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Abstract

The stochastic robustness of model predictive control and closed-loop scheduling

by

Robert D. McAllister

Uncertainty is inherent to all science and engineering models. Any algorithm proposed

to design, schedule, or control an industrial process must therefore be robust, i.e., the algo-

rithm must be able to withstand and overcome this uncertainty. In this dissertation, we focus

speci�cally on model predictive control (MPC), the advanced control algorithm of choice for

chemical process control with a growing list of applications in several other engineering dis-

ciplines as well. For deterministic descriptions of this uncertainty, MPC is known to be robust

to su�ciently small disturbances. This robustness is a�orded by feedback and does not re-

quire any characterization of this uncertainty within the control algorithm.

Stochastic descriptions of uncertainty, however, are often better suited to model the be-

havior of physical systems and have proven highly useful in a variety of science and engi-

neering applications. To that end, we expand the theory of robustness for MPC to address

these stochastic descriptions of uncertainty and establish that MPC is robust in this stochastic

context. We then apply this theory to the emerging �eld of stochastic MPC (SMPC), in which

a stochastic model of this uncertainty is used directly in the control algorithm. Through the

concept of distributional robustness, we further establish that SMPC is robust to uncertainty

within even the stochastic model used in the control algorithm. This result in fact uni�es

the analysis of both MPC and SMPC, thereby allowing a novel comparison of the theoreti-

cal properties a�orded by these two algorithms. We also demonstrate via suitable examples

that including stochastic information in a control algorithm is not always bene�cial to the

controller’s performance.
ix



In the second part of this dissertation, we consider the stochastic robustness of MPC to a

new class of large and infrequent disturbances, motivated by recent applications of MPC to

production planning and scheduling problems. Using these results and the MPC framework,

we then design a closed-loop scheduling algorithm that is robust to the large and infrequent

disturbances pertinent to production scheduling problems. This algorithm is further modi�ed

to address computational and practical limitations and is therefore suitable for large-scale

production scheduling applications.
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Chapter 1

Introduction

To remain competitive in an increasingly dynamic and global market, industries ranging from

chemical production and manufacturing to logistic services must continue to implement tech-

nologies that improve productivity, minimize environmental impact, and maximize pro�t.

Optimization o�ers a particularly attractive engineering tool to improve a variety of indus-

trial operations (Grossmann, 2012). By formulating the design, scheduling, or control problem

of interest as an optimization problem, the engineer can determine, unrestricted by personal

bias and heuristics, the optimal solution. The proper formulation of such an optimization

problem also allows the engineer to recompute an optimal solution with little marginal e�ort

if parameters and conditions of the problem statement change. Thus, optimization not only

provides an optimal solution to the problem of interest, but also o�ers an automated method

to generate such a solution.

A more direct connection between automation and optimization is apparent when op-

timization is applied speci�cally to dynamical systems and process control, as opposed to

the optimization of steady-state equations that characterize engineering design problems. In

these optimization problems, we typically solve for a trajectory of inputs or actions to be

implemented at speci�c times subject to a dynamical model of the system. These systems

may include more traditional process control applications (e.g., level or temperature control

in reactor) or higher-level problems in the enterprise decision hierarchy such as production
1
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Planning and Scheduling

Real Time Optimization

Controller

Plant

Figure 1.1: Typical automated decision-making hierarchy in a chemical production facility.

planning and scheduling (see Figure 1.1). However, disturbances such as price �uctuations,

model inaccuracies, and measurement errors all but ensure that the optimal trajectory com-

puted at one point in time is suboptimal at the next time step, regardless of the level of detail

included in the dynamical model. Thus, any algorithm that is proposed to address these

process control or scheduling problems should be robust, i.e., the algorithm must be able to

withstand and overcome relevant disturbances. The topic of robustness is therefore central

to the study of control and dynamical systems.

One method to provide robustness to these algorithms is to explicitly include disturbance

models in the optimization problem. This method is particularly appealing for problems with

signi�cant uncertainty and minimal recourse, e.g., the design of a chemical plant. For pro-

cess control and dynamical systems, however, the preferred method to provide robustness

is through feedback. In a feedback or closed-loop method, the algorithm responds to these

disturbances in real time as they are observed in the outputs of the plant. The archetypal

feedback control structure is depicted in Figure 1.2. Hence, the controller adjusts the inputs

to the plant based on these outputs to achieve a speci�ed goal of the control algorithm (e.g.,

2
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Controller Plant
Setpoints Inputs Outputs

Disturbances

Figure 1.2: A basic feedback control structure.

tracking a setpoint).

The essence of model predictive control (MPC) is precisely this combination of feedback

and optimization. By adjusting and resolving the optimization problem at regular and fre-

quent intervals, MPC provides a framework to combine the performance bene�ts of optimiza-

tion with the inherent robustness a�orded by feedback. Driven by its versatile framework

and industrial successes, MPC has become a popular advanced control algorithm among both

practitioners and researchers alike (Mayne et al., 2000; Qin and Badgwell, 2003). Although

originally developed for process control applications, recent computational and theoretical

advances now allow the formulations and theoretical results of MPC to be applied to signif-

icantly larger class of problems including higher-level production planning and scheduling

problems. We use the term closed-loop scheduling to describe the application of MPC speci�-

cally to production planning and scheduling problems.

Although powerful, feedback is not a panacea. If applied improperly or naively, feedback

can result in nonintuitive, undesirable, and even unstable behavior. Moreover, robustness is

not necessarily guaranteed by including feedback in a optimization-based controller. Thus,

the design and analysis of these feedback methods is imperative to implementing optimization-

based control and automation in practice. While appreciated in process control after many

years of research, these caveats of feedback are not always recognized in research �elds that

are just beginning to incorporate feedback in their algorithms, e.g., closed-loop or online pro-

3
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duction scheduling.

Under suitable assumptions, nominal MPC is known to be inherently robust to su�-

ciently small and persistent disturbances, e.g., perturbations, model errors, measurement

noise (Grimm et al., 2004; Yu et al., 2014; Allan et al., 2017). Note that we add the term nominal

to emphasize that no disturbance information is present in the MPC formulation or optimiza-

tion problem. This de�nition of robustness considers a deterministic realization of the distur-

bance and bounds the worst possible performance of the system subject to a given disturbance

trajectory. While this property is important and the deterministic description convenient, dis-

turbances in process control applications are usually driven by a stochastic process and not

an adversarial opponent. Thus, a stochastic notion of robustness o�ers an instructive com-

plement to the deterministic de�nition of robustness typically considered for MPC. While

the idea of simulating and analyzing a closed-loop system subject to stochastic disturbances

is hardly novel (see Kushner (1965)), theoretical results pertaining to the stochastic robust-

ness of MPC are unavailable. Even for stochastic MPC (SMPC) algorithms, which include a

stochastic disturbance model explicitly in the optimization problem, theoretical results are

often restricted to linear systems. Furthermore, these results assume that the disturbance dis-

tribution used to formulate the SMPC algorithm is equivalent to the disturbance distribution

of the underlying plant, an assumption that does not hold in any practical setting.

These limitations of the current theoretical results are particularly unfortunate because

they render any rigorous comparison of nominal and stochastic MPC impossible. Moreover,

there are applications of MPC, such as closed-loop scheduling, in which the most relevant

class of disturbances are not adequately addressed with deterministic robustness results. The

organizing theme of this dissertation is therefore: the stochastic robustness of model pre-

dictive control. Throughout these chapters, we introduce modi�ed and novel mathematical

techniques and de�nitions to analyze and characterize the robustness of nominal and stochas-

tic MPC to stochastic disturbances.
4
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1.1 Outline

We now brie�y introduce each of the topics covered in the following chapters and high-

light the major contributions in this dissertation.

Robustness and model predictive control

The term robustness is sometimes treated as an abstract or subjective concept in indus-

trial practice. In control theory, however, the term robustness is given a speci�c mathematical

de�nition that is constructed to characterize the qualitative notions of robustness that are de-

sired in most industrial applications. In general, these qualitative notions can be summarized

as: “small implies small,” i.e., an arbitrarily small disturbance produces a similarly small devia-

tion from the goal of the control algorithm. If instead an arbitrarily small error (e.g., rounding

error in an computation) can produce signi�cant degradation of the controllers performance,

the algorithm is not robust.

While the mathematical form of “small implies small” can be adequately captured with

the (relatively) recent advent of comparison functions, the remaining question is how to de-

scribe the goal or performance of the controller. Often, this goal is best described as deviation

from a speci�ed setpoint or target for the system, but applications of MPC in chemical en-

gineering may frequently de�ne and prioritize performance in terms of economic measures

represented by the stage cost prescribed to the MPC algorithm. We therefore de�ne robust-

ness in terms of both these potential measures of performance, i.e., distance to the setpoint

and value of the stage cost. For stochastic systems and therefore stochastic robustness, we

are faced with a similar question: What stochastic property of this performance metric is to

be considered? We select expected value as the stochastic property to use in these de�nitions

of stochastic robustness given the ease of interpretation and intuitive understanding inherent

to this property.

5



Introduction Chapter 1

These de�nitions of robustness are instructive in that they adequately describe what

closed-loop behavior is desired. As to how this closed-loop behavior is to be achieved, we

turn to the speci�c control framework of MPC. In nominal MPC, an approximate and nominal

model of the system dynamics is used together with a stage cost characterizing the objective

of the control algorithm to formulate an optimization problem. This optimization problem is

solved to determine an optimal trajectory of inputs (i.e., decisions) for the system, but only

the �rst input in this trajectory is implemented. At the next time step, the state of the system

is updated via feedback (e.g., measurements), and the optimization problem is solved again to

determine the next input to the system. A graphical depiction of MPC is provided in Figure 1.3,

in which the optimal trajectory at each time step, called the open-loop trajectory, is shown in

the gray region. The closed-loop trajectory, including the selected inputs and observed states,

is shown in the solid colors. This feedback is the key feature of MPC that provides the control

algorithm inherent robustness to disturbances.

In this chapter, we discuss in detail these de�nitions of deterministic and stochastic ro-

bustness for closed-loop systems. We then establish that the closed-loop system generated by

nominal MPC is robust in terms of these de�nitions of deterministic and stochastic robust-

ness, with respect to either distance to the setpoint or value of the stage cost, for su�ciently

small (but nonzero) disturbances.

Stochastic model predictive control

The robustness of this nominal MPC algorithm is achieved without incorporating any

speci�c disturbance information in the optimization problem. In recent decades, however,

advances in stochastic optimization o�er the possibility to incorporate disturbance informa-

tion directly in the MPC problem. Using the same feedback methodology as MPC, these

SMPC formulations also include a stochastic description of the disturbances in the optimiza-

6
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Figure 1.3: Diagram of an MPC controller. The optimal input and state trajectory at each
time step is shown in the gray region, while the implemented input and observed state are
shown in the solid colors.
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Figure 1.4: Sketch of an optimal state trajectory for an SMPC optimization problem. The
faded blue region shows the distribution of states for the optimal solution, while the solid
curve shows the expected value of the state.

tion problem, i.e., a probability distribution. Thus, the optimization problem is to minimize

the expected value of the cost function for a distribution of states generated by these dis-

turbances. A sketch of an optimal state trajectory and associated distribution are shown in

Figure 1.4. Note that the disturbances are added at each time step and the cost function is

evaluated based on the distribution of states and not the expected value of the state trajec-

tory.

The goal of SMPC is to produce an algorithm that is more robust than nominal MPC to

the speci�c disturbance and associated distribution of interest. There are, however, numerous

limitations to the current theoretical results available for SMPC with most of these results

restricted to linear systems. Moreover, the notion of “more robust” is not clearly de�ned,

resulting in an assortment of theoretical results that are not comparable to the theoretical

results derived for nominal MPC.

On the topic of SMPC, we provide two main contributions in this chapter. The �rst is

to clearly de�ne stochastic robustness for SMPC in a manner that subsumes the de�nition

of stochastic robustness used for nominal MPC. The de�nitions are therefore comparable.

We then establish that SMPC, under suitable assumptions, renders the closed-loop system

robust in this context for the speci�c disturbance distribution used to formulate the SMPC

8
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optimization problem. With these results in hand, the second contribution of this chapter is

compare, through theory and examples, the stochastic robustness of nominal and stochastic

MPC.

Distributional robustness

One the ubiquitous and yet most impractical assumption made throughout the entirety of

theoretical results, analysis, and simulation-studies for SMPC is that the stochastic description

of uncertainty used in the optimization problem is equivalent to the stochastic uncertainty

in the plant. In practice, these stochastic models are estimated from large volumes of opera-

tional data and therefore subject to their own type of uncertainty, often called distributional

uncertainty. As suggested by the name, distributional uncertainty refers to uncertainty in the

probability distribution used as a model for the system.

The somewhat tacit assumption is that feedback provides SMPC some margin of robust-

ness to these distributional uncertainties in the same manner that feedback provides nominal

MPC with some margin of robustness to disturbances. To the best of our knowledge, how-

ever, this conjecture is not proven, or even explicitly de�ned, in any SMPC literature. In fact,

we were unable to locate any suitable de�nition of distributional robustness for closed-loop

systems in the larger �eld of stochastic optimal control.

In this chapter, we present a novel de�nition of distributional robustness for closed-loop

systems, which uses the Wasserstein metric to quantify the di�erences between probability

distributions. With suitable modi�cations to the assumptions typically used for SMPC, we

then establish that SMPC is in fact distributionally robust to su�ciently small errors in the

stochastic model of the system. In Figure 1.5, we sketch three examples of potential distri-

butional modeling errors covered by this de�nition of robustness. Note that these errors also

include sampling-based approximations, as shown in the third plot of Figure 1.5, which are

9
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Figure 1.5: Sketches of potential errors between the probability distribution used in the dis-
turbance model (red) and the probability distribution of the disturbances in the plant (gray).

frequently necessary to solve the stochastic optimization problem generated by SMPC. With

this result, we address both inaccuracies in the dynamical model of the system as well as the

probability distribution of the disturbance. Moreover, we demonstrate that this result uni�es

the analysis of nominal and stochastic MPC for stochastic closed-loop systems.

Large and infrequent disturbances

These robustness results for nominal and stochastic MPC are strong in that they allow

any probability distribution for the disturbance, but weak in that they apply for only small

disturbances. While the disturbances encountered in most process control applications are

well described as small (e.g., model errors and measurement noise), this class of disturbances

is no longer su�cient for more recent applications of MPC in higher-level decision making

problems, e.g., the production planning and scheduling layer. In these higher-level decision

making problems, disturbances are often discrete-valued and best described as large. For ex-

ample, breakdowns or delays in a production scheduling problem can produce signi�cant

disruptions in the system and render a manufacturing facility unproductive for hours. In Fig-

ure 1.6, we show a comparison of the small, persistent disturbances typical of process control

applications and the large, infrequent disturbances encountered in higher-level planning and

scheduling problems.
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Figure 1.6: Example distributions for a small, persistent disturbance (left) and a discrete and
infrequent disturbance (right). Example disturbance trajectories drawn from these distribu-
tions are shown in the bottom plots.

These large disturbances, however, are also infrequent, in that the probability they occur

is small. For this class of large and infrequent disturbances, we therefore provide a di�erent

de�nition of robustness. This de�nition is strong in that allows large disturbances, but weak in

that it applies for only certain probability distributions of the disturbance. We then establish

that nominal MPC, under suitable assumptions, provides this property of robustness de�ned

for large and infrequent disturbances. Since the applications of interest in this chapter are

often time-varying, we also de�ne nominal MPC and these results for a time-varying system.

Closed-loop scheduling

In a scheduling problem, limited resources are allocated to complete tasks at speci�c

points in time and thereby achieve a speci�ed goal for a manufacturing facility or logistics

service. This speci�ed goal is typically a pro�t maximization or cost minimization objective.

An example manufacturing facility and potential schedule are shown in Figure 1.7. Over the

last three decades, an extensive body of literature has been developed that focused on for-

mulating these scheduling problems as optimization problems that can then be solved with

11
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Figure 1.7: Diagram of a manufacturing facility (left) with tasks 1-3 that must be run on
units 1 or 2 to consume/produce materials M1-M4 and a corresponding schedule (right) for
this manufacturing facility specifying task/unit/time assignment.

available optimization algorithms.

The world, however, seldom accommodates even the best of plans. In practice, distur-

bances also arise in the production planning and scheduling layer of facility operation in the

from of delays, breakdowns, and production yield losses. Note that the most pertinent class

of disturbances in production scheduling problems are large and infrequent. In closed-loop

scheduling, these disturbances are addressed with the same feedback structure used in MPC,

i.e., the schedule is reoptimized with updated facility information at regular intervals. By

casting this closed-loop scheduling algorithm in the framework of MPC, we can use the re-

sults developed for the stochastic robustness of MPC to de�ne and analyze the robustness

of closed-loop scheduling. While there are some simulation-based studies that investigate

the performance of closed-loop scheduling for speci�c case studies, there are no theoretical

results that de�ne or establish the robustness of these closed-loop scheduling algorithms.

In this chapter, we use the stochastic robustness results developed throughout this dis-

sertation to construct a closed-loop scheduling algorithm that is guaranteed to be robust to

large and infrequent disturbances. Though examples, we demonstrate that this de�nition of

robustness is appropriate for production scheduling and prevents the myopic behavior that

is allowed by more naive closed-loop scheduling algorithms. We then extend this algorithm

design and associated theoretical results to address practical implementation concerns such

as the computational demand of online optimization.

12
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1.2 Notation and basic de�nitions

We use fairly standard notation, but introduce some of this notation and some basic def-

initions to ensure clarity in the rest of this dissertation. Let I and R denote the integers and

reals. Let subscripts denote dimensions and subscripts denote restricts of the integers and re-

als (e.g., Rn
≥0 for nonnegative reals and I0:N for the integers {0, 1, . . . , N}). Let | · | denote the

Euclidean norm. If not otherwise stated, assume all ambiguously de�ned sets X are subsets

of the reals.

A function f : X → R is called lower semicontinuous if the set {x ∈ X : f(x) ≤ y}

is closed for every y ∈ R or equivalently lim infx→x0 f(x) ≥ f(x0) for every x0 ∈ X . A

function f : X → R is called upper semicontinuous if the set {x ∈ X : f(x) ≥ y} is open for

all y ∈ R or equivalently lim supx→x0 f(x) ≤ f(x0) for all x0 ∈ X . A function that is both

lower and upper semicontinuous is continuous. A function f : X → Y is called Lipschitz

continuous if there exists L ∈ R≥0 such that |f(x1)− f(x2)| ≤ L|x1− x2| for all x1, x2 ∈ X .

For X ⊆ Rn, f : X → Y is locally Lipschitz continuous if f(·) is Lipschitz continuous on

any compact subset of X .

Let B(Ω) denote the Borel algebra of the set Ω, i.e., the collection of all sets that can be

formed by countable unions, intersections, and relative complements of all open subsets of Ω.

A set F ⊆ Rn is Borel measurable if F ∈ B(Rn). A function f : X → Y is Borel measurable

if for each open set O ⊆ Y , the set f−1(O) := {x ∈ X : f(x) ∈ O} is Borel measurable,

i.e., f−1(O) ∈ B(X). A set-valued mapping denoted S : X ⇒ Y is the assignment of each

x ∈ X to a set S(x) ⊆ Y . A set-valued mapping S : X ⇒ Y is Borel measurable if for

every open set O ⊆ Y , the set S−1(O) := {x ∈ X : S(x) ∩ O 6= ∅} is Borel measurable, i.e.,

S−1(O) ∈ B(X) (Rockafellar and Wets, 1998).

13



Chapter 2

Robustness and Model Predictive
Control

As they form the basis of all subsequent topics discussed in this dissertation, we begin with

a thorough introduction to closed-loop stochastic systems, robustness, and model predictive

control (MPC). In addition to the introductory nature of this chapter, however, we also in-

troduce and justify a novel de�nition of stochastic robustness for closed-loop systems. We

then establish su�cient conditions for this de�nition of stochastic robustness and show that

this property is in fact implied by a more common de�nition of deterministic robustness

frequently used in MPC analysis. Moreover, we also introduce more general de�nitions of

robustness that depart from the notion of “distance to the origin” that is typical in control the-

ory. These new de�nitions instead address the robustness of closed-loop (stochastic) systems

with respect to some general performance metric de�ned for the system, e.g., an economic

cost function. With these new de�nitions and results, we then establish that MPC produces

a closed-loop system that is robust in both a deterministic and stochastic context and with

respect to the stage cost, i.e., performance metric, supplied to the MPC problem formulation.

14
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2.1 State-space dynamical systems

We describe dynamical systems via a state-space representation in which the system, at

each instant in time, is fully characterized by the state vector x ∈ Rn. Information about past

history of the system that remains relevant to the future behavior of the system is contained in

this state. The state of the system is in�uenced by the inputs u ∈ Rm that must be chosen by

some control algorithm. The goal of controller design is to de�ne a control algorithm for the

system in order to achieve a prede�ned objective (e.g., minimizing operation cost or tracking

a setpoint). The system may also be perturbed by a disturbance w ∈ Rq that is unknown

a priori, although we may be able to provide the control algorithm with a stochastic and/or

worst-case description of this disturbance.

Engineering models derived from conservation laws (mass, molecules, energy, momen-

tum) typically produce ordinary di�erential equations (ODEs) of the following form,

dx

dt
= F (x, u, w) (2.1)

in which F : Rn×Rm×Rq → Rn is the continuous time system model. Generally speaking,

the state x may be de�ned to include any variables such that (2.1) holds. The trajectories of

the state, input, and disturbance are functions of the time t ≥ 0 and denoted x(·), u(·), w(·).

Given (2.1), the state x(t) at some future time t ≥ 0 is then fully described by the initial state

x(0) and a the trajectories of u(·) and w(·) for [0, t].

We live, however, in the digital age and therefore control actions are rarely implemented

in a truly analog (continuous time) fashion. Instead, measurements and state estimates are

made at discrete time points with a �xed sampling interval ∆. The input is then de�ned as

a piecewise-constant function, i.e., a zero-order hold, such that the input is constant on the

interval [k∆, (k + 1)∆).1 Thus, discrete time representations of the system are common in
1Piecewise-linear inputs, i.e., a �rst-order hold, or higher-order polynominal functions are also used.
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control literature for both theoretical and practical reasons.

In discrete time, the system evolution is given by

x(k + 1) = f(x(k), u(k), w(k)) (2.2)

in which f : Rn × Rm × Rq → Rn is the discrete time system model. The trajectories of the

state, input, and disturbance are now function of the time step k ∈ I≥0 and denoted by the

sequences x := (x(0), x(1), . . . ), u := (u(0), u(1), . . . ), and w := (w(0), w(1), . . . ). Note

that for a constant sample time and constant input/disturbance, the continuous time system

in (2.1), assuming F (·) is a continuous function, can be converted, in theory, to a discrete

time system in (2.2) such that the discrete time states x(k) are equivalent to the continuous

time states x(k∆) for all k ∈ I≥0. In practice, however, continuous time nonlinear ODEs are

converted into discrete time systems via approximations such as Runge-Kutta or orthogonal

collocation.2

Often, the state of the system cannot be directly measured. Instead, the state must be

inferred or estimated from the measurements that are available. We denote these measure-

ments or outputs as y ∈ Rp. These outputs are then taken to be a function of the current state

x and input u along with a disturbance v ∈ Rp to represent measurement noise inherent to

instrumentation (e.g., pressure sensors, thermocouples) as shown in the following equation.

y = h(x, u) + v (2.3)

The mapping h : Rn×Rm → Rp, however, is not typically “one-to-one”, i.e., the value of x is

not uniquely determined by y and u, even if v = 0. Instead, we must estimate the current state

of the system from a trajectory of previous y’s and u’s. With this state-space representation,
2By contrast, linear ODEs, i.e. dxdt = Ax+Bu+Gw, can be exactly discreteized (to within machine precision)

via matrix exponentials.
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controller design is typically broken into two separate problems: Determining this state from

past data is termed state estimation while the use of this estimated state in determining an

input is termed regulation. While the topic of state estimation is essential to MPC, we focus

this dissertation entirely on the regulation problem and therefore work with the state x, rather

than the outputs y.

2.2 Closed-loop stochastic systems

We consider the following discrete time system, written using shorthand notation,

x+ = f(x, u, w) f : Rn × Rm × Rq → Rn (2.4)

in which x ∈ Rn is the state, u ∈ Rm is the controlled input, and w ∈ Rq is a disturbance

(random variable), and x+ denotes the successor state. Frequently, the input is subject to

constraints (e.g., min/max �ow rates) denoted by the set U ⊆ Rm and therefore the input is

required to satisfy u ∈ U. We also use W ⊆ Rq to denote the set of possible disturbance

values, i.e., the disturbance must satisfy w ∈W.

We treat the origin (x = u = 0) as the steady-state target (setpoint) for the controller,

without loss of generality, and consider the following regularity assumption.

Assumption 2.1 (Continuity of system). The system f : Rn × U ×W → Rn is continuous

and satis�es f(0, 0, 0) = 0.

Note that this assumption is without loss of generality because any system x̄+ = f̄(x̄, ū, w)

and steady-state pair (x̄s, ūs) in the original variable space can be shifted to the origin via

deviation variables de�ned as x := x̄− x̄s and u := ū− ūs. The system is then given by

x+ = f(x, u, w) := f̄(x+ x̄s, u+ ūs, w)− x̄s
17
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and (x, u) = (0, 0) if and only if (x̄, ū) = (x̄s, ūs). Moreover, f(0, 0, 0) = f̄(x̄s, ūs, 0)−x̄s = 0

because (x̄s, ūs) is a steady state for the system.

We consider w to be a random variable and therefore (2.4) is a stochastic process. In

this dissertation, we use a measure-theoretic description of this random variables and corre-

sponding stochastic process. This measure-theoretic framework is particularly useful for the

analysis of stochastic MPC in the following two chapters. However, this framework is notably

di�erent than the treatment of random variables presented in many engineering courses. We

therefore de�ne and discuss these potentially unfamiliar topics in some detail before moving

to any discussion of robustness. We begin with the following assumption for the disturbances.

Assumption 2.2 (Disturbances). The disturbances w ∈ W are random variables that are

independent and identically distributed (i.i.d.) in time and zero mean. The set W is compact

and contains the origin.

Given Assumption 2.2, each random variablew has an equivalent probability measure that

we denote µ : B(W)→ [0, 1]. Recall that B(W) denotes the Borel algebra of the set W. This

probability measure maps an event, which is a Borel measurable subset of W, to a scalar value

between zero and one, which is the probability of the event occurring. While seemingly more

complicated than the typical treatment of random variables found in engineering courses, a

probability measure can be viewed as a generalization of a more familiar notion of probability

with the following relation.

µ([a, b]) = Pr (a ≤ w ≤ b)

in which both sides denote the probability that the random variable w ∈ R takes a value

between a ∈ R and b ∈ R with a ≤ b. The left-hand side, however, also admits a rigorous

de�nition as a mathematical object that we now introduce.

De�nition 2.3 (Probability measure). The function µ : B(W)→ [0, 1] is a (Borel) probability

measure on the set W if µ(∅) = 0, µ(W) = 1, and for all countable collections {Ei}i∈I of
18
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pairwise disjoint sets (Ei ∩ Ej = ∅ if i 6= j) satisfying Ei ∈ B(W) we have that

µ

(⋃
i∈I
Ei

)
=
∑
i∈I

µ(Ei)

Note that this de�nition is generally in line with our intuition. The probability that noth-

ing happens (µ(∅)) is zero and the probability that something happens (µ(W)) is one. The

last condition is in fact a generalization of a more familiar statement for 2 mutually exclusive

events:

Pr(A ∪B) = Pr(A) + Pr(B) if A ∩B = ∅

With this probability measure, we de�ne expected value as the following Lebesgue integral.

E [w] =

∫
W
wdµ(w)

which indicates that we are integrating the variable w, over the set W, with the associated

measure µ. Thus, dµ(w) replaces the (continuous) probability density function p(w)dw more

commonly found in engineering literature.3

One useful feature of the probability measure is that it provides a simple means to combine

discrete and continuous probability distributions into a single framework while avoiding the

Dirac delta function. Instead, we use the Dirac measure that we denote δw for some point

w ∈W and is de�ned as

δw(S) :=


0, w /∈ S

1, w ∈ S

for any S ∈ B(W). Thus, we can de�ne a discrete probability distribution with s ∈ I≥1

3If µ is absolutely continuous with respect to w, we can de�ne p(w) := dµ
dw in which dµ

dw is the Radon-
Nikodym derivative.
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discrete points of equal probability as

µd(·) =
1

s

s∑
i=1

δwi
(·)

in which {wi}si=1 denotes the sequence of discrete points. All of the subsequent results in

this dissertation therefore apply for discrete, continuous, and mixed distributions (e.g., µ =

(µd + µc)/2 in which µd is a discrete distribution and µc is a continuous distribution). The

bene�t of replacing the Dirac delta function with the Dirac measure is that we can easily

establish continuity for functions de�ned by integrals, regardless of the distribution chosen

for µ.

We useM(W) to denote the collection of all possible probability measures µ : B(W)→

[0, 1] that satisfy Assumption 2.2, i.e.,

∫
W
wdµ(w) = 0 ∀ µ ∈M(W)

Since W is bounded, the second moment of w is �nite. For any µ ∈ M(W), we denote the

covariance matrix of w as

Σ := E
[
(w − E [w]) (w − E [w])′

]
= E [ww′] =

∫
W
ww′dµ(w)

in which the equality holds because E [w] = 0 by Assumption 2.2.

For the i.i.d. random variables (w(i), w(i+ 1), . . . , w(i+N −1)) andN ∈ I≥1, their joint

distribution measure µN : B(WN)→ [0, 1] is de�ned as

µN(F ) := µ(Fi)µ(Fi+1) . . . µ(Fi+N−1) (2.5)

for all F = (Fi, Fi+1, . . . , Fi+N−1) ∈ B(WN). We also de�ne the sequence of random vari-
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ables starting from i = 0 to time step k ∈ I≥0 as wk := (w(0), w(1), . . . , w(k − 1)). For this

sequence, we de�ne the expected value of a Borel measurable function g : Wk → R≥0 as the

following Lebesgue integral.

E [g(wk)] :=

∫
Wk

g(wk)dµ
k(wk)

By presenting expected value as a Lebesgue integral, we can establish many useful and funda-

mental mathematical properties of the stochastic system that may remain unclear with typical

probability notation. These properties are particularly relevant in the subsequent chapter on

SMPC in which these Lebesgue integrals are evaluated within the optimization problem.

We now introduce the following results for random variables that are used throughout.

Jensen’s inequality: Let ω ∈ Ω be a random variable with the probability measure P :

B(Ω) → R. Let g : Ω → A be a Borel measurable function and φ : A → R be a convex

function. Then,

φ

(∫
Ω

g(ω)dP (ω)

)
≤
∫

Ω

φ(g(ω))dP (ω) (2.6)

and the opposite inequality holds for φ(·) concave.

Lemma 2.4. If Assumption 2.2 holds, then E [|w|] ≤
√

tr(Σ).

Proof. We use Jensen’s inequality to show that E [|w|]2 ≤ E [|w|2]. We then use the fact that

w′w = tr(w′w) = tr(ww′) and note that tr(·) is a linear operator to give

E
[
|w|2

]
= E [w′w] = E [tr(w′w)] = E [tr(ww′)] = tr(E [ww′]) = tr(Σ)

Thus, E [|w|]2 ≤ tr(Σ) and we take the square root of both sides to complete the proof.

A state-feedback controller, i.e., control law, is a function that determines the input u ∈ U

based on the current state of the system x. For MPC, this function is implicitly de�ned by
21
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optimizing a performance metric, i.e., the state cost `(x, u), over a �nite prediction horizon.

Typically, this optimization problem can be solved for only a subset of states X ⊆ Rn and the

MPC control law is therefore de�ned for only states in the feasible setX . Thus, we consider a

generic control law denoted κ : X → U and de�ned on some subset of the reals, i.e., X ⊆ Rn.

The resulting closed-loop system is then

x+ = f(x, κ(x), w) (2.7)

In general, the goal of this control law is to drive the state of the system to the origin, i.e., the

steady-state target, but other performance metrics and goals can also be considered.

To ensure that the iteration in (2.7) remains well de�ned, we must also ensure that the

state remains withinX for any possible realization of the disturbance. For optimization-based

controllers, this property is known as robust recursive feasibility of the optimization problem.

We characterize this property through positive invariance and robust positive invariance.

De�nition 2.5 (Positive invariance). A set X is positive invariant for the system x+ =

f(x, κ(x), 0) if x+ ∈ X for all x ∈ X .

De�nition 2.6 (Robust positive invariance). A set X is robustly positive invariant (RPI) for

the system x+ = f(x, κ(x), w), w ∈W if x+ ∈ X for all x ∈ X and w ∈W.

If the feasible set of the MPC optimization problem X is RPI, then the optimization problem

is robustly recursively feasible.

By de�ning this control law and ensuring that X is RPI, the state at some future time is

now fully de�ned by the initial state of the system and the disturbance sequence. We use

the function φ(k;x,wk) to denote the state at a future time k ∈ I≥0, given the initial state

x ∈ X at k = 0, and the disturbance sequence wk ∈ Wk subject to the iteration in (2.7), i.e.,
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φ(0;x, {}) := x and

φ(k + 1;x,wk+1) = f(φ(k;x,wk), κ(φ(k;x,wk)), w(k))

for all x ∈ X , wk+1 ∈Wk+1, and k ∈ I≥0. Note that we do not assume that κ(·) is continuous

on X and therefore f(x, κ(x), w) and φ(k;x,wk) are not continuous with respect to x ∈ X .

We do, however, require that κ(·) is Borel measurable to ensure that φ(k;x,wk) is Borel mea-

surable and therefore all stochastic properties, e.g., expected value, of the closed-loop system

are well de�ned.4 For any of the subsequent control methods discussed in this dissertation,

we verify that κ(·) is Borel measurable.

In the subsequent sections (and chapters), we discuss the robustness of closed-loop sys-

tems in terms of both deterministic and stochastic metrics of the closed-loop state trajectory

φ(·). We begin, however, by introducing these notions of robustness through a discussion of

linear systems and the linear-quadratic regulator.

2.3 The linear case

Before proceeding to the de�nitions of deterministic and stochastic robustness, we begin

with the simplest case: a linear, unconstrained system. Speci�cally, we consider the system

x+ = f(x, u, w) = Ax+Bu+ w (2.8)

in which A ∈ Rn×n, B ∈ Rn×m are matrices and there are no constraints on u, i.e., U = Rm.

We then use the linear-quadratic regulator (LQR) to de�ne the control law for this system.

The LQR control law is de�ned by an in�nite horizon optimization problem based on the
4Note that Borel measurable functions are closed under composition. By induction we establish that φ(·) is

Borel measurable if κ(·) and f(·) are Borel measurable (continuous).
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nominal evolution of the system (w = 0). The cost function is de�ned as

V (x,u) := lim
N→∞

N−1∑
k=0

(
x(k)′Qx(k) + u(k)′Ru(k)

)
+ x(N)′Qx(N)

in which x(k + 1) = Ax(k) +Bu(k) is the nominal system evolution, x(0) = x is the initial

state, and u ∈ U∞ is an in�nite trajectory of control actions. The matrices Q,R � 0 are

tuning parameters chosen to re�ect the relative importance of deviations from the origin for

di�erent elements of the state and input. The optimization problem with this cost function is

written as

V 0(x) = min
u
V (x,u)

for all x ∈ Rn in which u0(x) = (u0(0), u0(1), . . . ) denotes the optimal solution.

If the system x+ = Ax + Bu is stabilizable, then a solution to this optimization problem

exists for all x ∈ Rn (Caines and Mayne, 1970; Anderson and Moore, 1981).5 Moreover, one

can use the convenient features of linear systems and quadratic cost functions to solve this

in�nite horizon optimization problem via dynamic programming (Bertsekas, 1987, p. 58-64).

Speci�cally, the solution to this in�nite horizon optimization problem is given by the unique

stabilizing solution to the discrete-time algebraic Riccati equation (DARE), i.e., the matrix

P � 0 that solves

P = A′PA− (A′PB)(R +B′PB)−1(B′PA) +Q

and ensures that A + BK is Schur stable6 with K = −(B′PB + R)−1(B′PA) (Rawlings

et al., 2020, p. 25). The optimal cost is given by V 0(x) = x′Px and the control law, de�ned

by the �rst input in the optimal solution, is given by κ(x) = u0(0) = Kx for all x ∈ Rn.
5We can also allow Q � 0 if (A,Q) is detectable.
6All eigenvalues are strictly inside the unit circle on the complex plane.
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The nominal closed-loop system is then

x+ = f(x, κ(x), 0) = Ax+BKx = AKx

in which AK := A+BK . We can write the nominal closed-loop trajectory as

φ(k;x,0) = AkKx

Since the matrix AK is Schur stable, there exists λ ∈ (0, 1) and ρ ≥ 0 such that |AkKx| ≤

λkρ|x|. We can therefore write the following bound on the norm of the nominal closed-loop

state trajectory.

|φ(k;x,0)| ≤ λkρ|x|

with λ ∈ (0, 1) and ρ ≥ 0. Thus, the norm of the nominal closed-loop state exponentially

convergences to zero with a rate λ and a bound proportional the the initial condition |x| at

k = 0. A system that admits such a bound is called exponentially stable.

We now add the disturbance w back into the system. The resulting closed-loop system is

now

x+ = AKx+ w

The closed-loop state trajectory can be written using the variation of constants method as

φ(k;x,wk) = AkKx+
k−1∑
i=0

Ak−1−i
K w(i)

Since AK is Schur stable, we can derive the following bound on the norm of the closed-loop

state trajectory.

|φ(k;x,wk)| ≤ λkc|x|+ c
k−1∑
i=0

λk−1−i|w(i)| (2.9)
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in which λ ∈ (0, 1) and c ≥ 0. We then denote ||wk|| := maxi∈I0:k−1
|w(i)| to give

|φ(k;x,wk)| ≤ λkc|x|+ c

1− λ ||wk|| (2.10)

for all x ∈ Rn, wk ∈Wk, and k ∈ I≥0.

For this linear system, the bound in (2.10) characterizes the deterministic robustness of

this closed-loop system, i.e., we bound the norm of the closed-loop state given a speci�c

realization of the disturbance sequence wk. The bound in (2.10) contains two terms: (i) an

exponentially decaying term based on the initial condition of the system and (ii) a persistent

term that depends on the norm of the disturbances entering the system. In particular, the

bound in (2.10) ensures that small values of the disturbance ||wk|| result in similarly small

deviations from the origin (proportional to the constant c/(1 − λ)) and for ||wk|| = 0 we

recover exponential stability of the nominal system. Furthermore, (2.10) ensures that for a

convergent sequence of disturbances, i.e., w(k) → 0 as k → ∞, the state converges to the

origin as well, i.e., φ(k;x,wk)→ 0.

In addition to this description of deterministic robustness, we may also consider a descrip-

tion of stochastic robustness for this linear system. Speci�cally, we take the expected value

of both sides of (2.9) to give

E [|φ(k;x,wk)|] ≤ λkc|x|+ c
k−1∑
i=0

λk−1−iE [|w(i)|]

in which we assume that the initial state x is known exactly (with probability one). We use

Lemma 2.4 to give

E [|φ(k;x,wk)|] ≤ λkc|x|+ c

1− λ
√

tr(Σ) (2.11)

for all x ∈ Rn, µ ∈M(W), and k ∈ I≥0.

For the linear case, the bound in (2.11) characterizes the stochastic robustness of the
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closed-loop system, i.e., we bound a stochastic property of the closed-loop system given a

probability distribution for the disturbance. The bound contains two terms: (i) an exponen-

tially decaying term based on the initial condition of the system and (ii) a persistent term

that depends on the variance of the disturbance. Analogous to the deterministic bound, (2.11)

ensures that small values of tr(Σ) produce similarly small deviations from the origin and for

Σ = 0 we recover exponential stability of the nominal system. Note that the bound in (2.11)

in fact holds for any µ ∈M(W) and corresponding variance Σ.

While analysis of the linear case and the LQR are both instructive and useful for many

control problems, we also want to address nonlinear systems and/or systems with input con-

straints, which are pervasive in chemical engineering problems. In the subsequent sections,

we now de�ne nonlinear extensions for these de�nitions of deterministic and stochastic ro-

bustness. We begin with the the de�nition of deterministic robustness for nonlinear systems.

2.4 Deterministic robustness

The subsequent de�nitions of robustness throughout this work use comparison functions.

These functions, popularized only in the last few decades, provide a rigorous means to analyze

the stability of nonlinear systems without the ε, δ-arguments that are pervasive in the classical

nonlinear systems analysis. Comparison functions include the following classes of functions.

De�nition 2.7 (K, K∞, and KL functions). A function α : R≥0 → R≥0 is in class K (written

α(·) ∈ K) if α(·) is continuous, strictly increasing, and α(0) = 0. A function α : R≥0 → R≥0

is in class K∞ if α(·) is in class K and is also unbounded, i.e., lims→∞ α(s) =∞. A function

β : R≥0× I≥0 → R≥0 is in class KL if for every k ∈ I≥0 the function β(·, k) is in class K and

for every s ∈ R≥0 the function β(s, ·) is nonincreasing and limk→∞ β(s, k) = 0.

Figure 2.1 provides examples of these comparison functions to illustrate their properties.

27



Robustness and Model Predictive Control Chapter 2

s

α(s)

α∞(s)

β(s, 0)

β(s, 1)

β(s, 2)

k

β(2, k)

β(1, k)

β(1, k) + γ(1)

β(1, k) + γ(2)

Figure 2.1: Examples of comparison functions (γ(·), α(·) ∈ K, α∞(·) ∈ K∞, β(·) ∈ KL) as
a function of s (left) and k (right).

Several useful properties of these functions are compiled and established in Khalil (2002,

Lemma 4.2) and Kellett (2014). We note a few of these properties here. If α1(·) ∈ K and

α2(·) ∈ K, then α1(α2(·)) ∈ K. If α1(·) ∈ K∞, then α−1
1 (·) ∈ K∞. If α1(·), α2(·) ∈ K and

β(·) ∈ KL, then β̃(s, k) := α1(β(α2(s), k)) is a KL-function. If α1(·) ∈ K, then α(a + b) ≤

α(2a) + α(2b).

Before discussing robustness, we begin with a discussion of the nominal closed-loop sys-

tem, i.e., without the disturbances (wk = 0). Speci�cally, we consider the following de�nition

of asymptotic stability, which generalizes the de�nition of exponential stability that is com-

mon for linear systems.

De�nition 2.8 (Asymptotic stability). The origin is asymptotically stable for the system x+ =

f(x, κ(x), 0) in a positive invariant set X if there exists β(·) ∈ KL such that

|φ(k;x,0)| ≤ β(|x|, k)

for all x ∈ X and k ∈ I≥0.

By the restriction β(·) ∈ KL, this de�nition of asymptotic stability ensures that the origin is

uniformly stable for the closed-loop system, i.e., there exists α(·) ∈ K such that |φ(k;x,0)| ≤
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α(|x|) for all x ∈ X , and uniformly attractive, i.e., φ(k;x,0) → 0 uniformly for all x ∈ X

and any compact set X ⊆ X . Note that uniform convergence is a stronger property than

pointwise convergence.7 Exponential stability is then a special case of asymptotic stability in

which β(s, k) := ρλks with ρ > 0 and λ ∈ (0, 1). An example closed-loop trajectory and

possible KL bound are shown in Figure 2.2.

Remark 2.9. Asymptotic stability is sometimes de�ned as the combination of (non-uniform)

local stability and (non-uniform) attractivity of the origin. We refer to this de�nition as the

classical de�nition of asymptotic stability. For continuous nonlinear systems, i.e., f(x, κ(x), 0)

is a continuous function, the classical de�nition of asymptotic stability is equivalent to De�-

nition 2.8 (Kellett and Teel, 2004, Prop. 6). Nonlinear MPC, however, can produce a discontin-

uous control law κ(x). For these discontinuous nonlinear systems, the classical de�nition of

asymptotic stability isweaker than De�nition 2.8 and admits pathological closed-loop dynam-

ics (McAllister and Rawlings, 2021b, Appendix A). De�nition 2.8 instead implies a stronger

(uniform) version of asymptotic stability and thereby excludes these pathological closed-loop

dynamics.

To establish asymptotic stability for a closed-loop system, we use a Lyapunov function.

De�nition 2.10 (Lyapunov function). A function V : X → R≥0 is a Lyapunov function for a

system x+ = f(x, κ(x), 0) in a positive invariant set X if there exist α1(·), α2(·), α3(·) ∈ K∞
such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (2.12)

V (f(x, κ(x), 0) ≤ V (x)− α3(|x|) (2.13)

7We say that φ(k;x,0) → 0 uniformly for all x ∈ X if for any ε > 0 there exists N ∈ I≥0 such that
|φ(k;x,0)| ≤ ε for all k ≥ N and x ∈ X . Pointwise convergence instead considers only a single point x ∈ X ,
i.e., for any ε > 0 and x ∈ X there exists N ∈ I≥0 such that |φ(k;x,0)| ≤ ε for all k ≥ N .
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Figure 2.2: Illustration of nominal asymptotic stability (left) and robust asymptotic stability
(right) in terms of phase plots (top) and norms of the state trajectories (bottom).
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for all x ∈ X .

If there exists a Lyapunov function for the closed-loop system, then the origin is asymptoti-

cally stable. In fact, the existence of a Lyapunov function is a necessary and su�cient condition

for asymptotic stability. See Rawlings et al. (2020, Thm. B.15, B.17) for a proof of this result.

Proposition 2.11. The origin is asymptotically stable for a system x+ = f(x, κ(x), 0) in a

positive invariant set X if and only if there exists a Lyapunov function for this system in X .

Remark 2.12. For the linear system and LQR discussed in the previous section, the Lyapunov

function is de�ned via the solution to the in�nite horizon minimization problem, i.e., V (x) =

x′Px. We have c1|x|2 ≤ V (x) ≤ c2|x|2 with c1, c2 > 0 since P � 0. Since V (x) is the

solution to the in�nite horizon optimization problem, we also have that

V (x+)− V (x) = −x′Qx− u′Ru ≤ −x′Qx ≤ −c3|x|2

in which c3 > 0 because Q � 0. Note that αi(|x|) := ci|x|2 ∈ K∞ for i ∈ {1, 2, 3} and

therefore V (x) is an (exponential) Lyapunov function.

We now reintroduce disturbances in this closed-loop systems. In general, requiring the

state of these perturbed systems to converge (uniformly or otherwise) to the origin and remain

at this point is unreasonable. Instead, we require the closed-loop system to converge to some

neighborhood of the origin. But this requirement is quite mild without additional conditions

placed on size of this neighborhood with respect to the disturbance. The key feature of a

robust system is that this neighborhood continuously deforms with the size of the disturbance,

i.e., an arbitrarily small disturbance produces a similarly small perturbation from the origin.

We capture this requirement by using comparison functions in the following de�nition of

robust asymptotic stability (RAS).
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De�nition 2.13 (Robust asymptotic stability). The origin is robustly asymptotically stable

(RAS) for a system x+ = f(x, κ(x), w), w ∈ W in an RPI set X if there exist β(·) ∈ KL and

γ(·) ∈ K such that

|φ(k;x,wk)| ≤ β(|x|, k) + γ(||wk||) (2.14)

for all x ∈ X , wk ∈Wk, and k ∈ I≥0.

Note the similarities between the bound in (2.14) and (2.10). The exponential convergence

is replaced by asymptotic convergence and the linear function of ||wk|| is replaced by a non-

linear function γ(·) ∈ K. This de�nition of robustness is derived from the more general

notion of input-to-state stability (ISS) as de�ned for continuous time systems in Sontag and

Wang (1995) and for discrete time systems in Jiang and Wang (2002). Whereas ISS applies to a

general “input” to the system, we use the term RAS to emphasize that we are considering only

the disturbance as this input. By requiring γ(·) ∈ K, we ensure that small values of ||wk||

result is similarly small values of γ(||wk||) and as ||wk| → 0 we recover nominal asymp-

totic stability. Furthermore, RAS ensures that for a convergent sequence of disturbances, i.e.,

w(k) → 0 as k → ∞, the state converges to the origin as well, i.e., φ(k;x,wk) → 0. This

convergence is also uniform on compact subsets of X .

If f(x, κ(x), w) is a continuous function, we can establish that nominal asymptotic stabil-

ity and robust positive invariance of the setX implies robustness (Kellett and Teel, 2004, Thm.

12). For nonlinear MPC, however, κ(x) is not necessarily continuous and therefore asymp-

totic stability of the nominal system does not imply RAS. Thus, arbitrarily small disturbances

may in fact destabilize a system that is asymptotically stable in the nominal case. To establish

RAS for a closed-loop system, we instead use an ISS Lyapunov function.

De�nition 2.14 (ISS Lyapunov function). A function V : X → R≥0 is an ISS Lyapunov func-

tion for the systemx+ = f(x, κ(x), w),w ∈W in an RPI setX if there existα1(·), α2(·), α3(·) ∈
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K∞ and σ(·) ∈ K such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (2.15)

V (f(x, κ(x), w)) ≤ V (x)− α3(|x|) + σ(|w|) (2.16)

for all x ∈ X and w ∈W.

The existence of an ISS Lyapunov function is a necessary and su�cient condition for robust

asymptotic stability (Jiang and Wang, 2002; Grüne and Kellett, 2014).

Proposition 2.15. The origin is RAS for a system x+ = f(x, κ(x), w), w ∈W in an RPI set X

if and only if there exists an ISS Lyapunov function for this system in X .

This framework of Lyapunov and comparison functions is both highly useful and remark-

able �exible. As we show in Section 2.7, the cost function de�ned for MPC provides a natural

(ISS) Lyapunov function for the system and therefore these results can be readily applied to

MPC. Furthermore, we can extend this ISS Lyapunov function framework to stochastic sys-

tems and associated de�nitions of stochastic robustness.

2.5 Stochastic robustness

Robust asymptotic stability is a strong property in that the bound in (2.14) holds for any

probability distribution on the set W. If we however use a stochastic representation for the

disturbance, we may instead want a similar bound based on the stochastic properties of the

underlying system as shown in (2.11). In this section, we de�ne and discuss a suitable de�ni-

tion of stochastic robustness based on linear version in (2.11).

Many forms of stochastic stability and robustness are already present in control the-

ory. Originating in the 1960’s in Kushner (1965, 1967), the notion of stochastic stability
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for nonlinear systems, i.e., asymptotic stability in probability, was re�ned more recently in

Florchinger (1995). Teel and co-workers constructed and established stronger de�nitions of

uniform asymptotic stability in probability and established that stochastic Lyapunov functions

ensure uniform convergence (Teel, 2013; Teel et al., 2013, 2014). Analogous to ISS for deter-

ministic systems, stochastic input-to-state stability (SISS) and a corresponding SISS Lyapunov

function were de�ned (Krstic and Deng, 1998; Tang and Basar, 2001; Tsinias, 1998). Over the

past decade, this SISS framework has been used in the analysis and control of continuous-time

and discrete-time nonlinear stochastic systems (Huang and Mao, 2009; Wu et al., 2016; Zhao

et al., 2012; Ding et al., 2015). These works assume that the e�ect of the stochastic disturbance

vanishes once the state of the system reaches the origin (i.e., a multiplicative disturbance)

and typically require the closed-loop system to be continuous. In most control applications,

however, the stochastic disturbances do not vanish at the origin and MPC may produce a

discontinuous control law and therefore closed-loop system. Consequently, the results from

stochastic stability theory are not applicable in their current form to the closed-loop systems

relevant to MPC. Instead, we de�ne the following notion of stochastic robustness.

De�nition 2.16 (Robust asymptotic stability in expectation). The origin is robustly asymp-

totically stable in expectation (RASiE) for a system x+ = f(x, κ(x), w), w ∈W in an RPI set

X if there exist β(·) ∈ KL and γ(·) ∈ K such that

E [|φ(k;x,wk)|] ≤ β(|x|, k) + γ(tr(Σ)) (2.17)

for all x ∈ X , µ ∈M(W), and k ∈ I≥0.

