 + (.)2 	 (L) 

k (3k \ fac \ 	k (ak\ (ac'\] + CTL 
c krae) rae/ 	c \azj \az)J 	Tm+TL 
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Th 
A.2.2 Particulate Phase 

mass balance: 

I 3fr (rU) 

(r) 	rae 	p0az 
(.r) = 0

Pz 

(1.17) 

with: 

tar 

- 
p8 tr3O 

CTu - 
- 

momentum balance: 
--2 

r: 	(rU) 6 

- 

	= 

a - 	— 
(Ufr_U pr )  

ia 
- - 	. 

—Z (ra U pr )  
a 

- ( 	U prU p 6 )  
a 

- - 	( 	UprUpz) 

- - 	(2rU 	&u)- 
"r + 

Ut1) 

7 
-b r T z + 	 + 

__! 
+ 2U 

rP0  (1.18) 



0: 	. (r lip 
	+ . ( U) + fr 	u 1Tp + 	

= 

:; (f0p0) - h (r UprU p 0 )  - 	 - -h c Up  Up ) 

- h (rUn  au + rUp 	- -i;k• 	p0 	p0 

UPe 

	

- f. (U 	+ U 	) - 	u 	- r 
z p0 	p 	p 	p8 	r r aru pr  

(1.19) 

	

z: - b (r 	rz + 
	

+ -h 	= 

1 a (ru u 

	

(Uf 	) - 	
'r pz 	rae 	U p e U  m 	z 	z 	 pz )  - fr ()

PZ 

	

a 	
+U&'Ti ) 

	

- r ar rU &u 	U •& + r' 	) - 	(U'U 
8 	z 	z 	e r 	z 	 r 	

rae 

- h (2U •• p '•U 	 (1.20) p)  
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the Reynolds stresses are: 

au 

- r = 
	(2 	

r) a 	+ vv.U) 

211 \ 

- P0 = 	r0 + r) - 	
(k + vv.U)

'Upz 
- 	= 	

(2 	(k + vv.U) 

fail 	aiJ.\ U 

	

r1 	e 
- Upr 	. 

Up0 = V 

\ a ___ + rae) - 
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APPENDIX II 

PREDICTION OF CURVED CHANNEL FLOW 

WITH AN EXTENDED k-c MODEL OF TURBULENCE 

ABSTRACT 

Using algebraic approximations for the Reynolds stress equations a 

general expression has been derived for C in Vt • C k 2/c which accounts 

simultaneously fur the effects of streamline Curvature and pressure-strain 

in the flow, with the latter Including wall-induced effects on velocity 

fluctuations. The expression derived encompasses similar but more specific 

formulations proposed In the literature. The present formulation has been 

used In conjunction with a k-c model of turbulence to predict developing, 

tm-dimensional, curved channel flows. While, In general, predictions are 

in good agreement with experimental measurements of mildly and strongly 

curved flows, the model tends to overpredict the kinetic energy of turbu-

lence in theinner-radius (convex) wall region. This is attributed to a 

breakdown of the assumption that 	/k is a constant in the derivation of 

the general expression for C. The present formulation provides a degree 

of generality not previously available in two-equation modeling of turbulent 

flows. 
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NOMENCLATURE 

	

CW 	constant In equation (23) 

Cdified coefficient In equation (1) (Includes curvature and 

	

u 	
pressurestrain effects) 

	

C 	unntdlfled coefficient In equation (2)Vo 

	

0 	channel width 

	

Dij 	Reynolds stress diffusive transport term 

	

f 	(wf(L/y)) wall-dampening function 

1/2 

	

GT 	(43(-) 	) Grtler parameter 

	

k 	kinetic energy of turbulence 

	

L 	rd1fied length scale of turbulence (includes curvature and 
pressure-strain effects) 

	

to 	unlTodified length scale of turbulence 

	

in 	experimental coefficient in equation (24) 

	

P 	mean pressure 

	

Pij 	Reynolds stress production term 

	

Rc 	
r +r 

2 
0) channel mean radius of curvature 

	

Re 	(DUmR) Reynolds number 

	

Ro 	concave wall radius of curvature (corresponds to r in a 
Curved channel) 	 0 

	

r 	radial coordinate 

	

r1 	channel Inner-wall radius 

	

ro 	channel outer-wall radius 

umximum (streamwise) velocity 

	

U,. 	radial component of mean velocity 

	

U6 	streamwise component of mean velocity 
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components of Reynolds stress tensor 

ulujuk 	triple velocity correlation 

VO 	 uniTodifled velocity scale of turbulence 

y 	distance along normal to a curved wall (into the flow) 

Greek symbols 

B 	empirical constant In equation (3) 

	

U au 	 - 
6 	 extra. strain in equation (3) 

61j 	Kronecker delta 

£ 	rate of dissipation of kinetic energy of turbulence 

C ii 	Reynolds stress viscous dissipation term 

r-r 1  

	

- r 	normalized radial coordinate 

	

e 	streaimwise coordinate; also boundary layer momentum thickness 

	

K 	 von Karman universal Constant 

spacing between Taylor-rtler vortices 

laminar viscosity 

eff 	 effective viscosity 

	

li t 	turbulent viscosity 

	

v 	laminar kinematic viscosity 

turbulent kinematic viscosity 

Reynolds stress pressure-strain redistribution term 

density 

	

Ok 	Prandtl number for kinetic energy of turbulence 

Prandtl number for dissipation 

- 	wall shear stress 

- 

} 
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INTRODUCTION 

The importance of experimental measurements and theoretical predictions 

of turbulent flows over convex and concave surfaces and In curved channels 

Is evidenced by the attention which these two topics have and continue to 

receive in relation to, for example, flow cooling and erosion of turbine 

blades and rocket nozzles, flows in compressors, turbomachinery, curved 

diffusers and channel passages. Cases of studies pertaining to flows over 

convex surfaces are given in [1-7] while similar examples pertaining to 

flows over concave surfaces are available In [4.7]. Curved channel studies 

have been reported in [7-16]. 

In an extensive review of the subject Bradshaw [19] evidences the 

sensitivity of turbulent flow characteristics to even small amounts of 

mean streamline curvature. Thus, for example, in the early study by 

Kreith [203 and in subsequent investige,ons by Thornanr. [21) and Mayle et 

a). [22] It has been shown that the heat flux through the concave wall of 

a curved channel can be up to 33 percent larger, and through the convex 

wall 
15 percent smaller, relative to that through the walls of a straight 

channel. A similar experimental heat transfer study by Brinich and Graham 

[13] (not entirely free of side-wall-driven secondary motion) confirms this 

result and, in addition, shows that while friction on the inner curved wall 

of a channel can fall below the values for a straight channel, friction 

measurements on the Outer curved wall yield increases of about 50 percent. 

