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ABSTRACT

The purpose of this report is to present the theory and implemen-
tation of the analysis procedures that have been tested and are currently
used in the general linear and nenlinecar, static and dynamic finite
clement analysis program NONSAP. First, the continuum mechanics formu-
lations employed are briefly summarized. For finite element discretiza-
tion, one-, two- and three~dimensional isoparametric elements have been
implemented. The two- and three-dimensional elements can have variable
number of nodes. Next, the various linear and nonlinear meterial wmodels
available in the program to represent elastic, hyperelastic (rubber) and
hypoelastic (elastic-plastic) material behavior are presented. Finally,
a selected number of sample anaslyses are described to show some of the

current solution capabilities of the program.
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NOTATION

All notation is defined in the text when used first. The following
is only & list of some frequently used symbols,

With regard to tensor and vector subscripts snd superscripts, ths
following convention is employed:

4 left superscript denotes the time of the configuration in which
the quantity occurs.

4 left subscript can have itwo different meanings., If the gquantity
considered ig a derivative, the left gubscripi denotes the time of the
configuration, im which is measured the coordinate with respect to which
is differentiated., Otherwise the left subscript denotes the time of the
configuration in which the quantity is measured.

Right lower case subscripts denote the components of a tensor or
vector. Components are referred to a fixed Cartesian coordinate system;
i,34..+ = 1,2,3. Differentiation is denoted by a right lower case sub-
script following a comma, with the subscript indicating the coordinate

with respect to which is differentiated.

OA = Area of body in the configuration at time O
Cijrs = Component of constant constitutive tensor
T t

C

oCijrs * tcijrs = Component of constitutive tensor at time t

referred to the configuration at time O, t

= Component of tangent constitutive tensor at

ofijrs * tYijrs
time t referred to the configuration at
time O, t
t+At .
Ofi = Component of body force vector per umil maess,

at time t+At, referred to the configuration

at time O



£ t+ At

t+ﬂts.a
toij

Osij ! tsij

t , t+AL

[=N

¥Finite element interpolstion function
associsted with nodal point k

External virtual work expression correspond-
ing to the configuration at time t+At defined
in Eq. (2.2)

Natural element coordinates

Component of 2nd Piola - Kirchheff stress
tensor in the configuraticon at time t, t+At
referred to the configuration at time 0
Component of 2nd Piola -~ Kirchhoff stress
tensor in the configuration at time t+At
referred to the configuration at time t
Component of 2nd Piola ~ Kirchhoff stress
incremsnt at time €

time t and t4+At, before and after time
increment At

Component of surface traction vector per unit
ares, ot time t4+At, referrved to the config-
uration at time ©

Component of displacement vector from the
initial configuretion at time O to the con-
figuration at time t, t+4L

Increment in displscement component, u, =

t t
+Atu - u,
i i

Displacement component of nodal point k in

the configuration at time t

vi



u A

0 £

t+At
ij

t+At€
07i]

t4+ 40t
t 1]

t+ At

u
t

H

01, 3

L s u, |
i,3 t+pt 1,3

t+AL
+4 v
£+ AL
3 Xi
t+at k
3 Xi
i,
t
gij
te
07°1j

.otk
Iancrement in ui
Derivative of displacement component to the
configurstion at time t, t+At with respect
Q

to coordinate Xj

Derivative of displacement increment with
G t t+ AL

respect to coordinate x_ , X, & X .

3 3 J
Volume of boedy in the configuration at time G,
t, t+ht
Cartesian coordinate in the configuration at
time O, t, t+At
Cartesian coordinate of nodal point k in the
configuration at time O, t, t+At
Derivative of coordinate in the configuration
at time 0, t with respect to coordinate
t g
X, , X,

J N

Denoting 'variation in"
Component of Almansi strain tensor in the
configuration =t time t+it, t, referred to
the configuration at time O
Component of Green - Lagrange strain tensor
in the configuration at time t:At, t, referred
to the configuration at time O
Component of Green - Lagrange strain tensor
in the configuration at time t+At, referred to
the configuration at time t (i,e. using dis-

placements from the configuration at time t

to the configuration at time t+At)

vii
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Matrices:

Component of strain increment fensor (Green
Lagrange}, referved to the configuration at
time O, t
Component of total infinitesimal strain
tensor at time i+AL, €
i T

Iincrement in &

LN
Linear part of strain increment e ., &, .

071 tij

Nonlinear part of strain increment
0%15 * £%ij
Specific mass of body in the configuration
at time O, t
Component of stress tensor at time t
caleulated assuming infinitesimal displace-
ments
Increment in ¢, |

13
Component of Cguchy stresg tensor in the
configuration at time t, t+AL
Component of Jaumann stress rate tensor in
the configuration at time t©

Components of spin tensor in the configura-~

tion at tims t

Linear gtrain-displacement metrix in the
configuration at time t referred to the

configurstion at time 0, t

viii



B = Linear strain-displacement matrix

assuming small displacements

t t .
B = Nonlinear strain-displacement matrix in the
o°NL ’ € NL 0 P riE R
configuration at time t referred to the
configuration at time 0, t
C - Stress-strain material property matrix
OC . tC = Tangent material property matrix at time t
and referred to the configuration at time O,
t
t., ot t . .
F, OF s tF = Vector of nodal point forces at time t
K = Time independent linear elastic, small dis-
placement stiffness matrix
EKL s EKL = Linear strain stiffness matrix in the con-
figuration at time t referred to the con-
figuration at time O, t
tK tK = ¥Nonlipear strain stiffness matrix in the
ONL ’ t NL -
configuration at time t referred to the
configuration at time O, t
t
K = Tangent stiffness matrix at time t
M = Mass matrix
téAtR = Vector of external loads at time t+AL
t tx ) .
OS . 0S = 2nd Picla - Kirchhoff stress matrix and
vector in the configuration at time t and
referred to the configurstion at time O
t t+4t
u o, b u = Vector of displacements at time t, t+At
u = Vector of incremental displacements at

time t

i%
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1. INTRODUCTION

The importance of investigating the nonlinear behavior of various
types of structures for adequate design is currently recognized to an
increasing extent., 1In some cases the behavior of the materials is sig-
nificantly nonlinear at‘even relatively small loading [241 [38}, and for
other structures the influence of the geometry changes on the response
of the structure camnot be neglected [11] [16] [27] [31] {s52].

A most important aspect is in many cases the ultimate load hehavior
of the structure, which is largely governed by nonlinear effects [12]
[21] [42] [44] [45] [47]., 1If the ultimate load can be obtained accu-
rately, the safety of the structure is increased and in many instances
the cost can be reduced. In certain designs, for example, as found in“-
the automotive and nuclear industries, extensive testing is carried out
in order to assess sccurately the response of the structure considered.
However, the realization that reliable test data are very expensive and
the need for parsmetric studies has increased emphasis on theoretical
analygis. If sppropriate analysis techniques are available, testing
can be reduced significantly and a better understanding of the struc-
tural behavior can be obtained.

The finite element analysis of structures has proven to be very
effective in linear asnalysis [ 11 [53]., With regard to nonlinear analy-
sis, practical solutions to many different problems have also been

obtained (see references).

The earliest nonlinear finite element analyses were essentially

based on extensions of linear analyses and have been developed for spe-

cific applications (for a comprehensive list of references, see the books
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The purpose of this report is to present the continuum mechanics formu-
lations used, the resuliing finite element matrices, the material models
so far implemsnted and sample solutions, TFor a description of the
computer program the reader is referred to {71.

The program has been developed to solve static and dynamic, lLinear
and nonlincar problems, The nonlinearities may be due to material non-
linearity, in which case elastic, hyperelastic and hypoelastic material
pehavior may bes considered, or the nonlinear effects may arige from large
displacements and large strains, The contipnuum mechanics formulations
incliude 21l nonlineasr effects, and the igoparametric finite element dig-
cretization used is shown to be very effective for general application.
The finite elsments implemented have a variable number of nodes, which
allows efficient mesh selection.

To demonsirate the applicability of the program to the solution of
practical problems, a variety of sample analyses are presented. Solu~-
tions are obtained of linear and noplinear static amd dynsmic response of
beams, arches, plates and shells, Tge nonlinesr behavior is due to largs
displacements, large strains and various nonlinear material character—

istics.



2, FORMULATION OF THE CONTINUUM MECHANICS

INCREMENTAL EQUATIONS OF MOTION

in nonlinear dynamic finite element analysis Involving large
deformations and material nonlinesrities, it is necessary to use an
incremental formulation of the squations of motion. In the development
to follow we assume that the continuum can experience large displace-
ments, large strains and the media are described by general constitutive
iaws, several of which are presented in Chapter 4 of this report. The
formulations given herein include all nonlinear effects. However, as
will be discussed, for the solution of certain problems some simplifying
approximations can be made,

Consider the motion of a body in a Cartesian coordinate system as
shown in Fig, 1.1. The aim is to evaluate the equilibrium positions of
the body at the discrete time points O, At, 24t, 3at, ..., where At is an
increment in time. Assume that the solution for the kinematic and statle
variables for all ftime steps from time O +to time € , inclusive, have
been solved for, and that the solution for time t+At is required next,
1t ig noted that the solution process for the next required equilibrium
pesition is typical and would be applied repetitively until the complete

solution path has been solved for.

Nomenclaturs

It is useful at this point to lay out the notation which will be
amployed.
The motion of the body is considered in a fixed Cartesian coordinate

system, Fig. 1.1, im which all kinemstic and static variables are defined,
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The coordinates describing the vonfiguration of the body at ftime O

& {3 { i . 1 T g X .
ot R DR %._; ab time t are ., o Hah ang st time tLT+AL are
i e o :

where the left superscripts refer to the config-

uration of the body and the subscripts fo ths coordinate axes.
The notation for the displacements of the body is gimilar to the

notation for the ococrdinates; at time 1 the disnlacoements are u, i o=
3 i 7

] L e . T+t .
1,2,3 snd at time T+t the displacements are u,, i = 1,2,3;
therefors we have
i & € Y
x, o= o x, @
i i i

i = 1,2,3

Fr AT "
teb ¥, = ﬁxn + i+ﬁtui j

o
b

The incrementz in the displacements fronm +ime t to L+At are denocied

t+&tuA - ﬁu, ; o= 1,2,3

puring motlon of the hody, its volume, surface area, mass density,

continvously, We dencie the speclific

G %
s [

i

mass, aves and volume of the body st times O, T and T4+At as

t+pt 0O, t, LHpE, 0,

.t ER
:f}: ;"I’ig Ay oy E’Eﬁ Yoy V]ﬁ - ¥

¥

respectively.

4]

Sipce the econfiguration of the body at time t+pt iz pot knowua, we
will refer spplied forees, strssses and strains to m Hoown sguilibrium

configuration, In snalogy to the notatlon used for conrdinates and dis-

placemsnts & 1lafl superseript indicates In which configuration the

Praotion, siress, ...) Doours; in addition,

v foroe,

guantity (bod
& left subscript indicates the conlfiguration with yespsct to which the
qusnt ity is messured,

The surface and body force components per unit mass 8t time f+At, but

L i , T+ At T AL .
measured in configurationt, ars éftk s &%fk , kB o= 1,8.3.



Considering stresses, we denote the Cartesian components of the

tT+AT
& Ti. {since Cauchy stresses are

t+ht -
T
i3

Yy, and the Cartesian components of the Znd Piols - ¥irchhoff stress

Cauchy stress temsor at time t+4t as

always referred to the configuration in which they do occur

t+ht,
t+At 4]

tensor corresponding to the configurastion at time L+At but measured 1in

T+AL
& 3

configuration at time t by £544

Considering strains, the Cartesian components of Cauchy’'s infin-
tegimal strain tensor referred to the configuration at time t+At are
denoted by t+&teij : and the Cartesian components of the Greenm - Lagrange
strain tensor using the displacements from the configuration at time t to

the configuration at time t+At referred to the configuration at

t+4t
t&i3°

time t are denoted by
The reference configurations which will be used for applied forces,
Kirchhoff - Piola stresses and Green - Lagrange strains are those at
time ¢ and at time tT.
1in the formulation of the governing egquilibrium equations we need
to consider derivativesz of displacemsnts and coordinates. FIn the nota—
tion adopted, a comma denotes differentiation with respect to the coordi-~

nate following, and the left time subscripts indicate the configuration

in which this coordinate is measured; thus we have, for example,

AL

trbt ey
01,3 aOX
3
and
]

0 9 %y

t+dy JEHAT
t m,n 3 A %




Principle of Virtual Displacements

With the notation having been explained briefly, we now consider
again the body in Fig. 1.1. Since the solution is known at all discrete
time points O, At, 2At, ..., t, the bhasic aim of the formulation is to
establish an equation of virtual work from which the unknown static and
kinematic variables in the configuration at time t+At can be solved.
Since the isoparametric displacement based finite element procedure shall
be employed for numerical solution, we use the principle of virtual dis-
placements to express the equilibrium of the body in the configuration at
time t+Ot. Assuming that the direction and magnitude of the body and
surface loading is independent of the configuration, i.e., conservative
loading only is considered, the principle of virtual displacements re-
guires that

T+ At S t+At O tHAt
Tij t+Ateij dv = R 2.1)

+
t Atv
tHAT, . .
where # is the external virtual work expression,
t+pt, t+At 0 0 t+pt o
R = Otk ﬁuk da + ¢ Ofk 6uk dv (2.2)

O
A OV

In Egs. (2.1) and (2.2) 6uk ig a (virtual) wvariation in the current dis~

+At

t
placement components u and & are the corresponding (virtual)

K’ t+ptT1

varigtlions in strains, l.e.,

4 + .
teat®ey 5% (4ypels, g M (2.3

we should note that in Egq. (2.1) and the equations to follow the summation
convention of tensor notation is implied.

Equation (2.1) cannot be solved directly since the coniiguration at

time t+At is unknown. An approximate solution can be obtained by



referring ail variables to a known previcusly calculatad eguilibrium
configuration., This solution can, in general, be improved by iteration
{see Chapter 5},

For the purpose of obtaining a first approximate solution, in prin-
ciple, any one of the already calculated suuilibrium configurations could
be used. In practice, however, the choice lies essentially between two
formuiétions which have been termed total Lagrangian {T.1..} formulation
and updaited Lagrangian (U,L.) formulation during the course of this work
147 [5 3. 7The T.L, formulation has generally been referred to as
Lagrangian formulation [4 1 [13] {18] [27] [40] [48}. 1In this solution
scheme all static and kinematic variables are referred to the initial
configuration at time 0. The U.L., formulation is based on ihe same pro-
codures that are used in the T.L. formulstion, but in the solution all
static and kinematic variables are referred to the configuration at
time t [ 43 57 1[50}, The application of both formulations in the
apalysis of linesr and nonlinear elastic materials was presented in [4 1,
where it was shown, in particular, that both the T.L. and 7.L, formuls~
tions include all nonlinear effects due to large displacements, large
gtrains and meterial nonlinearities., The only advantage of using one
formulation rether than the other is iis better numeric&l efficiency,
which largely depends on the definition of the material law.