In contrast to RAS, RASiE bounds the expected value of the norm of the closed-loop state

based on a stochastic property of the disturbance, i.e., tr(Σ). Similar to RAS, however, RASiE

ensures that the e�ect of the initial state x ∈ X on the upper bound asymptotically (and uni-

formly) decreases to zero as k →∞. The remaining term is independent of k and depends on
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the distribution of the disturbance w, i.e., tr(Σ) which depends on µ ∈ M(W). By requiring

γ(·) ∈ K, we ensure that small values of tr(Σ) result in similarly small deviations from the

origin (in terms of expected value) and as tr(Σ) → 0 we recover asymptotic stability of the

nominal closed-loop system. We also note that if tr(Σ)→ 0, then Σ→ 0 as well.

To establish RASiE, we use an SISS Lyapunov function similar to the SISS Lyapunov func-

tions used in nonlinear stochastic stability theory. Note that we do not require continuity of

f(x, κ(x), w) and the bound in (2.19) is based on tr(Σ).

De�nition 2.17 (SISS Lyapunov function). The Borel measurable function V : X → R≥0

is an SISS Lyapunov function for the system x+ = f(x, κ(x), w), w ∈ W in an RPI set X if

there exist α1(·), α2(·), α3(·) ∈ K∞ and σ(·) ∈ K such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (2.18)∫
W
V (f(x, κ(x), w))dµ(w) ≤ V (x)− α3(|x|) + σ(tr(Σ)) (2.19)

for all x ∈ X and µ ∈M(W).

We can then establish that the existence of an SISS Lyapunov function is a su�cient condition

for RASiE if the set X is bounded.8

Proposition 2.18. If a system x+ = f(x, κ(x), w), w ∈W admits an SISS Lyapunov function

in an RPI and bounded set X , then the origin is RASiE in X .

To establish Proposition 2.18, we �nd the following results, based on Praly and Wang

(1996, Lemma 14), useful.

Lemma 2.19. If α(·) ∈ K, then for any b ≥ 0, there exists αv(·) ∈ K∞ such that αv(·) is convex

and αv(s) ≤ α(s) for all s ∈ [0, b].
8We did not investigate if this SISS Lyapunov function is also a necessary condition.
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Proof. We de�ne

αv(s) :=
1

b

∫ s

0

α(r)dr

Thus, αv(·) is strictly increasing and unbounded as s→∞ since α(s) > 0 for all s > 0. Since

α(r) is continuous, we have the αv(s) is continuous as well (Rudin, 1976, Thm 6.20). Thus,

αv(·) ∈ K∞. The derivative of αv(·), i.e., dαv

ds
(s) = α(s)/b, is strictly increasing and therefore

αv(·) is a convex function. Furthermore, we have

αv(s) =
1

b

∫ s

0

α(r)dr ≤ 1

b

∫ s

0

α(s)dr =
s

b
α(s) ≤ α(s)

for all s ∈ [0, b].

Corollary 2.20. If α(·) ∈ K∞, then for any b ≥ 0, there exists αc(·) ∈ K∞ such that αc(·) is

concave and α(s) ≤ αc(s) for all s ∈ [0, b].

Proof. Note that the inverse α−1(·) exists and α−1(·) ∈ K∞ because α(·) ∈ K∞. We use

Lemma 2.19 to construct a convex function αv(·) ∈ K∞ such that αv(r) ≤ α−1(r) for all

r ∈ [0, α−1(b)]. Therefore, αc(s) := α−1
v (s) ≥ α2(s) for all s ∈ [0, b]. The inverse of a

continuous, strictly increasing, and convex function is concave and therefore αc(·) ∈ K∞
and is a concave function.

We now prove Proposition 2.18.

Proof of Proposition 2.18. We use the upper bound in (2.18) with 2.19 to give

∫
W
f(x, κ(x), w)dµ(w) ≤ V (x)− α4(V (x)) + σ(tr(Σ))

in which α4(·) := α3 ◦ α−1
2 (·) ∈ K∞. Since X is bounded and V (x) ≤ α2(|x|), there exists

b ≥ 0 such that V (x) ≤ b for all x ∈ X . From Lemma 2.19, we construct αv(·) ∈ K∞ such
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that αv(·) is convex and αv(V (x)) ≤ α4(V (x)) for all x ∈ X . Therefore, we can replace α4(·)

with αv(·) to give

∫
W
V (f(x, κ(x), w))dµ(w) ≤ V (x)− αv(V (x)) + σ(tr(Σ))

Choose x ∈ X and let x(k) := φ(k;x,wk) for all k ∈ I≥0. By the law of total expectation,

we have that

E [V (x(k + 1))] ≤ E
[
V (x(k))− αv(V (x(k))) + σ(tr(Σ))

]

for all k ∈ I≥0. We can apply Jensen’s inequality with the convexity of αv(·) to give

E [V (x(k + 1))] ≤ E [V (x(k))]− αv
(
E [V (x(k))]

)
+ σ(tr(Σ)) (2.20)

and note that this inequality holds for all k ∈ I≥0 and any µ ∈M(W).

De�ne γ̃(s) := 2 max{α−1
v (σ(s)), σ(s)} and note that γ̃(·) ∈ K. We now split the bound

(2.20) into three separate regions.

If E [V (x(k))] ≤ γ̃(tr(Σ))/2, then

E [V (x(k + 1))] ≤ γ̃(tr(Σ))/2 + σ(tr(Σ))

≤ γ̃(tr(Σ))/2 + γ̃(tr(Σ))/2 = γ̃(tr(Σ))

If γ̃(tr(Σ))/2 ≤ E [V (x(k))] ≤ γ̃(tr(Σ)), then

E [V (x(k + 1))] ≤ E [V (x(k))]− αv(γ̃(tr(Σ))/2) + σ(tr(Σ))

≤ E [V (x(k))] ≤ γ̃(tr(Σ))
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Thus, if E [V (x(k))] ≤ γ̃(tr(Σ)),

E [V (x(k + 1))] ≤ γ̃(tr(Σ)) (2.21)

If E [V (x(k))] ≥ γ̃(tr(Σ)), then

E [V (x(k + 1))] ≤ E [V (x(k))]− σv(E [V (x(k))]) + σv(E [V (x(k))] /2)

≤ λ1(E [V (x(k))])

in which λ1(s) := s − αv(s) + αv(s/2). We have that λ1(·) is continuous, λ1(0) = 0, and

λ1(s) < s for all s > 0. By the same process used in Rawlings et al. (2020, Theorem B.15), we

construct λ(·) ∈ K∞ such that λ1(s) ≤ λ(s) < s for all s > 0. Thus, we have

E [V (x(k + 1))] ≤ λ(E [V (x(k))]) (2.22)

Repeated application of (2.22) and the fact that E [V (x(0))] = V (x) gives

E [V (x(k))] ≤ β̃(V (x), k) := λk(V (x)) (2.23)

in which λk(·) denotes the composition of λ(·) with itself k times. Using the same approach

as Rawlings et al. (2020, Theorem B.15), we conclude that β(·) ∈ KL.

We combine (2.21) and (2.23) to give,

E [V (x(k))] ≤ max{β̃(V (x), k), γ̃(tr(Σ))} (2.24)

Using Lemma 2.19 and the fact thatX is bounded, we can construct a convex functionα1,v(·) ∈

K∞ such that α1,v(|x|) ≤ α1(|x|) ≤ V (x) for all x ∈ X . Thus, we apply Jensen’s inequality
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to give

α1,v(E [|x|]) ≤ E [α1,v(|x|)] ≤ E [V (x)]

We also have that V (x) ≤ α2(|x|). Therefore,

E [|x(k)|] ≤ max
{
α−1

1,v(β̃(α2(|x|), k)), α−1
1,v(γ̃(tr(Σ)))

}

We de�ne β(s, k) := α−1
1,v(β̃(α2(s), k)), γ(s) := α−1

1,v(γ̃(s)), and use the fact that max{a, b} ≤

a+ b to give

E [|x(k)|] ≤ β(|x|, k) + γ(tr(Σ)) (2.25)

Note that β(·) ∈ KL, γ(·) ∈ K and since the choice of x ∈ X , µ ∈ M(W), and k ∈ I≥0 was

arbitrary, (2.25) holds for all x ∈ X , µ ∈M(W), and k ∈ I≥0.

We can also establish the following connection between ISS and SISS Lyapunov functions.

Proposition 2.21. Let Assumption 2.2 hold. If a Borel measurable function V : X → R≥0 is an

ISS Lyapunov function for the system x+ = f(x, κ(x), w), w ∈W in an RPI set X , then V (·) is

also an SISS Lyapunov function for the system x+ = f(x, κ(x), w), w ∈W in X .

Proof. Since V (·) is an ISS Lyapunov function, there exist α1(·), α2(·), α3(·) ∈ K∞ and σ(·) ∈

K such that equations (2.15) and (2.16) hold. Therefore, (2.18) holds for the same functions

α1(·), α2(·).

Since W is compact, there exists b ≥ 0 such that |w| ∈ [0, b] for all w ∈ W. We de�ne

a function σ̃(·) ∈ K∞ such that σ(s) ≤ σ̃(s) for all s ∈ R≥0, e.g., σ̃(s) := εs + σ(s)

with ε > 0. We use Corollary 2.20 to construct a concave function σc(·) ∈ K∞ such that

σ(|w|) ≤ σ̃(|w|) ≤ σc(|w|) for all w ∈ W. Choose arbitrary µ ∈ M(W) and integrate

both sides of (2.16) with respect to this probability measure. We then use σc(·) and Jensen’s
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inequality to give

∫
W
V (f(x, κ(x), w))dµ(w) ≤ V (x)− α3(|x|) +

∫
W
σ(|w|)dµ(w)

≤ V (x)− α3(|x|) +

∫
W
σc(|w|)dµ(w)

≤ V (x)− α3(|x|) + σc

(∫
W
|w|dµ(w)

)
= V (x)− α3(|x|) + σc (E[|w|])

From Lemma 2.4, we have that E[|w|] ≤ tr(Σ)1/2. We de�ne σ3(s) := σc(s
1/2) and note that

σ3(·) ∈ K. Thus, we have that σc(E[|w|]) = σ3(E[|w|]2) ≤ σ3(tr(Σ)) and

∫
W
V (f(x, κ(x), w))dµ(w) ≤ V (x)− α3(|x|) + σ3 (tr(Σ))

Therefore, 2.19 holds for α3(·) ∈ K∞ and σ3(·) ∈ K. Note that the choice of µ was arbitrary

and therefore (2.19) also holds for all µ ∈ M(W). Thus, V (·) is an SISS Lyapunov function.

The converse of Proposition 2.21, however, does not hold. For example, consider the scalar

system x+ = (0.9+w)x forw ∈W := [−0.2, 0.2] distributed such thatE [w] = 0. The system

is not ISS becausew = 0.2 produces an unstable system x+ = 1.1x and therefore |x(k)| → ∞

for some w ∈W. But V (x) = x2 is an SISS Lyapunov function:

∫
W
V (x+)dµ(w) =

∫
W

((0.9 + w)x)2 dµ(w)

≤ 0.81x2 + 1.8x2E[w] + x2E[w2]

≤ 0.81x2 + 0 + 0.04x2

≤ V (x)− α3(|x|)
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with α3(s) := 0.15s2 ∈ K∞. In fact, this system admits a stochastic Lyapunov function

(σ(·) = 0) and is mean-squared stable (a stronger property than RASiE).

Proposition 2.21 is particularly important because we can use this result to establish

stochastic robustness results for MPC. Speci�cally, we use Proposition 2.21 to establish that

the ISS Lyapunov function typically derived for MPC also confers RASiE. Moreover, Propo-

sition 2.21 leads to the following corollary that establishes a more fundamental connection

between RAS and RASiE.

Corollary 2.22. Let Assumption 2.2 hold. If the origin is RAS for a system x+ = f(x, κ(x), w),

w ∈W in an RPI and bounded set X , then the origin is also RASiE in X .

Proof. From Proposition 2.15, we have that RAS implies the existence of an ISS Lyapunov

function. We also verify that this ISS Lyapunov function, as constructed in Grüne and Kellett

(2014), is Borel measurable. By Proposition 2.21, this ISS Lyapunov function is also an SISS

Lyapunov function and by Proposition 2.18 the origin is RASiE.

2.6 Robustness with respect to stage cost

In an MPC formulation, the control law is implicitly de�ned by optimizing a performance

metric for the system known as the stage cost and denoted by the function ` : Rn×U→ R≥0.

This stage cost is often chosen as the same quadratic form used in the LQR formulation, i.e.,

`(x, u) = x′Qx + u′Ru with Q,R � 0. For steady-state tracking applications of MPC, a

standard requirement is that the stage cost is lower-bounded by a K∞-function of |x|, as

detailed in the following assumption. We also require that this stage cost is continuous and

zero at the origin.

Assumption 2.23 (Stage cost). The state cost ` : Rn × U→ R≥0 is continuous and satis�es

`(0, 0) = 0. Moreover, there exists α`(·) ∈ K∞ such that α`(|x|) ≤ `(x, u) for all (x, u) ∈
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Rn × U.

Assumption 2.23 ensures that if `(x, u)→ 0 then |x| → 0, but allows for signi�cant �exi-

bility in selecting `(·). This �exibility is used to “tune” the stage cost to re�ect the importance

of di�erent state and input variables in the problem of interest. For example, we may place

a large penalty on deviations in the concentrations/quality of a product in a reactor but a

smaller penalty on deviations in the liquid level of a tank. This �exibility, however, also sep-

arates the objective of the MPC problem from the metrics used in the de�nition of RAS and

RASiE. Thus, a reasonable metric for evaluating the robustness of MPC is the one speci�cally

prescribed to the MPC problem formulation: the stage cost `(·). Speci�cally, we investigate

the value of this cost along the closed-loop trajectory as de�ned by the quantity

`(φ(k;x,wk), κ(φ(k;x,wk))) (2.26)

For this quantity, we provide de�nitions of both deterministic and stochastic robustness that

we term, respectively, RAS w.r.t. the stage cost `(·) and RASiE w.r.t. the stage cost `(·). We

abbreviate these properties as `-RAS and `-RASiE and de�ne them as follows.

De�nition 2.24 (`-RAS). The origin is `-RAS with respect to the stage cost `(x, κ(x)) for a

system x+ = f(x, κ(x), w), w ∈ W in the RPI set X if there exist β(·) ∈ KL and γ(·) ∈ K

such that

`(x(k), κ(x(k))) ≤ β(|x|, k) + γ(||wk||) (2.27)

in which x(k) := φ(k;x,wk) for all x ∈ X , wk ∈Wk, and k ∈ I≥0.

De�nition 2.25 (`-RASiE). The origin is `-RASiE with respect to the stage cost `(x, κ(x)) for

a system x+ = f(x, κ(x), w), w ∈W in the RPI set X if there exist β(·) ∈ KL and γ(·) ∈ K

such that

E [`(x(k), κ(x(k)))] ≤ β(|x|, k) + γ(tr(Σ)) (2.28)
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in which x(k) := φ(k;x,wk) for all x ∈ X , µ ∈M(W), and k ∈ I≥0.

Note that these de�nitions are generalizations of the previous de�nitions of RAS and RASiE

under Assumption 2.23.

We now establish that an ISS (SISS) Lyapunov function that also satis�es `(x, κ(x)) ≤

V (x) ensures that the origin is `-RAS (`-RASiE). Since the Lyapunov function constructed for

MPC is (almost) always based on the optimal cost function, the stage cost typically satis�es

`(x, κ(x)) ≤ V (x).

Proposition 2.26. If a system x+ = f(x, κ(x), w), w ∈ W admits an ISS Lyapunov function

V : X → R≥0 in an RPI set X that satis�es `(x, κ(x)) ≤ V (x) for all x ∈ X , then the origin is

`-RAS.

Proof. Since the system admits an ISS Lyapunov function, we have from Proposition 2.15 that

the origin is RAS, i.e., there exists β(·) ∈ KL and γ(·) ∈ K such that

|φ(k;x,wk)| ≤ β(|x|, k) + γ(||wk||)

for all x ∈ X , wk ∈Wk, and k ∈ I≥0. Furthermore, we have that `(x, κ(x)) ≤ V (x) ≤ α2(|x|)

and therefore

`(x(k), κ(x(k))) ≤ α2(2β(|x|, k)) + α2(2γ(||wk||))

in which x(k) := φ(k;x,wk) for all x ∈ X , wk ∈Wk, and k ∈ I≥0. Note thatα2(2β(·)) ∈ KL

and α2(2γ(·)) ∈ K to complete the proof.

Proposition 2.27. If a system x+ = f(x, κ(x), w), w ∈W admits an SISS Lyapunov function

V : X → R≥0 in an RPI and bounded set X that satis�es `(x, κ(x)) ≤ V (x) for all x ∈ X , then

the origin is `-RASiE.
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Proof. From Proposition 2.18, there exists β(·) ∈ KL and γ(·) ∈ K such that

E [|φ(k;x,wk)|] ≤ β(|x|, k) + γ(tr(Σ))

for all x ∈ X , µ ∈ M(W), and k ∈ I≥0. Since X is bounded, we can construct a concave

function αc(·) ∈ K∞ such that V (x) ≤ α2(|x|) ≤ αc(|x|) for all x ∈ X via Corollary 2.20.

Therefore,

E [`(x(k), κ(x(k)))] ≤ E [V (x(k))] ≤ E [αc(|x(k)|)] ≤ αc(E[|x(k)|])

and

E [`(x(k), κ(x(k)))] ≤ αc(2β(|x|, k)) + αc(2γ(tr(Σ))

in which x(k) := φ(k;x,wk) for all x ∈ X , µ ∈ M(W), and k ∈ I≥0. Note that αc(2β(·)) ∈

KL and αc(2γ(·)) ∈ K to complete the proof.

2.7 Model predictive control

2.7.1 Problem formulation and assumptions

For MPC, the disturbance is not considered in the optimization problem. As such, we often

refer to this MPC formulation as nominal MPC to distinguish it from stochastic or robust MPC,

which consider the disturbance explicitly in their problem formulations. Thus, the system

model is given by

x+ = f(x, u, 0) (2.29)
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For a predictive horizon N ∈ I≥1, we use φ̂(k;x,u) to denote the state trajectory of (2.29) at

time k ∈ I0:N , given the initial condition x ∈ Rn and the control trajectory

u = (u(0), u(1), . . . , u(N − 1)) ∈ UN

We allow input constraints u ∈ U ⊆ Rn, but do not enforce state constraints in the opti-

mization problem. State constraints are sometimes included in MPC formulations and their

presence does not disrupt asymptotic stability guarantees for the nominal closed-loop system.

These state constraints, however, are problematic once disturbances and nonlinear systems

are included in the closed-loop analysis. While input constraints typically represent physical

limits of an actuator, e.g., a valve can be set only from 0% to 100% open, state constraints

represent desired goals of the controller, e.g., keep the product concentration above the min-

imum threshold. For a perturbed system, there is no guarantee that these state constraints

can be satis�ed and including these desired features as constraints can result in infeasible

optimization problems. Instead, we assume that these state constraints are converted to exact

penalty functions that are included in the stage cost (Zheng and Morari, 1995; Scokaert and

Rawlings, 1999; Kerrigan and Maciejowski, 2000). Thus, violation of these state constraints

results in a considerable cost increase that is avoided, if possible, in the optimization problem.

In the LQR problem, the control law is derived from an in�nite horizon optimization prob-

lem. Ideally, we would also solve an in�nite horizon optimization problem to determine the

control law for nonlinear systems with constraints. This approach, however, is intractable

for even linear systems of signi�cant state dimension with input constraints. Instead, MPC

uses a �nite horizon, denoted by N ∈ I≥1, to ensure that the optimization problem is compu-

tationally tractable for relevant systems. The drawback of this �nite horizon is that optimal

control trajectory may be shortsighted and the resulting control law is not necessarily stabi-

lizing or robust. To address this limitation, a standard practice is to include a terminal cost
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Vf : Rn → R≥0 and terminal constraint Xf ⊆ Rn to ensure that the �nite horizon opti-

mization problem adequately approximates the in�nite horizon problem and therefore avoid

myopic control actions. In particular, we construct the terminal cost and constraint to guar-

antee that the origin is RAS for the closed-loop system. We detail the speci�c requirements

for the terminal cost and constraint through assumptions introduced later in this section.

For MPC with a horizon N ∈ I≥1, we de�ne the set of admissible inputs, feasible initial

states, and objective function, respectively, as

U(x) := {u ∈ UN : φ̂(N ;x,u) ∈ Xf}

X := {x ∈ Rn : U(x) 6= ∅}

V (x,u) :=
N−1∑
k=0

`(φ̂(k;x,u), u(k)) + Vf (φ̂(N ;x,u))

The nominal MPC problem for any x ∈ X is de�ned as

P(x) : V 0(x) := min
u∈U(x)

V (x,u) (2.30)

and the optimal solution(s) for a given initial state are denoted u0(x) := arg minu∈U(x) V (x,u).

Note that u0(x) is a set-valued mapping because there may be multiple solutions to P(x), i.e.,

u0(x) is de�ned as a set with more than one element for at least one value of x ∈ X . To

streamline the following presentation, we use a selection rule to de�ne a single-valued con-

trol law κ : X → U such that

κ(x) ∈ u0(0;x)

for all x ∈ X , in which u0(0;x) is the set of �rst inputs in u0(x). The resulting closed-loop

system is then

x+ = f(x, κ(x), w) (2.31)
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Note that, although κ(x) is designed without knowledge of w, the closed-loop system still

includes this disturbance.

We consider the following additional assumptions for the MPC problem formulation based

on the assumptions in Allan et al. (2017).

Assumption 2.28 (Properties of the constraint sets). The set U is compact and contains the

origin. The set Xf is de�ned by Xf := {x ∈ Rn : Vf (x) ≤ τ} for some τ > 0.

Assumption 2.29 (Terminal ingredients). The function Vf : Rn → R≥0 is continuous and

Vf (0) = 0. There exists a terminal control law κf : Xf → U such that for all x ∈ Xf ,

f(x, κf (x), 0) ∈ Xf (2.32)

Vf (f(x, κf (x), 0)) ≤ Vf (x)− `(x, κf (x)) (2.33)

Note that the condition in (2.33) means that Vf (·) acts as a local Lyapunov function in

the terminal region for the nominal system x+ = f(x, κf (x), 0) and with the speci�c dissi-

pation rate `(x, κf (x)). Thus, the terminal control law must stabilize the origin, but does not

need to be optimal for this system and stage cost. While constructing this terminal cost still

presents a challenge, we can choose τ > 0 small such that (2.33) needs to hold for only a

small region around the origin. Designing a terminal cost and terminal control law to satisfy

the requirements of Assumption 2.29 is therefore tractable for many systems of interest.

For example, if the stage cost is quadratic, i.e., `(x, u) = x′Qx + u′Ru with Q,R � 0,

we can construct this terminal cost by linearizing the system about the origin (steady state

target) and computing the LQR solution for this linearized system (assuming the linearized

system is stabilizable). For su�ciently small regions around the origin, this linear model

is reasonably accurate and the LQR feedback gain stabilizes the origin. We can therefore

construct a terminal cost for this system that satis�es Assumption 2.29 via the procedure in
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Rawlings et al. (2020, s 2.5.5). If certain input constraints are active at the origin, we hold these

modes of the input constant when computing the linearized model. Provided the linearized

model is still stabilizable, we can compute the LQR solution based on this subset of the original

input space and use this LQR solution to construct the terminal cost as before.

2.7.2 Existence and measurability

Before proceeding to any closed-loop properties for MPC, we must �rst establish that a

solution to P exists. Moreover, we need to verify κ(·) is Borel measurable to ensure that ex-

pected value is well de�ned for the closed-loop system. Although not a particularly exciting

area of analysis9, verifying these mathematical details is essential to guarantee the veracity of

all the subsequent analysis performed with these mathematical objects. Thus, we brie�y sum-

marize the results on existence and measurability for MPC with additional details available

in McAllister and Rawlings (2021b, Appendix B).

In Rawlings et al. (2020, Prop. 2.4), the authors establish that Assumptions 2.1 and 2.28

combined with continuity of `(·) and Vf (·) are su�cient to ensure that a solution to P(x)

exists for all x ∈ X . Under these same conditions, we can further establish, via Proposition

7.33 in Bertsekas and Shreve (1978), thatX is closed, the optimal cost function V 0 : X → R≥0

is lower semicontinuous, and that u0 : X ⇒ UN is Borel measurable. Furthermore, Bertsekas

and Shreve (1978, Lemma 7.18) also establish that for any compact set U, there exists a Borel

measurable selection rule for u0(x). If we assume that such a selection rule is used to de�ne

the control law, we have that κ : X → U is well de�ned and Borel measurable. We summarize

these results in the following proposition.

Proposition 2.30. Let Assumptions 2.1, 2.23, 2.28 and 2.29 hold. Then, P(x) has a solution

for all x ∈ X , X is closed, V 0 : X → R≥0 is lower semicontinuous, and u0 : X ⇒ UN

9for engineers, at least
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is Borel measurable. Furthermore, there exists a Borel measurable selection rule such that the

single-valued control law κ : X → U is Borel measurable and satis�es κ(x) ∈ u0(0;x) for all

x ∈ X .

Remark 2.31. In theory, we could select an exotic selection rule that produces a non-measurable

function κ(·) from the Borel measurable set-valued mapping u0(·) (McAllister and Rawlings,

2021b, Appendix A). We postulate, however, that unintentionally constructing such a selec-

tion rule for a system is unlikely as such a construction requires the use of the axiom of choice

(Solovay, 1970). Thus, we simply assume that a Borel measurable selection rule is chosen.

Note assuming that the selection rule is measurable does not supplant the need to verify that

u0(·) is Borel measurable. If u0(·) is not a Borel measurable function, the resulting controller

may not be measurable regardless of the selection rule used.

2.7.3 Robustness

While di�erent researches may use slightly modi�ed de�nitions of robustness, the general

notion of robustness for MPC remains the same: For a compact subset of the feasible set (S ⊆

X ), there exists a nonzero margin of robustness (δ > 0) such that S is RPI, the optimization

problem remains feasible, and the origin is RAS for su�ciently small disturbances (|w| ≤ δ).

For nominal MPC, we refer to this property as inherent robustness, as we do not consider

the disturbances directly in the optimization problem as done in stochastic or robust MPC

formulations. Instead, nominal MPC relies on feedback to address these disturbances and

this inherent robustness is often su�cient in industrial applications.

In closed-loop analysis of MPC, the optimal cost function V 0(x) is typically used as a

Lyapunov function for the closed-loop system. If V 0(x) is continuous, which is true for a

linear model and convex constraints, inherent robustness follows immediately from nominal

asymptotic stability (Grimm et al., 2004). Nonlinear MPC with state or terminal constraints,
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however, can produce potentially discontinuous optimal cost functions. In a particularly con-

sequential paper, Grimm et al. (2004) demonstrated that, due to these discontinuities, nominal

asymptotic stability of the origin for nonlinear MPC does not guarantee any margin of robust-

ness. More general conditions on the robustness of MPC without state or terminal constraints

are given in Grimm et al. (2007).

In a signi�cant contribution, Yu et al. (2014) established that nonlinear MPC, under suit-

able assumptions, is inherently robust to su�ciently small additive disturbances. Moreover,

this robustness is achieved even if the optimal cost V 0(x) is not continuous. These assump-

tions exclude hard state constraints but still require a terminal constraint in the optimization

problem. The terminal cost and constraint are constructed via the LQR solution of the lin-

earized system at the origin.

Leveraging some of these results, Allan et al. (2017) establish that suboptimal MPC, i.e.,

an MPC algorithm that does not require optimal solutions to the proposed optimal control

problem, is also inherently robust. Given the computational burden and nonconvexity of

nonlinear MPC optimization problems, the ability to use potentially suboptimal solutions is

particularly important for the online implementation of MPC. To minimize the additional

complexity of the subsequent analysis, however, we restrict attention in the following chap-

ters to the optimal MPC problem while noting that extensions of these results to suboptimal

MPC are conceivable.

In addition to the results for suboptimal MPC, the analysis in Allan et al. (2017) does

not require that U has an interior, a common assumption in MPC analysis that is used in

Yu et al. (2014). By removing this requirement, we allow U to represent a larger class of

input constraints including integer constraints, i.e., decision variables that must take strictly

integer values.10 This class of inputs includes binary decisions such as the ON/OFF decisions
10By allowing input constraints to be active at the origin, however, the terminal ingredients (Assumption 2.29)

must be carefully constructed. See Rao and Rawlings (1999) for a method to construct these terminal ingredients
that also applies to problems with integer constraints.
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for equipment that are pertinent in higher-level planning and scheduling problems. This fact

was articulated in Rawlings and Risbeck (2017) and led to the conclusion: Any result that

holds for standard MPC also holds for MPC with discrete actuators. In this case, “standard”

MPC implies MPC without integer constraints.

The novel contribution of this section is to establish that MPC is also robust in a stochastic

context and with respect to the stage cost used in the MPC formulation. While interesting in

their own right, these results are particularly important as they facility the direct comparison

of nominal MPC, which is almost always characterized by deterministic de�nitions of robust-

ness, and stochastic MPC, which is almost always characterized by stochastic de�nitions of

robustness. With the assumptions introduced throughout this section, we can establish the

following theorem for the robustness of MPC.

Theorem 2.32 (MPC). Let Assumptions 2.1, 2.2, 2.23, 2.28 and 2.29 hold. For every ρ > 0,

there exists δ > 0 such that for any set W ⊆ {w ∈ Rq : |w| ≤ δ}, the closed-loop system

x+ = f(x, κ(x), w), w ∈W, and the set S := {x ∈ Rn : V 0(x) ≤ ρ} ∩ X we have that

(i) The set S is RPI.

(ii) The origin is RAS in the set S .

(iii) The origin is RASiE in the set S .

(iv) The origin is `-RAS in the set S .

(v) The origin is `-RASiE in the set S .

Thus, MPC, for su�ciently small disturbances (|w| ≤ δ), satis�es all of the deterministic

and stochastic de�nitions of robustness in the set S . This robustness is achieved without

directly considering the disturbance w in the optimization problem and is inherent to the

MPC formulation through feedback. The �rst two results are establish in Allan et al. (2017)

for suboptimal MPC, but we provide a proof here for the speci�c case of optimal MPC.
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To prove Theorem 2.32, we use the following technical results.

Proposition 2.33. Let X ⊆ Rn be closed and suppose a function g : X → R is continuous at

x0 ∈ X and locally bounded on X .11 Then, there exists α(·) ∈ K∞ such that |g(x)− g(x0)| ≤

α(|x− x0|) for all x ∈ X .

Proof. See Rawlings and Risbeck (2015, Prop. 14).

Proposition 2.34. Let X ⊆ Y ⊆ Rn, with compact X , closed Y , and g : Y → Rn continuous.

Then there exists σ(·) ∈ K∞ such that |g(x)− g(y)| ≤ σ(|x− y|) for all x ∈ X and y ∈ Y .

Proof. See Allan et al. (2017, Prop. 20).

We then establish the following upper bound for the optimal cost function.

Lemma 2.35. Let Assumptions 2.1, 2.23, 2.28 and 2.29 hold. Then there exists α2(·) ∈ K∞ such

that V 0(x) ≤ α2(|x|) for all x ∈ X .

Proof. Choose x ∈ Xf and consider a nominal trajectory generated by repeated application of

the terminal control law for the horizon N , i.e., uf := (κf (x), κf (f(x, κf (x), 0)), . . . ) ∈ UN .

The set Xf is RPI for this control law due to Assumption 2.29. Therefore, uf ∈ U(x) for

all x ∈ Xf . We denote the corresponding state trajectory as x(k) := φ̂(k;x,uf ). From

Assumption 2.29, we have that

Vf (x(k + 1)) ≤ Vf (x(k))− `(x(k), κf (x(k)))

for all k ∈ I0:N−1. We sum this inequality from k = 0 to k = N − 1 to give

Vf (x(N))− Vf (x) ≤ −
N−1∑
k=0

`(x(k), κf (x(k)))

11A function g : X → R is locally bounded on X if for any compact set A ⊆ X , there existsM > 0 such that
|g(x)| ≤M for all x ∈ A.
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By optimality and the de�nition of V (·), we have

V 0(x) ≤ V (x,uf )

=
N−1∑
k=0

`(x(k), κf (x(k))) + Vf (x(N)) ≤ Vf (x)

for all x ∈ Xf . Since 0 ≤ V 0(x) ≤ Vf (x), Vf (·) is continuous, V 0(0) = Vf (0) = 0, and Xf

contain the origin in its interior, we have that V 0(·) is continuous at the origin.

We now establish that V 0(·) is locally bounded. Choose any compact set X ⊆ X . Since

V (·) is the composition of a �nite number of continuous functions, V (·) is continuous and

there exists M ≥ 0 such that |V (x,u)| ≤M for all X ×UN . Therefore, |V 0(x)| ≤M for all

x ∈ X as well, because u0(x) ⊆ U(x) ⊆ UN . Thus, V 0(x) is locally bounded. Since V 0(x)

is continuous at the origin and is locally bounded, we have from Proposition 2.33 that there

exists α2(·) ∈ K∞ such that

V 0(x) = |V 0(x)− V 0(0)| ≤ α2(|x− 0|) = α2(|x|)

for all x ∈ X .

We also establish that the origin is asymptotically stable for the nominal system.

Lemma 2.36. Let Assumptions 2.1, 2.23, 2.28 and 2.29 hold. For every ρ > 0, the optimal cost

V 0 : X → R≥0 is a Lyapunov function for the nominal closed-loop system x+ = f(x, κ(x), 0)

in the positive invariant set S := {x ∈ Rn : V 0(x) ≤ ρ} ∩ X and therefore the origin is

asymptotically stable in S .

Proof. For ρ > 0, choose x ∈ S ⊆ X and u0 ∈ u0(x) such that κ(x) = u0(0). We denote
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x̂+ = f(x, κ(x), 0) and x̂N := φ(N ;x,u0). De�ne the extended input trajectory as

ũ+ = (u0(1), u0(2), . . . , u0(N − 1), κf (x̂N))

Note that ũ+ ∈ UN . For this input trajectory, we have that x̂N ∈ Xf because u0 ∈ U(x)

and therefore f(x̂N , κf (x̂N), 0) ∈ Xf because of Assumption 2.29. Thus, ũ+ ∈ U(x̂+) and

x̂+ ∈ X since U(x̂+) 6= ∅. Furthermore, we have for this extended input trajectory that

V (x̂+, ũ+) = V (x,u0)− `(x, κ(x))− Vf (x̂N) + `(x̂N , κ(x̂N)) + Vf (f(x̂N , κf (x̂N)))

≤ V (x,u0)− `(x, κ(x))

≤ V (x,u0)− α`(|x|) (2.34)

in which the �rst inequality holds because of Assumption 2.29 and the second inequality holds

with α`(·) ∈ K∞ because of Assumption 2.23. Therefore,

V 0(x̂+) ≤ V (x̂+, ũ+) ≤ V (x,u0) = V 0(x) ≤ ρ

for all x ∈ S . Since x̂+ ∈ X and V 0(x̂+) ≤ ρ, we have that x̂+ ∈ S for all x ∈ S , i.e., S is

positive invariant for the nominal system.

From Assumption 2.23, we also have α`(|x|) ≤ `(x, κ(x)) ≤ V 0(x) with α`(·) ∈ K∞. We

use Lemma 2.35 to get the upper bound. The cost decrease condition is shown in (2.34) and

therefore V 0(·) is a Lyapunov function. We use Proposition 2.11 to establish that the origin

is asymptotically stable.

With these results in hand, we can now establish Theorem 2.32.

Proof of Theorem 2.32. We use a similar approach as Allan et al. (2017) to establish this result.

For ρ > 0, choose x ∈ S ⊆ X and u0 ∈ u0(x) such that κ(x) = u0(0). For the nominal

54



Robustness and Model Predictive Control Chapter 2

system, we denote x̂+ = f(x, κ(x), 0), x̂N := φ(N ;x,u0), and de�ne the extended input

trajectory as

ũ+ = (u0(1), u0(2), . . . , u0(N − 1), κf (x̂N))

Note that ũ+ ∈ U(x̂+) and x̂+ ∈ S from the proof of Lemma 2.36.

For the perturbed system and any w ∈ W, we denote x+ = f(x, κ(x), w) and x+
N =

φ(N ;x, ũ+). We �rst establish that x+ ∈ X . Note that S is compact since V 0(·) is lower-

semicontinuous and X is closed by Proposition 2.30. Also, the function Vf (φ̂(N ;x,u)) is

continuous because it is a composition of a �nite number of continuous functions. From

Proposition 2.34, there exists σf (·) ∈ K∞ such that

|Vf (φ̂(N ;x+, ũ+))− Vf (φ̂(N ; x̂+, ũ+))| ≤ σ̃f (|x+ − x̂+|) (2.35)

for all x̂+ ∈ S , ũ+ ∈ UN , and x+ ∈ Rn. Since f(·) is also continuous, there also exists

σx(·) ∈ K∞ such that

|x+ − x̂+| = |f(x, κ(x), w)− f(x, κ(x), 0)| ≤ σx(|w|) (2.36)

for all x ∈ S and w ∈ Rq. We then combine (2.35) and (2.36) and note that φ̂(N ; x̂+, ũ+) =

f(x̂N , κf (x̂N), 0) to give,

Vf (x
+
N)− Vf (f(x̂N , κf (x̂N), 0)) ≤ σ̃f (σx(|w|)) =: σf (|w|)

in which σf (·) ∈ K∞. We further use Assumption 2.29 to give

Vf (x
+
N) ≤ Vf (x̂N)− `(x̂N , κf (x̂N)) + σf (|w|)

≤ Vf (x̂N)− α`(|x|) + σf (|w|) (2.37)
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for all x ∈ S , w ∈ W. By continuity of Vf (·) and Proposition 2.33, there also exists αf (·) ∈

K∞ such that

Vf (x) = |Vf (x)− Vf (0)| ≤ αf (|x|) (2.38)

for all x ∈ Rn.

Recall that Xf := {x ∈ Rn : Vf (x) ≤ τ} and x̂N ∈ Xf because u0 ∈ U(x). We now de�ne

the constant δ1 := min{σ−1
f (τ/2), σ−1

f (α`(α
−1
f (τ/2)))} and demonstrate that x+

N ∈ Xf for

all |w| ≤ δ1. Note that δ1 > 0 because τ > 0. If Vf (x̂N) ≤ τ/2, we have from (2.37) that

Vf (x
+
N) ≤ τ/2 + σf (δ1)

≤ τ/2 + τ/2 = τ

If τ/2 ≤ Vf (x̂N) ≤ τ , we have that |x| ≥ α−1
f (τ/2). We then substitute this bound into (2.37)

to give

Vf (x
+
N) ≤ τ − α`(α−1

f (τ/2)) + σf (δ1) ≤ τ

because σf (δ1) ≤ α`(α
−1
f (τ/2)) by the de�nition of δ1. So Vf (x+

N) ≤ τ and therefore x+
N ∈

Xf . Since x+
N ∈ Xf and ũ+ ∈ UN , we have that ũ+ ∈ U(x+) and therefore x+ ∈ X . Thus,

the extended input trajectory is feasible for any w ∈W.

We now establish that V 0(x+) ≤ ρ. Note that V (·) is continuous because it is the compo-

sition of a �nite number of continuous functions. By Proposition 2.34 there exists σρ(·) ∈ K∞
such that

|V (x+, ũ+)− V (x̂+, ũ+)| ≤ σρ(|x+ − x̂+|)

for all x+ ∈ X , x̂+ ∈ S , and ũ+ ∈ U. Therefore,

V (x+, ũ+)− V (x̂+, ũ+) ≤ σρ(σx(|w|)) =: σ(|w|)
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and we combine this equation with (2.34) to give

V 0(x+) ≤ V (x+, ũ+) ≤ V 0(x)− α`(|x|) + σ(|w|) (2.39)

For Lemma 2.35, there exists α2(·) ∈ K∞ such that V 0(x) ≤ α2(|x|) for all x ∈ X .

We de�ne δ2 := max{σ−1(ρ/2), σ−1(α`(α
−1
2 (ρ/2)))} and demonstrate that V 0(x+) ≤ ρ

for all |w| ≤ δ2. Note that δ2 > 0 because ρ > 0. If V 0(x) ≤ ρ/2, we have from (2.39) that

V 0(x+) ≤ ρ/2 + σ(δ2) ≤ ρ/2 + ρ/2 ≤ ρ

If ρ/2 ≤ V 0(x) ≤ ρ, we have that |x| ≥ α−1
2 (ρ/2). We then substitute this bound into (2.39)

to give

V 0(x+) ≤ ρ− α`(α−1
2 (ρ/2)) + σ(δ2) ≤ ρ

because σ(δ2) ≤ α`(α
−1
2 (ρ/2)) by the de�nition of δ2. So V 0(x+) ≤ ρ.

Thus, we de�ne δ := max{δ1, δ2} and note that δ > 0 because δ1 > 0 and δ2 > 0. So

for any |w| ≤ δ, we have that x+ ∈ X and x+ ∈ {x ∈ Rn : V 0(x) ≤ ρ}. Therefore,

x+ ∈ S = {x ∈ Rn : V 0(x) ≤ ρ} ∩ X and since the choice of x was arbitrary, we have that

S is RPI for the closed-loop system with W ⊆ {w ∈ Rq : |w| ≤ δ}, i.e., (i) holds.

In the process of establishing (i), we completed the vast majority of e�ort to establish the

remaining results in Theorem 2.32. From Lemma 2.36, we have that there exist α1(·), α2(·) ∈

K∞ such that α1(|x|) ≤ V 0(x) ≤ α2(|x|) for all x ∈ S ⊆ X . Furthermore, (2.39) holds for

all x ∈ S and therefore V 0(·) is an ISS Lyapunov function in the RPI set S . In the proof

of Lemma 2.36, we also show that `(x, κ(x)) ≤ V 0(x) for all x ∈ S ⊆ X . Thus, we use

Proposition 2.15 and Proposition 2.26 to give (ii) and (iv). We then use Proposition 2.21 in

combination with Proposition 2.18 and Proposition 2.27 to give (iii) and (v).
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Figure 2.3: Diagram of the heat exchanger example. The process �uid (orange) is cooled by
the refrigerant (blue).

2.8 Example

We consider a simple example of MPC based on the process shown in Figure 2.3.12 The

heat exchanger uses a refrigerant (Ammonia, blue) to cool the process �uid (50/50%v Ethy-

lene Glycol/water, orange). The inlet �ow-rate F1 and temperature T1 are determined by the

upstream process and subject to perturbations. The nominal values of these variables are

F1 = 50 L/min and T1 = 300 K. We use w1, w2 to represent perturbations to these nominal

values. We assume, of course, that the tank is well-mixed and therefore T2 = T . The goal is to

maintain V and T , and therefore tank height and T2, at their respective setpoints by manipu-

lating the outlet �ow rate F2 and refrigerant temperature Tr. We assume that the refrigerant

temperature can be manipulated “instantly” (at a much faster time-scale than the heat ex-

changer). With appropriate mass and energy balances, we obtain the following di�erential

equations.

dV

dt
= 50− F2 + w1

dT

dt
=

50 + w1

V
(300 + w2 − T ) +

α

ρĈpV
(Tr − T )

12which is remarkably similar to a certain undergraduate process control project.
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in which α is the heat transfer coe�cient between the refrigerant and the process �uid and

Ĉp, ρ are the speci�c heat capacity and density of the process �uid with α/(ρCp) = 300

L/min.

The inlet �ow rate can take values in the range F2 ∈ [0, 80] and the refrigerant temper-

ature may take values in the range Tr ∈ [245, 255]. The target setpoints are V s = 1000 L

and T s = 255 K, which leads to the corresponding (nominal) steady state inputs of F s
2 = 50

L/min and T sr = 247.5 K. We de�ne the state, input, and disturbance in deviation variables as

x = [V − V s, T − T s]′, u = [F2 − F s
2 , Tr − T sr ]′, and w = [w1, w2]′ with the corresponding

(vector-valued) di�erential equation

dx

dt
= F (x, u, w)

This continuous-time di�erential equation is then discretized using the Runge-Kutta method

(4th order) with one minute time steps (∆ = 1) to give the di�erence equation

x+ = f(x, u, w)

Although the state of the system is de�ned relative to the steady-state values, we sometimes

plot the absolute values of these variables to exemplify the physical meaning of these vari-

ables.

For the MPC problem, we de�ne the standard quadratic stage cost as

`(x, u) = x′Qx+ u′Ru
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with the diagonal matrices

Q :=

0.0025 0

0 1

 R :=

0.0625 0

0 1


To construct the terminal cost and constraints, we linearized the nonlinear di�erence equation

about (x, u) = (0, 0) and compute the LQR solution for this linearized system with the same

quadratic stage cost `(·) that was just de�ned. The solution to this problem results in the

cost matrix P and feedback gain K that we use to de�ne the terminal cost Vf (x) := 2x′Px,

terminal constraint Xf := {x : 2x′Px ≤ τ} for τ = 1, and terminal control law κf (x) = Kx.

We verify that Vf (f(x, κf (x), 0)) ≤ Vf (x)− `(x, κf (x)) for all x ∈ Xf . We choose a horizon

of N = 20. Thus, the formulated MPC problem satis�es Assumptions 2.1, 2.23, 2.28 and 2.29.

We solve the MPC problem from the initial state x(0) = [100, 15]′, or V (0) = 1100 L and

T (0) = 270 K. In Figure 2.4, we display phase plots of the optimal state and input trajectories.

Note that these are not necessarily the closed-loop trajectories for the system.Observe that

the input constraints on u2 are active for the �rst two inputs in the optimal trajectory and the

terminal constraint is easily satis�ed.

In Figure 2.5, we plot the nominal closed-loop trajectory (w = 0) from the same initial

condition (x(0) = [100, 15]′). Both elements of the state (V andT ) converge to their respective

steady-state targets as t increases, i.e., the target steady state is asymptotically stable.

We now consider disturbances in the closed-loop system. Speci�cally, we allow �uctua-

tions of ±10 L/min in F1 and ±10 K in T1 and therefore W := {w : w1 ∈ [−10, 10], w2 ∈

[−10, 10]}, i.e., a square. We assume that both disturbances are independent with uniform

distributions on their respective supports. In the top two plots of Figure 2.6, we show the

closed-loop state trajectory for 30 di�erent realizations of the disturbance trajectory. Ob-

serve that all the trajectories exhibit initial convergence towards a neighborhood of the target
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Figure 2.4: Phase plots of the optimal state (x0) and input trajectories (u0) for the heat
exchanger example with input and terminal state constraint sets shown by the gray shaded
regions.
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Figure 2.5: The nominal closed-loop state and input trajectories. The target steady-state
values are shown with the dashed black lines and input constraints are shown in red.
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Figure 2.6: Top: The closed-loop state trajectories for 30 realizations of the disturbance tra-
jectory. Bottom: Closed-loop state and stage cost trajectories for these 30 realizations of the
disturbance trajectory with their sample averages in blue.

steady state. After this initial convergence, the trajectories remain in this neighborhood for

all subsequent t.

In the bottom two plots of Figure 2.6, we show the performance of these trajectories in

terms their distance to the target steady state (origin) and stage cost `(x, u). Note that all of

the trajectories exhibit initial convergence towards the origin and then remain within a neigh-

borhood of the origin. This behavior is therefore consistent with RAS and `-RAS. We then

evaluate the sample average of these trajectories, which we denote as Ê[·], to approximate the

expected value used in the de�nitions of RASiE and `-RASiE. Note that these trajectories are

consistent with the de�nitions of RASiE and `-RASiE. Thus, the behavior shown in Figure 2.6

is consistent with Theorem 2.32 and demonstrates the practical implications of this theorem.
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2.9 Summary

Some nonzero margin of robustness to disturbances is essential to deploy a control algo-

rithm in industrial applications. In a deterministic context, robustness implies that arbitrarily

small disturbances produce similar small deviations in the performance of the closed-loop sys-

tem (RAS and `-RAS). In a stochastic context, robustness implies that disturbances with arbi-

trarily small variances produce similar small deviations in expected value of the performance

of the closed-loop system (RASiE and `-RASiE). This “performance” can be characterized by

the standard notion of “distance to the target steady state”, i.e., |x|, or a more general notion

in terms of the stage cost `(·) speci�ed for the problem of interest (`-RAS and `-RASiE). We

established su�cient conditions for these di�erent de�nitions of robustness via comparison

functions and ISS/SISS Lyapunov functions. Moreover, we established that the typical notion

of deterministic robustness (RAS) also implies stochastic robustness (RASiE) for bounded RPI

sets.

These de�nitions of deterministic and stochastic robustness provide di�erent strengths

and weakness. RASiE and `-RASiE are useful characterizations of the closed-loop system per-

formance for a distribution of disturbance values. RAS and `-RAS, however, are much more

instructive properties for speci�c realizations of the disturbance trajectory. In particular, RAS

(`-RAS) guarantees that as |w| → 0, we recover asymptotic stability of the origin for that

speci�c trajectory of disturbances, i.e., φ(k;x,w)→ 0 (`(x(k), u(k))→ 0). RASiE (`-RASiE)

does not guarantee that we recover asymptotic stability as |w| → 0 for a speci�c disturbance

trajectory because, by de�nition, RASiE (`-RASiE) considers a distribution of disturbances.

For RASiE (`-RASiE), we also require that Σ→ 0 to recover asymptotic stability of the origin.

This fact is signi�cant in comparison nominal and stochastic MPC in the following chap-

ter. In summary, these de�nitions of stochastic robustness o�er better characterizations of

closed-loop performance for stochastic systems, but are nonetheless weaker properties than
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the corresponding de�nitions of deterministic robustness.

The main result in this chapter is Theorem 2.32, which establishes that nominal MPC

ensures all of these deterministic and stochastic de�nitions of robustness for the closed-loop

system subject to su�ciently small (but nonzero) disturbances. Nominal MPC achieves this

nonzero margin of robustness without any disturbance information explicitly included in

the the optimization problem. Instead, this robustness is a�orded solely by feedback. As

demonstrated in the heat exchanger example, this inherent robustness is often su�cient to

address the relevant disturbances for an industrial process.

There may arise, however, applications in which this margin of inherent robustness is

insu�cient. In these applications, including stochastic information in the problem formula-

tion may prove bene�cial. This reasoning and the burgeoning �eld of stochastic optimization

lead to the development of stochastic MPC (SMPC), which we discuss, in extensive and novel

detail, in the next two chapters.
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Stochastic MPC

A key requirement of the robustness results established for nominal MPC is that the distur-

bance must be su�ciently small for any of these properties to hold. We can guarantee that

this margin of robustness is nonzero (i.e., δ > 0), but drawing any further conclusions for a

general nonlinear system of signi�cant dimension is unworkable. The argument made by the

proponents of nominal MPC is instead rooted in the industrial success of the control tech-

nique. This margin of robustness is typically su�cient in industrial practice and this claim

is substantiated by the numerous successful implementations of MPC in industry (Qin and

Badgwell, 2003). Alternatively, one may argue that the margin of robustness a�orded by nom-

inal MPC, while often satisfactory, is inadequate for systems with exceptional safety concerns,

high performance demands, and/or signi�cant uncertainty. In these scenarios, a stochastic or

worst-case model of the disturbances should be used directly in the design of the controller

to ensure robustness.

This interest led to the development of stochastic MPC (SMPC) in the last two decades.

The distinct feature of SMPC is that a disturbance model is included explicitly in the op-

timization problem with the goal of producing a feedback controller that is “more robust”

than nominal MPC to a speci�c disturbance of interest. Given its early stage of development,

however, there are naturally many limitations to the current theory of SMPC, particularly

for nonlinear systems. In fact, there is not even a speci�c de�nition of stochastic robust-
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ness and authors often use a variety of di�erent results in characterizing the properties of

SMPC. Moreover, this notion of “more robust,” is never clearly de�ned and, despite the obvi-

ous connection between nominal and stochastic MPC (and the claims made by proponents of

each approach), there are no rigorous comparisons of the theoretical properties achieved by

these di�erent formulations. We attribute this limitation to the fact that closed-loop results

for nominal MPC and SMPC are typically deterministic and stochastic, respectively, and are

therefore not comparable across these two methods.

By introducing and establishing the stochastic robustness of nominal MPC in the previous

chapter, we are uniquely positioned to address this limitation and compare nominal MPC and

SMPC across multiple relevant de�nitions of robustness. We begin by introducing SMPC

and establishing su�cient conditions for the stochastic robustness of this controller. SMPC,

however, does not ensure robust asymptotic stability (RAS) for nonlinear systems and can

thereby produce nonintuitive closed-loop behavior. Motivated by this shortcoming of SMPC,

we then propose a constraint-tightened MPC (CMPC) formulation and establish that CMPC

satis�es all the de�nitions of stochastic and deterministic robustness introduced in Chapter

2 for the disturbance used in the problem formulation. Through a few simple examples, we

illustrate the implications of these results and demonstrate that, depending on the de�nition

of robustness considered, SMPC is not necessarily more robust than nominal MPC even if the

disturbance model is exact.