Three-Dimensional ttIons in Curved Channel Flows 

Hunt and Joubert [14] make a '9stinction between two types of curved 

channel flows: a) 'shear-dominated' flows with small curvature effects, 

(Rc /D > 20, approximately) and b) 'inertia-dominated' flcws with large 

curvature effects 
(Rc/D ( 20, approximately). In their study the channel 

mean 
radius of curvature was large relative to the channel wic'th (R

c /D a 100). 
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Pasurements at three Reynolds numbers Corresponding to 3 • 10. 6 • 1O4  

and 1.3 . 10 respectively, indicated small variations of about 2 0' In the 
longitudinal mean velocity component. Detailed characterization of this 

velocity component for Re • 6 • iO revealed a Taylor-GJrtler vortex 

pattern (23-25] in the central flow region. 

The cellular structure found by Hunt and Joubert has been observed in 

other curved channel flows, both In laminar [4,17,26] and turbulent regire 

[4,9,18], and in boundary layers developing on concave walls [4,11,25,27]. 

The onset and subsequent amplification of longitudinal vortices is char- 

acterized by the Gortler parameter C1 . Tani (4) Shows that for C. 1  0.35 

longitudinal vortices will be dampended in turbulent flow, while for values 

C1  z 0.35 amplification depends on the value of the vortex spacing para-

meter A 8 and the curvature parareter X R. 

Although not reported by the authors there Is evidence in the stud b., 

Eskinazi and Yeh [8] (R/D 9.5) Supporting the notion that their flow 

Contained Taylor-Görtler vortices. As in [14] measurements of Shear stress 

across the channel show good agreement with theoretical prediction in the 

inner-radius flow region. However, the data for the outer-radius flow region 

are in disagreement with the distribution expected from the wall shear mea 

surements and, as pointed out in [14], is most likely an Indication of the 

existence of a weak secondary flow. 

Ellis and Joubert [9] specifically remark on having observed Taylor-Gbrtler 

vortices for a radius ratio R/D • 30 but not for Rc/D • 6. SimIlarly, Crane 

and Winoto [18] observed a collapse of these organized structures for Re Z 16000. 

These: findings Contradict expectations based on stability considerations and 

suggest that turbulence diffusion and pressure redistribution in the flow near 

the outer-radius wall of a strongly curved channel may be responsible for 

I 

 -) 
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'smearing out' three-dimensional time averaged structures which otherwise 

would be observed. The net effect of the structures, then, can be looked 

upon as contributing to the overall process of turbulent mixing in the outer- 

radius wall region of the flow. 

The Prediction of Curved Channel Flows 

Although concavely curved flows are prone to three-dimensional Insta-

bilities, for purposes of numerical computation they are conrnly presumed 

to be two-dimensional in their mean Structure. Concave wall boundary layer 

development predictions of longitudinal velocity In [7] based on this assurnp-

tion show good agreement with experimental measurements. However, similar 

calculations for friction factors (6) and turbulent shear Stress [11] 

seriously underpredict the values of these parameters in the concave wall 

flow region. Likewise, while the fully developed curved channel longitudinal 

velocity predi:tions of [7] are in good agreement with experimental measure-

ments of [9] for Rc /D 6 over most of the channel width, near the concave 

wall velocity is underpredicted by approximately 9 40'. A similar discrepancy 

does not arise at the Inner-radius wall of this flow. One might attribute 

the above discrepancies to three-dimensional Taylor-Gbrtler vortices as, for 

example, suggesteo in [11]. However, it also seems reasonable to suspect that 

the influence of streamline curvature and/or wall effects on turbulent mixing 

may have been underestimated at the concave walls. That, in fact, higher levels 

of turbulent diffusion should arise than were actually predicted by the irdels 

employed. 

The Present Contribution 

It is argued in, for example, (2,6] that only turbulence modelino approaches 

based on the calculation of Reynolds Stresses directly from their transport 
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equations can accurately account for streamline curvature, pressure_strain 
and wall pressure fluctuations In curved channel flows. Simpler approaches 
such as In [7], based on a two-equation (k-c) model of turbulence, appear to 

require an empirical modeling of curvature effects in the equation for dis 

sipation of kinetic energy of turbulence and the corresponding definition of 

an additional model constant which must be Optimized numerically. Even 

simpler approaches based on the mixing-length concept, Such as in [10], are 

seriously limited by the need to prescribe different mixing-length variations 

for differently curved flows. 

The present work shows how the k-c model of turbulence can be rigorously 

extended to predict developing curved channel flows by meking C In the 

expression for turbulent viscosity: 

/p = C (k 2/) 012 	
(1) 

£0 	V0  

an appropriate function of streamline curvature accounting for pressure-strain 

and wall-induced pressure fluctuation effects. In Eq. (1) the symbols £ and 

vo  denote characteristic length and velocity scales of turbulence respectively, 

and are determined from transport equations for k and c. The enrc nf +h 

approach pursued in this Study is then, that the product Ct 0  In Eq. (1) should 
yield a 

modified length scale of turbulence (z) which reflects the direct in- 

fluence of Streamline curvature and pressurestrain In the flow. Calling C, 0  
the value of C in the absence of these effects it is clear that:Ij 

£ a (Cjc 0 ) to 	
(2) 



-266- 

If the local-equilibrium approximation is made it can be shown [28] that 

C 0 a 0.12. The recoimended experimental value is C 0  a 0.09. 

It has been argued by Wilcox and Chambers (1] and by So [15) that it 

Is not 1 but v0  In Eq. (1) which Should be modified for the influence of 

curvature effects. Their arguments are based on the Observation that the 

transport equation for k does not manifest an explicit dependence on Coriolis 

and centrifugal accelerations and that, as a consequence, v0  ' k 1 "2  misrep-

resents the turbulence velocity scale. The study by So [ 1 5], for example, is 

based entirely on the assumption that the turbulence length scale is unaffected 

by Streamline Curvature. However, there is ample experimental evidence Inthe 

work by Eskinazi and Yeh (8) showing that both the microscale and the integral 

scale of turbulence are Increased at the concave wall and decreased at the con-

vex wall of curved channel flow. More recently, Prabhu and Sundarasiva Rae [16] 

have shown that the mean inclination of large scale structures in curved chrrel 

flow also depends strongly on curvature. The essence of their finding is that 

large eddies are 'flattened' more in the convex wall region of a curved channel 

than in the concave wall region. 