The first step in both formulations is to obtain an approximate
solution to Ty, (2.1) by lincarizing the equation about the last calcu-
lated equilibrium configuration at time t. This approximate sclution can
then be improved by equilibrium iteration until Egq. (2.1} is satisfied to
g required tolerance. In Chapier 6 specific emphasis ig directed to the

importance of eduilibrium iteration in soNe dynamic analyses.
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Using the notation outlined above, in the T.L, formulation, Eg. (2.1}
is transformed to [30]

t+gts 6t+At€ 0 t+Atﬁ

0513 0% 5 dv = 2.4)
OV
Similarly, in the U.L. formulation Eq. (2.1} becomes
t+AL t+4t t t+AL
= 2,
tsij & £ 3 dv R (2.5)
t
k'

As pointed out above, an approximate solution to Egs. (2.4) or (2.5)
is obtained by linearizing the eguation. Tables 1 and 2 summarize the
relations used to arrive at the linearized equations of motion in the T.IL.
and the U.L. formulations. As shown in the tables, the linearized

gquilibrium eguations are in the T.L. formulation

0 t 0
5
oCijrs 0%s %0%3 4V Y [oSij oy v
0 0
v v
1T+ At t 0
= by s,. b, o dv @.6)

V
and in the U.L, formulation
t % t
& +
t%rs %8 Tt%i3 dv Ty Ty dv
t t
v v
t+AL t t
7
24 Tij 6teij dv 2.7)
t
A

where and are the incremental material properfy tensors in

Ocijrs tcijrs
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the configuration at time t, and referred to the configuration at times

0 and t, respeciively. The derivation of C for the

071jrs and tcijrs

material models in NONSAP is presented in Chapter 4. We should note that
t

in Eqs. (2.8} and {(2.7) Gsij and tTij are given 2Znd Piola -~ Kirchhoff

and Cauchy stresses acting in the configuration at time 13 and ge

¥

i3
ﬂThj and tei3 y tTkj ave the linesr and nonlinear incremental strains
referred to the configurations at times 0 and t, respectively.

Comparing the U.L, and T.L. formulations in Tables 1 and 2, we ob-
serve that they are guite analogous and that, in fact, the only
theoretical difference between the two formulations lies in the cheice
of different reference configurstions for kimematic and static variables.
indeed, if in the numerical solution the appropriate constitutive tensors
are used, identical results are obtalned (see Chapter 4}, Although not
indicated in Table 2, we should alsc note that in the T.L. formulation,
Cauchy stresses necd be cslculated from Znd Piola - Kirchhofi stresges
whenever program output is reguired,

The choice betwesen the U.L., aund T.L. formulations depends, in
practice, on their relative numerical effectiveness, which can be
avaluated once the finite element solutioms of Eds. (2.6) and 2.7
have been presented,

The T.L. and U.L, formulstions in Tables 1 and 2 include all non-
jinear effects due to large displacements, large strains and matorial
nonlinearities; however, in practice, it is often gufficient to account
for nonlinear materizl effects only., 1In this case, the nconlinear straim
compononts and the displacements at time t are neglected in the formula-

tions, Therefors, Egs. (2.6) and (2.7) reduce to the same sguations of
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motion, namely

t C o s . .
where o, is the actual phyvsicel stress at time t referred to unit ares
+3
in the original configuration, which is also the configuration at time ¢
t I

ko
(hence g, , # T,, = 8. Y., The increment 1n stress o, . is obfainad
i3 ii 07443 ij

from the increment in infinitesimal strains eij s l.e.,

C, e ; e . 0= % u, u,
i ijrs rs ! ij 2 { 0 i,d 0 4,1

1t should be noted that in order to distinguish the strain incra-
ments in Egs., (2.8) and (2.8 {frowm the lincar strain increments in the
. 1. and U,L, formulations, we do not use a left subscript, since the
configuration at time 0 corresponds also to the configurations at times
A, ZAE, ..., %, ... For the same reason,; a left subscript is also not
t .
used on the stresses o, , s o, . and on the material tensor O, .
i3 i3 ijrs

wrom the incremental eguilibrium eguations, Bg, (2,8}, we may

derive the conventional eguations of wotion used in linear elasstic, in-

finitesimal displiacement analysis. In this case we have
ks t
Yo, = C.. e (2.10)
ij ijrs rs
where Cijrs is now s constant material tensor relating total {or incre-

i
mental) strosses to total {or incrementsl) stralms, and ® . is the totsal

infTinitesimsel strain st time t,

s o opu ] (2.11)
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t
Substituting for Gij from Eqg. (2,10} into Eg. (2.8) we obtain the

cguations of motion used in linear elastic infinitesimal strain analysis

1t t+ AL
. +hte de. . = & R {2.123
ijrs rs ij
0
Y
T+ AL , ; L ; . .
whers € g ig the total infinitesimal strain at time T+AL,
t+AL t+AL t+ht 3 .
= 3
®rs E ( Our,s * Gus,r) 2.15)

In program NONSAP, options exist to use for a finite element the U.L.
or T.L. formulations, to dllow for material nonlinearity only by using
Ea. (2.8), or to perform a conventional linear elastic small displacement
analysis. The advantage of being able to use these four types of
descriptions for a finite element allows effective nonlinear analysis.
Namely, it is thus possible to study first the linear respomse of the
element assemblage, after which varying degrees of nonlinearities may be
assigned to specific parts of the structure. This enables the analyst to
assess the influence of material nonlinearities only, geometric nonlinsar-
ities only, and both iypes of nonlinearities together. The separate
influence of maeterial and geometric nonlinearities on the response of

some gystems is studied in Chapter 6,



is

3. FINITE ELEMENT DISCRETIZATION

The objective is to perform static and dynamic anaiysis, where in
dynamic analysis the applied body forces include inertis forces.
Assuming that the mass of the body 1s preserved, the inertis forces are
congervative and can in both the T.L. and U.L. formulations be evaluated

+AT..
0 t Atu

G
using o St dv., Corresponding to Eqs. (2.1Z), (2.8), (2.8)

k k

0
v

and (2.7), respectively, we now have the following esquations of motion
to be solved by finite element discretization;

in linear analysis

O t+At.. G
&
b u, u, dv
G
V
N t+ﬁte 5o Odv - t+ﬁtR (3.1)
ijrs rs ij
G
v
in ponlinear analysis, including nonlinear maeterial effects only
Op THB;  su Yav o+ o o fe,. ‘dv
k Kk v iirs rs i3
& 0
v v
T+pt + 0
™ - 3.2
R Gij 5613 dv { }
0
v

uging the T.L, fermulation
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0 AL, G G
F\
oot oAy 0ol 0% %%y
0 0
y v
¢ s 0. tept t 0

v foSyy Sy av - R o515 B0%yy 4V G

o, o,

uging the ¥,L, formulation

0 t+pte 0 t
¢ v e dvo o LiCire t%rs Pt%ij

+ Tij 6tTlij dv = - Tij 6teij dv (3.4}

where the definition for "TO%R is still given in Eq. (2.2), but it need
be noted that the body forces no longer include inertia forces.

in program NONSAP, isoparametric finite element discretization is
used, The element library includes a one-dimensional truss element,
3 to 8 variable-number-nodes two-dimensional plane stress, plane strain
and sxisvmmetric slements and 8 to 21 variable-number-nodes threa-
dimensional elements., Referring to the standard procedures for assem-
pling the structure matrices, in the derivation of the redquired finite
element matrices, attention need only be givem to the calculation of the
matrices corresponding to a single element {403 [33],

in the isoparametric finite element solution the coordinates and

displacements of an element are interpolated using
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[
T

G
W
il
boa?
ot
o
Lk

(3.83

1

E N
wherae ®, 18 the

coordinate of nodsl point k¥ correspondlng to direction

4
ik

, I . s »
J oat time t, u, is definped similarly to x, hk iz the interpolation

J J

functien corresponding to nodal point k, and N is the number of nodal

points of the elemsntis {831, wWe should note that the coordinates, dis-
placements and displacement increments of an element are initerpolated by

the same funciiochs b

K at any time of ithe solution,

Using the relations in Egs. (3.5} and {3,868} for the evaluation of

the integrals in Bas. (3.1) to (3.4}, the following matrixz stgustions are

chtained,

ip linesr analyvsis

t+AL L. £+ At T+ AL o
b i i & It {3,73
in nonlinear analysis, including noplinesr materisl effects on iy
L LAt €« LA i »
W IS I K ou & roo~ ¥ (3,83
uging the T.L. formulation
(R i ¢ t T+AT
2 §o+ R+ K u o SR~ F (3.8
Lot 0 NLE} 0 :
uging the UL, formulation
t+8t,. [t t \ tpL t
i i o+ ik, + K)o - F (2,10
M £y, A £ (. 4
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K
NL

oL L

K
1

t+5tu

t+atﬁ
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time independent mass matrix; in NONSAP a lumped
mass matrix ME and a consistent mass matrix MC
can be used.

time independent linear elastic, small displace-

nent stiffness wmatrix

linear strain incremental stiffness matrices

nonlinear strain (geometric or initial stress)
incremental stiffness matrices
linear strein incremental stiffness matrix, not

including the initial displacement effect

vectors of externally applied element nodal

ioads

vectors of nodal point forces equivalent to the

clement stresseg at time ¢

vactor of nodal point forces equivalent to the
element stresses at time t, not including the
initial displacement effact
vactor of incremental nodal displacements,

k
agsembled from uj
vector of total nodal displacements at time t+At,

t+ﬁtug
J

assembled from

vector of nodal poinit accelerations
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Table 3 summarizes the varicus integrals considered and the corre-

sponding matrix evaluations.

The following notation is used for the

calculation of the element matrices,

It

surface- and volume-displacement transformation

metrices

vectors of surface and body forcesg defined per

unit area and per unit mass of the body at time O

linear strain-displacement transformation

matrices

nonlinear strain-displacement transformation
matrices

stress-strain material property matrix
(incremental or total)

incremental stress—gtrain material property

matrices

matrix and vector of Cauchy stresses

matrix and wvector of 2nd Piola - Kirchhoff
gtresses
vector of stresses in materially nonlinear only

anelysis

The above matrices used in Table 3 depend on the specific element

considered.

In the following sections, wo establish the displacement and

strain-displacement transformation matrices, the element stress matrices

and vectors.

The evaluation of the materisl property matrices depends on

the material model used and is considered in Chapter 4.
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A truss amant a ey capaile of ting
The mewmber may kave an arbitrary orientation in the global

Cartesian coordinate sysi

the following formulaticons

3, tpdated Lagrenglsn formulastion, i.o. (D) ip Table

i, but

sssuming small strasins (with lsrge displacements).
The reason Tor incorporating only the UL, Formulation and not the

L, Tormulation liosm the botter numerical

soilution. The U,L., feormulation i practicelly always more

sinee no Iinitial displscerent transfcrmation matrix nesd bLe

I OThng OPross
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FIGURE 3.1 THREE-DIMENSIONAL TRUSS IN
CONFIGURATION AT TIME ¢
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Stiffness Matrix

Referring to Eg. {(3.10) the complete incremental element stiffness

.t
~ matrix is the sum of the linsar strain stiffness mairix tKL and nonlinear

. . R
strain stiffness matrix tKNL .

in global coordinates the element linear strain stiffness matrix is

& £t
L E ¢ B ‘av (3.11)

and, a5 shown in Tahle 3, is the result of evaluating the term

t
v ) f.e. . dv, However, since the truss transmits axial
t ijrs t rs t i3

t
v

force only along the direction from node 1 to node J of the element, it

. . . . ..t
is expedient to calculate first a linear strain stiffness matrix Kk

t L
corresponding to the local displacement increments ﬁ; and ﬁi , Fig. 3.1,
where
t .7 £ t
k = d
£5L P B¢y @ (3.12)
t
v

in Eq. (3.12) E is Young's modulus of the material in the configuration
4

tbL ig the linear strain-displacement matrix in local

at time t, and
coordinates. Beferring to Fig. 3.1 we have

— ot -
tell = tbL 1 {(3.13)

in which U is a vector contsining the two axial node displacement incre-

monts messurad rolative to the configuration at time t, i.e.
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_T R
u o= [ul ujl (3.14)
Let £ measure the distance along the truss element, positive from node 1

to node j, then the finite element displacement assumption for the axial

displacement jﬁg) along the element is

0, = fa-g/ 0 &/ 01 5 (3.15)
Since téil(g) = d(ﬁl(gﬂ/dg we have
- " t t -
ten(g) = [(-1/ L) (1/ 1] 1 (3.18)
and we obtain
:bL = [(-I/tL) (1/tL)] (3.17)

t
where L is the length of the element in the configuration at time t.

Substituting Egq. (3.17) into Eq., (3.12) we have

i _ AE 1 -
R [_1 1} (3.18)

where A is the c¢ross sectional area of the member assumed constant with

length. Since we consglder small strain conditions, A is the cross sec-

t
tion of the element in the configuration at time 0. To calculate K

t L
we relate the axisl node displacement increments ﬁi ’ ﬁi to the global
Cartesian node displacement increments, u; ’ ui , k =1,2.3, using

U = N u (3.19)
where
T _ i i i 3 h| J
u = [ ul uz u3 u1 u2 u3 (3.20)
£1 £2 £3 0 0 0
N = (3.21)
0 0 0 El 52 £3

and the ﬁn are the direction cosines of the element axis in the configu-

ration at time t, i.e.,
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t i t i
27 %n
I T (3.22)
0 t
L
£
As in Fg. {3.8), xi is the coordinate of nodal point j corresponding

to direction n and at time . Using Eg. (3.21) the local element stiff-

t .
ness tkL is transformed to obtailn

k N {(3.23)

t T t
t L

K, = N

Considering now the nonlinear sirain stifiness matrix, it is given
by

dv (3.24)

and, as shown in Table 3, results from the evaluation of

t t
Tij atﬂ dv. For the trugs element in local coordinates the

i3
L
v ;

only non-zero compobent of the Cauchy stress tensor is i.e., the

Tl}. 1
axial stress in the member at time t. Also, the corresponding guadratic

portion of the total strain increment tﬁij is for the element

cTr T T % (3.25)

which can be written using the global Cartesian components of displace-—

ments
L2 N -
_ , (aul) (duz)z (aus)z -
tﬁll = 7] ’—a"g"" "a—g'— + ag (3,26}
Hence t? 5 .. can be written in matrix form as

11 t 11
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te = {1 i
1 6tﬁll = § 3 {“1,§ u2,g us,é} 11 . ul,g (3.27)
T
11 T uz,g
11
u
3,8

where no variation is taken on t?ll'

the truss are assumed to vary linearly with € we have

1,8
u = tB u (3,28)
2,€ T tTNL )
u
3,€
where
_ s _
1
o b
2
i
-1 0 0 1 ¢ 0 u,
t 1
= -1 0 0 ; = R 3.29
tBNL t; o 1 ; u W ¢ }
* o -1 0 o0 1 1
b
U
3
Y3

t
Substituting from Eq. (3.28) for tBNL into Eq. (3.24) and using

t _ te

To= Ty I, (3.30)

where 13 is the 3 x 3 identity matrix, we have

Since the displacement components of



32

T f i -3
e 3 (3.31)
R 3 EL -y 1
) 3 3

T . . s o .
where P is ths axial force in the truss element st Lime ©,

wass Matrices

In NOWSAY the lumped mass matrix MQ or conslistent mass matrix Mc
can be used. BRoth matrices ars evaluated in the configuration at time 0.
The lumped mass matrix is obiained by simply lumping half of the

mass of the truss clsment at each of the element’'s two nodes,

1 (3.32)

O 0
where 0 apre the material demnsity and "L are the length of the truss at

time O ig is the identity matrixz of order 4.

The consistent mass mairix iz calculated as shown in Table 3,

_ 0 o
i = ) ﬁT g dy (3.533

whers H is ithe metrix of displacement interpolation functions, i.e.

s M:ﬁ - (} -
g o= [ {3~ &/ L}Is g/ L}I% i {3.34)
. O X .
Substituting for H inte Bu, (3.33) and using dv = A dEf, we obtain
1
§§ %z E“3 IB
mf - A s I, 21, (3.38)

Internsl RHesiszting Force Vector

peferring to Table 3, the nodal force voctor eguivalent to the

) k] ,
Cawnchy stressss TiJ is
J
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T Fav (3.36)

where :Fe is referred to the Cartesian coordinate system. For the truss

element Egq. (3.36) ctan be written in local coordinates

t
L
t t T t-
= A d .

tfe j' tbL 11 g (3.37)

0

t
“Substituting from Eg. (3.17) for tbL gives

BT oo -t (3.38)
tTe

To calculate EFe we use the transformation in Eg. (3.19) from local to

Cartesian displacement components, and obtain

(3.3%)

t, _ T t
Foo= N2

=]
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3.2 Two-Dimensional Elements

The two-dimensional elements available in NONSAP are the axisymmet-
ric, the plane stress and plane strain elements, Figure 3.2 shows
typical structures that these elements would model.

