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Neon: System Support for Derived Data Management

Qing Zhang, John McCullough, Justin Ma, Nabil Schear, Michael Vrable
Amin Vahdat, Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage
University of California, San Diego

Abstract

Modern organizations face increasingly complex infor-
mation management requirements. A combination of
commercial needs, legal liability and regulatory imper-
atives has created a patch-work of mandated policies.
Among these, personally identifying customer records
must be carefully access-controlled, sensitive files must
be encrypted on mobile computers to guard against phys-
ical theft and intellectual property must be protected
from both exposure and “poisoning.” However, enforc-
ing such policies can be quite difficult in practice since
users routinely share data over networks and derive new
files from these inputs — incidentally laundering any pol-
icy restrictions. In this paper, we describe a VMM sys-
tem called Neon that transparently labels derived data us-
ing byte-level “tints” and tracks these labels end-to-end
across commodity applications, operating systems and
networks. We demonstrate that this mechanism allows
the enforcement of a variety of data management poli-
cies, including data-dependent confinement, intellectual
property management, and mandatory 1/O encryption.

1 Introduction

Information wants to be free because it has become so
cheap to distribute, copy, and recombine—too cheap to
meter. It wants to be expensive because it can be im-
measurably valuable ... That tension will not go away.
— Stewart Brand, 1987.

Two decades after Brand’s prescient statement, the
value of information, the ease of manipulating it and
the complexity of managing its use have only become
greater. Today commercial corporations, non-profits and
governmental bodies alike mandate a wide range of in-
formation management policies that govern who may
access data, how it may be accessed, and for what it
may be used. However, in today’s interconnected com-
puting environment such policies are generally far easier
stated than they are enforced. Indeed, entire industries
have emerged around providing and validating different
kinds of information “policy compliance” within the en-
terprise.

Consider the simple policy “any customer records

should be encrypted on disk.” Implicit in this statement is
the assumption that customer records can be easily iden-
tified and that there is a policy control in place that forces
the encryption of such information. However, in prac-
tice, neither is usually true. Most control mechanisms
mediate access to objects (such as files) and not the in-
formation contained therein. Moreover, commodity ap-
plications, operating systems and networks provide little
means for tracking the flow of information between such
objects. Returning to the policy example, while some
operating systems do provide interfaces to specify that
a particular file should be transparently encrypted (e.g.,
Windows XP’s EFS), this policy does not carry over to
derived data. Thus, if the file is compressed, if records
are “cut and pasted” into a new file, if it is sent over
the network, if it is attached to an e-mail, or if it is sub-
ject to any of a myriad of normal data manipulations,
the resulting data will be be laundered of any connection
to the original encryption policy. Put succinctly, operat-
ing systems and applications generally provide controls
only over information containers — such as files or net-
work connections — but not over the actual data they con-
tain. This failing is the Achilles heel that undermines the
practical enforcement of virtually all information man-
agement policies.

Solving this problem — without requiring changes to
existing binary applications or operating systems — re-
quires a transparent system-wide mechanism for tracking
information flow. Moreover, for today’s distributed en-
vironment, it is insufficient to simply track information
flow on a single machine, but this capability must apply
transitively across the network as well. In this paper we
describe how such a mechanism can be integrated within
a virtual machine monitor (VMM) and used to enforce a
wide range of practical information management policies
in a distributed enterprise environment. We demonstrate
this approach using a prototype system, called Neon, that
implements byte-level policy labels, called “tints,” that
are transparently propagated and combined as part of
normal instruction execution. Critically, this capability
requires no changes to applications or operating systems.

Moreover, Neon propagates tints across the network
and to and from storage, thus maintaining the binding



between a policy and any derived data. For example, con-
sider the following scenario: a user opens a file over NFS
using emacs, edits its contents, selects a portion and then
pastes it into a separate mail application — in a differ-
ent window — then encrypts the message and sends it
to a third-party via SMTP. If the source file was tinted
“red” (an arbitrary designation) then packets containing
the message will be tinted red as well (at least in part).
Thus, if the red tint was meant to indicate confinement,
the policy can be enforced by dropping red packets. We
have used Neon to easily implement a variety of such in-
formation management policies, including network-level
confinement and access control, mandatory encryption,
enforced virtual private network use and licensing com-
pliance for compiled code.

This paper is structured as follows. We motivate the
need for transparent information flow tracking and de-
scribe closely related work in Section 2. Next we de-
scribe our overall design in Section 3 followed by a de-
scription of Neon’s implementation in Section 4. The
remainder of the paper, Section 5, describes the base-
line overhead added by the Neon prototype and describes
how the system is used in a variety of applications. We
summarize our findings and conclude in Section 6.

2 Background and Related Work

The need for information management policies is driven
by a range of concerns. These include protection of trade
secrets, third-party liability, and corruption of intellectual
property. Moreover, compliance with regulations such as
the U.S. Health Insurance Portability and Accountabil-
ity Act (HIPAA), the U.S. Sarbanes-Oxley Act and the
European Parliament’s Directive 95/46/EC all require re-
strictions on the use and disclosure of particular forms of
data and their derived counterparts. Finally, the combina-
tion of data loss disclosure laws (such as California’s SB
1386) and increased attention to attendant issues such as
identity theft and data piracy have focused considerable
attention on these issues.

Moreover, these are not mere hypothetical concerns,
but reflect growing reports of misappropriation, loss, or
misuse of data that should have been appropriately pro-
tected. For example, in one highly publicized case, a
staff member in the office of the U.S. House Majority
Leader was able to exfiltrate Judiciary Committee doc-
uments from the opposing political party by encapsu-
lating them within e-mails to a separate account [26].
Even more common are accidental exposures of private
data, either from employees who misunderstand the pol-
icy governing such data or through inadvertent sharing or
accidental sharing. For example, many popular applica-
tions implement versioned file formats that may include
information from previous versions even if it has been
deleted, or blacked out, using the application. Similarly,

many file sharing applications or indexing services are
easily misconfigured to export potentially sensitive data
without user knowledge.