3.1 Literature review

Given a stochastic description of the uncertainty in the system, the SMPC problem is typ-

ically de�ned as a minimization of the expected value of a sum-of-stage costs (Farina et al.,

2016; Mayne, 2016; Mesbah, 2016). The optimization problem is often subject to determinis-

tic constraints that must hold for all realizations of the disturbance as well as probabilistic
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state and input constraints, sometimes referred to as chance constraints. This stochastic opti-

mization problem, however, is more computationally demanding and further complicates the

closed-loop analysis of SMPC relative to nominal MPC. Consequently, the majority of results

for SMPC are restricted to linear systems. As with the previous chapter and the rest of this

dissertation, we focus on the closed-loop properties of SMPC and do not directly address the

topic of stochastic optimization. There is already a signi�cant body of literature devoted to

approximating and solving SMPC and stochastic optimal control problems (see Mesbah (2016)

for a review).

In one of the �rst contributions addressing the theoretical properties of SMPC, Primbs and

Sung (2009) consider linear systems with multiplicative uncertainty such that the e�ect of the

disturbance vanishes at the origin. By assuming the terminal cost is a global stochastic Lya-

punov function, the authors establish that the origin is asymptotically stable with probability

one. For constrained linear SMPC subject to bounded disturbances, Cannon, Kouvaritakis,

and co-authors use a terminal cost and terminal constraint derived from a local Lyapunov

function to ensure recursive feasibility and stability in expectation of the closed-loop sys-

tem (Cannon et al., 2009a,b, 2010; Kouvaritakis et al., 2010). Lorenzen et al. (2016) propose a

less restrictive constraint tightening approach and establish that linear SMPC asymptotically

stabilizes, with probability one, the minimal robust positive invariant set for the system. Sim-

ilar results are establish in other subsequent papers for modi�ed SMPC algorithms (Sehr and

Bitmead, 2018; Hewing et al., 2020).

For nonlinear SMPC, Chatterjee and Lygeros (2014) establish that the expected value of

the optimal cost along the closed-loop trajectory is bounded if the terminal cost is a global

stochastic Lyapunov function. Mayne and Falugi (2019) extend these results to address con-

strained nonlinear systems subject to bounded, stochastic disturbances and, with terminal

constraints, require the terminal cost to be only a local stochastic Lyapunov function. Under

certain viability and stochastic controllability assumptions, nonlinear SMPC without termi-
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nal conditions is also stabilizing, but these assumptions are di�cult to verify for nonlinear

systems (Lorenzen et al., 2019).

3.2 The stochastic linear-quadratic regulator

Before proceeding to (nonlinear) SMPC, we again begin with the simplest version of the

stochastic optimization problem: a linear, unconstrained stochastic system, i.e.,

x+ = f(x, u, w) = Ax+Bu+ w

in which A ∈ Rn×n, B ∈ Rn×m are matrices and (A,B) is assumed to be stabilizable. We

assume that the disturbances w are i.i.d. in time, zero mean, random variables. We even allow

W = Rn, i.e., w is unbounded. We use a quadratic stage cost `(x, u) := x′Qx + u′Ru with

Q,R � 0.

Since the stochastic linear-quadratic regulator considers all possible realizations of the

(potentially unbouded) disturbance w ∈ W, we must optimize over a sequence of feedback

policies Π := (π0, π1, . . . ) instead of a single trajectory of control actions u. These feedback

policies are functions that map the state of the system at time k to the required input u(k),

i.e., u(k) = πk(x(k)). Thus, the input at each time k is also a function of the current state.

We de�ne the in�nite horizon stochastic cost function as

V (x,Π) = lim
N→∞

1

N
E

[
N−1∑
k=0

(
x(k)′Qx(k) + πk(x(k))′Rπk(x(k))

)
+ x(N)′Qx(N)

]

in which x(k+1) = Ax(k)+Bπk(x(k))+w(k) is the stochastic system evolution, x(0) = x is

the deterministic initial condition, and Π is the in�nite trajectory of control policies. Note that

we have also normalized this in�nite horizon cost by the horizon length 1
N

so that V (x,Π) is
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�nite. The in�nite horizon stochastic optimal control problem is then given by

V 0(x) = min
Π
V (x,Π)

for all x ∈ Rn in which the optimal trajectory of policies is denoted Π0 = (π0
0, π

0
1, . . . ).

As with the nominal LQR problem, one can use dynamic programming to show that the

solution to this in�nite horizon optimization problem is given by the unique stabilizing solu-

tion to the discrete-time algebraic Riccati eqution (DARE), i.e., the matrix P � 0 that solves

P = A′PA− (A′PB)(R +B′PB)−1(B′PA) +Q

such that A + BK is Schur stable with K = −(R + B′PB)−1(B′PA) (Bertsekas, 2017, s.

3.1). The optimal cost is given by V 0(x) := tr(PΣ) in which Σ � 0 is the covariance of w.

Furthermore, the control law, de�ned by the �rst control policy in the optimal solution, is

given by κ(x) = π0
0(x) = Kx.

The implications of this result are remarkable. The control laws derived from the stochas-

tic LQR and nominal LQR are in fact identical. We solve the same DARE problem to give the

same matrix P , the same feedback gain K , and the same control law κ(x) = Kx. This prop-

erty is known as certainty equivalence, as �rst proposed in Simon (1956) and Theil (1957). A

discussion of certainty equivalence as it pertains to stochastic optimal control can be found

in Van de Water and Willems (1981). More recently, the principle of certainty equivalence has

found interest in the machine learning research community as well (Mania et al., 2019).

As it pertains to SMPC, this result means that including stochastic information in the opti-

mization problem produces a di�erent and potentially superior controller only if we consider

non-quadratic stage costs, nonlinear systems, or problems in which the input/state constraints

are particularly relevant to the control law. By contrast, SMPC problems with approximately
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linear dynamics, inactive constraints, and quadratic stage costs are liable to produce control

laws and closed-loop systems that are very similar, if not the same, as nominal MPC.

3.3 Problem formulation and preliminaries

We consider the same stochastic system introduced in (2.4), but we reintroduce the main

features of this system here for convenience. We consider the following discrete-time stochas-

tic system

x+ = f(x, u, w) f : Rn × Rm × Rq → Rn (3.1)

The input is subject to hard constraints u ∈ U ⊆ Rm and we use W ⊆ Rq to denote the set

for the disturbances. We make the same assumption for the disturbances used in the previous

chapter.

Assumption 3.1 (Disturbances). The disturbancesw ∈W are random variables that are i.i.d.

in time and zero mean. The set W is compact and contains the origin.

Given Assumption 3.1, we denote the probability measure of w as µ : B(W)→ [0, 1] and

we useM(W) to denote the collection of all possible probability measure µ : B(W)→ [0, 1]

that satisfy Assumption 3.1, i.e., E [w] = 0 for all µ ∈M(W). For any µ ∈M(W), we denote

the covariance matrix of w as Σ.

For the i.i.d. random variables (w(i), w(i+ 1), . . . , w(i+N −1)) andN ∈ I≥1, their joint

distribution measure µN : B(WN)→ [0, 1] is de�ned as

µN(F ) := µ(Fi)µ(Fi+1) . . . µ(Fi+N−1)

for all F = (Fi, Fi+1, . . . , Fi+N−1) ∈ B(WN). We de�ne the sequence of random variables

starting from i = 0 to k ∈ I≥0 as wk := (w(0), w(1), . . . , w(k − 1)). For this sequence, we
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de�ne the expected value of a Borel measurable function g : Wi → R≥0 as the following

Lebesgue integral.

E [g(wi)] :=

∫
WN

g(wi)dµ
N(wi)

Since SMPC considers all possible realizations of the disturbance within the optimization

problem, selecting a single trajectory of inputs u for the �nite horizon N ∈ I≥1 that satis-

�es all the required constraints (in particular the terminal constraint) is typically impossible.

Instead, we must embed feedback within the optimization problem and optimize over a trajec-

tory of control policies, i.e., a sequence of functions (π0, π1, . . . , πN−1) such that the control

action at each point in the open-loop optimization problem is given by u(k) = πk(x(k)).

In practice, however, optimizing over an in�nite dimensional object such as a continuous

function is intractable. We are only able to compute such a function for the stochastic LQR

problem by exploiting the convenient structure of the linear system and quadratics costs. For

general nonlinear systems and/or constrains, we loose this capability. To formulate a tractable

optimization problem, we instead de�ne a parameterized control policy π : Rn × V → Rm

in which x ∈ Rn is the current state of the system and v ∈ V ⊆ Rl are the parameters

in the control policy. A common choice for this parameterization is π(x, v) := Kx + v

in which K is a �xed matrix. Thus, we optimize over a trajectory of parameters v :=

(v(0), v(1), . . . , v(N−1)) for this policy and thereby de�ne a trajectory of control policies. As

with nominal MPC, we do not implement the entire trajectory of control policies and instead

solve for a new trajectory of parameters at each time step.

The resulting system of interest is therefore

x+ = f(x, π(x, v), w) (3.2)

We use φ̂s(k;x,v,w) to denote the state of the system (3.2) at time k ∈ I0:N , given the initial
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condition x ∈ Rn, the trajectory of control policies v ∈ VN , and the disturbance sequence

w ∈WN . Since we are considering the disturbances directly in the optimization problem, we

can consider hard input and state constraints, i.e.,

(x, u) ∈ Z ⊆ Rn × U

Remark 3.2. In some SMPC formulations, probabilistic constraints are also de�ned, e.g.,

Pr(f(x, u, w) ∈ X̃) ≥ 1− ε (3.3)

for a set X̃ ⊆ Rn and constant ε ∈ [0, 1]. We note, however, that these (one step ahead)

probabilistic constraints may be reformulated using the function

G(x, u) := 1−
∫
W
IX̃ (f(x, u, w)) dµ(w)

and the constraint set Z̃ε := {(x, u) : G(x, u) ≤ ε}. Thus, (x, u) satisfy (3.3) if and only

if (x, u) ∈ Z̃ε and we can simply rede�ne the hard constraints as Z ∩ Z̃ε to include this

probabilistic constraint. Furthermore, we can show that Z̃ε is in fact closed if X̃ is closed and

f(·) is continuous (McAllister and Rawlings, 2022a, Lemma 1). Thus, we restrict our attention

to only hard constraints (x, u) ∈ Z.

For a horizon N ∈ I≥1 and the terminal constraints Xf ⊆ Rn, we de�ne the admissible

parameter trajectories and feasible initial states as

V(x) := {v ∈ VN : (x(k), π(x(k), v(k))) ∈ Z ∀w ∈WN , k ∈ I0:N−1;

x(N) ∈ Xf ∀w ∈WN}

X s := {x : V(x) 6= ∅}
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in which x(k) = φ̂s(k;x,v,w). We use a stage cost ` : Rn × Rm → R≥0 and terminal cost

Vf : Rn → R≥0 to de�ne the the function

J(x,v,w) =
N−1∑
k=0

`(x(k), π(x(k), v(k))) + Vf (x(N))

in which x(k) = φ̂s(k;x,v,w). We de�ne the SMPC cost function as the expected value of

J(·), i.e.,

V s
µ (x,v) :=

∫
WN

J(x,v,w)dµN(w)

The optimization problem for any x ∈ X s is de�ned as

Psµ(x) : V s0
µ (x) := min

v∈V(x)
V s
µ (x,v) (3.4)

and the optimal solution for a given initial state are denoted vs0µ (x) := arg minv∈V(x) V
s
µ (x,v).

Note that vs0µ is a set-valued mapping because there may be multiple solution to Psµ(x).

As with nominal MPC, we use a selection rule to de�ne a single-valued control law κ :

X s → U such that

κsµ(x) ∈ {π(x, v(0)) : v ∈ vs0µ (x)}

for all x ∈ X s. Note that because we have included the probability measure explicitly in the

optimization problem through the cost function, the optimization problem varies with the

probability measure µ ∈ M(W). Thus, the optimal cost V s0
µ (·), optimal solution vs0µ (·), and

control law κsµ(·) all vary with µ. The resulting closed-loop system is then

x+ = f(x, κsµ(x), w) (3.5)

We use φsµ(k;x,wk) to denote the state of the system (3.5) at time k ∈ I≥0, given the initial

condition x ∈ X s, disturbance sequence wk ∈ Wk, and probability measure µ ∈ M(W).
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Since the control law varies with µ, so does the closed-loop trajectory φsµ(·). This fact becomes

relevant when discussing the robustness of SMPC and requires that we extend the de�nition

of RASiE used in the previous chapter to allow for a control law that varies with µ.

For SMPC, we require some of the same assumptions already introduced for nominal MPC

that we restate here with a slightly di�erent organization.

Assumption 3.3 (Continuity of system and cost). The system f : Rn × U × W → Rn,

stage cost ` : Rn × U → R≥0, and terminal cost Vf : Xf → R≥0 are continuous and satisfy

f(0, 0, 0) = 0, `(0, 0) = 0, and Vf (0) = 0.

Assumption 3.4 (Stage cost bound). There exists α`(·) ∈ K∞ such that α`(|x|) ≤ `(x, u) for

all (x, u) ∈ Rn × U.

We also require a few assumptions that di�er from the versions used for nominal MPC.

Assumption 3.5 (Properties of the constraint sets; SMPC). The set Z is closed and contains

the origin. The sets U and Xf are compact and contain the origin. The set Xf contains the

origin in its interior. The set X s is bounded.

Assumption 3.6 (Terminal ingredients; SMPC). There exists a continuous terminal control

law κf : Xf → U such that for all x ∈ Xf ,

f(x, κf (x), w) ∈ Xf ∀w ∈W (3.6)

Vf (f(x, κf (x), 0)) ≤ Vf (x)− `(x, κf (x)) (3.7)

Furthermore, (x, κf (x)) ∈ Z and π(x, 0) = κf (x) for all x ∈ Xf .

Assumption 3.7 (Parameterization). The set V is compact and contains the origin. The func-

tion π : Rn × V→ Rm is continuous.
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Assumptions 3.5 and 3.6 are the versions of Assumptions 2.28 and 2.29 adjusted for SMPC.

Assumption 3.5 addresses the additional state constraints added to the SMPC problem while

dropping the requirement that Xf is a level set of the terminal cost. Assumption 3.6 requires,

in addition to the nominal cost decrease in the terminal region, that the terminal control law

renders the terminal set RPI. This requirement ensures that the SMPC algorithm is robustly

recursively feasible. Assumption 3.7 sets some basic requirements for the control law param-

eterization.

An additional requirement in Assumption 3.5 relative to Assumption 2.28 is that X s is

bounded. This restriction, however, is minor. Most physical systems in engineering appli-

cations admit upper and lower bounds on their state (e.g., mole fraction is between zero and

one, temperature of a reactor is lower bounded by the temperature of the coolant/inlet stream

and upper bounded by an adiabatic limit). Moreover, discretization of continuous ordinary

di�erential equations produces a discrete time system such that f−1(X) = {(x, u) ∈ X×U :

f(x, u, 0) ∈ X} is bounded for all bounded X . This fact combined with compact U and Xf

ensures thatX for nominal MPC andX s for SMPC are bounded sets. For a proof of this result

and further discussion see Rawlings et al. (2020, Prop. 2.10(d)) and note that X ⊆ X s since

0 ∈W (See Lemma 3.23).

Although Assumption 3.6 may seem signi�cantly stronger than Assumption 2.29, the ter-

minal cost and constraint used in nominal MPC is often su�cient for SMPC if the disturbances

are again assumed to be su�ciently small (McAllister and Rawlings, 2022d, Lemma 25). The

requirements in Assumption 3.6 indicate that the terminal ingredients for SMPC must be

compatible with the disturbance of interest. Su�ciently large disturbances may render the

construction of a suitable terminal control law and terminal set either di�cult of impossible

if we consider nonlinear systems and/or input constraints. Assumption 3.6 also ensures that

Xf ⊆ X s and therefore X s is not empty (See Lemma 3.23).

While not explicitly stated, a key assumption in this chapter and throughout SMPC liter-
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ature is that the probability measure and set W used in the SMPC problem formulation are

identical to that of the plant. This assumption is, of course, idealized and typically not sat-

is�ed for any practical implementation of SMPC. Nonetheless, we proceed, at least initially,

under this assumption. The study of idealized SMPC is analogous to that of nominal stabil-

ity properties for a control algorithm. The merit of this analysis is in establishing the best

performance one can expected from SMPC to serve as a baseline. If the performance is not

satisfactory under ideal conditions then there is little incentive to study nonideal conditions.

Before proceeding to any closed-loop properties for SMPC, we must �rst establish that

a solution to Psµ(x) exists for all x ∈ X s and µ ∈ M(W) and verify that κsµ(·) is a Borel

measurable function for all µ ∈ M(W). As with nominal MPC, verifying these properties is

essential to guarantee the veracity of the subsequent analysis. For nonlinear MPC, however,

these topics are seldom discussed. Authors either explicitly assume that the “minimization

problem is well-de�ned” and “the control law is measurable”, or omit this discussion. By

contrast, these properties are well established in the larger and related �eld of stochastic

optimal control (Bertsekas and Shreve, 1978).

Fortunately, the assumptions that we already introduced are su�cient to guarantee that

a solution to the minimization problem exists. Moreover, we can also establish that vsµ(·) is a

Borel measurable function via the same results in Bertsekas and Shreve (1978) that we used

for nominal MPC. We summarize these results in the following proposition and further details

can be found in McAllister and Rawlings (2022a).

Proposition 3.8. Let Assumptions 3.3 and 3.5 to 3.7 hold. Then Psµ(x) has a solution for all

x ∈ X s, X s is closed, V s0
µ : X s → R≥0 is lower semicontinuous, and vs0µ : X s ⇒ VN is a Borel

measurable function for all µ ∈ M(W). Furthermore, there exists a Borel measurable selection

rule such that the single-valued control law κsµ : X s → U is Borel measurable and satis�es

κsµ(x) ∈ {π(x, v(0)) : v ∈ vs0µ (x)} for all x ∈ X s.
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We can now discuss the robustness of the closed-loop trajectory.

3.4 Extended de�nitions of stochastic robustness

The de�nition of RASiE provided in the previous chapter (De�nition 2.16) assumes a �xed

control law for all µ ∈ M(W). For nominal MPC this characterization is suitable, but for

SMPC the control law is not �xed and we must consider this fact in the de�nition of stochastic

robustness. Thus, we rede�ne RASiE as follows while allowing the control law κµ : X → U

and therefore closed-loop trajectoryφµ(k;x,wk) to vary withµ ∈M(W). Note that since the

constraints in SMPC do not vary with µ, the feasible set X s remains �xed for all µ ∈M(W)

and this fact is re�ected in the subsequent de�nitions.1

De�nition 3.9 (RASiE). The origin is robustly asymptotically stable in expectation (RASiE)

for a system x+ = f(x, κµ(x), w), w ∈ W in an RPI set X if there exist β(·) ∈ KL and

γ(·) ∈ K such that

E [|φµ(k;x,wk)|] ≤ β(|x|, k) + γ(tr(Σ)) (3.8)

for all x ∈ X , µ ∈M(W), and k ∈ I≥0.

Note that the upper bound depends on the probability measure through only the argument

tr(Σ). The functions β(·) and γ(·) are the same for all µ ∈ M(W). We can similarly extend

the de�nition of `-RASiE to allow for control laws and closed-loop trajectories that vary with

µ ∈M(W).

De�nition 3.10 (`-RASiE). The origin is `-RASiE with respect to the stage cost `(x, κµ(x))

for a system x+ = f(x, κµ(x), w), w ∈ W in an RPI set X if there exist β(·) ∈ KL and
1If probabilistic constraints are included, however, the set X s may vary with µ.
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γ(·) ∈ K such that

E [`(x(k), κµ(x(k)))] ≤ β(|x|, k) + γ(tr(Σ)) (3.9)

in which x(k) := φµ(k;x,wk) for all x ∈ X , µ ∈M(W), and k ∈ I≥0.

In both cases, these de�nitions are generalizations of their previous versions in De�nitions 2.16

and 2.25 and are equivalent to their previous versions for control laws that do not vary with

µ, i.e., κµ(·) = κ(·).

We also use an SISS Lyapunov function speci�cally tailored for SMPC. Since we intend to

use the optimal cost function for SMPC as the SISS Lyapunov function, we must allow this

Lyapunov function to vary with µ. Moreover, the optimal cost function for SMPC may not

satisfy V s0
µ (0) = 0. Thus, we need to allow the upper bound for the SISS Lyapunov function

to also vary with µ and the corresponding Σ. We rede�ne the SISS Lyapunov function as

follows.

De�nition 3.11 (SISS Lyapunov function). The Borel measurable function Vµ : X → R≥0,

de�ned for all µ ∈M(W), is an SISS Lyapunov function for the system x+ = f(x, κµ(x), w),

w ∈W in an RPI set X if there exist α1(·), α2(·), α3(·) ∈ K∞ and σ2(·), σ3(·) ∈ K such that

α1(|x|) ≤ Vµ(x) ≤ α2(|x|) + σ2(tr(Σ)) (3.10)∫
W
Vµ(f(x, κµ(x), w))dµ(w) ≤ Vµ(x)− α3(|x|) + σ3(tr(Σ)) (3.11)

for all x ∈ X and µ ∈M(W).

We note that this de�nition is a generalization of De�nition 2.17 for SISS Lyapunov func-

tions. For a control law and Lyapunov function that do not vary with µ, an SISS Lyapunov

function according to De�nition 2.17 is also an SISS Lyapunov function according to De�-

nition 3.11, i.e., κµ(·) = κ(·) and Vµ(·) = V (·) with σ3(·) = σ(·) and any σ2(·) ∈ K. We
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now establish that the existence of an SISS Lyapunov function in terms of De�nition 3.11 is

a su�cient condition for RASiE in terms of De�nition 3.9. Unless otherwise stated, we use

these new de�nitions in lieu of the previous ones in Chapter 2 for the rest of this chapter, e.g.,

we take RASiE to mean De�nition 3.9 and not De�nition 2.16.

Proposition 3.12. If a system x+ = f(x, κµ(x), w), w ∈W, withW bounded, admits an SISS

Lyapunov function in an RPI and bounded set X , then the origin is RASiE in X .

Proof. We assume without loss of generality that α3(s) ≤ α2(s) for all s ∈ R≥0.2 De�ne

α4(s) := α3

(
α−1

2 (s/2)
)

and note that α4(·) ∈ K∞ and α4(s) ≤ s for all s ∈ R≥0 because

α3(s) ≤ α2(s). We have the following inequality.

α4(Vµ(x)) ≤ α4 (α2(|x|) + σ2(tr(Σ)))

≤ α4 (2α2(|x|)) + α4 (2σ2(tr(Σ)))

= α3(|x|) + α4 (2σ2(tr(Σ)))

By rearranging, we have −α3(|x|) ≤ −α4(Vµ(x)) + α4(2σ2(tr(Σ))) and therefore,

∫
W
Vµ(f(x, κµ(x), w))dµ(w) ≤ Vµ(x)− α4(Vµ(x)) + σ(tr(Σ))

in which σ(s) := σ3(s) + α4 (2σ2(s)) and σ(·) ∈ K. Since W is bounded, tr(Σ) is bounded.

Since X is also bounded, there exists b ≥ 0 such that Vµ(x) ≤ α2(|x|) + σ2(tr(Σ)) ≤ b for all

x ∈ X , µ ∈M(W), and corresponding Σ. From Lemma 2.19, we construct αv(·) ∈ K∞ such

that αv(·) is convex and αv(Vµ(x)) ≤ α4(Vµ(x)) for all x ∈ X and µ ∈ M(W). Therefore,

we have ∫
W
Vµ(f(x, κµ(x), w))dµ(w) ≤ Vµ(x)− αv(Vµ(x)) + σ(tr(Σ)) (3.12)

2If this inequality does not hold, we can construct a newα2(·) ∈ K∞ such thatα3(s) ≤ α2(s) for all s ∈ R≥0
and (3.10) still holds.
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For arbitrary µ ∈ M(W) and x ∈ X , let x(k) := φµ(k;x,wk) for all k ∈ I≥0. We then

proceed based on the Proof of Proposition 2.18 to arrive at (2.24), i.e.,

E [Vµ(x(k))] ≤ max{β̃(Vµ(x), k), γ̃(tr(Σ))} (3.13)

in which β̃(·) ∈ KL and γ̃(·) ∈ K. Using Lemma 2.19 and the fact that X is bounded, we

can construct a convex function α1,v(·) ∈ K∞ such that α1,v(|x|) ≤ α1(|x|) ≤ Vµ(x) for all

x ∈ X and µ ∈M(W). Thus, we apply Jensen’s inequality to give

α1,v(E [|x|]) ≤ E [α1,v(|x|)] ≤ E [Vµ(x)]

and therefore

E [|x(k)|] ≤ max
{
α−1

1,v

(
β̃(Vµ(x), k)

)
, α−1

1,v (γ̃(tr(Σ)))
}

≤ β1(Vµ(x), k) + γ1(tr(Σ)) (3.14)

with β1(s, k) := α−1
1,v

(
β̃(s, k)

)
∈ KL and γ1(s) := α−1

1,v (γ̃(s)) ∈ K. We then use the upper

bound for Vµ(·) to give

E [|x(k)|] ≤ β1(α2(|x|) + σ2(tr(Σ)), k) + γ1(tr(Σ))

≤ β1(2α2(|x|), k) + β1(2σ2(tr(Σ)), 0) + γ1(tr(Σ))

= β(|x|, k) + γ(tr(Σ))

in which β(s, k) := β1(2α2(s), k) ∈ KL and γ(s) := β1(2σ2(s), 0) + γ1(s) ∈ K.

Note that the choice of x ∈ X and µ ∈ M(W) was arbitrary and the functions β(·) and

γ(·) are constructed independently of µ. Therefore, these same functions β(·) ∈ KL and

γ(·) ∈ K satisfy (3.8) for all x ∈ X , µ ∈M(W), and k ∈ I≥0.
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We can also establish the following su�cient condition for `-RASiE.

Proposition 3.13. If a system x+ = f(x, κµ(x), w), w ∈W, withW bounded, admits an SISS

Lyapunov function Vµ : X → R≥0 in an RPI and bounded set X that satis�es `(x, κµ(x)) ≤

Vµ(x) for all x ∈ X and µ ∈M(W), then the origin is `-RASiE in X .

Proof. From Proposition 3.12, there exists β(·) ∈ KL and γ(·) ∈ K such that (3.8) holds for all

x ∈ X , µ ∈ M(W), and k ∈ I≥0. Since X is bounded, we can construct a concave function

αc(·) ∈ K∞ that satis�es α2(|x|) ≤ αc(|x|) for all x ∈ X via Corollary 2.20. Therefore,

E [`(x(k), κµ(x(k)))] ≤ E [Vµ(x(k))]

≤ E
[
αc(|x(k)|) + σ2(tr(Σ))

]
≤ αc(E[|x(k)|]) + σ2(tr(Σ))

≤ αc(2β(|x|, k)) + αc(2γ(tr(Σ))) + σ2(tr(Σ))

in which x(k) := φµ(k;x,wk) for all x ∈ X , µ ∈ M(W), and k ∈ I≥0. De�ne β̃(s, k) :=

αc(2β(s, k)) and γ̃(s) := αc(2γ(s))+σ2(s) and note that β̃(·) ∈ KL and γ̃(·) ∈ K to complete

the proof.

3.5 Stochastic robustness of SMPC

With these de�nitions of stochastic stability extended to address κµ(·), we now establish

that SMPC is both RASiE and `-RASiE. Analogous to nominal MPC, we establish these results

by showing that the optimal cost of the SMPC problem V s0
µ (·) is an SISS Lyapunov function.

We begin by establishing some important properties of SMPC through the following lemmata.

First, we establish that the terminal cost and constraint ensure a stochastic cost decrease

condition within Xf .
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Lemma 3.14. Let Assumptions 3.1, 3.3 and 3.5 to 3.7 hold. Then there exists σ(·) ∈ K such that

∫
W
Vf (f(x, κf (x), w))dµ(w) ≤ Vf (x)− `(x, κf (x)) + σ(tr(Σ))

for all x ∈ Xf and µ ∈M(W).

Proof. Since Vf (·), f(·), and κf (·) are continuous and Xf and W are bounded, we have from

Proposition 2.34 that there exists α(·) ∈ K∞ such that

|Vf (f(x, κf (x), w))− Vf (f(x, κf (x), w))| ≤ α(|w|)

for all x ∈ Xf and w ∈W. We combine this inequality with (3.7) to give

Vf (f(x, κf (x), w)) ≤ Vf (x)− `(x, κf (x)) + α(|w|)

Then we apply Corollary 2.20 to construct a concave function αc(·) ∈ K∞ such that α(|w|) ≤

αc(|w|) for all w ∈ W since W is bounded. We evaluate the Lebesgue integral of both sides

of the inequality with respect to µ ∈M(W) and apply Jensen’s inequality to give

∫
W
Vf (f(x, κf (x), w))dµ(w) ≤ Vf (x)− `(x, κf (x)) + αc(E[|w|])

We apply Lemma 2.4, de�ne σ(s) := αc(s
1/2), and note that σ(·) ∈ K to complete the proof.

Note that the construction of σ(·) is independent of µ since the functions Vf (·), f(·), and

κf (·) are independent of µ. As an important special case, we can show that if the distur-

bance is additive and the terminal cost quadratic, the K-function takes a speci�c form more

reminiscent of the stochastic LQR problem.
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Lemma 3.15. Let Assumptions 3.1, 3.3 and 3.5 to 3.7 hold with f(x, u, w) := g(x, u) + w and

Vf (x) := x′Px for positive semide�nite P . Then we have that

∫
W
Vf (f(x, κf (x), w))dµ(w) ≤ Vf (x)− `(x, κf (x)) + tr(PΣ) (3.15)

for all x ∈ Xf and µ ∈M(W).

Proof. Substitute these speci�c equations for f(·) and Vf (·) into the following integral to give

∫
W
Vf (f(x, κf (x), w))dµ(w)

=

∫
W

(g(x, κf (x))′Pg(x, κf (x)) + 2g(x, κf (x))′Pw + w′Pw) dµ(w)

Note that g(x, κf (x)) is constant w.r.t. w and E[w] = 0 to give

∫
W
Vf (f(x, κf (x), w))dµ(w) = g(x, κf (x))′Pg(x, κf (x)) +

∫
W
w′Pwdµ(w)

Then note that f(x, κf (x), 0) = g(x, κf (x)) and

E[w′Pw] = tr(E[w′Pw]) = E [tr(w′Pw)] = E [tr(Pw′w)] = tr(PE[w′w]) = tr(PΣ)

to give ∫
W
Vf (f(x, κf (x), w))dµ(w) = Vf (f(x, κf (x), 0)) + tr(PΣ)

for all x ∈ Xf and µ ∈M(W).

Again, we note that P is �xed for all µ. We can replace tr(PΣ) with aK-function of tr(Σ)

in (3.15) by noting that tr(PΣ) ≤ λ̄P tr(Σ) in which λ̄P ≥ 0 is the maximum eigenvalue of

the positive semide�nite matrix P . We can now extend the cost decrease in Lemma 3.14 to

the optimal cost and the entire feasible set X s.
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Lemma 3.16. Let Assumptions 3.1, 3.3 and 3.5 to 3.7 hold. Then the set X s is RPI for the system

x+ = f(x, κsµ(x), w), w ∈W for any µ ∈M(W) and there exists σ(·) ∈ K such that

∫
W
V s0
µ (f(x, κsµ(x), w))dµ(w) ≤ V s0

µ (x)− `(x, κsµ(x)) + σ(tr(Σ))

for all x ∈ X s and µ ∈M(W).

Proof. Choose x ∈ X s, µ ∈ M(W), and v0 ∈ vs0µ (x) such that κsµ(x) = π(x, v0(0)). For all

w = (w(0), w(1), . . . , w(N − 1)) ∈WN , we have that

(φ̂s(k;x,v0,w), π(φ̂s(k;x,v0,w), v0(k))) ∈ Z

Also, x(N,w) := φ̂s(N ;x,v0,w) ∈ Xf and therefore

f(x(N,w), κf (x(N,w)), w(N)) ∈ Xf

for all w(N) ∈W by Assumption 3.6. Thus, the candidate trajectory

ṽ+ := (v0(1), v0(2), . . . , v0(N − 1), 0)

satis�es ṽ+ ∈ V(x+) for x+ = f(x, κsµ(x), w(0)) and all w(0) ∈ W. So V(x+) is nonempty

and x+ ∈ X s. Since the choice of x ∈ X s and µ ∈ M(W) was arbitrary, X s is RPI for any

µ ∈M(W).

We de�ne

w̃+ = (w(1), w(2), . . . , w(N − 1), w(N))

and using the de�nition of J(·) we obtain

J(x+, ṽ+, w̃+) = J(x,v0,w)− `(x, κsµ(x)) + η(x(N,w), w(N)) (3.16)
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in which

η(x,w) := −Vf (x) + `(x, κf (x)) + Vf (f(x, κf (x), w))

From Lemma 3.14 and the fact that x(N,w) ∈ Xf , there exists σ(·) ∈ K such that

∫
WN+1

η(x(N,w), w(N))dµN(w)dµ(w(N)) ≤ σ(tr(Σ))

We also have the following equality.

∫
WN+1

J(x,v0,w)dµN(w)dµ(w(N)) = V s0
µ (x)

And by optimality we have that

V s0
µ (x+) ≤

∫
WN

J(x+, ṽ+, w̃+)dµ(w(1)) . . . dµ(w(N))

We combine these inequalities with (3.16) to give

∫
W
V s0
µ (x+)dµ(w)

≤
∫
WN+1

J(x+, ṽ+, w̃+)dµN(w)dµ(w(N))

≤
∫
WN+1

(
J(x,v0,w)− `(x, κsµ(x)) + η(x(N,w), w(N))

)
dµN(w)dµ(w(N))

≤ V s0
µ (x)− `(x, κsµ(x)) + σ(tr(Σ))

Substitute x+ = f(x, κsµ(x), w) and let w = w(0). Note that since the choice of x ∈ X s, µ ∈

M(W) was arbitrary and σ(·) is constructed independently of µ ∈ M(W) via Lemma 3.14,

this inequality holds for all x ∈ X s and µ ∈M(W).

Note that the function σ(·) ∈ K is the same in Lemma 3.14 and Lemma 3.17. We now
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establish an upper bound for the optimal cost function.

Lemma 3.17. Let Assumptions 3.1, 3.3 and 3.5 to 3.7 hold. Then there exist α2(·) ∈ K∞ and

σ2(·) ∈ K such that V s0
µ (x) ≤ α2(|x|) + σ2(tr(Σ)) for all x ∈ X s and µ ∈M(W).

Proof. Choose x ∈ Xf and µ ∈ M(W) and consider a trajectory generated by repeated

application of the terminal control law, i.e., x(k) := φ̂(k;x,0,w) since π(x, 0) = κf (x). The

set Xf is RPI for this control law due to Assumption 3.6 and therefore x(k) ∈ Xf for all

k ∈ I0:N . From Assumption 3.6 and Lemma 3.14, we have that

∫
WN

(Vf (x(k + 1))− Vf (x(k))) dµN(w) ≤ −
∫
WN

`(x(k), κf (x(k)))dµN(w) + σ(tr(Σ))

We sum both sides of the inequality from k = 0 to k = N − 1 to give

∫
WN

(Vf (x(N))− Vf (x(0))) dµN(w) ≤ −
∫
WN

N−1∑
k=0

`(x(k), κf (x(k)))dµN(w) +Nσ(tr(Σ))

By rearranging and substituting in the de�nition of J(·) and x = x(0), we have

∫
WN

J(x,0,w)dµN(w) ≤ Vf (x) +Nσ(tr(Σ))

By optimality, we have that

V s0
µ (x) ≤ Vf (x) +Nσ(tr(Σ))

Since the choice of x ∈ Xf and µ ∈ M(W) was arbitrary, this inequality must hold for all

x ∈ Xf and µ ∈M(W). Furthermore, Vf (·) and σ(·) are constructed independently of µ.
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We now de�ne

H(x) := max

{
sup

µ∈M(W)

(
V s0
µ (x)−Nσ(tr(Σ))

)
, 0

}

and note that 0 ≤ H(x) ≤ Vf (x) for all x ∈ Xf . Since Vf (·) is continuous,H(0) = Vf (0) = 0,

and Xf contains the origin in its interior, we know that H(x) is continuous at the origin. We

also establish that H(x) is locally bounded. Let X be a compact subset of X s. The function

J : Rn×VN×WN → R≥0 is a composition of a �nite number of continuous functions and is

therefore continuous. Thus, J(·) has an upper bound on the compact setX×VN×WN . Since

V(x) ⊆ VN for all x ∈ X s, V s0
µ : X s → R≥0 must satisfy the same upper bound for all µ ∈

M(W). Thus, H(x) must satisfy this same upper bound becauseH(x) ≤ supµ∈M(W) V
s0
µ (x).

Since 0 ≤ H(x) as well and the choice of X was arbitrary, H(x) is locally bounded on X s.

Since H(x) is locally bounded, satis�es H(0) = 0, and is continuous at x = 0, we can

apply Proposition 2.33 to construct α2(·) ∈ K∞ such that H(x) ≤ α2(|x|) for all x ∈ X s.

Furthermore, we have that

V s0
µ (x)−Nσ(tr(Σ)) ≤ H(x) ≤ α2(|x|)

for all x ∈ X s and µ ∈M(W).

We observe that the function σ2(·) constructed in Lemma 3.17 increases with increasing

horizon length N . As an alternative to Lemma 3.17, we may instead assume that V s0
µ (·) is

continuous at the origin. With this alternate assumption, we can �nd α2(·) ∈ K∞ such that

V s0
µ (x) ≤ V s0

µ (0) + α2(|x|) ∀x ∈ X s

Note, however, that V s0
µ (0) is typically not zero for SMPC if the stage cost satis�es Assump-
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tion 3.4. Only is speci�c situations, e.g., multiplicative disturbance models in which the e�ect

of the disturbance vanishes at the origin, is V s0
µ (0) = 0. Furthermore, we also expect the

value of V s0
µ (0) to increase with increasing N similar to the bound derived in Lemma 3.17.

We propose, therefore, that this increase with horizon length is not a weakness of the analysis

approach, but an underlying characteristic of SMPC, particularly for nonlinear systems.

With these results, we can now establish the following theorem for SMPC.

Theorem 3.18 (SMPC). Let Assumptions 3.1 and 3.3 to 3.7 hold withW and µ ∈M(W) known

exactly. For the system x+ = f(x, κsµ, w), w ∈W, we have that:

(i) The set X s is RPI.

(ii) The origin is RASiE in X s.

(iii) The origin is `-RASiE in the set X s.

Proof. From Assumption 3.4 and the de�nition of V s0
µ (·), we have that

α`(|x|) ≤ `(x, κsµ(x)) ≤ V s0
µ (x)

for all x ∈ X s and µ ∈ M(W). Note that α`(·) ∈ K∞ is independent of µ. We then use

Lemma 3.16 and Assumption 3.4 to give

∫
W
V s0
µ (f(x, κsµ(x), w))dµ(w) ≤ V s0

µ (x)− α`(|x|) + σ(tr(Σ))

for all x ∈ X s and µ ∈ M(W). Lastly, we use Lemma 3.17 to obtain the upper bound for

V s0
µ (·). Thus, V s0

µ (·) is an SISS Lyapunov function with α1(·) = α3(·) = α`(·) ∈ K∞ from

Assumption 3.4, σ3(·) = σ(·) ∈ K from Lemma 3.16, and α2(·) ∈ K∞ and σ2(·) ∈ K from

Lemma 3.17. We apply Proposition 3.12 and Proposition 3.13 to complete the proof.
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Note that, unlike nominal MPC, the origin is not guaranteed to be RAS for SMPC. For

linear systems, quadratic costs, and speci�cally chosen terminal costs, (Goulart and Kerrigan,

2008) establish that SMPC is RAS, but this results relies on properties, such as convexity of

the optimal cost, that do not extend to the nonlinear SMPC problem. We discuss the practical

implications of this fact in Section 3.7.

3.6 Constraint-tightened MPC

A key strength of SMPC is that the disturbances considered in the problem formulation

provide a natural means to tighten the state and input constraints to ensure robust constraint

satisfaction for the closed-loop trajectory, i.e.,

(φsµ(k;x,wk), κ
s
µ(φsµ(k;x,wk))) ∈ Z

for all x ∈ X , µ ∈M(W), wk ∈Wk, and k ∈ I≥0. In certain control problems, SMPC is used

primarily for this purpose, and the stochastic objective function is not essential to the design

goal.

Tube-based MPC is particularly suited for these problems as it provides middle ground

between nominal and stochastic MPC. By using the stochastic MPC framework to (conser-

vatively) tighten constraints o�ine, tube-based MPC ensures robust constraint satisfaction

while retaining the computational and theoretical convenience a�orded by a nominal objec-

tive function. These tube-based methods were �rst proposed for linear systems subject to

worst-case disturbances (Chisci et al., 2001; Mayne et al., 2005) and then extended to con-

sider nonlinear systems (Limón Marruedo et al., 2002; Cannon et al., 2011; Mayne et al., 2011).

Stochastic descriptions of these disturbances can also be used to construct tubes that satisfy

probabilistic (chance) constraints for the system (Cannon et al., 2010). The notion of incre-
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mental stabilizability can also be used to tighten constraints without requiring complicated

o�ine computations (Köhler et al., 2020; Santos et al., 2019).

Since this dissertation focuses on the closed-loop properties of these MPC algorithms, we

consider a somewhat di�erent problem than the typical tube-based MPC formulation. Specif-

ically, we propose using the same control parameterization, disturbance set, and therefore

set of admissible control parameterizations (V(x)) as SMPC, but consider an objective func-

tion evaluated for only the nominal trajectory. We call this formulation constraint-tightened

MPC (CMPC). This formulation, unlike tube-based MPC, does not lend itself to o�ine com-

putation of the set V(·) and therefore does o�er the same computational e�ciencies as tube-

based MPC. Instead, this formulation serves as an idealized version of tube-based MPC. That

is, we tighten the constraints no more than necessary to ensure robust constraint satisfac-

tion. Conversely, tube-based MPC formulations can be viewed as methods to conservatively

approximate V(·) o�ine.

We de�ne the CMPC optimization problem as

Pc(x) : V c0(x) := min
v∈V(x)

J(x,v,0) (3.17)

for any x ∈ X s and the optimal solutions are denoted vc0(x) := arg minv∈V(x) J(x,v,0).

Thus, we are using the disturbance set W to construct V(x), but we do not use the probabil-

ity measure µ in the optimization problem. Note that V c0(·) and vc0(·) do not vary with µ.

We use a state feedback parameterization (π(x(k), v(k))), but disturbance feedback parame-

terizations are also used in tube-based MPC (π̃(w(k−1), v(k))). These two parameterizations

produce an equivalent control law for linear systems (Goulart et al., 2006).

We use a Borel measurable selection rule to de�ne the single-valued control law κc :

X s → U such that κc(x) ∈ {π(x, v(0)) : v ∈ vc0(x)} for all x ∈ X s. The resulting closed
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loop system is then

x+ = f(x, κc(x), w) (3.18)

We use φc(k;x,wk) to denote state of the system (3.18) at time k ∈ I≥0, given the initial

condition x ∈ X s and disturbance sequence wk ∈Wk. Note that the control law and therefore

closed-loop trajectory do not depend on the probability measure µ. Since Pc(x) = Psµ(x) for

all x ∈ X s and µ({0}) = 1, Proposition 3.8 applies to CMPC, i.e., Pc(x) has a solution for

all x ∈ X s, V c0 : X s → R≥0 is lower semicontinuous, and vc0 : X s ⇒ VN is a Borel

measurable function. Furthermore, there exists a Borel measurable selection rule such that

κc(·) is a Borel measurable function. Thus, all relevant mathematical objects are well de�ned

and Borel measurable.

By using the disturbance set W to construct the constraints, like SMPC, we ensure that

X s is RPI for the closed-loop system. By using a nominal objective function, like nominal

MPC, we ensure that the system satis�es all of the deterministic and stochastic de�nitions of

robustness considered in Chapter 2. Thus, we have the following theorem for CMPC.

Theorem 3.19 (CMPC). Let Assumptions 3.1 and 3.3 to 3.7 hold withW known exactly. For the

system x+ = f(x, κsµ, w), w ∈W, we have that:

1. The set X s is RPI.

2. The origin is RAS in the set X s.

3. The origin is RASiE in the set X s.

4. The origin is `-RAS in the set X s.

5. The origin is `-RASiE in the set X s.

Proof. We use the same approach as the proof of Lemma 3.16 to establish that X s is RPI.

Choosex ∈ X s and v0 ∈ vc0(x) such thatκc(x) = π(x, v(0)). For all w = (w(0), w(1), . . . , w(N−
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1)) ∈WN , we have that

(φ̂s(k;x,v0,w), π(φ̂s(k;x,v0,w), v0(k))) ∈ Z

Also, x(N,w) := φ̂s(N ;x,v0,w) ∈ Xf and therefore

f(x(N,w), κf (x(N,w)), w(N)) ∈ Xf

for all w(N) ∈W by Assumption 3.6. Thus, the candidate trajectory

ṽ+ := (v0(1), v0(2), . . . , v0(N − 1), 0)

satis�es ṽ+ ∈ V(x+) for x+ = f(x, κsµ(x), w(0)) and allw(0) ∈W. Thus, V(x+) is nonempty

and x+ ∈ X s. Since the choice of x ∈ X s was arbitrary, X s is RPI and (i) holds.

We now establish that V c0(·) is an ISS Lyapunov function. From (3.16) we have that

J(x+, ṽ+,0) = J(x,v0,0)− `(x, κcµ(x)) + η(x(N,0), 0)) (3.19)

in which

η(x,w) := −Vf (x) + `(x, κf (x)) + Vf (f(x, κf (x), w))

From Assumptions 3.4 and 3.6, we then have

J(f(x, κc(x), 0), ṽ+,0) ≤ J(x,v0,0)− α`(|x|)

for all x ∈ X s in which α`(·) ∈ K∞.

We have that J(·) is continuous and X s, U, V are compact. By Proposition 2.34, there
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exists σ(·) ∈ K such that

|J(f(x, u, w),v,0)− J(f(x, u, 0),v,0)| ≤ σ(|w|)

for all (x, u, w) ∈ X s × U×W and v ∈ VN . Thus, we have for all x ∈ X s and w ∈W that

V c0(x+) ≤ J(f(x, κc(x), w), ṽ+,0)

≤ J(f(x, κc(x), 0), ṽ+,0) + σ(|w|)

≤ J(x,v0,0)− α`(|x|) + σ(|w|)

From Assumption 3.4, we also have that α`(|x|) ≤ `(x, κc(x)) ≤ V c0(x) for all x ∈ X s.

For the upper bound, we note that V c0(x) = V s0
µ (x) for µ({0}) = 1 and Σ = 0. We

therefore can use Lemma 3.17 with Σ = 0 to construct α2(·) ∈ K∞ such that

V c0(x) = V s0
µ (x) ≤ α2(|x|)

for all x ∈ X s.

Thus, V c0(·) is an ISS Lyapunov function on the RPI set X s with `(x, κc(x)) ≤ V c0(x) for

all x ∈ X s. We use Proposition 2.15 and Proposition 2.26 to establish (ii) and (iv). We also use

Proposition 2.21 to establish that V c0(·) is also an SISS Lyapunov function. We then apply

Proposition 2.18 and Proposition 2.27 to give (iii) and (v).

3.7 Examples and comparisons

With Theorems 2.32, 3.18 and 3.19 in hand, we make the following observation: nominal

MPC, SMPC, and CMPC satisfy the same de�nitions of stochastic robustness. Thus, includ-

ing stochastic information in the formulation of SMPC has not a�orded SMPC some unique
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property unobtainable by either nominal MPC or CMPC. This observation, however, does

not mean that the quantitative performance of these methods is the same. In certain cases,

nominal MPC and SMPC may produce signi�cantly di�erent closed-loop trajectories. Hence,

the next question to answer is: Which method is more robust? Based on the de�nitions of

stochastic robustness presented in this chapter, we consider three speci�c conjectures that

characterize the notion that SMPC is more robust than nominal MPC. While we restrict these

conjectures to comparing nominal MPC and SMPC to streamline their presentation, we also

perform simulations of CMPC and include this method in the subsequent discussion. Several

of these examples are adapted from McAllister and Rawlings (2022d).

Conjecture 3.20. Let f(·), `(·), Vf (·), U, Xf , µ, W be the same for nominal MPC and SMPC.

Then, the feasible set for SMPC, X s, is larger than the RPI set for nominal MPC for the same

disturbance setW, i.e., S ⊆ X s.

Conjecture 3.21. Let f(·), `(·), Vf (·), U, Xf , µ, W be the same for nominal MPC and SMPC.

For any x ∈ X s,

lim
k→∞

E
[
|φsµ(k;x,wk)|

]
≤ lim

k→∞
E [|φ(k;x,wk)|]

if these limits exist, i.e., SMPC is better than nominal MPC in terms of the expected norm of the

closed-loop state (RASiE).

Conjecture 3.22. Let f(·), `(·), Vf (·), U, Xf , µ, W be the same for nominal MPC and SMPC.

For any x ∈ X s,

lim
k→∞

E
[
`(xs(k), κsµ(x(k)))

]
≤ lim

k→∞
E [`(x(k), κ(x(k)))]

if these limits exist in which xs(k) := φsµ(k;x,wk) and x := φ(k;x,wk), i.e., SMPC is better

than nominal MPC in terms of the expected value of the closed-loop stage cost (`-RASiE).
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In the following subsections, we use a few simple examples to investigate these conjec-

tures and compare the strengths, weakness, and closed-loop behavior of nominal MPC, SMPC,

and CMPC.

3.7.1 RPI sets

Conjecture 3.20 frames the discussion of robustness based on the respective RPI sets for

nominal MPC and SMPC. A larger RPI set means that the controller is robustly recursively

feasible for a larger set of initial states and is therefore “more robust”. Recall that CMPC and

SMPC share the same RPI setX s. Thus, any conclusion forX s also holds for CMPC. We begin

with a comparison of three important sets for each of these problems.

Lemma 3.23. Let Assumptions 3.1 and 3.3 to 3.7 hold. Let f(·), U, Xf , W be the same for

nominal MPC and SMPC. Then Xf ⊆ X s ⊆ X .

Proof. For any x ∈ Xf , we have that 0 ∈ V(x) because Assumption 3.6 ensures that Xf is

RPI for the system x+ = f(x, κf (x), w) and (x, κf (x)) ∈ Z. So for any x ∈ Xf , V(x) 6= ∅

and therefore x ∈ X s as well. Thus, Xf ⊆ X s.

For any x ∈ X s and v ∈ V(x) we know that

π(φ̂s(k;x,v,0), v(k)) ∈ U

for all k ∈ I0:N−1 and φ̂s(N ;x,v,0) ∈ Xf because 0 ∈ W by Assumption 3.1. Thus, we can

de�ne u = (u(0), . . . , u(N − 1)) such that

u(k) := π(φ̂s(k;x,v,0), v(k))

and we have that φ̂(k;x,u) = φ̂s(k;x,v,0). Therefore u ∈ UN , φ̂(N ;x,u) ∈ Xf , and

u ∈ U(x). So for any x ∈ X s, U(x) 6= ∅ and therefore x ∈ X as well. Thus, X s ⊆ X .
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Conjecture 3.20, however, compares the set X s to the RPI set for nominal MPC from

Theorem 2.32, i.e., the set S . By de�nition, S ⊆ X , but establishing the relative sizes of S and

either Xf or X s for a nonlinear system is di�cult.

Instead, we demonstrate a counter example to Conjecture 3.20. Consider the scalar system

x+ = x+ u+ w

with the input constraint U = [−2, 2] and the disturbance set W = [−1, 1]. Choose the stage

cost `(x, u) = x2 + u2, terminal cost Vf (x) = 2x2, terminal constraint Xf = [−2, 2], and

control law parameterization π(x, v) = −x + v. We have that X = {x : |x| ≤ 2 + 2N} and

X s = {x : |x| ≤ 2 +N} since SMPC must address the potential for a disturbance of |w| = 1

at each time step in the optimization problem while still satisfying the terminal constraint.