For the two-dimensional elements the following formulations have
been incorporated into NONSAF:

1, Linear elastic, small displacement analysis, 1l.e., (AY in

Table 3.

2. Small displacement analysis with material nonlinearities only,
i.e., (B) in Table 3.

3. fTotal Lagrangian formulation, i.e., {C) in Table 3.

4, Updated Lagrangian formulatioms, i.e., (D) in Table 3. For the
analysis of elastic-plastic problems various constitutive
assumptions have been implemented (see Section 4.4.4).

411 formulations given in Table 3 have been incorporated into
NONSAP for the two-dimensional elements, in order to be able to investi-~
gate the differences that arise from the various assumptions on the
magnitude of the displacements and on the material behavior.

For the derivation of the reguired element matrices consider a
typical two-dimensional element in its configuration at time O and at
time t, as shown in Fig. 3.3. An isoparametric formulation of the
element matrices ig used, in which the element can have any number of
nodes between 3 to 8. Figure 3.4 shows some typical element node con-
figurations,

tThe global coordinates of the nodal points of the element in Fig.

0 i 0 i t i t i

3.3 are at time 0, x. , xz and at time t, x. , X,

1 1 , where 1 = 1,

...N, and N is the number of element nodes. A system of natural
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AXISYMMETRIC FINITE ELEMENT MODEL OF A RING

Xy

PLANE STRESS FINITE ELEMENT MODEL OF A CANTILEVER

PLANE STRAIN FINITE ELEMENT MODEL OF A DAM

FIGURE 3.2 POSSIBLE TWO-DIMENSIONAL
FINITE ELEMENT ANALYSES
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AN CONFIGURATION
AT TIME O

FIGURE 3.3 TWO-DIMENSIONAL ELEMENT SHOWN
iN THE GLOBAL 'x,~'x, PLANE
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Defining

o= 1 4+
5 = 1 4 B
R=1-r7
{3.44%
5 =1 - s
z’m* E A f’d
¥ 2
g = 1 - @
We LS
delets if node 1 is not included
I =35 I=6 I =7 1 =8
= ‘ ¢ -(1/2) -(1/2)n
hy, = (1/4) R (1/2)n, (1/2)hg
h, = (1/4) R 8§ -(1/Z)n, -{1/Db
. = (1/4Y R § - (1 ~{1/3
ig {1/4% m 8 ( /2}h8 E)h?
h, = (1/4) RS ~{I/2)h, - /Dy
B ® {(1/2y R 5
o #
n, = (1/2) ® 5
i
[ S—
h? = {1/2}% B 8§
h, = (1/2) RS (3.45)

The above interpolaticn fupciions are written for all 8 nodes, If any
one node from & to ® is owmitied, the corresponding interpolation function

.y h£ are modified ac~

is deleted and the interpolation funciions hl’

cordingly,

The eveluation of strains regquires the following derivatives:

&, N o K iow 3,2
—— = i% ﬁh u (3.48)
BEy o \ewy) 352
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aui N Ehk K i o= 1,2
- = 2 - uy (3.47)
3 xj oy 3 Xj, j=1,2

The derivatives are calculated using a Jacobian transformation, Consider

the gvaluation in the configurstion at time t, since the evaluation at

t 0
time 0 is obtained simply by replacing Xj with xj

t t
The chain rule relating xl R x2 to r,s derivatives is written as
2 3
t
ar Bxl
= g {3.48)
3
& t
= 0 %y
- o e p
in which
- . . —
8 %, 3 X
ar or
J = {(3.49)
t t
2 Xy 3 %,
a8

Inverting the Jacobian operator J, we cobtain

R t 1
atx 8 x, i 3 x, 3
1 os ar ar
- L (3.50)
a det J )
s _ 3%, S Xy -g-s-
2 3s ar
where the Jacobian determinant is
i t t t
o) Xy 3 X, A Xy 3 %,

_ - 3.51
det J = 5 s S5 (3.51)



Hence,

for the evaluation of the Jacobian operator and of Eq.
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(3.47) we

need the derivatives of the interpolation functions with respect to r and

g, tabulated as follows:

and

As in the

functions

should be

With

establish

= - (1/4)

= (1/4)

&3]
H
o~
[
.
™o
ot
=2

L£5

-1
( /2>h5’r

wnl

= = (1/4)

it

= (1/4}

?

fl
o~~~
o
~
[:oN
~—rt
v}

it

i
Pan ™
[
..
W
St
o

case of the interpolation functions in

whose nodal points are defined for the

included in Egs,

all reguired derivatives being defined

the strain-displacement “ransformation

~(1/2}h5 5

u(l/Z)hs,S

~\1/2)h6 -

7

m{l/E}hG}r

'"(1/1?-)%16’S

~(1/2)h,

¥

{3.532) and (3.53).

F(1/2)hs,r
u(1/2}h7,r
—(1/2)h7,r —(l/Z}hS,r
(3.52)
--(1/2)1»18,S
--(1/2}11?,5‘S
—(1/.2)117’S --(1/2)118’S
(3.53)

Eg. (3.45), only those

element considered

it is now possible to

matrices for the
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elements, Table 4 gives the required matrices for the U,L, and T.L,
formulations. In the numerical integration these matrices are evaluated
at the Gaugs integrastion points.

1t should be noted that in linear elastic analysis, and nonlinear
analysis with material nonlinesrities corly, i.e. (A) and {(B)in Table 3,
wo have BL = ;BLO’ where BL is defined in Table 3 and ;BLO in Table 4,

As was pointed out earlicr, the choice between the T,L. and U.i,
formulations essentially depends on their relative numerical effective-
ness. Table 4 shows that sll matrices of the two Fformulations have
corresponding patterns of zero elements, exéept that gBL is a full
matrix whereas :BL is sparse, The strain~displacement transformation

t
matrix OBL is full because of the initial displacement effect in the

linear strain terms {(see Tables 1 and 4). Therefore, the calculation of

t
the matrix product th tC iBL in the U,L, formulation requires less
T
time than the matrix product éBL 0C EBL in the T.L. formulation.

Tho second numerical differesnce between the two formulations is
that im the T.L, formulation all derivatives of interpolation functions
are with respect to the 1nitial coordinates, whereas in the U.L, formula-
tion all derivatives are with respect to the coordinates at time t,
Therefore, in the T,L., formulation they could be calculated only once in
the first load step, and stored on back-up storage for use in all subse-
guent load steps. However, in practice, the use of tape or disc to
gstore and retrieve the required derivatives may be méfe costly than
simply to recalculate them in each time step. Also, the required back-
up storeage is a problem size governing factor, since saturation of back-

up storage may be reached; and it 1s primarily for this reason that in




= mms Mz ce mﬁ Hs Nz Hnu = n ﬁmmmo.mﬂwom wmmo ﬂﬂmoM = aY SI0UM
K N N g @ B ) &L XL
1 qmm = oY Autsn
%TJIIEH UOTIBWMIOISURIL juswaoefdsT-uiwvils Jweuil g
ﬂx & ,mx ¢
& - I3 N
- { = ¢ 0 - 0 = c ﬂﬁa DA BUM
" o 3 Fg
3
E ey T -
{ETSATBUR DTJI10UWABIXE JOJ) 4 £+ w. o + zﬁm . B0
Mﬂ HSMS wﬁ
z 3
& me & oy § 4 s f o
HN Z,0 mumﬁm . 4 ﬂﬁﬁ 1 Mssw A 1 Nﬁﬁ A &zw
4
[ 7 8 e & & g o - § ] & =
LA S S SRS S .0 1 8,0 + [ SR O SR 18 MN ¢,0 n z Mﬂmwm . L0
N 1 1 P . .
§ = oy e E e 6 £ o & £
; Mm asww N mm Mmcv 18+ e 0880 2'1,0 2 T,0 . # A L 08y 0
e e , 3 3 :
§ i o & é £ - EE™ §
m xmw 2.0y L w% L0y N 'z 0 180 | TTL 0T Mgm R G O B & A
i 8 3 +

NOLLYVINRMOS NVIDNVNDVT T¥I0L ¥

SISATIVNY TYHOISNENWIO-0AL NI GISD SHIMULVW b 3MHYL




43

pus
S9pou FO Jagmnu = N
1=H L
X Q ‘
H ﬁx x: W = .HM ! mw - .n: = nﬂ 4 0 = ¢ x&o axaym
10 -0 i3 i 39+3 b | k|
0w
N
o] CRCCH;
:Hwnd awm@ AM HM
0 c RN 0 = 0 - 0 0 - 0
q q q q
] é + * & * 4 O 4
1 zso a zso s ! mno 4 mzo I mgo A Nno T Hn < Hno
_ oqmo
h 3
.z i 4 £
4 go 0 voe G mno 0 4 mno 0 [4 Hno 0
é 3 § i
0 1 zno e 0 T mzo 0 i Nno 0 T ﬁzo
1.0 01,0 1,0
d = d us
g 7 1 7 P

('p,3ucd) ¥ TIAVL




o]
<
Tx T, N, ) Lee, o1, 29N =3 BTy ¢ By 10 =3 15, , 2, %0 b= g8y ¢ I, T HWW _ T,
Of 1™ T mm =T g - g - L] mw 1
N N N N N
axaym
-
x £e
0 m,{c. ¥
it
‘N, 0 2 A ‘N TN
(NGO BE 20 TE, TNLO BT, N0 TT, L
1] nz z
2'N;0 2T, 2'N0 BT, ..
[ 4
N
U0 1T TINGO TT, .
Ty Ix
0 Em&o mmq o - 0 mm‘m
q g
uu N» e £ N NnN D £ L [ § £
(1'2,0 88,  2°6,0 16,  1'4,0 81, 280 1L, (T'1,08q,  &'1,0 16, (1'1,0 2L 81,0 Tl
I X
§ A ¢ - - . 7 3}
3'2,0 88y g'g.0 21, 8" 1,0 28, 1,0 3T,
L [} H §
18,0 15, 12,0 11, 11,0 1%, U101,

{"p,3u00) ¥ HATEVI




_.Iamm 0 PR
I~ S 0 0 0 0
mmmo
1 22,0 T1TE.0
g
o 1 mw 0 0
NHmO
3 8] ‘ g1 0 TTI_.C G
- H g 8
NNmo
3 0 0 0 NNmO HNmO
3 3
Mﬁmo
3 ¢1 0 T1I1,0
o ] 0 0 0 s, 8,
101087 puU® XTIJEW S80I1S JIOWUOIIN-EIOTd PHg ‘b
ﬂm am MMO HMO
0 mib. T Q mjb. 0 MI] 0 MEE
Y Y q q
az L] [ £
z no 0 . (4 mnc o Z N&O 0 a Hno 0
sz [ ] £
T Hmo 0 . T mno 0 1 Nnc 0 T Mso 0 - Azmm
‘ [ 4 1 [}
0 a ZEO e 0 Z mﬂc 0 4 NMO 0 Z HSO
3 * & L
0 T ch . 0 T mﬂo 0 T NJD 0 T MQO
ez ez

XTJI}8H UOTIRLIOISUBI] JUSWSDIETAST( UIEBI]E JIBOUITUON ‘¢

{(*p,3ucd) ¥ FHEVL



48

L B 4

ny = n %o 27,3 11,0 7

z 1 = & DIBYM

n mm = @ Autsn

)
1

¥LIIRN HOTIBWIOISgeyl jusmeseTdsIf-arwells Jzould °F

¢
x% Ut 4 i
= = n DIIYM
Frg
Ty L
=
(sTsAyBue OT.43omuASINR IOI) 3 § 0+ —t BBy
e .ﬁﬂ HS
[} ¢ [ é L] £ E
mm [ I § Nzw N AN | ﬁspw § o+ HM ¢, . 4 m$¢w ¢ = LA
o & 4 e d
[ Nﬂo Naww N wﬁm stv 1% + (AR
] £ £
[ NAM prw . NAM ﬂzwv 1% + [ A 4 v

sUTRILE TElUSHeIOul 7y

NOLLVINNYOA NVIDNVHOVT dquivdad 9

{7p,3u00)  p ATEYL



49

gopou Jo Joqunu

Hm@
0 R
Y
4
2N o
[
TN 0
é
o 2N
§
N
0 TN
- N ¢ Mun
¥
R rrm
wa
0 N
i
[ é
N
TN BN
‘N3
Ny 0
£
N
0 TRy

o

0

't 3
q

oAk

Nﬁnvaﬁ UCTlBUIOFSUBL], jusweneTdsTg UrBI}S IBSULTUON ¢

o=

Haa
! xﬂw

(*p,3uod)

sxoym

P ATHYL



50

0

TSy
Y 0 0 0
e 18
L L
. N 0 0
ct Tt = 1
i L
1 1 0 ] 3
o 0 NNh ﬁmr
, 1 1
o 0 NHP ﬂmh
3 1
FO708A SS8X3S DUE NIJIBN S5e038 Lyone)d

4

(P,1uod) p TTEVL



NONSAP the derivatives of the interpclation functions are recalculated in
each time step.

In two~dimengional analysis the differences in numerical operations
using the T.L. or U.,L. formulations when measured on the total efforts of
solution are generally small and, in NONSAP, the choice iz in most cases
decided by the definition of the material law used. This is further
gdiscussed in Chapter 4, in which the different material models are

presonted.

Mass Matrices

The lumped mass matrix is evaluated by simply lumping 1/N th of the

total element mass at each node. The consistent mass matrix is given in
. T 0 . . ) ;

Table 3, i.e., ¥ = P H" H 'dv, in which H is a matrix of the inter-

0
v

polation functions tabulated in Eq. (3.45}.

Internal Resisting Force Vectors

The intermnal resisting force vectors calculated in the different
formulations ars given in Table 3. The matrices used in the evaluation
by Gauss numerical integration are presented in Table 4. We should

note that in nonlinear analysis with material nonlinearities only
L O07Lo
Table 4.

. . t
. where B, is used in Table 3 and B is defined in

B L oPLo



3.3 Three-Dimensional Elements

A goneral three-dimensional isoparametric clement is available in
NONSAP. Figure 3.5 shows some typical structures which could be analywed
using the element,

wor the three-dimensional element the following formulations have
been incorporated into NONSAP:

1. Linear elastic small displacement analysis, i.e. (A) in Table 3.

2. Small displacement analysis with material nonlinearities only,

i.e, (B} in Table 3.

Therefore, only material nonlinearities can so far be considered in
three-dimensional nonlinear analysis using NONSAP. However, the matrices
to be used in geometrically nonlinear analysis would be very similar to
those employed in two-dimensional analysis, and could be derived using
Table 4. Since the formulation of the three-dimensional elements is
quite analogous to the formulation of the two-dimensional elements, only

the interpclation functions used will be given.

intorpolation Functions

The general three-dimensional element in NONSAP is an 8 to 21 vari-
able-number-nodes element. This means that the element may have any
number of nodes from 8 to 21, in which the first 8 nodes are the corner
nodes of the element. Figure 3.7 shows some typical element configura-

tions. The coordinates and displacements are interpolated using

N

Q0 * 0 k

x, = z h, X, i =1,2,3 (3.53)
k=1



3/0 CONTINUUM ELEMENT MODEL OF THICK SHELL

FIGURE 3.6 POSSIBLE THREE ~DIMENSIONAL
FINITE ELEMENT ANALYSES
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u, = Zi hoou i =1,2,3 (3.54)
lo=

where the hk are the interpolation functions listed in Table 5, and Nx
and Nu arce the number of nodes used for coordinate and displacement
interpolation, respectively. The element is isoparametric if NK = Nu
and subparametric if N < N, (53], In three-dimensional finite element
analysis the slement formation time is, in general, significant and the
option of using subparametric elements has been included to increase the
efficiency of the analysis. As in the case of the two-dimensional
eleaments, in Table 5 the interpolation functions have been written fofﬁ

all 21 possible nodes, and for any one node which is not included the

corresponding interpolation functions should be deleted.
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4. MATERIAL MODELS

An important aspect in the solution of materially nonlinear problems
ig the caleculation of the constitutive temsors, which define the stress-
strain matrices in the Tinite element evaluations. In the isoparametric
finite element discretization used in NONSAP, it is necessary to evaluate
the stress-strain matrices at the element integration peints, and tﬁey
are reqﬁired for the calculation of the element stiffness matrices and
atross vectors (see Tables 3 and 4). The purpose in this chapter is to
present the constitutive relations used in NONSAP and to demonstrate the
specific computer implementation.