Physical data mobility presents additional challenges
and stolen laptop computers have exposed a wide range
of sensitive data stored therein, including millions of
personnel records [21], classified intelligence docu-
ments [22] and credit card information [25]. Indeed, in a
2006 CSI/FBI survey of Fortune 1000 companies, nearly
half of all losses due to cyber security incidents were the
result of data loss/leakage of some type [14].

Finally, unmanaged data infiltration can sometimes
cause as many problem as data leakage. In particular,
the copyright of a software program is derived from the
provenance of its constituent source files. However, the
success of the open source movement has made it easy
to share source code across the Internet — potentially un-
dermining the qualities of derived works, open source
and proprietary alike. Indeed, violations of the Free Soft-
ware Foundations Gnu Public License are commonplace
in commercial products and yet most of these violations
are accidental [13].

In general, simply determining who is allowed ac-
cess to which information and how they may use it is
difficult enough, but enforcing such policies in a dis-
tributed environment poses significant challenges. Un-
derlying this challenge is the impact of networked com-
puters and the client-server architecture that together de-
centralize control over information. A document is rarely
stored in any single location, but may also be attached to
e-mails, posted to Wikis or Web pages, copied onto em-
ployee computers and laptops, indexed and copied into
a database, and so on. Thus, there are naturally a wide
range of points over which a policy must be enforced.

2.1 Existing Solutions

The commercial marketplace has responded to these
problems individually. For example, a new market — in-
cluding companies such as Vontu, Port Authority, Oakley
Networks and Fidelis — has emerged around “data leak-
age” protection. Users of these systems typically identify
confidential information, which is then transformed into
content fingerprints used to lexically scan network traf-
fic or application I/O requests to the operating system.
Thus, these systems typically operate under the assump-
tion that derived data will be textually similar to a corpus
of strings being protected. These approaches have the
benefit of detecting violations independent of how they
were generated (thus even data manually entered from
paper documents can be detected). However, these solu-
tions are inherently limited in dealing with derived data
and data transformation. For example, a file that is en-



crypted will bear no lexical similarity to the source file. !
Similarly, simple actions such as exerting small amounts
of data (e.g., a single cell in a spreadsheet) or convert-
ing a spreadsheet into an image or Adobe PDF file, may
make such analysis impossible. These systems also rely
upon a representative set of sensitive content and fuzzy
fingerprinting to identify content which may not detect
lexically innocuous content.

To address the problem of laptop theft, organizations
are increasingly requiring sensitive data to be encrypted
on mobile drives. This policy can be implemented ei-
ther as a software layer in file system (as with Windows
EFS) or block device interface (as with WinMagic’s Se-
cureDoc) or in hardware in the hard drive itself (as with
new drives being manufactured by Seagate, LaCie, HDD
and Stonewood electronics) [17]. The former represents
a protection that is too lenient (encrypted files can be
easily laundered of their encrypted status) or too severe
(unimportant files are subject to the overhead of encryp-
tion and the data loss risks associated with user-managed
authentication keys).

A similar situation exists for use of the network. Or-
ganizations are increasingly configuring laptops that en-
force mandatory use of corporate virtual private net-
works (VPN). While this ensures that private data on a
laptop will be protected on the Internet and will be sub-
ject to a corporations data inspection mechanisms (as
above) it can also create undue burden for access to pub-
lic data sources. Mandatory VPN use can be incompat-
ible with the firewall rules of local networks and incurs
unnecessary latency (and hence reduction in throughput
due to the congestion control behavior of the Transmis-
sion Control Protection (TCP)).

Finally, a completely different market has emerged
around validating the IP provenance of source files in
software development efforts. For example, companies
such as Black Duck and Palamida provide “IP com-
pliance” software that lexically matches source lines
against large corpora of known open source projects. The
strengths, and weaknesses, of this approach are similar to
data leakage products using similar techniques.

In general, the weaknesses in all of these approaches
relate to their inability to track the flow of information
independent of its representation. To wit, if it could be
determined unambiguously that a given data object was
derived from a source that requires confinement, encryp-
tion or a compatible copyright license, enforcing the as-
sociated policy would be vastly simplified.

2.2 Information Flow Tracking

The notion of tracking information flow arose over thirty
years ago in the context of security policy enforce-

!'As a fallback most of these systems are equipped to detect high-
entropy data transfers.

ment [8]. One major thrust of subsequent work, first pro-
posed by Denning and Denning, has been the use of static
analysis to provide efficient, high-precision flow track-
ing [9]. In this community, one of the best known ex-
amples of this approach is Myers and Liskov’s model
for static type-checking of program information flow la-
bels [19]. The subsequent Jif compiler, which operates
on an annotated version of Java, allows the combination
of both static and run-time checking to support dynamic
information flow labels [18].

However, despite the benefits of native language and
compiler support for information flow, virtually all sys-
tems and applications are written using languages and
compilers without such capability. Thus, another major
body of work has focused on the use of binary rewrit-
ing to provide transparent dynamic information flow
tracking for existing binaries. Most of this work has
been specifically motivated by control flow hijacking at-
tacks, such as buffer overflows, and typically involves the
“tainting” of program inputs, the dynamic propagation of
taint through program execution, and the trapping of con-
trol transfers to tainted target addresses [5, 16, 20]. These
approaches add significant overhead since each operation
that potentially propagates information flow must access
an ancillary data structure. Even the fastest of such sys-
tems introduces typical slowdowns of over 500% [3].
Moreover, binary rewriting systems typically only track
data-dependent information flow within a single program
and are not trivially extended to track information flow
between applications and operating systems.