Thus, we have that Xf ⊂ X s ⊂ X for all N ≥ 1, in which these are strict subsets. For

the disturbance set of interest, however, the entire feasible set X is RPI for the nominal MPC

controller. Thus, we have

X s ⊂ X = S

in which X s is a strict subset of S and Conjecture 3.20 does not hold. Moreover, the control

laws for nominal MPC, CMPC, and SMPC are identical for this problem for all x ∈ X s. The

only di�erence between these three MPC formulations for this problem is that nominal MPC

has a larger feasible set and a larger RPI set.

In Figure 3.1, we provide an illustration of these sets for a general nonlinear system in-

formed by Lemma 3.23 and this counter example to Conjecture 3.20. Note that S is drawn

such that it is neither a subset or superset of X s, since either result is possible for a general

nonlinear system. Next, we consider a simple liquid level control problem that serves as a

counter example to Conjecture 3.21.
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•
Xf

X

X s

S

Figure 3.1: Illustration of the relevant sets for nominal MPC and SMPC. Note that S is not a
subset or superset of X s.

3.7.2 Liquid level control

We now consider a simple liquid level control example with the two tanks shown in Fig-

ure 3.2. The goal is to control the height of liquid in each tank, denoted h1 and h2 for tanks

1 and 2, respectively. Both tanks have an area of 1. We can adjust the inlet �ow rate into

tank 1 F1 ∈ [0, 2], and the e�uent �ow rate from tank 2 F2 ∈ [0, 2]. Tank 1 drains into tank

2 by gravity at a rate proportional to the height of tank 1. We assume, however, that this

proportionality constant is subject to uncertainty, i.e., the �ow rate from tank 1 to to tank 2

is given by (1 + w)h1 in which w may take values in the �nite set W := {−0.3, 0, 0.3}. The

variable w is distributed according to the probability measure µ({0.3}) = µ({−0.3}) = 0.35

and µ({0}) = 0.3. The target steady state is hs1 = hs2 = F s
1 = F s

2 = 1 and we de�ne the state

and input in terms of deviation variables: x = [h1−hs1, h2−hs2]′ and u = [F1−F s
1 , F1−F s

1 ]′.

With appropriate mass balances on each tank, we have the following di�erential equations
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u1

(1 + w)x1 + w

u2

1

0

−1

x1

1

0

−1

x2

Figure 3.2: Illustration of the liquid level control example. There are two tanks with gravity
driven �ow from tank 1 to tank 2.

for the system in deviation variables.

dx1

dt
= −(1 + w)x1 + u1 + w

dx2

dt
= (1 + w)x1 − u2 + w

The nominal system (w = 0) is linear, but the e�ect of the disturbance results in a nonlin-

ear di�erential equation. Although the uncertainty is parametric, i.e., the value of w repre-

sents uncertainty in the proportionality constant, and therefore multiplicative in the original

system, the system in terms of deviation variables includes both multiplicative and additive

e�ects from this disturbance. Thus, the e�ect of this parametric uncertainty does not vanish

for (x, u) = 0. Since the support is �nite and the nominal system is linear, we can in fact dis-

cretize this di�erential equation (assuming a zero-order hold on the inputs and disturbance)

exactly for all w ∈W. Furthermore, we can evaluate the expected value of the cost function

in the SMPC optimization problem by enumerating all possible disturbance trajectories. We

similarly evaluate the expected value of the closed-loop state and stage cost by simulating all

possible disturbance trajectories.

The constraints on F1, F2 produce the input constraints u1, u2 ∈ [−1, 1]. We de�ne the
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stage cost `(x, u) = x′Qx+ u′Ru with

Q :=

0.1 0

0 20

 R :=

0.1 0

0 0.1


These penalties are chosen to strongly discourage (penalize) any deviations in the height of

the second tank. Nonetheless, this stage cost satis�es Assumption 3.4.

We use the LQR cost P and gain K for the nominal system (w = 0) to de�ne the terminal

cost Vf (x) = x′Px and control law parameterization π(x, v) := Kx + v. We de�ne the

terminal constraint as Xf := {x : |x1| ≤ 0.4, |x2| ≤ 0.4} and verify that this terminal

constraint satis�es Assumption 3.6 with the terminal control law κf (x) := Kx. Although we

have not chosen Xf as a level set of Vf (·), the nominal system is linear, the constraints are

convex, and therefore nominal MPC is nonetheless robustly asymptotically stable (Grimm

et al., 2004, Cor. 13). The control law parameterization for SMPC and CMPC is π(x, v) =

Kx + v with V chosen such that for any (x, u) ∈ X s × U there exists v ∈ V that satis�es

π(x, v) = u.

In Figure 3.3, we plot the closed-loop trajectories for each realization of the disturbance

and the expected values of these trajectories for MPC and SMPC, respectively, with a horizon

of N = 3. Since deviations in x2 are assigned a large cost, the SMPC controller decides to

decrease the height of the �rst tank to minimize the e�ect of the disturbance on x2. While

there are clear bene�ts to this approach in terms of the expected stage cost of the system,

the behavior is nonintuitive in terms of a typical tracking control problem. Indeed, SMPC

drives the state away from the origin and outside of the terminal set as well (|x1| > 0.4). The

closed-loop trajectory for CMPC (N = 3) is identical to nominal MPC (N = 3) and therefore

omitted.

In Figure 3.4, we plot the expected value of the norm of the state and stage cost for the
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Figure 3.3: Closed-loop trajectories for MPC (left) and SMPC (right) for the liquid level con-
trol problem with N = 3.
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Figure 3.4: The expected value of the norm of the state and stage cost for the closed-loop
trajectory of di�erent controllers in the liquid level control problem.

closed-loop trajectory of each controller. As we may anticipate, SMPC achieves a lower ex-

pected stage cost as k →∞ than nominal MPC or CMPC. The value of E[|x(k)|], however, is

larger for SMPC than nominal MPC for an otherwise equivalent problem. By the end of the

simulation at k = 3, the value of E[|x(k)|] appear to be constant and we presume that the

limit of E[|x(k)|] is approximately equal to the value at k = 3. Thus, Conjecture 3.21 does

not hold.

We also observe in Figure 3.4 that the values of E[|x(k)|] are larger for SMPC with N = 3

than for SMPC with N = 1. Thus, the dependence of σ2(·) in Lemma 3.17 on the horizon
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Figure 3.5: The closed-loop trajectory for SMPC (N = 3) subject to wk = 0 for the liquid
level control problem.

length N appears to indicate an underlying characteristic of nonlinear SMPC and is not nec-

essarily a shortcoming of the analysis approach used in this work.

As noted in the discussion after Theorem 3.18, one signi�cant distinction between nomi-

nal MPC and SMPC (for nonlinear systems) is that SMPC does not guarantee that the origin

is RAS for the closed-loop system. We demonstrate the implications of this fact by consider-

ing a nominal realization of the disturbance, i.e., wk = 0. We plot the nominal closed-loop

trajectory for SMPC in Figure 3.5. Despite that fact that no disturbance occurs, SMPC drives

the state of the system away from the origin and is therefore not RAS or nominally asymptot-

ically stable. By contrast, nominal MPC and CMPC keep the state of the system at the origin

for a nominal realization of the disturbance.

3.7.3 State constraints

An important capability of SMPC and CMPC is the systematic constraint tightening pro-

cedure inherent to these problem formulations. By explicitly considering the disturbance re-

alizations in the constraints of the optimization problem, we can guarantee robust constraint

satisfaction of the closed-loop system for all w ∈W. We now consider a two state linear sys-
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tem to illustrate the bene�ts of this systematic constraint tightening procedure. The system

is described by

x+ = Ax+Bu+Gw

A =

 1 0.1

−0.1 0.95

B =

 5

0.1

G =

1

0


with u ∈ [−1, 1]. We assume a �nite support for w with µ({0.05}) = µ({−0.05}) = 0.35

and µ({0}) = 0.3. We also consider the state constraint |x1| ≤ 1.

We use a quadratic stage cost `(x, u) := x′Qx+ u′Ru with

Q =

1 0

0 10

 R = 0.1

We use the LQR cost P and gainK for the unconstrained nominal system to de�ne the termi-

nal cost Vf (x) := x′Px, terminal constraint Xf := {x : x′Px ≤ 1}, and terminal control law

κf (x) := Kx. The control law parameterization for SMPC and CMPC is π(x, v) = Kx + v

with V chosen such that for any (x, u) ∈ X s×U there exists v ∈ V that satis�es π(x, v) = u.

We verify that this design satis�es all the required assumptions for nominal MPC, SMPC, and

CMPC. We choose a horizon of N = 4.

Since SMPC and CMPC can guarantee robust state constraint satisfaction (if W is ex-

act), we include the state constraint as a hard constraint in these optimization problems. For

nominal MPC, we instead convert this state constraint to a large violation penalty. With this

penalty, we ensure that the constraint is satis�ed for the nominal system (if possible) while

retaining robust recursive feasibility of the optimization problem. Speci�cally, we rede�ne

the stage cost as

`(x, u) := x′Qx+ u′Ru+ λ|x1|[−1,1]
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Figure 3.6: Closed-loop trajectories for nominal MPC (left) and SMPC (right) subject to 30
di�erent realizations of the disturbance sequence for the state constraint example.

in which λ > 0 is the large violation penalty and |x1|[−1,1] = min{|x1− y| : y ∈ [−1, 1]}. We

�nd that λ = 100 is su�cient to ensure constraint satisfaction in the nominal optimization

problem when possible. We use this stage cost in the subsequent statistics for the closed-loop

systems of nominal MPC, CMPC, and SMPC.

In Figure 3.6, we plot the closed-loop trajectories for 30 realizations of the disturbance

(drawn from the speci�ed distribution) for MPC and SMPC. Both controllers initially drive x1

away from the origin to minimize the value of x2 and therefore the stage cost. The main dif-

ference between these methods is the value of x1(1). Nominal MPC drives the nominal value

of x1(1) to the limit of state constraint in the interest of minimizing the nominal stage cost.

Thus, any value of w(0) > 0 results in violation of the constraint |x1(1)| ≤ 1. By contrast,

SMPC and CMPC are aware of the potential for a disturbance and therefore leave a bu�er for

the nominal value of x1(1) to accommodate this disturbance. Thus, SMPC and CMPC guar-

antee robust constraint satisfaction. For k ≥ 2, however, all three methods produce similar

state trajectories.

In Figure 3.7, we plot the sample average performance of each method in terms of Ê[|x|]

and Ê[`(x, u)]. Note that CMPC produces nearly identical performance to SMPC without

using a stochastic cost function. At k = 1, MPC violates the state constraint and therefore
103



Stochastic MPC Chapter 3

0 2 4 6 8 10 12 14 16 18 20

k

0.00

0.25

0.50

0.75

1.00
Ê[
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Figure 3.7: Sample average of the norm of the closed-loop state and closed-loop stage cost
for the state constraint example.

the closed-loop performance, particularly in terms of the state cost, is inferior to SMPC and

CMPC. But for k ≥ 2, all of these controllers produce nearly equivalent performance.

We observe that once the state of this system is inside the terminal region and state/input

constraints are not active, the optimal controller for both the nominal and stochastic linear

system is in fact the LQR feedback gain used to construct the control law parameterization,

i.e., κµ(x) = π(x, 0) = Kx for all x ∈ Xf . Thus, nominal MPC, CMPC, and SMPC all use the

same control law within the terminal and achieve the same closed-loop performance in this

region.

3.7.4 Inventory control

The previous two examples focused on set point tracking and therefore use quadratic and

positive de�nite stage costs. One of the key advantages of the MPC framework, however, is

that the stage cost can be chosen to directly represent the economic costs of the problem of

interest. We now consider a simple inventory control problem to demonstrate this capabil-

ity. We describe the dynamics of this inventory control problem with the following scalar
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di�erence equation.

x+ = x+ u+ w

in which x ∈ R is the current inventory level, u ∈ [−1, 1] is the amount of inventory we

choose to add or remove, and w is a disturbance. The disturbance w is a random variable

with the probability distribution µ({−0.5}) = µ({0.5}) = ε/2 and µ({0}) = 1− ε for some

ε ∈ [0, 1]. The economic stage cost consists of a storage cost for x > 0 and a larger backlog

cost if x < 0. The stage cost is de�ned as follows.

`(x, u) := max{0, x}+ 3 max{0,−x}

Note that the stage cost is not quadratic and is asymmetric about the origin. Nonetheless, this

stage cost still satis�es Assumption 3.4 as |x| ≤ `(x, u) for all x, u ∈ R2.

We de�ne the terminal set Xf := [−1, 1], terminal cost Vf (x) = `(x, 0), and control

law parameterization π(x, v) = −x + v. We choose N = 3 and V = [−5, 5] such that for

any (x, u) ∈ X s × U there exists v ∈ V that satis�es π(x, v) = u. We again solve the SMPC

problem and calculate the expected value of the closed-loop state and stage cost by simulating

all possible disturbance trajectories.

Since this problem is one dimensional, we can easily compute and plot the control law

for SMPC for di�erent values of ε and therefore di�erent values of the variance tr(Σ) = ε/4.

We plot these control laws in Figure 3.8 for all x ∈ [−2, 2]. Observe that for ε < 0.5, the

control law is identical to that of nominal MPC and CMPC, i.e., deadbeat control that drives

the state of the system to the origin as aggressively as possible. For these small values of ε,

the disturbance is not signi�cant enough to alter the control law. For ε > 0.5, however, the

controller drives the state of the system to x = 0.5 instead of x = 0. By maintaining this

extra inventory, we avoid the large backlog penalty that can occur if w = −0.5.
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Figure 3.8: Control laws κsµ(·) for the inventory control problem with varying values of ε ∈ [0, 1].

At exactly ε = 0.5, any value between these two curves, such as the curve shown in blue,

is an optimal control action. Based on these observations, we conclude that the control law

for SMPC in this simple inventory control problem is in fact discontinuous with respect to the

probability distribution. By discontinuous, we mean that for a �xed x ∈ X s, arbitrarily small

changes in ε can produce jumps in the optimal control action.

For ε = 0.6 and x(0) = 2, we simulate the closed-loop trajectory for nominal MPC and

SMPC. For this value of ε, the SMPC control law maintains extra inventory to avoid the large

backlog penalty and is therefore distinct from the nominal MPC control law. In Figure 3.9, we

plot the expected value of the norm of the state and stage cost for the closed-loop trajectories

of nominal MPC and SMPC. The closed-loop trajectory for CMPC is identical to nominal

MPC and therefore omitted from Figure 3.9. Similar to the liquid level control problem, we

observe that SMPC produces a larger value of E [|x(k)|] for all k ∈ I≥0, but a smaller value of

E [`(x(k), u(k))]. Unlike the liquid level control problem, however, the stage cost is the most

important metric of robustness for this economic problem. Thus, the bene�t of SMPC is clear

for this economic applications of MPC.
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Figure 3.9: The expected value of the norm of the closed-loop state and closed-loop stage
cost for nominal MPC and SMPC in the inventory control example.

3.8 Discussion and Summary

In this chapter, we introduced SMPC and established several novel results for this prob-

lem formulation. These results included fundamental mathematical properties, such as exis-

tence of optimal solutions and measurability of the control law (Proposition 3.8), as well as

characterizations of the closed-loop performance via the de�nitions of RASiE and `-RASiE

(Theorem 3.18). One key shortcoming of SMPC, for nonlinear systems, is that the closed-

loop system is not robust in a deterministic context. Consequently, there is no guarantee that

the closed-loop state converges to, or remains at, the origin for a nominal realization of the

disturbance (wk = 0). Motivated by this caveat of SMPC, we proposed CMPC as a middle

ground between nominal MPC and SMPC. By using disturbance information to tighten con-

straints, but optimizing over a nominal cost function, CMPC retains all the stochastic and

deterministic robustness properties of nominal MPC, but with the same RPI set as SMPC.

Informed by this collection of results, we then compared these three MPC formulations

through a few conjectures and several examples. In these examples, we observe that SMPC

can often �nd a superior operating point or trajectory than nominal MPC, in terms of the

expected stage cost. Thus, Conjecture 3.22 is well motivated and is supported by all of these
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examples. Nonetheless, we were unable to prove this conjecture. Conjectures 3.20 and 3.21,

however, do not hold. As shown in Section 3.7.1, nominal MPC may produce a larger RPI set

than SMPC for an equivalent problem formulation. In Sections 3.7.2 and 3.7.4, we demonstrate

counter examples to Conjecture 3.21. Thus, the claim that SMPC is necessarily “ more robust”

than nominal MPC should be quali�ed. There are reasonable de�nitions of robustness for

which nominal MPC can outperform SMPC.

For control applications that prioritize economic performance, i.e., stage cost minimiza-

tion, over stability of a target steady state, SMPC appears to o�er a clear bene�t over nominal

MPC or CMPC, e.g, Section 3.7.4. If instead stability of a target steady state is prioritized,

the bene�ts of SMPC are less clear, e.g., Sections 3.7.1 and 3.7.2. Feedback is su�cient to

ensure that MPC, without knowledge of the disturbance model or distribution, achieves the

same type of stochastic robustness a�orded by SMPC, i.e., RASiE and `-RASiE, for su�ciently

small disturbances (|w| ≤ δ). If this margin of robustness is too small and/or robust constraint

satisfaction is required for safety-critical applications, CMPC can be employed to achieve both

stochastic and deterministic robustness without a stochastic objective function. Perhaps the

most important critique of SMPC is that the origin is not guaranteed to be RAS, a property

often seen as essential for a control algorithm.

One of the key assumptions made throughout this chapter is that the dynamical model and

disturbance distribution used in the SMPC problem formulation are equivalent to that of the

underlying plant. In practice, however, we do not have access to an exact model and distribu-

tion. At best, we can construct a reasonable approximation or estimate of these components.

Thus, all the results discussed in this chapter are for idealized SMPC and the performance

of SMPC in practice may signi�cantly degrade relative to the idealized case. As an example,

we revisit the control law in Figure 3.8. Note that this control law is discontinuous with re-

spect to the probability distribution and, therefore, arbitrarily small errors in determining ε

may produce signi�cant changes in the selected control action. This observation raises the
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following important question: what happens to these performance guarantees if the system

model and distribution used in the SMPC problem are not exact? In the next chapter, we ad-

dress this question and show that, indeed, SMPC is robust to su�ciently small errors in the

system model and disturbance distribution.
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Distributional Robustness

The most tenuous assumption made in SMPC, and indeed much of stochastic optimal con-

trol in general, is that the stochastic description of uncertainty, i.e., the dynamical model

and probability distribution of the disturbance, is exact and comprehensive. This assump-

tion, however, does not hold in any practical setting. The disturbance model and distribution,

which are typically identi�ed from data, are not exact and there may be relevant disturbances

that are entirely absent from these models. This assumption is, of course, a reasonable and

important starting point. The study of stochastic properties for idealized SMPC is analogous

to the study of nominal properties for nominal MPC. The merit of this analysis is in estab-

lishing the best performance one can expect for SMPC. If the performance of idealized SMPC

is insu�cient, then there is little incentive to study nonideal conditions.

With the results established for idealized SMPC in the previous chapter, we now posses a

suitable foundation to remove this idealized assumption of exact disturbance models and dis-

tributions. Speci�cally, we address an open question in the �eld of SMPC that is of signi�cant

practical concern: What, if any, robustness does SMPC confer for errors in the probability

distribution used in the problem formulation, i.e., the distributional robustness of SMPC? The

unwritten hypothesis is that feedback, similar to nominal MPC, provides some margin of in-

herent distributional robustness to SMPC and thereby addresses small discrepancies in the

dynamical model and disturbance distribution. Again, we describe this robustness asinherent
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because we do not speci�cally design for this distributional robustness via, for example, the

emerging �eld of distributionally robust optimization. This hypothesis, however, has never

been formally stated or established for SMPC.

In this chapter, we address this question and establish that SMPC, under suitable assump-

tions, is inherently distributionally robust to errors in the probability distribution of the dis-

turbance. We de�ne this notion of distributional robustness via the Wasserstein metric, a met-

ric that quanti�es the distance between two probability measures and is introduced in Section

4.2. This result addresses incorrectly or unmodeled disturbances that enter the closed-loop

system and also demonstrates the e�cacy of scenario optimization as a means to approx-

imate and solve the SMPC problem. Moreover, we can treat CMPC and nominal MPC as

special cases of SMPC within this framework and thereby unify the descriptions of stochastic

robustness across these di�erent MPC formulations.

4.1 Problem formulation and preliminaries

To properly formulate and analyze the closed-loop properties of non-idealized SMPC, we

must introduce both the underlying stochastic system of the plant and the stochastic model

used in the SMPC optimization problem. Thus, we reintroduce the stochastic system and

SMPC problem formulation in this chapter with additional notation to distinguish properties

of the underlying stochastic system and the stochastic model. All quantities (e.g., sets and

probability measures) of the stochastic model used in the SMPC problem formulation are

indicated with a “hat” placed on the notation for that quantity used in the previous chapter

(e.g., Ŵ and µ̂). We also drop the superscript “s” for quantities de�ned for SMPC, e.g., we use

X instead of X s in this chapter.
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4.1.1 The stochastic system(s)

We consider the following discrete-time stochastic system

x+ = f(x, u, w) f : Rn × Rm × Rq → Rn

in which x ∈ Rn is the state, u ∈ Rm is the controlled input, w ∈ W ⊆ Rq is the stochastic

disturbance, and x+ is the successor state. We let wi := (w(0), w(1), . . . , w(i− 1)) denote a

sequence of disturbances. We consider the following assumption.

Assumption 4.1 (Disturbances). The disturbancesw ∈W are random variables that are i.i.d.

in time. The set W is compact and contains the origin.

Given Assumption 4.1, we denote the probability measure for w as µ : B(W)→ [0, 1]. Let

M(W) denote the set of all probability measures on the measurable space (W,B(W)). We

de�ne expected value of a Borel measurable function g : Wi → R as the Lebesgue integral

E [g(wi)] :=

∫
Wi

g(wi)dµ(w(0))dµ(w(1)) . . . dµ(w(i− 1))

with respect to any µ ∈ M(W). Note that we no longer require w to be zero mean and

therefore expand the collection of probability measures included inM(W).

In this chapter, we do not assume that the set W or measure µ is known. Instead, we have

access to only a model of the set W and the probability measure µ that we denote Ŵ and µ̂,

respectively. In the SMPC problem formulation, the stochastic system evolves according to

the following stochastic model and without knowledge of W or µ.

x+ = f(x, u, ŵ) ŵ ∈ Ŵ (4.1)

in which ŵ is distributed according to the measure µ̂.
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We may assume that Ŵ ⊆W without loss of generality because we can increase the size

of W to �t Ŵ and assign these additional values measure zero with µ. We may also, without

loss of generality, de�ne µ̂ on the domain B(W) by assigning measure zero to all the points

in W that are not in Ŵ, i.e., µ̂ : B(W)→ [0, 1] such that µ̂(W\Ŵ) = 0. Speci�cally, we have

that ∫
W
g(ŵ)dµ̂(ŵ) =

∫
Ŵ
g(ŵ)dµ̂(ŵ)

for all measurable functions g(·). We ensure that µ and µ̂ are de�ned on the same domain

to facilitate the comparison of these two measures via the Wasserstein metric. We formalize

these requirements of the stochastic model through the following assumption.

Assumption 4.2 (Disturbance model). The random variables ŵ(i) are i.i.d. in time, with a

known probability measure µ̂ : B(W)→ [0, 1]. The set Ŵ is compact and contains the origin.

The probability distribution satis�es µ̂(Ŵ) = 1.

We assume that there is a �xed set Ŵ used in the SMPC algorithm, as also done in the

previous chapter for idealized SMPC. Note that the subsequent assumptions are based on a

single set Ŵ. We do, however, allow for di�erent µ̂ and derive bounds that apply for any µ̂ that

satis�es Assumption 4.2. We use M̂(W) to denote the set of all probability measures on the

measurable space (W,B(W)) that satisfy Assumption 4.2, i.e., µ̂(Ŵ) = 1 for all µ̂ ∈ M̂(W).

Note that M̂(W) ⊆M(W). We illustrate these sets in Figure 4.1.

We use the Hausdor� distance, a standard measure of distance between sets, to charac-

terize the distance between W and Ŵ. The Hausdor� distance between two sets X, Y ⊆ Rn

is de�ned as

dH(X, Y ) := max

{
sup
x∈X
|x|Y , sup

y∈Y
|y|X

}
in which |x|Y denotes the point-to-set distance from x to Y , i.e., |x|Y = infy∈Y |x− y|. Note

that since Ŵ ⊆W and both sets are compact, we have that dH(W, Ŵ) = maxw∈W |w|Ŵ. We
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Figure 4.1: Illustration of the sets W, Ŵ and the probability measures µ, µ̂. We also show
the Hausdor� distance dH(·) between these two sets.

show an example of this distance in Figure 4.1.

We emphasize that the stochastic model (Ŵ, µ̂) and stochastic system (W, µ) are not nec-

essarily equivalent. Furthermore, we allow Ŵ to be a �nite set (e.g., Ŵ = {0, 1}) even if W is

uncountable (e.g., W = [0, 1]) and can therefore address scenario-based (empirical) approxi-

mations of W and µwithin this framework. This framework is also general enough to address

disturbances that are entirely absent from the SMPC model and optimization problem. For

example, we can consider nominal MPC by de�ning Ŵ = {0} and µ̂({0}) = 1. We can also

consider “over-modeling” of the disturbance in SMPC. For example, we use Ŵ = [−1, 1] in

the SMPC problem, but µ([−0.5, 0.5]) = 1, i.e., the probability that the disturbance takes a

value outside of [−0.5, 0.5] is zero. Thus, we can represent incorrectly modeled (µ̂ 6= µ),

unmodeled (Ŵ 6= W), or out-of-sample (Ŵ is �nite) disturbances.

For any i ∈ I≥0, N ∈ I≥1, the sequence of i.i.d. random variables ŵ := (ŵ(i), ŵ(i +
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1), . . . , ŵ(i+N − 1)) has a joint probability measure µ̂N : B(WN)→ [0, 1] de�ned as

µ̂N(F ) = µ̂(Fi)µ̂(Fi+1) . . . µ̂(Fi+N−1)

for all F = (Fi, Fi+1, . . . , Fi+N−1) ∈ B(WN). For any Borel measurable function g : WN →

R, we de�ne expected value with respect to µ̂ as

Ê [g(ŵ)] =

∫
ŴN

g(ŵ)dµ̂N(ŵ)

Note that we use Ê[·] to indicate expected value with respect to µ̂ instead of µ. We frequently

use the expected value of |ŵ| in the following analysis and note the following inequality

Ê [|ŵ|] =

∫
Ŵ
|ŵ|dµ̂(ŵ) ≤

√
tr
(

Σ̂
)

+
(
Ê[ŵ]

)2

in which Σ̂ � 0 is the covariance matrix of ŵ.

Remark 4.3. Unlike the previous chapter, we do not assume that the disturbance in the SMPC

optimization problem is zero mean, i.e., we allow Ê[ŵ] 6= 0. Thus, the covariance matrix Σ̂

that appears in the results introduced in Chapters 2 and 3 does not appear in the subsequent

results in this chapter. While the assumption Ê[ŵ] = 0 is typically used without loss of

generality if a continuous distribution is considered (e.g., a uniform distribution), scenario-

based approximations of µ do not produce empirical distributions with zero mean. Thus, we

do not restrict µ̂ to only measures of zero mean. In the special case that Ê[ŵ] = 0, we may

use the upper bound Ê[|ŵ|] ≤ Σ̂1/2 to introduce Σ̂ into the following results.
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4.1.2 SMPC problem formulation

We again de�ne a parametrized control policy π : Rn × V→ Rm in which x ∈ Rn is the

current state of the system and v ∈ V ⊆ Rl are the parameters in the control policy. The

resulting system is

x+ = f(x, π(x, v), ŵ) ŵ ∈ Ŵ (4.2)

in which ŵ is distributed according to µ̂. Let φ̂(k;x,v, ŵ) denote the solution of (4.2) at time

k ∈ I0:N , given the initial state x ∈ Rn, the trajectory of control policy parameters v ∈ VN ,

and disturbances trajectory ŵ ∈ ŴN .

We consider hard input constraints, i.e., u ∈ U ⊆ Rm, but do not allow hard or proba-

bilistic constraints on the state. Since we do not assume that the disturbance set is exact, a

disturbance that is not considered in the set Ŵ may cause the closed-loop system to violate

these constraints. Similar to nominal MPC, we assume that all state constraints (except the

terminal constraint) are converted to penalty functions in the stage cost.

For a horizon N ∈ I≥1 and terminal constraints Xf ⊆ Rn, we de�ne

V(x) := {v ∈ VN : π(φ̂(k;x,v, ŵ), v(k)) ∈ U ∀ŵ ∈ ŴN , k ∈ I0:N−1;

φ̂(N ;x,v, ŵ) ∈ Xf}

The set of all feasible initial states is denoted

X := {x ∈ Rn : V(x) 6= ∅}

The remainder of the SMPC problem formulation is nearly identical to that in Chapter 3,

except that we use the disturbance set Ŵ and probability measure µ̂. Note, however, that we

drop the subscript s to indicate SMPC, as we do not consider nominal MPC and CMPC as
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separate formulations in this chapter.

For the stage cost ` : Rn × Rm → R and terminal cost Vf : Rn → R≥0, we de�ne the

function

J(x,v, ŵ) :=
N−1∑
k=0

`(x(k), π(x(k), v(k))) + Vf (x(N))

in which x(k) = φ̂(k;x,v, ŵ). We de�ne the SMPC cost function as

Vµ̂(x,v) := Ê [J(x,v, ŵ)] =

∫
ŴN

J(x,v, ŵ)dµ̂N(ŵ)

The optimization problem is de�ned as

Pµ̂(x): V
0
µ̂ (x) := min

v∈V(x)
Vµ̂(x,v) (4.3)

and the optimal solution(s) for a given distribution µ̂ ∈ M̂(W) are de�ned by the set-valued

mapping v0
µ̂ : X ⇒ VN such that

v0
µ̂(x) := arg min

v∈V(x)
Vµ̂(x,v)

We use a Borel measurable selection rule to de�ne a single-valued control law κµ̂ : X → U

such that

κµ̂(x) ∈ {π(x, v(0)) : v ∈ v0
µ̂(x)}

for all x ∈ X . Note that the control law depends on the disturbance model µ̂ ∈ M̂(W).

We now reintroduce the underlying disturbance set and distribution in the closed-loop

system

x+ = f(x, κµ̂(x), w) w ∈W (4.4)

in which w is distributed according to µ ∈ M(W) but the control law is de�ned based on
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µ̂. We use φµ̂(k;x,wk) to denote the solution to (4.4) at time k ∈ I≥0, given the initial

condition x ∈ X and disturbance sequence wk ∈Wk. The deterministic value of the closed-

loop trajectory φµ̂(·) depends on the disturbance model µ̂ because κµ̂(·) depends on µ̂. But

the disturbance takes values w ∈ W and the expected value of the closed-loop system is

evaluated based on probability measure µ ∈ M(W). Thus, in the subsequent analysis, we

discuss quantities such as

E [|φµ̂(k;x,wk)|] =

∫
Wk

|φµ̂(k;x,wk)|dµk(wk)

4.1.3 Assumptions for SMPC

To establish the distributional robustness of SMPC, we require stronger assumptions than

for idealized SMPC that are similar to the assumptions required for nominal MPC in Chapter 2.

Assumption 4.4 (Continuity of system and cost). The model f : Rn × Rm × Rq → Rn,

control parameterization π : Rn → V→ Rm, stage cost ` : Rn×Rm → R, and terminal cost

Vf : Rn → R≥0 are locally Lipschitz continuous. Furthermore, f(0, 0, 0) = 0, `(0, 0) = 0,

and Vf (0) = 0.

Note that we have strengthened the usual assumption of continuity to local Lipschitz con-

tinuity. This additional restriction, however, is minor because most physical systems are de-

scribed by local Lipschitz continuous functions.1 Notably, quadratic costs and linear systems

satisfy this requirement. Furthermore, locally Lipschitz continuous functions are required if

we intend to use gradient-based, nonlinear optimization solvers to solve these optimal con-

trol problems. This fact is true for nominal MPC problems as well. This assumption of local

Lipschitz continuity, however, does not imply that the optimal cost function V 0
µ̂ (·) or control

law κµ̂(·) are continuous for x ∈ X .
1For example, all of the example problems discussed in this dissertation consider locally Lipschitz continuous

system models.
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Assumption 4.5 (Properties of constraint sets). The sets U and V are compact and contain

the origin and Xf := {x ∈ Rn : Vf (x) ≤ τ} for some τ > 0. The set X is bounded. The

control law parameterization satis�es π(x, v) ∈ U for all x ∈ Rn and v ∈ V.

The �nal requirement of Assumption 4.5 means that π(x, v) = Kx + v may not be a

valid control law parameterization. Instead, we can use π(x, v) = satU(Kx + v) in which

u = satU(s) maps s to the nearest input that satis�es u ∈ U, i.e., satU(s) = arg minu∈U |u−s|.

Assumption 4.6. There exists a locally Lipschitz continuous terminal control law κf : Xf →

U and τ̃ ≤ τ such that for all x ∈ Xf ,

f(x, κf (x), ŵ) ∈ {x : Vf (x) ≤ τ̃} ⊂ Xf , ∀ŵ ∈ Ŵ (4.5)

Vf (f(x, κf (x), 0)) ≤ Vf (x)− `(x, κf (x)) (4.6)

Furthermore, π(x, 0) = κf (x) for all x ∈ Xf .

Thus, the terminal control law must drive x ∈ Xf to the interior of Xf for all ŵ ∈ Ŵ. This

assumption is stronger than the analogous assumption typically used in SMPC, i.e., Assump-

tion 3.6, that requires only robust positive invariance of the terminal set. By strengthening

this assumption, we allow for some nonzero error in approximating W with Ŵ.

For tracking problems, we also require the usual lower bound on the stage cost.

Assumption 4.7. There exists a function α`(·) ∈ K∞ such that

`(x, u) ≥ α`(|x|)

for all (x, u) ∈ Rn × U.

These assumptions address the construction of the SMPC optimization problem and the

set Ŵ, but do not place any restrictions on the disturbance set W and probability measure
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µ. We also allow any µ̂ ∈ M̂(W) for the chosen set Ŵ. We also note that Proposition 3.8

still holds for this SMPC formulation and therefore all relevant stochastic properties are well

de�ned.

4.2 Distance and convergence for probability measures

We now have two probability measures: the disturbance distribution µ and a model of the

disturbance distribution µ̂ that is used in the SMPC optimization problem. The goal is to show

that small di�erences between µ and µ̂ produce similarly small deviations in the closed-loop

performance bounds relative to idealized SMPC. Moreover, we wish to show that as µ̂ → µ,

we recover the idealized SMPC guarantees established in Theorem 3.18. This goal requires

that we �rst address an important mathematical question: How do we de�ne this di�erence or

distance between probability measures? And furthermore, how do we de�ne the convergence

µ̂→ µ?

4.2.1 Wasserstein metric

The most intuitive concept of a distance or metric is the Euclidean distance |x − y| be-

tween two points x, y ∈ Rn. The concept of distance, however, can be generalized2 to address

functions, sets, and indeed measures. For measures, there are several notions of distance avail-

able, but we �nd the Wasserstein metric most suitable for the task at hand. While this metric

initially found interest in the �eld of optimal transport (Villani, 2009), there are several re-

cent applications of the Wasserstein metric in machine learning, state estimation, and optimal

control. We note a few of these contributions here.

In a particularly signi�cant contribution, Arjovsky et al. (2017) use the Wasserstein met-

ric as a loss function in training generative adversarial networks (GANs). The authors showed
2like any good mathematical concept
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several notably improvements in algorithmic stability and performance compared to the Jensen-

Shannon divergence loss function typically used to train GANs. The Wasserstein metric has

also been used as a loss function in multi-label learning problems (Frogner et al., 2015).

The Wasserstein metric can also be used to de�ne an ambiguity set, i.e., a set of poten-

tial probability measures within some radius (de�ned by the Wasserstein metric) of a cen-

tral probability measure. This ambiguity set is then used to formulate a min-max optimiza-

tion problem in which the goal is to minimize the cost of the stochastic objective function

subject to the worst possible probability measure within this ambiguity set. This problem

formulation is known as distributionally robust optimization (DRO) (Goh and Sim, 2010).

Sha�eezadeh Abadeh et al. (2018) use this concept of distributionally robust optimization to

formulate a new Kalman �ltering algorithm and based on a tractable optimization problem.

Yang (2020) propose a DRO formulation for nonlinear stochastic optimal control based on

sample average approximation (SAA). We note that in both of these cases, the speci�c prob-

lem formulation is discussed in great detail, but the analysis of the closed-loop system is not

addressed. Thus, it remains unknown if these algorithms confer any of this distributional ro-

bustness included in the optimization problem to the actual closed-loop system. In contrast to

these approaches, we do not use the Wasserstein metric in the formulation of SMPC problem.

Instead, we use the Wasserstein metric only as a means to quantify the distance between µ

and µ̂. We then characterize the behavior of the closed-loop system via this distance in the

de�nition of distributional robustness introduced in the following section.

We consider the type-1 version of the Wasserstein metric, sometimes known as the Kantorovich-

Rubinstein metric, de�ned as follows. Recall that we useM(W) to denote the space of all

Borel probability measures on the compact set W ⊆ Rq.

De�nition 4.8 (Wasserstein metric). The Wasserstein metric (type-1) is denotedW :M(W)×
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Figure 4.2: Potential values for γ ∈ Γ(µ1, µ2) for measures with �nite support (left) and
W = R (right).

M(W)→ R≥0 and de�ned as

W (µ1, µ2) := inf
γ∈Γ(µ1,µ2)

∫
W×W

|w1 − w2|dγ(w1, w2)

for all µ1, µ2 ∈M(W), in which Γ(µ1, µ2) denotes the collection of all measures on W×W

with marginals µ1 and µ2, i.e., γ ∈ Γ(µ1, µ2) must satisfy

µ1(·) =

∫
W
γ(·, w2)dw2 µ2(·) =

∫
W
γ(w1, ·)dw1

The Wasserstein metric has received signi�cant attention in the �eld of optimal transport

(Villani, 2009) and is most convenient to describe according to this application. The measure

γ(·) ∈ Γ(µ1, µ2) can be viewed as a transport plan for relocating density or “earth” from

a distribution described by µ1 to another distribution described by µ2. For this reason, the

Wasserstein metric for �nite sets W is often referred to as the “earth mover’s” distance. We

plot potential values of γ(·) for one dimensional distributions in Figure 4.2.

Thus, determining the Wasserstein metric amounts to solving for the optimal transport
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plan in which the cost is given by the Euclidean distance | · | multiplied by the density of

“earth” to be moved. Note that the Wasserstein metric satis�es all the axioms of a distance

onM(W) for compact W, i.e., the metric is �nite, symmetric, W (µ1, µ2) = 0 if and only if

µ1 = µ2, and satis�es triangle inequality

W (µ1, µ3) ≤ W (µ1, µ2) +W (µ2, µ3)

for all µ1, µ2, µ3 ∈M(W).

To better illustrate this Wasserstein metric, we consider one dimensional distributions

µ1 and µ2 on the set W := [−4, 4]. The probability measure µ1 is a truncated normal dis-

tribution and µ2 is a discrete distribution consisting of three events with equal probability,

i.e., µ2({−1}) = µ2({0}) = µ2({1}) = 1/3. In Figure 4.3, we plot the probability density

function pi(w) = dµi
dw

(w) and cumulative density function Fi(w) := µi([−4, w]) for these

two probability measures. We use arrows to represent the delta functions in p2(w). For one

dimensional systems, the Wasserstein metric admits a convenient simpli�cation in terms of

cumulative distribution functions:

W (µ1, µ2) =

∫
W
|F1(w)− F2(w)|dw

In the bottom plot of Figure 4.3, we show |F1(w) − F2(w)| for these two probability mea-

sures. The area under this curve is the value of the Wasserstein distance between these two

probability measures, with W (µ1, µ2) = 0.343 for this example.

As a particular simple example, we consider the Wasserstein distance between two point

masses. Recall that we de�ned δm as the Dirac measure for some pointm ∈ Rq, i.e., δm(S) = 1

if m ∈ S and zero otherwise. We consider two measures µ1 = δm1 and µ2 = δm2 for some

points m1,m2 ∈ Rq. For this example, W (µ1, µ2) = |m1 −m2| thus preserving the intuitive
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Figure 4.3: The probability density p(w) and cumulative distribution F (w) for two proba-
bility measures µ1, µ2 on the set W := [−4, 4]. The arrows indicate delta functions, each
with a weight of 1/3. The bottom plot is the absolute di�erence between F1(w) and F2(w)
for all w ∈ [−4, 4].
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notion of Euclidean distance between these points.

Another useful relation is the Wasserstein distance between any probability measure and

a point mass, i.e., µ1 ∈ M(W) and µ2 = δm2 for m2 ∈ W. For these two measures, one can

show that the only available γ ∈ Γ(µ1, µ2) is given by the product γ(S1, S2) = µ1(S1)δm2(S2)

for all S1, S2 ∈ B(W). Thus, the Wasserstein distance between these two distributions re-

duces to

W (µ1, δm2) =

∫
W
|w1 −m2|dµ1(w1)

If m2 = 0, this further reduces to
∫
W |w1|dµ1(w1), i.e., the expected value of the norm of w1.

A particularly important result is the dual representation of the Wasserstein metric shown

in the following theorem.

Theorem 4.9 (Kantorovich-Rubinstein). For any probability measures µ1, µ2 ∈ M(W), we

have that

W (µ1, µ2) = sup
g∈L

{∫
W
g(w1)dµ1(w1)−

∫
W
g(w2)dµ2(w2)

}
in which L denotes the space of all Lipschitz continuous function with |g(w1)− g(w2)| ≤ |w1−

w2| for all w1, w2 ∈W.

Further discussion of this result can be found in Villani (2009, Remark 6.5). Thus, for any

Lipschitz continuous function g(·) with Lipschitz constant L ≥ 0 on W, we have that

∫
W
g(w1)dµ1(w1)−

∫
W
g(w2)dµ2(w2) ≤ LW (µ1, µ2)

for all µ1, µ2 ∈ M(W). This inequality is essential to establish the following results in this

chapter and is the reason we restrict the SMPC problem formulation to locally Lipschitz con-

tinuous functions in Assumption 4.4.

125



Distributional Robustness Chapter 4

4.2.2 Weak convergence of measures

In addition to the Wasserstein metric, we also introduce a notion of convergence for prob-

ability measures inM(W). We �rst recall the concept of convergence for sequences of points.

We say that the sequence of points {wi}∞i=1 in Rq converges to a point w ∈ Rq if

lim
i→∞
|wi − w| = 0

i.e., for any ε > 0, there exists k ∈ I≥0 such that |wi − w| ≤ ε for all i ≥ k. We use the

notation wi → w to indicate this convergence.

For a sequence of probability measures {µi}∞i=1 inM(W), we say thatµi convergesweakly

to µ ∈M(W) if

lim
i→∞

∣∣∣∣∫
W
g(w)dµi(w)−

∫
W
g(w)dµ(w)

∣∣∣∣ = 0

for all continuous functions g : W → [−1, 1]. We use the notation µi → µ to denote weak

convergence.

Remark 4.10. We refer to this convergence as weak because we consider only continuous

functions in the de�nition. Total variation convergence instead considers all measurable

functions g : W → [−1, 1] and is therefore a stronger notion of convergence. Total vari-

ation convergence, however, is often too strong for many relevant problems. For example,

sampling-based empirical distributions may never converge in total variation to the continu-

ous distribution from which they are constructed.

The notion of weak convergence for probability measures is particularly important for

sampling-based empirical approximations of the probability measure. For example, consider

a probability measure µ ∈M(W). We draw s ∈ I≥1 random samples from µ that we denote
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{ω̂i}si=1 and de�ne the empirical probability measure as

µ̂s(·) :=
1

s

s∑
i=1

δωi
(·)

For W ⊆ Rq, one can show that µ̂s → µ (with probability one) as s→∞ via the strong law

of large numbers and the fact that W is separable (Varadarajan, 1958).

In the context of weak convergence of probability measures, the choice of Wasserstein

metric is particularly clear.

Theorem 4.11 (W metrizesM). The Wasserstein metric metrizes convergence inM(W) for

compactW ⊆ Rq, i.e., for the sequence {µi}∞i=1, µi → µ if and only ifW (µi, µ)→ 0.

A more general version of this result is given in Villani (2009, Theorem 6.9). Thus, weak con-

vergence and convergence of the Wasserstein metric are equivalent on compact subsets of the

reals. Moreover, the Wasserstein metric may be used to quantify weak convergence (Fournier

and Guillin, 2015). In particular, this result demonstrates that the choice of Wasserstein metric

for the subsequent analysis is appropriate.

4.3 Distributional robustness of closed-loop systems

We now use the Wasserstein metric to de�ne distribution robustness for closed-loop non-

linear systems. First, we recall the de�nition of robustness positive invariance and modify

this de�nition slightly to account for the new notation used in the SMPC formulation.

De�nition 4.12 (Robust positive invariance). The set X is robustly positive invariant (RPI)

for the system x+ = f(x, κµ̂(x), w), w ∈W if x ∈ X implies that x+ ∈ X for all w ∈W and

µ̂ ∈ M̂(W).

Thus, we consider all possible w ∈ W in the true system and all probability measures that
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may be used in the SMPC formulation µ̂ ∈ M̂(W) to de�ne the control law κµ̂(·). We now

de�ne distributional robustness for closed-loop nonlinear systems.

De�nition 4.13 (Distributionally robust asymptotic stability in expectation). The origin is

distributionally robustly asymptotically stable in expectation (DRASiE) for the system x+ =

f(x, κµ̂(x), w), w ∈ W in the RPI set X if there exist β(·) ∈ KL and γ1(·), γ2(·) ∈ K such

that

E [|φµ̂(k;x,wk)|] ≤ β(|x|, k) + γ1

(
Ê[|ŵ|]

)
+ γ2 (W (µ, µ̂)) (4.7)

for all x ∈ X , µ̂ ∈ M̂(W), µ ∈M(W), and k ∈ I≥0.

Note that the closed-loop trajectory on the left-hand side of (4.7) is a function of µ̂ via

the control law de�ned by the SMPC problem and µ via the de�nition of expected value.

As with every other de�nition of the robustness in this dissertation, the KL function in the

upper bound ensures that the e�ect o� the initial condition x ∈ X asymptotically vanishes

as k →∞. However, we now have two persistent terms in the upper bound.

The function γ1(Ê[|ŵ|]) accounts for the e�ect of the modeled disturbance (ŵ) in the

control law design and the ideal system (if µ = µ̂). Note that Ê[|ŵ|] is a function of µ̂. If

Ê[ŵ] = 0, i.e., the model of the disturbance distribution is zero mean, we can replace Ê[|ŵ|]

with the upper bound tr(Σ̂)1/2 as per Remark 4.3.

The function γ2(W (µ, µ̂)) accounts for the discrepancy between the probability measure

µ̂ used in the SMPC optimization problem and the probability measure of the underlying

closed-loop system µ. If µ = µ̂, then γ2(W (µ, µ̂)) = 0 and we recover the usual bound for

idealized SMPC shown in De�nition 3.9 for zero mean disturbance distributions. The bound

in (4.7) ensures that arbitrarily small di�erences between µ̂ and µ, in terms of the Wasserstein

distance, produce similarly small deviations from the closed-loop bound derived for idealized

SMPC. We further discuss the implications of DRASiE for SMPC in Section 4.5.

We can also de�ne DRASiE with respect to the stage cost `(·) as follows.
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De�nition 4.14 (`-DRASiE). The origin is `-DRASiE with respect to the stage cost `(x, κµ̂(x))

for the system x+ = f(x, κµ̂(x), w), w ∈ W in the RPI set X if there exist β̃(·) ∈ KL and

γ̃1(·), γ̃2(·) ∈ K such that

E [`(x(k), κµ̂(x(k)))] ≤ β̃(|x|, k) + γ̃1

(
Ê[|ŵ|]

)
+ γ̃2 (W (µ, µ̂)) (4.8)

in which x(k) := φµ̂(k;x,wk) for all x ∈ X , µ̂ ∈ M̂(W), µ ∈M(W), and k ∈ I≥0.

We now further modify the SISS Lyapunov function in De�nition 3.11 to serve as a su�-

cient condition for DRASiE and `-DRASiE.

De�nition 4.15 (SISS Lyapunov function). The measurable function Vµ̂ : X → R≥0, de�ned

for all µ̂ ∈ M̂(W), is an SISS Lyapunov function for the system x+ = f(x, κµ̂(x), w), w ∈W

in the RPI set X if there exist α1(·), α2(·), α3(·) ∈ K∞ and σ2(·), σ3(·), σ4(·) ∈ K such that

α1(|x|) ≤ Vµ̂(x) ≤ α2(|x|) + σ2

(
Ê[|ŵ|]

)
(4.9)∫

W
Vµ̂(f(x, κµ̂(x), w))dµ(w) ≤ Vµ̂(x)− α3(|x|) + σ3

(
Ê[|ŵ|]

)
+ σ4(W (µ, µ̂)) (4.10)

for all x ∈ X , µ̂ ∈ M̂(W), and µ ∈M(W).

We then use this SISS Lyapunov function to establish DRASiE for a closed-loop system.

Proposition 4.16. If a system x+ = f(x, κµ̂, w), w ∈W admits an SISS Lyapunov function in

the RPI and bounded set X , then the origin is DRASiE.

Since the proof is similar to Proposition 3.12, we provide only an outline of the proof in

this chapter. The full proof is available in the Appendix of McAllister and Rawlings (2022e).

Outline of proof. The proof proceeds in a similar manner to the proof of Proposition 3.12 ex-

cept we also carry the term σ4(W (µ, µ̂)) through the same operations as σ3(Ê[|ŵ|]). Speci�-
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cally, we use the same �rst steps as the proof of Proposition 3.12 to show

∫
W
Vµ̂(f(x, κµ̂(x), w))dµ(w) ≤ Vµ̂(x)− αv(Vµ̂(x)) + σ̃3

(
Ê[|ŵ|]

)
+ σ4(W (µ, µ̂))

in which αv(·) ∈ K∞ is convex and σ̃3(s) := σ3(s) + α3(α−1
2 (σ2(s))) (compare with (3.12)).

We then treat the quantity c(µ, µ̂) := σ̃3

(
Ê[|ŵ|]

)
+σ4(W (µ, µ̂)) with all the same operations

performed on σ3(tr(Σ)) in the proof of Proposition 3.12 to give

E[|φµ̂(k;x,wk)|] ≤ β1(Vµ̂(x), k) + γ̃2(c(µ, µ̂))

with β1(·) ∈ KL and γ̃2(·) ∈ K (compare with (3.14)). We use the upper bound on Vµ̂(x) to

give

E[|φµ̂(k;x,wk)|] ≤ β(|x|, k) + γ̃1(Ê[|ŵ|]) + γ̃2(c(µ, µ̂))

in which β(s, k) := β1(2α2(s), k) ∈ KL and γ̃1(s) := β1(2σ2(s), 0) ∈ K. To complete the

proof, we unpack c(µ, µ̂) to give

E[|φµ̂(k;x,wk)|] ≤ β(|x|, k) + γ1

(
Ê[|ŵ|]

)
+ γ2 (W (µ, µ̂))

in which γ1(s) := γ̃1(s) + γ̃2(2σ̃3(s)) ∈ K and γ2(s) := γ̃2(2σ4(s)) ∈ K.

We can further use the SISS Lyapunov function to establish `-DRASiE.

Proposition 4.17. If a system x+ = f(x, κµ̂(x), w), w ∈W admits an SISS Lyapunov function

in the RPI and bounded X that satis�es `(x, κµ̂(x)) ≤ Vµ̂(x) for all x ∈ X and µ̂ ∈ M̂(W),

then the origin is `-DRASiE.