For models based on the notion of a turbulent viscosity as defined by 

Eq. (1) It would seem to be inTnaterlal which of the two scales (1 or v 0 ) Is 

modified to Include the Influence of curvature (and related) effects. However, 

because it will be consistent with subsequent modifications to be made to the 

turbulence model. It will be the length scale which is modified In this work. 

This approach is Consistent with that proposed by Bradshaw [19] on heuristic 	 -- 

grounds for mildly curved flow, and parallels to some extent various Ideas set 

forth in the studies of Gibson [ 2], Irwin and Arnot Smith [ 5 ], So (15J, 

Ljuboja and RodI (29] and Leschziner and Rodi t 30f. The general expression 

*Referenr.e [30] came to our attention after the present Study was completed. 
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provided here for C includes as subsets the more SPeCifiC expressions derived 

in [28-30] and yields as a special limiting case Bradshaw's proposal [17]: 

K7,37) 10 

/ 	
(3) 

for the turbulence length scale in mildly curved channel flows. In Eq. (3) 

8 is an empirical constant of order 10, r is the radial coordinate direction 

(transverse to the flow) and U 8  is the local value of the streaniwjse compon-

ent of mean velocity along a streamline of curvature radius r. 

The modified form of the k-c model provided here, with its general fornu-

lation for C, offers a compromise between the potentially more accurate but 

computationally more Costly Reynolds Stress model closures and the simpler but 

Considerably more restrictive mixing-length calculation approaches. In this 

study, attention is fixed principally on flows in channels with relatively 

strong curvature (R C /D 	20) in which Inertial effects are dominant. However, 

the extended form of the model has also been applied successfully to channel 

flows with mild curvature. 



GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

Continuity and ncmentum equations governing Steady, two-dimensional, 
turbulent, lncompressfb)e, developing curved channel flow In cylindrical 

Coordinates (FIg. 1) are given by: 

Con ti nuj 

Bur 	all 	U e 
(4) 

A.  
r-Momentu 

 U + 	
eff 	

r) 
- eff 	- eff 7 	Sr 

6-?tmen tur' 

911 
P [U 
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In the above equations the Reynolds stresses have been ndeled according 

to the Boussinesq assumption which relates the stresses to velocity gradients 

through a turbulent viscosity. The terms S r  and Se in equations (5) and (6) 
are given by: 

S •'!i (u r* ()) 	
911 	II 

r rae  
r 
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Th 
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In order to solve for the spatial variation of u, transport equations 

are required for k and c. Following the modeling approach outlined In [31] 

(based on the earlier work of [32,33]) but restricted here to two-dimensional 

cylindrical coordinates yields: 

kinetic energy of. turbulence, (k) 

 

Dissipation of kinetic energy of turbulence, (c) 

[r La cr + Ire  Ta~] 	-L (~—ef  r LE  + 1  a-  'eff 

 
C 	 C. 

+ Ci tG - C2 -- 

with the production term "C" given by: 
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+ 7 
0 	 L  
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Values of the constants in the above equations were set In accordance with 
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the reconlnendations of (33]: C • 1.41., Ct2 • 1.92 and °k 	1.0. However, 
the value 

of a (customarily fixed to 1.3) was allowed to vary with radial 

location as described further below. 

In order to solve Eqs. (4-6,9 
and 10) the boundary Conditions Sunlnarized 

in 
Table 1 were used. The region between a Curved wall and the node P closest 

to that wall was bridged by specifying the wall shear stress () from the 

standard logaritprjc velocity profile. Assuming local-equilibrium of the flow 

in near-wall regions, the law of the wall relation yields: 

pC'4 kh/ 2 r 
r a____JO 	p 	LUeJp 

P 	
l/4 1/2 - 

A Ln__P0 k] + B 

where Subscript P denotes the grid node position nearest to the wall, y is 

	

the distance from the wall and 	Is the wall shear stress. Values of the 

law of the wall constants were set to A a 2.39 and B r 5•45• It should be 

mentioned that an attempt to includu curvature effects in the law of the wall 

using an equivalent form of Eq. (8) in the paper by Meroney and Bradshaw [ll] 

did not yield a significant improvement in the calculations. The simpler 

logarithmic relation given by Eq. (12) above was adhered to. 

The wall value of kinetic energy of turbulence, k P , was found from Its 

standard transport equation with the flux from the wall set equal to zero 

and the production term ndIfjed to include the wall shear Stress as given 

by Fn. (12). The wall value of dissipation of kinetic energy, c,, was 

Initially determined by requiring that the turbulence length scale vary 

linearly with distance from the w.l1. Substituting (LJ/?y) p  from the 

law of the waU into the s1mpljfd (near.Nafl region) turbulent kinetic 

(12) 
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energy balance yields: 

C3'4  k 3"2  

0 	 (13) 

where the turbulence length scale is given by £ 	iCYp. Following Bradshaw 

[17], the influence of extra-strain curvature effects on the magnitude of 

the turbulence length scale near curved walls can be modeled according to 

Eq. (3) for regions of the fibw in which 6 E 
t(Us/r)/(au e/ar)j 	0.05. An 

expression for dissipation at the near-wall node P which includes the 

influence of streamline curvature effects is: 

C 3'4  k 3" 2  
C g O 	P 	

(14) 
p 	

K Yp (1 ± 

Following Launder and Spalding [33], the equation for dissipation of 

kinetic energy in the near wall region simplifies to: 

+C 1 	P. C2- 	 (15) 

Assuming local-equilibrium in the flow and recalling Eqs. (1) and (15) the 

above expression may be rewrittei,: 

0(ok2/c r 
	+ (Cr1 - Cr2) c2 (k)2 	 (16) 
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where K' • ic(1 t 	Further $ssuming that 	• 0 in the near wall region 

(33) It mey be shown that Eq. (16) sImplifies to the following curvature-

modified expression for 

12 
C •- - c 	

(C -c c2- 	ci' 1O 

In the standard form of the k-c model of turbulence the value of a Is 

fixed to the wall value of 1.3 throughout the flow [ 33]. In this study c 

at any radial location was linearly Interpolated from the near-wall grid 

node values determined by means of Eq. (17) at the concave and convex walls 

respectively. 