Recently, several systems have implemented whole-
system taint tracking, using either instruction emula-
tion [6, 4], dynamic translation [23], or combinations of
these with virtual machine monitors [15]. This last ap-
proach, which is the basis for our own implementation
(described more fully in Section 4), can potentially run at
full speed when accessing untainted data and only slows
to propagate taint information. Thus, the total slowdown
is a function of the workload and is typically below a fac-
tor of two (although the worst case can be more than fifty
times worse).

To address the overhead of dynamic tainting, the com-
puter architecture community has investigated the use
of dedicated hardware support for dynamic information
flow tracking. Typically these designs can reduce over-
head to roughly 1% by adding an individual taint bit
to each register and storage location and automatically
propagating taint during memory and arithmetic opera-
tions [6, 27, 30]. A critical evaluation of such approaches
can be found in [7].

As with the binary rewriting systems, most architec-
tural proposals have focused singularly on detecting con-
trol hijacking attacks (hence only necessitating a single
taint bit and permitting a variety of propagating heuris-



tics for pointer arithmetic). One exception is the RIFLE
architecture which, similar to our system, anticipates the
value of a range of information flow labels combined
through computational dependencies [28]. RIFLE fur-
ther tracks implicit information flow that arises through
control dependencies, such as conditional branches, on
tainted operands. We view all of these architectural ap-
proaches as complementary to our own and the availabil-
ity of even limited hardware support for information flow
could clearly be used to improve the performance of our
system.

Finally, a number of systems have explored making
information flow a first-class operating system abstrac-
tion. For example, the Asbestos and Histar systems ex-
port first-class information flow labels that are explicitly
managed by programmers and directly interpreted by the
operating system [12, 31]. This permits both a very ef-
ficient implementation of information flow tracking and
allows application semantics to be tightly and precisely
bound with the information flow policies of interest. This
part of the design space is of great interest in influencing
the construction of future operating systems, but is not
well-suited to enforce fine-grained information flow be-
tween legacy applications and operating systems.

3 System Design

As we have discussed, the design space for tracking in-
formation flow is large and mirrors the range of applica-
tions and constraints faced by system builders. We have
no illusions of providing a fully general approach, but in-
stead have designed our system around what we believe
are the needs of the existing enterprise environment.

3.1 Design Goals

Our design is driven by the following goals and con-
straints:

e Transparency. While there is a range of approaches
for tracking information flow, many of them require
changes to applications, operating systems or both.
By contrast, we focus exclusively on supporting
legacy environments and thus only consider infor-
mation flow mechanisms that are transparent to the
applications and systems they monitor.

e Fine-grained tracking. Since our need for trans-
parency precludes access to application semantics,
we cannot precisely name objects or data structures.
To make up for this limitation, we track informa-
tion flow at the granularity of individual bytes. We
could have chosen a more coarse-grained approach,
such as file-level tracking, but this would not track
shared-memory communications (e.g., such as to
cut buffers or to window managers) and would re-
quire excessive conservativism for applications that

manage multiple files (e.g.., editors or mail transfer
agents).

e /O enforcement. In a traditional reference monitor,
an enforcement predicate can be evaluated at arbi-
trary granularity (e.g., each instruction). However,
such an approach is overkill in the enterprise envi-
ronment, since each client host is typically used by
a single user at a time and data is only shared via
the network or storage. Thus, in our design, we en-
force information flow policies exclusively during
I/0. This approach also simplifies any implementa-
tion since low-level I/O actions typically use canon-
ical representations (e.g., disk block, IP datagram)
that are straightforward to interpret.

e Orthogonal policies. While traditional taint track-
ing systems focus on enforcing a single policy —
preventing control flow hijacking — we believe that
there are a range of distinct information manage-
ment policies that would offer real-world value if
enforceable. Moreover, many of these policies are
potentially orthogonal — a piece of data may require
encryption, network confinement, reference count-
ing (who currently has this data), limited data life-
time, and so on. Thus, we require the ability to track
multiple information flows and combine policies for
data derived from multiple sources.

Equally important as our design goals, are our non-
goals — what we do not hope to accomplish in this pa-
per. In general, we do not hope to enforce policy against
sophisticated adversaries. As Butler Lampson is fond of
saying publicly, “In computer security, the perfect is the
enemy of the good”. Our focus is on tracking informa-
tion flow within conventional applications, systems and
networks, being used in the manner they were intended
for. In particular, we do not strive to prevent covert or
hidden communication channels that might defeat in-
formation flow tracking (trivially an insider might write
down information and then re-type it from notes). More-
over, we are not currently concerned with adversaries
who write code to launder data dependencies into con-
trol dependencies, although we recognize that informa-
tion flow tracking purely based on data dependencies is
subject to this threat. > Given that one recent survey of
145 information security breaches implicated employee
negligence in over 75% of incidents, our focus seems ap-
propriate [10]. Finally, while acceptable performance is
always desirable, performance optimization is not a goal
of this paper. Our focus is to show the general applica-

2For example, an adversary able to introduce new code could
trivially launder tint using a simple program: foreach bit b
in the input; if (b == 1) then output 1 else
output 0;



bility of our approach rather than to demonstrate the best
method for implementing it.

3.2 Abstract Design

In our design, each byte of memory is associated with a
separate 2" bit label called a “tint” (a pun on taint). Each
bit position is used to represent a distinct policy and thus
a tint can represent any combination of n policies. Data is
originally tinted using a special administrative tool. We
envision this tool will be restricted to carefully managed
file servers, which will subsequently make data available
to other clients.