Proof. We use the same approach as the proof of Proposition 3.13. From Proposition 4.16,

there exist β(·) ∈ KL and γ1(·), γ2(·) ∈ K such that (4.7) holds for all x ∈ X , µ̂ ∈ M̂(W),
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µ ∈ M(W), and k ∈ I≥0. By Corollary 2.20, we construct concave αc(·) ∈ K∞ such that

α2(|x|) ≤ αc(|x|) for all x ∈ X . Thus, we have

E [`(x(k), κµ̂(x(k)))] ≤ E [Vµ̂(x(k))]

≤ E
[
αc(|x(k)|) + σ2

(
Ê[|ŵ|]

)]
≤ αc(E[|x(k)|]) + σ2

(
Ê[|ŵ|]

)
≤ αc(2β(|x|, k)) + αc

(
2γ1

(
Ê[|ŵ|]

))
+ σ2

(
Ê[|ŵ|]

)
+ αc (2γ2 (W (µ, µ̂))))

in which x(k) = φµ̂(k;x,wk) for all x ∈ X , µ̂ ∈ M̂(W), µ ∈ M(W), and k ∈ I≥0. De�ne

β̃(·) := αc(2β(·)), γ̃1(·) := αc(2γ1(·)) + σ2(·), and γ̃2(s) := αc(2γ2(·)). Note that β̃(·) ∈ KL

and γ̃1(·), γ̃2(·) ∈ K to complete the proof.

Thus, the ISS/SISS framework is able to accommodate this new de�nition of distributional

robustness with minimal modi�cations, once again demonstrating the �exibility of this frame-

work for nonlinear system analysis. We can now apply these results to SMPC.

4.4 Inherent distributional robustness of SMPC

The main result of this chapter is now stated.

Theorem 4.18. Let Assumptions 4.1, 4.2 and 4.4 to 4.7 hold for �xed Ŵ ⊆ Rq. Then there

exists δ > 0 such that for any set W ⊆ Rq satisfying dH(W, , Ŵ) ≤ δ and the system x+ =

f(x, κµ̂(x), w), w ∈W we have that:

(i) The set X is RPI.

(ii) The origin is DRASiE in the set X .
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(iii) The origin is `-DRASiE in the set X .

Thus, for a su�ciently small di�erence between W and Ŵ (in terms of the Hausdor� dis-

tance), the set X is RPI, i.e., the SMPC problem remains robustly recursively feasible, and the

origin is both DRASiE and `-DRASiE. To establish this result, we require the following inter-

mediate lemmata. This �rst lemma is a general mathematical result for integrals of Lipschitz

continuous functions.

Lemma 4.19. For a Lipschitz continuous function g : X × S → R with X ⊆ Rn and S ⊆ Rq,

G(x) :=
∫
S
g(x, s)dµ(s) is also a Lipschitz continuous function with the same Lipschitz constant

for all µ ∈M(S).

Proof. Let L ≥ 0 denote the Lipschitz constant for g(·). For x1, x2 ∈ X , we have

|G(x1)−G(x2)| =
∣∣∣∣∫
S

(
g(x1, s)− g(x2, s)

)
dµ(s)

∣∣∣∣
≤
∫
S

|g(x1, s)− g(x2, s)| dµ(s)

≤
∫
S

L|x1 − x2|dµ(w) = L|x1 − x2|

in which the last equality holds because µ ∈M(S) is a probability measure, i.e.,
∫
S
dµ(s) = 1.

Thus, G(·) is a Lipschitz continuous function with the same Lipschitz constant as g(·) for all

µ ∈M(S).

The second lemma provides an upper bound in the terminal region. This results lever-

ages the Lipschitz continuity of the system model, terminal control law, and terminal cost to

construct a bound similar to Lemma 3.14.

Lemma 4.20. Let Assumptions 4.2 and 4.4 to 4.6 hold. There exists exists Lf ≥ 0 such that

∫
Ŵ
Vf (f(x, κf (x), ŵ))dµ̂(ŵ) ≤ Vf (x)− `(x, κf (x)) + LfE [|ŵ|] (4.11)
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for all x ∈ Xf and µ̂ ∈ M̂(W).

Proof. Since Vf (·), f(·), κf (·) are locally Lipschitz continuous and Xf , Ŵ are bounded, there

exists Lf ≥ 0 such that

|Vf (f(x, κf (x), ŵ))− Vf (f(x, κf (x), 0))| ≤ Lf |ŵ|

for all x ∈ Xf and ŵ ∈ Ŵ. Therefore,

∫
Ŵ
Vf (f(x, κf (x), ŵ))dµ̂(ŵ) ≤ Vf (f(x, κf (x), 0)) + Lf Ê[|ŵ|]

We combine this bound with (4.6) to give (4.11).

We then establish an upper bound for the optimal cost function.

Lemma 4.21. Let Assumptions 4.2 and 4.4 to 4.6 hold. Then there exist α2(·) ∈ K∞ and σ2(·) ∈

K such that V 0
µ̂ (x) ≤ α2(|x|) + σ2(Ê[|ŵ|]) for all x ∈ X and µ̂ ∈ M̂(W).

The proof of this result is nearly identical to the proof of Lemma 3.17 and therefore omitted.

The full proof can be found in the Appendix of McAllister and Rawlings (2022e, Lemma 20).

We can now establish Theorem 4.18.

Proof of Theorem 4.18. We �rst establish that there exists δ > 0 such that X is RPI. Since f(·),

π(·) are locally Lipschitz continuous and X is bounded, there exists Lx > 0 such that

|f(x, π(x, v), w)− f(x, π(x, v), ŵ)| ≤ Lx|w − ŵ|

for all x ∈ X , v ∈ V, and w, ŵ ∈ W. For x ∈ X and µ̂ ∈ M̂(W), choose v0 ∈ v0
µ̂(x) such
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that κµ̂(x) = π(x, v0(0)), ŵ ∈ ŴN , and de�ne

ṽ+ := (v0(1), v0(2), . . . , v0(N − 1), 0)

w̃+ := (ŵ(1), ŵ(2), . . . , ŵ(N − 1), ŵ(N))

for some ŵ(N) ∈ Ŵ. We denote x+(w) = f(x, κµ̂(x), w), x(N) = φ̂(N, x,v0, ŵ), and

x+(N ;w) = φ̂(N ;x+(w), ṽ+, w̃+). Note that x ∈ X , w ∈ W, ṽ+ ∈ VN , and w̃+ ∈ ŴN are

all bounded.

The function φ̂(N ; ·) is locally Lipschitz continuous since it is a composition of a �nite

number of locally Lipschitz continuous functions. Therefore, Vf (φ̂(N ; ·)) is also locally Lips-

chitz continuous and there exists L̃f > 0 such that

Vf (x
+(N ;w))− Vf (x+(N ; ŵ)) ≤ |Vf (x+(N ;w))− Vf (x+(N ; ŵ))|

≤ L̃f |x+(w)− x+(ŵ)|

≤ L̃fLx|w − ŵ|

for all x ∈ X , w, ŵ ∈ W, ṽ+ ∈ VN , and w̃+ ∈ ŴN . Since x(N) ∈ Xf , we have from

Assumption 4.6 that Vf (x+(N ; ŵ)) ≤ τ̃ for all ŵ ∈ Ŵ and therefore,

Vf (x
+(N ;w)) ≤ τ̃ + L̃fLx|w − ŵ|

for all w ∈ W and ŵ ∈ Ŵ. Thus, for any w ∈ W, we can choose ŵ ∈ Ŵ to minimize the

value of |w − ŵ| and we have that

Vf (x
+(N ;w)) ≤ τ̃ + L̃fLx|w|Ŵ
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for all w ∈W. We de�ne

δ :=
τ − τ̃
L̃fLx

(4.12)

and note that δ > 0. Thus, for all sets W such that dH(W, Ŵ) ≤ δ, we have that |w|Ŵ ≤ δ and

therefore Vf (x+(N ;w)) ≤ τ . Hence, x ∈ X implies that x+(N ;x) ∈ Xf , ṽ+ ∈ V(x+(w)),

and x+(w) ∈ X . Recall that µ̂ ∈ M̂(W) and x ∈ X were chosen arbitrarily. Thus, X is

RPI for the closed-loop system x+ = f(x, κµ̂(x), w), w ∈ W for any W ⊆ Rq such that

dH(W, Ŵ) ≤ δ and we have established (i).

We now establish an expected cost decrease condition for the probability measure µ̂ sim-

ilar to Lemma 3.16. Using the de�nition of J(·), we have

J(x+(ŵ), ṽ+, w̃+) = J(x,v0, w̃)− `(x, κµ̂(x)) + η(x(N), ŵ(N)) (4.13)

in which

η(x,w) := −Vf (x) + `(x, κf (x)) + Vf (f(x, κf (x), w))

From Lemma 4.20 and the fact that x(N) ∈ Xf , there exists Lf > 0 such that

∫
ŴN+1

η(x(N), ŵ(N))dµ̂N(ŵ)dµ̂(ŵ(N)) ≤ Lf Ê[|ŵ|]

We also have the equality

V 0
µ̂ (x) =

∫
ŴN+1

J(x,v0, ŵ)dµ̂N(ŵ)dµ̂(ŵ(N))
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and therefore

∫
W
Vµ̂(x+(ŵ), ṽ+)dµ̂(ŵ) =

∫
ŴN+1

J(x+(ŵ), ṽ+, w̃+)dµ̂N(ŵ)dµ̂(ŵ(N))

≤ V 0
µ̂ (x)− `(x, κµ̂(x)) + Lf Ê[|ŵ|] (4.14)

in which we can exchange Ŵ with W for the domain of integration since Assumption 4.2

ensures that µ̂(W \ Ŵ) = 0.

Next, we use Theorem 4.9 to exchange µ̂ for µ. The function J(x,v,w) is the composition

of a �nite number of locally Lipschitz continuous functions and is therefore locally Lipschitz

continuous. Thus, J(x,v,w) is Lipschitz continuous on the compact set X × VN × ŴN .

From Lemma 4.19, we have the Vµ̂(x,v) is also Lipschitz continuous with the same Lipschitz

constant for all µ̂ ∈ M̂(W). Thus, there exists LJ > 0 such that

|Vµ̂(f(x, u, w), ṽ+)− Vµ̂(f(x, u, ŵ), ṽ+)| ≤ LJ |w − ŵ|

for all w, ŵ ∈W, x ∈ X , u ∈ U, ṽ+ ∈ VN , and µ̂ ∈ M̂(W). We choose arbitrary µ̂ ∈ M̂(W)

and use Theorem 4.9 to give

∫
W
Vµ̂(x+(w), ṽ+)dµ(w) ≤

∫
W
Vµ̂(x+(ŵ), ṽ+)dµ̂(ŵ) + LJW (µ, µ̂) (4.15)

for all x ∈ X , ṽ+ ∈ VN , µ ∈ M(W). Note that the choice of µ̂ ∈ M̂(W) was arbitrary and

(4.15) holds for all µ̂ ∈ M̂(W) with the same value of LJ > 0. We combine (4.14) and (4.15)

and by optimality we have

∫
W
V 0
µ̂ (x+(w))dµ(w) ≤ V 0

µ̂ (x)− `(x, κµ̂(x)) + Lf Ê[|ŵ|] + LJW (µ, µ̂) (4.16)

for all x ∈ X , µ̂ ∈ M̂(W), and µ ∈M(W).
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We now establish that V 0
µ̂ (·) is an SISS Lyapunov function according to De�nition 4.15.

From Assumption 4.7, there exists α`(·) ∈ K∞ such that −`(x, κµ̂(x)) ≤ −α`(|x|) and we

substitute this inequality in to (4.16). Therefore, (4.10) holds with Vµ̂(·) := V 0
µ̂ (·), α3(·) :=

α`(·), σ3(·) := Lfs, and σ4(s) := LJs. We also use Assumption 4.7 to show that α1(|x|) :=

α`(|x|) ≤ `(x, κµ̂(x)) ≤ V 0
µ̂ (x) for all x ∈ X . With Lemma 4.21, we can construct the desired

upper bound for V 0
µ̂ (·). Thus, V 0

µ̂ (·) satis�es the requirements in De�nition 4.15 for an SISS

Lyapunov function. By Propositions 4.16 and 4.17, the origin is DRASiE and `-DRASiE.

As noted in the previous chapter, an important class of applications for SMPC are eco-

nomic problems in which the stage cost is chosen to directly represent an economic, envi-

ronmental, or performance metric for the process (e.g., production cost, carbon production).

If this cost satis�es Assumption 4.7, then Theorem 4.18 still applies and `-DRASiE is particu-

larly relevant. In Chapters 2 and 3, we exclusively considered MPC and SMPC formulations

that satisfy this requirement for the stage cost. Unfortunately, this requirement restricts the

space of economic cost functions that we may consider with SMPC and can exclude many

relevant problems. Thus, in economic applications of MPC, i.e., economic MPC, we often

drop Assumption 4.7 and instead analyze the closed-loop system without this assumption.

By removing this assumption, we obtain a weaker, but still instructive, result for economic

applications of SMPC.

Theorem 4.22. Let Assumptions 4.1, 4.2 and 4.4 to 4.6 hold. Then there exists δ > 0 such that

for any W ⊆ Rq satisfying dH(W, Ŵ) ≤ δ and the system x+ = f(x, κµ̂(x), w), w ∈ W

we have that X is RPI. Furthermore, there exist Lf , LJ > 0 such that the closed-loop trajectory

satis�es

lim sup
T→∞

1

T

T−1∑
k=0

E [`(x(k), κµ̂(x(k)))] ≤ Lf Ê[|ŵ|] + LJW (µ, µ̂) (4.17)

in which x(k) = φµ̂(k;x,wk) for all x ∈ X , µ̂ ∈ M̂(W), and µ ∈M(W).
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Proof. In the proof of Theorem 4.18, we establish that X is RPI and that the bound in (4.16)

holds without using Assumption 4.7. We choose x ∈ X , µ̂ ∈ M̂(W) and denote the closed-

loop trajectory x(k) = φµ̂(k;x,wk). We then apply the law of total expectation to (4.16) and

rearrange to give,

E [`(x(k), κµ̂(x(k)))] ≤ E
[
V 0
µ̂ (x(k))

]
− E

[
V 0
µ̂ (x(k + 1))

]
+ Lf Ê[|ŵ|] + LJW (µ, µ̂)

We sum both sides of this inequality from k = 0 to T − 1, cancel terms, and divide by T to

give,

1

T

T−1∑
k=0

E [`(x(k), κµ̂(x(k)))] ≤
V 0
µ̂ (x)− E

[
V 0
µ̂ (x(T ))

]
T

+ Lf Ê[|ŵ|] + LJW (µ, µ̂)

Since Vµ̂(x,v) is Lipschitz continuous on the bounded setX×VN for all µ̂ ∈ M̂(W), we have

that V 0
µ̂ (x) is bounded for all x ∈ X and µ̂ ∈ M̂(W). Therefore, E[V 0

µ̂ (x(T ))] is also bounded

since x(T ) ∈ X . We take the limit T → ∞ and note that V 0
µ̂ (x)/T and E

[
V 0
µ̂ (x(T ))

]
/T to

give (4.17).

The inequality in (4.17) ensures that as T → ∞, the time-averaged expected value of

the stage cost is upper bounded by a constant proportional to Ê[|ŵ|] and W (µ, µ̂). Note that

we use the limit supremum (lim sup) because the limit of left-hand side of this equation may

not exist. Analogous to `-DRASiE, the e�ect of the initial condition vanishes as T → ∞,

but (4.17) does not enforce any properties on the initial transient behavior of the closed-loop

trajectory (other than the fact that X is RPI). By contrast, the bound in (4.8) must hold for

all k ∈ I≥0. The bound in (4.17) reduces to a standard result for idealized SMPC that was

�rst derived for nonlinear systems by Chatterjee and Lygeros (2014). This result for idealized

SMPC has become a somewhat standard closed-loop property and is often reestablished for

new SMPC formulations to ensure “stability” of the proposed formulation. Similar results are
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also available for (idealized) robust MPC formulations (Bayer et al., 2016).

4.5 Discussion

We now discuss several insights derived from these results. This discussion addresses (i)

the robustness of SMPC to incorrectly or unmodeled disturbances, (ii) scenario optimization

as a means to approximate and solve SMPC optimization problems, and (iii) the uni�cation

of stochastic robustness results across di�erent MPC formulations.

4.5.1 SMPC

Idealized SMPC For idealized SMPC, we have that µ = µ̂ and W = Ŵ. Under these

conditions, W (µ, µ̂) = 0, dH(W, Ŵ) = 0, and (4.7), (4.8) and (4.17) reduce to their idealized

SMPC counterparts, i.e., we have

E [|φµ̂(k;x,wk)|] ≤ β(|x|, k) + γ1 (E[|w|]) ∀k ∈ I≥0 (4.18)

E [`(x(k), κµ̂(x(k)))] ≤ β̃(|x|, k) + γ̃1 (E[|w|]) ∀k ∈ I≥0 (4.19)

lim sup
T→∞

1

T

T−1∑
k=0

E [`(x(k), κµ̂(x(k)))] ≤ LfE[|w|] (4.20)

for all x ∈ X and µ ∈M(W).

Incorrectlymodeled disturbances We assume that W = Ŵ, but the distribution is incor-

rect, i.e., µ 6= µ̂. In this case, dH(W, Ŵ) = 0 and robust recursive feasibility is guaranteed (X

is RPI). The closed-loop performance bounds with respect to E[|x(k)|] or E[`(x(k), κµ̂(x(k)))]

degrade relative to the idealized case with respect to the distance between µ̂ and µ, i.e,

W (µ, µ̂). Thus, as µ̂ → µ we recover the idealized SMPC bounds. Furthermore, arbitrar-

ily small di�erences between µ̂ and µ, in terms of the Wasserstein metric, produce similarly
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small deviations in these bounds. Note that selecting Ŵ larger than the support of µ, i.e.,

µ(Ŵ) = 1, still ensures that Ŵ = W because we can increase the size of W and assign

these values zero measure. Thus, designing for a larger set of disturbances than the system

encounters does not a�ect feasibility. This additional conservatism, however, may reduce

performance since W (µ̂, µ) > 0 for µ̂ 6= µ and can also reduce the size of the feasible set

X . Furthermore, there is an implicit relationship between the terminal constraint and Ŵ via

Assumption 4.6. For a su�ciently large set Ŵ, there may not exist any κf (·), Xf , and Vf (·)

that satisfy Assumption 4.6.

Unmodeled disturbances In this case, we have that W 6= Ŵ and µ 6= µ̂. This case rep-

resents disturbances that were “undermodeled” in that W is larger than Ŵ, e.g., Ŵ = {w ∈

Rq : |w| ≤ 1}, but W = {w ∈ Rq : |w| ≤ 2} and µ(Ŵ) < 1. This case also covers elements

or directions of W that are entirely absent in Ŵ, e.g., Ŵ = {w ∈ Rq : |w| ≤ 1 and w1 = 0}

or Ŵ = {0}, but W := {w ∈ Rq : |w| ≤ 1} with µ(Ŵ) < 1. In fact, this representation can

also account for an error in the model f(·). For example, we consider the model f̂(x, u, w1),

but the actual system evolves according to f(x, u, w) = f̂(x, u + w2, 0) + w3 in which w =

(w1, w2, w3). Nonetheless, we may still de�ne Ŵ = {w ∈ R3 : |w1| ≤ 1, w2 = 0, w3 = 0}

and W = {w ∈ R3 : |w1| ≤ 1, |w2| ≤ 1, |w3| ≤ 1}. Thus, the SMPC optimization problem

considers only disturbances inw1, whilew2 = w3 = 0. Provided δ ≥
√

2 for this problem for-

mulation, we have that dH(W, Ŵ) =
√

2 ≤ δ and therefore X is RPI and (4.7), (4.8) and (4.17)

hold despite the signi�cant mismodeling of the disturbance in this example.

4.5.2 Scenario optimization

For nonlinear systems, the stochastic optimization problem proposed in (4.3) is typically

intractable for continuous probability measures, e.g., a truncated normal distribution. Instead,

scenario optimization methods are often used to approximate and solve the stochastic opti-
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mization problem. By selecting a �nite set of possible scenarios from the underlying distur-

bance set and probability measure, the expected cost of the stochastic optimization problem is

approximated by the average cost of these scenarios. The constraints are then required to hold

for all scenarios considered. Performance bounds for the optimal solution/cost of stochastic

optimization problems using this scenario optimization method is a topic that has generated

much interest, with applications beyond SMPC. For scenario approximations to robust and

chance-constrained optimization problems, one can show probabilistic guarantees, e.g., the

solution to the approximate problem is within some con�dence interval of the solution to the

origin problem (Cala�ore and Campi, 2006; Esfahani et al., 2014). This con�dence interval

shrinks as the number of samples increases, but still allows for a nonzero probability that the

constraints of the original problem are violated.

The quality of this approximation, however, is irrelevant for SMPC if near exact approxi-

mations still produce poor controllers. Thus, the contribution in this chapter is novel because

we are discussing the performance of the closed-loop system generated by repeated solutions

to this approximated optimization problem and not the quality of each individual approxi-

mation. We can thereby bound the performance of the controller subject to a scenario-based

approximation of the stochastic optimization problem.

We proceed by de�ning the stochastic optimization problem in (4.3) with an empirical

distribution generated via a scenario-based approximation of the original stochastic optimal

control problem. Thus, we can analyze the scenario approximation error as an additional

error in representing the disturbance set and probability measure for the plant. Speci�cally,

we construct this scenario optimization problem by drawing s ∈ I≥1 samples ω̂i from the

set Ŵ and probability measure µ̂. We then de�ne the set Ŵs := {ω̂1, ω̂2, . . . , ω̂s} and the

empirical probability measure

µ̂s(·) :=
1

s

s∑
i=1

δω̂i
(·)
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Note that Ŵs and µ̂s(·) satisfy the requirements in Assumption 4.2 for all s ∈ I≥1. Moreover,

if Assumption 4.6 holds for Ŵ, Assumption 4.6 also holds for Ŵs ⊆ Ŵ. Thus, we may use

Ŵs and µ̂s(·) in place of Ŵ and µ̂ for all algorithms and results in this work. In particular, we

have that Theorems 4.18 and 4.22 hold for Ŵs and µ̂s(·) in place of Ŵ and µ̂.

We can therefore draw several important conclusions for scenario optimization as a means

to approximate the SMPC optimization problem. First, if Ŵ is su�ciently close toW (dH(W, Ŵ) ≤

δ/2) and the sampling of Ŵ is su�ciently dense (dH(Ŵ, Ŵs) ≤ δ/2), thenX is RPI (dH(W, Ŵs) ≤

δ). This observation suggests that sampling-based approximations can ensure robust recur-

sive feasibility of SMPC if a su�cient number of samples are used. In fact, deliberate con-

struction of Ŵs to ensure that the approximation is su�ciently dense on Ŵ may be prefer-

able to constructing Ŵs via random sampling. If Ŵs is constructed with random sampling,

dH(Ŵ, Ŵs) may take larger values with some small probability. This result is a signi�cant

departure from the usual results for scenario-based approximations because it implies that

there is a �nite number of samples, if chosen deliberately, that ensure a deterministic prop-

erty of the closed-loop system, i.e., X is RPI. Recall that recursive feasibility is essential for

industrial implementation of any optimization-based controller.

Second, the performance is bounded by the distance between µ̂s and µ. Since the Wasser-

stein metric is a proper metric, we can use the triangle inequality to show that

W (µ, µ̂s) ≤ W (µ, µ̂) +W (µ̂, µ̂s)

As the number of samples increases, i.e., s→∞, we can further establish that

W (µ, µ̂s)→ W (µ, µ̂)

Thus, the performance bounds in (4.7), (4.8) and (4.17) converge to their values for the orig-
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inal stochastic optimization problem as the number of samples increases. Moreover, we can

characterize this convergence of the Wasserstein metric in terms of the number of samples

and the dimension of w via results available in Fournier and Guillin (2015). For example, we

can show that for q ≥ 3, there exists C > 0 such that

Es [W (µ̂, µ̂s)] ≤ C(s−1/q + s−1)

in which Es is the expected value evaluated over the random samples taken from µ̂ since µ̂s

is constructed from s random variables ω̂i.

The key conclusion from this discussion is that scenario-based approximations of SMPC

optimization problems also bene�t from the inherent distributional robustness a�orded by

feedback. For computational reasons, these scenario-based approximations are already and

frequently used to solve nonlinear SMPC problems. The results presented here, however,

provide a novel theoretical justi�cation for this approximation in the context of closed-loop

systems.

4.5.3 CMPC

The conclusions of Theorem 4.18 and Theorem 4.22 are particularly interesting given their

ability to unify the notions of stochastic robustness across all SMPC, CMPC, and nominal

MPC. We can treat both CMPC and nominal MPC as special cases of SMPC and therefore use

these two theorems to draw conclusions about all of these MPC formulations. We discuss

CMPC in this subsection and nominal MPC in the next subsection.

For µ̂({0}) = 1, the SMPC formulation in (4.3) reduces to CMPC, in which we optimize a

nominal objective function subject to tightened constraints, i.e.,

min
v∈V(x)

J(x,v,0)

143



Distributional Robustness Chapter 4

We therefore have Ê[|ŵ|] = 0 and the Wasserstein metric reduces to

W (µ, µ̂) = E [|w|]

and therefore (4.7), (4.8) and (4.17) can be simpli�ed.

Corollary 4.23 (CMPC). Let Assumptions 4.1, 4.2 and 4.4 to 4.6 hold with µ̂({0}) = 1. Then

there exists δ > 0 such that for any set W ⊆ Rq satisfying dH(W, Ŵ) ≤ δ, the set X is RPI

for the system x+ = f(x, κµ̂(x), w), w ∈ W. Furthermore, there exists LJ > 0 such that the

closed-loop trajectory satis�es

lim sup
T→∞

1

T

T−1∑
k=0

E [`(x(k), κµ̂(x(k)))] ≤ LJE[|w|] (4.21)

in which x(k) = φµ̂(k;x,wk) for all x ∈ X and µ ∈ M(W). If Assumption 4.7 also holds,

there exist β(·), β̃(·) ∈ KL and γ2(·), γ̃2 ∈ K such that

E [|φµ̂(k;x,wk)|] ≤ β(|x|, k) + γ2 (E[|w|]) (4.22)

E [`(x(k), κµ̂(x(k)))] ≤ β̃(|x|, k) + γ̃2 (E[|w|]) (4.23)

for all x ∈ X , µ ∈M(W), and k ∈ I≥0.

Note that γ2(·), γ̃2(·), and LJ appear in (4.21) to (4.23), but γ1(·), γ̃1(·), and Lf appear in

(4.18) to (4.20). This observation suggests, as discussed in Chapter 3, that the performance

of CMPC and SMPC may di�er quantitatively. The qualitative behavior, however, is likely

similar for an otherwise equivalent problem, i.e., increases in E [|w|] produce increases in

each of these upper bounds.

We now consider an interesting question: is the relationship between the constants Lf

and LJ general under speci�c assumptions? For example, can we claim that Lf ≤ LJ for a
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speci�c class of problems? We note, however, that Lf and LJ are constructed via di�erent

routes. The constant Lf depends entirely on the terminal region, while LJ also includes

e�ects from the stage cost and control law parameterization over the horizonN . Furthermore,

these bounds are often too conservative to produce useful quantitative information, much

like theK functions used in the other bounds for the closed-loop system. We therefore do not

recommend calculating these bounds a priori as a means to assess the potential bene�ts of

implementing SMPC over a nominal objective function. Simulation studies remain the best

means to evaluate the quantitative bene�ts of SMPC for speci�c problems of interest. See, for

example, Kumar et al. (2019)

4.5.4 Nominal MPC

For µ̂({0}) = 1 and Ŵ = {0}, the SMPC problem reduces to nominal MPC in which we

have the feedback law π(x, v) embedded in the optimization problem. This type of parame-

terization, however, is not uncommon for nominal MPC formulations. By parameterizing the

feedback law used in the nominal MPC problem, we can “pre-stabilize” the open-loop system

and thereby ensure that the MPC optimization problem is well conditioned (Jerez et al., 2011;

Rossiter et al., 1998). Moreover, if we choose π(x, v) = v and V = U, the nominal MPC prob-

lem introduced in Chapter 2 is equivalent to this simpli�ed SMPC problem. For this choice of

π(x, v) = v and V = U, we have that

V(x) = U(x) = {u ∈ UN : φ̂(N ;x,u,0) ∈ Xf}

and the optimization problem becomes

min
v∈V(x)

J(x,v,0) = min
u∈U(x)

J(x,u,0)
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For this choice of π(·) and V, Assumptions 4.4 and 4.5 reduces to their nominal MPC

counterparts, Assumptions 2.1 and 2.28, with the requirement of local Lipschitz continuity

added to Assumption 2.1 and bounded X added to Assumption 2.28. For Assumption 4.6, the

requirement in (4.5) becomes

f(x, κf (x), 0) ∈ {x ∈ Rn : Vf (x) ≤ τ̃} (4.24)

Thus, the terminal control law must drive the subsequent state for the nominal system to

the interior of Xf for all x ∈ Xf . If Assumption 4.7 also holds, the nominal cost decrease

condition in (4.6) combined with the de�nition of Xf := {x ∈ Rn : Vf (x) ≤ τ} is su�cient

to guarantee that (4.24) also holds for some τ̃ < τ .

Lemma 4.24. Let Assumptions 4.4, 4.5 and 4.7 hold. If there exists a terminal control law κf :

Xf → U such that

Vf (f(x, κf (x), 0)) ≤ Vf (x)− `(x, κf (x))

for all x ∈ Xf , then there exists τ̃ < τ such that (4.24) holds for all x ∈ Xf .

Proof. We have that

Vf (f(x, κf (x), 0)) ≤ Vf (x)− α`(|x|)

for all x ∈ Xf . Since Vf (·) is Lipschitz continuous on the compact set Xf and Vf (0) = 0,

there exists L > 0 such that Vf (x) ≤ L|x| for all x ∈ Xf . We de�ne

τ̃ := τ −min {τ/2, α`(τ/(2L))}

Note that τ̃ < τ . If Vf (x) ≤ τ/2, we have that Vf (f(x, κf (x), 0)) ≤ τ/2 ≤ τ̃ . If τ/2 ≤
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Vf (x) ≤ τ , then we have

Vf (f(x, κf (x), 0)) ≤ τ − α`(τ/(2L)) ≤ τ̃

Thus, Vf (f(x, κf (x), 0)) ≤ τ̃ and (4.24) holds for all x ∈ Xf .

If Assumption 4.7 does not hold, however, the requirement in (4.24) is notably di�erent

than the requirements typically considered or used for economic MPC. As we discuss later in

this subsection, this requirement allows us to derive new results for the robustness of nominal

economic MPC.

With this problem formulation, we have that dH(W, {0}) = supw∈W |w| and the bounds in

(4.7), (4.8) and (4.17) reduce to the equations in (4.21) to (4.23), i.e., we obtain the same closed-

loop bounds as CMPC. Thus, we can use Theorems 4.18 and 4.22 to establish the stochastic

robustness of nominal MPC to su�ciently small disturbances.

Corollary 4.25 (Nominal MPC). Let Assumptions 4.1, 4.2 and 4.4 to 4.6 hold with µ̂({0}) = 1

and Ŵ = {0}. Then there exists δ > 0 such that for any set W ⊆ {w ∈ Rq : |w| ≤ δ}, the set

X is RPI for the system x+ = f(x, κµ̂(x), w), w ∈ W. Furthermore, there exists LJ > 0 such

that the closed-loop trajectory satis�es

lim sup
T→∞

1

T

T−1∑
k=0

E [`(x(k), κµ̂(x(k)))] ≤ LJE[|w|] (4.25)

in which x(k) = φµ̂(k;x,wk) for all x ∈ X and µ ∈ M(W). If Assumption 4.7 also holds,

there exist β(·), β̃(·) ∈ KL and γ2(·), γ̃2 ∈ K such that

E [|φµ̂(k;x,wk)|] ≤ β(|x|, k) + γ2 (E[|w|]) (4.26)

E [`(x(k), κµ̂(x(k)))] ≤ β̃(|x|, k) + γ̃2 (E[|w|]) (4.27)
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for all x ∈ X , µ ∈M(W), and k ∈ I≥0.

We now compare Corollary 4.25 to Theorem 2.32 for nominal MPC. An obvious di�erence

is that Theorem 2.32 de�nes stochastic robustness in terms of the covariance of the distur-

bance (Σ) instead of the the expected norm of the disturbance (E[|w|]). As noted in Remark 4.3,

we can use tr(Σ) in place of E[|w|] for all of the results in this chapter if the disturbance is

zero mean. Alternatively, we can also establish the results from Chapters 2 and 3 with E[|w|]

in place of tr(Σ).

A more signi�cant di�erence between these results is the RPI sets of interest. In Theo-

rem 2.32, we allow for the choice of a compact set S := X ∩ {x ∈ R : V 0(x) ≤ ρ} for some

ρ > 0 that then determines the margin of robustness δ > 0 for the system. In Corollary 4.25,

we instead assume that X is bounded, which is usually the case, and consider only the set

S = X and its associated margin of robustness δ > 0. Thus, Theorem 2.32 is somewhat

more informative, owing to the fact that the result is derived speci�cally for nominal MPC.

Nonetheless, both results arrive at the same important conclusion: Nominal MPC provides

some margin of stochastic robustness to disturbances.

Theorems 4.18 and 4.22 also seem to suggest that the value of δ > 0 is constant across all

three MPC formulations, but this conclusion is incorrect. The value of δ > 0 in Corollary 4.25

is not necessarily the same as in Corollary 4.23 and Theorems 4.18 and 4.22. For an otherwise

equivalent problem, the value of τ̃ > 0 in Assumption 4.6 may be signi�cantly smaller (but

not larger) for Ŵ = {0} than for a set Ŵ that includes more than the origin. Note that in the

proof of Theorem 4.18, the value of δ is de�ned in (4.12) as

δ :=
τ − τ̃
L̃fLx

Thus, a decrease in τ̃ increases the value of δ. However, the feasible set X may also be larger

(but not smaller) for Ŵ = {0} than for a set Ŵ that includes more than the origin. Thus,
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the Lipschitz constants L̃f , Lx > 0 may also increase for nominal MPC relative to SMPC or

CMPC. The value of δ > 0 can therefore be larger or smaller for nominal MPC compared

to SMPC or CMPC depending on the relative changes in these constants. As discussed in

Section 3.7.1, general conclusions about which approach is the “most” robust in terms of RPI

sets remain elusive.

One of the unintended results revealed by Corollary 4.25 is that Assumption 4.7 (or an

analogous dissipativity assumption) is not required to ensure that X is RPI for su�ciently

small disturbances. Instead, we rely on the requirement in (4.24) to establish thatX is RPI and

therefore ensure that the optimization problem is robustly recursively feasible. By ensuring

that X is RPI, we can also derive the performance bound in (4.25) that is analogous to the

bound derived for idealized stochastic MPC. Thus, nominal economic MPC, i.e., nominal MPC

without Assumption 4.7, is robust to su�ciently small disturbances in an economic context.

This result is, to the best of our knowledge, new for nominal MPC. However, terminal control

laws that satisfy (4.24) and (4.6) may be di�cult to construct for relevant systems and stage

costs.

4.6 Numerical example

To demonstrate some of the implications of these technical results, we consider a simple

numerical example based on the inventory control problem discussed in Section 3.7.4 and

adapted from McAllister and Rawlings (2022e). In this example, we have inventory levels at

two separate warehouses (x1, x2) and we need to determine the amount of inventory to add or

remove for each facility at each time step (u1, u2). Negative values of x1, x2 represent backlog.

We also consider �uctuations in demand (w1, w2), which gives the following discrete-time
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dynamics.

x+
1 = x1 + u1 + w1

x+
2 = x2 + u2 + w2

Note that the dynamical equations are decoupled, but the input is subject to the min/max

constraints u1, u2 ∈ [−2, 2] and the total product �ow constraint u1 + u2 ∈ [−2, 2]. We plot

the set U in Figure 4.4.

For the SMPC controller, we de�ne ŵ = (ŵ1, ŵ2) ∈ Ŵ := {−0.5, 0, 0.5} × {0}, i.e,

ŵ1 ∈ {−0.5, 0, 0.5} and ŵ2 = 0. Note that this SMPC formulation is equivalent to leaving ŵ2

out of the dynamical equations used in the SMPC optimization problem. For some ε̂1 ∈ [0, 1],

we de�ne µ̂ such that

µ̂({(−0.5, 0)}) = µ̂({(0.5, 0)}) = ε̂1/2 and µ̂({(0, 0)}) = 1− ε̂1

We use the stage cost

`(x, u) = max{x1, 0}+ 0.5 max{x2, 0}+ 5 max{−x1, 0}+ 2.5 max{−x2, 0}

+ 0.5|u1|+ 0.5|u2|

in which we assign larger penalties to negative values of x1, x2 (backlog) than positive values

of x1, x2 (extra inventory). We also penalize increasing/decreasing the inventory levels with

u1, u2. To better illustrate this cost function, we provide a contour plot in Figure 4.4 of `(x, 0).

We now construct the terminal constraint and cost for this problem. We choose the terminal
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Figure 4.4: Input constraint set U (left) and contour plot of the stage cost `(x, 0) (right) for
the numerical example.

cost Vf (x) = 6|x1|+ 6|x2| and τ = 6 to give

Xf = {x ∈ R2 : Vf (x) ≤ 6} = {x ∈ R2 : |x1|+ |x2| ≤ 1}

We use the terminal control law κf (x) = −x and verify that

Vf (f(x, κf (x), 0)) = 0 ≤ 6|x1|+ 6|x2| − `(x,−x)

for all x ∈ Xf . Moreover,

Vf (f(x, κf (x), ŵ)) ≤ 6|ŵ1| ≤ 3

for all x ∈ Xf , ŵ ∈ Ŵ and therefore (4.5) holds with τ̃ = 3. We use the parametrization

π(x, v) = satU(−x + v) and let V = {v ∈ R2 : |v1| ≤ 10, |v1| ≤ 10}. This formulation

satis�es Assumptions 4.4 to 4.7.

As noted in Section 3.7.4, SMPC formulations can produce control laws that are discon-

tinuous with respect to the probability distribution. To illustrate changes in the control law

with respect to changes in µ̂, we �x x2 = 0 and calculate the values of κµ̂(x) for x1 ∈ [−3, 3]
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Figure 4.5: The �rst element of κµ̂(x), denoted u0
1, for all x1 ∈ [−3, 3] and di�erent regions

of ε̂1 (left). Also, u0
1 for all ε̂1 and �xed x = (0.2, 0) (right).

for all ε̂1 ∈ [0, 1]. There are three di�erent regions of ε̂1 that produce a di�erent control law

in each region. We plot the �rst element of κµ̂(x), denoted u0
1, on the left side of Figure 4.5

for each of these regions. Note that the second element κµ̂(x) is zero for all ε̂1 ∈ [0, 1] and

x2 = 0.

For ε̂1 ≤ 0.28, the optimal control action is to drive x1 to zero as aggressively as permitted

by the constraints. For ε̂1 ≥ 0.47, we instead drive x1 to 0.5 as aggressively as permitted by

the constraints. In contrast to the example in Section 3.7.4, we include a penalty for |u1| and

therefore produce an intermediate control law for ε̂1 ∈ [0.29, 0.46]. In this region, we drive

x1 to zero for x1 ≤ 0, drive x1 to 0.5 for x1 ≥ 0.5, and take no action for x1 ∈ [0, 0.5].

The transitions between these three regions appear to be discontinuous with respect to

changes in ε̂1. To demonstrate these discontinuities, we �x x = (0.2, 0) and plot u0
1 for all

ε̂1 ∈ [0, 1] on the right side of Figure 4.5. These discontinuities occur at ε̂1 ≈ 0.284 and

ε̂1 ≈ 0.461. For the exact values of ε̂1 at which these discontinuities occur, we observe that

all values of u1 ∈ [−0.2, 0] and u ∈ [0, 0.25], respectively, are optimal for x = (0.2, 0). Thus,

arbitrarily small changes in µ̂ can produce signi�cantly di�erent controllers.
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Figure 4.6: Closed-loop trajectories for x1, x2 for idealized SMPC with their expected values.

For this example, we now consider the closed-loop trajectory for idealized SMPC. We

choose ε̂1 = 2/3, start the system at x0 = (2, 2), and simulate the closed-loop trajectory with

W = Ŵ and µ = µ̂. We plot all possible trajectories and their associated expected value for

x1, x2 up to k = 4 in Figure 4.6. Similar to the example in Section 3.7.4, we observe that SMPC

ensures that x1 remains positive for all realizations of the disturbance and thereby avoids the

large penalty for backlog. Note, however, that x2 is driven to zero since ŵ2 = 0.

We now introduce the unmodeled disturbancew2. Let W := {−0.5, 0, 0.5}2, i.e., w1, w2 ∈

{−0.5, 0, 0.5}, and µ({(w1, w2)}) = µ1({w1})µ2({w2}) in which

µi({−0.5}) = µ({0.5}) = ε̂i/2 and µi({0}) = 1− ε̂i

and εi ∈ [0, 1] for i = 1, 2. Thus w1 and w2 are independent and zero mean. We assume that

w1 is modeled correctly and therefore ε1 = ε̂1 = 2/3, but we also include the unmodeled

disturbance w2 via ε2. For these probability measures, the Wasserstein metric is given by

W (µ, µ̂) = ε2/2.

Starting from x0 = (2, 2), we simulate the closed-loop trajectories for SMPC subject

to this unmodeled disturbance. We plot the expected value of the norm of the closed-loop
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Figure 4.7: Expected value of the norm of the closed-loop state and closed-loop stage cost
for multiple values of ε2.

state trajectory, denoted E[|x(k)|] = E[|φµ̂(k;x0,wk)|], and closed-loop stage cost, denoted

E[`(x(k), u(k))], for multiple values of ε2 in Figure 4.7. For ε2 = 0, we have idealized SMPC

and we observe that E[|x(k)|] and E[`(x, u)] initially decrease with increasing k until leveling

o�, consistent with the theoretical results for idealized SMPC. As we increase ε2 and thereby

increase W (µ, µ̂), the values of E[|x(k)|] and E[`(x(k), u(k))] increase for each k ≥ 2. This

behavior is consistent with the DRASiE, `-DRASiE, and therefore Theorem 4.18, i.e., the upper

bounds on these performance metrics of the closed-loop trajectory increase with increasing

W (µ, µ̂).

In this closed-loop simulation, we observe that the optimization problem remains feasible

for all realizations of w ∈ W, despite the fact that W 6= Ŵ. Thus, X is RPI for the the

closed-loop system with w ∈ W. To illustrate the robustness of SMPC to di�erences in W

and Ŵ, we �rst compute X for the set Ŵ used the SMPC formulation. We then sample this

feasible region and simulate one step of the closed-loop trajectory from these sampled points

to construct the region

X+ := {f(x, κµ̂(x), ŵ) : x ∈ X , ŵ ∈ Ŵ}
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Figure 4.8: The feasible set for SMPC (left) and MPC (right) X with Ŵ and the set of states
after one application of the control law subject to ŵ ∈ Ŵ, denoted X+.

On the left side of Figure 4.8, we plot these two sets for SMPC. Note that X+ is a strict subset

of X . Thus, there exists some set of nonzero disturbances, in addition to Ŵ, that can be

added to the closed-loop system such that X remains RPI. For example, we see that adding

±0.5 to the x2 direction of any x ∈ X+ does not force the state outside of X , con�rming the

observations of robust recursive feasibility noted in the previous paragraph.

With this information, we can in fact compute the largest δ > 0 such that X is RPI

for the closed-loop system x+ = f(x, κµ̂(x), w), w ∈ W with any W ∈ R2 that satis�es

dH(W, Ŵ) ≤ δ, i.e.,

δ := max
{
δ : f(x, κµ̂(x), w) ∈ X ∀w ∈W and dH(W, Ŵ) ≤ δ

}

For this example, the value of δ is equal to the minimum distance between the boundary of X

and X+, as shown in left plot of Figure 4.8. The exact value of this distance is δ = 3
√

2/4 ≈

1.06 for SMPC. For nominal MPC, we set Ŵ = {0} and perform the same calculations and
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plot the resulting sets on the right side of Figure 4.8. Again, we can calculate the margin of

robustness exactly and �nd that δmpc =
√

2 ≈ 1.41.

Note that δmpc > δ, corroborating the discussion that followed Corollary 4.25. This sug-

gests that SMPC is trading some of its “general” robustness to disturbances, i.e., robustness

to any |w| ≤ δ, for “speci�c” robustness to disturbances in the set Ŵ. This trade, however,

is not one-to-one and SMPC still maintains a reasonable margin of robustness to unmodeled

(“general”) disturbances in this example.

4.7 Summary

Nominal MPC, as shown in Chapter 2, is robust to su�ciently small errors in the deter-

ministic dynamical model. In this chapter, we established that SMPC is robust to su�ciently

small errors in the stochastic dynamical model. Feedback is the key component of both algo-

rithms that facilitates this robustness. These errors in the stochastic dynamical model may

include incorrectly modeled disturbances, for which the distribution is incorrect, and unmod-

eled disturbances, for which the disturbance is entirely absent from the stochastic model. The

only requirement is that these unmodeled disturbances are i.i.d. in time and enter the state

via a continuous function f(x, u, w). Moreover, these errors can include discrepancies in the

stochastic dynamical model introduced by scenario-based approximations of the stochastic

optimization problem.

In addition to the implications for SMPC, Theorems 4.18 and 4.22 also allow us to char-

acterize the stochastic robustness of other MPC formulations, i.e., CMPC and nominal MPC,

as special cases of SMPC. Corollaries 4.23 and 4.25 unify the analysis of these three di�erent

problem formulations and largely subsume the results discussed in Chapter 2 for the stochas-

tic robustness of nominal MPC.3. In fact, this approach reveled a novel requirement for the
3With the exception that we require bounded X in the current chapter.
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terminal constraint of nominal economic MPC that ensures the feasible set remains RPI for

su�ciently small disturbances.

The de�nitions of distributional robustness and the SISS Lyapunov framework introduced

in this chapter are not restricted to SMPC or the MPC formulation in general. De�nitions 4.13

and 4.15 apply to any stochastic dynamical system given by f(x, κµ̂(x), w) with some control

law that depends on a probability distribution µ̂. Indeed, these de�nitions are therefore ap-

plicable to the larger �eld of stochastic optimal control and, potentially, the developing �eld

of distributionally robust control.

Although these results o�er signi�cant insight into the robustness and e�cacy of SMPC in

practice, these results do not signi�cantly change the conclusions in Chapter 3. The bene�ts

of implementing SMPC compared to nominal MPC remain unclear in general. Furthermore, a

rigorous means to determine, prior to a simulation study, if such an investment in complexity

is worthwhile for a speci�c problem of interest remains unavailable. Similar questions can be

proposed for distributionally robust control as well, e.g., is the inherent distributional robust-

ness of SMPC, or nominal MPC for that matter, su�cient? Or, is there a clear and signi�cant

bene�t to explicitly designing for this distributional robustness via distributionally robust op-

timization (DRO)? As the �eld of DRO and any application in MPC is new, there is no clear

answer to these questions and, as with the comparison between nomianl MPC and SMPC, a

rigorous answer to this question may remain elusive.

These robustness results all require that the disturbance or model error is su�ciently

small. Even for SMPC, the requirements detailed in Assumption 4.6 for the terminal con-

straint and cost curtail the size of disturbances that can be considered in the SMPC formula-

tion. While this characterization is reasonable for many traditional process control applica-

tions, there are some MPC applications, such as production scheduling problems, in which

the relevant disturbances are not su�cient small. These disturbance are instead large, but

infrequent in that they occur with small probability. In the subsequent chapter, we consider
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the robustness of MPC to this class of large and infrequent disturbances.
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Chapter 5

Large and Infrequent Disturbances

In the previous three chapters, a key characteristic of these robustness results is that the

disturbance or model error can be treated as su�ciently small. For most process control ap-

plications, this characterization is reasonable. The model errors, measurement noise, and per-

turbations anticipated in many relevant applications are well described as small disturbances.

The scope of MPC and this dissertation, however, are not limited to traditional process control

applications.

Aided by both theoretical and computational advances, MPC is now being applied to

higher-level planning and scheduling problems with both the usual continuous-valued in-

put decisions (e.g, "how much do I buy/sell?") as well as integer/binary-valued decisions (e.g.,

"do I turn this unit ON/OFF?") that are not typically considered in MPC applications. As �rst

recognized in Rawlings and Risbeck (2017), the compact set U is already general enough to

enforce integer constraints on the subset of the inputs. Thus, the theoretical results derived

for traditional MPC applications with continuous decisions also hold MPC applications with

discrete decisions. To emphasize this point, we note that all of the results in this thesis already

include systems with both continuous and discrete input decisions.

With discrete decisions and scheduling problems, we must now consider discrete distur-

bances such as task delays or breakdowns in equipment. While the transition from contin-

uous to discrete disturbances does not invalidate the analysis in the previous chapters, the
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argument that a discrete disturbances is “su�ciently small” is dubious at best. Breakdowns

in equipment that can occur in a production scheduling problem are not, and should not be

considered, small disturbances. Thus, the theory developed so far for su�ciently small distur-

bances is now insu�cient. We instead characterize these disturbances as “large.” In practice,

however, these “large” disturbances are also typically infrequent, e.g., a delay occurs with

some small probability. We therefore refer to this class of disturbances as large, because the

disturbances are bounded away from zero and cannot be considered su�ciently small, and

infrequent, because the probability that these disturbances occur is small. This description

also applies to a variety of disturbances that can be encountered for even tradition process

control systems such as faults, missing measurements, and communication failures.

For this class of disturbances, any deterministic bound must consider the worst determin-

istic performance possible for the system, e.g., the entire production line is broken inde�-

nitely. Consequently, a deterministic bound is far too conservative and o�ers little insight for

a closed-loop system subject to this class of disturbances. We instead exploit the infrequent

nature of these disturbances and propose a stochastic de�nition of robustness for large and

infrequent disturbances that is distinct from, but similar to, the previous stochastic robustness

results derived for su�ciently small disturbances. We then establish conditions that ensure

nominal MPC is inherently robust to large and infrequent disturbances in this stochastic con-

text. In this chapter, we also introduce time-varying MPC to address the time-varying dynam-

ical models, costs, and constraints that are common in higher-level planning and scheduling

problems. These time-varying systems subject to large and infrequent disturbances are the

primary focus for the remainder of this dissertation.

160



Large and Infrequent Disturbances Chapter 5

5.1 Time-varying MPC

We a consider time-varying system of the form

x+ = f(x, u, w, t) f : Rn × Rm × Rq × I≥0 → Rn

in which x ∈ Rn is the state, u ∈ Rn is the controller input, w ∈ W ⊆ Rq is the stochastic

disturbance, at the discrete time index t ∈ I≥0. For a given initial time t ∈ I≥0 and k ∈ I≥t,

let

wt:k := (w(t), w(t+ 1), . . . , w(k − 1))

denote a sequence of disturbances from the initial time t until time k. We again consider the

usual assumption for these stochastic disturbances.

Assumption 5.1 (Disturbances). The disturbancesw ∈W are random variables that are i.i.d.

in time. The set W is compact and contains the origin.

Given Assumption 5.1, let µ : B(W) → [0, 1] denote the probability measure for w and

M(W) denote the set of all probability measures on the measurable space (W,B(W)). We

de�ne expected value of a Borel measurable function g : Wk−t → R as the Lebesgue integral

E[g(wt:k)] :=

∫
Wk−t

g(wt:k)dµ(w(t))dµ(w(t+ 1)) . . . dµ(w(k − 1))

with respect to any µ ∈ M(W). We similarly de�ne the probability that g(wt:k) ∈ S for

some Borel measurable function g : Wk−t → Rn and set S ⊆ Rn as

Pr
(
g(wt:k) ∈ S

)
:=

∫
Wk−t

IS
(
g(wt:k)

)
dµ(w(t))dµ(w(t+ 1)) . . . dµ(w(k − 1))

in which IS(·) is the indicator function, i.e., IS(x) = 1 if x ∈ S and zero otherwise.
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5.1.1 MPC formulation

We consider time-varying nominal MPC in which the system is described by

x+ = f(x, u, 0, t) (5.1)

For a horizon N ∈ I≥0, let φ̂(k;x,u, t) denote the open-loop state solution to the nominal

system in (5.1) at time k ∈ I[t,N ], given the state x ∈ Rn at time t ∈ I≥0 and the input sequence

u := (u(t), u(t+ 1), . . . , u(t+N − 1))

Unlike Chapter 2, we allow state constraints in the MPC formulation. We often need these

state constraints in scheduling and planning problems to enforce requirements that are impor-

tant for the realism of the system, e.g., inventory must be nonnegative. State constraints that

represent nonphysical restrictions and/or desired goals of the system should still be avoided

to ensure robust recursive feasibility. We also allow these constraints to be time-varying such

that at time t ∈ I≥0 we require that

(x, u) ∈ Z(t) ⊆ Rn × U

forU ⊆ Rm and the sequence of sets (Z(t))∞t=0. We also use a time-varying terminal constraint

given by the sequence (Xf (t))
∞
t=0.