(17) 
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NERAL EXPRESSION FOR C 

Prior to outlining the derivation of the general form of the C 1  
coefficient, it is instructive to justify by means of a simple example the 

advantages of an improved modeling of this coefficient. Combination of 
Eqs. (1-3) yields the expression: 

ut/P N C 	to  (1 ± 0 6) V0 	 (18) 

This equation is a limiting form of the more general relatbn sought in this 

Study. Wiile Eq. (18) accounts for the influence of mild curvature effects 

on the turbulence length scale 1 through the curvature parameter (1 ± 6 6), 

a more general relationship is desirable in which arbitrary streamline curva-

ture, pressure-strain and wall pressure corrections are simultaneously 

included. The purpose of this section is to outline the derivation of this 

more general coefficient, which is obtained by substitution of an expression 

for the turbulent shear stress, determined from an algebraic-stress model, 

into a Boussinesq approximation for the shear stress in which the turbulent 

viscosity is given by Eq. (1). 

The Reynolds Stress Equations 

The starting point for the present analysis is the high-Reynolds 

number form of the 	transport equation given in [29]. In three-dimen- 

sional Cartesian coordinate flotation and neglecting molecular diffusion 

this equation is: 

*The model equations were formulated and used in cylindricJ coordinates. 
Cartesian notation is used here for convenience. 
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In the above equation P 1  represents the production of 	and requires 

no approximation. Viscous dissipation (ce ) and contributions to the 

pressure.stran term (ne ) were modeled as in [29]. The forms of these 

terms are: 

	

c 6 	(isotropic dissipation) 	 (20) 

and 

I1 	rfl 	 4 I 	13,1 	ij,2 	ij,l 	ij,2 	 (21) 

In Eq. (21) fl111  represents contributions to the pressure.strain arising 

from fluctuating velocities only, while 11112 accounts for the interaction 

between the maan strain and fluctuating velocities. The additional cóntri-

butions 171 1.,  and
3,

2 represent pressure-strain Corrections due to the 

effect of walls on the level of turbulent fluctuations in the flow. The 

terms in Eq. (21) were approximated according to model 2 of [34]. A 

tabulated sumary of their modeling and of the necessary model c..nstants is 

given by Humphrey and Pourahmadi [35]. 

	

The diffusive transport of 	is attributed primarily to turbulent 

velocity fluctuations [34] for which the simple gradient diffusion hypothesis 
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of Daly and Harlow [36] yIelds: 

- 	 II C' 

	

S £ £ m 	 (22) 

where C Is an empirically determined constant (not needed In this study). 

The "f" Wall Function 

In the approximations for 11 ii
' l and  11j,2 a wall function, f(L/y), must 

be specified whose role It is to diminish the magnitude of the wall pressure 

correction to the total pressure-strain with increased distance from the wall 

(y). The form of the f function depends on the length scale £ of the energy-

containing eddies and for straight channel flows is given by [34]: 

k 3" 2  1 f 	 4 	
1 y] 	

(23) 

where D is the channel width. Eq. (23) reflects the fact that distance-

weighted contributions to f at any point In the flow arise from both walls. 

In the expression, the constant C Is chosen such that f - 1 as. y - 0. 

Therefore, setting c • C 4  k3'2/Ky 	the Inertial sublayer value) In Eq. (23) UO 

yields C. U K/C 4 . 

For straight channel flows the function f is synvnetrlcal with respect 

to the symetry plane, where It possesses a minimum value. This is con-

sistent with the notion that at the symetry plane the walls of a straight 

channel should generate equivalent pressure-corrections to the pressure-strain 

terms. The same will not be the case for channel flows In which an asynrietric 

condition e:lts; for example, svaigt chsnnel flows with one smooth wall 

----'I 
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and one rough wall, and curved channel flows. In these cases the position 

of the minimum value of f in the flow wl1 be shifted towards the wall con-

tributing least to changes In the turbulence by wall pressure fluctuation 

effects; (i.e., the convex wall In a curved ctnnnel or the smooth wall in 

an asyninetrically roughened channel). In this work the location for the 

minimum in the f function has been assumed to coincide with the location of 

zero turbulent shear stress. This Is consistent with the notion that the 

length scale of the energy-containing motion, which also transmits the 

pressure-fluctuations effects, should be smallest at the zero shear Stress 

position; see, for example, the data in [8], and Eq. (30) and reiated dis-

cussion in [2]. In this way the flow Is divided into two regions in either 

one of which the wall nearest to that region is the major source of wall-

induced contributions to the pressure-strain correlation. 

A general expression for f which accorodates both the syrrrnetric and 

assynvnetric conditions referred to above is: 

k3'2 ii + f*_...1 	
D._J 

In Eq. (24) y is taken as the distance into the flow measured from the wall 

which induces the largest contrlbutjo,s to the wall-correction terms: i.e., 

the concave wall in a curved channel. The value of m can be determined 

exactly from experimental measurement as described in [35], where it is 

found that m r 7.95 for R/D 20 and m s 2.56 for R/D > 20. For m 0 

Eq. (24) reduces to the straight channel result given by Eq.(23). 

(24) 

9 
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Derivation of the C function 

Following Rodi [28], algebraic expressions for the Reynolds stresses 

are obtained from Eq. (19) by assuming that the ratio Is constant 

throughout the fiow field. Although Inexact, this assumption allows con-

vection minus diffusion of the Reynolds stresses to be expressed as a 

function of turbulent kinetic energy production (G) and its rate of dis-

sipation (c): 

u.u. u U. 
- D 1 	4-2. [G - c] 	 (25) 

Substitution of Eq. (25) into Eq. (19) yields: 

LL [G 
- 	

-C 4 T. (26) 

from which algebraic relations for 
=iU

are obtained. The general form of 

C is obtained by combining the algebraic expression for 
=iUi

with Eq. (1) 

for v in the Boussinesq approximation for 	Because the derivation 

in cylindrical coordinates is lenathy. the reader is referred to Humphrey 

and Pourahmadj [35] for details. The final result may be cast into compact 

notation form and is given by: 

2 	cos 	cos(R Q _2/3 )] - 	
(27) 

where Q. R and S are complex algebraic expressions available in [35] which 

are functions of velocity gradients, the wall function f, the ratio 6/c and 

the turbulence ndel constants. 
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Limiting Expressions for the C Function 