Upon loading any tinted memory location, the asso-
ciated tint is automatically propagated to any target reg-
ister or memory location. Similarly, stores from a tinted
register propagate the tint value to the target address. As
well, stores from untinted registers untint the target, en-
suring that tint does not grow forever. The target operand
of arithmetic instructions is tinted with the logical OR of
its source operands. Colloquially, if one adds the contents
of a blue register and a red register, the target is tinted
purple. As described earlier, our initial design does not
not attempt to handle implicit control flow arising from
conditional branches on tinted registers. This is a difficult
problem to handle precisely and the naive approach — as-
signing the tint of the branch operand to all subsequent
instructions — is needlessly conservative. However, we
have not found situations where this sort of transforma-
tion occurs within our design target of normal application
and system use.

When a tinted buffer is provided to the network or disk
interface, its corresponding tint should be associated with
the data. For example, each network packet could carry a
header specifying the tints of its encapsulated data bytes.
Similarly, an inbound I/O labeled with tint must be cor-
rectly propagated to the receiving buffer.

We assume that the memory holding tint values is pro-
tected from the operating system and application soft-
ware being run and thus is only changed through nor-
mal information flow activity. Moreover, we assume that
the network is secure and protected from tint manipula-
tion (this restriction can be relaxed if we permit cryp-
tographic integrity checks on each packet). Finally, we
assume that all systems on the network participate in
monitoring information flow. This assumption can be re-
laxed if each packet is authenticated and encrypted with
a secret key known only to participating systems. In this
case, non-participating machines would be able to ex-
change untinted data, but would be unable to receive
tinted packets or generate valid instances of newly tinted
data.

4 Implementation

In this section we describe the Neon prototype system, its
construction and the tradeoffs we made for ease of imple-

Physical Address
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Figure 1: Tint Table Data Structure

mentation. We specifically describe how memory tinting
is represented, how it is transparently propagated both on
local hosts and across the network, how we introduce tint
to the system and how we enforce tinting policies.

Our implementation is based on the 3.0 release of
the Xen Virtual Machine Monitor (VMM) [11] com-
bined with the demand emulation modifications of Ho et
al. [15]. In this environment, applications normally exe-
cute natively on the raw hardware as does the operating
system with minor modifications to efficiently interact
with the VMM. Later versions of Xen, working in con-
cert with architectural extensions such as Intel’s VT and
AMD’s SVM, provide support for a fully—virtualized hy-
pervisor. Our use of paravirtualization is incidental and
does not bear on the system implementation in any sig-
nificant way.

A processor emulator provides demand emulation —
QEMU [1] — that executes in a privileged VM context
(dom0). Thus, when individual instructions must be emu-
lated to propagate tint, control flow is redirected through
the VMM to the emulator along with a comprehensive
description of the current processor state (roughly 350
bytes in total). Exiting the emulator occurs in the same
fashion, vectoring through the VMM to restore the up-
dated processor context.

4.1 Neon Data Structures

Neon maintains byte-level tint for each machine byte
(i.e., a byte interpreted as a physical address by the guest
OS) that is tinted. We allocate this memory dynamically
using a multi-level table, similar to a page table, to main-
tain a compromise between space efficiency and lookup
overhead for sparse allocations. Thus, as shown in Fig-
ure 1, the first 12 most significant bits of a byte address
index into a first level table, which in turns uses the 12
bits to reference a second-level table each entry of which



points to an array of 256 tint elements. Each tint ele-
ment is 32 bits wide, allowing 32 distinct tints to be rep-
resented orthogonally — a number that significantly ex-
ceeds our present need for distinct policies. Thus, in the
worst case — if every byte were tinted — tint overhead
could be four times that of allocated memory. However,
it is likely rare in practice that all tint combinations are
in use. Thus, an obvious optimization is to distinguish
between a canonical tint representation (32 bits) and a
compact label that is simply an index into specific tint
combinations that are in use. In our experiments such an
optimization could reduce memory overhead by a fac-
tor of five or more. However, for ease of debugging the
system we have solely used the larger canonical repre-
sentation.

To speed lookups and help implement tint faults in
the guest VM, we also maintain a per-machine page
bitmap indicating which machine pages contain at least
one tinted value.

Finally, we provide a fixed array data structure to track
32 bits of tint for each data register. We do not track
precise tint through control registers since these should
never be loaded with tinted data; thus a single bit — cor-
responding to any non-zero tint value — is sufficient to
detect this case.

All of these data structures are implemented in Do-
main 0, within the address space of the QEMU emulator.
We choose this location for convenience since it did not
require any interfacing with the VMM; however it im-
poses unnecessary overheads when performing 1/0 and
handling tint faults, as we will discuss later.

4.2 Propagating Tint Locally

Propagating tint requires the invocation of the emulator
and thus a means to involuntarily transfer control from
the VM when a tinted address is accessed — a tint fault.
While the Intel architecture does provide a means for
byte-level address traps through the DRO-DR3 registers,
this mechanism is limited to only four addresses at a time
and thus is only appropriate in very limited settings (in
which less than 16 distinct bytes require monitoring).
Instead, the demand emulation code approximates this
mechanism by unmapping machine pages containing
tinted values. Upon such a page fault, control is vectored
to the emulator (since this is where the tint data struc-
tures are stored) and the target address is checked to see
if is tinted. If so, the address is used as part of a mem-
ory load then the destination register’s tint value is re-
placed with that of the target. If the address is part of a
store then the destination addresses’ tint value is set to
that of the source register (typically zero if this is the
first such fault). Regardless, subsequent execution pro-
ceeds within the CPU emulator (system calls and syn-
chronous faults are vectored back through the VMM to

the guest virtual machine) obeying the same tint propa-
gation rules. When memory addresses are untinted (and
associated data structures reclaimed) they are overwrit-
ten with a literal or untinted source register.