For these constraints, we de�ne the set of admissible inputs and feasible initial states as
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follows.

U(x, t) := {u ∈ UN : (φ̂(k;x,u, t), u(k)) ∈ Z(k) ∀k ∈ It:t+N−1

and φ̂(N ;x,u, t) ∈ Xf (N)}

X (t) = {x ∈ Rn : U(x, t) 6= ∅}

Note that these sets also depend on the time t ∈ I≥0. We de�ne the time-varying stage cost

` : Rn × Rm × I≥0 → R and terminal cost Vf : Rn × I≥0 → R≥0. The MPC cost function is

then de�ned as

V (x,u, t) :=
t+N−1∑
k=i

`(x(k), u(k), k) + Vf (x(t+N), t+N)

in which x(k) := φ̂(k;x,u, t).

For any t ∈ I≥0 and x ∈ X (t), the nominal MPC problem is de�ned as

P(x, t) := V 0(x, t) := min
u∈U(x,t)

V (x,u, t)

and the optimal solution(s) are denoted u0(x, t) := arg minu∈U(x,t) V (x,u, t). Note that

u0(x, t) is again a set-valued mapping, and we use a Borel measurable selection rule to de�ne

the single-valued control law κ(·, t) : X (t)→ U such that κ(x, t) ∈ {u(0) : u ∈ u0(x, t)} for

all x ∈ X (t) and t ∈ I≥0. The closed-loop system is then given by

x+ = f(x, κ(x, t), w, t) (5.2)

in which both the underlying system and control law vary with time t ∈ I≥0. Letφ(k;x,wt:k, t)

denote the solution to (5.2) at time k ∈ I≥t, given the initial condition x ∈ X (t), initial time

t ∈ I≥0, and disturbance sequence wt:k ∈Wk−t.
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5.1.2 Assumptions

We require the usual assumptions of continuity, closed constraint sets, and bounded in-

puts. Note that we do not require the terminal setXf (t) or the feasible setX (t) to be bounded.

Assumption 5.2 (Continuity of sysem and cost). The model f : Rn×Rm×Rq× I≥0 → Rn,

stage cost ` : Rn×Rm×I≥0 → R, and terminal cost Vf : Rn×I≥0 → R≥0 are continuous. The

function `(·) is bounded from below. Also, f(0, 0, 0, t) = 0, `(0, 0, t) = 0, and Vf (0, t) = 0

for all t ∈ I≥0.

Assumption 5.3 (Properties of constrain set). For each t ∈ I≥0, the sets Z(t) and Xf (t) are

closed and contain the origin. The set U is compact and contains the origin.

With these assumptions, we are again assuming that the system has been shifted such

that the target setpoint is at the origin. This setpoint, however, may also vary with time

along with the system. For example, let x̄ and ū denote the original state and input variables

for the system dynamics

x̄+ = f̄(x̄, ū, w, t) f̄ : Rn × Rm × Rq × I≥0 → Rn

We also have time-varying constraints for the original system such that

(x̄, ū) ∈ Z̄(t) ⊆ Rn × Ū

We then consider a time-varying reference trajectory given by the state and input sequences

x̄r and ūr de�ned as

x̄r := (x̄r(0), x̄r(1), . . . ) ūr := (ūr(0), ūr(1), . . . )
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We require that this trajectory satis�es

x̄r(t+ 1) = f̄(x̄r(t), ūr(t), 0, t)

and the constraints (x̄r(t), ūr(t)) ∈ Z̄(t) for all t ∈ I≥0, i.e., the reference trajectory is a

feasible trajectory for the nominal system. To shift this system to the origin, we de�ne the

deviation variables

x(t) := x̄(t)− x̄r(t) u(t) := ū(t)− ūr(t)

the dynamics

x+ = f(x, u, w, t) := f̄(x+ x̄r(t), u+ ūr(t), w, t)− x̄r(t+ 1)

and constraints

Z(t) := {(x̄− x̄r(t), ū− ūr(t)) : (x̄, ū) ∈ Z̄(t)}

Note that the requirements for xr and ur ensure that f(0, 0, 0, t) = 0 and (0, 0) ∈ Z(t).

We can similarly shift the stage cost such that `(0, 0, t) = 0. An example state trajectory

is shown in original and deviation variables in Figure 5.1. This reference trajectory may be

constant, periodic, or any time-varying sequence that is a valid trajectory for the nominal

closed-loop system. We can also use a time-varying reference trajectory as the target for a

system that is time-invariant in the original variables, but the system in terms of the deviation

variables x and u is ultimately time-varying.

While shifting the system, constraints, and cost to the origin is convenient for mathemat-

ical analysis, the MPC optimization problem can still be solved in the original variables. The

control law for the original MPC problem is equivalent to the shifted MPC problem plus the
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Figure 5.1: The same state trajectory shown in original (x̄) and deviation (x) variables with
respect to the reference trajectory (x̄r).

reference input, i.e., κ̄(x̄, t) = κ(x, t) + ūr(t) in which κ̄(x̄, t) is the control law de�ned by

the original MPC problem. Given this equivalence, we discuss the theoretical properties of

only the shifted MPC problem in this chapter.

The time-varying terminal ingredients for the shifted MPC problem must satisfy the fol-

lowing restrictions.

Assumption 5.4 (Terminal control law). There exists a terminal control law κf : Xf×I≥0 →

U such that

f(x, κf (x, i), 0, i) ∈ Xf (i+ 1) (5.3)

Vf (f(x, κf (x, i), 0, i), i+ 1) ≤ Vf (x, i)− `(x, κf (x, i), i) (5.4)

for all x ∈ Xf (i) and i ∈ I≥0. Furthermore, (x, κf (x, i)) ∈ Z(i) for all x ∈ Xf and i ∈ I≥0.

If asymptotic stability of the origin (reference trajectory) is the primary goal for the con-

troller, then we also require that the stage cost satis�es the following assumption.

Assumption 5.5 (Stage cost bound). There exist α`(·) ∈ K∞ such that

α`(|x|) ≤ `(x, u, i)

for all (x, u) ∈ Z(i) and i ∈ I≥0.
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In previous chapters, we constructed the terminal set via a level set of the terminal cost

function, i.e., Xf := {x ∈ Rn : Vf (x) ≤ τ} for some τ > 0. Thus, the origin is necessarily

contained in the interior of the terminal set. In this chapter, we instead use a more general

condition called weak controllability.

Assumption 5.6 (Weak controllability). There exists α2(·) ∈ K∞ such that

V 0(x, i) ≤ α2(|x|)

for all x ∈ X (i) and i ∈ I≥0.

See Rawlings et al. (2020, Prop. 2.38) for a variety of other conditions for which Assumption 5.6

assumption holds, including the condition that Xf (i) contains the origin in its interior for all

i ∈ I≥0.

Since the system and feasible set X (t) are now time-varying, we rede�ne positive invari-

ance and robust positive invariant as follows.

De�nition 5.7 (Positive invariance). A sequence of sets (X (t))∞i=t is positive invariant for

the nominal system x+ = f(x, κ(x, t), 0, t) if x+ ∈ X (t+ 1) for all x ∈ X (t) and t ∈ I≥0.

De�nition 5.8 (Robust positive invariance). A sequence of sets (X (t))∞i=t is robustly positive

invariant (RPI) for the system x+ = f(x, κ(x, t), w, t), w ∈ W if x+ ∈ X (t + 1) for all

x ∈ X (t), w ∈W, and t ∈ I≥0.

5.1.3 Nominal properties

With these assumptions, we can establish some nominal closed-loop properties of time-

varying MPC that are generalizations of properties previously established for time-invariant

MPC. These results and corresponding proofs are available in either Rawlings et al. (2020, s.
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2.4.5) or Risbeck and Rawlings (2019). We begin with a key cost decrease condition for the

nominal system.

Lemma 5.9. If Assumptions 5.2 to 5.4 hold, then the sequence of sets (X (t))∞t=0 is positive in-

variant for the nominal system x+ = f(x, κ(x, t), 0, t) and

V 0(f(x, κ(x, t), 0, t), t+ 1) ≤ V 0(x, t)− `(x, κ(x, t), t)

for all x ∈ X (t) and t ∈ I≥0.

From this nominal cost decrease condition we can establish the following result for eco-

nomic applications in which Assumptions 5.5 and 5.6 are not required.

Theorem 5.10 (Nominal performance). Let Assumptions 5.2 to 5.4 hold. Then the sequence of

sets (X (t))∞t=0 is positive invariant for the nominal closed-loop system x+ = f(x, κ(x, t), 0, t).

Furthermore, the nominal closed-loop trajectory satis�es

lim sup
T→∞

1

T

t+T−1∑
k=t

`(x(k), κ(x(k), k), k) ≤ 0

in which x(k) = φ(k;x,0, t) for all x ∈ X and t ∈ I≥0.

Theorem 5.10 was �rst established for time-invariant economic MPC in Angeli et al. (2012) and

later extended to time-varying economic MPC in Risbeck and Rawlings (2019, Thm. 1). Thus,

the average performance of the closed-loop system is no worse than the origin (reference

trajectory), in terms of the stage cost.

We can also de�ne asymptotic stability of the origin (reference trajectory).

De�nition 5.11 (Asymptotic stability). The origin is asymptotically stable for the nominal

closed-loop system x+ = f(x, κ(x, t), 0, t) in a positive invariant sequence of sets (X (t))∞t=0
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if there exists β(·) ∈ KL such that

|φ(k;x,0, t)| ≤ β(|x|, k − t)

for all x ∈ X , t ∈ I≥0, and k ∈ I≥t.

For time-varying systems and optimal cost functions, we require a time-varying Lyapunov

function. We can then use this Lyapunov function as a su�cient condition of asymptotic

stability.

De�nition 5.12 (Lyapunov function). A function V (·, t) : X (t)→ R≥0 is a Lyapunov func-

tion for a system x+ = f(x, κ(x, t), 0, t) in a positive invariant sequence of sets (X (t))∞t=0 if

there exist α1(·), α2(·), α3(·) ∈ K∞ such that

α1(|x|) ≤ V (x, t) ≤ α2(|x|)

V (f(x, κ(x, t), 0, t)) ≤ V (x)− α3(|x|)

for all x ∈ X (t) and t ∈ I≥0.

Proposition 5.13. If a system x+ = f(x, κ(x, t), 0, t) admits a Lyapunov function in the posi-

tive invariant sequence of sets (X (t))∞t=0, then the origin is asymptotically stable for the nominal

closed-loop system.

The proof of Proposition 5.13 is similar to the time-invariant result and is available in

Rawlings et al. (2020, Thm. B.24). With the addition of Assumption 5.5 and Assumption 5.6,

we can establish that the reference trajectory is asymptotically stable for the nominal closed-

loop system.

Theorem5.14 (Asymptotic stability). Let Assumptions 5.2 to 5.6 hold. Then the nominal system

x+ = f(x, κ(x, t), 0, t) admits a Lyapunov function in the positive invariant sequence of sets
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(X (t))∞t=0 and the origin is asymptotically stable.

While the extension from time-invariant to time-varying MPC is somewhat straightfor-

ward, this result is a recent development (Risbeck and Rawlings, 2019, Thm. 3). A more

detailed proof is available in Rawlings et al. (2020, Thm 2.39). By extending the MPC formu-

lation and associated assumptions to address the more general class of time-varying problems,

we are able to establish time-varying versions of the same nominal performance and asymp-

totic stability results that are typically established for time-invariant MPC. It stands to reason

that all of the properties established in this thesis for time-invariant MPC can be extended to

time-varying MPC with suitable modi�cations to the assumptions. Since these extensions add

additional notation to the analysis problem without any notably insights, we have thus far

restricted this thesis to the time-invariant case. We depart from this approach only in these

later chapters because the primary use of the theory developed for large and infrequent dis-

turbances is to address closed-loop scheduling, an application that requires the time-varying

MPC formulation introduced here.

5.2 Large and infrequent disturbances

We introduce this class of large and infrequent disturbance by discussing them in contrast

to the small and persistent disturbances addressed in the previous chapters. In Theorem 2.32,

we establish that there exists some nonzero margin of robustness, that we denote δ0 > 0

in the current chapter, for nominal MPC. For disturbances within this margin of robustness

(|w| ≤ δ0), nominal MPC is robust in both a deterministic and stochastic context. Thus, these

small disturbances are contained in the set W0 := {w ∈ Rq : |w| ≤ δ0}.

In this chapter, we consider the following question. If the disturbance w is not small, i.e.,

w /∈ W0, what happens to the robustness of nominal MPC? To answer this question, we

introduce the set W1 to represent the large disturbances not included in W0 and consider the
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W1 0 W1

W0 = {0}

Pr (W0) = 1− εPr (W1) = ε

Figure 5.2: Three probability distributions for the disturbance w depicting the small, persis-
tent disturbances (W0) and large, infrequent disturbances (W1).

probability

µ(W1) = Pr(w ∈W1)

Let this set satisfy W1 ∩W0 = ∅ such that infw∈W1 |w| > 0, i.e., the large disturbances are

“bounded away from zero.” Note that W1 includes discrete-valued disturbances that may not

be included in W0.

For example, consider the truncated normal distribution in the top plot of Figure 5.2. The

disturbance w may take values that exceed δ0, but these events are infrequent in that µ(W1)

is small. This description also applies to the other distributions shown in Figure 5.2. In par-

ticular, we note the bottom plot in Figure 5.2 in which the disturbance takes only discrete

values.

For the disturbances in W1, nominal MPC may not ensure deterministic robustness. In

fact, there may not exist any controller that can ensure deterministic robustness for the sys-

tem f(·) and disturbances considered in W1. As established in Corollary 2.22, deterministic
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robustness implies stochastic robustness, but the converse does not hold. Thus, there may

exist a range of disturbances such that the system is robust in a stochastic context, but not in

a deterministic context. We therefore investigate what conditions are required to guarantee

that W1 is in that range.

Under suitable assumptions, we show that nominal MPC is robust to these large distur-

bances in a stochastic context provided these disturbances are su�ciently infrequent, i.e.,

µ(W1) is su�ciently small. This characterization includes disturbances such as faults, missing

measurements, communication failures, breakdowns, large delays, and large price/demand

spike in economic applications. If these large disturbances are su�ciently frequent, indeed

no controller is expected to be robust in any sense against them.

Remark 5.15. Through Assumption 5.1, we require that the disturbances are i.i.d. and there-

fore µ(W1) is not time-varying. We can, however, extend the subsequent results to time-

varying (but independent) probability distributions by allowing the distribution µ(·) to vary

with time, i.e., we consider µ(W1, k).

For clarity, we restrict attention to the case W0 = {0} (e.g., the middle and bottom plots of

Figure 5.2), such that there are only two possibilities: (i) the nominal behavior (w = 0) occurs

with probability 1 − µ(W1) or (ii) a large disturbance (w ∈ W1) occurs with probability

µ(W1). Speci�cally, we require the following assumption.

Assumption 5.16 (Only large disturbances). The disturbance set satis�es W = W0 ∪W1

with W0 = {0}.

5.2.1 Motivating example

Consider the scalar system

x+ = x+ u+ 2w
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with x ∈ R and u ∈ [−1, 1]. We consider the controller κ(x) := sat[−1,1](−3x/5) and use

x(k) = φ(k;x,wk) to denote the closed-loop state trajectory. Note that this controller is

de�ned for all x ∈ R.

For this system, we have the Lyapunov function V (x) := x2 such that the functionα3(·) ∈

K∞ de�ned as

α3(|x|) :=


21
25
|x|2 |x| < 5

3

2|x| − 1 |x| ≥ 5/3

satis�es

V (f(x, κ(x), 0)) ≤ V (x)− α3(|x|)

for all x ∈ R. Thus, the origin of the closed-loop system is asymptotically stable.

If w is assumed to be a continuous-valued random variable with |w| < 0.5, then the

closed-loop system is robustly asymptotically stable (RAS), i.e., δ0 < 0.5. If however w ∈

W := {0, 1}, i.e., W1 = {1} is a large (discrete-valued) disturbance, then there exists a

worst-case scenario in which w = 1 at every time and the system moves further away from

x = 0 at each step. The system is not robust to this discrete-valued disturbance in the usual

deterministic sense (RAS).

We now consider that this large disturbance is also infrequent in that

ε = Pr(w = 1) = µ(W1)

for some ε ∈ (0, 1). We simulate the closed-loop system subject to this stochastic disturbance

from x(0) = 30 and ε = 0.4. The results of 50 realizations of the disturbance trajectory are

plotted in Figure 5.3. Note that these realizations do not admit a deterministic upper bound

for |x(k)| as k → ∞. Given a su�cient number of time steps, the probability that |x(k)|

exceeds any �nite upper bound is nonzero.
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Figure 5.3: Closed-loop state for 50 realizations of the disturbance trajectory with ε = 0.4.
The sample average and 95% con�dence bound for the norm of the closed-loop state are
evaluated for 1000 realizations of the disturbance trajectory.

We then calculate and plot the sample average of the norm of the closed-loop state tra-

jectory at each k, denoted Ê[|x(k)|], in Figure 5.3 for 1000 realizations of the disturbance

trajectory. Note that Ê[|x(k)|] converges to a constant value as k →∞ and appears to admit

a �nite upper bound for all k, consistent with the de�nition of RASiE considered in previous

chapters. In addition to the sample average, we also calculate a con�dence interval for this

trajectory. Speci�cally, we de�ne the sample 95%-con�dence trajectory ĉ95%(|x(k)|) at each

k as the minimum bound for |x(k)| that holds for at least 95% of the disturbance trajectory

realizations considered (950 disturbance realizations in this example). We also plot this tra-

jectory in Figure 5.3. Observe that this 95%-con�dence trajectory converges to a constant as

k →∞ and appears to admit a �nite upper bound.

In Figure 5.4, we consider multiple values of ε = Pr(w = 1) and plot the sample average

and 95%-con�dence trajectories for these di�erent values of ε. For ε < 0.5, both the sample

average and 95%-con�dence trajectories exhibit behavior similar to ε = 0.4 and converge to

a constant value as k →∞. We construct an upper bound for this constant value by de�ning

γ̂(ε) := max
{
Ê[|x(k)|] : k ∈ I400:500

}
γ̂95%(ε) := max {ĉ95%(|x(k)|) : k ∈ I400:500}
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Figure 5.4: The expected value, denoted E[|x(k)|], and 95% con�dence bound, denoted
ĉ95%(|x(k)|, for the norm of the closed-loop trajectory for di�erent values of ε.

We plot these values in Figure 5.5 across a range of ε ∈ (0, 0.5). Note that both γ̂(ε) and

γ̂95%(ε) exhibit behavior that is consistent with K-functions, i.e., these functions increase

with increasing ε and converge to zero as ε→ 0.

These results suggest that the closed-loop system admits an ISS-type bound for both the

expected value E[|x(k)|] and 95%-con�dence bound c95%(|x(k)|). Note that we remove the

“hat” notation to indicate that these are exact quantities and not sampling based approxima-

tion. Speci�cally, we claim that there exists β(·), β95%(·) ∈ KL and γ(·), γ95%(·) ∈ K such

that

E[|x(k)|] ≤ β(|x(0)|, k) + γ(ε) (5.5)

c95%(|x(k)|) ≤ β95%(|x(0)|, k) + γ95%(ε) (5.6)

for all x(0) ∈ R, k ∈ I≥0, and ε < 0.5. We can equivalently write (5.6) as

Pr
(
|x(k)| ≤ β(|x(0)|, k) + γ(ε)

)
≥ 0.95 (5.7)
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Figure 5.5: Plot of the maximum value of E[|x(k)|] for k ∈ [400, 500], denoted γ̂(ε), and the
maximum value of ĉ95%(|x(k)| for k ∈ [400, 500], denoted γ̂95%(ε).

i.e., for each k ∈ I≥0 the closed-loop system satis�es this bound with a probability of at least

95%.

We do not, however, expect this bound to hold for disturbances that occur with high

probability. For ε = 0.52, we see in Figure 5.4 that the sample average and 95%-con�dence

trajectories diverge as k →∞ and do not admit any ISS-type bound. Thus, there exists some

δ > 0 such that for any ε ≤ δ, we obtain the bounds in (5.5) and (5.7). If ε > δ, these bounds

do not hold. This value of δ now describes the margin of robustness for the system to these

large disturbances. For this example, we observe that δ < 0.5.

5.2.2 De�nitions of robustness

For large and infrequent disturbances, we consider two stochastic de�nitions of robust-

ness. These de�nitions use bounds that depend on a stochastic property of the disturbance. In

Chapters 2 and 3, this stochastic property is the covariance of the disturbance Σ, in Chapter 4

we use E[|w|], and in this chapter we consider µ(W1) = Pr(w ∈W1). We note that µ(W1) is
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related to E[|w|] via the following bounds.

E[|w|]
supw∈W1

|w| ≤ µ(W1) ≤ E[|w|]
infw∈W1 |w|

Recall that infw∈W1 |w| > 0 in the de�nition of W1 and W is compact.

In previous chapters, we constrained the maximum size of the disturbances included in

the robustness analysis, but allowed for any probability distribution on this set of poten-

tial disturbances. For large and infrequent disturbances, we instead consider a �xed set W1

and constrain the probability distribution for the disturbance through the value of µ(W1) =

Pr(w ∈W1). For some δ ∈ [0, 1], letM(W, δ) denote the set of probability measures on the

domain B(W) such that µ(W1) ∈ [0, δ] for all µ ∈ M(W, δ). We de�ne robust asymptotic

stability in expectation (RASiE) for large and infrequent disturbances as follows.

De�nition 5.17 (RASiE for large, infrequent disturbances). The origin is RASiE for large,

infrequent disturbances for a system x+ = f(x, κ(x, t), w, t), w ∈ W and δ > 0 in an RPI

sequence of sets (X (t))∞t=0 if there exist β(·) ∈ KL and γ(·) ∈ K such that

E[|φ(k;x,wt:k, t)|] ≤ β(|x|, k − t) + γ(µ(W1)) (5.8)

for all x ∈ X (t), µ ∈M(W, δ), t ∈ I≥0, and k ∈ I≥t.

De�nition 5.17 ensures that for infrequent disturbances (µ(W1) ≤ δ) we have the bound

in (5.8). This de�nition is consistent with the observations from the motivating example. For

µ(W1) < 0.5, the closed-loop system in the motivating example can, on average, recover

from the disturbance before another disturbance occurs and therefore satis�es the bound in

(5.8). For µ(W1) > 0.5, however, the value of E[|φ(k;x,wt:k, t)|] diverges as k →∞. We can

similarly de�ne an SISS Lyapunov function for systems subject to these large and infrequent

disturbances.
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De�nition 5.18 (SISS Lyapunov function for large, infrequent disturbances). A function

V (·, t) : X (t) → R≥0 is an SISS Lyapunov function for large, infrequent disturbances for

a system x+ = f(x, κ(x, t), w, t), w ∈ W and δ > 0 in an RPI sequence of sets (X (t))∞t=0 if

there exist α1(·), α2(·), α3(·) ∈ K∞ and σ(·) ∈ K such that

α1(|x|) ≤ V (x, t) ≤ α2(|x|)∫
W
V (f(x, κ(x, t), w, t))dµ(w) ≤ V (x)− α3(|x|) + σ(µ(W1))

for all x ∈ X (t), µ ∈M(W, δ), and t ∈ I≥0.

In Proposition 2.18, we established that an SISS Lyapunov function is a su�cient condi-

tion for RASiE if the state of the system is bounded. The proof of Proposition 2.18 relied on

the fact that X is bounded to construct convex lower bounds for the required K∞-functions

and apply Jensen’s inequality. For many physical systems, X is bounded, particularly if the

terminal set is also bounded. For the time-varying case, we say that the sequence of sets

(X (t))∞t=0 is bounded if the set ∪∞t=0X (t) is bounded. We therefore have the following result

as a straightforward extension of Proposition 2.18 to time-varying systems and large distur-

bances.

Proposition 5.19. If a system x+ = f(x, κ(x, t), w, t), w ∈ W admits an SISS Lyapunov

function for large, infrequent disturbances in the RPI and bounded sequence of sets (X (t))∞t=0,

then the origin is RASiE for large, infrequent disturbance in (X (t))∞t=0.

Production planning and scheduling problems, however, are the exception to this rule.

These formulations often consider variables such as backlog, representing unmet order vol-

ume, that are technically unbounded. In practice, a facility cannot accumulate in�nite back-

log1, but there is no speci�c upper bound for this state. Moreover, simulation studies of
1Without �rst going out of business
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these production scheduling problems should allow for the possibility of diverging backlog

as it indicates insu�cient production capacity when subject to disturbances. Thus, requiring

bounded X (t) is undesirable for the analysis of production planning and scheduling applica-

tions of MPC.

Without the assumption of bounded X (t), the SISS Lyapunov function in De�nition 5.18

is not su�cient to establish RASiE. To see why unboundedX (t) presents such a challenge, we

note that seemingly benign distributions can nonetheless produce in�nite expected value on

unbounded supports. For example, we consider a Pareto distribution given by the cumulative

distribution function F (x) = 1− 1
x

for all x ≥ 1. This type of distribution, originally used to

describe the allocation of wealth in society, has been used to model a variety of sociological

and physical phenomenon. Con�dence intervals for this distribution are well de�ned, but the

expected value of a random variable described by this cumulative distribution is in�nite.

To address unbounded X (t), we weaken the de�nition of stochastic robustness used in

this section to consider con�dence intervals instead of expected value of the closed-loop tra-

jectory. Speci�cally, we de�ne robust asymptotic stability in probability (RASiP) for large,

infrequent disturbances.

De�nition 5.20 (RASiP for large, infrequent disturbances). The origin is RASiP for large,

infrequent disturbances for a system x+ = f(x, κ(x, t), w, t), w ∈W and δ > 0 in a robustly

positive invariant sequence of sets (X (t))∞t=0 if for each p ∈ (0, 1) there exist βp(·) ∈ KL and

γp(·) ∈ K such that

Pr
(
|φ(k;x,wt:k, t)| ≤ βp(|x|, k − t) + γp(µ(W1))

)
≥ p (5.9)

for all x ∈ X (t), µ ∈M(W, δ), t ∈ I≥0, and k ∈ I≥t.

De�nition 5.20 ensures that for su�ciently infrequent disturbances, µ(W1) ≤ δ, we can

construct the bound in (5.9) for any con�dence level p ∈ (0, 1). In the motivating example, we
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considered p = 0.95 and the results in this example are again consistent with De�nition 5.20.

We can show that RASiE implies RASiP via Markov’s inequality, but the converse is not true

in general. This observation supports the claim that RASiP is a weaker property that RASiE.

Furthermore, the SISS Lyapunov function in De�nition 5.18 is a su�cient condition for RASiP

without bounded X (t).

Proposition 5.21. If a system x+ = f(x, κ(x, t), w, t), w ∈ W admits an SISS Lyapunov

function for large, infrequent disturbances in the RPI sequence of sets (X (t))∞t=0, then the origin

is RASiP for large, infrequent disturbance in (X (t))∞t=0.

The proof Proposition 5.21 uses a similar approach to the proof of Proposition 2.18, but

requires a signi�cant amount of additional mathematical details to construct the function

βp(·) ∈ KL. In particular, this result relies on the work of Teel and co-workers in a series

of publications that detail necessary and su�cient conditions for global asymptotic stability

in probability (Teel, 2013; Teel et al., 2013, 2014). Some useful results from these works are

summarized in McAllister and Rawlings (2020) and a proof of Proposition 5.21 is given in

Mcallister and Rawlings (2021, Prop. 3).

5.3 Robustness of MPC to large, infrequent disturbances

5.3.1 Additional assumptions

Although we refer to these disturbances as large, we do not allow disturbances of arbitrary

size. In particular, we require that the MPC remains feasible for the closed-loop trajectory

subject to these large disturbances.

Assumption 5.22 (Robust recursive feasibility). The sequence of sets (X (t))∞t=0 is robustly

positive invariant for the closed-loop system x+ = f(x, κ(x, t), w, t), w ∈W.

180



Large and Infrequent Disturbances Chapter 5

Note that assuming recursive feasibility for MPC is sometimes inappropriate. In previous

chapters, we established robust recursive feasibility by removing state constraints, enforc-

ing stronger restrictions on the terminal set, and requiring the disturbances to be su�ciently

small. For large disturbances, we no longer have this ability and must instead choose the

constraints in the optimization problem with care. In general, the MPC problem must be

recursively feasible by design for the speci�c problem and large disturbance of interest via

careful choices for the state and terminal constraints. For example, we still cannot enforce

state constraints that represent desired goals for the system as these constraint may still pro-

duce infeasible optimization problems.

For production scheduling applications of MPC, Assumption 5.22 is often reasonable. The

input and state constraints in the problem formulation are used only to enforce realistic de-

cisions, e.g., nonnegative inventory, and disturbances cannot force violations of these con-

straints. Su�ciently long horizons and reasonable terminal constraints ensure that any pos-

sible state for the facility can be driven to the terminal region withN inputs. We discuss these

production scheduling formulations in more detail in the subsequent chapter.

MPC implementations without state or terminal constraints easily satisfy Assumption 5.22

since the feasible set is then X (t) = Rn for all t ∈ I≥0. These formulations can also ensure

nominal (practical) asymptotic stability with suitable dissipativity assumptions and terminal

costs (Grüne and Stieler, 2014; Limon et al., 2006; Zanon and Faulwasser, 2018). Unfortunately,

these dissipativity assumptions are di�cult to verify for nonlinear systems and often these

MPC formulations are limited to practical asymptotic stability, in which the nominal system

is guaranteed to converge to only some region around the origin. Nonetheless, there exists

a signi�cant class of MPC implementations that satisfy Assumption 5.22, particularly for the

higher level planning and scheduling problems.

In addition to feasibility, we also require a bound on the cost function subject to these

large disturbances.
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Assumption 5.23 (Maximum cost increase). There exist b1, b2 ≥ 0 such that

V 0(f(x, κ(x, t), w, t), t+ 1) ≤ V 0(x, t) + b1`(x, κ(x, t), t) + b2 (5.10)

for all x ∈ X (t), w ∈W1, and t ∈ I≥0.

The bound in (5.10) is notably weaker than the bound required for an ISS Lyapunov func-

tion. The constant in front of the stage cost is positive in (5.10) and the optimal cost may there-

fore increase at a rate proportional to the current stage cost. If the set ∪∞t=0X (t) is bounded,

Assumption 5.23 is satis�ed for b1 = 0 and some large, �nite b2 > 0. However, we are also

interested in applications for which ∪∞t=0X (t) is not bounded. For certain important cases,

we can show that Assumption 5.23 does hold without bounded ∪∞t=0X (t). For example, we

have the following result for MPC formulations with exponential cost bounds.

Lemma 5.24. Let Assumptions 5.1 to 5.4, 5.16 and 5.22 with a, c1, c2 > 0 such that

c1|x|a ≤ `(x, u, t) V 0(x, t) ≤ c2|x|2

for all (x, u) ∈ Z(t), x ∈ X (t), and t ∈ I≥0. If there exist e1, e2 ≥ 0 such that

|f(x, u, w, t)− f(x, u, 0, t)| ≤ e1|x|+ e2

for all (x, u) ∈ Z(t), w ∈W1, and t ∈ I≥0, then Assumption 5.23 holds.

Proof. Choosex ∈ X (t) and t ∈ I≥0. We use Lemma 5.9 and the fact that c1|x| ≤ `(x, κ(x, t), t) ≤
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V 0(x, t) to give

c1|f(x, κ(x, t), 0, t)|a ≤ V 0(f(x, κ(x, t), 0, t))

≤ V 0(x)− `(x, κ(x, t), t)

≤ (c2 − c1)|x|a (5.11)

We have from the upper bound on V 0(·) that

V 0(f(x, κ(x, t), w, t), t+ 1) ≤ c2|f(x, κ(x, t), w, t)|a

≤ c2 (|f(x, κ(x, t), 0, t)|+ e1|x|+ e2)a

≤ 2ac2|f(x, κ(x, t), 0, t)|a + (4e1)a|x|a + (4e2)a

We substitute in (5.11) to give

V 0(f(x, κ(x, t), w, t), t+ 1) ≤ b̃1|x|a + b2

in which b̃1 := 2ac2((c2 − c1)/c1 + 2aea1) and b2 = c2(4e2)a. We again use the fact that

c1|x| ≤ `(x, κ(x, t), t) ≤ V 0(x, t) to complete the proof with b1 := b̃1/c1 − 1.

The exponential bounds on the stage cost and optimal cost in Lemma 5.24 are stronger

than the bounds required by Assumptions 5.5 and 5.6. In fact, an MPC problem that satis-

�es these exponential bounds produces a nominal closed-loop system that is exponentially

stable. MPC formulations with suitable terminal conditions and quadratic costs satisfy these

bounds Rawlings et al. (2020, s. 2.4), but constructing a terminal constraint that satis�es

both Assumption 5.4 and Assumption 5.22 for the large disturbance of interest may prove

di�cult. For the speci�c case of stable linear systems without state constraints, we can con-

struct a global quadratic Lyapunov function for the terminal cost and thereby remove the
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terminal constraint citet[s. 2.5.3]rawlings:mayne:diehl:2020. Another method to verify As-

sumption 5.23 that does not require a nonnegative stage cost is available in Mcallister and

Rawlings (2021, Lemma 7).

5.3.2 Main results

For economic applications of nominal MPC, i.e., without Assumptions 5.5 and 5.6, we can

establish the following result for the robustness of MPC to large and infrequent disturbances.

Theorem 5.25 (Robust performance for large, infrequent disturbances). Let Assumptions 5.1

to 5.4, 5.16, 5.22 and 5.23 hold. Then there exist δ > 0 and γ̄(·) ∈ K such that

lim sup
T→∞

1

T

t+T−1∑
k=t

E[`(x(k), κ(x(k), k), k)] ≤ γ̄(µ(W1)) (5.12)

in which x(k) = φ(k;x,wt:k, t) for all x ∈ X (t), µ ∈M(W, δ), and t ∈ I≥0.

Proof. Choose x ∈ X (t) and t ∈ I≥0. If w = 0, we have from Lemma 5.24 that

V 0(f(x, κ(x, t), 0, t), t+ 1) ≤ V 0(x, t)− `(x, κ(x, t), t)

We then combine this bound with Assumption 5.23 using the indicator function for W1, i.e.,

V 0(f(x, κ(x, t), w, t), t+ 1) ≤ V 0(x, t)− (1− IW1(w))`(x, κ(x, t), t)

+ IW1(w) (b1`(x, κ(x, t), t) + b2)

Taking the expected value and combining terms give

E[V 0(f(x, κ(x, t), w, t), t+1)] ≤ V 0(x, t)−(1−µ(W1)−b1µ(W1))`(x, κ(x, t), t)+b2µ(W1)
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We choose 0 < δ < 1/(1 + b1) which gives

E[V 0(f(x, κ(x, t), w, t), t+ 1)] ≤ V 0(x, t)− b3`(x, κ(x, t), t) + b2µ(W1) (5.13)

in which b3 := (1− (1 + b1)δ) > 0. Since the choice of x and t was arbitrary, (5.13) holds for

any x ∈ X (t) and t ∈ I≥0.

For any initial x ∈ X (t) and t ∈ I≥0, we denote the closed-loop trajectory x(k) =

φ(k;x,wt:k, t) and the input u(k) = κ(x(k), k) for all k ∈ I≥t. From (5.13) and the law

of total expectation we may write

E[V 0(x(k + 1), k + 1)] ≤ E[V 0(x(k), k)]− b3E[`(x(k), u(k), k)] + b2µ(W1)

for all k ∈ I≥t. We sum both sides of this inequality from t to t+ T − 1 with T ∈ I≥1, divide

by T , and rearrange to give

b3

T

t+T−1∑
k=t

E[`(x(k), u(k), k)] ≤ V 0(x(t), t)− E[V 0(x(T ), T )]

T
+ b2µ(W1)

Since `(·) is bounded from below (Assumption 5.2) and Vf (·) ≥ 0, there exists �nite M ∈ R

such that V 0(x(T ), T ) ≥M and therefore

b3

T

t+T−1∑
k=t

E[`(x(k), u(k), k)] ≤ V 0(x(t), t)−M
b3T

+ γ̄(µ(W1))

in which γ̄(µ(W1)) := (b2/b3)µ(W1) ∈ K. We take the limit supremum as T →∞ such that

the initial cost and M vanish to give (5.12)

We note that (5.12) holds for only µ(W1) ≤ δ for some small δ > 0, i.e., for only su�-

ciently infrequent disturbances. Within this range of su�ciently infrequent disturbances, the
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upper bound (5.12) increases with increasing µ(W1). Conversely, as µ(W1) → 0 we recover

the nominal guarantee for the system in Theorem 5.10. If we also include Assumptions 5.5

and 5.6, nominal MPC renders the origin RASiP to large and infrequent disturbances.

Theorem 5.26 (Robustness for large, infrequent disturbances). Let Assumptions 5.1 to 5.6,

5.16, 5.22 and 5.23 hold. Then there exists δ > 0 such that the origin is RASiP for the system

x+ = f(x, κ(x, t), w, t), w ∈ W in the sequence of robustly positive invariant sets (X (t))∞t=0

for all µ ∈M(W, δ). If the set ∪∞t=0X (t) is bounded, the origin is also RASiE.

Proof. By applying the lower bound in Assumption 5.5 to (5.13), there exists α`(·) ∈ K∞ and

σ(s) = b2s ∈ K such that

E[V 0(f(x, κ(x, t), w, t), t+ 1)] ≤ V 0(x, t)− b3α`(|x|) + σ(µ(W1))

for all µ(W1) ≤ δ and some δ > 0 that satis�es δ < 1/(1 + b1). There also exists α2(·) ∈ K∞
from Assumption 5.6 such that

α`(|x|) ≤ `(x, κ(x, t), t) ≤ V 0(x, t) ≤ α2(|x|)

Thus, V 0(·) is an SISS Lyapunov function for large, infrequent disturbances and the origin is

RASiP by Proposition 5.21.

Theorem 5.26 ensure that there exists some margin of robustness δ > 0 for these large

and infrequent disturbances. Thus, MPC ensures that the system can recover from these large

disturbances provided the probability of them occurring is su�ciently small. For su�ciently

frequent disturbances (µ(W1) > δ), however, the origin may not be RASiP.

The value of δ in Theorems 5.25 and 5.26 is de�ned as δ < 1/(1+b1) in which b1 is de�ned

in Assumption 5.23. As b1 → ∞, we have that δ → 0 and the system is no longer robust to

186



Large and Infrequent Disturbances Chapter 5

large disturbances with nonzero probability. Conversely, as b1 → 0, we have that δ → 1 and

the system is robust to large disturbances that occur with any probability less than one, i.e.,

µ(W1) < 1.

If ∪∞t=0X (t) is bounded and (X (t))∞t=0 satisfy Assumption 5.22, we can choose b1 = 0

and b2 su�ciently large such that Assumption 5.23 holds. Moreover, we can strength RASiP

to RASiE with Proposition 5.19 and obtain a result that is remarkable similar to stochastic

robustness of small and persistent disturbances. Speci�cally, we have the following corollary

to Theorem 5.26 in which RASiE holds for any δ ∈ (0, 1).

Corollary 5.27. Let Assumptions 5.1 to 5.6, 5.16 and 5.22 hold and assume∪∞t=0X (t) is bounded.

Then for any δ ∈ (0, 1), the origin is RASiE for the system x+ = f(x, κ(x, t), w, t), w ∈ W in

the robustly positive sequence of sets (X (t))∞t=0 for all µ ∈M(W, δ).

5.4 Examples

5.4.1 Time-invariant reactor scheduling

We �rst consider a time-invariant example of product blending adapted from McAllister

and Rawlings (2021a) and similar to an example in Rawlings and Risbeck (2017). Two batch

reactors with di�erent speci�cations deliver product to a single blending tank. Product is

withdrawn from this tank at the start of each hour. The goal of the controller is to maintain the

total volume and concentration of the product species in the blending tank while delivering

a speci�c volume downstream every hour. A diagram of this example problem is shown in

Figure 5.6.

Let vT denote the volume of �uid in the tank and mT denote the mass of product species

in the tank. Each reactor can be set to produce a di�erent volume of �uid and mass of product

species each hour, within some available range speci�c to each reactor. The volume of the
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Volume: vT
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vT
vd

Figure 5.6: Diagram of time-invariant reactor scheduling problem.

�uid and mass of product species delivered from reactors 1 and 2 to the blending tank each

hour is denoted v1,m1 and v2,m2, respectively. We plot the constraints for these reactors and

the blending tank in Figure 5.7. To enforce minimum capacity requirements of each reactor

we use the binary variables z1 and z2 to indicate if the reactors are ‘on’ or ‘o�’. We also allow

the controller to select the quantity of volume withdrawn from the tank, which we denote vd.

The discrete time model of the facility is

v+
T = vT + v1(1− d1) + v2(1− d2)− vd

m+
T = mT +m1(1− d1) +m2(1− d2)− mT

vT
vd

In addition to these variables, we also include the binary disturbance variables d1 and d2 that

represent breakdowns or unplanned maintenance of reactors 1 and 2. We also require that

vd ∈ [0, 10] and vd ≤ vT to ensure that we do not withdraw more material from the blending

tank than is available at the start of each hour. Thus, we have the constraints (x, u) ∈ Z ⊆

X× U.

The system has two states x̄ = (vT ,mT ), seven inputs ū = (z1, v1,m1, z2, v2,m2, vd),

and two binary disturbances w = (d1, d2). The steady-state target is x̄r = (15, 4.5) and

ūr = (1, 2, 0.35, 1, 5, 1.75, 7). This steady-state target is shown with black dots in Figure 5.7.

Note that this steady-state target is equivalent to a time-invariant reference trajectory. We
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Figure 5.7: State and input constraints for reactor scheduling example. Steady-state values
are indicated with black dots.

denote the shifted state and input as x := x̄ − x̄r and u := ū − ūr. We de�ne the time-

invariant stage cost as `(x, u) := x′Qx + u′Ru with diagonal Q := diag([1, 1]) and R :=

diag([0, 0.25, 0.5, 0, 0.25, 0.5, 2]).

To construct the terminal cost and constraint, we linearize the system and consider only

m1 and v2 as free inputs. We also choose m2 = ρmaxv2 such that the input constraint for m2

remains active and �x all other inputs to their steady-state values. We then determine the

LQR solution P and corresponding state-feedback gain K for the reduced system with only

two free inputs. This procedure produces the terminal control law κf (x) := Kx and terminal

cost Vf (x) := x′Px. Since the terminal control law and input constraints (for the free inputs

m1 and v2) are linear, we can construct the terminal set

Xf := {x ∈ X : κf (x) ∈ U}

as shown in Figure 5.7. We verify that this choice of terminal cost and constraint satisfy

Assumption 5.4. Since Q is positive de�nite and Xf contains the origin in its interior, As-

sumptions 5.5 and 5.6 hold. We choose a horizon of N = 6 such that X is RPI for this system.

We also note that the system satis�es the conditions of Lemma 5.24 and therefore Assump-
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Figure 5.8: Closed-loop trajectories for 50 realizations of the disturbance with p = 0.1 for
the reactor scheduling example. The black line indicates the nominal trajectory (p = 0) for
comparison.

tion 5.23 holds as well.2 Since X is bounded, Theorem 5.26 ensures that the origin is RASiE

as well as RASiP to large, infrequent disturbances for this example.

We simulate the closed-loop trajectory for this system subject to breakdowns that occur

with some probability p for each reactor, i.e., Pr(d1 = 1) = Pr(d2 = 1) = p. Thus, µ(W1) =

p2+2p(1−p). We initialize the system at x(0) = (24, 6.24) and consider 100 realizations of the

disturbance trajectory. In Figure 5.8, we plot these trajectories for p = 0.1. We then calculate

the sample mean of |x| for 100 realizations of the closed-loop trajectory with di�erent values

of p and plot the results in Figure 5.9. We observe an initial decrease in the sample average

as the e�ect of the initial condition vanishes. After this initial decrease, the sample average

trajectory satis�es a �nite upper bound that increases with increasing p (µ(W1)) and decays

to zero as p→ 0. These results are consistent with RASiE and therefore Theorem 5.26.

5.4.2 Production scheduling

We now consider a simple scheduling example that also serves as a light introduction to

the topics in the subsequent chapter. The goal is to meet the demand for material 1 (M1) by
2We can also verify that Assumption 5.23 holds by noting that X is bounded.
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Figure 5.9: Sample mean of the norm of the closed-loop state trajectory for the reactor
scheduling example with di�erent values of p.

converting raw material (assumed to be in abundant supply) to M1 through task 1 (T1). Task 1

can produce between 5 and 16 units of M1 and has a nominal processing time of 2 time steps.

The demand for M1 is 4 units per time step. If demand is not met, the facility accumulates

backlog that must be o�set at later times. The penalty for storing M1 is 10 (per unit per time

step) and the penalty for maintaining backlog is 100 (per unit per time step).

To model this system, we use a state-space scheduling model (Subramanian et al., 2012).

The binary decision variable W is unity if T1 starts at the current time step. We also de�ne

the continuous decision variable B that speci�es the batch size, i.e., between 5 and 16 units,

for T1. To track these decisions in the state of the system, we lift these variables via the

state variables W̄n, B̄n for n ∈ {0, 1, 2}. The integer n represents the number of time steps

that task has progressed (e.g., if W̄1 = 1 then T1 has been running for 1 time step). We

also consider a 1 time step delay in the progress of T1 as a potential disturbance. We use

Y ∈ {0, 1} to represent this disturbance an note that Y is inherently discrete-valued (large)
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due to the discrete-time grid. The dynamics for the task progress are given by

W̄+
0 = (W + W̄0)Y

W̄+
1 = (W + W̄0)(1− Y ) + W̄1Y

W̄+
2 = W1(1− Y )

B̄+
0 = (B + B̄0)Y

B̄+
1 = (B + B̄0)(1− Y ) + B̄1Y

B̄+
2 = B1(1− Y )

Note that if Y = 1, the progress of the task does not advance.

Inventory and backlog (unmet demand) of M1 are denoted S and U , respectively. These

states are integrators in�uenced by the batch size of T1 ending (B̄2), shipments to meet de-

mand (H), and demand (4 units of M1 per time step). We also allow up to 1 unit M1 demand

to be outsourced each time step and therefore removed from the facilities backlog. We use the

decision variable C to represent this outsourcing/canceling of backlog. To discourage using

this action, we assign a large penalty of 800 per unit to this decision. Thus, the dynamics for

inventory and backlog are as follows.

S+ = S + B̄2 −H

U+ = U + 4− C −H

Next, we require constraints to enforce realism of the scheduling model. We require that

U ≥ 0, S ∈ [0, 20], W ∈ {0, 1}, C ∈ [0, 1], H ∈ [0, 20], and the constraint

W̄0 + W̄1 ≤ 1
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to ensure that only one active task is running at each time step. We also require B to satisfy

the min/max batch size constraints if T1 is starting.

5W ≤ B ≤ 16W

If T1 is not starting (W = 0), this constraint also requires that B = 0.

We now have a discrete-time, state-space representation of the system with

x̄ =
(
W̄0, W̄1, W̄2, B̄0, B̄1, B̄2, S, U

)
Ū = (W,B,H,C)

and w = (Y ). The discrete-time system dynamics can be written as

x̄ = f̄(x̄, ū, w)

with the constraints (x̄, ū) ∈ Z̄ and the stage cost

¯̀(x̄, ū) = 10S + 100U + 800C

In the nominal case, the facility can meet demand while operating at 50% capacity. The

optimal periodic solution is to start a new T1 every two time steps at a batch size of 8 units.

Demand is met every time step and 4 units of material is held in storage every other time step.

By repeating this periodic solution we can construct an in�nite horizon reference trajectory.

This reference trajectory is shown in Figure 5.10 and denoted (x̄r(t))
∞
t=0 and (ūr(t))

∞
t=0.

Although the dynamics of the original variables are time-invariant3, the reference tra-

jectory is time-varying and the shifted problem is therefore time-varying. Thus, the shifted
3Demand and therefore the original dynamical model are often time-varying for scheduling problems.
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Figure 5.10: Periodic optimal solution and reference trajectory for the production scheduling
example. The top plot is a Gantt chart with blue blocks representing executions of T1. The
inventory, backlog, sales, and canceled backlog are shown in the middle and bottom plots.

dynamics, constraints, and stage cost are de�ned as

x+ = f(x, u, w, t) := f̄(x+ x̄r(t), u+ ūr(t), w)− x̄r(t+ 1)

Z(t) := {(x̄− x̄r(t), ū− ūr(t)) : (x̄, ū) ∈ Z̄(t)}

`(x, u, t) := ¯̀(x+ x̄r(t), u+ ūr(t))− ¯̀(x̄r(t), ūr(t))

With the terminal constraint, we require that all elements of the state, except backlog,

terminate in phase with the reference trajectory. For the shifted state, this means that all of

these elements, except the element of the state corresponding to backlog, must be zero. For

backlog, the terminal region includes any nonnegative real number. Thus, we have

Xf (t) := {(0, 0, 0, 0, 0, 0, 0)} × R≥0
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and we use the terminal cost

Vf (x, t) = 900U + 100U2

By allowing backlog to take any nonnegative value, the sequence of sets (X (t))∞t=0 is now

robustly positive invariant for the disturbance of interest and Assumption 5.22 is satis�ed.

Assumption 5.4 is satis�ed by the terminal control law κf (x, t) := (0, 0, 0,min{U, 1}). We

can further establish that Assumption 5.23 holds for this problem by exploiting the integrator

dynamics of the unbounded backlog state. We provide more details on this procedure in the

subsequent chapter for a general class of scheduling problems.

If a delay occurs every time step, no M1 is ever produced and backlog continues to accu-

mulate. Instead, a more realistic scenario includes task delays that occur infrequently with

ε := Pr(Y = 1). We simulate 100 realizations of the closed-loop trajectory with an initial

backlog of 40 units for multiple values of ε.

An example closed-loop trajectory is shown in Figure 5.11 for ε = 0.3. We observe that

the backlog decreases from the initial value at 40 units despite a few task delays. Once the

backlog nears zero, infrequent task delays force the backlog to increase but, on average, the

facility can recover before another delay occurs. Thus, the sample average performance of the

system (in terms of stage cost) is bounded, even though speci�c realizations of the disturbance

trajectory may produce diverging backlog and cost as t→∞.

Note that this problem formulation does not satisfy Assumption 5.5 and the system is

not necessarily dissipative with respect to this stage cost. Thus, the closed-loop scheduling

formulation does not guarantee RASiE or RASiP. Instead, the main concern in closed-loop

scheduling is the economic performance of the system that we de�ne via

∆(t) :=
1

t

t−1∑
k=0

`(x(k), u(k), k)
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Figure 5.11: Closed-loop trajectory for production scheduling example. The top plot is a
Gantt chart with blue blocks representing executions of T1. The inventory, backlog, sales,
and outsourced backlog are shown in the middle and bottom plots. The open-loop trajectory,
or schedule, for the next 8 time steps is shown in faded colors.

in which x(k) := φ(k;x,wk, 0) and u(k) := κ(x(k), k) are the closed-loop state and input

trajectories. Note that ∆(t) is equivalent to the closed-loop performance metric considered

in Theorem 5.25. In Figure 5.12 we plot the sample average of ∆(t) for di�erent values of ε.

As t → ∞, the sample average of ∆(t) decays towards some nonnegative constant speci�c

to each value of ε for all ε ≤ 0.45. As ε increases this constant increases for ε ≤ 0.45. At

ε = 0.5, the sample average instead diverges. Thus, the system exhibits behavior consistent

with Theorem 5.25 and we presume that 0.45 < δ < 0.5.

5.5 Summary

Discrete-valued and large disturbances are a key feature of production planning and schedul-

ing applications of MPC. While these disturbances are often too large to admit the determin-

istic robustness results discussed in the previous chapters, the infrequent nature of these

large disturbances permits a stochastic description of robustness. Under suitable assump-
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Figure 5.12: Sample average of ∆(t) for 100 simulations with di�erent values of ε.

tions, nominal MPC is robust in this stochastic context, provided these large disturbances

are su�ciently infrequent. This characterization can also include large disturbances such as

faults and missing measurements, which are encountered in traditional process control ap-

plications. We again emphasize that this robustness is provided by feedback and without

explicitly including the disturbance in the optimization problem. We do, however, need to

design the MPC problem such that X is RPI for the disturbance of interest.