We recall that materials may be classed as elastic, hyperelastic or

hypoelastics» as summarized by Fung [14]1.



A1 linear Blasidicity und Hyperelassticity

minstic and hyperelastic matoerials are relatively easy to deal with
in practical analyses. §ince both the T.L, and U.L. formulations reduce
to the linear elastic infinitesimal digplacement analysis procedure, we

considoer directly large displacement and large strain apalysis. In the

T, 1., formulation we have

T t t

3 = Kol o 1.1

G%ij ﬂtijrs 0%rs (4.1
L e - ) . 1 .

whore 5. . is the 2Znd Piola - Kirvchhoff stress tensor, & is the
0713 O rs

t
{roeon -~ Lagrange sirain tensor and Ucijrs ig tho material property tensor

in the copfiguration at time t. The relation in Eg. (4.1} can be written
For all configurations at tTime O, At, 2At, ... . In the U.L, formulation

the constitutive relation equivalent to Bg. (4.1} is

t i t
T, T 0 € (4.2)
i3 tidrs rH
. : t ‘ . t ; . . :
in which Tij is the {auchy siress tensor, . 25 the Almansi strain
t . .

tonsor and ?Ei' is thoe materisl proporty tensor st time 1,

. ; : o - PP, * t

Considoering lincar clasticity O, | ancd O are both constant
- { 5 tijrs

and dedfincd in terms of the YVoung's moduli and Poisson's ratios of the

.- . . . . : : t .
materinl. However, it should be noted that specifying constant tcijrq is
L . , . T . . , :
equlivaiont 1o using a material tensor gt'- ,» which is deformation
ijrs

dependont, and vice versa; namely

{ .

i )r} 0O O ke G G .
IS TR x x® T x X {4.3)
3 mnpg 1 tm, tmn,i %t ijrs t p,r t qg,s
&

t . .
if . WE ﬁx tx tC tx 1% 1.4)
1 mnpa O, OTm,i OTm,j OTijrs Gp,w Gy, s s
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Considering hyperelasticity the stress-strain relations are derived
from the strain energy function, usually defined per unit mass of the

material and corresponding to the T.L. formulation [14] [22].

% .
HBowever, if Gcijrs iz defined, say, for example, by an experiment
. t
on a rubber-like material, we may calculate at any given time C for

t ijrs

the U.L., formulztion using Eg. {4.4), and vice versa.

The constitutive relations in REags. (4.1) and {4.2) are used in the
evaluation of the element stress matrices and stress vectors (see Tables
3 and 4%, i.e., we calculate from total Green - Lagrénge or Almansi
strains directly the total 2nd Piola - Kivchhoff or Cauchy stresses,
respectively. However, in the calculation of the linear sirain stiffness
matrices at time t, we need tangent material property tensors {see Tables
1, 2 and 3). 1In linear elasticity we simply have

t | ot
oCijrs = 0%grs ¢ tSiyrs T tCijrs (4.5)

and for the hyperelagtic material considered in Section 4.4.3 we have
t
3 0553 .
c., = —=2 (4.6)
G ijrs t
3 .8
0'rs
We should note that in the snalysis of elastic and hyperelastic
materials identical numerical results are cobtained using the T.L. and the
U.L. formulations provided the material tensors are related as given in
Fas. {(4.3) and (4.4). Also, since the material constants are independent
of the history of solution, analysis errors result only from the iso-
parametric finite element formulation and the time integration schene,
provided eguilibrium iterations are performed (see Chapter 5). Therefore,

in the analysis of elastic and. hyperelastic materials the analysis errors

are guite similar to those in small displacement linear elastic analysis,
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4,2 Hypoelasticity

For a hypoelastic material the constitutive tensor relates
increments in stresses to increments in deformations. Therefore, total
stresses cannot be related directly to total strains but depend on the
path of defermationm [121 [381 [46].

Consider first the analysis of a small displacement problem, i.e.,

a problem with material nonlinearities only. 1In this case we have

a,. = T, e 4.7
i3 ijrs rs

in which Gij and e . are increments in engineering stresses and infini-
tesimal strains at time t, respectively (see Eqs. 2.9 to 2,11)., 1In this
analysis the configuration of fhe body is assumed to remain unchanged.
Therefore, increments in stresses and increments in infinitegimal strains
can simply be added to obtain total strains and stresses. In general,
the material tensor Cijrs depends on the stress and strain history. The
plasticity models, the varisble tangent moduli model and the general
curve degceription model described inm the next sections define hypoelastic
materialsg,

in large deformation analysis it is necessary to make an assumption
on which strain increments are related to which stress increments. In
this context it should he noted that a great deal of additional research
is still required to formulate and evaluate appropriate material constants
for hypoelastic materials, in particular, for the identification of large
strain behavior [221 [27) [28]. Although the formulations presented below
are applicable to large strain conditions, in actual practical analysis the
material law is likely to be defined only for small strains. An important

such case is elastic-plastic material behavior characterized using the flow
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theory, which can be used in the analysis of large displacement but small

strain problems,

Using the T.L. formulatiocn, hypoelastic material behavior can be

desceribed by
(1.8

Osij Ocijrs 0%rs

in which .8. . and are increments in 2nd Piola ~ Kirchhoff stressecs

071 Gers

and Green - Lagrange strains, respectively. 1In the solution we approxi-

mate e by e and calculate the 2Znd Picla - Kirchhoff stresses at
Qrs O rs

time t+At using

t+AL t
= + L&
Osij Osij Osij (4.9)

as shown in Table 1,
In the analysis using Eq. (4.8) it 1s assumed that the material

tensor is evaluated in the same way as in small displacement

C
0 ijrs
anaglysis, but the stress and strain varisbles of the T.L., formulation are

used to define the history of the material, A main advantage of adopting

this material description is that it is relatively simple to use,

Namely, assume that a subroutine to c¢alculate Cijrs in Eq. (4.7) has been

written, then the same subroutine would also define OCijrs in

large displacement analysis by simply using Green - Lagrange strains and
2nd Pilola - Kirchheff stresses to define the stress and strain history.
Similarly to Eq. (4.8), in the U.L., formulation we may use

tsij - tcijrs t%rs (4.19)

and assume that tcijrs is defined by the history of Cauchy stresses. In

the solution we approximate . The constitutive relation in

tars by ters

Eq. (4.10) may be more appealing than the T,L, material law in Eg. (4.8),
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eince we work with physical stress components to define the material
constants and &g can kinematically be understood to be the addition of
elastic and plastic strain incrementis, just as in smwall displacement

analysis., Having calculated tsij from the relation tsij = Cijrs s

the Cauchy stresses at time t+At are obtained, using the relations given

in Table 2,
t+AL _ t )
tsij = Tij + tsij {4,11)
and
t+AL
t+AE - P t+At t+AL t+AL
Tsr T t*s,1 t°13 %1, 3 (4.12)
o

A third possibility suggested by Hibbitt, et al, [18], Heifitz and
Constantino [171 and Lee [28], is to characterize the material behavior
using a stress rate which is defined with respect to the current moving
coordinates within the time interval t to t+pb. The stress rate used
must be invariant with respect to rigid body rotation, and one possibility

is to use the Jaumann stress rate, which, at time t, 1is defined as

t v bt t t t t
- T N Q. - 7. a . (4.13)
ij Dt ij ip pJ 'ip pi

t
where g% denctes time derivative with Xi , 1 = 1,2,3, kept constant,

t v D
Ty 7 +Cijrs Dt trs (4.14)

t
and ij are Cartesisn components of the spin temnsor,

to - 3D

. u, - Lu L 4,15
pJ BTt J.p t psa) ¢ )

in small displacement analysis the spin tensor ig not considered and
Egs. (4.13) to (4.15) reduce to Eq. (4.7).

we should note that the Jaumann siress rate definition considers

instantaneous conditions., In the numerical solution, however, we heed to
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consider finite time steps. Therefore, the sclution will only he accurate
if small enough time steps are taken.

Equations {4.13) to {(4.15) need be considered in the evaluation of
the tangent stiffness matrix and in the calculation of the current stress
conditions. The constitutive tensor relating the Jaumann stress rate

t v D ,
tensor .. to the incremental strsin rate tensor — e is calculated

ij Dt t rs

in the same way ag in small displacement analysis, but using Cauchy
stresses to define the history of the material. In the evaluation of the
tangent stiffness matrix it appears that the contribution from the stresses
to the material constants is negligible, i.e.,

D t t

— > . lecti ¢
tcijrs Bt ters Tip G%J Therefore, neglecting the stress

contribution, we have

t _
D7y % %grs t%rs (4.16)

gsince Dters = +8rs - Alternatively, the stress rotation contribution
may be taken accoumt of in the calculation of the force vector iFe
considering the calculation of Cauchy stresses at time t+AL, t+AtTij, it
is importsnt to use Egqs. (4.13) to (4.15) in small enough increments of
time. In elastic-plastic analysis it is in any case necessary to evaluate
the stress increment by numerical integration of the eclastic-plastic
material law times the strain increment, and it is efficient to include
Egq. (4.13) im this integration (see Section 4.4.4).

Since the material descriptions given in Egs. (4.10) to (4.12) and
in Fas, (4.13) to (4.16) have both been implementied with the U.L,
formulation in NONSAP, they will be referred to as U.L. with transforma-

tion, U.L.(T), and U,L. with Jsumann stress rate, U.L,.(J), respectively.
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With the different descri;tions_gﬁéilggiémfor the material behavior,

the question must be which one should be used in actual practical
analysis. This depends naturally on the gpecific material comsidered
and the definition chosen for the material parameters. For example, in
elastic-plastic analysis if Eq. (4.8) is used, vielding is defined as a
funciion of the 2nd Piola -~ Kirchhoff stresses, whereas if Eq. (4.10) is
used, the Cauchy stress conditioms define vielding, We consider in
Chapter 6 some results obtained using the different. descriptions.

in the above enumeration it was assumed that the solution procedure,
namely the T.,L, or U,L. formulation, is chosen according to the defini~
tion of the constitutive tensor, This was merely done to avoid the
necessary transiormations given in Egs. (4.3) and (4.4). It is of
interest to note that Hibbitt, at al, define the material temsor first
in the current configuration at time t and then transform it for use in

the T.L. formulation [18].
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4.3 Truss Element Models

The truss element in NONSAP is assumed to have constant area, and
either a congtant Young's modulus or the stress defined as a functicn of
the current tétal strain. Therefore, linear and nenlinear elastic truss
elements can currently be considered. Figure 4.1 illustrates a typical
nonlinear stress-sirain definition. We recall that in the material

property definition small strains are assumed (see Section 3.1),

4.4 Two-Dimensicnal Element Models

It is probable that in most analyses with NONSAP two-dimensional
elements will be used. For this reason the main library of material
models has been incorporated for the iwo-dimensional elements. The use
of a constitutive model in two-dimensional analysis may also indicate
how useful the model would be in a more expensive three-dimensional
analysis.

In the preceding sections we discussed the formulation of congti-
tutive relations using tensor quantities, We now consider the material

laws in matrix forms as they are inplemented in NONSAP,
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4.4.1 Linear Elastic Isotropic Model

This model assumes that the elements of the constitutive matrix
are constant, i.e., independent of magnitude or history of stresses and
atrains. The material matrix is forﬁed from the two elastic constants
F and v, which are Young's modulus and Poisson's ratio, respectively.

For axisymmetric analysis the meterial matrix is

1 2 2
C C 8] ¢
2
cC = i 2 4.17)
0 4] 03 G
c2 c2 O c1
where ¢, = E/2(1+v}, ¢, = 2‘003/(1-2v), €y = ¢y * Cgy and the

corresponding stress and strain vectors are, for example, in small dis-

placement analysis (see Eq. (2.11)}),

_ . - - -
11 €11
t t
%22 _ €22
t t
92 2 €19
t t
O33 €a3

respectively,
1t should be noted that the material matrix in Egq. (4.17) is also
used in the T.,L. formulation to reiate 2nd Piola - Xirchhoff stresses to

Green - lagrange strains, and in the U,L, formulation to relate Cauchy

stresses to Almansi - strainas, i.e., C in Eg, (4.17) also corresponds to
t

the constitutive temsors _C in Table 2 and tC.. in Table 1.
t ijrs 0 ijrs



68

Tsing Rgs. (4.5) sod (4.8}, it then follows that O also corresponds to
the incremental constitutive fensors ﬁcijrs and Qgijrs in the tables.
Qince the same Young' s moduluz and Polsson's ratio azre used to relate
different astress and strain guantities im the T.L, and U.L, formulations,
depending on the magnitude of the deformation gradients, different
mumerical results pesd be expected. To obtain idsntical numerical
results for any level of displacements, the same definition of material
congtants need be used, i.e., the appropriate transformation in Eg. (4.3)
or Ea, {4.4) must be performed.

To phtain from the material law inm Eg, {(4.17) the constitutive
matrix for plane gtrein anslysis, we use the condition thet the strain
in direction 3 is zero, and operate oply with the 3 x 2 upper left
matrix in €, In plane stress apelysis we uss the condition that the
stress in direstion 3 is zero, and condense the matrix ¢ in Eg. (4.17)
to the requirved 3 x 3 matrix [537.

Aofore presepting the next materisl models, it should be pointed
out thsi the seme ordering of gtresses and straing ivn the siress and
strain vectors is used throughout, and that the plane stress and plane
strain constitutive relamtions sre always derived from the general matrix

O odn Fo. 4.1 sz desorvibed above,
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4.4,2 Linear Elastic Orthotropic Model

This material model is used in the same way as the linear elastic
isotropic model, but the elements of the matrix C are defined tc represent
orthotropic media.

Consider the finite element in Fig, 4.2, for which the in-plane

AN | 1", 1

orthogonal material axes are 'a and b". The third orthogonal material

LA LA b

direction is "¢" and is perpendicular to the plane defined by "a and

11

b

1

The material constants are defined in the principal material

directions (a, b, ¢), for which we have

1/Ea “vab/Eb 0 _Vac/Ec
-1 “vba/Ea 1/Eb o -Vbc/Ec
C£ = (4.18)
0 0 i/¢ 0
sb
“vca/Ea "vcb/Eb 0 1/Ec

. 1 1 - 1
where the subscript "4 in C indicates that the material law is given

L

in the local system of material axes. The seven independent constants

2
in order to evaluate the stiffness matrix or element stresses, the

t t+AL
xi ] Xi ]

(Ea’ E, , Ec’ v Vo Ay Gab) define the symmetric matrix C

b ab’ “ac’ ‘be

4]
stresg~strain law in global coordinates Xy

must be computed., First we calculate CL using Eq. (4.18); then we evaluate

the transformation matrix Q which cglculstes strains in the global system

from strains in the (a, b, ¢) local system [531,

3 2 2 , 7
cos Y sin ¥y cosy =ziny o
sinzY cosz ‘ ~CcosY sinYy 0o

q = ¥ (4,19)

2 L 2
~2 cosY siny 2 cosY siny cos ¥ = sin v O

4 0 0 1




XE Y

FIGURE 4.2 PRINCIPAL IN-PLANE MATERIAL AXES
ORIENTATION FOR THE LINEAR ORTHOTROPIC
MATERIAL MODEL
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in which the angle ¥ is measured from the global Oxl , txl or t+&txl

axes to the material axis ''a’, positive being clockwise, The required

stress-strain relation in global coordinates is thus

cC = @ ¢, Q (4,20)

As in the definition of the isotropic material law, Eq. (4.17), the

matertal law in Eg, (4.20) is used in small displacement analysis, and in

the T.L. formulation. 1I1f the material law is used directly in the U.L.

formulation, it is assumed that the directions of orthotropy are at all

times defined as given in Fig. 4.2,
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4.4.3 Hyporelastic Incompressible Material Model

The material model presented in this secction ¢an only be used in
plans stress anaslysis. Namely, in other than plane stress analysis, it
is necessary to include the unknown hydrostatic pressure as an additional
variable.