In addition, we have modified QEMU to propagate tint
across instructions that maintain both source and target
data registers. Thus, tints may be combined as a side ef-
fect of arithmetic operations or address arithmetic (such
as indexed addressing). We do not currently implement
idiomatic optimizations such as removing tint as a re-
sult of xor reg, regorsub reg, reg optimiza-
tions [4]. To exit from emulated mode we use the heuris-
tic of Ho et al. and do so after 50 memory references
have not accessed tinted data and all live registers are
free of tint. This heuristic is admittedly untuned and can
introduce significant overhead when sparsely tinted data
is located on pages with high reference locality. In the
worst case, accessing a page containing tinted data can
incur long emulation overheads even if the tinted data is
never accessed itself. Similar to the false sharing prob-
lem in multi-processor memory coherency protocols, this
arises from the mismatch between the granularity of the
faulting mechanism and the granularity of access. Finer-
grained memory fault mechanisms, such as Qin et al’s
ECC-based trapping would reduce this mismatch and
hence reduce unnecessary emulation overhead [24].

4.3 Propagating Tint Remotely

To ensure that data tints propagate remotely, we in-
voke the QEMU process for each tinted outbound packet
buffer and insert the associated tint into the packet
header. For convenience, we reuse the 8-bit “Type of Ser-
vice” (ToS) field in the TP packet header to specify tint
values. The tint encoded in the TOS field applies to a
packet’s entire contents. Since packet reception and for-
warding are atomic events, this coarse granularity makes
little difference for the implementation of enforcement
actions. However, if the recipient of the data uses it to
further propagate tint this may lead to spurious tinting.
A finer-grained packet tinting representation is possible,
but could require variable length packet headers and the
associated software complexity.

Inbound packets are handled in a similar fashion.
Packet buffers are vectored to the QEMU process where
their header fields are inspected for tint labels. If so, this
tint propagates to the buffer containing the packet, which
is mapped into the address space of the guest OS and
propagates normally thereafter.

4.4 Creating Tint

Our system provides no native means to introduce tint on
a client workstation. We envision tint as being managed
centrally over the set of files needing specific protections.
Thus, all tint in our system originates, deus ex machina,
from a modified NFS file server.



Administrators of the file server can set per-file tint ex-
plicitly through an interface that overloads the file’s GID
field. Moreover, files that are written from clients store
their tint values in a similar fashion. Again motivated
by convenience in prototyping, this approach allows easy
modification of tint using the existing chgrp program.

‘We choose not to modify the NFS server code itself but
instead implement a network-level filter for packets ar-
riving to or leaving from the server. In particular, we use
netfilter to queue all incoming and outgoing NFS pack-
ets to a user-space application which is able to interpret
packet-level tint representations [29]. This application,
called nfswall, performs two tasks: tint marking and tint
propagation. It can monitor, mangle, and in some cases
drop selected NFS packets. For simplicity, nfswall only
supports NFS over UDP because the boundaries between
RPC calls are clearly identified.

4.4.1 Tint Marking

Nfswall does tint marking by monitoring NFS traffic and
setting per-packet ToS bits appropriately for read reply
messages on tinted files. The procedure type of an NFS
reply message is not directly stored in the packets of
the reply; therefore, nfswall also monitors the RPC call
stream. We uniquely identify each RPC call by its RPC
XID, source IP address, and UDP source port stored in
an xid_entry structure. We use a call_entry structure to
store the procedure number of the call and the file handle
the operation is called upon. All call_entries are stored
in a hash table keyed by their corresponding xid_entries.
Together, these allow the procedure of each NFS reply to
be identified — and tint is propagated solely via read reply
messages. Since NFS version 3 includes file attributes in
the reply of all successful operations [2], we extract the
GID from the read reply packet to check its tint. The 8-bit
ToS field is not large enough to hold all possible GIDs;
hence, we map a small range of GIDs (GID 1001-1255)
as tinted (ToS 1-255) and all other GIDs as not tinted
(ToS 0).

NES replies are often larger than the link layer MTU
forcing the server to fragment them. We track read reply
fragments to appropriately mark their tint. We distinctly
identify a set of fragments using their IP source address
and IP identification fields and store them in a frag_entry
data structure. When nfswall encounters a read reply
with the “more fragments” (MF) flag set, it stores the tint
in a hash table keyed by its frag_ entry. Since iptables
cannot filter IP fragments based on the target port num-
ber, nfswall receives all IP fragments leaving the system
rather than just those on the standard NFS port 2049. Nf-
swall forwards any fragment that is not matched in the
hash table because it assumes it to be untinted NFS or
another protocol.

E Tinted Write
SetATTR Call
NES | SetATTR Reply | nfswall
Server i
Tinted Write
Dl .
Write Reply Write Reply

Figure 2: NFS Tint Propagation

4.4.2 NFS Tint Propagation

When a remote Neon client issues a write on a file or cre-
ates a new file on the NFS server, the tint of the file may
be different than the GID on the server because of mix-
ing with other tinted data. To remain transparent, nfswall
keeps its own table of file attributes keyed by the file’s
NFS file handle and interacts with the file system only
through NFS calls. It uses a zero padded opaque defini-
tion of a file handle from the NFS RFC to allow com-
patibility with any RFC compliant NFS server. Nfswall
tracks getattr replies to populate the file table with
the current attributes for each file. The attributes in the
file table may be out of date due to modifications to the
file locally executed on the NFS server. On an NFS write,
nfswall knows what the most up to date GID should be;
therefore, it only uses this table to reduce unnecessary
updates to the GID.