The general expression for C given by Eq. (27) has several interestingIi  
limiting forms attesting to Its validity. These have been obtained in [35] 

and correspond to the following cases: a) Variation of C for flow In the
Ii 

presence of a flat wall [ 29]; b) Variation of C for flow with variable 0/c 
[28]; c) Variation of C 1  for flow with streamline curvature [30]; and, 

d) Variation of C for flow with small 6 in the presence of a curved wall.
Ii 

Case d yields: 

C a 0.056 [1 - 12.176 + 0(6 2 )] 	
(28) 

Comparing Eq. (28) with Eq. (2) and recalling Eq. (3) shows that C 0  a 0.05 

and a = 12.17. This value for 6 is in good agreement with the values 

recommended in the literature; for example, tide and Johnston [37] sc;cs 

12 for both concave and convex walls, while Bradshaw [193 recommends 

9 at a concave wall and a z 14 at a convex wall. Similarly, the value 

for C 	obtained here falls in the range of values calculated for turbulentIJO 

wall jets in [29] where the authors find that C 	0.05 in the near wall 

region of their jet flow. 
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THE NUMERICAL SCHEME 

It Is required to solve the transport equations (4,6,9 and 10) In con-

junction with the boundary conditions Sumarized in Table 1. FinIte difference 

equations are c.btained by volume Integration of the transport equations over 

control volumes or cel1s Into which the flow domain is dlscretjzed. Details 

concerning the method for deriving the difference equations and the Inclusion 

of boundary Conditions are provided In, for example, [38,39], while an 

exposition and thorough discussion of the philosophy underlying the calcu-

lation approach followed here is available in [40]. 

The velocity components, pressure, kinetic energy of turbulence and 

dissipation of kinetic energy of turbulence are the dependent variables 

Calculated on staggered, Interconnected grids, each of which Is associated 

with a specific variable (all scalar quantities share the same grid node 

locations). The general forr of the finite difference expressions is given 
by: 

ZA... 45 
0 

, 
 

P 	IA1 4S 	 (29) 

where • represents any one of the dependent variables solved for at the 

grid node W. The A1  coefficients are determined at the respective cell 

surfaces and they represent combined contributions to balance of • arising 

from diffujn and convection. The terms S 0  and S, represent other 
contributions arising from sources (Or sinks) In the flow (38]. 

The numerical procedure used to solve the finite difference equations 

wasthe Imperial College "TE.'CH-2E" code (41]. Together with appropriately 



differenced boundary conditions, elliptic forms
* 
 of the equations are 

solved by means of a cyclic series of predictor-corrector operations Involving 

the use of the tridiagonal matrix algorithm applied on a line-by-line basis 

to the calculation domain. From an Initial or intermediate value of the 

pressure fieldan Intermediate velocity field is found. By means of the 

SIMPLE (40) algorithm; pressure corrections are determined by bringing the 

Intermediate velocity 'field Into conformity with continuity. After correc-

tions to the pressure and velocity fields are applied, the transport 

equations for kinetic energy of turbulence and Its rate of dissipation are 

solved. Within each Iteration various sweeps are made of the entire calcu 

lation domain along the main flow direction. The above steps are repeated 

until a pre-established convergence criterion is satisfied; usually, that 

the largest of the normalized residuals be less than 5 10. 

All the numerical calculations were perorned on a 20 x 40 grid, eve - ly 

spaced in the streamwise direction and unevenly spaced In the radial direc-

tion, after ascertaining that this degree of refinement was sufficiently 

accurate for the purposes of this study. The storage required on a CDC 7600 

computer was 61 k8  words, and a typical (converged) run time for 300 itera-

tions (3 sweeps per variable) was 130-150 cpu seconds. 

In principle, for the flows calculated here, parabolic eqotions should 
suffice since there are no strearnwise-reyersed flow regios. Howeve-, 
parabolic procedures have been shown [42] to lead to poor estir.ates of 
the pressure fields In strongly curved duct flows and dictated the present 
choice of the elliptic scheme. 
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CALCULATED RESULTS AND DISCUSSION 

In this section results are reported of two-dimensional 

numerical calculations performed using the extended turbulence model and 

the general expression for C given by Eq. (27). The calculations cover
Ij 

both mildly and strongly curved channel flow configurations and include the 

straight channel flow data of Laufer (43) as a limiting test case. Prior 

to presenting the calculated cases a discussion is in order regarding 

the dependence of C on wall curvature and pressure_strain 

effects. Also, since it Is assumed in the derivation of the general 
expression for C that the ratio 	remains constant inthe flow,- the 

limitations of this assumption and its effect on the calculations should 

be assessed. 

Figure 2 is a plot of measurements of 	for three channel flows 

ranging from strongly curved to -straicht. In [83 values of k were not 

provided but could be estimated from the data for u and 	by assuming 
that u 	U 	in k 	 + ç). The straight channel flow 
ShOWS two regions, corresponding to n 	0.20 and n 0.80 respectively. 

wherein i/k is -  approximately constant. Similarly, In the Inner-radius 

wall region the curved channel flows also show relatively Constant values of 

this ratio for n 0.20. By contrast, in the outer-radius wall region, the 

Constancy of the ratio Is extended (relative to the straight channel flow 

case) to values of n  a  0.60. In the region 0.20 T1 S 0.65 the assumption 
of Constant 	Is Obviously invalid and Curtails the usefulness of the 
general expression for C. 

FIgure 3 shows the variation of C as a function of radial position in 

channels of different curv3ture. In general C, is seen to increase at bcth 

walls of a curitd channel, at a rate Inversely proportional to channel 
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curvature (defined earlier as R/D).  At the Inner-radius wall C reaches 

a maximum value at a radial location dictated by the channel curvature. 

As of this location Cu diminishes with Increased distance from the inner-

radius wall. For strong curvatures the general function for Cu yielded 

unrealistic values of this parameter in the region 0.30 z n  1 0.65 due to 

the lack of Constancy in the ratio 7/k. However, calculations revealed 

an insensitivity of the numerical results towards the absolute value of Cu 

In this flow region provided that it was contained within the range 

0.045 1 C 
1i 

z 0.140. This Insensitivity is explained, in part, by the small 

values of aLi8/r and the respectively counteracting curvature influences 

which ari!.e in the core region of curved channel flow. In the present 

study Cu  was set to the value 0.09 in the region 0.30 Z n 4 0.65. 