The constitutive relation isg given c¢orresponding to the T.L,

formulation, and can be written as [ 41 [23]

i t
0°11 1 Con 1
% ¢ 2t t
¢ o o - >
0 22 9t (-033} ‘11 toag, Ca |1
t 1
o°12 ] 9~ | 7“1z || _O_
- T
- “on
2
. t ) (t t )} t
" {1 ( Cag Cyy * Cpy. Cip it 4.21)
te
1
in which
+ -
= g + B 4,92
Cij Oeij 613 { )

where 6ii ia the Kronecker delts. Since the material is incompressible,

t t t (t 29-1
Con = {Cﬁi Coy = A Clz) ] (4.23)

Tha variables C1 s CZ are the material constants of a Mooney - Rivliin type
material {221 {40].
Egquation {(£4.21) relates total Znd Piola - Hirchhoff stresses to

total fivsen - Lagrange strains. Using Eg. {(4.5) to caleculate the incre-

montal materisl law we abtain
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2 o -1 0O
% t £
= " o 0
o® 1c; | ‘33) 20Cy C 7 o
o 0 1
£ 2 % % t £
*oAG ( CBS) 2 Cyag ( €y 7 sz)
6 -2 0 7
t "
+ ( Cl]_ + {322) -2 0 0
0 0 0.5
¢ 1 t 7]
"2 Cyy 2 €12
(*c,.)
33
1 t t
T2 =2 °Cyy Ciz [
+ ( ) 4.24
C33 { )
t t 1
Cya Cio 2
2(tc )
e 33/3 )
where
_ ) _
(tc ) to . Te e Y
22 11 Caz Ci2 22
2
t. 1 ) ¢ t ,
o= ( Cll C12 Cll (4.25)
2
aymmatric (tc )
12
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4,4.4 ¥Flastic-Plastic Models

1t was discussed in Sectiom 4.2 that, depending on the description
used, i.e. the material nonlipearity only analysis, the T.L. formulation,
or the U.L. formulation, an elastic-plastic constitutive law relates
different stress and strain guantities. The constitutive matrix is found
in the same way in either analysis; however, the appropriate stress and
gtrain measures need be used. In the following we derive first the
elastic-plastic constitutive relations uged in small displacement
analysis, and enumerate afterwards the specific changes that need be made
using the T.L. or U.L, formulation.

Before presenting the elastic-plastic model it is useful to define

the notation adopted in this section,

Notation used

T
@ij = total strains (the left superscript always refers to
time "t
it E . .
eij = total elastic straimns
t P t t B
8 . et = -t 3
eij eij eij total plastlc strains
=] eE ep = incremental strain quantities {at ti t i
iJ 3 13 ¥ i,j q K= ime 18
implied)
t
.. = total stresses
13
Gij = incremental stresses
t %
o I g../3 = mean stress
T ii
% i t . .
= = o) - g &,, = devistoric stresses

i3 ij mid
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Tensor components are alsc written in vector form, e.g.

t T t t t t .t u
o = Loy gy o, gyl e begy e 2855 €55
<
F L tc s tep , M) = yvigld function
t% = gtrain hardening paramseter
ty _ _GOF
i3 t
) U:Lj
t T _ t t
q [ a3 0 995 0 2795 1 Qg5 ]
oo = -
i; t P
4 3 oy
t T t t t t ]
Poo= L Py Py v Prp v Pyg
E . E _ .
C = elagtic stress~strain relation, i.e. C % C in Eq. (4,17},

In élasfic—plasticranalysis the materiél behaviorwiérdéscribed
using three properties in addition to the elastic stress-strain relations,
CE, namely (1) a yield condition, which specifies the state of multi-
axial stress corresponding to start of plastic flow: (2) a flow rule
relating plastic strain increments to the current stresses and the stress
increments subsequent to yielding; and (3) a hardening rule, which
gpecifies how the yileld condition 1s modified during plastic flow.

The initial and subsequent yield condition for isothermal kinematic

or isotropic hardening can be written as [14] [27] [ 42]

F { tepv tG: t"- ) = 0 (4,21)

t t
in which, for isotropic hardening, u is a function of ep, and for
t
kinematic hardening, '« is a constant. As indicated, the effects of

temperature and creep are neglected, Restricting the analysis to asso-



ciated flow rules, the functiom F in Eg. (4.21) is the plastic potential
function to which the normality rule is applicable, i.e.,

eP X oF

{4.22)

ii T
J 7 {?ij

or in wmatrix form

= = x4 (4.23)

where ) ig & scalar to be determined. Since during plastic deformation

¥ = 0, we aiszo have
aF oF P
+ = 0 .
K %4 P ij (4.24)
%13 13
or in matriz form
£ P
T g = tpT e (4.25)
The stress increments are calculated from
c = 8 (e-2e 1 (4,26)
Using Eus, (4.23) %o {4.28) to eliminsate ep and o, we obiaim
t 7 E
- qg € e .
A t T € it 7 E % (#.27)
v qg + G C g

Substituting in Eg. (4.26) from Egs. (4.23) and {4.27) for oF and 3, the

elastic-plastic material law at time t becomes

g = C @ (4.28)

whers

{4.29



77

In NONSAP the von Mises and the Drucker-Prager yield conditions have
beern implemented, Curvently the wvon Mises condition can be used assuming
either perfectly plastic conditions or isotropic hardening; whereas the
Drucker-Prager yield condition isg limited to slastic perfectly plastic
analygis. In both cases an initially isctropic elastic material is
assumed, i.e. the materisl matrix CE in Fg. (4.29) is esqual to the mairix

C in Eg. {(4.17).

Von Mises Yield Condition

When the von Mises vield condition is used the loading surface for

isothermal clagsical isotropic (or kinematic) hardening is given hy

t t P t t t t t
F( g e ) = %( Sij aij F I Sij @ 5 ) " (4.30)
where 'y 1is a tensor denoting the translation of the yield surface.
ij
In the case of isotropic hardening (which includes perfectly plastic

conditions), we have

t t %
= [¢] . " -
aij " 3 (4.31)
t . ; ; . . .
where oy is the yield stress in sinmple tension at time t and is =

function of the plestic work per unit veolume tWp,

t r

e, .

i}

%, F t P
. - 1 3%
W Gij Gij {4.332)
0
. t t
Evaluating gq and p we obtain
t T t t t t

= { $13 S99 2 $15 San 1 (4.33)
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and
t T ot t t t t
) = 7 i 94 Ty g 633} (4.34)
where
t
d o
t 2t ¥
H = = 4] {4,35)
3 t
Vooat®

We can now calculate the material property mairix in Eq. (4.29) snd obtain
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wor a perfectly plastic material, tpij = O and tH = 0. For work-
hardening materials, usually data from s simple tension test are known.
Thus, in the case of linear hardening, 1if the gtrain-hardening modulus
(tangential modulus) is available, tH can be derived from it, i.e.,
i ; 1
Lo
T

t
in which E. is the strain-hardening modulus of the material.

Drucker-Prager Yield Condition

Using the Drucker-Prager yield eriterion, the yield function is

defined as {371
t
¥ = 3 Gm +t‘6 - o (4.39)

where

—2 t
tO = 1/2 S..ts.. (4.40)
i3 1d

and « and Uy are constant material properties derived from cohesion ¢
and angle of friction §, The following relatlons are used [37] [53]

2 sing

J/3(3-5in8) (@45

o - 6c cosB

y 7% (3-5inb) (4.42)

In general, c and @ may depend on a strain-hardening parameter. We

t
congider the cases of perfect plasticity, hence pij = {0, Furthermore,
we have tqi. = Géi. + “%m tsi. ;o d.e.
J J 25 J
= —
o £11
t
1
o= Y] o+ S22 (4.43)
o 2% T
2°s
iz
o ts
33
- o
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The computer implementstion of the algorithm used in elastic-
plestic annlysis is given in Table 6. We should note that we are only
concerned with the caleculation of stress increments due to given strain
increments, since the elsgtic-plastic stress-strain law is defined in

terms of curront total stresses.

T.L, Formulation

The material laws defined above can directly be employed in the
7.4, formelation by using Green - Lagrange strain components and Znd
Piola - Kirchhotf stress components instead of infinitesimal sirains
and engineering stress componenis. For example, referring to Table 6,
in the T.L. formulation, STRAIN are current total Green - Lagrange
strains, EPS are the total Green -~ Lagrange strains available from the
previous update, and DELEPS are increments in Green - Lagrange strains.

The eage of using the elastic-plastic analysis procedure already
available from small displacement analysis in the T,L., formulation is
apparent, Howewer, the assumptions used should be noted, namely that all
elastic-plasticity relatiouns ususlly employed in small displacement

analysis can also be usad in the T.L, formulation {273,

U.L, Formulation

In the U,L., formulation we can use the pfocedure giveﬁ in Eésq (4.10)
to {(4,12), referred to as U,L. (T}, or the procedure using the Jaumann
stress rate, referred to as Y.L, (J) and described in Bgs. {4.,13) to (4.18).

Reforring to Table 8, we have in both formulations Couchy stresses
stored in 816, Alzo, we use linsar strain increments roferred to the
configuration at tine %, i.e. DELEPS contains linear strain increments in

the same way as in small displacement analysis except that the incremental
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strains are referred to the configuration established in the preceding
solution. In the calculation of the yield function F and the value RATIO,

t+AL
we use the stress components defined in Egq. (4.11), in which A S is

tid
understood to be an approximation to t+AtTij_ Assuming that the yield
function is defined in terms of Cauchy stregses, the above approximation
is justifiable provided -the incremental deformations are small encugh.
In order to be more exact it would be necessary to calculate Cauchy
stresses whenever stress components are used.

In the v.L. (M formulation the total final stress, which includes
the stress incfement due to DELEPS, is transformed to the new configura-
tion using Eg. (4.12). 1In the U.L. (J) formulation this transformation
is replaced using Eq. (4.13).

The main approximation in the analysis is the linearization of
strains within each time step and the calculation of stress increments
from the linear strain increments., This requires necessarily a small
enough increment in stresses within each time step, and, therefore, the
+At +At

t
5 a3 an approximation to T,. in the calculation of the

use of 515 i3

yield condition appears justifiable (see above).
The effect of the linearization in the analysis of some problems

is presented in Chapter 8.
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TARLE 6. SDLUTION ALGORITHM FOR BELASTIC-PLASTIC STRESS CALCULATION
Given: STRAIN = total strains at time At

sip = total stresses at ftime £

Fps = total strains a2t time t

The procedure below is used to calculate the total stresses TAU at

time t+AL.

fWa should note that the elastic-plastic incremental stress-

styain law can be calculasted, if the stresses are known. )

By

£,

Calculate the strain increment DELEPS:

DELEPS = STRAIN - EPS

Calculate the stress increment DELSIG, assuming elastic
behavior:

E
DELSIG = C * DELEPS

Calculate TAU:

TAU = §I1G + DELSIG

with TAU as the state of stress, determine the value of the

yield function F.

1f F(TAU) £ 0, elastic behavior assumption holds (loading
glasticly or unloading).
Hence STRESS = TAU, and we refurn

1f F(TAUW > 0 we continue

1f the previous state of stress was plastic (as indicated by
a flag) set RATIO = O and go to step {(h). (therwise, there
ig a transition from elastic to plasiic, and RATIO, which is

the portion of incremental strain taken elasticly, has to be



TABLE €

{eont'd.)

determined. The variable RATIO is determined from the
aguation

F{SIG + RATIO * DELSIG} = 0
gince at the stress SIG + BATIC * DELSIG the yield function

F becomes equal to zero and yielding is initiated.

Redefine TAU as the sitress at start of yield
TAU = SIG + RATIO * DELSIG
and calculate the elastic-plastic sgtrain increment

DEPS = (1 ~ RATIO) * DELEPS

To obtain the final stresses, which include the effect of

the complete strain increment DELEPS we need to add to TAU
the stresses corresponding to the elastic-plastic strain
increment DEPS, Since the material law is dependent on the
curraent stresses, DEPS is divided into equal intervals and
TAU is updated fof each interval by the increments in
stresses corresponding to the interval increments in elastic-
plastic strains, In the calculations the stress-strain
matrix corresponding to the latest available stress

conditions are used.
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4.4,5 Variable Tangent Moduli Model

The variable tangent moduli model was developed for the analysis of
geological materials and is presented in detail in [38]. 7The model
describes an isotropic hypoelastic material law, in which the bulk and
shear moduli are functions of the stress and strain invariants. The
functional relationships used replace an oxplicit yield condition.

Before presenting the model, it is convenient to define the notation
adopted in this section. We consider in the following the analysis of
small displacement problems., The use of the model in the T.L.. and U,L,
formulations is analogous to the use of the elasfic»plastic models

described in Section 4.4.4.

Hotation used

t ¥ iF
eij = total strains (the left superscript "t always refers
to time 1)
eij = incremental strains
t t
a = e../3 = mean strain
m ii
) = e, /3 = dncremental mean strain
m ii
£ T i . . .
g,., = e.. - @ &, ., = deviatoric strains
i3 ij m 1
gij = incremental deviatoric strains
t
Gij = {otal stresses
Gij = incremental stresses
£ 1
g = o, . /3 = mean stress
hiH il
ol = g /3 = incremental mean stress
T ii
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. = minimum mean stress ever reached
min
ts.. = t0.. - tc §, ., = deviatoric stresses
ij ij m ij
sij = incremental deviatoric stresses
t t .
G, K = shear and bulk moduli
t t ot N ) . )
J. = % "s.. s,. = 2nd invariant of stress deviator
2 ij ij

The incremental stregs-strain relations for the variable tangent

moduli model are assumed to be

t
- 2 .
Sij G gij {4.45)
and
1
a = 3K e {4.46)
m m

where Sij and gij are the incremeﬁtal deviatoric stresses and strains, and
n and e are the incremental mesn stress and strain. The instantaneous
bulk and shear moduli, tG and tK, respectively, are functions of the load-
ing conditions (loading or unloading), the mean strain tem, the mean
stress toa and the second invariant of the stress deviator, th.
For the bulk modulus we have the condition of loading if tom

t
; > .
< Poin’ agd the condition of unloading if = Prin’ where Phin 19 the

minimum mean stress ever reached during the history of solution, i.e.,

t

Kip Whenm oy = Pugp

K = (4.47)
t

t
K >
when Oﬁ g

UN min

t
- s
We should note that as long as A Poin KUN is effective even though

t t t-
o, may be decreasing, i.e. %y < AtUm. The loading and unloading bulk
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moduli are calculated using

K = K - K e + K e (4,48)

KUN = constant (4.49)

in which Koy X, and K2 are constants,

i

For the shear behavicr we have

t t t~At
Pl 3 >
. G when 32 JZ {4,50)
& B
T i t- At
<
GUN when Jg Jz {4.51)
in which the loading and unloading shear moduli are defined as
L t - ft
= - o)
G n G, Yy . TV Iy (4.52)
t - £
GUN = GO Yy . {(4.53)
where Yy and Q are constants., The material constants KO, Kl’ Kz, VI andg

v, arg determined by experiments, and have to fulfil certain conditions
to admit only physically permissible states of stress and strain [38],.