Upon receiving an NFS write call, nfswall checks
if the write call is tinted. If it is not tinted, nfswall
never explicitly clears the tint from the GID on the file
server. Due to the difference in granularity between Neon
hosts (byte-level tint) and the file server (file-level tint),
an untinted write does not imply that the entire file is
untinted. If the write call is tinted, nfswall looks up the
file handle in the file table and checks it against the GID
stored in the table. When there is a mismatch between
the GID of the write and the GID stored in the table,
it sets the GID on the file server to the new value. The
GID is propagated to the server before the tinted write to
prevent another host from accessing improperly marked
tinted data as shown in Figure 2.

To update the GID of a file, nfswall generates an
NFS setattr call which appears to originate from the
client issuing the write. The user performing the write
must have permission to change the GID because nf-
swall reuses the file handle and RPC credentials from the
write call. We use a raw IP socket to deliver the spoofed
setattr packet directly to the local nfs daemon. Nf-
swall randomly generates an RPC xid for the spoofed
packet which should not collide with another simultane-
ous request from the same host with very high proba-
bility. To make the spoofed setattr transparent to the
client, nfswall drops the outgoing reply message for the



spoofed setattr. The GID update appears to the client
to have been a server modification to the attributes which
it will retrieve on the access of on the file.

4.5 Tint Policy Enforcement

In general, Neon enforces tint policies at the network
layer, either in Domain O on the client host, or in a phys-
ically separate network firewall element.

In either case, we utilize iptables firewall rules to en-
force confinement policies. We use the u32 iptables mod-
ule to match arbitrary ToS values (including use of non-
standard fields and combinations). We can then drop,
reroute, or log the tinted packets as specified by policy.
Since all outgoing packets are processed and sent by the
Domain 0 kernel, we can disallow tinted data from leav-
ing the machine at all as well as block it at the firewall.
The firewall is an iptables router which uses the same
ToS matching mechanism to enforce policy at the net-
work perimeter.

Neon does automatic I/0 encryption/decryptionin Do-
main 0. There are two modes in which we can encrypt:
Neon peer communications and NFS traffic. For all TCP
and UDP traffic to other Neon systems, we encrypt the
payload of all packets which contain tinted data using a
stream cipher (e.g., RC4, Xor substitution) with a fixed
shared key. In future work, we envision the use of more
powerful key management and cryptographic primitives.

For all traffic destined to and received from the NFS
server on port 2049, we automatically encrypt/decrypt
the payload of the write requests and read replies. Be-
cause we do not store information on which byte extents
of a file are actually tinted, we must assume that the
tinted data is already encrypted. Neon will further en-
sure that the data stays encrypted, either from edits to the
original or copying (or otherwise deriving) the file. We
also use only the Xor substitution cipher to avoid prob-
lems with stream alignment on subsequent writes to the
same region.

S Tint applications

We evaluate our proof-of-concept Neon implementation
by measuring both the overhead of various operations as
well as its performance in a variety of real-world scenar-
i0s. Our test setup consists of an NFS server, Neon hosts,
and a firewall. For single-VM tests, we used a local RAM
disk. For tests involving a remote storage server, we ran
a tint-enabled NFS Server (kernel 2.6.17) on VMware
Server 1.02 with 512 megabytes of RAM. Neon hosts
are guest virtual machines in a development release of
Xen 3.0 with Qemu 0.7.2. Each guest has 256 megabytes
of RAM and runs a Linux 2.6.12-xenU kernel. The fire-
wall uses iptables to enforce confinement policy and runs
a 2.6.12-xen0 kernel. All the test systems and Xen do-
mains are hosted on Dell PowerEdge SC1450s with two
2.8-GHz Pentium 4 Xeon processors and 2 GB of RAM.

5.1 Overheads

We performed a series of micro-benchmarks to measure
Qemu overhead, the effect of tinting and untinting opera-
tions on network throughput, and the timing overhead of
the tint tracking table.

5.1.1 Emulation

To begin, we measured the overhead of transitioning be-
tween Xen and Qemu on our hardware. On average, it
takes 51.3K cycles to transition from virtualized to em-
ulated execution (V2E), and 42.9K cycles to transition
from emulated to virtualized execution (E2V). These re-
sults are similar to previously published performance
measurements of Qemu in Xen [15], and show that our
implementation does not introduce a significant transi-
tion penalty to the existing Xen-Qemu implementation.

5.1.2 Network processing

In our prototype implementation of Neon, Qemu inspects
both incoming and outgoing packets to check for tint. Be-
cause Qemu executes as a user process, there is signif-
icant context switching overhead before a packet com-
pletely traverses the dom0O-gemu-domU path. Without
Qemu’s networking thread present, pinging a machine
on the local Ethernet segment from a guest VM has an
average round trip time of 0.19 ms in our configuration.
With the networking thread running, the average round
trip time increases to 5.6 ms. Pinging a host a few hops
away yields round trip times averaging 4.15 ms without
the network inspection thread and 9.54 ms with the net-
working thread, suggesting a constant additive latency
of approximately 5 ms in the current configuration. Be-
cause packet processing is dependent on a user process,
an increased load in domO will increase the latency of the
guest.

While sub-optimal, a minor increase in latency is un-
likely to impact most applications. More worrisome,
however, would be a decrease in network throughput. Us-
ing iperf, we measured the throughput of the loop-back
Ethernet device; the results are summarized in Table 1.
Latency has little impact on throughput when no tint is
present. As a control, we transfered ’tinted” data without
Qemu, meaning we set the ToS field manually to mea-
sure any possible impact due to special ToS handling.
Our results indicate a negligible difference in through-
put. When the Qemu networking thread is present, how-
ever, we see a 4.5% decrease in throughput when han-
dling tinted data.