Given the stochastic nature of these disturbances, SMPC may seem like a desirable al-

ternative to address these large and infrequent disturbances. We note, however, that SMPC

requires a terminal region that is RPI for the disturbance of interest. For small disturbances,

this design procedure is relatively straightforward. For large disturbances, constructing such

a terminal region may prove di�cult. To demonstrate this di�cultly, we revisit the produc-

tion scheduling example in Section 5.4.2. The terminal region used in this example is suitable

for nominal MPC, but is not su�cient for SMPC. To accommodate the task delay in an SMPC

formulation and retain the desired closed-loop properties, we must expand the terminal re-

gion to include any possible con�guration of the facility and design a corresponding terminal
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cost that satis�es the required cost decrease condition for the entire state space. Typically,

constructing such a terminal cost for the entire state space is intractable. Furthermore, any

improvement gained from this SMPC formulation is likely to be small since these disturbances

occur with small probability. Thus, we postulate that addressing these large and infrequent

disturbances with SMPC, particularly for production scheduling problems, o�ers a minimal

potential for improvement while incurring a signi�cant increase in the e�ort required to for-

mulate and solve these SMPC problems. We therefore do not formulate or discuss an SMPC

formulation for large and infrequent disturbances.

While these results are general and can be applied to any system that satis�es the assump-

tions herein, the main application driving the development of these results, as suggested by

the discussion thus far, is production scheduling. In the next chapter, we address this applica-

tion in detail. Speci�cally, we develop a closed-loop scheduling algorithm that is inherently

robust to large and infrequent disturbances.
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Chapter 6

Closed-Loop Scheduling

Due to the di�erent time scales, problem formulations, and computational requirements, pro-

cess control and production scheduling problems are often viewed as two separate sub�elds

within the larger discipline of process systems engineering. While this separation still per-

sists for historical reasons, there is an emerging class of online scheduling algorithms that

are beginning the blur the line between traditional process control and scheduling problems.

These closed-loop or online scheduling algorithms address uncertainty in plant operations in

real-time through consistent and frequent reoptimization and rescheduling, i.e., these algo-

rithms respond to feedback from the system. The goal of these algorithms, whether explicitly

stated or otherwise implied, is to provide the scheduling algorithm with robustness to rele-

vant disturbances. This robustness has been explored via speci�c case studies, but there are

no theoretical results available that characterize or establish this property of robustness for

closed-loop scheduling algorithms and the corresponding closed-loop system.

In this chapter, we present and justify an appropriate de�nition of robustness for closed-

loop scheduling. Since the main class of disturbances relevant to production scheduling appli-

cations are large and infrequent, we use the results in Chapter 5 to construct this de�nition of

robustness. We already introduced a simple scheduling problem in Section 5.4.2 and designed

an MPC formulation that renders the closed-loop system robust to large and infrequent dis-

turbances for this speci�c example. We now seek to generalize this result. For this general
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class of production scheduling problems with an available reference trajectory, we construct

a closed-loop scheduling algorithm that is inherently robust to large and infrequent distur-

bances. We then apply this algorithm to a more complicated production scheduling example

to demonstrate the implications of these results. We also discuss extensions to this algorithm

designed to reduce the computational burden and avoid “schedule nervousness” for large-

scale industrial applications of closed-loop scheduling.

6.1 Introduction and literature review

Scheduling is a crucial activity for a variety of manufacturing facilities including chemical

production, pharmaceuticals, food processing, metal fabrication, and logistic services (Mar-

avelias, 2012; Harjunkoski et al., 2014). The task of generating reasonable schedules for a

manufacturing facility is traditionally accomplished by means of human intuition, heuristics,

and experience. Over the past few decades, however, optimization has found a signi�cant

role in generating high-quality schedules. Through mathematical abstractions, such as the

state-task network (STN), a scheduling problem is formulated as mixed integer linear pro-

gram (MILP). The objective function is based on some performance metric of the facility (e.g.,

cost) and the constraints are constructed to re�ect the psychical constraints of the production

facility (e.g., production times, capacities) (Kondili et al., 1993; Pantelides, 1994).

Since the advent of these mathematical models, expanding the scope of these models and

improving the optimization algorithms for these speci�c problem formulations has received

considerable attention. Generating a single schedule, however, is not su�cient in practice.

Disturbances (e.g., demand variations, delays, and breakdowns) ensure that the optimal sched-

ule at one time is inferior or infeasible a short time later. One method to accommodate these

disturbances is to generate a single schedule that accounts for this uncertainty a priori. This

approach can include robust optimization in which the schedule is designed to remain feasible
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for some set of possible realizations of the disturbance. The objective function can be based

on the worst case realization of the disturbance (Lin et al., 2004) or the nominal objective

function (Vin and Ierapetritou, 2001; Li and Ierapetritou, 2008c). Stochastic optimization for-

mulations for scheduling problems were also proposed (Sand and Engell, 2004; Bon�ll et al.,

2004; Balasubramanian and Grossmann, 2004), in which the expected value of the cost func-

tion is optimized via a stochastic description of the uncertainty. These stochastic and robust

optimization approaches are typically limited to demand uncertainty, sometimes called “left-

hand side” uncertainty in the resulting MILP problem formulation. Two-stage adaptive robust

optimization (ARO) can also be used to generate a set of possible schedules for the system (Shi

and You, 2016). Depending on the realization of uncertainty in the �rst stage, the schedule

is then updated. In particular, Lappas and Gounaris (2016); Lappas et al. (2019) use a multi-

stage ARO that includes uncertainty in processing times in addition to demand variations.

The multi-stage ARO formulations, in contrast to a standard feedback method, generates the

set of possible recourse actions a priori. Thus, there are no available recourse actions for a

disturbance that is not included in the initial ARO problem formulation.

For systems with high uncertainty and minimal recourse, accounting for disturbances a

priori in the optimization problem is bene�cial. Unfortunately, characterizing this uncertainty

is di�cult and often these schedules are overly conservative. In other words, these methods

sacri�ce nominal performance to accommodate disturbances that may or may not occur. Fur-

thermore, a disturbance that is not included in the robust or stochastic optimization problem

may render even the robust schedules infeasible. Further discussion on the merits of robust

and stochastic optimization for production scheduling can be found in Li and Ierapetritou

(2008a); Harjunkoski et al. (2014)

The alternative to accounting for uncertainty a priori is to react in real time to the re-

alization of uncertainty, i.e., a feedback method. Initially called reactive rescheduling, these

scheduling algorithms used heuristics and logical rules to handle disturbances and reschedule
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(Cott and Macchietto, 1989; Kanakamedala et al., 1994; Huercio et al., 1995; Rodrigues et al.,

1996; Elkamel and Mohindra, 1999). As the speed of MILP solvers improved, online reopti-

mization of the schedule in real time became feasible. Upon observing a disturbance, part of

the schedule is �xed and updated with the disturbance, while the remaining part of schedule

is reoptimized (Vin and Ierapetritou, 2000). Initially, these algorithms focused on minimiz-

ing schedule alterations and the size of the optimization problem by freezing variables that

were deemed unrelated to the current disturbance and only rescheduling after a disturbance

is observed (Mendez and Cerdá, 2004; Janak et al., 2006; Ferrer-Nadal et al., 2007; Novas and

Henning, 2010; Chu and You, 2014). Two stage stochastic optimization can also be used with

this reactive scheduling approach (Cui and Engell, 2010). Multi-parametric programming can

be used to reduce online computation time, but these approaches su�er from the curse of

dimensionallity as the size of the scheduling problem increases (Li and Ierapetritou, 2008b;

Kopanos and Pistikopoulos, 2014). None of these algorithms, however, o�er any theoretical

guarantees for the performance or robustness of the closed-loop system.

Instead of rescheduling only when a disturbance occurs, a natural extension of these reac-

tive scheduling methods is to reoptimize the schedule at �xed sampling intervals regardless

of whether a disturbance occurs (Subramanian et al., 2012; Gupta and Maravelias, 2016; Gupta

et al., 2016). These algorithms are sometimes called online or rolling horizon scheduling, but

we use the title closed-loop scheduling in this work to emphasize the parallels between this ap-

proach to scheduling and closed-loop process control. As noted throughout this dissertation,

feedback alone is not su�cient to guarantee robustness and may produce poor closed-loop

performance, even in the nominal case, if the closed-loop scheduling algorithm is not care-

fully designed (Subramanian et al., 2012; Gupta and Maravelias, 2016; Risbeck et al., 2019). A

graphical depiction of closed-loop scheduling is provided in Figure 6.1.

Given the presentation provided in this dissertation, the similarities between closed-loop

scheduling and closed-loop control may appear both intuitive and obvious. Even a decade ago,
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Figure 6.1: A diagram of closed-loop scheduling. The optimal open-loop schedule is shown
in the gray region, while the implement (closed-loop) schedule is shown in the solid colors.

however, these parallels were neither intuitive nor obvious to the separate research commu-

nities of production scheduling and process control. The key limitation was that production

scheduling problem formulations were seldom written as dynamical systems in the same man-

ner as the dynamical systems encountered in process control problems. This approach made

the resulting optimization problems more compact and easier to solve, but also made them

incompatible with the typical analysis tools used in process control. The work of Subrama-

nian et al. (2012) removed this limitation. The authors demonstrated that the typical STN

formulation used for production scheduling problems can be converted to a dynamical state-

space model. Thus, we can treat closed-loop scheduling as an MPC problem in which there

are both discrete-valued inputs and economic cost functions. Moreover, we can use the the-

oretical results developed throughout this dissertation, speci�cally Chapter 5, to analyze the

closed-loop behavior of closed-loop scheduling.
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Using this framework and an available reference trajectory, Risbeck et al. (2019) propose a

closed-loop scheduling algorithm that ensures nominal closed-loop performance via terminal

equality constraints. This nominal guarantee is an important �rst step as it precludes particu-

larly poor closed-loop performance, but nominal performance does not guarantee robustness

to disturbances. Simulation frameworks that can be used to study the empirical robustness of

speci�c case studies date back to Honkomp et al. (1999), with a more recent study available in

Gupta and Maravelias (2020). While these studies allow the authors to draw useful insights for

the design of closed-loop scheduling algorithms, these conclusions are inherently limited to

speci�c case studies. In contrast to the quantitative and empirical robustness results provided

by these simulation studies, we instead focus on de�ning and establishing the property of ro-

bustness for a general class of closed-loop scheduling problems. We then design a closed-loop

scheduling algorithm that is guaranteed to be robust in this context, under a set of reasonable

assumptions.

6.2 Problem formulation

6.2.1 State-space scheduling model

We consider a general production scheduling problem for batch processes with a discrete-

time grid. To represent the manufacturing facility we use the STN representation. The facility

consists of tasks i ∈ I, units j ∈ J, and materials k ∈ K. The subset of tasks i than can be

run on unit j is denoted Ij . Materials for which we have demand or that can be sold for pro�t

are called products and are denoted by the subset KP ⊆ K. We denote the intermediate and

feedstock materials as KI = K \KP . In general, the goal of these scheduling problems is to

convert feedstock or raw materials to �nal products through a series of tasks and intermediate

materials. We note that these intermediate materials can include “renewable” materials that
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account for thermal, electrical, or labor demands of a task. For example, the facility generates

steam to provide heat to certain processes. This resource must be allocated across the facility

such that we do not consume more than the maximum rate of steam generation for the facility.

Steam capacity is consumed when a task starts and replenished when the task ends. Thus,

we call this steam capacity a renewable material for the facility.

The parameter τij denotes the processing time of task i on unit j. These tasks produce

and consume materials when they start and �nish. The parameters βminij and βmaxij denote the

minimum and maximum batch size for task i on unit j. The parameters ρik/ρ̄ik denote the

ratio of material k produced (> 0 for production, < 0 for consumed) by starting/completing,

respectively, task i relative to the batch size of the task.

We now construct a state-space scheduling model similar to Subramanian et al. (2012);

Gupta and Maravelias (2016). We de�ne the binary decision variables Wij to be unity if task

i starts on unit j at the current time. We also de�ne the continuous decision variable Bij to

denote the batch size assignment for the same task. To track these decisions in the state of

the system, we “lift” Wij and Bij with the state variables W̄ n
ij and B̄n

ij for n ∈ {0, . . . , τij}.

The index n is the progress of the task, e.g., W̄ n
ij = 1 indicates that task i on unit j is n/τij

complete at the current time. We include state variables for inventory of intermediates and

feedstocks denoted S̃k for k ∈ KI . The state variables Sk and Uk are the inventory and

backlog (unmet demand), respectively, of the products k ∈ KP . Inventory of each material

must not exceed a maximum inventory capacity denoted ψ̃k for each k ∈ KI and ψk for each

k ∈ KP . We consider incoming deliveries ζk(t) for each k ∈ KI and outgoing demand ξk(t)

for each k ∈ KP that vary with the time index t ∈ I≥0. The decision variable Hk is the

amount of material k ∈ KP shipped to meet demand with a maximum throughput ηk > 0,

i.e., Hk ≤ ηk.

We also add an option to “hold” material in a processing unit after a task is complete. For

each task i ∈ Ij , we can also include a task i′ ∈ Ij that holds the material in the processing
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unit. This task can be used only after task i is completed and consumes and produces the

same set of materials produced by task i with a processing time of one time step. We de-

note the subset of these holding tasks as Ihj ⊆ Ij and the mapping of each hold task i′ to the

corresponding production task i ∈ Ij \ Ihj as h(i′) = i. This option, originally proposed by

(Kondili et al., 1993), is often necessary to ensure that scheduling algorithms satisfy maximum

inventory constraints for intermediate materials when subject to delays and demand varia-

tions. For example, if we experience a delay in downstream production, intermediate material

may not be consumed at the time speci�ed by the previous schedule. If a task producing this

intermediate material is completed at the same time, we may not have su�cient inventory

capacity. By allowing the scheduler the option to leave this material in the unit, we can avoid

violating the maximum inventory constraints for the facility and therefore recover a feasible

schedule. (Avadiappan and Maravelias, 2021) make a similar observation and propose adding

delays as optimization variables to ensure feasibility.

The decision variable Vk is the amount of material purchased/sold in excess of demand

(> 0 for purchased, < 0 for sold). The parameters νPk and νSk denote the maximum amount

of material that can be purchased or sold at each time step for each material k ∈ K in excess

of demand or shipments. We often have νPk = νSk = 0 such that extra material cannot be

purchased or sold. Thus, we cover cost minimization problems (meet demand at minimum

cost), pro�t maximization problems (sell as much product as possible), and any combination

of these two problem types.

We also allow for a material disposal action. In practice, this action includes a wider

range of options than the usual interpretation of disposal, i.e., waste. Instead, we can ship

the material to a long-term storage facility or move the material to a separate storage unit

on-site. The key characteristic of this action is that we pay a single (large) cost that removes

the material from the inventory state variable and therefore the cost function. The decision

variable Dk is the amount of inventory disposed at a given time step for material k ∈ KP .
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We use the parameter µk to denote the maximum amount of inventory that may be disposed

for each material k ∈ KP at each time step.

We now consider the disturbances in the scheduling model. Let the binary variable Yj

be unity if unit j is delayed by one time step. Let the binary variable Zj be unity if unit j

experiences a breakdown or total loss during [t, t+1). We de�ne fractional yield loss of batch

size/material with the variable Lj which takes values in [0, 1], e.g., Lj = 0.25 is a 25% loss of

batch size on unit j. Note that individual units are not permitted to run more than one task

and we can therefore specify these disturbances by only the unit a�ected.

We now de�ne the dynamic evolution of the state variables. All the variables on the right-

hand side of these equations are at time t and the left-hand side at time t + 1, denoted by +.

For all i ∈ Ij and j ∈ J with τij ≥ 2, we have

(W̄ 0
ij)

+ = (W̄ 0
ij +Wij)Yj(1− Zj)

(W̄ 1
ij)

+ =
(
(W̄ 0

ij +Wij)(1− Yj) + W̄ 1
ijYj
)

(1− Zj)

(W̄
τij
ij )+ = W̄

τij−1
ij (1− Yj)(1− Zj)

(B̄0
ij)

+ = (B̄0
ij +Bij)Yj(1− Zj)(1− Lj)

(B̄1
ij)

+ =
(
(B̄0

ij +Bij)(1− Yj) + B̄1
ijYj
)

(1− Zj)(1− Lj)

(B̄
τij
ij )+ = B̄

τij−1
ij (1− Yj)(1− Zj)(1− Lj)

and

(W̄ n
ij)

+ = (W n−1
ij (1− Yj) +W n

ijYj)(1− Zj)

(B̄n
ij)

+ = (Bn−1
ij (1− Yj) +Bn

ijYj)(1− Zj)(1− Lj)
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for all n ∈ {1, . . . , τij − 1}. If τij = 1, we have instead

(W̄ 0
ij)

+ = (W̄ 0
ij +Wij)Yj(1− Zj)

(W̄ 1
ij)

+ = (W̄ 0
ij +Wij)(1− Yj)(1− Zj)

(B̄0
ij)

+ = (B̄0
ij +Bij)Yj(1− Zj)(1− Lj)

(B̄1
ij)

+ = (B̄0
ij +Bij)(1− Yj)(1− Zj)(1− Lj)

For intermediate and feedstock materials (k ∈ KI ), we model the inventory dynamics as

S̃+
k = S̃k +

∑
j∈J

∑
i∈Ij

(
ρ̄ikB̄

τij
ij + ρikBij

)
+ Vk + ζk

For products (k ∈ KP ), we model the discrete-time evolution of inventory and backlog as

S+
k = Sk +

∑
j∈J

∑
i∈Ij

(
ρ̄ikB̄

τij
ij + ρikBij

)
+ Vk −Hk −Dk

U+
k = Uk −Hk + ξk

To streamline notation, we now de�ne each variable or parameter without subscripts to

indicate a column vector containing the variable at each subscript, e.g.,

B̄ := [(B̄n
ij ∀j ∈ J, i ∈ Ij, n ∈ I0:τij)]

′ V := [(Vk ∀k ∈ K)]′ π := [(πk ∀k ∈ K)]′
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The state, input, and disturbance for the system are then de�ned as

x :=



W̄

B̄

S̃

S

U


u :=



W

B

V

H

D


w :=


Y

Z

L

 (6.1)

The dynamic equations introduced in the previous paragraph can be represented in state-

space form as follows.

x+ = f(x, u, w, t) (6.2)

with x ∈ Rn, u ∈ Rm, and w ∈ Rq. Note that the system is time-varying because shipments

ζk(t) and demand ξk(t) are time-varying.

While the variables Yj, Zj, Lj enter the model as bi-linear terms, these variables are not

considered in the nominal optimization problem (w = 0). Thus, we have a linear a�ne

description of the nominal system,

f(x, u, 0, t) = Ax+Bu+ c(t) (6.3)

with A ∈ Rn×n, B ∈ Rn×m, and c(t) ∈ Rn.

Remark 6.1. In certain cases, we may have accurate predictions of these disturbance vari-

ables at future times (e.g., we know that there is maintenance on unit j at time t′). In these

cases, we could include these disturbances as parameters in the nominal optimization problem

to produce a superior schedule. From a process control perspective, we may call this feedfor-

ward control, i.e., we use information about upcoming disturbances to better determine the

control action. To streamline the following presentation and discussion, we exclude these
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disturbance predictions from the closed-loop scheduling algorithm. Although this additional

information may improve the performance of the algorithm, we �nd that this information is

not necessary to demonstrate the robustness of closed-loop scheduling. Observing and react-

ing to disturbances after they occur is su�cient to guarantee some margin of robustness for

closed-loop scheduling.

In addition to the state-space dynamics in (6.2), we impose the following constrains on the

state and input at each time step to enforce one-task-per-unit and batch size requirements.

∑
i∈Ij

τij∑
n=0

W̄ n
ij ≤ 1 ∀j ∈ J (6.4)

βminij Wij ≤ Bij ≤ βmaxij Wij ∀i ∈ Ij, j ∈ J (6.5)

For the hold tasks, we require that these tasks are only available after the corresponding

production task is complete, i.e.,

Wij ≤ W̄
τh(i)j
h(i)j + W̄ 1

ij ∀i ∈ Ihj (6.6)

We also enforce the appropriate ranges for each element of the state and input.

Wij, W̄
n
ij, Xj ∈ {0, 1} Bij, B̄

n
ij ∈ [0, βmaxij ] ∀i ∈ Ij, j ∈ J

S̃k ∈ [0, ψ̃k] ∀k ∈ KI

Sk ∈ [0, ψk] Uk ≥ 0 ∀k ∈ KP

Vk ∈ [−νSk , νPk ] Hk ∈ [0, ηk] Dk ∈ [0, µk] ∀k ∈ K (6.7)

We rewrite the constraints in (6.4), (6.5) and (6.7) as x ∈ X and u ∈ U for the sets X ⊆ Rn

and U ⊆ Rm. We add (6.6) to these constraints by de�ning the set Z ⊆ X× U and requiring
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that (x, u) ∈ Z. We also have that w ∈W with

W := {w : Yj, Zj ∈ {0, 1}, Lj ∈ [0, 1] ∀j ∈ J}

We now introduce the cost function for this system. Let αFij and αPij denote the �xed and

proportional costs of task i on unit j. Let πk denote the sales prices of material k ∈ K. Let

πSk and πUk denote the inventory and backlog cost, respectively, per unit of product k ∈ KP .

Inventory costs for k ∈ KI are zero. We use the parameter πDk to denote the cost of disposing

material. Note that all of these costs are proportional to elements of state and input and we

can therefore write the economic cost as

¯̀(x, u, t) = q′x+ r′u (6.8)

in which

q :=



0

0

0

πS

πU


r :=



αF

αP

π

0

πD


Thus, the scheduling problem can now be written as a time-varying MPC problem.

6.2.2 MPC problem and assumptions

To properly formulate the MPC problem and to benchmark the closed-loop performance,

we �rst require a reference trajectory for the nominal system. This reference trajectory is

comprised of a sequence of states xr and inputs ur that form a feasible trajectory for the
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nominal system, i.e., the reference trajectory satis�es the following assumption.

Assumption 6.2 (Reference trajectory). The reference trajectory (xr,ur) satis�es

xr(t+ 1) = f(xr(t), ur(t), t)

with (xr(t), ur(t)) ∈ Z for all t ∈ I≥0.

For systems with periodic demand pro�les, an optimal periodic schedule (computed a

priori for the system) can serve as the reference trajectory. Heuristic methods may also be

used to construct this reference trajectory. We emphasize, however, that the economic per-

formance of this trajectory is important as this reference trajectory forms the benchmark for

all subsequent results. Improvements in the reference trajectory are therefore re�ected in the

following performance guarantees.

In contrast to Chapter 5, we do not shift the system such that the reference trajectory is

at the origin. While shifting the system is useful for analysis, the original system is often

easier to interpret and implement in the optimization problem. Since this chapter focuses on

algorithm development as well as theoretical results for closed-loop scheduling, we therefore

leave the state, input, and system in the original variables and present all de�nitions, algo-

rithms, assumptions, and results in these original variables. We do, however, shift the stage

cost as follows.

`(x, u, t) := ¯̀(x, u, t)− ¯̀(xr(t), ur(t), t) = q′(x− xr(t)) + r′(u− ur(t)) (6.9)

such that `(xr(t), ur(t), t) = 0. Note that the stage cost is time-varying even if ¯̀() is not

time-varying because the reference trajectory is time-varying.
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We now brie�y reintroduce time-varying MPC. The nominal system is described by

x+ = f(x, u, 0, t) (6.10)

For a horizon N ∈ I≥1, let φ̂(k;x,u, t) denote the open-loop state solution to the nominal

system in (6.10) at time k ∈ It:N , given the initial state x ∈ X at time t ∈ I≥0 and the

input trajectory u ∈ UN . We also consider a sequence of terminal constraints (Xf (t))
∞
t=0 and

terminal cost Vf : Rn×I≥0 → R≥0, to be de�ned later. We de�ne the set of admissible inputs,

admissible initial conditions, and objective function as follows.

U(x, t) := {u ∈ UN : (φ̂(k;x,u, t), u(k)) ∈ Z(k) ∀k ∈ It:t+N−1

and φ̂(N ;x,u, t) ∈ Xf (N)}

X (t) := {x ∈ X : U(x, t) 6= ∅}

V (x,u, t) :=
t+N−1∑
k=i

`(φ̂(k;x,u, t), u(k), k) + Vf (φ̂(t+N ;x,u, t), t+N)

The MPC problem is then

P(x, t) : V 0(x, t) := min
u∈U(x,t)

V (x,u, t)

and the optimal solution(s) are denoted u0(x, t). We assume a Borel measurable selection

rule is applied to de�ne the single-valued control law κ(·, t) : X (t) → U such that κ(x, t) ∈

{u(0) : u ∈ u0(x, t)} for all x ∈ X (t) and t ∈ I≥0. The closed-loop system is therefore

x+ = f(x, κ(x, t), w, t) (6.11)

and we let φ(k;x,wt:k, t) denote the solution to (6.11) at time k ∈ I≥t, given the initial state
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x ∈ X (t) at time t ∈ I≥0 and the disturbance sequence wt:k ∈ Wk−t. In the context for

production scheduling problems, u0(x, t) de�nes the open-loop schedule for a given state x

and time t while φ(·, x,wk, t) and the corresponding input trajectory are the closed-loop or

implemented schedule for the facility.

Remark 6.3. Since this shifted stage cost `(·) produces a constant shift in the cost function

relative to the original economic cost ¯̀(·), either cost function produces the same optimal

solution u0(·) and therefore control law. Thus, we can also formulate the MPC problem in

terms of ¯̀(·) without altering the following results.

We require the following standard assumptions for the system, stage cost, and constraints.

Assumption 6.4 (System, stage cost, and constraints). The model f : Rn×Rm×Rq×I≥0 →

Rn and stage cost ` : Rn×Rm× I≥0 → R are continuous. The function `(·) is bounded from

below. The set Z is closed and U is compact.

We then require the following assumption for the terminal cost and constraint in the MPC

problem.

Assumption 6.5 (Terminal conditions). The set Xf (t) is closed for all t ∈ I≥0. The terminal

cost Vf (·) is continuous and lower bounded with Vf (xr(t), t) = 0. There exists a terminal

control law κf : Xf × I≥0 → U such that

f(x, κf (x, t), 0, t) ∈ Xf (t+ 1) (6.12)

Vf (f(x, κf (x, t), 0, t), t+ 1) ≤ Vf (x, t)− `(x, κf (x), t) (6.13)

for all x ∈ Xf (t) and t ∈ I≥0. Furthermore, (x, κf (x, t)) ∈ Z(t) for all x ∈ Xf (t) and t ∈ I≥0.

With these assumptions, we can establish Theorem 5.10, which we restate as follows.
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Theorem 6.6 (Nominal performance). Let Assumptions 6.2, 6.4 and 6.5 hold. Then the sequence

of sets (X (t))∞t=0 is positive invariant for the nominal closed-loop system x+ = f(x, κ(x, t), 0, t).

Furthermore, the nominal closed-loop trajectory satis�es

lim sup
T→∞

1

T

t+T−1∑
k=t

`(x(k), κ(x(k), k), k) ≤ 0

in which x(k) = φ(k;x,0, t) for all x ∈ X and t ∈ I≥0.

6.3 Disturbances and inherent robustness

The class of disturbances most relevant to production scheduling applications are typi-

cally large and infrequent, such as breakdowns and delays. We therefore restrict our attention

to systems with only large and infrequent disturbances, i.e., w ∈ W1, via the following as-

sumption.

Assumption 6.7 (Only large disturbances). The disturbance set satis�es W = W0∪W1 with

W0 = {0}.

We also consider the usual assumption of independence for these disturbances.

Assumption 6.8 (Disturbances). The disturbancesw ∈W are random variables that are i.i.d.

in time. The set W is compact and contains the origin.

We use µ : B(W) → [0, 1] to denote the probability measure for w. For δ ∈ [0, 1], we

de�neM(W, δ) as the set of all probability measures on the measurable space (W,B(W))

such that µ(W1) ∈ [0, δ] for all µ ∈M(W, δ).

For production scheduling applications, economic performance of the closed-loop sys-

tem is more important than stability of a speci�c reference trajectory. Thus, Theorem 5.25
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provides the most relevant notion of robustness for closed-loop scheduling. Based on this

theorem, we de�ne economic robustness to large, infrequent disturbances as follows.

De�nition 6.9 (Economically robust to large, infrequent disturbances). The system x+ =

f(x, κ(x, t), w, t), w ∈ W is economically robust to large, infrequent disturbances with

respect to the stage cost `(·) and reference trajectory (xr,ur) in an RPI sequence of sets

(X (t))∞t=0 if there exist δ > 0 and γ(·) ∈ K such that

lim sup
T→∞

1

T

t+T−1∑
k=t

E [`(x(k), κ(x(k), k), k)] ≤ γ(µ(W1)) (6.14)

in which x(k) = φ(k;x,wt:k, t) for all x ∈ X (t), µ ∈M(W, δ), and t ∈ I≥0.

As discussed in Chapter 5, this results ensure that for su�cient infrequent disturbances

(µ(W1) ≤ δ for some δ > 0), (6.14) holds for the closed-loop system. The key feature of this

bound is that γ(·) is a K-function. Recall that the reference trajectory is constructed for the

nominal system and the stage cost `(·) is de�ned relative to the economic cost of this refer-

ence trajectory. Thus, disturbances that occur with arbitrarily small probability produce, at

most, similar small deviations in the economic performance of the system relative to refer-

ence trajectory. Moreover, the guarantee in (6.14) ensures that as the reliability of the plant

increases, i.e., ε → 0, we approach the nominal performance of the system. We again note

that γ(·) is often too conservative to be a useful quantitative bound, but the fact that this

bound exists is signi�cant.

To establish this property of robustness for the closed-loop system, we require the same

assumptions used in Chapter 5.

Assumption 6.10 (Robust recursive feasibility). The sequence of sets (X (t))∞t=0 is robustly

positive invariant for the closed-loop system x+ = f(x, κ(x, t), w, t), w ∈W.
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Assumption 6.11 (Maximum cost increase). There exist b1, b2 ≥ 0 such that

V 0(f(x, κ(x, t), w, t), t+ 1) ≤ V 0(x, t) + b1`(x, κ(x, t), t) + b2 (6.15)

for all x ∈ X (t), w ∈W1, and t ∈ I≥0.

We also restate Theorem 5.25, modi�ed to use the de�nition of robustness in De�nition 6.9.

Theorem 6.12. Let Assumptions 6.2, 6.4, 6.5, 6.7, 6.8, 6.10 and 6.11 hold. Then the system

x+ = f(x, κ(x, t), w, t), w ∈ W is economically robust to large, infrequent disturbances with

respect to the stage cost `(·) and reference trajectory (xr,ur) in the RPI sequence of sets (X (t))∞t=0.

6.3.1 Motivating example

As the practical meaning and utility of this de�nition of robustness may not be clear yet,

we now consider a motivating example to illustrate three important points:

1. Without careful construction of the terminal cost and constraints, closed-loop schedul-

ing algorithms do not have this property of robustness.

2. Suitable nominal performance of a closed-loop scheduling algorithm does not imply

that the closed-loop system is robust to disturbances.

3. Without this property of robustness, the closed-loop scheduling algorithm may produce

myopic and undesirable behavior when subject to disturbances.

We consider a simple scheduling problem, adapted from McAllister et al. (2022), with a

single unit and two tasks, T1 and T2, that produce the product M1. Raw materials are assumed

to be abundant are therefore ignored in the scheduling problem. Each task requires 2 time

steps to complete (τij = 2) and there is demand of 1 unit of M1 every 2 time steps (ξ(t) = 1

if t is even). T1 produces up to 1 unit of M1 (βmax11 = 1) at a cost of 60 (αF11 = 60) while
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T2 produces up to 1.2 units of M1 (βmax21 = 1.2) at a cost of 90 (αF21 = 90). The cost for

maintaining inventory and backlog is 1 and 10, respectively (πS = 1 and πU = 10). We

also allow up to 1 unit of disposal of M1 (µ1 = 1 ) each time step at a cost of 10 (πD = 10).

This disposal action, however, is unused in all of the subsequent closed-loop simulations. For

the nominal system, the optimal periodic schedule is to run T1 at maximum capacity and in

phase with demand. We treat this optimal periodic schedule as the reference trajectory for

the subsequent discussion and de�nition of the stage cost.

We �rst consider a closed-loop scheduling algorithm without a terminal constraint and

cost, i.e., Xf = Rn and Vf (x, t) = 0. This approach is representative of most online or closed-

loop scheduling algorithms proposed in literature, in which a terminal cost and constraint are

not included. Nonetheless, the nominal performance of these algorithms in empirical studies

is often satisfactory. For example, if we initialize this motivating example in phase with the

optimal periodic schedule with a horizon of N = 24, the closed-loop trajectory is identical

to the optimal periodic schedule. This trajectory is shown in Figure 6.2. Thus, the nominal

performance of this scheduling algorithm without a terminal constraint or cost appears to be

acceptable. Nominal performance however does not imply robustness.

We now consider a delay in the completion of T1 at time t = 2, i.e., a disturbance. We

use a horizon of N = 24 and we plot the closed-loop trajectory in Figure 6.3. After this

delay, the algorithm continues to run T1 every two time steps while seemingly indi�erent to

the backlog penalty incurred at every other time step. The consequence of this choice are

severe. The total cost continues to increase relative to the optimal periodic schedule for as

long as we run the simulation. We emphasize that this behavior is a choice of scheduling

algorithm and not caused by an inherent limitation of the underlying system. The system has

a means to address backlog: run T2 instead of T1, produce extra M1 to o�set this backlog, and

return to the optimal periodic schedule. The algorithm, however, chooses to not run T2. Thus,

we subjected the system to a single disturbance and the resulting closed-loop performance
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Figure 6.2: Closed-loop schedule for the motivating example without terminal ingredients.

degrades signi�cantly and permanently. We note that this behavior occurs after a single delay

regardless of when this delay occurs.

In terms of De�nition 6.9, the algorithm and resulting closed-loop system in this example

are not robust. To justify this conclusion, we �rst assume that this delay occurs with arbi-

trarily small probability that we denote ε := Pr(Y = 1) > 0. Nonetheless, as T → ∞,

this disturbance must occur at least once and the behavior in Figure 6.3 eventually occurs.

Therefore, the following inequality holds for all ε > 0.

lim sup
T→∞

1

T

T−1∑
k=0

E[`(x(k), κ(x(k), k), k)] ≥ 5 (6.16)

Thus, the motivating example without a proper terminal cost and constraint violates De�ni-

tion 6.9 and is therefore not robust. Conversely, a system that has the property of robustness

as de�ned in De�nition 6.9 cannot produce the behavior shown in Figure 6.3.

We now further investigate the reasons for this myopic behavior. The scheduling algo-
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Figure 6.3: Closed-loop schedule for the motivating example without terminal ingredients
and with a delay at t = 2.

rithm neglects T2 because the cost to address backlog by running T2 is in fact larger than the

cost to retain backlog for 24 time steps of operation. Hence, the optimal choice for this hori-

zon length is to never deal with the backlog. Without an appropriate terminal cost/constraint,

the optimization problem is unaware of the consequences of any choices that are not realized

within the chosen horizon length. In this example, the algorithm is unaware of the persis-

tent cost of backlog and therefore selects a shortsighted approach, i.e., su�ering the cost of

backlog to avoid the added cost of running T2.

One approach to address this problem is to use a longer horizon length to attempt to better

account for these persistent costs and therefore avoid myopic decisions. While this approach

is sometimes used in industrial implementation of MPC, the horizon length necessary to en-

sure nominal performance and robustness of the closed-loop system is typically unknown.

Moreover, the horizon length require to avoid this behavior may be so large that the opti-

mization problem is intractable. In this motivating example, a horizon length of 24 time steps
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(12 times the processing time and period of the demand cycle) was insu�cient. If we scale this

observation to large facilities with more complex pathways from raw materials to products,

the required horizon length to avoid myopic behavior may be prohibitively large to address

with current optimization solvers. Without a terminal cost and constraint, we can test the

system’s robustness through simulation studies, but we can not guarantee that the algorithm

is robust without enumerating and testing ever possible state and disturbance that the man-

ufacturing facility may encounter. Indeed, there are even systems for which increasing the

horizon length does not ensure nominal performance or stability (Risbeck et al., 2019).

We instead propose a more scalable and generalizable solution to construct a robust closed-

loop scheduling algorithm via appropriate an terminal constraint and cost. By designing a

terminal constraint and cost that satisfy Assumptions 6.5, 6.10 and 6.11, we can guarantee

that the closed-loop scheduling algorithm is robust in terms of De�nition 6.9 without the

computational demands of long horizon lengths and exhaustive testing of the algorithm.

Using the procedure discussed in the subsequent section, we design terminal ingredients

that satisfy Assumptions 6.5, 6.10 and 6.11 for this motivating example. We then decrease the

horizon length to only 8 time steps and plot the resulting closed-loop trajectory in Figure 6.4.

With this terminal cost and constraint, the closed-loop scheduling algorithm now recognizes

that the cost of maintaining backlog outweighs the cost of running T2 in the long term and

therefore chooses to run T2 after the disturbance occurs. After paying down the backlog,

the system returns to the optimal periodic schedule. Thus, the system recovers after a single

disturbances with only a temporary increase in the economic operating cost. After a su�cient

amount of time, the time-average cost of the closed-loop system with a single delay is no

di�erent than the time-average cost of the nominal system, i.e.,

lim sup
T→∞

1

T

T−1∑
k=0

E[`(x(k), κ(x(k), k), k)]→ 0
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Figure 6.4: Closed-loop schedule for the motivating example with terminal ingredients and
subject to a delay at t = 2.

as Pr(Y = 1) → 0. This behavior is an example of robustness, as de�ned in De�nition 6.9

and guaranteed by the terminal cost and constraint chosen for this algorithm.

6.4 Robustness of closed-loop scheduling

In this section, we design a terminal cost and constraint such that the closed-loop schedul-

ing algorithm is robust. We �rst note that the model, stage cost, and constraints de�ned for

the general production scheduling problem satisfy Assumption 6.4. A reference trajectory

that satis�es Assumption 6.2 can be generated by a periodic optimization problem for the

nominal system or any heuristic scheduling method.
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6.4.1 The terminal constraint

In selecting the terminal constraint for any MPC problem, we must balance two competing

goals: to ensure feasibility of the optimization problem and to admit a terminal cost that can

satisfy Assumption 6.5. To ensure feasibility, we want to select as large of a terminal region

as possible, i.e., choose Xf as close to X as possible. To construct a terminal cost that satis�es

Assumption 6.5, we want to select as small of a terminal region as possible.

One option for the terminal constraint and cost is to choose Xf (t) := {xr(t)} and Vf (·) =

0. We thereby guarantee that Assumption 6.5 holds with κf (xr(t)) = ur(t). Unfortunately,

the terminal equality constraint de�ned by Xf (t) signi�cantly reduces the size of the feasi-

ble set X (t) and may render the optimization problem infeasible for relevant disturbances.

Thus, we begin by expanding this terminal region to ensure robust recursive feasibility of the

sequence of sets (X (t))∞t=0.

For the subsequent discussion, the reference trajectory is given by

xr(t) =



W̄r(t)

B̄r(t)

S̃r(t)

Sr(t)

Ur(t)


For su�ciently long horizons, requiring W̄ and B̄ to terminate in-phase with the reference

trajectory is unlikely to a�ect feasibility of the optimization problem. Similarly, requiring

inventory S̃ and S to meet or exceed their corresponding values in the reference trajectory

is unlikely to restrict the optimization problem. We do not, however, allow any amount of

inventory that exceeds the reference trajectory in the terminal constraint. Instead, we de�ne
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the parameters

ω̃k = ψ̃k −max
t∈I≥0

S̃r,k(t)

ωk = ψk −max
t∈I≥0

Sr,k(t)

for all k ∈ KI and k ∈ KP , respectively. These parameters represent the maximum amount

of inventory that the facility can retain in excess of the reference trajectory without violating

maximum inventory constraints for all t ∈ I≥0. In the terminal constraint, we do not allow

inventories that exceed the reference trajectory by more than ω̃ or ω, as appropriate.

We can make these arguments for these elements of the state primarily because these

variables are bounded by physical limitations of the system. Thus, a su�ciently long horizon

allows the scheduling algorithm to drive the system to the exact con�guration required (W̄ =

W̄r(t), B̄ = B̄r(t)) with su�cient inventories (S̃ ≥ S̃r(t), S ≥ Sr(t)). Backlog, however, is

not bounded. For any horizon length, there also exists a su�ciently large initial backlog such

that the terminal state cannot reach the reference trajectory. Thus, we relax the terminal

constraint to include any value of backlog that exceeds the reference trajectory (U ≥ Ur(t)).

The terminal constraint is therefore

Xf (t) := {x ∈ X : W̄ = W̄r(t), B̄ = B̄r(t),

0 ≤ S̃ − S̃r(t) ≤ ω̃, 0 ≤ S − Sr(t) ≤ ω, U ≥ Ur(t)} (6.17)

in which the inequalities are element-wise comparisons. Note that Xf (t) is closed for all

t ∈ I≥0. This relaxed terminal constraint ensures robust recursive feasibility for a much larger

class of scheduling problems than a terminal equality constraint. Verifying Assumption 6.10,

however, remains di�cult for scheduling problems of industrial scale.

With terminal constraints, we still need the horizon length to exceed a potentially un-
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known minimum to satisfy Assumption 6.10. This requirement is very similar to that of us-

ing su�ciently long horizons to guarantee robustness without terminal costs and constraints.

There is, however, an important practical di�erence between these methods that is worth not-

ing. If a horizon length is insu�cient to satisfy Assumption 6.10 with terminal constraints, the

performance and robustness of the closed-loop system remains satisfactory until an infeasi-

ble optimization problem occurs. This infeasible optimization problem is easy to observe and

address by increasing the horizon length. If we instead remove the terminal constraint and

cost, an insu�cient horizon length is not easily recognized and symptoms of this shortcoming

may not be obvious until the algorithm is run for a long time. Thus, we may experience poor

closed-loop performance until the problem is identi�ed. Furthermore, terminal constraints

are prudent because they enable the design of suboptimal closed-loop scheduling algorithms,

which we discuss in Section 6.6. We therefore develop an algorithm for closed-loop schedul-

ing that relies on terminal constraints.

6.4.2 The terminal cost

To construct a terminal cost that satis�es Assumption 6.5, one typically begins by deter-

mining a terminal control law for the system that renders the reference trajectory (origin)

asymptotically stable. The terminal cost is then de�ned as the in�nite horizon cost of the

nominal system subject to this terminal control law extending from any x ∈ Xf (t), or some

suitable approximation of this in�nite horizon cost. A key requirement is that the termi-

nal cost is an analytic function such that we can evaluate this cost in the MPC optimization

problem.

In previous chapters, we often used a quadratic stage cost and therefore constructed the

terminal control law and terminal cost via the LQR solution of the nominal linearized system

centered at the target steady-state (or reference trajectory). The terminal constraint can then
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include any state such that the input constraints are not active. This approach produces a

quadratic function for the terminal cost that is easy to implement in the optimization problem.

Closed-loop scheduling problems, however, include discrete-valued input constraints that

are always active and use an economic cost function that is neither quadratic nor positive

de�nite with respect to the reference trajectory. By requiring W̄ and B̄ to terminate exactly

in phase with the reference trajectory via the terminal constraint, we need to construct a

terminal control law and cost for only inventory and backlog. Due to the many state and

input constraints in the scheduling problem, we rely on the additional �exibility a�orded by

the inventory disposal action to construct this terminal control law and terminal cost. We

also require that the reference trajectory overproduces each of the �nal products by some

margin σ > 0. By requiring the reference trajectory to overproduce each product, we ensure

that some recourse is available to the system along the reference trajectory, i.e., we can use

the excess production to address backlog. We specify these requirements in the following

assumption.

Assumption 6.13 (Disposal and overproduction). We can dispose of inventory for all prod-

ucts, i.e., µk > 0 for all k ∈ KP . The reference trajectory overproduces and disposes of

some small amount of each product at every time step, i.e., there exists σk > 0 such that

Dr,k(t) ∈ [σk, µk/2] for all t ∈ I≥0 and k ∈ KP . Also, Hr,k(t) + σk ≤ ηk for all k ∈ KP .

The ability to dispose of extra product and the requirement that we do so in the refer-

ence trajectory may, at �rst, seem undesirable. Why would we dispose of material that we

may need in the future? The reason is based on the balance between the persistent cost of

inventory and the �xed cost of production. For example, if we produce one unit of product

material at a cost of 10, but must store the material for 100 time steps at a cost of 1 per time

step, the cost of retaining the material in storage far outweighs the cost to just reproduce the

material again at a later time. Moreover, if demand at future time steps is subject to signi�cant
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uncertainty, holding on to potentially useless material may not be an economically bene�cial

strategy. Recall that this “disposal” action can also include shipping the material to a long-

term storage facility or any other action that removes the material from the cost function of

the scheduling problem.

We also note that most robust and stochastic optimization approaches to scheduling lead

to overproduction of �nal products relative to the nominal demand pattern. To our knowl-

edge, these methods do not discuss how this excess inventory is to be handled if the real-

ized demand pro�le does not require this extra production. In contrast to these robust and

stochastic optimization approaches to scheduling that are used in an open-loop fashion, we

instead require overproduction only in the reference trajectory used to construct the terminal

constraint and cost for the scheduling algorithm. Thus, we do not necessarily overproduce

or dispose of these products in the closed-loop trajectory, as we demonstrate in subsequent

examples.

To construct a reference trajectory that satis�es Assumption 6.13, we can solve a �nite

horizon, periodic optimization problem with the requirement that Dk ≥ σk for all time steps

and some small margin σk > 0 for each k ∈ KP . While this reference trajectory results in a

higher cost relative to a periodic solution that allows anyDk ≥ 0, we can choose a small value

of σk such that there di�erence between these two periodic solutions is small. For example,

we selected σ = 0.01 in the motivating example. Note that the guarantees in Theorem 6.6 and

Theorem 6.12 are now relative to this new reference trajectory. Nonetheless, the closed-loop

performance of this scheduling algorithm can, and often does, outperform these bounds.
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With this reference trajectory, we de�ne the terminal control law as

κ(x, t) :=



Wr(t)

Br(t)

Vr(t)

Hr(t) + min{∆U, σ}

Dr(t) + min{∆S, µ/2} −min{∆U, σ}


(6.18)

in which ∆S := S−Sr(t) and ∆U := U−Ur(t). The �rst step in verifying Assumption 6.5 is

to show that this terminal control law is a feasible input and that f(x, κ(x, t), 0, t) ∈ Xf (t+1)

for all x ∈ Xf (t) and t ∈ I≥0. To establish these properties of κf (·), we exploit the nominal

dynamics of a scheduling problem.

We note that the structure of the nominal dynamical equation for a scheduling problem

is special in that all the eigenvalues of A are either zero or one. The lifted states are de�ned

by deadbeat dynamics, i.e., eigenvalues of zero, while elements of inventory and backlog are

all integrators, i.e., eigenvalues of one. Scheduling problems therefore satisfy the following

assumption.

Assumption 6.14 (Integrating dynamics). If x−xr(t) = [0 0 ∆S̃ ′ ∆S ′ ∆U ′]′ and u−ur(t) =

[0 0 0 ∆H ′ ∆D′]′, then x+ = f(x, u, 0, t) satis�es

x+ − xr(t+ 1) =



0

0

∆S̃ ′

∆S −∆H −∆D

∆U −∆H


(6.19)

With this additional assumption, we can establish the following result.
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Lemma 6.15. Consider the system in (6.2), constraint Z, and stage cost in (6.9) de�ned for

production scheduling. Let Assumptions 6.2, 6.13 and 6.14 hold and let the terminal constraint

be de�ned by (6.17). If x ∈ Xf (t), then (x, κf (x, t)) ∈ Z and f(x, κf (x, t), 0, t) ∈ Xf (t + 1)

for the terminal control law de�ned in (6.18).

Proof. From Assumption 6.2, κf (·) satis�es the required constraints for W , B, and V for all

x ∈ Xf (t). For x ∈ Xf (t), we have that

Hr(t) + min{∆U, σ} ≤ Hr(t) + σ ≤ η

Dr(t) + min{∆S, µ/2} −min{∆U, σ} ≤ µ

from Assumption 6.13. Furthermore, Dr(t) ≥ σ, so D ≥ 0 as well. Thus, (x, κf (x, t)) ∈ Z

for all x ∈ Xf (t) and t ∈ I≥0.

Next, we consider x+ = f(x, κf (x, t), 0, t). From Assumption 6.14, we have (6.19) with

∆S̃,∆S,∆U ≥ 0. From the de�nition of κf (·), we have that ∆H = min{∆U, σ} and ∆D =

min{∆S, µ/2} −min{∆U, σ} in (6.19). Thus, ∆U −∆H ≥ 0. We also have that

∆S −∆H −∆D = ∆S −min{∆S, µ/2}.

and therefore 0 ≤ ∆S −∆H −∆D ≤ ∆S. Since x ∈ Xf (t), we have that 0 ≤ ∆S ≤ ω and

0 ≤ ∆S̃ ≤ ω̃. Thus, we have that x+ ∈ Xf (t+ 1).

We now use this terminal control law to construct the following in�nite horizon cost

function.

V
κf
∞ (x, t) :=

∞∑
k=t

`(x(k), κf (x(k), k), k)

in which x(k + 1) = f(x(k), κf (x(k), k), 0, k) and x(t) = x. This in�nite horizon cost

function can in fact be written as an analytic function via the following transformation.
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Given the terminal constraint in (6.17), terminal control law in (6.18), and the fact that S̃

does not a�ect the stage cost, we can reduce the system of interest in this cost function to a

lower dimension without loss of information. Speci�cally, we de�ne the variable

z := Rx(x− xr(t)) =

∆S

∆U


for all x ∈ Xf (t) and t ∈ I≥0 using an appropriate transformation matrix Rx ∈ Rn̄×n. From

Assumption 6.14 and letting u = κf (x, t), we have the reduced system dynamics

z+ = z −min{z,m} =

∆S −min{∆S, µ/2}

∆U −min{∆U, σ}


and stage cost

`(x, u, t) = q̃′z + r̃′min{z,m}

in which

m =

µ/2
σ

 q̃ =

πS
πU

 r̃ =

 πD

−πD


Each element of zi is nonnegative and given by the equation

zi(k) = min{zi(t)− (k − t)mi, 0}

for future times k ∈ I≥t. Since the stage cost is linear and each element of z is decoupled, we

can write the in�nite horizon cost as a sum of functions of each element zi as follows.

V
κf
∞ (x, t) =

n̄∑
i=1

V
κf
∞,i(zi, t)
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These individual cost functions for each element of zi are given by

V
κf
∞,i(zi, t) =

∞∑
k=t

q̃izi(k) + r̃i min{zi(k),mi}

=

Ni(zi)∑
k=0

q̃i(zi − kmi) + r̃izi

= q̃i (Ni(zi) + 1) (zi − kmiNi(zi)/2) + r̃izi

in whichNi(zi) = bzi/mic and b·c denotes rounding down to the nearest integer. This in�nite

horizon cost function is both analytic can be used as a terminal cost because

V
κf
∞ (f(x, κf (x, t), 0, t), t+ 1)− V κf

∞ (x, t) = `(x, κf (x, t))

for all x ∈ Xf (t) and t ∈ I≥0 by the de�nition of an in�nite horizon cost.

We can potentially include this cost function in an optimization problem by replacing

Ni(zi) with the integer decision variable Ni for each element of z. We enforce the constraint

Ni ≥ zi/mi − 1 and since V κf
∞,i(·) increases with increasing Ni, the optimizer selects the

smallest integer Ni that satis�es the constraint Ni ≥ zi/mi − 1, i.e., the largest integer less

than zi/mi. Moreover, we can verify that V κf
∞,i(·) and therefore V κf

∞ (·) are continuous on

Xf (t).