For the numerical solution Fgs. (4.45) and (4.48) are approximated
at time 1 as follows:

t+AL t i+ t t
& o = 3K { éte -
21 e m m

t+45E £ t+AL t t
g,, = 2 L.~ s j 8. . 4,485
i3 ¢ By &5 3 > i3 (4.55)
.t T R
T obtain K and ¢ we need to know whether the loading or unloading con~
. . t t - ‘
ditions are active, and we need to have stored Gm’ Oﬁ and J2 in order

8 t :
{0 be able to calculate the nmumerical wvalues of ¥ and ¢. Assuming that

. . L. 0 0
the loading congditions at time O {with initial conditions on em, Uﬁ

O
and 32} are known, we can use Hgs, {(4.54) and (4.55) to perform the



incremental solution. It should be noted that the stresses at time tT+AL
are calculated using the material moduli pertaining to time %, which were

also used in the calculation of the stiffness matrix at time t.
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4.4.6 Curve Description Model

The curve description model is 2 gimple incremental stress-strain
law used to represent the resgponse of geological materials. The model
describos the insiantaneous bulk and shear moduli as piecewise linear
functions of the current volume strain (Fig. 4.3%, An explicit yield
condition is not used and whether the material is loading or unloading is
determined by the history of the volume strain only.

The procedure of solution using the curve description model is
essentially identical to the procedure using the variable tangent moduli
model {(soc Section 4.4.5). We thereiocre adopt iﬁ this section the same
nototion as in Section 4.4.5., The difference between the curve descrip-
tion modol and the variable tangent moduli model lies in the definition of
the bulk and shear moduli and the loading and unloading criferiao

As in Section 4,4,5, we consider in this section only the anaiysis
of small displacement problems. However, we should keep in mind that the
implementation of the model in the T.I., and ¥.L. formulations would be
analozous to the use of the elastic-plastic models in Section 4.4.4

The incremental stress-strain relations considered in the solution
using the curve description model are those discussed already with the

variable tangent moduli model, namely

%
= 2 M 4.5
Sij g gij (4.586)

and

I} = 3 K e (4.
m m

LA

7

whers g . and )
i3 giJ

are incrementsl deviatoric stresses and strains, and

gﬁ and em aro the incromental mean stress and strain, The instantaneous
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t t , .
bulk and shear moduli, ¥ and ¢, are funciions of the loading condition

&+
and the volume strain ”ev is defined as

I3 -

t
€& + { ~3a ) (4.58)
v grav m

where egrav is the volume strain (taken positive) due to gravity pressure
and e is the mean strain at time t. Defining ® in ag the minimum mean

W

strain ever reached during the sclution, we have that the materiasl is

loading if te £ e _  and the materisl is unloading if te e , , i.e.
il min I min
t t
]
. KLD when e € in
K = (4,59
t t
>
KUN when e emin
and
tG hen %
t LD waen € emin
G = (4.60)
t t
>
GUN when e, emin

We should nots that the loading conditions for both the bulk and the shear

t
moduli are determined by the history of tem only, 'The values of KLD '

t
KUN angd GLD are obtained using the curves in Pig. 4.3, and the modulus

t t £ t -
G = Gip { KUN/ Lo };

Once the calculatibn of the material moduli has been carried out,
the solution using the curve description model proceeds in the same way
as the incremental solution using the variasble tangent moduli model,
Howewver, ono important additional option is availnble, namely the material

may weaken {erack) under loading conditions 1f tensile stresses exceed

preassigned values,
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Since the curve description model has been developed primarily
for the analysis of geological materials, tension cut-off is assumed to
secur once the principal tensile stresses due to the applied loading
exceed the compressive stresses {taken positive) due to gravity pressure,
{.e. the material is assumed not to be able to develop met tensile
astresgses {(no-tension matorial)., To model this material weakening the
following assumptions are used:

(1) Once the principal ternsile stress is equal to the gravity
in-gitu compressive stress, the material is treated as being orthotropic
with the moduli corresponding to the direction of the principal tensile
stress being reduced by a factor {usually 104). A factor may also be
applied to reduce the shear stiffness.

(2) In successive load steps only tension cut-off in the direc-
tion determined in (1) and/or another one perpendicular to it may be
gctive, i.e. no change in tengion cut-off direction is considered. The
decision if tension cut-off 1is getive depends on if the tensile stress
excesds or does not exceed the virgin gravity compressive stress.

1t should be ncted that the curve description model with tension
cut-off has essentially been developed for loading conditions only.

The model mey be understood to simulate "eracking'' of the material as
soon as net tensile stresses develop, i.e. the temsile stresses due to
external loading are larger than the in-situ gravity pressure. The
crack directions are perpendicular to the principal tensile stresses
caused by the loading,

An application of the modal including tension cut-off is praesented

in Chapter 5.
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4.5 Three-Dimensional Element Models

it is apparent that =21l two-dimemsional element models presented,
with the excepiion of the h&perelastic model, could be extended for use in
three-dimensional analysis. However, at this stage only the linear elastic
isotropic and the curve description models have been implemented for the
threo~dimensional elements. Also, as pointed out in Section 3.3, only

small displacement analyses can be considered,

4,5,1 Linear Elsstic Isoctropic Hodel

This model is a simple extension of the corresponding model used
in two-dimensional analysis (see Section 4.4.1). In three~dimensional

analysis the material metrix is

- -t
c 0 0 O
1 %2 %2

Cl cz G ] ¢

Cl 1] ] 0
¢ o= (4.61)

c, O G

symmaetric c, O

€3
where ¢, = B{I=V) /({14 (1=-2)) 3 e, = B/ (LY (1-2V)) €y =

E/(2{1+w)} ; E is Young's Modulus asnd v is Poisson's ratio of the

material. The stresz and strain vectors in small displacement analysis,

corrsgponding to the material matrix in Eq. {4,.61), are
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SR - B
“11 ®11
% t
Y22 %32
t i
933 . 33
t
Y12 2 €3y
t £
%3 2 €43
t t
Y23 2 @53

respectively.
We should note again that the material matrix in Eg. 4.61) would

also be used in the T.L, and U.L, formulations.

4.5.2 Curve Description Model

The curve description model in thres=-dimensional analysis is =
simple extension of the corregponding two~dimensional model., The equa-
tiong and procedures used are as described in Section 4.4.6, where now
all six stress and strain components measured in three-dimensional
analysis need be considersd,

The capability of material weakening (cracking) has not yet been

included in the three-dimensional curve description model.
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5, STEP-BY-STEP SOLUTION

in the previous chapters we derived the matrices needed for the
calculation of the element stiffness matrices, mass matrices and force
vectors, Once the reguired slement matrices have been calculated, we
obtain the matrices corresponding to & system of elements using standard
assemblage techniques [ 8] [631. Includipng the effect of velocity

dependent demping forces, the segquilibrium egquations for time t+At are

s +At t
y TRty S - T 5.1)

in which for the slement assemblage

M = mass matrix

£ = damping matrix

tK = tangent stiffness matrix at time t which includes
the linear and nonlinear strain stiffness matrices

t+it .
TR vector of sxternally applied forces at time t+jt
e
¥ = vyector of nodal point forces eguivalent to the

stresses of the slements at time t
t+&tﬁ, t+&xﬁ = wyactor of nodal point accelerations and velocities
at time T+AT
u = increment in nodal point displacements from

t+ At t
time t to time t4+AE, f.e. u = b q - u

in static snalysis mass apnd damping effects are, of course, not
ineluded in Egq. (3.1, We should note that Eg. (5.1) may correspond to
any one of Egs. (3.7 to (3.10), which have been written for a single
element, For this roason, additional subscripts and superscripts, as in
Bag, 3.9 and (3.10), are not used to denote the stiffness matrix tK and

the vector of pnodal polint forces tF. Moreover, in program NONSAP the
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total number of elements of an assemblage can be divided into elements
which behave linearly (i.e. Eq. (3.7) is the governing egquilibrium
equation) and elements which are nonlinear. The nonlinear elements can
again be subdivided into elements whose response is described using the
T.L. or U.L., formulations, and elements with material nonlinearities
only, Tharefecre, the tangent stiffness matrix tK and the vector of nodal
point forces tF are the sum of contributions from elements governed by

the equilibrium eguations {(3.7) to (3,10},
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5.1 Numerical Time Integration

Equation (5.,1) represenis the incremental equilibrium equations to
be solved in each time step using a numerical integration scheme. The
accuracy of the step-by-step solution will naturally depend on the scheme
used to solve Eg. {(5.1) recursively, Various integration operators are
currently used in practice. Although the properties of the operators have
strictly only been established for the analysis of linear systems, many
solutions in nonlinear analysis have been obtained. In NONSAP the Wilson
6 - method and Newmark method can be used {6 1],

in the © - method a linear variation of acceleration is assumed
over the time increment 7 = 8 jpt, where (for unconditional stability in
the analysis of linear systems) € = 1,37, and the equilibrium eguations,

Eg. (5.1), are considered at time t + T ,

t o+, t+T, t t+ t )
wm T o+ e T o+ 'k owo= TR - F (5.2)
t+7 t+
whare R = tR = 8 ( atR - tR }, and u is the change in displace-
. . t+T t
ment vector during the time interval t to t+47, j.e. u = u - u.
Using the linear mcceleration assumption it follows that
tT+7Ts 1, t+7.. o
Woe Yo 2 (M 5 (5.3)
T4+T t t 2 t+ t
u =y o+ 7 {1+§——{ w4 27 (5.4)
which gives
t+T.. 2] 8 t. ts
= w—— . o - 2 0K
u z i - u (5.5)
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and

. 3 1t e
t+Tu = &~ u - 2u - Ity (5.86)
T 2

substituting the relations (5.5) and (5.8) intc Ea. (5.2), an
equation with u asg the only unknown is obtained. Solving for u and using
the linecar acceleration assumpticn, the regquired displacement, velocity

and acceleration vectors are ohtained;

t+£\‘tﬁ (1 - E 3 tﬁ . } t+T (5.7
8 ]
testy -ty . Bt . T (5.8)
t+At t te Atz T+AL,, t..
u = u + At U ( 4 + 2 u) (5.9}

In the Newmark method, the following assumptions are made [6 1 {39],

, |

eat, o by s o tn o+ B o ot (TP - Yy 510
t+AL, ) t..  t..

T v T I VN LAt IR A (5.11)

where, in limsar amalysis, for unconditional stability § = %+ and

2
wz i v+ ysing Eqs. (5.1), (5.10) and (5.11) we can solve
for the displacements, velocities and aceelerations at time t+At by

gimple elimination.
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5,2 Equilibrium Iteration

It is important to realize that in noﬁlinear analysis Eq. (5.1} is
only an approximation to the actual equation to be solved in each time
atep, which is By, (2.1}, HEguation {5.1) was obtained by linearizing the
equations of motion as shown in Tables 1 and 2. Depending on the non-
linearities in the system and the magnitude of the time step At, the
linearization may introduce serious errors and, indeed, solution in-
stability. It should be noted that the gtep~by-step solution may become
unstable although an integration operator is used which is uncondition-
ally stable in linear analysis,

4 common ohservation is that the errors introduced as a consaequence
of the linearization cause the calculated solution to ''drift away' from
the exact solution, This is much more serious in dymnamic analysis than
in atatic analysis, since, in dynamic analysis, the solution for any
prascribed 10#6 at a specific time is always dependent on the history of
solution.

in order to avold large integration ervors we may choose To iterate
in sach loed step until, within the necegsary assumpiions on the varia-
tion of the material constante and the numerical itime integratiocn scheme
uged, Eg, 2.1} is satisfled within s redquired tolerance, The equations
gsolved in the iterstion depend on the nonlinsasr finite element formula-
tion used, and are extsnsions of the incrementsl equations derived in
Chapter 3. Considering ess before s single finite element, in the T.L,
formulation the equatisn ussd for itsrstiom iz obtained from Eq. (3.9},

and is written as
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( ;KL + gKNL y oo P t+&gy<i“1} oo Aty (5.12)
i =1,2,3 ...
where t+ﬁtu(i) = t+étu{in1} + au(i)
1t should be noted that for i = 1 Eg. (5.12) corresponds to
eq. (3.9), t.e. o= ou, UHA,) o A Lt O Ly ana
t+A;F(G) = gF .

t+gtﬁ(i)

The caleulation of the acceleration approximation depends

on the time integration scheme used.

. e t+At (1) -
The vector of internal resisting forces OF is the finite
t+ i + i .
element evaluation of &3853) ét ﬁga;;) de , where the superscript (1)
0
v
shows that stresses and strains sre evaluated using t+Atu(1)m Since
t+AL £+AL t+AL
= u .+ .+ . .
5 083 BoCsguy o o+ 8oy 0%k, 1 %%, ;3 0%, So%,1 ’
we have
tHpaL (1) t+AL, (1)T t+pato (i) 0
OF = OBL QS dv (5.13}
0V
+4At + 4o {d
where the matrices t QéBéi) and E ﬁ;sfl) correspond to the matrices
;BL and zg in Table 4A, regpectively.

In the U.L, formulsiion the eguation used for a single element

with eguilibrium iteration is

au(i} = t+ﬁtR ~ t+AtF(i"1) . M t+Atﬁ(i)

£k pt (5,14)

in which the 1'th displacement and acceleration approximations are

t 4
caleulated as above and t+g:F(i) is the finite element evaluation of
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t+At (1) (1) t+At, (1) .
713 5t+ateij dv . -
t+AtV(i)
t+At (1) t+pt (1)T t+At. (1) t+AL . (1)
t+ﬁtF = t+ﬁtBL T dv {5.15)
t+Atv(i)
where the matrices tql."‘\“tli.(i} and t+ﬁt%(i) correspond to the matrices

t+AtTL

iBL and t% in Table 4B, respectively,

The equation used in analysis with material nonlinearities only
is obtained from Egq. (5.12), or Eq. (5.15), by assuming that the con-
figuration of the element does not change and that all strains are
small, i.e. products of displacement derivatives in the strain calcu-

lations can be neglected. In this case we obtain with the previously

used notation,

2

tK Au(i) - t+AtR _ t+ﬁtF(i-1) - M t+5tﬁ(i) (5.16)
i=1,2,3 ...
where t+AtF(i) s the finiteielement evaluation of t+Atc§§) 6e;§) Odv
i.e., 0V
t+ﬁtF(i) = B; t+At%(i) Odv. (5.17)
OV

For an assemblage of elements which are described as linear,
materially nonliinear only, by the T.L, or the U,L. formulations, we have
corresponding to Eqg. (5.1) the following equilibrium iteration,

t (1)  _ t+AtR _ t+AtF(i-1)

XK Au t+Atﬁ(i) - t+&¢ﬁ(i)

- M (5.18)

1‘1,2’3 o8 0
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in which the iteration vectors are now defined for the element assem-
blage, and an appropriate convergence measure need be employved [ 401,
Equation (5.18) is used in the Newmark integration scheme, whereas using
the Wilson 6-method, the eguilibrium iteration is performed for time

t + 7.

The squilibrium iteratiom in Eq. (5.18) (and Egs. (5.12), (5.14)
and (5.16)) corresponds to a Newton iteration with a constant stiffness
matrix [40}. It should be noted that provided convergence occurs, and
the material description used is not path dependent, i.e. the material
i5 elastic or hyperelastic, the "exact’ solution within the assumption
of the time integration operator and the convergence tolerance is ob-
tained. It Ffollows alzo that in the dynamic asnalysis of geometrically
nonlinear systems with elastic or hyperelastic materials, we do not need
to form & new stiffness matrix in esch time step, but can assure solution
accuracy using equilibrium iteration, 1In the analysis of systems with
path dependent material properties, however, the solution path is
determined by the tangent stiffness matrix and sufficiently small load
steps are required for sclution accuracy,

In progfam NONSAP we can'épecify én interval of time steps for
Formation of r naw tangent stiffness matrix, and a second interval of
time steps in which equilibrium iterations are to be performed, Table
7 gives the step-by-step fime integration scheme used in the program.