5.1.3 Tint tracking

We also measured the time required to manipulate entries
to the tint tracking table when tinting memory, checking
for tint, and untinting memory. Specifically, we repeat-
edly tinted, checked, and then untinted X bytes of mem-
ory at the same address for a large number of iterations.



No-Qemu Qemu
Untinted || 94.2 Mbps | 94.1 Mbps
Tinted 93.3 Mbps | 89.1 Mbps

Table 1: Network throughput measurements with and
without the tint thread.

Tint (us) | Check (us) | Untint (us)
Machine word 0.056 0.057 0.043
Ethernet frame 5.84 6.38 1.67

Table 2: Time overhead of the tint table for tinting,
checking tint, and untinting a particular region of mem-
ory.

We initially set X = 4, since a primary method of prop-
agating tint through the CPU is the loading and storing
of 4-byte words. We also considered X = 1514 as the
network device is another critical pathway for importing
and exporting tint for the system.

Table 2 shows the results. For tinting 4-bytes at a time,
the table operations incur an overhead of 40-60 ns; MTU-
sized Ethernet packets incur roughly a 6-us overhead.
These numbers represent worst-case costs, however, be-
cause in this configuration, the tint operation will allo-
cate the maximum number of tables for the given mem-
ory range, the check operation will traverse the table to
the deepest level, and the untint operation will deallocate
every sub-table that was allocated during tinting.

5.2 Application performance

While the overhead associated with tint tracking are non-
trivial, we expect the vast majority of data to be untinted.
In this section, we provide performance measurements of
a number of real-world scenarios using tinted data to de-
termine the practical impact of Neon. Each experiment
is carried out on the test bed described previously. For
each test, we provide a use-case and quantify the over-
head due to Neon, both in terms of execution time and
memory consumption due to tint tracking.

5.2.1 Derived data

The test illustrates the concept of system-wide tint propa-
gation. Consider the following scenario (Figure 3): A file
A contains some amount of data tinted with the tint X.
A user retrieves A from the file server onto host 7, and
copies the contents of file A into file B. Now, when file B
is transmitted to other hosts (including the NFS server),
its contents are tinted appropriately. Additionally, we can
enforce confinement policy on the data at the firewall if
file B is ever transmitted across the network. Assuming
there are no other hosts that modify the file B, the pack-
ets containing file B should have the same tint as file A,
namely X.

) A Copy--
File P
NES reserves

Tint
H /|
Tint Aware ' File
Firewall : D B
) X

Figure 3: Direct derivation application

We implemented the various stages of this type of ex-
periment and give the performance results in Table 3. The
Local Copy test is the time taken to copy a 4-MB file
already retrieved from NFS to another file local to the
system. Consistent with our expected use case, the file
is sparsely tinted—one out of every 64 bytes is tinted.
The *'Remote Copy’ test takes a previously retrieved file
and copies it back to the NFS server. We see that the
performance of both operations is slightly degraded by a
factor of 2—10. There is considerable variance in the per-
formance, however, due to the fact that Qemu processing
is performed at user level as described earlier. In both
cases, Neon consumes slightly less than one MB of mem-
ory tracking the tinted bytes. Of course, the sparse tint-
ing represents a worst case: much more compact extent-
based data structures can be constructed for large con-
tiguous regions of tinted data.

5.2.2 Combining tints

In our next scenario, we consider combining data from
N different files each with unique tint values into one file
and sending it over the network. Given files A, B and C,
with tint values X,Y and Z, we append files B and C
to file A and send the resulting file over the network as
shown in Figure 4. The tint value observed in the packets
containing the modified A are XY Z. This test shows that
our system not only tracks tint values, but it performs tint
aggregation, and it uniquely identifies multiple sources
of tinted data.

We repeated the copy tests for varying number of
source files (with unique tints). We concatenated a vari-
able number of files with distinct tints together to form
a mixed tint output file. For Remote Copy, we combine
and copy the file back to NFS. Both the time overhead
size of the tracking data structures increase with added
tint complexity.

5.2.3 Automatic I/O encryption

Neon can also automatically encrypt tinted data before
it gets written to the network, or on disk. In our sys-
tem we treat the tint enabled NFS server as the the disk.
When Neon needs to send a packet with tinted data to
another Neon host, it automatically encrypts the TCP or



Non-Qemu (s) | Qemu (s) | Tinted (s) | Space (MB)
Local Copy 0.010 0.011 0.098 0.86
Local Copy (2 tints) 0.010 — 0.055 0.73
Local Copy (4 tints) 0.010 — 0.081 1.14
Local Copy (8 tints) 0.010 — 0.100 1.62
Remote Copy 1.279 1.136 2.002 0.90
Remote Copy (2 tints) 1.243 — 4.535 0.84
Remote Copy (4 tints) 1.450 — 5.056 1.30
Remote Copy (8 tints) 1.237 — 4.882 1.88
Local Compress 0.087 0.082 8.346 0.85

Table 3: Neon overhead for each application processing a sparsely tinted 4-MB file.

File
ABC
XYZ

Figure 4: Combining Tints

Packets Sent
Between I and NFS

IP
TICP
NES

]

—

K

Figure 5: Combining Tints

UDP payload with a shared key. Similarly, when the host
issues a write call with tinted data, Neon automatically
encrypts the payload of the NFS write leaving the RPC
and NFS headers clear text (Shown in Figure 5). Neon
automatically decrypts tinted data from peers or the NFS
server making the guest OS unaware of the process.