Wall curvature and wall pressure fluctuations contribute jointly to 

the value of C. In an effort to separate these two effects, and thereby 

establish their relative importance, two sets of C 
1i 

profiles in Figure 3 

(RID 10, 20) have been calculated with a synTnetric distribution of the 

f function Imposed (m 0); equivalent to specifying a straight channel 

flow condition in so far as wall pressure-corrections are concerned, while 

retaining the dirert Influences of the respective wall curvatures on Cu• 

Inspection of these profiles shows that curvature at the outer-radius wall 

acts to enhance Cu  while curvature at the Inner-radius wall acts to suppress 

it. The inclusion of wall pressure-corrections in the pressure-strain 

(m r 1.58, in 7.94) further increases C at both walls, but at the inner-

radius wall the direct Influence of curvature effects ultimately overcomes 

the wall pressure contribution to Cu  causing a net decrease In its value 

with increasing distance from the Inner-radius wall. 
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Plots of the f function, given In (35) for various curvature ratios, 
shOw decreasing values of f with Increased d1stane from either channel 

tell, reflecting the decreased Influence of wall-corrections to the turbu- 

lent flow. These plots also show that at a fixed radial location the f wall- 

function decreases strongly with Increased curvature at the Inner-radius 

wall, while It Increases only slightly in the outer-radius wall region bounded 

by 0.85 1 in1. These observations are in agreement with the algebraic 

stress model predictions in [21 and Illustrate the point that convex sur- 

faces are considerably less effective in redistributing wall-pressure contribu- 

tions to turbulent flows than are concave surfaces. Since C can be shown 

to be Inversely proportional to the f wall-function the above observations 

suggest that pressure fluctuations will contribute more strongly to C at 

the Inner-radius wall than at the outer-radius wail with increasing channel 

curvature. That this is the case is confirmed by comparing the relative 

increases between pairs of Inner-radius wall C profiles In Figure 3 (with 

the different f functions specified) for R/D 20  and R/D 10. By con-

trast, relative change in the C profiles at the outer-radius wall areIj 

aller and of comparable ngnitude for both curvatures. This suggests 

that it Is principlly the direct Influence of curvature effects which 

determines the shape of the C 1  profiles in the outer-radius flow region, 

with the magnitude of C being changed only slightly by the wall-pressureIj 

correction term. It should be noticed that the same cut-off values set 

for C apply to the f wall-function since In the present model the effects 

of the latter parameter appear exclusively through the former. 

Prior to conducting curved channel flow predictions, the calculation 

scheme and the turbulence model in Its extended form, Including the general 

formulation for C, were tested by reference to the stra ight channel turbulent 
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flow neasurements of Laufer [43]. The law of the wall constants used In 

Eq. (12) were those specifically recon!nended by Laufer: A • 3.0 and B 5.5. 

Fl gure 4 shows predictions using a standard (C • 0.09; f • 0) k-c model oftj 
turbulence with predictions using the extende. version of the 

model offered 

here. Also Included In the figure are predictions 
based on the full 

Reynolds stress closure approach proposed by Hanjalic and Launder [44] (the 

profiles shown were taken from Hanjalic [4 5]). WhIle all three models yield 

excellent agreement between calculated and measured velocity profiles, the 

figure shows that the inclusion of wall pressure_corrections in the general 

formulation for C leads to an improved prediction of turbulent kinetic 

energy nezir the wall. In fact, it is surprising to find that across the 

whole channel, better predictions of k are given by both the two-equation 

models than by the Reynolds stress Closure. 

Predictions of flow velocity, frictior factor and kinetic 

energy of turbulence are presented in Figures 5 to 9 for mildly and strongly 

curved channel flows. Calculations of mean velocity corresponding to the 

mildly curved (R/D a 100) channel geometry of Hunt and Joubert (14] pro- 

vided in Figure 5 show very good agreement with the measurements. Minor 

differences are di;played between measurements and calculations at 

R 8/D • 36 and 60 in the inner and outer-radius wall regions. These are 

attributed to the presence of a weak Taylor-Gortler type secondary motion 

which was observed In the measurements. Mean velocity calculations for the 

strongly curved channel configuration of Eskinazj and Yeh [8] 
(Ref 0 • 9.5) 

are plotted In Figure 6. For this case the discrepancies are larger between 

measurements and calculations near the outer-radius wall. However, differences 

are reduced slightly when the more general expression for C given by Eq. (27) is 
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employed. As before the discrepancies are attributed to the presence of 

Taylor-GSrtler vortices, evidenced in the shear stress measurements of 

- 	 this flow (8]. 

Measurements of the friction coefficient, from the study of Honami et 

al. (10] are compared In Figure 7 with calculations conducted at three 

levels of turbulence model refinement. The best results correspond to 

the extended k-c model with the general C formulation and In which length-

scale curvature adjustments are incorporated in the calculation of dissipa-

tion and dissipation Prandtl number near the walls. While the agreement 

between measurements and calculations with the extended model Is very good 

at the inner-radius wall, It is at the outer-wall where inclusion of the 

above effects produces the largest improvements. Calculations of the 

friction coefficient for the flow of Eskinazi and Yeh also yielded similar 

levels of agree!ient when using the extended version of the k-c model offerei 

here. 

Calculations of the kinetic energy of turbulence for the channel flow 

of Eskinazi and Yeh are presented in Figure 8. The profiles showing the 

best overall agreement with the measurements correspond to the extended 

model, although differences between models are seen to decrease towards the 

center of the flow. Calculations in the outer-radius wall region are in bet-

ter agreement with the measurements than at the inner-wall. When contrasted 

with similar predictions in [35] of kinetic energy of turbulence for the 

mildly Curved flow of Hunt and Joubert, the results suggest that the megnitude 

of the discrepancy in the inner-radius wall region is inversely proportional 

to the curvature ratio (Rc/D); for the strongly curved flow of Eskinazi and 

Yeh the level of k is overpredicted by between 30 to 50'- while for the flow 

of Hunt and Joubert an overprediction of less than 20 Is observed. 
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Calculations corresponding to the mean velocity measurements of Ellis 

and Joubert (9] are shown in FIgure 9 where they are compared with Calculations 

by Launder et al [7] usIng a k-c model of turbulence developed along the 

lines of Jones and Launder [46]. In the mode7 of Launder et ci curvature 

effectson the length scale of the 'flow are included via an empirical modi-
fIcation to the dissipation equa'tion. This consists in Mking , the coeff 1-
dent C 2  in Eq. (10) a function of a turbulent Richardson number. The 

approach has been criticized by Gibson [2], and by Rodi (47] who argues 

that the appropriate place to make such a modification is in the production 

term of the dissipation equation. Effectively, it Is the latter approach 

which has been developed in this study. The predictions of Launder et al 

show slightly better agreement with the measurements at the outer-radius 

wall, but over a large portion of the inner-wall region the present 

model yields better results. It is difficult to decide on the basis of 

this comparison which model is more accurate for the prediction of curved 

channel flows in general. However, in view of the points raised by Gibson 

[2] and by Rodi [47], and given the fact that the model of Launder et al 

requires an additional constant (and Its numerical optimization), it 

uld appear that the model offered here is of a more general nature. 
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CONCLUS! ONS 