It is noted that the same constants are defined for the Wilson &G-method
and the Newmark method in order to have one computer algorithm for both
integration schemes. In the iteration the convergence tolerance used
is the ratic of the Euclidian norms of incremental displacements and

total displacements.
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The importance of equilibrium iteration depends on the problem
considered, and ig more pronounced in problems which allow relatively
large load steps, i.e. the solution is not highly path dependent. If
equilibrium iteration is to be allowed, the subroutine calculating the
material law and stress components has to be programmed accordingly.

In program NONSAP, the curve descriptionm model and the variable tangent
moduli model have not bheen prepared to allow for equilibrium iteration,
since solutions using these models would probably always regquire small
load steps. The effect of equilibrium iteration in the analysis of
some problems using the other material models is demonstrated in the

next chapter.
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6. SAMPLE SOLUTIONS

The sample analyses presented in this chapter have been selected
with some main objectives, The first aim wag to present solutions which
demonstrate some of the analysis capabilities of program NONSAP. There-
fore, linear, geometrically nonlinear and materially nonlinear analyses
are presgsented, using the different formulations, elements and material
models available in the program.

A further objective was to study the accuracy and stability of the
solutions. Therefore, comparisons with the structural response predicted
by other researchers are given. 1In this context, the importance of
egquilibrium iteration in some analyses was investigated.

Since variocus nonlinear formulations have been tested in the
program, the important differerices had to he studied that are obtained
using the materially nonlinear only formulation, the 7T.L., U.L.,, U.L. (T
and U.L, (J) formulations.

Throughout this chapter reference is made to the theory presented
in the preceding chapters. The solutions have been obtained using the
algorithm presented in Table 7, in which the selected parameters were
tol = 0,001, nitem = 15, 8 = 1.4, § = 0.50 and ¢ = 0.25. Therefore, the
Newmark constant average acceleration method and the Wilson &-method
have been used with a maximum number of 15 equilibrium iterations and a
tolerance for three digit accuracy on the displacement vectors.

In the dynamic analyses nearly always one or two equilibrium iter-
ations werse sufficlent in each time step. In the static analyses the

number of iterations was dependent on the magnitude of the load steps
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used. An important problem is the optimization of the load steps in
nonlinear analyses. However, in this work, no specific attention has
so far bsen given to this problem; and no attempt was made in the static
response calculations to optimize the solution times (see Chapter 7).
But it should be noted that the order of all systems considered in this
report was small and the computer time used rather negligible.

In the sample solutions the time step used in an analysis is de-
noted by At and has been selected as a reasonable fraction of the
fundamental period, Tf, at time 0O of the structure considered., In all

dynamic analyses zero inltial conditions on the displacements, veloci-

ties and accelerations have been assumed,
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8.1 Static Collapse Analysis of a Simple Truss

The simple truss structure shown in Fig. 8.1 was analyzed for load
deflection response including material yielding and large displacement
gffects, BSince the loading was monotonically increased, the nonlinear
elastic stress—~strain model could be used to simulate the elastic-plastic
material behavior with strdin hardening,

Figure 6,1 shows the elastic-plastic displacement response of the
truss., As can readily be verified, since large displacement effects are
initially negligible, yielding of the diagonal truss bar occurs at the
load P = 18 kip, after which the displacements increase rapidly with

increasing load.
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6.2 Static and Freguency Analysis of a Tower Cable

The cable stretched between a ground anchor point and a tower
attach point shown in Fig. 5.2 was analyzed for static displacements and
fregquencies of vibration, The cable was modelled using 12 truss elements
of linear elastic material as shown in Fig., 6.2 . The initial tension in
the cable was 7520.00 1b, Insulstors weighing 510 1b each were
located at nodes 2, 4 and 6, and a cluster of 6 insulators totaling.

3060 1p was located st node 8, Nodes 3, 3, 7 snd 9 through 12 are
intermediate nodes located along the cable without insulators. The total
vertical load acting on the cable nodes was 5677.83 1b which includes
the insulator weights and the cable self-weight.

Figure 6.2 shows the cable in the static equilibrium configuration
with the total load applied. The nonlinear displacement response of
node 8 is shown in Fig., 6.3 . Twenty equal load steps with a new stiff-~
ness matrix being caleulated in every second step were used to reach the
final cable configuration, and an average of four eguilibrium iterations
wers performed in each load step. |

For the frequency analysils a lumped mass métrix of the cable has
beenn assumed to which the masses of insulators have been added. The
periods of vibration of the cable about the static equilibrium config-

uration are given in Table 8.
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Table 8 . Vibration Periods of Cable

in Static Eguilibrium

Configuration.

MODE PERIOD
NUMBER {8EC)
1 3.693

2 1.854

3 0,8571

4 0,8298

5 0.,86660
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6.3 Static and Dynamic Large Displacement Analysis of a Cantilever

The cantilever in Fig., 6,4 under uniformly distributed load was
analyzed using a finite element idealization of five 8-node plane stress
elements. 'The material of the cantilever was assumed to be igotropic
linear elastic (see Section 4.4.1).

Tire first purpose of the static analysis was to compare the results
obtained using the T.L., U.L.., U.L. (7)), and U.L.(F) formulations in a
Iarge displacement problem. 1In the U.L. (1) and U.L.(J) formulations the
stress and material law calculations have been carried out as described
in Section 4.4.4, where it should be noted that to prevent plastic re-
sponse the yield stress of the material was selected sufficiently high.

The purpose of the dynamic analysis was to test the Wilson 8§ and
Newmark integration schemes. The importance of eguilibriwm iterations
was also invegtigated,.

The static solution of the cantilever using the four available
formulations and a total of 100 equal load steps is shown in Fig. 6.5
and compared with an analytical solution obtained by Holden [20].
Excellent agreement beiween all solutions is observed. It should be
noted that the linearization imherent in the U.L.(T) and U.L.(J) formu-
lations, and the use of the same material constants E and V in all
formulations have in this analysis negligible effect.

The static solutions employing the four formulations have also been
obtained using only 5 equal load steps to reach the final configuration
of the beam, TFigure 6.6 shows the different response curves calculated,
where it 1s secn that the U,L, (1) and U,L.(J) formulations give in this

analysis a much better solution than the T.L. and U.I.. formulations.
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For the dynamic anglysis the T.L. formulation was selected.
Figures 5.7 and 6.8 show ihe results obiained using the Wilscn § aund
Mewmark Integration schemes. 1%t is seen that for a fime step Lt Efoflgﬁg
whors Tf is the fundamental period of the cantilever, the solutions using
the two integration mothods give practically the same results. However,
if AL ﬁ'Tf/QZ the egquilibrium iteration in the Newmark iptegration scheme
improves the solution a grsat deal, as shown in Fig. 8.8 . iIn this
analysis an average of 4 iterstiouns were required, Using the Wilson ©
integration wathod with 4t = Tf/ég the same improvement in accuracy could
not be obtained, since shortly before the ocourrence of the peak response,
the pguilibrium iteoration falled to converge.

1t should be noted that a maip characteristic of the cantilever is
that the structurs stiffens with increasing displacement, which, as shown
in Figs. 6.7 and 8.8 , results in s substantial decrcase in amplitude
and offective period of vibration. It is the stiffening of the structure

that can result in convergence difficuliies in eguilibrium iieration {401,
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6.4 Large Displacement Static Buckling Analysis of an Arch

The clamped circular arch shown in Fig. 6.9 was analyzed for
buckling due to a single static leoad using the T.L. and U.L. formulations
with cguilibrium iterations {4 1. The material of the arch was assumed
to be isotropic lincar elastic (see Section 4.4.1), Considering the
symmetry of the structure and loading, half of the arch was idealized by
twelve 8-node plane stress clements,

The purpose of this analysis was to assess the accuracy that can
he obtained with the ;tatic gsolution schemes used in NONSAP.

Figure 6.9 shows the calculated load-deflection cufve of the arch.
The differences in the digplacements calculated using the U.L. and T.L,
formulations were less than 2 percent.

The same arch was also analyzed by Mallet and Berke, who used four
"eguilibrium~based' elements [29). bPupuis et al. analyzed the arch with
curved beam elements, and used this example to demonstrate the conver-
gence of their Lagrangian and “updated’ formulations [11]. 1In the latter
formulation only the nodal points were updated, but not the geometry
within the elements. As shown in Fig. 6.9 , the results are very sensi-~
tive to the number of elements used and are not satisfactory. Dupuis
et al. also compared the calculated results with experimental results by
Gjelsvik and Bodner [15], whose predicted buckling load is about ten
percent lower than calculated by Mallet. However, it need be realized
that an arch with a parameter 3 = 11,86 is alrcady influcnced by antisym-
molric huckling modes, which, although possible in the experiment, have
not been taken account of in the analyses, The results obtained using

NONSAP are therefore satisfactory.



§
LINEAR 4EL. 4EL.
60 - SOLUTION / //
/
/ v
/ <
i
, e DUPUIS ET AL [11]
col S /7 — —UPDATED
/ / ———_AGRANGIAN
S/ _ BELEMENTS
f/ e
ry s - BEL.
/ // //
40 |- // 7 ~ 32EL J
J T T o
. 7 - TL.&U.L.SOLUTIONS
= ;; s WITH EQUILIBRIUM
= Y/l - ITERATIONS
a L /*? vy MALLET ET AL. [og]
2 f/ '?//
3 7 /4
/// R =i33.l4in
i " o h =3/16 in
0 / H l I b= 1.0in{WIDTH}
// R — L =34.0in
f !, LY é H =1.0%in
I R | Wo J 8 =73397°
- A = 0.188in?
1 I = 0.00055 in
¢ E =10x10%b/in®
TWELVE 8 NODE ELEMENTS v =02
FOR HALF OF ARCH )\:Bz%wsz
o | | l ]
0.0 0.l 0.2 0.3 0.4

VERTICAL DISPLACEMENT AT APEX W, [in]

FIGURES.S LOAD-DEFLECTION CURVE FOR A SHALLOW
ARCH UNDER CONCENTRATED LOAD



1285

6.5 gtatic Large Displacement Analysis of a Spherical Shell

The clamped shallow spherical shell in Fig. 6,10 subjected to
uniform pressure was analyzed using a finite element idealization of
eight 8-mnode elements {431. The material was assumed to be isotropic
linear elastic (see Section 4.4.1).

The purpose of this analysis was to test the accuracy of the static
solution schemes used in NONSAP.

Figure 6.10 shows the 1oad defection curve predicted by NONSAP
using the T,L. formulation. The results are compared with an analytical
solution of Kornishin and Isanbaeva {28}, and a finite element solution
of Yeh [52]. As shown, good agreement between the different solutions
has been obtained. Since equilibrium jterations were performed in
NONSAP, the oscillating behavior at the beginning of the post-buckling
range in Yeh's solution was not obtained.

The U.L. formulation gave almost indistinguishable results to those

of the T.L. formulation.



126

R =100 in
h=0.5in
8=7.1°

E = 3% 107 kip/in®
v=03

EIGHT 8-NODE 8
ELEMENTS FOR R
AXISYMMETRIC

ANALYSIS
15
0. 0
2
| mme |
ol< _
St
% e
-
g ”
& Lrvor
o
e 5 ——— ANALYTICAL SOLUTION
KORNISHIN & ISANBAEVA [2g]
- + YEH'S FE SOLUTION [52]
: | —0— T.L. SOLUTION WITH
EQUILIBRIUM ITERATIONS
0 —
0.0 0.5 1.0 i.5 20 2.5

DEFLECTION RATIO (W, /h)

FIGURE 6.10 LOAD-DEFLECTION CURVE FOR A SHALLOW
SPHERICAL SHELL



127

6.8 static and Dynamic Large Displacement Analysis of a Spherical Shell

The slastic spherical shell subjected to a concentrated apex load shown
in Fig., 6.11 was analyzed for static and dynamic response. The purpose of
the static analysis was to compare the NONSAP solutions using the differ-
ent formulations availesble with the solutions reported by Stricklin [47]
and Mescall {34], The aim in the dynamic analysis was to study the re-
sponse predicted using the Wilson-& and the Newmark integration schemes,

Figure 6,11 shows the static load-deflection respounse predicted by
NONSAP, Stricklin {47}, and Mescall [34]. Good agreement between the
different solutions has been obtained. In the NONSAP solutions, the T.L.
and U.I.. formulations wero used and no equilibrium iterations have been
performed, In addition, to assess the accuracy that may be obtained in
elastic-plastic analysis, the U.L,(T) and U.L, {J) formulations have been
used ag in the analysis of the cantilever (see Section 6,3 ). Figure
6.12 compares the T.L, fequnse predictions with two U,L, (T) and U.L, (J)
solutions. It is seen that the U,L,(T) and U.L.{J) solutions approach the
T.L. solution as the load steps become smaller. It should bhe noted that
this sclution behavior iz somewhat different from the one obtained in the
analysis of the cantilever (see Section 6.3).

The dynamic response calculated using the Wilson 8 and Newmark
integration methods when the apex load is applied as a step load is shown
in Figs. 6,13 and 6.14. 1t is observed that for this problem the differ-
ences between the solutiomns using eguilibrium iteration and not iterating
for equilibrium-are small, Tﬁe much larger response and period predicted
using nonlinear analysis is a result of the softening_behavior of the

structure with increasing load. It should be noted that in the ana1§éis
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of this highly nonlinear shell no difficulties were encountered using

the Wilson or the Newmark integration methods.
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6.7 Elastic Dynamic Snap Buckling of a Shallow Circular Arch

A dynamic buckling analysis of the circular arch shown in Fig.
.15 was carried out using six 8-node plane stress elements to idealize
half of the symmetric structure [4 1. The material of the arch was
assumed to be isotropic linear elastic (see Section 4.4.1).:

The purpose of this analysis was to assess the'accurac& that could.
be obtained using thé NONSAP dynamic solution algorithms..

In the énalyses the T.L. formulation was used. Thé uniférmly
distributed pressure 16ad was applied as a step load. The timestep AL
was.selected_gqual to 3.315 X 10-5 sec, which is approximately 1/70th of
the fundamenfél périod of~thé structure, Physical damping was not con-
sidered.

The arch is an example of Humphrey's analytical and experimental
inﬁestigation, who solved the governing differential equatiéh using an
analog computer [21}. Humphreys concluded that the buckling load of this
arch is not influenced by antisymmetric modes.

Figure 6.16 shows.the displacement response predicted by NONSAP
using the Wiisqn 8 integrétion schemé. The solution obtained
by Humphreys is élso showﬁ. In the figure, the deflection fétio A de-

"Tined as

average normal deflection w
average rise of arch=H/2

is used., The dynamic buckling of the arch occurs at that‘léad level at
which a sudden increase in the deflection ratic A is measured. Figure
6.16 shows that at Py = 0.190 the arch oscillates about a positicn of
approximately A.: 0.25, and that at Py = 0,200 the arch first snaps

through, and then oscillates about a position of approximately A = 2.5,
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Therefore, the buckling 1oéd predicted using NONSAP lies between po'm
0,120 and Py = 0,200, which is about five percent lower tﬁan predicted
by Humphreys. |

1t should be noted that for a load larger than the buckling load,
i.e. for Py = 0.25, the maximum responlse increases only little. The
results using NONSAP for Py = 0.250 are in essential agreement with
Humphreys”'results, where the slightly larger response agrees with the
ohservation that NONSAP predicted a smaller buckling load. The discrep-
éncies in the results can arise from approximations in elither analysis.
Humphreys' Series solution is based on the assumption of shallowness, 1i.e.
g and w ére measured vertically, and in the series solution only a finite
number of terms have been included.