Because of the different in granularity of the NFS
server (file-level tint) and Neon (byte-level tint), auto-
matic disk encryption only works when a file is already
encrypted. Neon will ensure that any additional data is
encrypted or new files derived from encrypted content
(written in their entirety) are also encrypted. Hence, we
do not include the results in Table 3, but encrypting fully
tinted data decreases performance by a factor of 10-15
in our configuration.

5.2.4 Compression

Our system also handles tracking tint in compressed data.
Compression presents nontrivial complications to stan-
dard data taint tracking approaches because many com-
pression algorithms do not directly reuse any data from
the original file. The algorithms build the resulting com-
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pressed file using a table of substitution values (e.g., gzip,
bzip). Even though the tables introduce a level of indirec-
tion in constructing the derived data, Neon is able to han-
dle this scenario by propagating tint values in operations
that uses tinted values to index memory.

We performed the "Local Compress’ test by gzipping
a tinted file previously retrieved from the NFS server. As
shown in the table, the execution time slows by approxi-
mate a factor of 10, while requiring less than a megabyte
of tracking structures to compress a 4 MB file.

5.2.5 Compilation

As another common example of tint combination, we a
compile an executable using tinted headers. Consider the
that fileA.h is tinted X and fileB.h is tinted Y. The result-
ing executable which includes fileA.h and fileB.h will be
tinted X'Y. Additionally object files which only include
one header or the other will have tint X or Y. As a moti-
vating example, we compile the freely available gzip util-
ity from source. The results of our complication tests are
presented in Table 4. The time we give is to both compile
and link gzip. By writing the resulting executable back to
NFS, we can see that it retains the proper mixed tint. We
also note that intermediary object files from source which
includes the tinted headers are also tinted appropriately.

The data structures used to track tint are dynamically
allocated and destroyed as bytes are tinted. The space fig-
ures quoted in Table 4 are the maximal values during the
entire test. Figure 6 shows a representative time-series
of the growth of the tint structure as well as the num-
ber of tainted bytes in the system over time. We divided
this experiment into four phases to investigate impact of
the residual tint. In the first and third parts (labeled “Un”
in the graph), we compiled untinted gzip source. In the
second and fourth parts (labeled “T”) in the graph, we
compiled gzip with two tinted source files (same as in
the “Compile with 2 tinted files” experiment in Table 4).
We observe a few trends.

First, tinted compiles results in an increase in both
tinted bytes and tint structure overhead. Second, we see
the first untinted compile results in no overhead, as ex-



Non-Qemu (s) | Qemu (s) | Tinted (s) | Space (MB)
Compile (1 tinted file) 13.711 15.009 18.466 0.41
Compile (2 tinted files) 13.700 15.065 86.268 0.81

Table 4: Compilation of gzip with tinted headers.
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Figure 6: Memory consumed by the tint-tracking data
structures while compiling gzip with a tinted header file.

pected — aside from the fixed cost of the top-level tint
table. The other interesting trend is that the tint overhead
and number of tint bytes decreases during the second
untinted compile phase. This reflects that data will not be
untinted until another application claims and overwrites
the same memory.

5.2.6 Copy & paste

In this test, we exercise the propagation of tint through
common application usage. We copy and paste (Figure 7)
a portion of a tinted file into an alternative file. To verify
that the tint has been preserved, we copy the derived file
back to the NFS server. We can see that the tint value
is preserved on the NFS server, furthermore the packets
containing the tint data are appropriately marked.

The figure illustrates how we executed our exercise.
We start with two instances of Xemacs, We open and
copy a portion of a tinted file containing social secu-
rity numbers from the first instance of XEmacs into the
second. We proceed by copying the derived file to the
NFS server. We affirm that the packets with tinted data
are marked correctly by examining them with Wireshark,
more over we ensure the tint values are propagated to the
NFS server.

5.2.7 Multi-hop tests

In the previous tests, we propagated tint only to the NFS
server or other local VMs and not to other Neon peers.
Here, we verify the ability of Neon to attribute data from
multiple hops while mixing tints.

Consider the following general scenario: host I re-
trieves a file A with tint value X and sends it to host J.
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Figure 7: Copy & paste between two XEmacs sessions.

Host J already has some tinted data with tint X . Host J
then combines file A with another file B with tint Y. This
date when propagated to a peer or to NFS will be tinted
XY. This test demonstrates that tint values are propa-
gated on along multiple hops through multiple machines
within a network.

We performed an example of the above test using scp
to demonstrate multi-hop encrypted tint tracking. We re-
trieved a 4-MB file with a tint value of 0x2 and used
scp to copy A to another Neon host. We examine the
tint value of A on the destination host by copying it back
to the NFS server. The tint value of X is properly propa-
gated on back to the gid of the remote file.

A more advanced example of this type of scenario is
for port forwarding. We ran the following test: We used
ssh to port forward the same scp test described above
through a third machine running Neon. Though the extra
host is just an intermediary and does not store the data,



the source tint is still propagated to the final destination.

6 Conclusions

Mandating restrictions over information use is a fool’s er-
rand unless one has a mechanism for enforcing their use
both on individual hosts and between them. Today few
such mechanisms exist that are both effective and com-
patible with existing operating systems and applications.
In this paper we have motivated the need for transpar-
ent system-wide information flow tracking for enforcing
policies on derived data. We have demonstrated the via-
bility of this approach using in a prototype system, Neon,
that propagates and combines orthogonal per-byte policy
labels. Finally, we have used these mechanisms to imple-
ment a variety of information management policies in-
cluding mandatory encryption of sensitive data, network-
based confinement and tracking copyright license com-
pliance.
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