By Consideration of Reynolds stress equations in algebraically modeled 
form a general expression has been derived for the coefficient 	In the 
expression for .urbu1ent VISCOSIty IJt/P C1  Li/c The generalized form 

of this coefficient Includes streamline curvature and pressurestraln effects 

(including wall corrections) and, hence, their Influence on the turbulent 

length scale (k 3"2
/) in the flow. The 'expression derived has been shown to 

reduce to limiting forms of less general formulations obtained in other works. 

One of these forms corresponds to the proposal by Bradshaw, Eq. (3) in 

the text, and yields values of the constants 8 12.17 and C ,0  a 0.056 

which are In good agreement with values established in the literature. 

Predictions of developing two-dimensional curved channel flow have 

been conducted by Incorporating the general expression for C into a k-c 

model of turbulence modified to include the direct influence of curvatre 

effects on the length scale in near-wall regions of the flow. In general, 

agreement between the measurements and calculations Is good. The largest 

discrepancies observed In the calcu?atlons of mean velocity arise at the 

outer-radius wall and are attributed to the existence of cross-stream 

motions (Taylor-rtler vortices) In the experiments. The present turbu-

lence model Consistently over-predicts the kinetic energy of turbulence in 

the Inner-radius wall region of curvei channel flow. The degree of over-

prediction appears to be Inversely proportional to mean channel curvature 

(R/D). The overprediction is attributed to the failing of the model to 

accomodate fully the stabilizing influences of convex curvature on turbulent 

flow; due to the breakdown of the assumption underlying the formulation, that 

Is a constant everywhere In the flow. 

It is a rItewrthy feature of th! extended k-c model presented here that 

no previously established model Constants :av been modified or "retuned t: 

) 
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yield Inroved agreement between predictions and measurements. This includes 

the new parameter in appearing in the f wafl-function which is determined 
exactly from experimental measurement as opposed to numerical optimization. 

In this sense, the present turbulence model provides a more general formulation 

than models based on the ad-hoc inclusion ofa flux Richardson number in the 

equation for dissipation of kinetic energy ofturbulence. 
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Inlet Plane 	Exit Plane 	At Curved Walls 

Lie 	Prescribed 	 au T Specified 

experiment 	
0 or 	

through Eq. (12) 
presc ri bed 
fron 
experiment 

Ur 	0 	 au 	 0 
56 - 0 

2 	
Prescribed fror 

k 	0.005(Ueiiniet 	
a Sirplificatjor 
of the k and 
equations at the 3/2  

C 	 walls. See dis- k 	
'inlet 

0701D 	 cusslon in text. 
- 

TABLE 1: Boundary Conditions for Curved Channel Flows 

or 
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FIGURE CAPTIONS 

Figure 1 Curved channel configuration and coordinate system. 

Figure 2 Transverse variation of/k (/k) In fully developed 
curved (and straight) channel flows. 

Figure 3 Transverse variation of C 	in fully developed curved and 
straight channel flow. 	For m 	0 wall-function f is sTnetrjc. Calculations based on extended k-c model. 

Figure 4 
Transverse variation of normalized streanqise velocity and 
kinetic energy of turbulence in fully developed straight 
channel flow. 	U 	 and U. 	are maximum and friction velocity k.  Ma x   respectively. 

Figure 5 Transverse variation of normalized strearmqise velocity in 
developing mildly Curved channel 	flow. 

Figure 6 Transverse variation of normalized strearnwise velocity in 
developing strongly curved channel 	flow: 

Figure 7 	Streamwise variation of friction factor at the inner an 
outer walls of strongly curved chanrel flow. 

Figure 8 	Transverse variation of normalized kinetic energy of 
turbulence In strongly curved channel flow. 

Figure 9 	Transverse variation of normalized angular momentum in 
Strongly Curved channel flow. 

) 
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FIGURE 4 
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APPENDIX III 

DETAILED DERIVATION OF GENERAL C. FUNCTION IN SINGLE-PHASE FLOW - 

The starting point for the derivation of the C  function is 

Eq. (20) of reference [35] from Appendix II. Noting that the diffusion 

terms Dij arenever actually required in the formulation and that 

= 0 and /az-= 0, (assumption of 2-D;rnean flow) Eq. (20) yields 

the following expressions for u, u and ueur  in cylindrical 

coordinates: 

/ 
Due 	 u 8  3U 0 	1ati0 	Ue 

- D08  = 	2 	- 2 U e"  r -  + 

U 
- 2 - u 0  + 2 - -- - 7c  

Du 	U 0  

Dt -Dr = 4 UU y  -f  - 2 Ur 	- 2 UOUr i 06 

+ 2 - 	r -  
au 

Ue  
Dt 	- Der - (2 u0 - U r) - - Ur ar 

U 	au 	u 
! 	+ .a ._.!+..a au r 
r 80 	p 3r 	p r30 

4 
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where, for convenience, D/Dt = a/at + O a/ar + 1J0/r a/ae has been 

used even though a/at = 0. In Eqs. 111.1 - 111.3 contributes to the 

pressure strain terms are modeled according to Eq (22) and Table 2 of 

ref. [35] from Appendix II. In cylindrical coordinates, these terms 

are: 

2.2—! 	 2 	Ci_.) 

p rae = - C 1 u 0 -k --- 

-2— ; 

+Cf[4i_!+27(._.0+.i.)_2uu 	
5] 

- 	P (1 + C f)} 	 (111.4) 

aur 	
C 	+ 2 a f) 2 2 k 2 P 	= 

/ U 	au 

	