It is noted that in a practical analysis damping should be incigded

and a longer time range may be considered as well.
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6.8 Large Displacement and Large Strain Static Analysis of a Rubber

Sheet

The rubber sheet shown in Figurc 6.17 was analyzed for the uniform
ond loading indicated. The purpose of this analysis was to compare the
NONSAP solution with experimental results of the static displacement
response of the sheet obtained by Iding et al. 122} {23]. The material
was assumed to be of the Mooney - Rivlin type, for which the experiments

2 2
gave €, = 21.805 1b/in” , C, = 15,747 1b/in .

2

Figure 6.18 shows the static displacement response of the sheet.

It is noted that the final displacement at the loaded end is of the order
of the original length of the sheet, at which stage Greep - Lagrange
strains of 1,81 are measured. The final configuration of the sheet was
reached in 4 oqual load steps with an average of 5 equilibrium iterations
in each step. Excellent agreement between the experimental results and
those predicted by NONSAP has been obtalned.

In order to show the large differences between the 2mnd Piola -
Kirchhoff and Cauchy stresses, the stress distributions at two gsections
at the application of the total lcad are given in Fig, 6.18. It should
he recalled that the integration of the Cauchy stresses must equal the

applied load, P; however, the sum of the 2nd Piola - Kirchhoff stresscs

does nol equal P.
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6.9 Large Displacement and Large Strain Static and Dynamic Analysis

of a Rubber Sheet with Hole

A plane stress analysis of the rubber sheet shown in Fig. 6.19 was
carried out. The purpose of this mnalysis was to test the capability of
program NONSAP to predict static and dynamic large strain response.

The material of the rubber sheet was assumed to be of Mooney -
Rivlin type. The specific material constants used for the hyperelastic

2 2
= 25 1b/in", C, = 7 1b/in". These constants

incompressible material were C 5

i
are based on an analyticel and experimental investigation of the rubber
sheet by Iding [22]. The finite element mesh used in the analysis is
presented in Fig. 6.19.

Figure 6.20 shows the static load-defliection curves for different
points on the sheet, In one analysis only 5 equsl load increments with an
aversge of 4 equllibrium iterations have been used to reach the final load
position with a displacement of more than 11 inches at point B, At this
stage Green -~ Lagrange strains of more than 4.5 are measured. The results
obtained are in excellent sgreement with those of Iding, The results of

Iding have been obtained with the computer program developed in [22], but
are not given in the reference,.

The dynemic analysis was performed for the step load shown in Fig.
6,21 using the Wilsan 6 and Newmark integration schemes. The selected
time step At was 0,.0015 sec, which is approximately 1/120 of the funda-

mental period 1, of the sheet, snd no physical damping was considered,

T
Figure 6.21 compares the displacement response predicted by NONSAP
using the twe integration methods., As is seen, practically the same

response was calculasted using the Wilson © snd the Newmark methods. In

addition, it should be noted that identical solutions have been obtained
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using cither integration scheme and an interval of stiffness reformation

of 10, 5 or 1 time steps (sse Table 7).
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6.10 fiastic~Plastiec Static Analysis of Thick-Walled Cylinder

The thick-walled cylinder in Fig. 6.22 subjected to internal
% _ pressure was anaiyzed using four B-node gxisymmetric elements, The
purposae of the analysis wag to study the accuracy that can bo obtainsd in
clastic-plastic analysis,
The material of the eylinder was assumod fo obey the von Mises

vield condition with clastic perfectly plastic response. The same

analysis was alsc carried out using The Drucker-Prager yvield condition

with material variables corresponding teo those used in the von Mises

condition, and identical results have been obtained.

since displacements and strains are small, the analysis of the
eylinder was carried out using the materially nonlinear only formulation,
Figure 6,23 shows the radial displacement response of the cylinder as a
functien of the applied load and Figure 6.24 gives the stress distribu-
tion through the wall of the cylinder at a given level of internal pres-
sure. Excellent agreement with the solution given by Hodge and White

has besn obtained [ 1981,
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§.11 Elastic-Plastic Static Analysis of Perforated Tension Strip

The perforated tension strip shown in Fig. £.25 was analyzed for
its elastic~plastic response, The material was assumed to obey the von
Mises yield condition with isotropic {(linear) hardening. In the finite
element idealization, Fig. 6.25, four— and eight-node elements have been
used, The purpose of this anslysis was to test the accuracy that can be
obtained using the elastic-plastic analysis options in NONSAP.

The analysls was carried out using the materially nonlinear only
formulation, Figure 6,26 shows the strain response at the point of
first yield as predicted by NONSAP and Zienkiewicz [53]. The results of
Theocaris and Marketos have been obtained by experiment [49]. 1In the

same figure, the final stress distribution across section A-B of the strip

is also given.

Figure 8.26 ghows that the experimental values for the maximum

strain response of Theocaris and Marketos [49) are slightly above those

calculated by NONSAP and by Zienkiewicz. This suggests that the actual

value of the yield stress oy in the experiment was slightly larger than
used in the analysis. However, good overall correspondence between the

solutions is observed.
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6,12 Elastic~Plastic Small Displacement Dynamic Analysis of Simply-

Supported Beam

The beam shown in Fig.6.27 was analyzed for the step loading
indicated. The material of the beam was assumed to be elastic perfectly
plastic using the von Misesg yield condition, In the analysis small dis-
placements were assumed, i.e., materially nonlinear only solutions were
calculated., The purpose of the analysis was to compare the sclutions
predicted by NONSAP with results reported by Baron et al., [ 31 and
Nagarajan and Popov [ 36].

Figures 6,28 and 6.29 show the response calculsted using NONSAP
with the Wilson 8 and Newmark integration gchemes. Using a time step
At = 0,5 x 10_4sec, which is approximately 1/100 th of the fundamental

period, T, , of the (linear elastic) beam, both integration schemes give

f
almost identical results,

In Fig., 6.30 the response is shown normalized with respect to the
static elastic deflection of the beam when subjected to Py The solutions
obtained by Baron et al, [3 ] and Nagarajan and Popov [36], who used a
rather large time step,; are also shown. Nagarajan only presented the
initial response sclution and did not use equilibrium iteration. However,
it should be realized that with too large a time stcop dinstabilities can
develop at a later time., Indeed, using At = 0.3 x 10~3 seconds and the
Newmark integration scheme, the sclution obtained by Nagarajan was also
proedictod using NONSAP. However, at a later time the sclution started to

oscillate until, at the maximum times considered in Figs. .28 and 6.29,

the solution was meaningless.
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The dynamic solution predicted by NONSAP shows the typical charsc-
teristics of elastic-plastic behavior; namely, since the system is soften-
ing due to plasticity, the effective pericd and amplitude of vibration of
the system are larger than in linear elastic response. Also, the mean
value of the beam mid-point deflection about which the beam is vibrating

is much larger than predicted agsuming elastic behavior.
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6,13 Elastic~Plastic Large Displacement Dynamic Analysis of a Spherical

Cap

The dynamic response of the spherical cap in Fig. 6.31 subjected to
a distributed step pressure p = 600 1b/in2 was calculated, The material
was assumed to obey the von Mises yield condition with linear isotropic
hardening. The purpose of this analysis was to compare the results ob-
tained using the various nonlinear large displacement formulations avail-
gble in NONSAP for elastic-plastic response calculations,

Figure 6.31 shows the dynamic response of the cap predicted using
the Newmark time integration scheme in linear analysis, materially non-
linear only anglysis, i.e. assuming small displacements and small strains,
and combined geometrically and materially nonlinear analysis. In the
fully nonlinear snalysis the solutions using the T.L., U.L.{T)} and U.L, {J)
formulations have been obtained. It is observed that all three formula~

tions predict sssentially the same response, The reason for obtaining

almost ldentical solutions lies partly in that the mathematical represen-
tation of the yield function is almost the same in the 2nd Piola -
Kirchhoff stress space and the Cauchy stress space. Namely, in problems
ot small strains but large rotations, such as in the analysis of shells,
the physical components of the Cauchy stress tensor in rotated (surface)}
coordinates sre approximately equal to the Cartesian components of the
2nd piola - Kirchholf stress tensor.

‘the solutions in Figure £.31 demonstrate the effect of including
different degrees of nonlinearities, It is observed that the materially
nonlinear only solution differs a great deal from the linear elastic re-

sponse, and that the effect of large displacements is also significant.
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The decrease in amplitude of vibration and increase in the wean deflec-
tion of the shell when nonlinearities are taken into account should be
noted.

The response of the cap was also calculated using the Wilson &
method and the results are given in Fig. 6.32. 1t should be noted that
essentially the same response is predicted using the Newmark and the
Wilson integration schemes.

A comparison of the results cbtained using NONSAP with those
calculated by Nagarajan [35] is given in Fig. 6.33. Nagarajan used
degenerate isoparametric elements, in which it is assumed that the trans-
verse normal stresses are negligibly small, This assumption affects the
effective stress patterns which control plastic leading ang contributes

to the different response predicted using NONSAP.
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6.14 Static Analysis of Variable Tangent Moduli Model Test Specimen

A simple static analysis of a one element test specimen under
cyelic loading was carried out. The material of the specimen was char-
acterized using the variable tangent modulil model., Figure 6.34 shows
the specimen with the static loading condition and the material param-
eters., Plane strain conditions are assumed.

The loading, unioading and reloading stress—-strain response of the
specimen 88 predicted using NONSAP is shown in Fig. 6.34, in which also
results obtained by Nelson et al. [38] are given. Good correspondence
is chserved., 1t should be noted that the model does not predict a

substantial hysteresis loop.
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6.15 biatlc Analysis of an Underground Opening

To demonsgtrate the use of the curve descripiion model with tension
cut-of{ capability, a simplified amalysis of an underground opening under
statlc overburden pressure was carried out. Figure 5.35 shows the under-
ground opening, the finite element mesh and the material dsta used. It
should be npoted that 4, 5 and 8 node elements heve been employed and that

¥ was only used in the in-situ ground pressure cslculations for the no-

tension model {see Section 4.4.6), i.e, only surfsce loading P = 2000

2
1b/ft per load siep was applied.

The analysis was carried out using the materislly nonlinear only
formulation, i.e. large displacement effects were peglected. The rock
material was assuméd to be a no-tenslon meterial with constant Young's
modulus and Poisson's ratio,

Filgure 6.36 gives the load~deflection relations for two points of

the opening. The influence of the no-tension material sssumption on the

displacemenis <an be observed., Figure .37 shows the c¢rack reglion around
the opening st two load lisvels,

The purpose of this sunalysis was to give an application of the
curvae description model with tension cut-off and to show gqualitetively
what results can be expscted. The masterial dsta, loading and the finite
element maesh have been chosen for demonstration purposes only. It is
spparent that the accuracy of the znalyvsis cap only be determined by
comparison with actual experiments, from which also the different matérial

properties need be determined,
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6.16 Static and Dynamic Analysis of a Simply Supported Plate

A simply supported plate subjected tamé—égﬁzgﬁiratedmmidwpoint load
wng analyzed for static and dynamic response, Figure 6,38 shows the
finite c¢lement idealization used for one quarter of the plate. In the
analysis, small displacemernts were assumed and the material was con-
sidered to be isotropic linear elastic (see Section 4.5.1). ‘The Gauss
integration order used in the derivation of element stiffness matrices
was two in the r,s and t directions.

It should be noted that the finite element idealization of the plate
is rather coarse and high sccuracy in the analysis cannot be expected.
Figure 6.39 shows the static and dynamic displacement response as predicted
by KONSAP. The same element idealization was also used in an analysis

with SAP IV [8]. Table 9 summarizes the frequency solution.

TABLE 9 VIBRATION PERIODS OF SIMPLY SUPPORTED PLATE

PERIOD (SEC)
Kirchhoff NONSAP NONSAP
MODE plate theory consistent mass lumped mass
1 0.2366 0.2260 0.2264
2 0.0684 0.0609 0.08668
3 0.0362 0.0328 0.0359
2 2 3

_+
3
i
3
.
————
3
S ———.
In
%!
+
e e
e
fi
-
it
T io



P
& £ = 0.0003 Ib sec?
10 16 |- : 2
E=3x107% ib/in?
V=028
l B b
008 sec
STEP LOADING
{ on one quarter plate) ¥

FIGURE 6.38 STATIC AND DYNAMIC ANALYSIS OF
SIMPLY SUPPORTED PLATE
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7. CONCLUDIRG REMARKS

The purpoese of this report was to present the analysis technigues
currently used in the ponlinear analysis program NONSAP. The finite
slement formulations, the actual finite elements implemented, the time
integration schemes used and the nonlinear material models available in
the program have been described. Sample analyses have besen presented to
demonstrate some of the current cepabilities of the program. In the
gonclusions below, important observstions made during the course of this
work are_summariéed and the need for further research in various areas is
pointed out. |

The isoparametric finite element formulations implemented in this
study have proven to be very effective, The T.L., U.L,, U.L.(T) and
U.L.{J) formulations are based on continuum mechanics principles and
inciude all nonlinear effects due to large displacemsents, large strains
and material nonlinearities. The analysis results obtained compars well
with experiments end other existing analytical and numerical solutions.

A natural gusstion is which one of the formulations should be
adopted for a specific problem. As shown in this work, the choice
hetwaan the diffsrent formulations is decided only by thelr relative
numerical effectivensas, and largely depends on the material deécription
amployed, i.e, whether the constitutive law is given corresponding to the
T.L., or the U,L, formulationg. In the final current version of NONSAP,
for slestic large defarmation Qnalysis, the U,L, formulation and the
T.L. formulation are made avallasble., However, for large displacement

and large strain analysis including material nonlinearitiss, currently
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only the T.L., formulation is made available, since nonlinear ééﬁé%itutive
relations are relatively easy to implement in this formulationm,

A number of material models have been programmed and tested,

Using & specific nonlinear material description it is important to note
the restrictions that ars imposed on the use of the model, In particu-
lar, a materisl description may only be applicable to certain loading
conditions or structural configurations. Since 1t is anticipated that
additional nonlinear material models will be required for different
analyses, NONSAP has beeﬂ written to allow inéorpor;ting material sub-
routines without chenges to the program.

For time integration in dynamic analysis, the Wilson § and Newmark
integration methods have been incorporated into NONSAP, Both schemes can
be used with equilibrium iteration, in which case the solution corresponds
to a modified Newton iteration within each time step. Without loss of
solution accuracy, depending on the nonlinearities, the equilibrium
iteration may allow to dispensge with the calculation of a new effective
stiffness matrix in each time step and in this way improve solution
efficiency. Also, in some analyses, lterations were found 1o be necessary
to obtain accuracy and possibly prevent solution instabilities. It should
be noted that equilibrium iterations always improve the accuracy of
analysis, and 1f convergence difficulties are encountered, the solution
without iteration is likely to be inaccurate,

With regard to futurs research, important development is needed in
practically all areas pertasining to nonlinear finite element analysis.

The formulation of appropriate constitutive relations to be incorporated in-

to the nonlinesr equations of motion will still require a great deal more
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atiention for various classes of nonlinear materials. This phase of

rgsoarch need be bhased on experimental investigations, In addition,

howaver, the formulations should be compatible with the computational
technigques used in order not to cause numerical instabhilities,

The stability, sccuracy and cost of nonlinear apalysis depends to a
large degree on the numsrical algorithms used and their effective com-
puter implementation. Practical nonlinear analysis is only possible with
the use of computers and the feamsibility of an analysis depends to a
large degree on efficlent computer programming of the theoretical pro-~-
cedured,

A grest dgal more research is requived for the design of reliable
time integration operators, including algorithms for the automatic selec-
tion of variable time steps, and variable load steps in static analysis,
in order to optimlzs the solution cost. Howsver, in this context, it
should bes realized that effective time integration schemes must be based
on congistent finite element formulations, inm which stable constitutive
relations are used, and on appropriate computer implementation., It 1sg
this interaction between the areas of numerical analysis, coatinuum
mechanics, cxperimentzl investigstion and computer implementation that
makes the development of a general nonlinear analysis program a formidable

and very rewarding challenge.
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