Alternatively, we can construct a more convenient approximation of this in�nite horizon

cost function to use as the terminal cost. If we use the approximation M(zi) ≈ zi/mi, we

have

V
κf
∞,i(zi, t) =

q̃i
2mi

z2
i +

(
q̃i
2

+ r̃i

)
zi

While this approximation does not satisfy Assumption 6.5, we require only a minor modi�ca-

tion to construct the following terminal cost function that is used for the rest of this chapter.
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Vf (x, t) :=
n̄∑
i=1

(
q̃i

2mi

z2
i + (q̃i + r̃i)zi

)
(6.20)

We also can write (6.20) in the more general form

Vf (x, t) = (x− xr(t))′P (x− xr(t)) + p′(x− xr(t)) (6.21)

in which P ∈ Rn×n and p ∈ Rn are de�ned as

P := diag([0 0 0 (πS/µ)′ (πU/2σ)′])

p′ := [0 0 0 (πS + πD)′ (πU − πD)′]

To ensure that (6.20) is a valid terminal cost, we require the following minor restrictions

on inventory and backlog costs. We also use this assumption in the next subsection to verify

that Assumption 6.11 holds.

Assumption 6.16. All �nal products incur positive inventory and backlog cost, i.e., there

exists c1 > 0 such that πSk , πUk ≥ c1 for all k ∈ KP . Inventories for intermediates and

feedstock materials are bounded, i.e., ψ̃k <∞ for all k ∈ KI .

Proposition 6.17. Consider the system in (6.2), constraint Z, and stage cost in (6.9) de�ned for

production scheduling. Let Assumptions 6.2, 6.13, 6.14 and 6.16 hold. Then Assumption 6.5 is

satis�ed for the terminal constraint in (6.17), terminal control law in (6.18), and terminal cost in

(6.20).

Proof. From Lemma 6.15, we have that (x, κf (x, t)) ∈ Z and x+ = f(x, κf (x, t), 0, t) ∈

Xf (t + 1) for all x ∈ Xf (t) and t ∈ I≥0. By construction, we have that Vf (xr(t), t) = 0

because z = 0 if x = xr(t) for all t ∈ I≥0. From Assumptions 6.13 and 6.16, we have that

q̃i/(2mi) is strictly positive and therefore Vf (·) is bounded from below for all x ∈ Xf and
232



Closed-Loop Scheduling Chapter 6

t ∈ I≥0.

Next, we verify that κf (x, t) satis�es

Vf (x
+, t+ 1)− Vf (x, t) + `(x, κf (x, t), t) ≤ 0 (6.22)

for all x ∈ Xf (t) and t ∈ I≥0. Given the de�nition of Vf (·) we can equivalently write (6.22)

as
n̄∑
i=1

(
Vf,i(z

+
i , t+ 1)− Vf,i(zi, t) + q̃izi + r̃ivi

)
≤ 0 (6.23)

in which vi = min{zi,mi}. We then have that

Vf,i(z
+
i , t+ 1) =

q̃i
2mi

(zi − vi)2 + (q̃i + r̃i)(zi − vi)

=
q̃i

2mi

z2
i −

q̃i
mi

zivi +
q̃i

2mi

v2
i + (q̃i + r̃i)zi − (q̃i + r̃i)vi

= Vf,i(zi, t)−
q̃i
mi

zivi +
q̃i

2mi

v2
i − (q̃i + r̃i)vi

We rearrange this equation, add q̃izi + r̃ivi to both sides, and note that q̃i ≥ 0 from Assump-

tion 6.16 to give

Vf,i(z
+
i , t+ 1)− Vf,i(zi, t) + q̃izi + r̃ivi = q̃i

(
1

2mi

v2
i −

1

mi

zivi + zi − vi
)

If zi ≤ mi, we have that vi = min{zi,mi} = zi and therefore

1

2mi

v2
i −

1

mi

zivi + zi − vi = − 1

2mi

z2
i ≤ 0

If instead zi > mi, then vi = min{zi,mi} = mi and we have

1

2mi

v2
i −

1

mi

zivi + zi − vi = −mi/2 ≤ 0
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Thus, we have that

Vf,i(z
+
i , t+ 1)− Vf,i(zi, t) + q̃izi + r̃ivi ≤ 0

and each term of the summation in (6.23) is nonpositive. Therefore, κf (·) satis�es (6.22) for

all x ∈ Xf (t) and t ∈ I≥0 and Assumption 6.5 holds.

Note that the terminal cost is quadratic and the resulting optimization problem is there-

fore a mixed-integer quadratic program (MIQP). Fortunately, most mixed-integer optimiza-

tion solvers that are frequently used to solve scheduling problems, such as Gurobi, can also

handle MIQPs. The proposed optimization problem is therefore well within the capabilities

of current optimization software.

Remark 6.18. If quadratic terms must be avoided in the formulation, we can instead choose

P = 0 and use

p′ := [0 0 0 (bπS/2µ+ πD)′ (bπU/σ − πD)′]

in (6.21). For any b ≥ 0, this terminal cost satis�es Assumption 6.5 if zi ≤ b for all i. This

observation suggests that a large linear penalty assessed on excess inventory and backlog

(relative to the reference trajectory) may be su�cient to ensure robustness in practice.

6.4.3 Verifying Assumption 6.11

With this terminal cost and constraint, we now verify that Assumption 6.11 holds for this

problem formulation. First, we note that the production scheduling model and disturbances

considered in this chapter satisfy the following assumption.

Assumption 6.19. There exists e3 ≥ 0 such that

|f(x, u, w, t)− f(x, u, 0, t)| ≤ e3
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for all (x, u) ∈ Z, w ∈W, and t ∈ I≥0.

Furthermore, the nominal system and stage cost are linear and therefore satisfy the prop-

erties given in the following two lemmata.

Lemma 6.20. Let Assumption 6.4 hold. For the nominal system in (6.3) and �xed N ∈ I≥0,

there exist e1, e2 > 0 satisfying

|φ̂(k;x1,u1, t)− φ̂(k;x2,u2, t)| ≤ e1|x1 − x2|+ e2 (6.24)

for all x1, x2 ∈ X, u1,u2 ∈ UN , t ∈ I≥0 and k ∈ It:t+N .

Lemma 6.21. Let Assumptions 6.4 and 6.16 hold. For the stage cost in (6.9), there exist c1, c2 > 0

and d1, d2 ≥ 0 satisfying

c1|x1 − x2| − d1 ≤ |`(x1, u1, t)− `(x2, u2, t)| ≤ c2|x1 − x2|+ d2

for all x1, x2 ∈ X, u1, u2 ∈ U, and t ∈ I≥0.

Using these results, we now establish that Assumption 6.11 holds for this formulation.

Proposition 6.22. Consider the system in (6.2), constraint Z, and stage cost in (6.9) de�ned for

production scheduling. Let the terminal constraint and terminal cost be de�ned by (6.17) and

(6.21). Let Assumptions 6.2, 6.4, 6.5, 6.10, 6.16 and 6.19 hold. Then we have that Assumption 6.11

holds.

Proof. Choose x ∈ X (t), t ∈ I≥0, and de�ne x+ = f(x, κ(x, t), w, t) for some w ∈ W

and x̂+ = f(x, κ(x, t), 0, t). Let u+ = u0(x+, t + 1) and û+ = u0(x̂+, t + 1). We denote

x+(k) = φ̂(k;x+,u+, t + 1), x̂+(k) = φ̂(k; x̂+, û+, t + 1) for all k ∈ It+1:t+1+N and denote

x+
f = x+(t+N + 1), x̂+

f = x̂+(t+N + 1). From Lemma 6.20 and Assumption 6.19, we have
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that

|x+(k)− x̂+(k)| ≤ e1e3 + e2 =: e4

We use this bound with Lemma 6.21 to give

`(x+(k), u+(k), k)− `(x̂+(k), û+(k), k) ≤ c2|x+(k)− x̂+(k)|+ d2

≤ c2e4 + d2

Therefore, the di�erence between optimal costs is upper bounded by a constant plus the dif-

ference between terminal costs.

V 0(x+, t+ 1)− V 0(x̂+, t+ 1) ≤
t+N∑
k=t+1

(
`(x+(k), u+(k), k)− `(x̂+(k), û+(k), k)

)
+ Vf (x

+
f , t+N + 1)− Vf (x̂+

f , t+N + 1)

≤ b̃1 + Vf (x
+
f , t+N + 1)− Vf (x̂+

f , t+N + 1)

in which b̃1 := N(c2e4 + d2).

Next, we construct a bound for the di�erence between terminal costs. Let y1 = x+
f −

xr(t + N + 1), y2 = x̂+
f − xr(t + N + 1), and note that |y1 − y2| = |x+

f − x̂+
f | ≤ e4. By the

de�nition of Vf (·), we have

Vf (x
+
f , t) = y′1Py1 + p′y1

= (y1 − y2 + y2)′P (y1 − y2 + y2) + p′(y1 − y2 + y2)

= (y1 − y2)′P (y1 − y2) + (y1 − y2)′Py2 + y′2Py2 + p′(y1 − y2) + p′y2

≤ Vf (x̂
+
f , t) + 2e4|P ||y2|+ |P |e2

4 + |p|e4

≤ Vf (x̂
+
f , t) + 2e4|P ||y2|+ b̃2
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in which b̃2 := |P |e2
4 + |p|e4. We also have that

|y2| = |x̂+
f − xr(t+N + 1)| ≤ e1|x̂+ − xr(t+ 1)|+ e2

Since x̂+ is the nominal evolution of the system, we have that

|x̂+ − xr(t+ 1)| ≤ e1|x− xr(t)|+ e2

≤ (e1/c1)|`(x, κ(x, t), t)|+ (e1d1/c1) + e2

and therefore

2e4|P ||y2| ≤ b1|`(x, κ(x, t), t)|+ b̃3

in which b1 := 2e4|P |e2
1/c1 and b̃3 := 2e4|P |(e1d1/c1 + e1e2 + e2). Therefore, the optimal

cost di�erence has the following upper bound.

V 0(x+, t+ 1)− V 0(x̂+, t+ 1) ≤ b1|`(x, κ(x, t), t)|+ b̃1 + b̃2 + b̃3 (6.25)

From Assumption 6.4, there exists m ∈ R≤0 such that `(x, u, t) ≥ m for all (x, u, t) ∈

Z× I≥0. Therefore, we have that

V 0(x+, t+ 1)− V 0(x̂+, t+ 1) ≤ b1`(x, κ(x, t), t) + b̃1 + b̃2 + b̃3 + 2b1m (6.26)

With the nominal cost decrease ensured by Assumption 6.5, we have that

V 0(x̂+, t+ 1)− V 0(x, t) ≤ −`(x, κ(x, t), t) ≤ −m
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We combine this nominal cost decrease with (6.26) to give

V 0(x+, t+ 1)− V 0(x, t) ≤ (b1 − 1)`(x, κ(x, t), t) + b2

in which b2 ≥ b̃1 + b̃2 + b̃3 + (2b1 − 1)m. Therefore, Assumption 6.11 holds.

6.4.4 The main result

With the terminal constraint, terminal cost, and assumptions introduced in this section,

we have the following theorem.

Theorem 6.23. Consider the system in (6.2), constraint Z, and stage cost in (6.9), de�ned for

production scheduling. Let the terminal constraint and terminal cost be de�ned by (6.17) and

(6.21). Let Assumptions 6.2, 6.4, 6.7, 6.8, 6.10, 6.13, 6.14, 6.16 and 6.19 hold. Then the system

x+ = f(x, κ(x, t), w, t), w ∈ W is economically robust to large, infrequent disturbances with

respect to the stage cost `(·) and the reference trajectory (xr,ur) in the RPI sequence of sets

(X (t))∞t=0, i.e., the closed-loop scheduling algorithm is inherently robust.

Proof. Apply Propositions 6.17 and 6.22 to establish that Assumptions 6.5 and 6.11 hold. Then

apply Theorem 6.12 to complete the proof.

We now review the assumptions used in Theorem 6.23. Assumption 6.2 requires a valid

reference trajectory, e.g., a nominal periodic schedule. Assumption 6.4 holds for the model,

constraint, and stage cost introduced in this chapter. For production scheduling algorithms,

the most pertinent class of disturbances are large and we therefore use Assumption 6.7. Fur-

thermore, we require these disturbances to be independent and identically distributed via

Assumption 6.8. By choosing a su�ciently long horizon and de�ning the terminal constraint

to allow a range of values for each material’s inventory and an unbounded amount of backlog

for each material, we ensure that Assumption 6.10 is satis�ed for a general class of production
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scheduling problems. Assumption 6.13 requires that the reference trajectory overproduces

each �nal product by some small margin σ and that there is an option to dispose of prod-

uct material. Assumption 6.14 holds because of the structure of the optimization problem

and Assumption 6.16 requires that we choose positive costs for maintaining inventory and

backlog of product materials. Assumption 6.19 holds for the disturbances considered in this

scheduling problem.

We note that Assumptions 6.10 and 6.19 are the only two assumptions that address the be-

havior of the system subject to disturbances. In the future, we may want to include additional

large and infrequent disturbances in this problem formulation that are currently absent. For

these additional disturbances, we need to check only that Assumptions 6.10 and 6.19 still hold,

since the remaining assumptions are una�ected.

6.5 Example

We consider a scheduling problem adapted from McAllister et al. (2022) and depicted in

Figure 6.5. Unit 1 (U1) can run task 1 (T1) to produce the intermediate material M1. Unit 2

(U2) can run task 2 or 3 (T2 or T3) that consume M1 to produce either M2 or M3, respectively.

We also allow for a hold task (T4) that can take place after T1. This hold task is important to

retain robust recursive feasibility of the scheduling algorithm due to the maximum inventory

capacity for M1. There is demand for 45 units of M2 every 6 hours. If we are unable to meet

this demand, we accumulate backlog. While there is no speci�c demand for M3, we may sell

up to 5 units of M3 each hour. An optimal schedule therefore meets the demand for M2 while

maximizing the production and sale of M3. The parameters for this scheduling problem are

speci�ed in Tables 6.1 and 6.2.

For this scheduling problem, we plot the optimal periodic schedule for a 48 hour horizon

and 1 hour time steps with the requirement that we overproduce M2 by 0.05 units per hour,

239



Closed-Loop Scheduling Chapter 6

Unit 2Unit 1

RM T1

τ = 2

T2

τ = 2

M2

M1

T4

τ = 1

T3

τ = 3

M3

Figure 6.5: Diagram of manufacturing pathways in the example problem.

Table 6.1: Task and unit parameters for the scheduling example problem.
Task (Unit) βminij βmaxij τij

T1 (U1) 5 20 2
T2 (U2) 10 20 2
T3 (U2) 10 20 3
T4 (U1) 5 20 1

Table 6.2: Material parameters for the scheduling example problem.
Material πSk πUk πk πDk νSk µk ψk or ψ̃k

M1 - - - - 0 - 40
M2 1 10 - 12 0 1 100
M3 1 - 10 12 5 1 20
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Figure 6.6: Optimal periodic schedule for a horizon length of 48 hours with σ2 = 0.05.

i.e., σ2 = 0.05 and we constrain D2 ≥ σ2 in the periodic optimization problem. We plot this

periodic schedule in Figure 6.6 and use this periodic schedule as the reference trajectory in

all subsequent simulations. Note that we omit D2 from Figure 6.6, since the values of D2 are

too small to distinguish from zero on the chosen y-axis scales.

For the closed-loop system, we consider the potential for breakdowns (Z), 1 hour delays

(Y ), and 20% yield losses (L) for both U1 and U2 at each hour. Let ε = Pr(w 6= 0) = Pr(w ∈

W1), and split the probability of a disturbance occurring equally between each disturbance

type, i.e.,

Pr(Yj = 1) = Pr(Zj = 1) = Pr(Lj = 0.2) = 1− (1− ε)1/6

for both j = 1, 2. We use a horizon of N = 12 for the closed-loop scheduling algorithm with

a time step of 1 hour and we use terminal constraints and costs constructed from the periodic
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Figure 6.7: An example closed-loop trajectory (solid) and open-loop schedule (faded) for ε = 0.2.

reference trajectory according to (6.17) and (6.21). Since there is no speci�c demand for M3,

we set U3 = 0 and ignored this element of the state in the terminal constraint. We choose the

initial state of the facility to be the state of the periodic optimal schedule at t = 0. Recall that

in this closed-loop scheduling algorithm, we update the state and resolve the optimization

problem every hour to compute a new schedule and control action.

In Figure 6.7, we plot an example of the closed-loop trajectory (solid) and current open-

loop schedule (faded) with ε = 0.1. Note that backlog in the open-loop schedule is not re-

quired to terminate in phase with the reference trajectory, i.e., we allow U2(44) ≥ 0. Thus,

the optimization problem remains feasible. No inventory is disposed in this closed-loop tra-

jectory or any of the simulations in this section.
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Figure 6.8: Trajectories of ∆(t) and their sample average for 30 simulations of the
closed-loop system with ε = 0.1.

To characterize the economic performance of the closed-loop trajectory, we de�ne

∆(t) :=
1

t

t−1∑
k=0

`(x(k), u(k), k)

in which x(k) = φ(k;x,wk, 0) is the closed-loop state trajectory and u(k) = κ(x(k), k) is the

corresponding input trajectory. In other words, ∆(t) is the time-average cost of the closed-

loop trajectory relative to the reference trajectory up time t. Note that this performance

metric is used in De�nition 6.9 to de�ne robustness. We also used this economic performance

metric in Section 5.4.2.

We simulate the closed-loop trajectory for 336 hours (2 weeks) for 30 di�erent realizations

of the disturbance trajectory with ε = 0.1. We plot the values of ∆(t) for each of these

closed-loop trajectories in Figure 6.8. Although the individual simulations present a range of

trajectories and performance, the sample average of these trajectories appears to converge to

a constant value as t→∞.

In Figure 6.9, we plot the sample average of ∆(t) for multiple values of ε. We observe that
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Figure 6.9: Sample average Ê[∆(t)] for 30 simulations of the closed-loop trajectory and
multiple values of ε.

for ε ≤ 0.15, the trajectories of Ê[∆(t)] appear to converge to a constant value for each ε.

Thus, we presume that δ ≥ 0.15 for this example in De�nition 6.9.

In addition to the terminal constraint and cost proposed in (6.17) and (6.21) (denoted the

LQ algorithm), we also consider the performance of two other choices of terminal conditions.

In the NTC algorithm, we omit the terminal constraint and set the terminal cost to zero, i.e.,

Xf = Rn and Vf (·) = 0. In the linear algorithm, we use the terminal constraint in (6.17) with

the linear approximation of (6.21) discussed in Remark 6.18.1 For each of these algorithms,

we observe that Ê[∆(t)] diverges for ε > 0.15. Since divergence of Ê[∆(t)] is primarily the

result of physical limitations for the facility (e.g., max production capacity), this observation

is reasonable.

For each of these algorithms, we de�ne γ̂(ε) := Ê[∆(336)] as an approximation of the

in�nite limit in (6.14) for ε ≤ 0.15. We plot the values of γ̂(ε) for these three algorithms in

Figure 6.10. For the LQ and linear algorithms, the behavior of γ̂(ε) is consistent with De�ni-

tion 6.9. For the NTC algorithm, however, the value of γ̂(0) is greater than zero, indicating
1We use the constant b = 100 in the approximation detailed in Remark 6.18
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Figure 6.10: The value of γ̂(ε) for multiple values of ε and three production scheduling
algorithms with di�erent terminal constraints and costs.

that the nominal closed-loop performance of the system is worse than the reference trajectory.

Thus, the NTC algorithm is not robust in terms of De�nition 6.9. In fact, the performance of

the NTC algorithm is worse than both the LQ and linear algorithm for all values of ε tested.

The LQ and linear algorithm both outperform the reference trajectory and do not dispose

of any product material. For smaller values of ε, the performance of the linear algorithm is

similar to the LQ algorithm.

Note that for all of these simulations with various disturbance trajectories, we did not en-

counter a single infeasible optimization problem for the LQ or linear closed-loop scheduling

algorithm with the terminal constraint in (6.17). Thus, we conclude that a horizon of N=12 is

su�cient for Assumption 6.10 to hold with this terminal constraint. If we instead used a ter-

minal equality constraint (Xf (t) = {xr(t)}), we frequently encounter infeasible optimization

problems that render the algorithm useless in practice.
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6.6 Extensions for large-scale scheduling problems

We now discuss a few extensions to the proposed closed-loop scheduling algorithm that

improve the utility of this algorithm in practice. Speci�cally, we introduce a closed-loop

scheduling algorithm that includes a rescheduling penalty, which discourages frequent alter-

ations to the open-loop schedule for the facility, and can operate with suboptimal solutions

to the proposed optimization problem. It turns out that these two seemingly distinct topics

are in fact highly related and therefore merit a combined discussion. We then establish that

this new algorithm is also robust to large and infrequent disturbances.

By allowing reoptimization of the entire schedule at each time step, the schedule can

change frequently and signi�cantly. In most process control applications of MPC, changes in

the open-loop control trajectory are less relevant. For a scheduling problem in a manufactur-

ing facility, however, human operators often observe and execute many components of the

schedule computed by these algorithms. Frequent and nonintuitive alterations to the sched-

ule, particular in the near future, may frustrate these operators and lead to so-called schedule

nervousness (Kopanos et al., 2008). While no direct economic metric is typically available

for this e�ect, schedule nervousness can nonetheless lead to signi�cant performance loss, in-

creased delays, and even safety concerns in a manufacturing facility (Kopanos et al., 2008).

Thus, we want to incorporate a means to balance the economic bene�ts of rapid reschedul-

ing with the potential schedule nervousness that these rescheduling events may produce in

a manufacturing facility. Speci�cally, we introduce a generalized rescheduling penalty that is

added to the economic cost function of the previous closed-loop scheduling algorithm.

In addition to schedule nervousness, we also address the computational limitations of the

closed-loop scheduling algorithm. Results such as Theorem 6.12, assume that an optimal so-

lution to the MPC problem is available at each time step. For large-scale and industrially

relevant production scheduling problems, however, solving these mixed-integer optimization
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problems to optimality is often intractable. Instead, large-scale MILPs or MIQPs are typi-

cally solved to within some global optimality gap, i.e., the cost of the reported solution is

within some �xed range of the optimal cost (often reported as a percentage). We therefore

want algorithms for closed-loop scheduling that retain these guarantees of nominal and ro-

bust economic performance, but do not require optimal solutions to the stated optimization

problem. These limitations also exist in other applications of MPC, particular for nonlinear

systems. Thus, the design and analysis of suboptimal MPC algorithms, i.e., algorithms that

operate without optimal solutions to the MPC problem, are important topics of research.

The approaches to suboptimal MPC are divided into two main categories: warm-start sub-

optimal MPC and optimality-gap suboptimal MPC. In warm-start suboptimal MPC, a feasible

initial control sequence (warm start), based on the previous open-loop trajectory, is used to

initialize the optimization algorithm (Scokaert et al., 1999). The optimizer must then compute

a control sequence that is no worse than the warm start in terms of the cost function. This

algorithm also requires that the terminal control law is available to compute this warm-start

input trajectory. With this algorithm, the origin is nominally asymptotically stable and in-

herently robust to su�ciently small disturbances (Allan et al., 2017; Pannocchia et al., 2011).

Moreover, warm-start economic MPC provides the same nominal performance guarantee es-

tablished in Theorem 6.6 (Risbeck, 2018, Thm. 3.15). A critical requirement to establish the

robustness of this warm-start algorithm is that the disturbances are su�ciently small such

that that the warm-start input trajectory is feasible for the perturbed state. The large distur-

bances encountered in production scheduling applications, however, often render the previ-

ously computed schedule infeasible, e.g., a task delay may require all of the subsequent tasks

in the schedule to be similarly delayed.

In optimality-gap suboptimal MPC, the cost of the computed solution must be within a

speci�c gap of the global optimum (Lazar and Heemels, 2009). Robustness to disturbances is

also established for this algorithm, but requires a positive de�nite stage cost and does not ex-
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tend to the nominal performance guarantee in Theorem 6.6 (Lazar and Heemels, 2009; Picasso

et al., 2012).

Thus, neither of these algorithms meet the requirements of the desired suboptimal closed-

loop scheduling algorithm. We instead propose a hybrid algorithm that combines the strengths

of these two suboptimal MPC algorithms. This algorithm is speci�cally designed to address

the large disturbances relevant to production scheduling algorithms. Moreover, we include

the rescheduling penalty seamlessly in this hybrid algorithm. We now introduce this hybrid

algorithm, starting with the rescheduling penalty.

6.6.1 Rescheduling penalties

To de�ne a rescheduling penalty for the system, we �rst de�ne a warm-start input tra-

jectory for the system by extending the previous schedule u with the terminal control law,

i.e.,

ũ+(x,u, t) := (u(t+ 1), . . . , u(t+N − 1), κ(x(t+N), t+N))

in which x(t+N) = φ̂(t+N ;x,u, t). This input trajectory can also be treated as the incum-

bent schedule, i.e., the trajectory in which no tasks are rescheduled. We then augment the

economic cost function in the previous closed-loop scheduling algorithm with a rescheduling

penalty R : UN × UN → R≥0 such that the new cost function becomes

VR(x, ũ,u, t) = V (x,u, t) +R(ũ,u)

With this new cost function, the optimization problem is now de�ned as

PR(x, ũ, t) : V 0
R(x, ũ, t) := min

u∈U(x,t)
VR(x, ũ,u, t) (6.27)
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Note that the constraint set U(x, t) does not change and therefore the feasible setX (t) for this

optimization problem is unchanged. We require that this rescheduling penalty is continuous

and is zero if the schedule is unchanged.

Assumption 6.24 (Rescheduling penalty). The rescheduling penalty R : UN × UN → R≥0

is continuous and satis�es R(u,u) = 0 for all u ∈ UN .

For example, we can de�ne the rescheduling penalty as

R(ũ,u) =
t+N−1∑
k=t

|ũ(k)− u(k)|

or we can implement more complicated and asymmetric penalties tailored to the application

of interest. For more details, discussion, and additional penalty forms see McAllister et al.

(2020).

6.6.2 A hybrid suboptimal MPC algorithm

We now introduce the hybrid suboptimal MPC algorithm that combines the features of

both warm-start and optimality-gap suboptimal MPC. This algorithm requires that the com-

puted solution achieves an optimality gap of less that some speci�ed constant ρ ≥ 0. If the

warm start is feasible, we also require the computed solution to be no worse than the warm

start in terms of the cost function. We de�ne this algorithm in the following paragraph.

The set of admissible input trajectories for warm-start suboptimal MPC is

Ǔw(x, ũ, t) := {u : u ∈ U(x, t), VR(x, ũ,u, t) ≤ VR(x, ũ, ũ, t)}

Note that if ũ /∈ U(x, t), i.e., the warm start is infeasible, then Ǔw(x, ũ, t) may be empty. We
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de�ne the set of admissible input trajectories with an optimality gap less than ρ ≥ 0 as

Ǔg(x, ũ, t) := {u : u ∈ U(x, t), VR(x, ũ,u, t) ≤ V 0
R(x, ũ, t) + ρ}

The hybrid algorithm is de�ned by the following combination of these sets.

Ǔ(x, ũ, t) :=


Ǔw(x, ũ, t) ∩ Ǔg(x, ũ, t) ; ũ ∈ U(x, t)

Ǔg(x, ũ, t) ; ũ /∈ U(x, t)

We summarize this suboptimal MPC algorithm as follows.

Algorithm 6.25 (Hybrid suboptimal MPC). Obtain the initial state x ∈ X (t) and any initial

warm start ũ ∈ UN . Then repeat

1. Obtain the current state x and warm start ũ.

2. Compute any u ∈ Ǔ(x, ũ, t).

(a) If ũ is feasible, compute u ∈ Ǔw(x, ũ, t) ∩ Ǔg(x, ũ, t).

(b) If ũ is not feasible, compute u ∈ Ǔg(x, ũ, t).

(c) Inject the �rst element of the input sequence u.

(d) Compute the next warm start ũ+(x,u, t).

Since the control action is now a function of the warm start, we �nd it convenient to

discuss the extended state z := (x, ũ) for the system. The dynamics of this extended state are

given by

z+ ∈ H(z, w, t) :=


f(x, u, w, t)

ũ+(x,u, t)

 : u ∈ Ǔ(z, t)

 , w ∈W (6.28)

250



Closed-Loop Scheduling Chapter 6

in which u is the �rst element of u. We also de�ne the sets

Z(t) := X (t)× UN

for all t ∈ I≥0. We use φz(k; z,wk, t) to denote any solution of (6.28) with the initial extended

state z ∈ X (t)× UN at time t ∈ I≥0, given the disturbance sequence wt:k ∈Wk−t. This tra-

jectory is therefore a selection from the set of potential solutions for the closed-loop system

de�ned by (6.28). All results are then established for any such selection. For this trajectory,

we use φx(k; z,wk, t) and φu(k; z,wk, t) to denote the corresponding x and u trajectory, re-

spectively. We also use φu(k; z,wk, t) to denote the computed open-loop control trajectory

u at each time step.

6.6.3 Robustness to large and infrequent disturbances

Since we are now addressing the extended state of the system, we need to modify the

de�nition of economic robustness in De�nition 6.9 to suit the system in (6.28).

De�nition 6.26 (Economically robust to large, infrequent disturbances). The system in (6.28)

is economically robust to large, infrequent disturbances with respect to the stage cost `(·) and

the reference trajectory (xr,ur) in an RPI sequence of sets (Z(t))∞t=0 if there exist δ > 0 and

γ(·) ∈ K such that

lim sup
T→∞

1

T

t+T−1∑
k=t

E[`(x(k), u(k), k)] ≤ γ(µ(W1)) (6.29)

in which x(k) = φx(k; z,wt:k, t) and u(k) = φu(k; z,wt:k, t) for all z ∈ Z(t), µ ∈ M(W, δ),

and t ∈ I≥0.

We also modify Assumption 6.10 as follows.
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Assumption 6.27 (Robust recursive feasibility). The sequence of sets (Z(t))∞t=0 is robustly

positive invariant for the system in (6.28), i.e., H(z, w, t) ⊆ Z(t+ 1) for all z ∈ Z(t), w ∈W,

and t ∈ I≥0.

We require one additional assumption for the stage cost of the system. Note that this

assumption is satis�ed by the linear stage costs used in the production scheduling problem

formulation.

Assumption 6.28 (Uniformly continuous stage cost). There exists d ≥ 0 such that

|`(x, u1, t)− `(x, u2, t)| ≤ d

for all (x, u1) ∈ Z, (x, u2) ∈ Z, and t ∈ I≥0.

We can now establish the following result.

Theorem 6.29. Let Assumptions 6.2, 6.4, 6.5, 6.7, 6.8, 6.11, 6.24, 6.27 and 6.28 hold. Then the

system in (6.28) is economically robust to large, infrequent disturbances with respect to the stage

cost `(·) and reference trajectory (xr,ur) in the RPI sequence of sets (Z(t))∞t=0.

Proof. Choose any z = (x, ũ) ∈ Z(t), t ∈ I≥0, and an input trajectory that satis�es u ∈

Ǔ(z, t). Denote the �rst input of this trajectory as u. We denote the subsequent extended

state as z+ = (x+, ũ+) ∈ H(z, w, t).

If w = 0, we have that ũ+ ∈ U(x+, t + 1) by Assumption 6.5 and the subsequent input

trajectory must satisfy u+ ∈ Ǔw(z, t + 1). Let xf := φ̂(N ;x,u, t), uf := κ(xf , t + N), and
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x+
f = f(xf , uf , 0, t). From Assumption 6.5 and Assumption 6.24, we have that

VR(z+,u+, t+ 1) ≤ VR(z+, ũ+, t+ 1)

= V (z+, t+ 1)

= V (x,u, t)− `(x, u, t)

− Vf (xf , t+N) + `(xf , ur, t+N) + Vf (x
+
f , t+N + 1)

≤ V (x,u, t)− `(x, u, t)

≤ VR(z,u, t)− `(x, u, t)

Ifw ∈W1, we have x+ = f(x, u, w, t) and note that ũ+ is not necessarily a feasible warm

start for x+. Instead, we know that u+ ∈ Ǔg(z, t+ 1) and therefore

VR(z+,u+, t+ 1) ≤ V 0
R(z+, t+ 1) + ρ

Since R(·) is continuous and U is compact, there exists r ≥ 0 such that R(ũ,u) ≤ r for all

ũ,u ∈ UN . From Assumption 6.11, we therefore have

VR(z+,u+, t+ 1) ≤ V 0
R(z+, t+ 1) + ρ

≤ V 0(x+, t+ 1) + r + ρ

≤ V 0(x, t) + b1`(x, κ(x, t), t) + b2 + r + ρ

≤ VR(z,u, t) + b1`(x, κ(x, t), t) + b2 + r + ρ

We now apply Assumption 6.28 to give

VR(z+,u+, t+ 1) ≤ VR(z,u, t) + b1`(x, u, t) + b3
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in which b3 := b1d+ b2 + r + ρ.

To streamline notation, we now de�ne y := (z,u) and y+ = (z+,u+). We then combine

the bounds with and without the disturbance as follows.

VR(y+, t+ 1) ≤ VR(y, t)− (1− IW1(w))`(x, u, t) + IW1(w)(b1`(x, u, t) + b3)

Taking the expected value and combining terms gives,

E
[
VR(y+, t+ 1)

]
− E [VR(y, t)] ≤ −(1− µ(W1)− b1µ(W1))E [`(x, u, t)] + b3µ(W1)

We choose 0 < δ < 1/(1 + b1) such that

E
[
VR(y+, t+ 1)

]
− E [VR(y, t)] ≤ −b4E [`(x, u, t)] + b3µ(W1) (6.30)

with b4 := 1− (1 + b1)δ. Note that b4 > 0.

From an initial z ∈ Z(t) and t ∈ I≥0, we denote the closed-loop trajectories as z(k) =

φz(k; z,wt:k, t), x(k) = φx(k; z,wt:k, t), u(k) = φu(k; z,wt:k, t), and u(k) = φu(k; z,wt:k, t).

Furthermore, we de�ne y(k) = (z(k),u(k)). With (6.30) and the properties of iterated expec-

tations, we have

E [VR(y(k + 1), k + 1)]− E [VR(y(k), k)] ≤ −b4E [`(x(k), u(k), k)] + b3µ(W1)

for all k ∈ I≥t. We sum both sides of this inequality from t to t + T − 1, divide by T , and

rearrange to give

b4

T

t+T−1∑
k=t

E [`(x(k), u(k), k)] ≤ VR(y(t), t)− E [VR(y(t+ T ), t+ T )]

T
+ b3µ(W1)
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By Assumption 6.4 and Assumption 6.24, there exists M ∈ R such that VR(z,u, k) ≥ M for

all z ∈ Z(k), u ∈ UN , and k ∈ I≥0. Therefore, we have

1

T

t+T−1∑
k=t

E [`(x(k), u(k), k)] ≤ VR(y(t), t)−M
b4T

+ γ(µ(W1))

in which γ(s) := (b3/b4)s. We take the limit supremum as T → ∞ so that the initial cost

and M vanish to give (6.29). Note that γ(·) ∈ K to complete the proof.

Thus, the proposed suboptimal MPC algorithm with rescheduling penalties is economi-

cally robust to large, infrequent disturbances. We can now apply this algorithm to closed-loop

scheduling and establish the following corollary of Theorem 6.29.

Corollary 6.30. Consider the system in (6.2), constraint Z, and stage cost in (6.9) de�ned for

production scheduling. Let the terminal constraint and terminal cost be de�ned by (6.17) and

(6.21). Let Assumptions 6.2, 6.4, 6.7, 6.8, 6.13, 6.14, 6.16, 6.19 and 6.27 hold. Then the system

in (6.28) is economically robust to large, infrequent disturbances with respect to the stage cost

`(·) and reference trajectory (xr,ur) in the RPI sequence of sets (Z(t))∞t=0, i.e., the suboptimal

closed-loop scheduling algorithm with a rescheduling penalty is inherently robust.

6.7 Summary

In this chapter, we introduced a general class of production scheduling problems and

demonstrated that closed-loop or online scheduling algorithms �t within the framework of

MPC. We then de�ned the term robustness for the class of large and infrequent disturbances

prevalent in production scheduling applications and justi�ed this de�nition with a small mo-

tivating example. With suitable assumptions and a carefully constructed terminal constraint

and cost, we established that the proposed closed-loop scheduling algorithm is inherently ro-

bust to large and infrequent disturbances such as breakdowns, delays, and yield losses. To
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address the high computational burden and potential for “schedule nervousness” inherent to

closed-loop scheduling, we further developed a suboptimal MPC algorithm that includes a

rescheduling penalty. Moreover, we established that this novel suboptimal MPC algorithm is

also robust to large and infrequent disturbances. The proposed algorithm is therefore suitable

for large-scale industrial applications of closed-loop scheduling.

We recognize, however, that constructing the terminal constraint and cost as detailed in

(6.17) and (6.21) may be inconvenient in engineering practice for many systems of interest.

We therefore conclude this chapter with a selection of well motivated suggestions to construct

a more practical approximation of the algorithm proposed in this chapter:

1. Determine a suitable reference trajectory for the nominal manufacturing facility based

on heuristics, optimization, past experience, or some combination thereof.

2. Use this reference trajectory as a terminal equality constraint for all state variables aside

from inventory and backlog.

3. Allow the terminal region to include any values of inventory and backlog that exceed

the reference trajectory.

4. De�ne the terminal cost to asses a large linear penalty on deviations of inventory and

backlog from their corresponding values in the reference trajectory.

5. Use the incumbent schedule as a warm start for the MILP produced by this MPC problem

and set a minimum optimality gap.

6. If the optimization problem becomes infeasible, increase the horizon length.

7. If schedule nervousness is a concern in the manufacturing facility, implement a reschedul-

ing penalty that places a 1-norm penalty on changes to the decision variable W in the

input trajectory, i.e., R(ũ,u) =
∑t+N−1

k=t |W̃ (k)−W (k)|1.
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While this approximate algorithm does not exactly satisfy the required assumptions of The-

orem 6.12 or Theorem 6.29, these suggestions may signi�cantly improve the performance

and robustness of closed-loop scheduling algorithms compared to algorithms without any

terminal costs or constraints.
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Conclusions

A key question in using models to design, schedule, and control chemical processes is how

to handle uncertainty. Do we attempt to characterize and include this uncertainty directly in

the problem formulation? Respond to this uncertainty as it is observed? Or use some com-

bination of these two methodologies? In process control, the preferred method to address

uncertainty is through feedback from the system. Even for cutting edge control algorithms

based on stochastic optimization, feedback still remains an integral part of the control al-

gorithm. Both algorithmically simple to implement and intuitively similar to the manner in

which humans naturally address uncertainty, feedback has proven time and again to be a

remarkably powerful tool in engineering practice.

Although powerful, feedback methods also introduce their own set of complications to

the underlying system analysis. The dynamics of the closed-loop system emerging from this

feedback control structure are complicated and sometimes nonintutive. Analyzing and char-

acterizing the behavior of new control algorithms and the resulting closed-loop systems are

therefore essential components of control theory.

One can, and often does, use a deterministic description of this uncertainty to characterize

the behavior and robustness of these closed-loop systems. While this deterministic descrip-

tion produces instructive and important results, stochastic descriptions of uncertainty are

often better suited to model the behavior of physical systems. We therefore pursued stochas-
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tic descriptions of uncertainty and robustness throughout this dissertation. In particular, we

developed a extensive theory for the stochastic robustness of MPC, the advanced control

method of choice for chemical process control with applications in many other engineering

disciplines as well.

In Chapter 2, we discussed and de�ned stochastic robustness for a closed-loop system. We

then established that nominal MPC is robust in this stochastic context for su�ciently small

disturbances. While signi�cant in its own right, this result is particularly important because

we can now compare the theoretical properties of nominal and stochastic MPC in terms of

this de�nition of stochastic robustness.

In Chapter 3, we introduced SMPC and established some fundamental mathematical prop-

erties for the problem formulation that are often neglected in SMPC literature. We then es-

tablished that idealized SMPC admits the same de�nition of stochastic robustness that was

established for nominal MPC. This result suggests that nominal and stochastic MPC provide

the same qualitative closed-loop behavior in the presence of stochastic uncertainty in the dy-

namical model. The comparison of robustness across these two MPC formulations is therefore

a quantitative inquiry, best explored through simulation studies.

A signi�cant limitation of the analysis in Chapter 3 and throughout much of stochastic

optimal control is that these results assume the stochastic description of uncertainty used in

the problem formulation is equivalent to the stochastic uncertainty encountered in the plant.

While convenient for the analysis of these stochastic optimal control methods, this assump-

tion does not hold in practice. Stochastic descriptions of uncertainty are subject to their own

distributional uncertainty. In Chapter 4, we addressed this limitation and established, under

suitable assumptions, that SMPC is distributionally robust. Su�ciently small errors in the

stochastic dynamical model therefore produce similarly small deviations in the closed-loop

performance of SMPC. Scenario-based approximations of the SMPC optimization problem are

covered by this result as well. This result is also important because it uni�es the seemingly
259



Conclusions Chapter 7

disparate results established for nominal and stochastic MPC in Chapters 2 and 3. In fact,

Theorem 4.18 serves as a single summarizing result of the analysis developed throughout

Chapters 2 to 4.

With this analysis, we intentionally raise a particularly contentious issue in control theory

and algorithm design that is best stated by Wonham (1969):

Since the mathematical model is usually greatly complicated by explicitly includ-

ing stochastic features, it is always to be asked whether the extra e�ort is worth-

while, i.e. whether it leads to a control markedly superior in performance to one

designed on the assumption that stochastic disturbances are absent.

While we restricted the discussion in this dissertation to a comparison of nominal and stochas-

tic MPC, the debate between nominal and stochastic optimal control methods is broader and

older than the research �eld of MPC. At the time, Wonham presented a conclusion that was

very critical of stochastic optimal control.

In the case of feedback controls the general conclusion is that only marginal im-

provements can be obtained unless the disturbance level is very high, in which

case the fractional improvement from stochastic optimization may be large, but

the system is useless anyway, That is, e�orts to counter disturbances by simply

warping the velocity �eld in state space are generally misplaced.

In recent decades, the e�ort required to include these stochastic features in controller

design and optimization problems has been greatly diminished by algorithmic and computa-

tional advances. Nonetheless, the bene�ts of including this stochastic information remain

unclear. Nominal MPC, for example, o�ers similar qualitative behavior to that of SMPC.

Through several examples in Section 3.7, we further demonstrated that SMPC is not necessar-

ily more robust than nominal MPC in terms of relevant quantitative metrics of robustness. In
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particular, SMPC can produce nominal closed-loop systems that are not asymptotically sta-

ble, resulting in nonintuitive and potentially undesirable closed-loop behavior. If we consider

su�ciently large disturbances such that nominal MPC is no longer robust, we may not be able

to design an SMPC algorithm for this class of disturbances anyway. Thus, the conclusion of

Wonham remains remarkably relevant and accurate today for setpoint tracking applications

of MPC.

There is perhaps one update that should be made to Wonham’s conclusion as it pertains

to economic applications of MPC. In these economic applications, performance in terms of the

stage cost is more important than the stability of a target steady state (or reference trajectory)

for the closed-loop system. For economic applications, the goal of SMPC is not only to reject

disturbances by “warping the velocity �eld”, but also to select operating trajectories that boast

superior expected performance than the potentially suboptimal steady state or reference tra-

jectory supplied to the MPC problem. These economic costs are frequently “asymmetric” in

that the cost of deviating from the setpoint or reference trajectory is smaller in one direction

than the opposite direction. Exploiting these asymmetries in the presence of uncertainty can

prove bene�cial. The inventory control problem in Section 3.7.4 provides a simple example

of this asymmetry and the potential bene�t of SMPC.

The �rst part of this dissertation, spanning Chapters 2 to 4, addressed the question of

stochastic robustness for the class of su�ciently small disturbances that best characterizes

the uncertainty observed in most process control applications. But as we expand the purview

of MPC to include higher-level planning and scheduling problems, we must also expand the

class of disturbances considered in these robustness results. In Chapter 5, we considered a

class of large and infrequent disturbances that best characterize the uncertainty observed in

these planning and scheduling applications of MPC. We then established that nominal MPC

is robust to this class of large disturbances, in a stochastic context, provided that these distur-

bances are also su�ciently infrequent. This result requires that the nominal MPC algorithm
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is robustly recursively feasible by design, but this assumption is often satis�ed for these plan-

ning and scheduling problems through careful design of the constraints.

In Chapter 6, we applied these results for large and infrequent disturbances to design

a closed-loop scheduling algorithm that is inherently robust relative to a prescribed refer-

ence trajectory for the system. In particular, we developed a method to construct a terminal

constraint and cost for a general production scheduling problem that satisfy the required

assumptions detailed in Chapter 5. We can also add rescheduling penalties to this problem

formulation to discourage alterations to the open-loop schedule and thereby improve opera-

tor acceptance of the new algorithm. We also detailed a closed-loop scheduling algorithm that

can operate with suboptimal solutions to the proposed optimization problem. We further es-

tablished that this suboptimal algorithm remains robust to large and infrequent disturbances.

The proposed algorithm is therefore computationally e�cient and can be applied to large-

scale applications of closed-loop scheduling.

The conceptual development of de�ning robustness for closed-loop scheduling is per-

haps a more important contribution in Chapter 6 than the development of a new closed-loop

scheduling algorithm. This de�nition of robustness characterizes the behavior of the closed-

loop system and is therefore not restricted to MPC. The property is general, and therefore

applicable to any closed-loop scheduling algorithm.

The de�nitions of robustness for the control of dynamical systems have evolved consid-

erably over time. The ISS-framework pioneered by Sontag and Wang (1995) has proven both

highly useful and �exible for the study of both the stochastic and distributional robustness of

nominal and stochastic MPC. Many of the developments in this dissertation apply to closed-

loop systems in general and may therefore �nd utility in the larger �eld of stochastic optimal

control. With that in mind, we close with some suggestions for future directions of research.
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7.1 Future directions

We discuss several potential directions for future research based on the results in this

dissertation. Some of these topics are quite promising and indicated as such. Others are

subject to numerous limitations that may hinder any further development of the idea, which

we also note in the subsequent discussion.

7.1.1 Economic MPC

In Corollary 4.25, we established that economic MPC, without the requirement of a posi-

tive de�nite or dissipative stage cost, is robust in terms of the average economic performance.

This fortuitous result requires an interesting and new restriction in (4.24) for the terminal

control law and terminal cost. Since this result was not the original focus of this research di-

rection, the implications of this result were not further explored. Thus, a potential direction of

future research is to investigate this result further. In particular, we want to determine if the

there exist terminal costs and control laws that satisfy the nominal cost decrease condition in

(4.6) as well as (4.24). If so, is there a general procedure to construct this terminal cost?

7.1.2 SMPC

One of the signi�cant shortcomings of SMPC for nonlinear systems is that the closed-loop

system is not necessarily RAS. Thus, the closed-loop system may not stabilize the speci�ed

setpoint or reference trajectory in the nominal case. While this behavior may be acceptable

in economic application, in which stability of a speci�c setpoint is not required, this behavior

may be nonintuitive or undesirable for setpoint tracking applications of MPC.

For linear systems and quadratic costs, RAS is guaranteed for SMPC. This result is estab-

lished by exploiting the convexity and continuity of the optimal cost function. For nonlinear

systems and more general cost functions, are there additional conditions on the SMPC prob-
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lem that guarantee RAS? If so, we can use these conditions to determine if SMPC is liable to

produce undesirable closed-loop behavior for setpoint tracking control problems.

Establishing Conjecture 3.22, or a similar result, may also provide some clarity to the de-

bate between nominal and stochastic MPC. Conjecture 3.22 is well motivated and supported

by the examples in this dissertation. Larger-scale studies of SMPC also suggest that Conjec-

ture 3.22 may hold (Kumar et al., 2019). Unfortunately, we do not see a clear path forward

at this time. The results in Theorem 4.22 and Corollary 4.25 o�er some insights into this

conjecture, but nonetheless produce two di�erent constants for these two formulations that

are, to the best of our knowledge, not comparable for a general nonlinear system. With ad-

ditional restrictions on the stage cost and system we may be able to establish a (weaker)

version of Conjecture 3.22 that provides some insight. For example, this result may indicate

what conditions for the system and stage cost are required for SMPC to produce signi�cant

gains compared to nominal MPC. At this time, however, simulation studies remain the only

means to compare the performance of nominal and stochastic MPC for a problem of interest.

7.1.3 Distributional robustness

In Chapter 4, we established that SMPC is distributionally robust to su�ciently small

errors in the stochastic model of uncertainty in the SMPC formulation. We can, in theory,

further extend the SMPC problem formulation to include a description of this distributional

uncertainty directly in the problem formulation via the emerging �eld of distributionally ro-

bust optimization (DRO). DRO can also be used to address the inherent limitations of scenario-

based approximations of SMPC. While this proposed formulation is interesting, solving this

DRO problem is even more computationally demanding than a stochastic optimization prob-

lem. Algorithmic advances in the �eld of DRO are continuing to improve the e�cacy of this

method, but the approach remains intractable for nonlinear systems and the online imple-
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mentation required of MPC.

The de�nition of distributional robustness and the SISS framework proposed in Chapter 4

are general in that they apply to any closed-loop stochastic system. These results can there-

fore be applied to the larger �eld of stochastic optimal control. For example, this framework

may be useful in investigating the distributional robustness of in�nite horizon stochastic op-

timal control or stochastic dynamic programming.

In particular, the notion of distributional robustness de�ned in this dissertation is able

to address scenario-based approximations of stochastic optimal control problems. This capa-

bility provides a potentially useful connection to data-driven methods for controller design.

These data-driven or reinforcement learning methods e�ectively sample a stochastic dynam-

ical system to determine a control law for that system. Characterizing the convergence of

these data-driven methods with increased samples is therefore a very important topic of re-

search. While the framework developed in Chapter 4 does not address this question directly,

the results in this chapter may provide useful inspiration for future work on the topic of

data-driven control and reinforcement learning.

7.1.4 Closed-loop scheduling

The scheduling problem in Chapter 6 includes only batch processes and produces a linear

dynamical model for the nominal system. This state-space scheduling model can also be ex-

tended to include continuous processes, i.e., production occurs at each time step and we are

scheduling transitions between di�erent operating points in the unit (e.g., di�erent product

qualities in a reactor) (Risbeck et al., 2019). We may also want to consider blending problems

similar to the example in Section 5.4.1. These blending problems frequently occur in chemical

manufacturing, in which di�erent feedstocks must be blended to produce the target combi-

nation of key properties for the products. Thus, a potential direction for future work is to
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extend the results in Chapter 6 to include these additional scheduling models.

The extension to include the scheduling of continuous processes should be relatively sim-

ple as the nominal dynamical model remains linear. Moreover, the terminal constraint can

still require all of the lifted elements of the state to terminate in phase with the reference tra-

jectory. Thus, we expect that the modi�cations to the terminal constraint and cost required

to accommodate this new scheduling problem are minor.

The extension to include blending problems is likely more di�cult since the dynamical

system is now nonlinear. Nonetheless, the majority of results in Chapter 6 are not restricted

to linear systems. Assumption 6.14 still applies because the inventory and backlog elements

of the state are still integrators. Lemma 6.20 uses the fact that the nominal model is linear,

but the desired bound in (6.24) is not unique to linear systems. Thus, a path to extend these

results to blending problems is available.

Another important topic in production planning and scheduling is the so called “short-

term” scheduling problem. In these short-term scheduling problems, there is no high-quality

reference trajectory available for the system because there is no regular pattern of demand.

Instead, we must react to new orders as they occur. The robustness results in Chapter 6 are

nonetheless still relevant to this problem.

In e�ect, these new orders are disturbances entering the system. The goal of the schedul-

ing algorithm is therefore to address and reject these disturbances as they occur. In this case,

the nominal demand for each product is zero and the optimal nominal trajectory is an idle

facility. We can therefore use this idle facility as the reference trajectory in the de�nition of

robustness for these short-term scheduling problems. While an idle facility is not a “high-

quality” reference trajectory for the system, the bound in De�nition 6.9 is still meaningful.

A short-term scheduling algorithm that admits this de�nition of robustness still ensures that

small amounts of backlog are not ignored and that unnecessary inventory is not maintained

for products we do not need. If there are only a few products for the facility, constructing a ter-
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minal cost and constraint based on the procedure in Chapter 6, may still be possible. If, how-

ever, there are dozens (or even hundreds) of products for the facility, constructing a terminal

cost and constraint according to Chapter 6 may be unwise. Since these short-term schedul-

ing problems are common in some manufacturing facilities, further research into closed-loop

scheduling algorithms for this class of problems is worthwhile.
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