L ''e'r 
\4_ 	2 

+ 27(.7 +) 	1 	(111.5) 

C __ / 3Ci ) 
p rae 	ar 	= 

au 	 U 	au r] 
+ C2 (1 -c f)[;; .i_ (2-)2+ 

(111.6) 
\. -I 
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From Eq. (26) of Ref. [35] from Appendix II: 

Du 	
Dee ot - 	

= .! (p - 	 (111.7) 

_7 
r - 	= .L (P - 	 (111.8) 

Duu 	 uu er 	 Or (  
Dt 	- 	= 	k 	

P - 	 (111.9) 

Eqs. 111.1 to 111.9 lead to a system of algebraic equations which 

can be solved the three unknowns u, u and U8Ur.  The result is: 

-  
Li 	

d(n-j9) - n b-cj) + m bg-cn) 	 (111.10) e - a(n&-gj) - e(b&-cj) + I bg-cn) 

-  
U 	

a(hz-m 	- e(dL-mc) + I dg-hc) (11111) r - a(n&-gj) - e(bt-cj) + i bg-cn 

-  
UU 	

a nm-hj - e bm-dj + i bh-dn 	
III 12 er - a n-gj - e bt-cj + i bg-cn 

with the following values for the coefficients in the above 

expressions: 

a = 0 	 (111.13) 

b = 	[p - (1-C 1  +2Ci f)cJ + 2(1-C2+2C2Cf) 
au 	

(111.14) 
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U 	au 
c = 2 (C 2  - 2C C 2  f - 1) (2 - - (111.15) 

U 	31J 
d 	2 

= 	c [Cl - 1 + c2 (i - 2C f) ..J (2 .-. - 	 (111.16) 

e = 	[1 - C 2 	(1 - . 	C 

	

U 	au 

	

f)J (2 - 	- (111.17) 

n = 	-[1 - C 2  (1 - 	C 
U . 	U 

f)](! + (111.18) 

g = 	-[P -(1 	-C1  -Cj 3 f) 	c] (111.19) 

h = 	0 (111.20) 

j = 	. 	[p + 	(C 1  - 	1)c] 
3U 

- 2 	(1 - C 2 ) (111.21) 

j = 
3U 

(111.22) 

£ 

	

aU 	U 
= 	2(1 - C2) •_ 	+ .-- 

U 	aiJ 
+ CC 	f (4 . 	- 	-) (111.23) 

m = 	[(c 1  - i)+ C2  (1 +C 	f) 	P} (111.24) 

j 



Combining the Boussinesq approximation for UGUr,  as given by Eq. 

(28) of ref. [35] from Appendix II, with the algebraically derived 

expression for UOUr  given above yields a general expression for 

C. of the form: 

C = ii 

kO 
- 1 ic 	ar 

[(%2+02( 

	

atr\/ 	 air

)+ 2 1si) + 

(111.25) 

where al, 8 1 ,  a2 ,  82 ,  Y2 and 62  are given as: 

= E(266) [ (D+H ) ( 	1+A) + 	(D+B )Cjf] 

- E(1+6) 	(D+B .E)] (! +D) 

= E(26_6) I (o+H .) (1-B) + 4 (D+B f)C yl 6 b 

+ 4 E(1+6) .(o+B ..) F 

a2 = -(.+D) (.-1+A) (!..1+G) 
C 

82 	= 	-2 (!. +o) (1-B) 	(!. _l+G)6b + 2F(. 	-1+A) 
(.. _ 1+G) 6b 

=_E(2o_4S) ((-E-1+A) [2F(1+6)+2c2cf(26_6)]+2(1_B)(6_26)cjf} 

+2E(1-B) (6_26) (! +o) (1+6) + 4 F(1-B)6(-. -1+G) 
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= _4E( 2 _ C )( 1 _B) 6 b 	 + ( 6c_26 )c2cf] 

Equation (111.25) does not show the explicit dependence of C on 

the parameters, 

a Uo  /a D-o 	a U-r  
= rae/ r ' 	= 	r/ 	r ' 	c = rae/ ar ' 	I 3r 

the wall-function f and the ratio P/c. Using Eq. (11) of reference 

[35], Appendix II, it is possible to show that: 

k 	- 	± (P/0 112  
2,1/2 	 (111.26) c i' 	

- c12[(1_+)2 + 

with a positive sign preceding the above expression when 3U0/ar > 0 

and negative when atT0/3r < 0. Substitution of Eq. (111.26) into 

Eq. (111.25) yields (after algebraic manipulation): 

+ aiC + a2C/2  + a3  = 0 	 (111.27) 

with: 

a 	
= ± 2{(D+P/c)(1-B) - F(A-1+P/c)] 5b(P/c)1'2 

1 	(D+P/c)(A-1+P/e)[1-+ )2 + 4 6211/2 	
(111.28) 

c 	b 

Th 
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E(2&-6) {(A-1+P/c) [2F(1+) + 2 C 2  Cj f ( 26-6 )} + 2 Cjf( 1 B)( 62 )} 

+ 2E(D+P/c)(1-B) (626)(1+6)+  4F(1-C2 )6(1-B) (G1+P/c)} 

+ 41 [(D+P/c)(A1+P/c)(G.4+P/c)}} 

+ - E( 255 ) {2/3(D+1+P/c)(A-1+P/c)+2/3(D+B P/c) Cf} 

+ E(1+6)[2/3(D+B P/c)] 

(111.29) 

a 3  = ; {E(26-C)b 

+ 4 E F( 1 _B)(_ 2 ) 6b}[ 	
P/c

(1+)2+42]/"{ (D+P/c)(A-1+P/c)(G-1+P/c) 

; 12/3 E(2_6C)b  {2(D+H P/c)(1-B) + 2(D+B P/c) C 2Cf} 

+ 4/3 E(1+6)(D+B P/c)F 6 b I 	 2 I L(1-s--) 

4b11/2 

/{- (P/c)(A-1+P/c)(G-1+P/c)(1-+)} 

(111.30) 
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Th 
In the above expressions: 

A = c 1 (1+2 f C/C 1 ) 

B = c2 (1-2 f c) 

D = C1 -1 

E = 1 - C 2  (1-3/2 f c) 

F = 1 - C2  

G.= C1  (1+3/2 f cIc 1 ) 

H = c2 (1+fc) 

(111.31) 
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